svc_dg.c revision 261046
1/*	$NetBSD: svc_dg.c,v 1.4 2000/07/06 03:10:35 christos Exp $	*/
2
3/*-
4 * Copyright (c) 2009, Sun Microsystems, Inc.
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions are met:
9 * - Redistributions of source code must retain the above copyright notice,
10 *   this list of conditions and the following disclaimer.
11 * - Redistributions in binary form must reproduce the above copyright notice,
12 *   this list of conditions and the following disclaimer in the documentation
13 *   and/or other materials provided with the distribution.
14 * - Neither the name of Sun Microsystems, Inc. nor the names of its
15 *   contributors may be used to endorse or promote products derived
16 *   from this software without specific prior written permission.
17 *
18 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
19 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
20 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
21 * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
22 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
23 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
24 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
25 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
26 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
27 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
28 * POSSIBILITY OF SUCH DAMAGE.
29 */
30
31/*
32 * Copyright (c) 1986-1991 by Sun Microsystems Inc.
33 */
34
35#if defined(LIBC_SCCS) && !defined(lint)
36#ident	"@(#)svc_dg.c	1.17	94/04/24 SMI"
37#endif
38#include <sys/cdefs.h>
39__FBSDID("$FreeBSD: stable/10/lib/libc/rpc/svc_dg.c 261046 2014-01-22 23:45:27Z mav $");
40
41/*
42 * svc_dg.c, Server side for connectionless RPC.
43 *
44 * Does some caching in the hopes of achieving execute-at-most-once semantics.
45 */
46
47#include "namespace.h"
48#include "reentrant.h"
49#include <sys/types.h>
50#include <sys/socket.h>
51#include <rpc/rpc.h>
52#include <rpc/svc_dg.h>
53#include <assert.h>
54#include <errno.h>
55#include <unistd.h>
56#include <stdio.h>
57#include <stdlib.h>
58#include <string.h>
59#ifdef RPC_CACHE_DEBUG
60#include <netconfig.h>
61#include <netdir.h>
62#endif
63#include <err.h>
64#include "un-namespace.h"
65
66#include "rpc_com.h"
67#include "mt_misc.h"
68
69#define	su_data(xprt)	((struct svc_dg_data *)(xprt->xp_p2))
70#define	rpc_buffer(xprt) ((xprt)->xp_p1)
71
72#ifndef MAX
73#define	MAX(a, b)	(((a) > (b)) ? (a) : (b))
74#endif
75
76static void svc_dg_ops(SVCXPRT *);
77static enum xprt_stat svc_dg_stat(SVCXPRT *);
78static bool_t svc_dg_recv(SVCXPRT *, struct rpc_msg *);
79static bool_t svc_dg_reply(SVCXPRT *, struct rpc_msg *);
80static bool_t svc_dg_getargs(SVCXPRT *, xdrproc_t, void *);
81static bool_t svc_dg_freeargs(SVCXPRT *, xdrproc_t, void *);
82static void svc_dg_destroy(SVCXPRT *);
83static bool_t svc_dg_control(SVCXPRT *, const u_int, void *);
84static int cache_get(SVCXPRT *, struct rpc_msg *, char **, size_t *);
85static void cache_set(SVCXPRT *, size_t);
86int svc_dg_enablecache(SVCXPRT *, u_int);
87
88/*
89 * Usage:
90 *	xprt = svc_dg_create(sock, sendsize, recvsize);
91 * Does other connectionless specific initializations.
92 * Once *xprt is initialized, it is registered.
93 * see (svc.h, xprt_register). If recvsize or sendsize are 0 suitable
94 * system defaults are chosen.
95 * The routines returns NULL if a problem occurred.
96 */
97static const char svc_dg_str[] = "svc_dg_create: %s";
98static const char svc_dg_err1[] = "could not get transport information";
99static const char svc_dg_err2[] = "transport does not support data transfer";
100static const char svc_dg_err3[] = "getsockname failed";
101static const char svc_dg_err4[] = "cannot set IP_RECVDSTADDR";
102static const char __no_mem_str[] = "out of memory";
103
104SVCXPRT *
105svc_dg_create(fd, sendsize, recvsize)
106	int fd;
107	u_int sendsize;
108	u_int recvsize;
109{
110	SVCXPRT *xprt;
111	struct svc_dg_data *su = NULL;
112	struct __rpc_sockinfo si;
113	struct sockaddr_storage ss;
114	socklen_t slen;
115
116	if (!__rpc_fd2sockinfo(fd, &si)) {
117		warnx(svc_dg_str, svc_dg_err1);
118		return (NULL);
119	}
120	/*
121	 * Find the receive and the send size
122	 */
123	sendsize = __rpc_get_t_size(si.si_af, si.si_proto, (int)sendsize);
124	recvsize = __rpc_get_t_size(si.si_af, si.si_proto, (int)recvsize);
125	if ((sendsize == 0) || (recvsize == 0)) {
126		warnx(svc_dg_str, svc_dg_err2);
127		return (NULL);
128	}
129
130	xprt = svc_xprt_alloc();
131	if (xprt == NULL)
132		goto freedata;
133
134	su = mem_alloc(sizeof (*su));
135	if (su == NULL)
136		goto freedata;
137	su->su_iosz = ((MAX(sendsize, recvsize) + 3) / 4) * 4;
138	if ((rpc_buffer(xprt) = mem_alloc(su->su_iosz)) == NULL)
139		goto freedata;
140	xdrmem_create(&(su->su_xdrs), rpc_buffer(xprt), su->su_iosz,
141		XDR_DECODE);
142	su->su_cache = NULL;
143	xprt->xp_fd = fd;
144	xprt->xp_p2 = su;
145	xprt->xp_verf.oa_base = su->su_verfbody;
146	svc_dg_ops(xprt);
147	xprt->xp_rtaddr.maxlen = sizeof (struct sockaddr_storage);
148
149	slen = sizeof ss;
150	if (_getsockname(fd, (struct sockaddr *)(void *)&ss, &slen) < 0) {
151		warnx(svc_dg_str, svc_dg_err3);
152		goto freedata_nowarn;
153	}
154	xprt->xp_ltaddr.buf = mem_alloc(sizeof (struct sockaddr_storage));
155	xprt->xp_ltaddr.maxlen = sizeof (struct sockaddr_storage);
156	xprt->xp_ltaddr.len = slen;
157	memcpy(xprt->xp_ltaddr.buf, &ss, slen);
158
159	if (ss.ss_family == AF_INET) {
160		struct sockaddr_in *sin;
161		static const int true_value = 1;
162
163		sin = (struct sockaddr_in *)(void *)&ss;
164		if (sin->sin_addr.s_addr == INADDR_ANY) {
165		    su->su_srcaddr.buf = mem_alloc(sizeof (ss));
166		    su->su_srcaddr.maxlen = sizeof (ss);
167
168		    if (_setsockopt(fd, IPPROTO_IP, IP_RECVDSTADDR,
169				    &true_value, sizeof(true_value))) {
170			    warnx(svc_dg_str,  svc_dg_err4);
171			    goto freedata_nowarn;
172		    }
173		}
174	}
175
176	xprt_register(xprt);
177	return (xprt);
178freedata:
179	(void) warnx(svc_dg_str, __no_mem_str);
180freedata_nowarn:
181	if (xprt) {
182		if (su)
183			(void) mem_free(su, sizeof (*su));
184		svc_xprt_free(xprt);
185	}
186	return (NULL);
187}
188
189/*ARGSUSED*/
190static enum xprt_stat
191svc_dg_stat(xprt)
192	SVCXPRT *xprt;
193{
194	return (XPRT_IDLE);
195}
196
197static int
198svc_dg_recvfrom(int fd, char *buf, int buflen,
199    struct sockaddr *raddr, socklen_t *raddrlen,
200    struct sockaddr *laddr, socklen_t *laddrlen)
201{
202	struct msghdr msg;
203	struct iovec msg_iov[1];
204	struct sockaddr_in *lin = (struct sockaddr_in *)laddr;
205	int rlen;
206	bool_t have_lin = FALSE;
207	char tmp[CMSG_LEN(sizeof(*lin))];
208	struct cmsghdr *cmsg;
209
210	memset((char *)&msg, 0, sizeof(msg));
211	msg_iov[0].iov_base = buf;
212	msg_iov[0].iov_len = buflen;
213	msg.msg_iov = msg_iov;
214	msg.msg_iovlen = 1;
215	msg.msg_namelen = *raddrlen;
216	msg.msg_name = (char *)raddr;
217	if (laddr != NULL) {
218	    msg.msg_control = (caddr_t)tmp;
219	    msg.msg_controllen = CMSG_LEN(sizeof(*lin));
220	}
221	rlen = _recvmsg(fd, &msg, 0);
222	if (rlen >= 0)
223		*raddrlen = msg.msg_namelen;
224
225	if (rlen == -1 || laddr == NULL ||
226	    msg.msg_controllen < sizeof(struct cmsghdr) ||
227	    msg.msg_flags & MSG_CTRUNC)
228		return rlen;
229
230	for (cmsg = CMSG_FIRSTHDR(&msg); cmsg != NULL;
231	     cmsg = CMSG_NXTHDR(&msg, cmsg)) {
232		if (cmsg->cmsg_level == IPPROTO_IP &&
233		    cmsg->cmsg_type == IP_RECVDSTADDR) {
234			have_lin = TRUE;
235			memcpy(&lin->sin_addr,
236			    (struct in_addr *)CMSG_DATA(cmsg),
237			    sizeof(struct in_addr));
238			break;
239		}
240	}
241
242	lin->sin_family = AF_INET;
243	lin->sin_port = 0;
244	*laddrlen = sizeof(struct sockaddr_in);
245
246	if (!have_lin)
247		lin->sin_addr.s_addr = INADDR_ANY;
248
249	return rlen;
250}
251
252static bool_t
253svc_dg_recv(xprt, msg)
254	SVCXPRT *xprt;
255	struct rpc_msg *msg;
256{
257	struct svc_dg_data *su = su_data(xprt);
258	XDR *xdrs = &(su->su_xdrs);
259	char *reply;
260	struct sockaddr_storage ss;
261	socklen_t alen;
262	size_t replylen;
263	ssize_t rlen;
264
265again:
266	alen = sizeof (struct sockaddr_storage);
267	rlen = svc_dg_recvfrom(xprt->xp_fd, rpc_buffer(xprt), su->su_iosz,
268	    (struct sockaddr *)(void *)&ss, &alen,
269	    (struct sockaddr *)su->su_srcaddr.buf, &su->su_srcaddr.len);
270	if (rlen == -1 && errno == EINTR)
271		goto again;
272	if (rlen == -1 || (rlen < (ssize_t)(4 * sizeof (u_int32_t))))
273		return (FALSE);
274	if (xprt->xp_rtaddr.len < alen) {
275		if (xprt->xp_rtaddr.len != 0)
276			mem_free(xprt->xp_rtaddr.buf, xprt->xp_rtaddr.len);
277		xprt->xp_rtaddr.buf = mem_alloc(alen);
278		xprt->xp_rtaddr.len = alen;
279	}
280	memcpy(xprt->xp_rtaddr.buf, &ss, alen);
281#ifdef PORTMAP
282	if (ss.ss_family == AF_INET) {
283		xprt->xp_raddr = *(struct sockaddr_in *)xprt->xp_rtaddr.buf;
284		xprt->xp_addrlen = sizeof (struct sockaddr_in);
285	}
286#endif				/* PORTMAP */
287	xdrs->x_op = XDR_DECODE;
288	XDR_SETPOS(xdrs, 0);
289	if (! xdr_callmsg(xdrs, msg)) {
290		return (FALSE);
291	}
292	su->su_xid = msg->rm_xid;
293	if (su->su_cache != NULL) {
294		if (cache_get(xprt, msg, &reply, &replylen)) {
295			(void)_sendto(xprt->xp_fd, reply, replylen, 0,
296			    (struct sockaddr *)(void *)&ss, alen);
297			return (FALSE);
298		}
299	}
300	return (TRUE);
301}
302
303static int
304svc_dg_sendto(int fd, char *buf, int buflen,
305    const struct sockaddr *raddr, socklen_t raddrlen,
306    const struct sockaddr *laddr, socklen_t laddrlen)
307{
308	struct msghdr msg;
309	struct iovec msg_iov[1];
310	struct sockaddr_in *laddr_in = (struct sockaddr_in *)laddr;
311	struct in_addr *lin = &laddr_in->sin_addr;
312	char tmp[CMSG_SPACE(sizeof(*lin))];
313	struct cmsghdr *cmsg;
314
315	memset((char *)&msg, 0, sizeof(msg));
316	msg_iov[0].iov_base = buf;
317	msg_iov[0].iov_len = buflen;
318	msg.msg_iov = msg_iov;
319	msg.msg_iovlen = 1;
320	msg.msg_namelen = raddrlen;
321	msg.msg_name = (char *)raddr;
322
323	if (laddr != NULL && laddr->sa_family == AF_INET &&
324	    lin->s_addr != INADDR_ANY) {
325		msg.msg_control = (caddr_t)tmp;
326		msg.msg_controllen = CMSG_LEN(sizeof(*lin));
327		cmsg = CMSG_FIRSTHDR(&msg);
328		cmsg->cmsg_len = CMSG_LEN(sizeof(*lin));
329		cmsg->cmsg_level = IPPROTO_IP;
330		cmsg->cmsg_type = IP_SENDSRCADDR;
331		memcpy(CMSG_DATA(cmsg), lin, sizeof(*lin));
332	}
333
334	return _sendmsg(fd, &msg, 0);
335}
336
337static bool_t
338svc_dg_reply(xprt, msg)
339	SVCXPRT *xprt;
340	struct rpc_msg *msg;
341{
342	struct svc_dg_data *su = su_data(xprt);
343	XDR *xdrs = &(su->su_xdrs);
344	bool_t stat = TRUE;
345	size_t slen;
346	xdrproc_t xdr_proc;
347	caddr_t xdr_where;
348
349	xdrs->x_op = XDR_ENCODE;
350	XDR_SETPOS(xdrs, 0);
351	msg->rm_xid = su->su_xid;
352	if (msg->rm_reply.rp_stat == MSG_ACCEPTED &&
353	    msg->rm_reply.rp_acpt.ar_stat == SUCCESS) {
354		xdr_proc = msg->acpted_rply.ar_results.proc;
355		xdr_where = msg->acpted_rply.ar_results.where;
356		msg->acpted_rply.ar_results.proc = (xdrproc_t) xdr_void;
357		msg->acpted_rply.ar_results.where = NULL;
358
359		if (!xdr_replymsg(xdrs, msg) ||
360		    !SVCAUTH_WRAP(&SVC_AUTH(xprt), xdrs, xdr_proc, xdr_where))
361			stat = FALSE;
362	} else {
363		stat = xdr_replymsg(xdrs, msg);
364	}
365	if (stat) {
366		slen = XDR_GETPOS(xdrs);
367		if (svc_dg_sendto(xprt->xp_fd, rpc_buffer(xprt), slen,
368		    (struct sockaddr *)xprt->xp_rtaddr.buf,
369		    (socklen_t)xprt->xp_rtaddr.len,
370		    (struct sockaddr *)su->su_srcaddr.buf,
371		    (socklen_t)su->su_srcaddr.len) == (ssize_t) slen) {
372			stat = TRUE;
373			if (su->su_cache)
374				cache_set(xprt, slen);
375		}
376	}
377	return (stat);
378}
379
380static bool_t
381svc_dg_getargs(xprt, xdr_args, args_ptr)
382	SVCXPRT *xprt;
383	xdrproc_t xdr_args;
384	void *args_ptr;
385{
386	struct svc_dg_data *su;
387
388	assert(xprt != NULL);
389	su = su_data(xprt);
390	return (SVCAUTH_UNWRAP(&SVC_AUTH(xprt),
391		&su->su_xdrs, xdr_args, args_ptr));
392}
393
394static bool_t
395svc_dg_freeargs(xprt, xdr_args, args_ptr)
396	SVCXPRT *xprt;
397	xdrproc_t xdr_args;
398	void *args_ptr;
399{
400	XDR *xdrs = &(su_data(xprt)->su_xdrs);
401
402	xdrs->x_op = XDR_FREE;
403	return (*xdr_args)(xdrs, args_ptr);
404}
405
406static void
407svc_dg_destroy(xprt)
408	SVCXPRT *xprt;
409{
410	struct svc_dg_data *su = su_data(xprt);
411
412	xprt_unregister(xprt);
413	if (xprt->xp_fd != -1)
414		(void)_close(xprt->xp_fd);
415	XDR_DESTROY(&(su->su_xdrs));
416	(void) mem_free(rpc_buffer(xprt), su->su_iosz);
417	if (su->su_srcaddr.buf)
418		(void) mem_free(su->su_srcaddr.buf, su->su_srcaddr.maxlen);
419	(void) mem_free(su, sizeof (*su));
420	if (xprt->xp_rtaddr.buf)
421		(void) mem_free(xprt->xp_rtaddr.buf, xprt->xp_rtaddr.maxlen);
422	if (xprt->xp_ltaddr.buf)
423		(void) mem_free(xprt->xp_ltaddr.buf, xprt->xp_ltaddr.maxlen);
424	if (xprt->xp_tp)
425		(void) free(xprt->xp_tp);
426	svc_xprt_free(xprt);
427}
428
429static bool_t
430/*ARGSUSED*/
431svc_dg_control(xprt, rq, in)
432	SVCXPRT *xprt;
433	const u_int	rq;
434	void		*in;
435{
436	return (FALSE);
437}
438
439static void
440svc_dg_ops(xprt)
441	SVCXPRT *xprt;
442{
443	static struct xp_ops ops;
444	static struct xp_ops2 ops2;
445
446/* VARIABLES PROTECTED BY ops_lock: ops */
447
448	mutex_lock(&ops_lock);
449	if (ops.xp_recv == NULL) {
450		ops.xp_recv = svc_dg_recv;
451		ops.xp_stat = svc_dg_stat;
452		ops.xp_getargs = svc_dg_getargs;
453		ops.xp_reply = svc_dg_reply;
454		ops.xp_freeargs = svc_dg_freeargs;
455		ops.xp_destroy = svc_dg_destroy;
456		ops2.xp_control = svc_dg_control;
457	}
458	xprt->xp_ops = &ops;
459	xprt->xp_ops2 = &ops2;
460	mutex_unlock(&ops_lock);
461}
462
463/*  The CACHING COMPONENT */
464
465/*
466 * Could have been a separate file, but some part of it depends upon the
467 * private structure of the client handle.
468 *
469 * Fifo cache for cl server
470 * Copies pointers to reply buffers into fifo cache
471 * Buffers are sent again if retransmissions are detected.
472 */
473
474#define	SPARSENESS 4	/* 75% sparse */
475
476#define	ALLOC(type, size)	\
477	(type *) mem_alloc((sizeof (type) * (size)))
478
479#define	MEMZERO(addr, type, size)	 \
480	(void) memset((void *) (addr), 0, sizeof (type) * (int) (size))
481
482#define	FREE(addr, type, size)	\
483	mem_free((addr), (sizeof (type) * (size)))
484
485/*
486 * An entry in the cache
487 */
488typedef struct cache_node *cache_ptr;
489struct cache_node {
490	/*
491	 * Index into cache is xid, proc, vers, prog and address
492	 */
493	u_int32_t cache_xid;
494	rpcproc_t cache_proc;
495	rpcvers_t cache_vers;
496	rpcprog_t cache_prog;
497	struct netbuf cache_addr;
498	/*
499	 * The cached reply and length
500	 */
501	char *cache_reply;
502	size_t cache_replylen;
503	/*
504	 * Next node on the list, if there is a collision
505	 */
506	cache_ptr cache_next;
507};
508
509/*
510 * The entire cache
511 */
512struct cl_cache {
513	u_int uc_size;		/* size of cache */
514	cache_ptr *uc_entries;	/* hash table of entries in cache */
515	cache_ptr *uc_fifo;	/* fifo list of entries in cache */
516	u_int uc_nextvictim;	/* points to next victim in fifo list */
517	rpcprog_t uc_prog;	/* saved program number */
518	rpcvers_t uc_vers;	/* saved version number */
519	rpcproc_t uc_proc;	/* saved procedure number */
520};
521
522
523/*
524 * the hashing function
525 */
526#define	CACHE_LOC(transp, xid)	\
527	(xid % (SPARSENESS * ((struct cl_cache *) \
528		su_data(transp)->su_cache)->uc_size))
529
530/*
531 * Enable use of the cache. Returns 1 on success, 0 on failure.
532 * Note: there is no disable.
533 */
534static const char cache_enable_str[] = "svc_enablecache: %s %s";
535static const char alloc_err[] = "could not allocate cache ";
536static const char enable_err[] = "cache already enabled";
537
538int
539svc_dg_enablecache(transp, size)
540	SVCXPRT *transp;
541	u_int size;
542{
543	struct svc_dg_data *su = su_data(transp);
544	struct cl_cache *uc;
545
546	mutex_lock(&dupreq_lock);
547	if (su->su_cache != NULL) {
548		(void) warnx(cache_enable_str, enable_err, " ");
549		mutex_unlock(&dupreq_lock);
550		return (0);
551	}
552	uc = ALLOC(struct cl_cache, 1);
553	if (uc == NULL) {
554		warnx(cache_enable_str, alloc_err, " ");
555		mutex_unlock(&dupreq_lock);
556		return (0);
557	}
558	uc->uc_size = size;
559	uc->uc_nextvictim = 0;
560	uc->uc_entries = ALLOC(cache_ptr, size * SPARSENESS);
561	if (uc->uc_entries == NULL) {
562		warnx(cache_enable_str, alloc_err, "data");
563		FREE(uc, struct cl_cache, 1);
564		mutex_unlock(&dupreq_lock);
565		return (0);
566	}
567	MEMZERO(uc->uc_entries, cache_ptr, size * SPARSENESS);
568	uc->uc_fifo = ALLOC(cache_ptr, size);
569	if (uc->uc_fifo == NULL) {
570		warnx(cache_enable_str, alloc_err, "fifo");
571		FREE(uc->uc_entries, cache_ptr, size * SPARSENESS);
572		FREE(uc, struct cl_cache, 1);
573		mutex_unlock(&dupreq_lock);
574		return (0);
575	}
576	MEMZERO(uc->uc_fifo, cache_ptr, size);
577	su->su_cache = (char *)(void *)uc;
578	mutex_unlock(&dupreq_lock);
579	return (1);
580}
581
582/*
583 * Set an entry in the cache.  It assumes that the uc entry is set from
584 * the earlier call to cache_get() for the same procedure.  This will always
585 * happen because cache_get() is calle by svc_dg_recv and cache_set() is called
586 * by svc_dg_reply().  All this hoopla because the right RPC parameters are
587 * not available at svc_dg_reply time.
588 */
589
590static const char cache_set_str[] = "cache_set: %s";
591static const char cache_set_err1[] = "victim not found";
592static const char cache_set_err2[] = "victim alloc failed";
593static const char cache_set_err3[] = "could not allocate new rpc buffer";
594
595static void
596cache_set(xprt, replylen)
597	SVCXPRT *xprt;
598	size_t replylen;
599{
600	cache_ptr victim;
601	cache_ptr *vicp;
602	struct svc_dg_data *su = su_data(xprt);
603	struct cl_cache *uc = (struct cl_cache *) su->su_cache;
604	u_int loc;
605	char *newbuf;
606#ifdef RPC_CACHE_DEBUG
607	struct netconfig *nconf;
608	char *uaddr;
609#endif
610
611	mutex_lock(&dupreq_lock);
612	/*
613	 * Find space for the new entry, either by
614	 * reusing an old entry, or by mallocing a new one
615	 */
616	victim = uc->uc_fifo[uc->uc_nextvictim];
617	if (victim != NULL) {
618		loc = CACHE_LOC(xprt, victim->cache_xid);
619		for (vicp = &uc->uc_entries[loc];
620			*vicp != NULL && *vicp != victim;
621			vicp = &(*vicp)->cache_next)
622			;
623		if (*vicp == NULL) {
624			warnx(cache_set_str, cache_set_err1);
625			mutex_unlock(&dupreq_lock);
626			return;
627		}
628		*vicp = victim->cache_next;	/* remove from cache */
629		newbuf = victim->cache_reply;
630	} else {
631		victim = ALLOC(struct cache_node, 1);
632		if (victim == NULL) {
633			warnx(cache_set_str, cache_set_err2);
634			mutex_unlock(&dupreq_lock);
635			return;
636		}
637		newbuf = mem_alloc(su->su_iosz);
638		if (newbuf == NULL) {
639			warnx(cache_set_str, cache_set_err3);
640			FREE(victim, struct cache_node, 1);
641			mutex_unlock(&dupreq_lock);
642			return;
643		}
644	}
645
646	/*
647	 * Store it away
648	 */
649#ifdef RPC_CACHE_DEBUG
650	if (nconf = getnetconfigent(xprt->xp_netid)) {
651		uaddr = taddr2uaddr(nconf, &xprt->xp_rtaddr);
652		freenetconfigent(nconf);
653		printf(
654	"cache set for xid= %x prog=%d vers=%d proc=%d for rmtaddr=%s\n",
655			su->su_xid, uc->uc_prog, uc->uc_vers,
656			uc->uc_proc, uaddr);
657		free(uaddr);
658	}
659#endif
660	victim->cache_replylen = replylen;
661	victim->cache_reply = rpc_buffer(xprt);
662	rpc_buffer(xprt) = newbuf;
663	xdrmem_create(&(su->su_xdrs), rpc_buffer(xprt),
664			su->su_iosz, XDR_ENCODE);
665	victim->cache_xid = su->su_xid;
666	victim->cache_proc = uc->uc_proc;
667	victim->cache_vers = uc->uc_vers;
668	victim->cache_prog = uc->uc_prog;
669	victim->cache_addr = xprt->xp_rtaddr;
670	victim->cache_addr.buf = ALLOC(char, xprt->xp_rtaddr.len);
671	(void) memcpy(victim->cache_addr.buf, xprt->xp_rtaddr.buf,
672	    (size_t)xprt->xp_rtaddr.len);
673	loc = CACHE_LOC(xprt, victim->cache_xid);
674	victim->cache_next = uc->uc_entries[loc];
675	uc->uc_entries[loc] = victim;
676	uc->uc_fifo[uc->uc_nextvictim++] = victim;
677	uc->uc_nextvictim %= uc->uc_size;
678	mutex_unlock(&dupreq_lock);
679}
680
681/*
682 * Try to get an entry from the cache
683 * return 1 if found, 0 if not found and set the stage for cache_set()
684 */
685static int
686cache_get(xprt, msg, replyp, replylenp)
687	SVCXPRT *xprt;
688	struct rpc_msg *msg;
689	char **replyp;
690	size_t *replylenp;
691{
692	u_int loc;
693	cache_ptr ent;
694	struct svc_dg_data *su = su_data(xprt);
695	struct cl_cache *uc = (struct cl_cache *) su->su_cache;
696#ifdef RPC_CACHE_DEBUG
697	struct netconfig *nconf;
698	char *uaddr;
699#endif
700
701	mutex_lock(&dupreq_lock);
702	loc = CACHE_LOC(xprt, su->su_xid);
703	for (ent = uc->uc_entries[loc]; ent != NULL; ent = ent->cache_next) {
704		if (ent->cache_xid == su->su_xid &&
705			ent->cache_proc == msg->rm_call.cb_proc &&
706			ent->cache_vers == msg->rm_call.cb_vers &&
707			ent->cache_prog == msg->rm_call.cb_prog &&
708			ent->cache_addr.len == xprt->xp_rtaddr.len &&
709			(memcmp(ent->cache_addr.buf, xprt->xp_rtaddr.buf,
710				xprt->xp_rtaddr.len) == 0)) {
711#ifdef RPC_CACHE_DEBUG
712			if (nconf = getnetconfigent(xprt->xp_netid)) {
713				uaddr = taddr2uaddr(nconf, &xprt->xp_rtaddr);
714				freenetconfigent(nconf);
715				printf(
716	"cache entry found for xid=%x prog=%d vers=%d proc=%d for rmtaddr=%s\n",
717					su->su_xid, msg->rm_call.cb_prog,
718					msg->rm_call.cb_vers,
719					msg->rm_call.cb_proc, uaddr);
720				free(uaddr);
721			}
722#endif
723			*replyp = ent->cache_reply;
724			*replylenp = ent->cache_replylen;
725			mutex_unlock(&dupreq_lock);
726			return (1);
727		}
728	}
729	/*
730	 * Failed to find entry
731	 * Remember a few things so we can do a set later
732	 */
733	uc->uc_proc = msg->rm_call.cb_proc;
734	uc->uc_vers = msg->rm_call.cb_vers;
735	uc->uc_prog = msg->rm_call.cb_prog;
736	mutex_unlock(&dupreq_lock);
737	return (0);
738}
739