s3_cbc.c revision 291721
1/* ssl/s3_cbc.c */
2/* ====================================================================
3 * Copyright (c) 2012 The OpenSSL Project.  All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 *
9 * 1. Redistributions of source code must retain the above copyright
10 *    notice, this list of conditions and the following disclaimer.
11 *
12 * 2. Redistributions in binary form must reproduce the above copyright
13 *    notice, this list of conditions and the following disclaimer in
14 *    the documentation and/or other materials provided with the
15 *    distribution.
16 *
17 * 3. All advertising materials mentioning features or use of this
18 *    software must display the following acknowledgment:
19 *    "This product includes software developed by the OpenSSL Project
20 *    for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
21 *
22 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
23 *    endorse or promote products derived from this software without
24 *    prior written permission. For written permission, please contact
25 *    openssl-core@openssl.org.
26 *
27 * 5. Products derived from this software may not be called "OpenSSL"
28 *    nor may "OpenSSL" appear in their names without prior written
29 *    permission of the OpenSSL Project.
30 *
31 * 6. Redistributions of any form whatsoever must retain the following
32 *    acknowledgment:
33 *    "This product includes software developed by the OpenSSL Project
34 *    for use in the OpenSSL Toolkit (http://www.openssl.org/)"
35 *
36 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
37 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
38 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
39 * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE OpenSSL PROJECT OR
40 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
41 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
42 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
43 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
44 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
45 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
46 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
47 * OF THE POSSIBILITY OF SUCH DAMAGE.
48 * ====================================================================
49 *
50 * This product includes cryptographic software written by Eric Young
51 * (eay@cryptsoft.com).  This product includes software written by Tim
52 * Hudson (tjh@cryptsoft.com).
53 *
54 */
55
56#include "../crypto/constant_time_locl.h"
57#include "ssl_locl.h"
58
59#include <openssl/md5.h>
60#include <openssl/sha.h>
61
62/*
63 * MAX_HASH_BIT_COUNT_BYTES is the maximum number of bytes in the hash's
64 * length field. (SHA-384/512 have 128-bit length.)
65 */
66#define MAX_HASH_BIT_COUNT_BYTES 16
67
68/*
69 * MAX_HASH_BLOCK_SIZE is the maximum hash block size that we'll support.
70 * Currently SHA-384/512 has a 128-byte block size and that's the largest
71 * supported by TLS.)
72 */
73#define MAX_HASH_BLOCK_SIZE 128
74
75/*-
76 * ssl3_cbc_remove_padding removes padding from the decrypted, SSLv3, CBC
77 * record in |rec| by updating |rec->length| in constant time.
78 *
79 * block_size: the block size of the cipher used to encrypt the record.
80 * returns:
81 *   0: (in non-constant time) if the record is publicly invalid.
82 *   1: if the padding was valid
83 *  -1: otherwise.
84 */
85int ssl3_cbc_remove_padding(const SSL *s,
86                            SSL3_RECORD *rec,
87                            unsigned block_size, unsigned mac_size)
88{
89    unsigned padding_length, good;
90    const unsigned overhead = 1 /* padding length byte */  + mac_size;
91
92    /*
93     * These lengths are all public so we can test them in non-constant time.
94     */
95    if (overhead > rec->length)
96        return 0;
97
98    padding_length = rec->data[rec->length - 1];
99    good = constant_time_ge(rec->length, padding_length + overhead);
100    /* SSLv3 requires that the padding is minimal. */
101    good &= constant_time_ge(block_size, padding_length + 1);
102    padding_length = good & (padding_length + 1);
103    rec->length -= padding_length;
104    rec->type |= padding_length << 8; /* kludge: pass padding length */
105    return constant_time_select_int(good, 1, -1);
106}
107
108/*-
109 * tls1_cbc_remove_padding removes the CBC padding from the decrypted, TLS, CBC
110 * record in |rec| in constant time and returns 1 if the padding is valid and
111 * -1 otherwise. It also removes any explicit IV from the start of the record
112 * without leaking any timing about whether there was enough space after the
113 * padding was removed.
114 *
115 * block_size: the block size of the cipher used to encrypt the record.
116 * returns:
117 *   0: (in non-constant time) if the record is publicly invalid.
118 *   1: if the padding was valid
119 *  -1: otherwise.
120 */
121int tls1_cbc_remove_padding(const SSL *s,
122                            SSL3_RECORD *rec,
123                            unsigned block_size, unsigned mac_size)
124{
125    unsigned padding_length, good, to_check, i;
126    const unsigned overhead = 1 /* padding length byte */  + mac_size;
127    /* Check if version requires explicit IV */
128    if (s->version >= TLS1_1_VERSION || s->version == DTLS1_BAD_VER) {
129        /*
130         * These lengths are all public so we can test them in non-constant
131         * time.
132         */
133        if (overhead + block_size > rec->length)
134            return 0;
135        /* We can now safely skip explicit IV */
136        rec->data += block_size;
137        rec->input += block_size;
138        rec->length -= block_size;
139    } else if (overhead > rec->length)
140        return 0;
141
142    padding_length = rec->data[rec->length - 1];
143
144    /*
145     * NB: if compression is in operation the first packet may not be of even
146     * length so the padding bug check cannot be performed. This bug
147     * workaround has been around since SSLeay so hopefully it is either
148     * fixed now or no buggy implementation supports compression [steve]
149     */
150    if ((s->options & SSL_OP_TLS_BLOCK_PADDING_BUG) && !s->expand) {
151        /* First packet is even in size, so check */
152        if ((CRYPTO_memcmp(s->s3->read_sequence, "\0\0\0\0\0\0\0\0", 8) == 0) &&
153            !(padding_length & 1)) {
154            s->s3->flags |= TLS1_FLAGS_TLS_PADDING_BUG;
155        }
156        if ((s->s3->flags & TLS1_FLAGS_TLS_PADDING_BUG) && padding_length > 0) {
157            padding_length--;
158        }
159    }
160
161    if (EVP_CIPHER_flags(s->enc_read_ctx->cipher) & EVP_CIPH_FLAG_AEAD_CIPHER) {
162        /* padding is already verified */
163        rec->length -= padding_length + 1;
164        return 1;
165    }
166
167    good = constant_time_ge(rec->length, overhead + padding_length);
168    /*
169     * The padding consists of a length byte at the end of the record and
170     * then that many bytes of padding, all with the same value as the length
171     * byte. Thus, with the length byte included, there are i+1 bytes of
172     * padding. We can't check just |padding_length+1| bytes because that
173     * leaks decrypted information. Therefore we always have to check the
174     * maximum amount of padding possible. (Again, the length of the record
175     * is public information so we can use it.)
176     */
177    to_check = 255;             /* maximum amount of padding. */
178    if (to_check > rec->length - 1)
179        to_check = rec->length - 1;
180
181    for (i = 0; i < to_check; i++) {
182        unsigned char mask = constant_time_ge_8(padding_length, i);
183        unsigned char b = rec->data[rec->length - 1 - i];
184        /*
185         * The final |padding_length+1| bytes should all have the value
186         * |padding_length|. Therefore the XOR should be zero.
187         */
188        good &= ~(mask & (padding_length ^ b));
189    }
190
191    /*
192     * If any of the final |padding_length+1| bytes had the wrong value, one
193     * or more of the lower eight bits of |good| will be cleared.
194     */
195    good = constant_time_eq(0xff, good & 0xff);
196    padding_length = good & (padding_length + 1);
197    rec->length -= padding_length;
198    rec->type |= padding_length << 8; /* kludge: pass padding length */
199
200    return constant_time_select_int(good, 1, -1);
201}
202
203/*-
204 * ssl3_cbc_copy_mac copies |md_size| bytes from the end of |rec| to |out| in
205 * constant time (independent of the concrete value of rec->length, which may
206 * vary within a 256-byte window).
207 *
208 * ssl3_cbc_remove_padding or tls1_cbc_remove_padding must be called prior to
209 * this function.
210 *
211 * On entry:
212 *   rec->orig_len >= md_size
213 *   md_size <= EVP_MAX_MD_SIZE
214 *
215 * If CBC_MAC_ROTATE_IN_PLACE is defined then the rotation is performed with
216 * variable accesses in a 64-byte-aligned buffer. Assuming that this fits into
217 * a single or pair of cache-lines, then the variable memory accesses don't
218 * actually affect the timing. CPUs with smaller cache-lines [if any] are
219 * not multi-core and are not considered vulnerable to cache-timing attacks.
220 */
221#define CBC_MAC_ROTATE_IN_PLACE
222
223void ssl3_cbc_copy_mac(unsigned char *out,
224                       const SSL3_RECORD *rec,
225                       unsigned md_size, unsigned orig_len)
226{
227#if defined(CBC_MAC_ROTATE_IN_PLACE)
228    unsigned char rotated_mac_buf[64 + EVP_MAX_MD_SIZE];
229    unsigned char *rotated_mac;
230#else
231    unsigned char rotated_mac[EVP_MAX_MD_SIZE];
232#endif
233
234    /*
235     * mac_end is the index of |rec->data| just after the end of the MAC.
236     */
237    unsigned mac_end = rec->length;
238    unsigned mac_start = mac_end - md_size;
239    /*
240     * scan_start contains the number of bytes that we can ignore because the
241     * MAC's position can only vary by 255 bytes.
242     */
243    unsigned scan_start = 0;
244    unsigned i, j;
245    unsigned div_spoiler;
246    unsigned rotate_offset;
247
248    OPENSSL_assert(orig_len >= md_size);
249    OPENSSL_assert(md_size <= EVP_MAX_MD_SIZE);
250
251#if defined(CBC_MAC_ROTATE_IN_PLACE)
252    rotated_mac = rotated_mac_buf + ((0 - (size_t)rotated_mac_buf) & 63);
253#endif
254
255    /* This information is public so it's safe to branch based on it. */
256    if (orig_len > md_size + 255 + 1)
257        scan_start = orig_len - (md_size + 255 + 1);
258    /*
259     * div_spoiler contains a multiple of md_size that is used to cause the
260     * modulo operation to be constant time. Without this, the time varies
261     * based on the amount of padding when running on Intel chips at least.
262     * The aim of right-shifting md_size is so that the compiler doesn't
263     * figure out that it can remove div_spoiler as that would require it to
264     * prove that md_size is always even, which I hope is beyond it.
265     */
266    div_spoiler = md_size >> 1;
267    div_spoiler <<= (sizeof(div_spoiler) - 1) * 8;
268    rotate_offset = (div_spoiler + mac_start - scan_start) % md_size;
269
270    memset(rotated_mac, 0, md_size);
271    for (i = scan_start, j = 0; i < orig_len; i++) {
272        unsigned char mac_started = constant_time_ge_8(i, mac_start);
273        unsigned char mac_ended = constant_time_ge_8(i, mac_end);
274        unsigned char b = rec->data[i];
275        rotated_mac[j++] |= b & mac_started & ~mac_ended;
276        j &= constant_time_lt(j, md_size);
277    }
278
279    /* Now rotate the MAC */
280#if defined(CBC_MAC_ROTATE_IN_PLACE)
281    j = 0;
282    for (i = 0; i < md_size; i++) {
283        /* in case cache-line is 32 bytes, touch second line */
284        ((volatile unsigned char *)rotated_mac)[rotate_offset ^ 32];
285        out[j++] = rotated_mac[rotate_offset++];
286        rotate_offset &= constant_time_lt(rotate_offset, md_size);
287    }
288#else
289    memset(out, 0, md_size);
290    rotate_offset = md_size - rotate_offset;
291    rotate_offset &= constant_time_lt(rotate_offset, md_size);
292    for (i = 0; i < md_size; i++) {
293        for (j = 0; j < md_size; j++)
294            out[j] |= rotated_mac[i] & constant_time_eq_8(j, rotate_offset);
295        rotate_offset++;
296        rotate_offset &= constant_time_lt(rotate_offset, md_size);
297    }
298#endif
299}
300
301/*
302 * u32toLE serialises an unsigned, 32-bit number (n) as four bytes at (p) in
303 * little-endian order. The value of p is advanced by four.
304 */
305#define u32toLE(n, p) \
306        (*((p)++)=(unsigned char)(n), \
307         *((p)++)=(unsigned char)(n>>8), \
308         *((p)++)=(unsigned char)(n>>16), \
309         *((p)++)=(unsigned char)(n>>24))
310
311/*
312 * These functions serialize the state of a hash and thus perform the
313 * standard "final" operation without adding the padding and length that such
314 * a function typically does.
315 */
316static void tls1_md5_final_raw(void *ctx, unsigned char *md_out)
317{
318    MD5_CTX *md5 = ctx;
319    u32toLE(md5->A, md_out);
320    u32toLE(md5->B, md_out);
321    u32toLE(md5->C, md_out);
322    u32toLE(md5->D, md_out);
323}
324
325static void tls1_sha1_final_raw(void *ctx, unsigned char *md_out)
326{
327    SHA_CTX *sha1 = ctx;
328    l2n(sha1->h0, md_out);
329    l2n(sha1->h1, md_out);
330    l2n(sha1->h2, md_out);
331    l2n(sha1->h3, md_out);
332    l2n(sha1->h4, md_out);
333}
334
335#define LARGEST_DIGEST_CTX SHA_CTX
336
337#ifndef OPENSSL_NO_SHA256
338static void tls1_sha256_final_raw(void *ctx, unsigned char *md_out)
339{
340    SHA256_CTX *sha256 = ctx;
341    unsigned i;
342
343    for (i = 0; i < 8; i++) {
344        l2n(sha256->h[i], md_out);
345    }
346}
347
348# undef  LARGEST_DIGEST_CTX
349# define LARGEST_DIGEST_CTX SHA256_CTX
350#endif
351
352#ifndef OPENSSL_NO_SHA512
353static void tls1_sha512_final_raw(void *ctx, unsigned char *md_out)
354{
355    SHA512_CTX *sha512 = ctx;
356    unsigned i;
357
358    for (i = 0; i < 8; i++) {
359        l2n8(sha512->h[i], md_out);
360    }
361}
362
363# undef  LARGEST_DIGEST_CTX
364# define LARGEST_DIGEST_CTX SHA512_CTX
365#endif
366
367/*
368 * ssl3_cbc_record_digest_supported returns 1 iff |ctx| uses a hash function
369 * which ssl3_cbc_digest_record supports.
370 */
371char ssl3_cbc_record_digest_supported(const EVP_MD_CTX *ctx)
372{
373#ifdef OPENSSL_FIPS
374    if (FIPS_mode())
375        return 0;
376#endif
377    switch (EVP_MD_CTX_type(ctx)) {
378    case NID_md5:
379    case NID_sha1:
380#ifndef OPENSSL_NO_SHA256
381    case NID_sha224:
382    case NID_sha256:
383#endif
384#ifndef OPENSSL_NO_SHA512
385    case NID_sha384:
386    case NID_sha512:
387#endif
388        return 1;
389    default:
390        return 0;
391    }
392}
393
394/*-
395 * ssl3_cbc_digest_record computes the MAC of a decrypted, padded SSLv3/TLS
396 * record.
397 *
398 *   ctx: the EVP_MD_CTX from which we take the hash function.
399 *     ssl3_cbc_record_digest_supported must return true for this EVP_MD_CTX.
400 *   md_out: the digest output. At most EVP_MAX_MD_SIZE bytes will be written.
401 *   md_out_size: if non-NULL, the number of output bytes is written here.
402 *   header: the 13-byte, TLS record header.
403 *   data: the record data itself, less any preceeding explicit IV.
404 *   data_plus_mac_size: the secret, reported length of the data and MAC
405 *     once the padding has been removed.
406 *   data_plus_mac_plus_padding_size: the public length of the whole
407 *     record, including padding.
408 *   is_sslv3: non-zero if we are to use SSLv3. Otherwise, TLS.
409 *
410 * On entry: by virtue of having been through one of the remove_padding
411 * functions, above, we know that data_plus_mac_size is large enough to contain
412 * a padding byte and MAC. (If the padding was invalid, it might contain the
413 * padding too. )
414 * Returns 1 on success or 0 on error
415 */
416int ssl3_cbc_digest_record(const EVP_MD_CTX *ctx,
417                            unsigned char *md_out,
418                            size_t *md_out_size,
419                            const unsigned char header[13],
420                            const unsigned char *data,
421                            size_t data_plus_mac_size,
422                            size_t data_plus_mac_plus_padding_size,
423                            const unsigned char *mac_secret,
424                            unsigned mac_secret_length, char is_sslv3)
425{
426    union {
427        double align;
428        unsigned char c[sizeof(LARGEST_DIGEST_CTX)];
429    } md_state;
430    void (*md_final_raw) (void *ctx, unsigned char *md_out);
431    void (*md_transform) (void *ctx, const unsigned char *block);
432    unsigned md_size, md_block_size = 64;
433    unsigned sslv3_pad_length = 40, header_length, variance_blocks,
434        len, max_mac_bytes, num_blocks,
435        num_starting_blocks, k, mac_end_offset, c, index_a, index_b;
436    unsigned int bits;          /* at most 18 bits */
437    unsigned char length_bytes[MAX_HASH_BIT_COUNT_BYTES];
438    /* hmac_pad is the masked HMAC key. */
439    unsigned char hmac_pad[MAX_HASH_BLOCK_SIZE];
440    unsigned char first_block[MAX_HASH_BLOCK_SIZE];
441    unsigned char mac_out[EVP_MAX_MD_SIZE];
442    unsigned i, j, md_out_size_u;
443    EVP_MD_CTX md_ctx;
444    /*
445     * mdLengthSize is the number of bytes in the length field that
446     * terminates * the hash.
447     */
448    unsigned md_length_size = 8;
449    char length_is_big_endian = 1;
450
451    /*
452     * This is a, hopefully redundant, check that allows us to forget about
453     * many possible overflows later in this function.
454     */
455    OPENSSL_assert(data_plus_mac_plus_padding_size < 1024 * 1024);
456
457    switch (EVP_MD_CTX_type(ctx)) {
458    case NID_md5:
459        if (MD5_Init((MD5_CTX *)md_state.c) <= 0)
460            return 0;
461        md_final_raw = tls1_md5_final_raw;
462        md_transform =
463            (void (*)(void *ctx, const unsigned char *block))MD5_Transform;
464        md_size = 16;
465        sslv3_pad_length = 48;
466        length_is_big_endian = 0;
467        break;
468    case NID_sha1:
469        if (SHA1_Init((SHA_CTX *)md_state.c) <= 0)
470            return 0;
471        md_final_raw = tls1_sha1_final_raw;
472        md_transform =
473            (void (*)(void *ctx, const unsigned char *block))SHA1_Transform;
474        md_size = 20;
475        break;
476#ifndef OPENSSL_NO_SHA256
477    case NID_sha224:
478        if (SHA224_Init((SHA256_CTX *)md_state.c) <= 0)
479            return 0;
480        md_final_raw = tls1_sha256_final_raw;
481        md_transform =
482            (void (*)(void *ctx, const unsigned char *block))SHA256_Transform;
483        md_size = 224 / 8;
484        break;
485    case NID_sha256:
486        if (SHA256_Init((SHA256_CTX *)md_state.c) <= 0)
487            return 0;
488        md_final_raw = tls1_sha256_final_raw;
489        md_transform =
490            (void (*)(void *ctx, const unsigned char *block))SHA256_Transform;
491        md_size = 32;
492        break;
493#endif
494#ifndef OPENSSL_NO_SHA512
495    case NID_sha384:
496        if (SHA384_Init((SHA512_CTX *)md_state.c) <= 0)
497            return 0;
498        md_final_raw = tls1_sha512_final_raw;
499        md_transform =
500            (void (*)(void *ctx, const unsigned char *block))SHA512_Transform;
501        md_size = 384 / 8;
502        md_block_size = 128;
503        md_length_size = 16;
504        break;
505    case NID_sha512:
506        if (SHA512_Init((SHA512_CTX *)md_state.c) <= 0)
507            return 0;
508        md_final_raw = tls1_sha512_final_raw;
509        md_transform =
510            (void (*)(void *ctx, const unsigned char *block))SHA512_Transform;
511        md_size = 64;
512        md_block_size = 128;
513        md_length_size = 16;
514        break;
515#endif
516    default:
517        /*
518         * ssl3_cbc_record_digest_supported should have been called first to
519         * check that the hash function is supported.
520         */
521        OPENSSL_assert(0);
522        if (md_out_size)
523            *md_out_size = -1;
524        return 0;
525    }
526
527    OPENSSL_assert(md_length_size <= MAX_HASH_BIT_COUNT_BYTES);
528    OPENSSL_assert(md_block_size <= MAX_HASH_BLOCK_SIZE);
529    OPENSSL_assert(md_size <= EVP_MAX_MD_SIZE);
530
531    header_length = 13;
532    if (is_sslv3) {
533        header_length = mac_secret_length + sslv3_pad_length + 8 /* sequence
534                                                                  * number */  +
535            1 /* record type */  +
536            2 /* record length */ ;
537    }
538
539    /*
540     * variance_blocks is the number of blocks of the hash that we have to
541     * calculate in constant time because they could be altered by the
542     * padding value. In SSLv3, the padding must be minimal so the end of
543     * the plaintext varies by, at most, 15+20 = 35 bytes. (We conservatively
544     * assume that the MAC size varies from 0..20 bytes.) In case the 9 bytes
545     * of hash termination (0x80 + 64-bit length) don't fit in the final
546     * block, we say that the final two blocks can vary based on the padding.
547     * TLSv1 has MACs up to 48 bytes long (SHA-384) and the padding is not
548     * required to be minimal. Therefore we say that the final six blocks can
549     * vary based on the padding. Later in the function, if the message is
550     * short and there obviously cannot be this many blocks then
551     * variance_blocks can be reduced.
552     */
553    variance_blocks = is_sslv3 ? 2 : 6;
554    /*
555     * From now on we're dealing with the MAC, which conceptually has 13
556     * bytes of `header' before the start of the data (TLS) or 71/75 bytes
557     * (SSLv3)
558     */
559    len = data_plus_mac_plus_padding_size + header_length;
560    /*
561     * max_mac_bytes contains the maximum bytes of bytes in the MAC,
562     * including * |header|, assuming that there's no padding.
563     */
564    max_mac_bytes = len - md_size - 1;
565    /* num_blocks is the maximum number of hash blocks. */
566    num_blocks =
567        (max_mac_bytes + 1 + md_length_size + md_block_size -
568         1) / md_block_size;
569    /*
570     * In order to calculate the MAC in constant time we have to handle the
571     * final blocks specially because the padding value could cause the end
572     * to appear somewhere in the final |variance_blocks| blocks and we can't
573     * leak where. However, |num_starting_blocks| worth of data can be hashed
574     * right away because no padding value can affect whether they are
575     * plaintext.
576     */
577    num_starting_blocks = 0;
578    /*
579     * k is the starting byte offset into the conceptual header||data where
580     * we start processing.
581     */
582    k = 0;
583    /*
584     * mac_end_offset is the index just past the end of the data to be MACed.
585     */
586    mac_end_offset = data_plus_mac_size + header_length - md_size;
587    /*
588     * c is the index of the 0x80 byte in the final hash block that contains
589     * application data.
590     */
591    c = mac_end_offset % md_block_size;
592    /*
593     * index_a is the hash block number that contains the 0x80 terminating
594     * value.
595     */
596    index_a = mac_end_offset / md_block_size;
597    /*
598     * index_b is the hash block number that contains the 64-bit hash length,
599     * in bits.
600     */
601    index_b = (mac_end_offset + md_length_size) / md_block_size;
602    /*
603     * bits is the hash-length in bits. It includes the additional hash block
604     * for the masked HMAC key, or whole of |header| in the case of SSLv3.
605     */
606
607    /*
608     * For SSLv3, if we're going to have any starting blocks then we need at
609     * least two because the header is larger than a single block.
610     */
611    if (num_blocks > variance_blocks + (is_sslv3 ? 1 : 0)) {
612        num_starting_blocks = num_blocks - variance_blocks;
613        k = md_block_size * num_starting_blocks;
614    }
615
616    bits = 8 * mac_end_offset;
617    if (!is_sslv3) {
618        /*
619         * Compute the initial HMAC block. For SSLv3, the padding and secret
620         * bytes are included in |header| because they take more than a
621         * single block.
622         */
623        bits += 8 * md_block_size;
624        memset(hmac_pad, 0, md_block_size);
625        OPENSSL_assert(mac_secret_length <= sizeof(hmac_pad));
626        memcpy(hmac_pad, mac_secret, mac_secret_length);
627        for (i = 0; i < md_block_size; i++)
628            hmac_pad[i] ^= 0x36;
629
630        md_transform(md_state.c, hmac_pad);
631    }
632
633    if (length_is_big_endian) {
634        memset(length_bytes, 0, md_length_size - 4);
635        length_bytes[md_length_size - 4] = (unsigned char)(bits >> 24);
636        length_bytes[md_length_size - 3] = (unsigned char)(bits >> 16);
637        length_bytes[md_length_size - 2] = (unsigned char)(bits >> 8);
638        length_bytes[md_length_size - 1] = (unsigned char)bits;
639    } else {
640        memset(length_bytes, 0, md_length_size);
641        length_bytes[md_length_size - 5] = (unsigned char)(bits >> 24);
642        length_bytes[md_length_size - 6] = (unsigned char)(bits >> 16);
643        length_bytes[md_length_size - 7] = (unsigned char)(bits >> 8);
644        length_bytes[md_length_size - 8] = (unsigned char)bits;
645    }
646
647    if (k > 0) {
648        if (is_sslv3) {
649            unsigned overhang;
650
651            /*
652             * The SSLv3 header is larger than a single block. overhang is
653             * the number of bytes beyond a single block that the header
654             * consumes: either 7 bytes (SHA1) or 11 bytes (MD5). There are no
655             * ciphersuites in SSLv3 that are not SHA1 or MD5 based and
656             * therefore we can be confident that the header_length will be
657             * greater than |md_block_size|. However we add a sanity check just
658             * in case
659             */
660            if (header_length <= md_block_size) {
661                /* Should never happen */
662                return 0;
663            }
664            overhang = header_length - md_block_size;
665            md_transform(md_state.c, header);
666            memcpy(first_block, header + md_block_size, overhang);
667            memcpy(first_block + overhang, data, md_block_size - overhang);
668            md_transform(md_state.c, first_block);
669            for (i = 1; i < k / md_block_size - 1; i++)
670                md_transform(md_state.c, data + md_block_size * i - overhang);
671        } else {
672            /* k is a multiple of md_block_size. */
673            memcpy(first_block, header, 13);
674            memcpy(first_block + 13, data, md_block_size - 13);
675            md_transform(md_state.c, first_block);
676            for (i = 1; i < k / md_block_size; i++)
677                md_transform(md_state.c, data + md_block_size * i - 13);
678        }
679    }
680
681    memset(mac_out, 0, sizeof(mac_out));
682
683    /*
684     * We now process the final hash blocks. For each block, we construct it
685     * in constant time. If the |i==index_a| then we'll include the 0x80
686     * bytes and zero pad etc. For each block we selectively copy it, in
687     * constant time, to |mac_out|.
688     */
689    for (i = num_starting_blocks; i <= num_starting_blocks + variance_blocks;
690         i++) {
691        unsigned char block[MAX_HASH_BLOCK_SIZE];
692        unsigned char is_block_a = constant_time_eq_8(i, index_a);
693        unsigned char is_block_b = constant_time_eq_8(i, index_b);
694        for (j = 0; j < md_block_size; j++) {
695            unsigned char b = 0, is_past_c, is_past_cp1;
696            if (k < header_length)
697                b = header[k];
698            else if (k < data_plus_mac_plus_padding_size + header_length)
699                b = data[k - header_length];
700            k++;
701
702            is_past_c = is_block_a & constant_time_ge_8(j, c);
703            is_past_cp1 = is_block_a & constant_time_ge_8(j, c + 1);
704            /*
705             * If this is the block containing the end of the application
706             * data, and we are at the offset for the 0x80 value, then
707             * overwrite b with 0x80.
708             */
709            b = constant_time_select_8(is_past_c, 0x80, b);
710            /*
711             * If this the the block containing the end of the application
712             * data and we're past the 0x80 value then just write zero.
713             */
714            b = b & ~is_past_cp1;
715            /*
716             * If this is index_b (the final block), but not index_a (the end
717             * of the data), then the 64-bit length didn't fit into index_a
718             * and we're having to add an extra block of zeros.
719             */
720            b &= ~is_block_b | is_block_a;
721
722            /*
723             * The final bytes of one of the blocks contains the length.
724             */
725            if (j >= md_block_size - md_length_size) {
726                /* If this is index_b, write a length byte. */
727                b = constant_time_select_8(is_block_b,
728                                           length_bytes[j -
729                                                        (md_block_size -
730                                                         md_length_size)], b);
731            }
732            block[j] = b;
733        }
734
735        md_transform(md_state.c, block);
736        md_final_raw(md_state.c, block);
737        /* If this is index_b, copy the hash value to |mac_out|. */
738        for (j = 0; j < md_size; j++)
739            mac_out[j] |= block[j] & is_block_b;
740    }
741
742    EVP_MD_CTX_init(&md_ctx);
743    if (EVP_DigestInit_ex(&md_ctx, ctx->digest, NULL /* engine */ ) <= 0)
744        goto err;
745    if (is_sslv3) {
746        /* We repurpose |hmac_pad| to contain the SSLv3 pad2 block. */
747        memset(hmac_pad, 0x5c, sslv3_pad_length);
748
749        if (EVP_DigestUpdate(&md_ctx, mac_secret, mac_secret_length) <= 0
750                || EVP_DigestUpdate(&md_ctx, hmac_pad, sslv3_pad_length) <= 0
751                || EVP_DigestUpdate(&md_ctx, mac_out, md_size) <= 0)
752            goto err;
753    } else {
754        /* Complete the HMAC in the standard manner. */
755        for (i = 0; i < md_block_size; i++)
756            hmac_pad[i] ^= 0x6a;
757
758        if (EVP_DigestUpdate(&md_ctx, hmac_pad, md_block_size) <= 0
759                || EVP_DigestUpdate(&md_ctx, mac_out, md_size) <= 0)
760            goto err;
761    }
762    EVP_DigestFinal(&md_ctx, md_out, &md_out_size_u);
763    if (md_out_size)
764        *md_out_size = md_out_size_u;
765    EVP_MD_CTX_cleanup(&md_ctx);
766
767    return 1;
768err:
769    EVP_MD_CTX_cleanup(&md_ctx);
770    return 0;
771}
772
773#ifdef OPENSSL_FIPS
774
775/*
776 * Due to the need to use EVP in FIPS mode we can't reimplement digests but
777 * we can ensure the number of blocks processed is equal for all cases by
778 * digesting additional data.
779 */
780
781void tls_fips_digest_extra(const EVP_CIPHER_CTX *cipher_ctx,
782                           EVP_MD_CTX *mac_ctx, const unsigned char *data,
783                           size_t data_len, size_t orig_len)
784{
785    size_t block_size, digest_pad, blocks_data, blocks_orig;
786    if (EVP_CIPHER_CTX_mode(cipher_ctx) != EVP_CIPH_CBC_MODE)
787        return;
788    block_size = EVP_MD_CTX_block_size(mac_ctx);
789    /*-
790     * We are in FIPS mode if we get this far so we know we have only SHA*
791     * digests and TLS to deal with.
792     * Minimum digest padding length is 17 for SHA384/SHA512 and 9
793     * otherwise.
794     * Additional header is 13 bytes. To get the number of digest blocks
795     * processed round up the amount of data plus padding to the nearest
796     * block length. Block length is 128 for SHA384/SHA512 and 64 otherwise.
797     * So we have:
798     * blocks = (payload_len + digest_pad + 13 + block_size - 1)/block_size
799     * equivalently:
800     * blocks = (payload_len + digest_pad + 12)/block_size + 1
801     * HMAC adds a constant overhead.
802     * We're ultimately only interested in differences so this becomes
803     * blocks = (payload_len + 29)/128
804     * for SHA384/SHA512 and
805     * blocks = (payload_len + 21)/64
806     * otherwise.
807     */
808    digest_pad = block_size == 64 ? 21 : 29;
809    blocks_orig = (orig_len + digest_pad) / block_size;
810    blocks_data = (data_len + digest_pad) / block_size;
811    /*
812     * MAC enough blocks to make up the difference between the original and
813     * actual lengths plus one extra block to ensure this is never a no op.
814     * The "data" pointer should always have enough space to perform this
815     * operation as it is large enough for a maximum length TLS buffer.
816     */
817    EVP_DigestSignUpdate(mac_ctx, data,
818                         (blocks_orig - blocks_data + 1) * block_size);
819}
820#endif
821