sha1-586.pl revision 299964
1#!/usr/bin/env perl
2
3# ====================================================================
4# [Re]written by Andy Polyakov <appro@fy.chalmers.se> for the OpenSSL
5# project. The module is, however, dual licensed under OpenSSL and
6# CRYPTOGAMS licenses depending on where you obtain it. For further
7# details see http://www.openssl.org/~appro/cryptogams/.
8# ====================================================================
9
10# "[Re]written" was achieved in two major overhauls. In 2004 BODY_*
11# functions were re-implemented to address P4 performance issue [see
12# commentary below], and in 2006 the rest was rewritten in order to
13# gain freedom to liberate licensing terms.
14
15# January, September 2004.
16#
17# It was noted that Intel IA-32 C compiler generates code which
18# performs ~30% *faster* on P4 CPU than original *hand-coded*
19# SHA1 assembler implementation. To address this problem (and
20# prove that humans are still better than machines:-), the
21# original code was overhauled, which resulted in following
22# performance changes:
23#
24#		compared with original	compared with Intel cc
25#		assembler impl.		generated code
26# Pentium	-16%			+48%
27# PIII/AMD	+8%			+16%
28# P4		+85%(!)			+45%
29#
30# As you can see Pentium came out as looser:-( Yet I reckoned that
31# improvement on P4 outweights the loss and incorporate this
32# re-tuned code to 0.9.7 and later.
33# ----------------------------------------------------------------
34#					<appro@fy.chalmers.se>
35
36# August 2009.
37#
38# George Spelvin has tipped that F_40_59(b,c,d) can be rewritten as
39# '(c&d) + (b&(c^d))', which allows to accumulate partial results
40# and lighten "pressure" on scratch registers. This resulted in
41# >12% performance improvement on contemporary AMD cores (with no
42# degradation on other CPUs:-). Also, the code was revised to maximize
43# "distance" between instructions producing input to 'lea' instruction
44# and the 'lea' instruction itself, which is essential for Intel Atom
45# core and resulted in ~15% improvement.
46
47# October 2010.
48#
49# Add SSSE3, Supplemental[!] SSE3, implementation. The idea behind it
50# is to offload message schedule denoted by Wt in NIST specification,
51# or Xupdate in OpenSSL source, to SIMD unit. The idea is not novel,
52# and in SSE2 context was first explored by Dean Gaudet in 2004, see
53# http://arctic.org/~dean/crypto/sha1.html. Since then several things
54# have changed that made it interesting again:
55#
56# a) XMM units became faster and wider;
57# b) instruction set became more versatile;
58# c) an important observation was made by Max Locktykhin, which made
59#    it possible to reduce amount of instructions required to perform
60#    the operation in question, for further details see
61#    http://software.intel.com/en-us/articles/improving-the-performance-of-the-secure-hash-algorithm-1/.
62
63# April 2011.
64#
65# Add AVX code path, probably most controversial... The thing is that
66# switch to AVX alone improves performance by as little as 4% in
67# comparison to SSSE3 code path. But below result doesn't look like
68# 4% improvement... Trouble is that Sandy Bridge decodes 'ro[rl]' as
69# pair of ��-ops, and it's the additional ��-ops, two per round, that
70# make it run slower than Core2 and Westmere. But 'sh[rl]d' is decoded
71# as single ��-op by Sandy Bridge and it's replacing 'ro[rl]' with
72# equivalent 'sh[rl]d' that is responsible for the impressive 5.1
73# cycles per processed byte. But 'sh[rl]d' is not something that used
74# to be fast, nor does it appear to be fast in upcoming Bulldozer
75# [according to its optimization manual]. Which is why AVX code path
76# is guarded by *both* AVX and synthetic bit denoting Intel CPUs.
77# One can argue that it's unfair to AMD, but without 'sh[rl]d' it
78# makes no sense to keep the AVX code path. If somebody feels that
79# strongly, it's probably more appropriate to discuss possibility of
80# using vector rotate XOP on AMD...
81
82######################################################################
83# Current performance is summarized in following table. Numbers are
84# CPU clock cycles spent to process single byte (less is better).
85#
86#		x86		SSSE3		AVX
87# Pentium	15.7		-
88# PIII		11.5		-
89# P4		10.6		-
90# AMD K8	7.1		-
91# Core2		7.3		6.1/+20%	-
92# Atom		12.5		9.5(*)/+32%	-
93# Westmere	7.3		5.6/+30%	-
94# Sandy Bridge	8.8		6.2/+40%	5.1(**)/+70%
95#
96# (*)	Loop is 1056 instructions long and expected result is ~8.25.
97#	It remains mystery [to me] why ILP is limited to 1.7.
98#
99# (**)	As per above comment, the result is for AVX *plus* sh[rl]d.
100
101$0 =~ m/(.*[\/\\])[^\/\\]+$/; $dir=$1;
102push(@INC,"${dir}","${dir}../../perlasm");
103require "x86asm.pl";
104
105&asm_init($ARGV[0],"sha1-586.pl",$ARGV[$#ARGV] eq "386");
106
107$xmm=$ymm=0;
108for (@ARGV) { $xmm=1 if (/-DOPENSSL_IA32_SSE2/); }
109
110$ymm=1 if ($xmm &&
111		`$ENV{CC} -Wa,-v -c -o /dev/null -x assembler /dev/null 2>&1`
112			=~ /GNU assembler version ([2-9]\.[0-9]+)/ &&
113		$1>=2.19);	# first version supporting AVX
114
115$ymm=1 if ($xmm && !$ymm && $ARGV[0] eq "win32n" &&
116		`nasm -v 2>&1` =~ /NASM version ([2-9]\.[0-9]+)/ &&
117		$1>=2.03);	# first version supporting AVX
118
119$ymm=1 if ($xmm && !$ymm && `$ENV{CC} -v 2>&1` =~ /(^clang version|based on LLVM) ([3-9]\.[0-9]+)/ &&
120		$2>=3.0);	# first version supporting AVX
121
122&external_label("OPENSSL_ia32cap_P") if ($xmm);
123
124
125$A="eax";
126$B="ebx";
127$C="ecx";
128$D="edx";
129$E="edi";
130$T="esi";
131$tmp1="ebp";
132
133@V=($A,$B,$C,$D,$E,$T);
134
135$alt=0;	# 1 denotes alternative IALU implementation, which performs
136	# 8% *worse* on P4, same on Westmere and Atom, 2% better on
137	# Sandy Bridge...
138
139sub BODY_00_15
140	{
141	local($n,$a,$b,$c,$d,$e,$f)=@_;
142
143	&comment("00_15 $n");
144
145	&mov($f,$c);			# f to hold F_00_19(b,c,d)
146	 if ($n==0)  { &mov($tmp1,$a); }
147	 else        { &mov($a,$tmp1); }
148	&rotl($tmp1,5);			# tmp1=ROTATE(a,5)
149	 &xor($f,$d);
150	&add($tmp1,$e);			# tmp1+=e;
151	 &mov($e,&swtmp($n%16));	# e becomes volatile and is loaded
152	 				# with xi, also note that e becomes
153					# f in next round...
154	&and($f,$b);
155	&rotr($b,2);			# b=ROTATE(b,30)
156	 &xor($f,$d);			# f holds F_00_19(b,c,d)
157	&lea($tmp1,&DWP(0x5a827999,$tmp1,$e));	# tmp1+=K_00_19+xi
158
159	if ($n==15) { &mov($e,&swtmp(($n+1)%16));# pre-fetch f for next round
160		      &add($f,$tmp1); }	# f+=tmp1
161	else        { &add($tmp1,$f); }	# f becomes a in next round
162	&mov($tmp1,$a)			if ($alt && $n==15);
163	}
164
165sub BODY_16_19
166	{
167	local($n,$a,$b,$c,$d,$e,$f)=@_;
168
169	&comment("16_19 $n");
170
171if ($alt) {
172	&xor($c,$d);
173	 &xor($f,&swtmp(($n+2)%16));	# f to hold Xupdate(xi,xa,xb,xc,xd)
174	&and($tmp1,$c);			# tmp1 to hold F_00_19(b,c,d), b&=c^d
175	 &xor($f,&swtmp(($n+8)%16));
176	&xor($tmp1,$d);			# tmp1=F_00_19(b,c,d)
177	 &xor($f,&swtmp(($n+13)%16));	# f holds xa^xb^xc^xd
178	&rotl($f,1);			# f=ROTATE(f,1)
179	 &add($e,$tmp1);		# e+=F_00_19(b,c,d)
180	&xor($c,$d);			# restore $c
181	 &mov($tmp1,$a);		# b in next round
182	&rotr($b,$n==16?2:7);		# b=ROTATE(b,30)
183	 &mov(&swtmp($n%16),$f);	# xi=f
184	&rotl($a,5);			# ROTATE(a,5)
185	 &lea($f,&DWP(0x5a827999,$f,$e));# f+=F_00_19(b,c,d)+e
186	&mov($e,&swtmp(($n+1)%16));	# pre-fetch f for next round
187	 &add($f,$a);			# f+=ROTATE(a,5)
188} else {
189	&mov($tmp1,$c);			# tmp1 to hold F_00_19(b,c,d)
190	 &xor($f,&swtmp(($n+2)%16));	# f to hold Xupdate(xi,xa,xb,xc,xd)
191	&xor($tmp1,$d);
192	 &xor($f,&swtmp(($n+8)%16));
193	&and($tmp1,$b);
194	 &xor($f,&swtmp(($n+13)%16));	# f holds xa^xb^xc^xd
195	&rotl($f,1);			# f=ROTATE(f,1)
196	 &xor($tmp1,$d);		# tmp1=F_00_19(b,c,d)
197	&add($e,$tmp1);			# e+=F_00_19(b,c,d)
198	 &mov($tmp1,$a);
199	&rotr($b,2);			# b=ROTATE(b,30)
200	 &mov(&swtmp($n%16),$f);	# xi=f
201	&rotl($tmp1,5);			# ROTATE(a,5)
202	 &lea($f,&DWP(0x5a827999,$f,$e));# f+=F_00_19(b,c,d)+e
203	&mov($e,&swtmp(($n+1)%16));	# pre-fetch f for next round
204	 &add($f,$tmp1);		# f+=ROTATE(a,5)
205}
206	}
207
208sub BODY_20_39
209	{
210	local($n,$a,$b,$c,$d,$e,$f)=@_;
211	local $K=($n<40)?0x6ed9eba1:0xca62c1d6;
212
213	&comment("20_39 $n");
214
215if ($alt) {
216	&xor($tmp1,$c);			# tmp1 to hold F_20_39(b,c,d), b^=c
217	 &xor($f,&swtmp(($n+2)%16));	# f to hold Xupdate(xi,xa,xb,xc,xd)
218	&xor($tmp1,$d);			# tmp1 holds F_20_39(b,c,d)
219	 &xor($f,&swtmp(($n+8)%16));
220	&add($e,$tmp1);			# e+=F_20_39(b,c,d)
221	 &xor($f,&swtmp(($n+13)%16));	# f holds xa^xb^xc^xd
222	&rotl($f,1);			# f=ROTATE(f,1)
223	 &mov($tmp1,$a);		# b in next round
224	&rotr($b,7);			# b=ROTATE(b,30)
225	 &mov(&swtmp($n%16),$f)		if($n<77);# xi=f
226	&rotl($a,5);			# ROTATE(a,5)
227	 &xor($b,$c)			if($n==39);# warm up for BODY_40_59
228	&and($tmp1,$b)			if($n==39);
229	 &lea($f,&DWP($K,$f,$e));	# f+=e+K_XX_YY
230	&mov($e,&swtmp(($n+1)%16))	if($n<79);# pre-fetch f for next round
231	 &add($f,$a);			# f+=ROTATE(a,5)
232	&rotr($a,5)			if ($n==79);
233} else {
234	&mov($tmp1,$b);			# tmp1 to hold F_20_39(b,c,d)
235	 &xor($f,&swtmp(($n+2)%16));	# f to hold Xupdate(xi,xa,xb,xc,xd)
236	&xor($tmp1,$c);
237	 &xor($f,&swtmp(($n+8)%16));
238	&xor($tmp1,$d);			# tmp1 holds F_20_39(b,c,d)
239	 &xor($f,&swtmp(($n+13)%16));	# f holds xa^xb^xc^xd
240	&rotl($f,1);			# f=ROTATE(f,1)
241	 &add($e,$tmp1);		# e+=F_20_39(b,c,d)
242	&rotr($b,2);			# b=ROTATE(b,30)
243	 &mov($tmp1,$a);
244	&rotl($tmp1,5);			# ROTATE(a,5)
245	 &mov(&swtmp($n%16),$f) if($n<77);# xi=f
246	&lea($f,&DWP($K,$f,$e));	# f+=e+K_XX_YY
247	 &mov($e,&swtmp(($n+1)%16)) if($n<79);# pre-fetch f for next round
248	&add($f,$tmp1);			# f+=ROTATE(a,5)
249}
250	}
251
252sub BODY_40_59
253	{
254	local($n,$a,$b,$c,$d,$e,$f)=@_;
255
256	&comment("40_59 $n");
257
258if ($alt) {
259	&add($e,$tmp1);			# e+=b&(c^d)
260	 &xor($f,&swtmp(($n+2)%16));	# f to hold Xupdate(xi,xa,xb,xc,xd)
261	&mov($tmp1,$d);
262	 &xor($f,&swtmp(($n+8)%16));
263	&xor($c,$d);			# restore $c
264	 &xor($f,&swtmp(($n+13)%16));	# f holds xa^xb^xc^xd
265	&rotl($f,1);			# f=ROTATE(f,1)
266	 &and($tmp1,$c);
267	&rotr($b,7);			# b=ROTATE(b,30)
268	 &add($e,$tmp1);		# e+=c&d
269	&mov($tmp1,$a);			# b in next round
270	 &mov(&swtmp($n%16),$f);	# xi=f
271	&rotl($a,5);			# ROTATE(a,5)
272	 &xor($b,$c)			if ($n<59);
273	&and($tmp1,$b)			if ($n<59);# tmp1 to hold F_40_59(b,c,d)
274	 &lea($f,&DWP(0x8f1bbcdc,$f,$e));# f+=K_40_59+e+(b&(c^d))
275	&mov($e,&swtmp(($n+1)%16));	# pre-fetch f for next round
276	 &add($f,$a);			# f+=ROTATE(a,5)
277} else {
278	&mov($tmp1,$c);			# tmp1 to hold F_40_59(b,c,d)
279	 &xor($f,&swtmp(($n+2)%16));	# f to hold Xupdate(xi,xa,xb,xc,xd)
280	&xor($tmp1,$d);
281	 &xor($f,&swtmp(($n+8)%16));
282	&and($tmp1,$b);
283	 &xor($f,&swtmp(($n+13)%16));	# f holds xa^xb^xc^xd
284	&rotl($f,1);			# f=ROTATE(f,1)
285	 &add($tmp1,$e);		# b&(c^d)+=e
286	&rotr($b,2);			# b=ROTATE(b,30)
287	 &mov($e,$a);			# e becomes volatile
288	&rotl($e,5);			# ROTATE(a,5)
289	 &mov(&swtmp($n%16),$f);	# xi=f
290	&lea($f,&DWP(0x8f1bbcdc,$f,$tmp1));# f+=K_40_59+e+(b&(c^d))
291	 &mov($tmp1,$c);
292	&add($f,$e);			# f+=ROTATE(a,5)
293	 &and($tmp1,$d);
294	&mov($e,&swtmp(($n+1)%16));	# pre-fetch f for next round
295	 &add($f,$tmp1);		# f+=c&d
296}
297	}
298
299&function_begin("sha1_block_data_order");
300if ($xmm) {
301  &static_label("ssse3_shortcut");
302  &static_label("avx_shortcut")		if ($ymm);
303  &static_label("K_XX_XX");
304
305	&call	(&label("pic_point"));	# make it PIC!
306  &set_label("pic_point");
307	&blindpop($tmp1);
308	&picmeup($T,"OPENSSL_ia32cap_P",$tmp1,&label("pic_point"));
309	&lea	($tmp1,&DWP(&label("K_XX_XX")."-".&label("pic_point"),$tmp1));
310
311	&mov	($A,&DWP(0,$T));
312	&mov	($D,&DWP(4,$T));
313	&test	($D,1<<9);		# check SSSE3 bit
314	&jz	(&label("x86"));
315	&test	($A,1<<24);		# check FXSR bit
316	&jz	(&label("x86"));
317	if ($ymm) {
318		&and	($D,1<<28);		# mask AVX bit
319		&and	($A,1<<30);		# mask "Intel CPU" bit
320		&or	($A,$D);
321		&cmp	($A,1<<28|1<<30);
322		&je	(&label("avx_shortcut"));
323	}
324	&jmp	(&label("ssse3_shortcut"));
325  &set_label("x86",16);
326}
327	&mov($tmp1,&wparam(0));	# SHA_CTX *c
328	&mov($T,&wparam(1));	# const void *input
329	&mov($A,&wparam(2));	# size_t num
330	&stack_push(16+3);	# allocate X[16]
331	&shl($A,6);
332	&add($A,$T);
333	&mov(&wparam(2),$A);	# pointer beyond the end of input
334	&mov($E,&DWP(16,$tmp1));# pre-load E
335	&jmp(&label("loop"));
336
337&set_label("loop",16);
338
339	# copy input chunk to X, but reversing byte order!
340	for ($i=0; $i<16; $i+=4)
341		{
342		&mov($A,&DWP(4*($i+0),$T));
343		&mov($B,&DWP(4*($i+1),$T));
344		&mov($C,&DWP(4*($i+2),$T));
345		&mov($D,&DWP(4*($i+3),$T));
346		&bswap($A);
347		&bswap($B);
348		&bswap($C);
349		&bswap($D);
350		&mov(&swtmp($i+0),$A);
351		&mov(&swtmp($i+1),$B);
352		&mov(&swtmp($i+2),$C);
353		&mov(&swtmp($i+3),$D);
354		}
355	&mov(&wparam(1),$T);	# redundant in 1st spin
356
357	&mov($A,&DWP(0,$tmp1));	# load SHA_CTX
358	&mov($B,&DWP(4,$tmp1));
359	&mov($C,&DWP(8,$tmp1));
360	&mov($D,&DWP(12,$tmp1));
361	# E is pre-loaded
362
363	for($i=0;$i<16;$i++)	{ &BODY_00_15($i,@V); unshift(@V,pop(@V)); }
364	for(;$i<20;$i++)	{ &BODY_16_19($i,@V); unshift(@V,pop(@V)); }
365	for(;$i<40;$i++)	{ &BODY_20_39($i,@V); unshift(@V,pop(@V)); }
366	for(;$i<60;$i++)	{ &BODY_40_59($i,@V); unshift(@V,pop(@V)); }
367	for(;$i<80;$i++)	{ &BODY_20_39($i,@V); unshift(@V,pop(@V)); }
368
369	(($V[5] eq $D) and ($V[0] eq $E)) or die;	# double-check
370
371	&mov($tmp1,&wparam(0));	# re-load SHA_CTX*
372	&mov($D,&wparam(1));	# D is last "T" and is discarded
373
374	&add($E,&DWP(0,$tmp1));	# E is last "A"...
375	&add($T,&DWP(4,$tmp1));
376	&add($A,&DWP(8,$tmp1));
377	&add($B,&DWP(12,$tmp1));
378	&add($C,&DWP(16,$tmp1));
379
380	&mov(&DWP(0,$tmp1),$E);	# update SHA_CTX
381	 &add($D,64);		# advance input pointer
382	&mov(&DWP(4,$tmp1),$T);
383	 &cmp($D,&wparam(2));	# have we reached the end yet?
384	&mov(&DWP(8,$tmp1),$A);
385	 &mov($E,$C);		# C is last "E" which needs to be "pre-loaded"
386	&mov(&DWP(12,$tmp1),$B);
387	 &mov($T,$D);		# input pointer
388	&mov(&DWP(16,$tmp1),$C);
389	&jb(&label("loop"));
390
391	&stack_pop(16+3);
392&function_end("sha1_block_data_order");
393
394if ($xmm) {
395######################################################################
396# The SSSE3 implementation.
397#
398# %xmm[0-7] are used as ring @X[] buffer containing quadruples of last
399# 32 elements of the message schedule or Xupdate outputs. First 4
400# quadruples are simply byte-swapped input, next 4 are calculated
401# according to method originally suggested by Dean Gaudet (modulo
402# being implemented in SSSE3). Once 8 quadruples or 32 elements are
403# collected, it switches to routine proposed by Max Locktyukhin.
404#
405# Calculations inevitably require temporary reqisters, and there are
406# no %xmm registers left to spare. For this reason part of the ring
407# buffer, X[2..4] to be specific, is offloaded to 3 quadriples ring
408# buffer on the stack. Keep in mind that X[2] is alias X[-6], X[3] -
409# X[-5], and X[4] - X[-4]...
410#
411# Another notable optimization is aggressive stack frame compression
412# aiming to minimize amount of 9-byte instructions...
413#
414# Yet another notable optimization is "jumping" $B variable. It means
415# that there is no register permanently allocated for $B value. This
416# allowed to eliminate one instruction from body_20_39...
417#
418my $Xi=4;			# 4xSIMD Xupdate round, start pre-seeded
419my @X=map("xmm$_",(4..7,0..3));	# pre-seeded for $Xi=4
420my @V=($A,$B,$C,$D,$E);
421my $j=0;			# hash round
422my @T=($T,$tmp1);
423my $inp;
424
425my $_rol=sub { &rol(@_) };
426my $_ror=sub { &ror(@_) };
427
428&function_begin("_sha1_block_data_order_ssse3");
429	&call	(&label("pic_point"));	# make it PIC!
430	&set_label("pic_point");
431	&blindpop($tmp1);
432	&lea	($tmp1,&DWP(&label("K_XX_XX")."-".&label("pic_point"),$tmp1));
433&set_label("ssse3_shortcut");
434
435	&movdqa	(@X[3],&QWP(0,$tmp1));		# K_00_19
436	&movdqa	(@X[4],&QWP(16,$tmp1));		# K_20_39
437	&movdqa	(@X[5],&QWP(32,$tmp1));		# K_40_59
438	&movdqa	(@X[6],&QWP(48,$tmp1));		# K_60_79
439	&movdqa	(@X[2],&QWP(64,$tmp1));		# pbswap mask
440
441	&mov	($E,&wparam(0));		# load argument block
442	&mov	($inp=@T[1],&wparam(1));
443	&mov	($D,&wparam(2));
444	&mov	(@T[0],"esp");
445
446	# stack frame layout
447	#
448	# +0	X[0]+K	X[1]+K	X[2]+K	X[3]+K	# XMM->IALU xfer area
449	#	X[4]+K	X[5]+K	X[6]+K	X[7]+K
450	#	X[8]+K	X[9]+K	X[10]+K	X[11]+K
451	#	X[12]+K	X[13]+K	X[14]+K	X[15]+K
452	#
453	# +64	X[0]	X[1]	X[2]	X[3]	# XMM->XMM backtrace area
454	#	X[4]	X[5]	X[6]	X[7]
455	#	X[8]	X[9]	X[10]	X[11]	# even borrowed for K_00_19
456	#
457	# +112	K_20_39	K_20_39	K_20_39	K_20_39	# constants
458	#	K_40_59	K_40_59	K_40_59	K_40_59
459	#	K_60_79	K_60_79	K_60_79	K_60_79
460	#	K_00_19	K_00_19	K_00_19	K_00_19
461	#	pbswap mask
462	#
463	# +192	ctx				# argument block
464	# +196	inp
465	# +200	end
466	# +204	esp
467	&sub	("esp",208);
468	&and	("esp",-64);
469
470	&movdqa	(&QWP(112+0,"esp"),@X[4]);	# copy constants
471	&movdqa	(&QWP(112+16,"esp"),@X[5]);
472	&movdqa	(&QWP(112+32,"esp"),@X[6]);
473	&shl	($D,6);				# len*64
474	&movdqa	(&QWP(112+48,"esp"),@X[3]);
475	&add	($D,$inp);			# end of input
476	&movdqa	(&QWP(112+64,"esp"),@X[2]);
477	&add	($inp,64);
478	&mov	(&DWP(192+0,"esp"),$E);		# save argument block
479	&mov	(&DWP(192+4,"esp"),$inp);
480	&mov	(&DWP(192+8,"esp"),$D);
481	&mov	(&DWP(192+12,"esp"),@T[0]);	# save original %esp
482
483	&mov	($A,&DWP(0,$E));		# load context
484	&mov	($B,&DWP(4,$E));
485	&mov	($C,&DWP(8,$E));
486	&mov	($D,&DWP(12,$E));
487	&mov	($E,&DWP(16,$E));
488	&mov	(@T[0],$B);			# magic seed
489
490	&movdqu	(@X[-4&7],&QWP(-64,$inp));	# load input to %xmm[0-3]
491	&movdqu	(@X[-3&7],&QWP(-48,$inp));
492	&movdqu	(@X[-2&7],&QWP(-32,$inp));
493	&movdqu	(@X[-1&7],&QWP(-16,$inp));
494	&pshufb	(@X[-4&7],@X[2]);		# byte swap
495	&pshufb	(@X[-3&7],@X[2]);
496	&pshufb	(@X[-2&7],@X[2]);
497	&movdqa	(&QWP(112-16,"esp"),@X[3]);	# borrow last backtrace slot
498	&pshufb	(@X[-1&7],@X[2]);
499	&paddd	(@X[-4&7],@X[3]);		# add K_00_19
500	&paddd	(@X[-3&7],@X[3]);
501	&paddd	(@X[-2&7],@X[3]);
502	&movdqa	(&QWP(0,"esp"),@X[-4&7]);	# X[]+K xfer to IALU
503	&psubd	(@X[-4&7],@X[3]);		# restore X[]
504	&movdqa	(&QWP(0+16,"esp"),@X[-3&7]);
505	&psubd	(@X[-3&7],@X[3]);
506	&movdqa	(&QWP(0+32,"esp"),@X[-2&7]);
507	&psubd	(@X[-2&7],@X[3]);
508	&movdqa	(@X[0],@X[-3&7]);
509	&jmp	(&label("loop"));
510
511######################################################################
512# SSE instruction sequence is first broken to groups of indepentent
513# instructions, independent in respect to their inputs and shifter
514# (not all architectures have more than one). Then IALU instructions
515# are "knitted in" between the SSE groups. Distance is maintained for
516# SSE latency of 2 in hope that it fits better upcoming AMD Bulldozer
517# [which allegedly also implements SSSE3]...
518#
519# Temporary registers usage. X[2] is volatile at the entry and at the
520# end is restored from backtrace ring buffer. X[3] is expected to
521# contain current K_XX_XX constant and is used to caclulate X[-1]+K
522# from previous round, it becomes volatile the moment the value is
523# saved to stack for transfer to IALU. X[4] becomes volatile whenever
524# X[-4] is accumulated and offloaded to backtrace ring buffer, at the
525# end it is loaded with next K_XX_XX [which becomes X[3] in next
526# round]...
527#
528sub Xupdate_ssse3_16_31()		# recall that $Xi starts wtih 4
529{ use integer;
530  my $body = shift;
531  my @insns = (&$body,&$body,&$body,&$body);	# 40 instructions
532  my ($a,$b,$c,$d,$e);
533
534	 eval(shift(@insns));
535	 eval(shift(@insns));
536	&palignr(@X[0],@X[-4&7],8);	# compose "X[-14]" in "X[0]"
537	&movdqa	(@X[2],@X[-1&7]);
538	 eval(shift(@insns));
539	 eval(shift(@insns));
540
541	  &paddd	(@X[3],@X[-1&7]);
542	  &movdqa	(&QWP(64+16*(($Xi-4)%3),"esp"),@X[-4&7]);# save X[] to backtrace buffer
543	 eval(shift(@insns));
544	 eval(shift(@insns));
545	&psrldq	(@X[2],4);		# "X[-3]", 3 dwords
546	 eval(shift(@insns));
547	 eval(shift(@insns));
548	&pxor	(@X[0],@X[-4&7]);	# "X[0]"^="X[-16]"
549	 eval(shift(@insns));
550	 eval(shift(@insns));
551
552	&pxor	(@X[2],@X[-2&7]);	# "X[-3]"^"X[-8]"
553	 eval(shift(@insns));
554	 eval(shift(@insns));
555	 eval(shift(@insns));
556	 eval(shift(@insns));
557
558	&pxor	(@X[0],@X[2]);		# "X[0]"^="X[-3]"^"X[-8]"
559	 eval(shift(@insns));
560	 eval(shift(@insns));
561	  &movdqa	(&QWP(0+16*(($Xi-1)&3),"esp"),@X[3]);	# X[]+K xfer to IALU
562	 eval(shift(@insns));
563	 eval(shift(@insns));
564
565	&movdqa	(@X[4],@X[0]);
566	&movdqa	(@X[2],@X[0]);
567	 eval(shift(@insns));
568	 eval(shift(@insns));
569	 eval(shift(@insns));
570	 eval(shift(@insns));
571
572	&pslldq	(@X[4],12);		# "X[0]"<<96, extract one dword
573	&paddd	(@X[0],@X[0]);
574	 eval(shift(@insns));
575	 eval(shift(@insns));
576	 eval(shift(@insns));
577	 eval(shift(@insns));
578
579	&psrld	(@X[2],31);
580	 eval(shift(@insns));
581	 eval(shift(@insns));
582	&movdqa	(@X[3],@X[4]);
583	 eval(shift(@insns));
584	 eval(shift(@insns));
585
586	&psrld	(@X[4],30);
587	&por	(@X[0],@X[2]);		# "X[0]"<<<=1
588	 eval(shift(@insns));
589	 eval(shift(@insns));
590	  &movdqa	(@X[2],&QWP(64+16*(($Xi-6)%3),"esp")) if ($Xi>5);	# restore X[] from backtrace buffer
591	 eval(shift(@insns));
592	 eval(shift(@insns));
593
594	&pslld	(@X[3],2);
595	&pxor	(@X[0],@X[4]);
596	 eval(shift(@insns));
597	 eval(shift(@insns));
598	  &movdqa	(@X[4],&QWP(112-16+16*(($Xi)/5),"esp"));	# K_XX_XX
599	 eval(shift(@insns));
600	 eval(shift(@insns));
601
602	&pxor	(@X[0],@X[3]);		# "X[0]"^=("X[0]"<<96)<<<2
603	  &movdqa	(@X[1],@X[-2&7])	if ($Xi<7);
604	 eval(shift(@insns));
605	 eval(shift(@insns));
606
607	 foreach (@insns) { eval; }	# remaining instructions [if any]
608
609  $Xi++;	push(@X,shift(@X));	# "rotate" X[]
610}
611
612sub Xupdate_ssse3_32_79()
613{ use integer;
614  my $body = shift;
615  my @insns = (&$body,&$body,&$body,&$body);	# 32 to 48 instructions
616  my ($a,$b,$c,$d,$e);
617
618	&movdqa	(@X[2],@X[-1&7])	if ($Xi==8);
619	 eval(shift(@insns));		# body_20_39
620	&pxor	(@X[0],@X[-4&7]);	# "X[0]"="X[-32]"^"X[-16]"
621	&palignr(@X[2],@X[-2&7],8);	# compose "X[-6]"
622	 eval(shift(@insns));
623	 eval(shift(@insns));
624	 eval(shift(@insns));		# rol
625
626	&pxor	(@X[0],@X[-7&7]);	# "X[0]"^="X[-28]"
627	  &movdqa	(&QWP(64+16*(($Xi-4)%3),"esp"),@X[-4&7]);	# save X[] to backtrace buffer
628	 eval(shift(@insns));
629	 eval(shift(@insns));
630	 if ($Xi%5) {
631	  &movdqa	(@X[4],@X[3]);	# "perpetuate" K_XX_XX...
632	 } else {			# ... or load next one
633	  &movdqa	(@X[4],&QWP(112-16+16*($Xi/5),"esp"));
634	 }
635	  &paddd	(@X[3],@X[-1&7]);
636	 eval(shift(@insns));		# ror
637	 eval(shift(@insns));
638
639	&pxor	(@X[0],@X[2]);		# "X[0]"^="X[-6]"
640	 eval(shift(@insns));		# body_20_39
641	 eval(shift(@insns));
642	 eval(shift(@insns));
643	 eval(shift(@insns));		# rol
644
645	&movdqa	(@X[2],@X[0]);
646	  &movdqa	(&QWP(0+16*(($Xi-1)&3),"esp"),@X[3]);	# X[]+K xfer to IALU
647	 eval(shift(@insns));
648	 eval(shift(@insns));
649	 eval(shift(@insns));		# ror
650	 eval(shift(@insns));
651
652	&pslld	(@X[0],2);
653	 eval(shift(@insns));		# body_20_39
654	 eval(shift(@insns));
655	&psrld	(@X[2],30);
656	 eval(shift(@insns));
657	 eval(shift(@insns));		# rol
658	 eval(shift(@insns));
659	 eval(shift(@insns));
660	 eval(shift(@insns));		# ror
661	 eval(shift(@insns));
662
663	&por	(@X[0],@X[2]);		# "X[0]"<<<=2
664	 eval(shift(@insns));		# body_20_39
665	 eval(shift(@insns));
666	  &movdqa	(@X[2],&QWP(64+16*(($Xi-6)%3),"esp")) if($Xi<19);	# restore X[] from backtrace buffer
667	 eval(shift(@insns));
668	 eval(shift(@insns));		# rol
669	 eval(shift(@insns));
670	 eval(shift(@insns));
671	 eval(shift(@insns));		# ror
672	  &movdqa	(@X[3],@X[0])	if ($Xi<19);
673	 eval(shift(@insns));
674
675	 foreach (@insns) { eval; }	# remaining instructions
676
677  $Xi++;	push(@X,shift(@X));	# "rotate" X[]
678}
679
680sub Xuplast_ssse3_80()
681{ use integer;
682  my $body = shift;
683  my @insns = (&$body,&$body,&$body,&$body);	# 32 instructions
684  my ($a,$b,$c,$d,$e);
685
686	 eval(shift(@insns));
687	  &paddd	(@X[3],@X[-1&7]);
688	 eval(shift(@insns));
689	 eval(shift(@insns));
690	 eval(shift(@insns));
691	 eval(shift(@insns));
692
693	  &movdqa	(&QWP(0+16*(($Xi-1)&3),"esp"),@X[3]);	# X[]+K xfer IALU
694
695	 foreach (@insns) { eval; }		# remaining instructions
696
697	&mov	($inp=@T[1],&DWP(192+4,"esp"));
698	&cmp	($inp,&DWP(192+8,"esp"));
699	&je	(&label("done"));
700
701	&movdqa	(@X[3],&QWP(112+48,"esp"));	# K_00_19
702	&movdqa	(@X[2],&QWP(112+64,"esp"));	# pbswap mask
703	&movdqu	(@X[-4&7],&QWP(0,$inp));	# load input
704	&movdqu	(@X[-3&7],&QWP(16,$inp));
705	&movdqu	(@X[-2&7],&QWP(32,$inp));
706	&movdqu	(@X[-1&7],&QWP(48,$inp));
707	&add	($inp,64);
708	&pshufb	(@X[-4&7],@X[2]);		# byte swap
709	&mov	(&DWP(192+4,"esp"),$inp);
710	&movdqa	(&QWP(112-16,"esp"),@X[3]);	# borrow last backtrace slot
711
712  $Xi=0;
713}
714
715sub Xloop_ssse3()
716{ use integer;
717  my $body = shift;
718  my @insns = (&$body,&$body,&$body,&$body);	# 32 instructions
719  my ($a,$b,$c,$d,$e);
720
721	 eval(shift(@insns));
722	 eval(shift(@insns));
723	&pshufb	(@X[($Xi-3)&7],@X[2]);
724	 eval(shift(@insns));
725	 eval(shift(@insns));
726	&paddd	(@X[($Xi-4)&7],@X[3]);
727	 eval(shift(@insns));
728	 eval(shift(@insns));
729	 eval(shift(@insns));
730	 eval(shift(@insns));
731	&movdqa	(&QWP(0+16*$Xi,"esp"),@X[($Xi-4)&7]);	# X[]+K xfer to IALU
732	 eval(shift(@insns));
733	 eval(shift(@insns));
734	&psubd	(@X[($Xi-4)&7],@X[3]);
735
736	foreach (@insns) { eval; }
737  $Xi++;
738}
739
740sub Xtail_ssse3()
741{ use integer;
742  my $body = shift;
743  my @insns = (&$body,&$body,&$body,&$body);	# 32 instructions
744  my ($a,$b,$c,$d,$e);
745
746	foreach (@insns) { eval; }
747}
748
749sub body_00_19 () {
750	(
751	'($a,$b,$c,$d,$e)=@V;'.
752	'&add	($e,&DWP(4*($j&15),"esp"));',	# X[]+K xfer
753	'&xor	($c,$d);',
754	'&mov	(@T[1],$a);',	# $b in next round
755	'&$_rol	($a,5);',
756	'&and	(@T[0],$c);',	# ($b&($c^$d))
757	'&xor	($c,$d);',	# restore $c
758	'&xor	(@T[0],$d);',
759	'&add	($e,$a);',
760	'&$_ror	($b,$j?7:2);',	# $b>>>2
761	'&add	($e,@T[0]);'	.'$j++; unshift(@V,pop(@V)); unshift(@T,pop(@T));'
762	);
763}
764
765sub body_20_39 () {
766	(
767	'($a,$b,$c,$d,$e)=@V;'.
768	'&add	($e,&DWP(4*($j++&15),"esp"));',	# X[]+K xfer
769	'&xor	(@T[0],$d);',	# ($b^$d)
770	'&mov	(@T[1],$a);',	# $b in next round
771	'&$_rol	($a,5);',
772	'&xor	(@T[0],$c);',	# ($b^$d^$c)
773	'&add	($e,$a);',
774	'&$_ror	($b,7);',	# $b>>>2
775	'&add	($e,@T[0]);'	.'unshift(@V,pop(@V)); unshift(@T,pop(@T));'
776	);
777}
778
779sub body_40_59 () {
780	(
781	'($a,$b,$c,$d,$e)=@V;'.
782	'&mov	(@T[1],$c);',
783	'&xor	($c,$d);',
784	'&add	($e,&DWP(4*($j++&15),"esp"));',	# X[]+K xfer
785	'&and	(@T[1],$d);',
786	'&and	(@T[0],$c);',	# ($b&($c^$d))
787	'&$_ror	($b,7);',	# $b>>>2
788	'&add	($e,@T[1]);',
789	'&mov	(@T[1],$a);',	# $b in next round
790	'&$_rol	($a,5);',
791	'&add	($e,@T[0]);',
792	'&xor	($c,$d);',	# restore $c
793	'&add	($e,$a);'	.'unshift(@V,pop(@V)); unshift(@T,pop(@T));'
794	);
795}
796
797&set_label("loop",16);
798	&Xupdate_ssse3_16_31(\&body_00_19);
799	&Xupdate_ssse3_16_31(\&body_00_19);
800	&Xupdate_ssse3_16_31(\&body_00_19);
801	&Xupdate_ssse3_16_31(\&body_00_19);
802	&Xupdate_ssse3_32_79(\&body_00_19);
803	&Xupdate_ssse3_32_79(\&body_20_39);
804	&Xupdate_ssse3_32_79(\&body_20_39);
805	&Xupdate_ssse3_32_79(\&body_20_39);
806	&Xupdate_ssse3_32_79(\&body_20_39);
807	&Xupdate_ssse3_32_79(\&body_20_39);
808	&Xupdate_ssse3_32_79(\&body_40_59);
809	&Xupdate_ssse3_32_79(\&body_40_59);
810	&Xupdate_ssse3_32_79(\&body_40_59);
811	&Xupdate_ssse3_32_79(\&body_40_59);
812	&Xupdate_ssse3_32_79(\&body_40_59);
813	&Xupdate_ssse3_32_79(\&body_20_39);
814	&Xuplast_ssse3_80(\&body_20_39);	# can jump to "done"
815
816				$saved_j=$j; @saved_V=@V;
817
818	&Xloop_ssse3(\&body_20_39);
819	&Xloop_ssse3(\&body_20_39);
820	&Xloop_ssse3(\&body_20_39);
821
822	&mov	(@T[1],&DWP(192,"esp"));	# update context
823	&add	($A,&DWP(0,@T[1]));
824	&add	(@T[0],&DWP(4,@T[1]));		# $b
825	&add	($C,&DWP(8,@T[1]));
826	&mov	(&DWP(0,@T[1]),$A);
827	&add	($D,&DWP(12,@T[1]));
828	&mov	(&DWP(4,@T[1]),@T[0]);
829	&add	($E,&DWP(16,@T[1]));
830	&mov	(&DWP(8,@T[1]),$C);
831	&mov	($B,@T[0]);
832	&mov	(&DWP(12,@T[1]),$D);
833	&mov	(&DWP(16,@T[1]),$E);
834	&movdqa	(@X[0],@X[-3&7]);
835
836	&jmp	(&label("loop"));
837
838&set_label("done",16);		$j=$saved_j; @V=@saved_V;
839
840	&Xtail_ssse3(\&body_20_39);
841	&Xtail_ssse3(\&body_20_39);
842	&Xtail_ssse3(\&body_20_39);
843
844	&mov	(@T[1],&DWP(192,"esp"));	# update context
845	&add	($A,&DWP(0,@T[1]));
846	&mov	("esp",&DWP(192+12,"esp"));	# restore %esp
847	&add	(@T[0],&DWP(4,@T[1]));		# $b
848	&add	($C,&DWP(8,@T[1]));
849	&mov	(&DWP(0,@T[1]),$A);
850	&add	($D,&DWP(12,@T[1]));
851	&mov	(&DWP(4,@T[1]),@T[0]);
852	&add	($E,&DWP(16,@T[1]));
853	&mov	(&DWP(8,@T[1]),$C);
854	&mov	(&DWP(12,@T[1]),$D);
855	&mov	(&DWP(16,@T[1]),$E);
856
857&function_end("_sha1_block_data_order_ssse3");
858
859if ($ymm) {
860my $Xi=4;			# 4xSIMD Xupdate round, start pre-seeded
861my @X=map("xmm$_",(4..7,0..3));	# pre-seeded for $Xi=4
862my @V=($A,$B,$C,$D,$E);
863my $j=0;			# hash round
864my @T=($T,$tmp1);
865my $inp;
866
867my $_rol=sub { &shld(@_[0],@_) };
868my $_ror=sub { &shrd(@_[0],@_) };
869
870&function_begin("_sha1_block_data_order_avx");
871	&call	(&label("pic_point"));	# make it PIC!
872	&set_label("pic_point");
873	&blindpop($tmp1);
874	&lea	($tmp1,&DWP(&label("K_XX_XX")."-".&label("pic_point"),$tmp1));
875&set_label("avx_shortcut");
876	&vzeroall();
877
878	&vmovdqa(@X[3],&QWP(0,$tmp1));		# K_00_19
879	&vmovdqa(@X[4],&QWP(16,$tmp1));		# K_20_39
880	&vmovdqa(@X[5],&QWP(32,$tmp1));		# K_40_59
881	&vmovdqa(@X[6],&QWP(48,$tmp1));		# K_60_79
882	&vmovdqa(@X[2],&QWP(64,$tmp1));		# pbswap mask
883
884	&mov	($E,&wparam(0));		# load argument block
885	&mov	($inp=@T[1],&wparam(1));
886	&mov	($D,&wparam(2));
887	&mov	(@T[0],"esp");
888
889	# stack frame layout
890	#
891	# +0	X[0]+K	X[1]+K	X[2]+K	X[3]+K	# XMM->IALU xfer area
892	#	X[4]+K	X[5]+K	X[6]+K	X[7]+K
893	#	X[8]+K	X[9]+K	X[10]+K	X[11]+K
894	#	X[12]+K	X[13]+K	X[14]+K	X[15]+K
895	#
896	# +64	X[0]	X[1]	X[2]	X[3]	# XMM->XMM backtrace area
897	#	X[4]	X[5]	X[6]	X[7]
898	#	X[8]	X[9]	X[10]	X[11]	# even borrowed for K_00_19
899	#
900	# +112	K_20_39	K_20_39	K_20_39	K_20_39	# constants
901	#	K_40_59	K_40_59	K_40_59	K_40_59
902	#	K_60_79	K_60_79	K_60_79	K_60_79
903	#	K_00_19	K_00_19	K_00_19	K_00_19
904	#	pbswap mask
905	#
906	# +192	ctx				# argument block
907	# +196	inp
908	# +200	end
909	# +204	esp
910	&sub	("esp",208);
911	&and	("esp",-64);
912
913	&vmovdqa(&QWP(112+0,"esp"),@X[4]);	# copy constants
914	&vmovdqa(&QWP(112+16,"esp"),@X[5]);
915	&vmovdqa(&QWP(112+32,"esp"),@X[6]);
916	&shl	($D,6);				# len*64
917	&vmovdqa(&QWP(112+48,"esp"),@X[3]);
918	&add	($D,$inp);			# end of input
919	&vmovdqa(&QWP(112+64,"esp"),@X[2]);
920	&add	($inp,64);
921	&mov	(&DWP(192+0,"esp"),$E);		# save argument block
922	&mov	(&DWP(192+4,"esp"),$inp);
923	&mov	(&DWP(192+8,"esp"),$D);
924	&mov	(&DWP(192+12,"esp"),@T[0]);	# save original %esp
925
926	&mov	($A,&DWP(0,$E));		# load context
927	&mov	($B,&DWP(4,$E));
928	&mov	($C,&DWP(8,$E));
929	&mov	($D,&DWP(12,$E));
930	&mov	($E,&DWP(16,$E));
931	&mov	(@T[0],$B);			# magic seed
932
933	&vmovdqu(@X[-4&7],&QWP(-64,$inp));	# load input to %xmm[0-3]
934	&vmovdqu(@X[-3&7],&QWP(-48,$inp));
935	&vmovdqu(@X[-2&7],&QWP(-32,$inp));
936	&vmovdqu(@X[-1&7],&QWP(-16,$inp));
937	&vpshufb(@X[-4&7],@X[-4&7],@X[2]);	# byte swap
938	&vpshufb(@X[-3&7],@X[-3&7],@X[2]);
939	&vpshufb(@X[-2&7],@X[-2&7],@X[2]);
940	&vmovdqa(&QWP(112-16,"esp"),@X[3]);	# borrow last backtrace slot
941	&vpshufb(@X[-1&7],@X[-1&7],@X[2]);
942	&vpaddd	(@X[0],@X[-4&7],@X[3]);		# add K_00_19
943	&vpaddd	(@X[1],@X[-3&7],@X[3]);
944	&vpaddd	(@X[2],@X[-2&7],@X[3]);
945	&vmovdqa(&QWP(0,"esp"),@X[0]);		# X[]+K xfer to IALU
946	&vmovdqa(&QWP(0+16,"esp"),@X[1]);
947	&vmovdqa(&QWP(0+32,"esp"),@X[2]);
948	&jmp	(&label("loop"));
949
950sub Xupdate_avx_16_31()		# recall that $Xi starts wtih 4
951{ use integer;
952  my $body = shift;
953  my @insns = (&$body,&$body,&$body,&$body);	# 40 instructions
954  my ($a,$b,$c,$d,$e);
955
956	 eval(shift(@insns));
957	 eval(shift(@insns));
958	&vpalignr(@X[0],@X[-3&7],@X[-4&7],8);	# compose "X[-14]" in "X[0]"
959	 eval(shift(@insns));
960	 eval(shift(@insns));
961
962	  &vpaddd	(@X[3],@X[3],@X[-1&7]);
963	  &vmovdqa	(&QWP(64+16*(($Xi-4)%3),"esp"),@X[-4&7]);# save X[] to backtrace buffer
964	 eval(shift(@insns));
965	 eval(shift(@insns));
966	&vpsrldq(@X[2],@X[-1&7],4);		# "X[-3]", 3 dwords
967	 eval(shift(@insns));
968	 eval(shift(@insns));
969	&vpxor	(@X[0],@X[0],@X[-4&7]);		# "X[0]"^="X[-16]"
970	 eval(shift(@insns));
971	 eval(shift(@insns));
972
973	&vpxor	(@X[2],@X[2],@X[-2&7]);		# "X[-3]"^"X[-8]"
974	 eval(shift(@insns));
975	 eval(shift(@insns));
976	  &vmovdqa	(&QWP(0+16*(($Xi-1)&3),"esp"),@X[3]);	# X[]+K xfer to IALU
977	 eval(shift(@insns));
978	 eval(shift(@insns));
979
980	&vpxor	(@X[0],@X[0],@X[2]);		# "X[0]"^="X[-3]"^"X[-8]"
981	 eval(shift(@insns));
982	 eval(shift(@insns));
983	 eval(shift(@insns));
984	 eval(shift(@insns));
985
986	&vpsrld	(@X[2],@X[0],31);
987	 eval(shift(@insns));
988	 eval(shift(@insns));
989	 eval(shift(@insns));
990	 eval(shift(@insns));
991
992	&vpslldq(@X[4],@X[0],12);		# "X[0]"<<96, extract one dword
993	&vpaddd	(@X[0],@X[0],@X[0]);
994	 eval(shift(@insns));
995	 eval(shift(@insns));
996	 eval(shift(@insns));
997	 eval(shift(@insns));
998
999	&vpsrld	(@X[3],@X[4],30);
1000	&vpor	(@X[0],@X[0],@X[2]);		# "X[0]"<<<=1
1001	 eval(shift(@insns));
1002	 eval(shift(@insns));
1003	 eval(shift(@insns));
1004	 eval(shift(@insns));
1005
1006	&vpslld	(@X[4],@X[4],2);
1007	  &vmovdqa	(@X[2],&QWP(64+16*(($Xi-6)%3),"esp")) if ($Xi>5);	# restore X[] from backtrace buffer
1008	 eval(shift(@insns));
1009	 eval(shift(@insns));
1010	&vpxor	(@X[0],@X[0],@X[3]);
1011	 eval(shift(@insns));
1012	 eval(shift(@insns));
1013	 eval(shift(@insns));
1014	 eval(shift(@insns));
1015
1016	&vpxor	(@X[0],@X[0],@X[4]);		# "X[0]"^=("X[0]"<<96)<<<2
1017	 eval(shift(@insns));
1018	 eval(shift(@insns));
1019	  &vmovdqa	(@X[4],&QWP(112-16+16*(($Xi)/5),"esp"));	# K_XX_XX
1020	 eval(shift(@insns));
1021	 eval(shift(@insns));
1022
1023	 foreach (@insns) { eval; }	# remaining instructions [if any]
1024
1025  $Xi++;	push(@X,shift(@X));	# "rotate" X[]
1026}
1027
1028sub Xupdate_avx_32_79()
1029{ use integer;
1030  my $body = shift;
1031  my @insns = (&$body,&$body,&$body,&$body);	# 32 to 48 instructions
1032  my ($a,$b,$c,$d,$e);
1033
1034	&vpalignr(@X[2],@X[-1&7],@X[-2&7],8);	# compose "X[-6]"
1035	&vpxor	(@X[0],@X[0],@X[-4&7]);	# "X[0]"="X[-32]"^"X[-16]"
1036	 eval(shift(@insns));		# body_20_39
1037	 eval(shift(@insns));
1038	 eval(shift(@insns));
1039	 eval(shift(@insns));		# rol
1040
1041	&vpxor	(@X[0],@X[0],@X[-7&7]);	# "X[0]"^="X[-28]"
1042	  &vmovdqa	(&QWP(64+16*(($Xi-4)%3),"esp"),@X[-4&7]);	# save X[] to backtrace buffer
1043	 eval(shift(@insns));
1044	 eval(shift(@insns));
1045	 if ($Xi%5) {
1046	  &vmovdqa	(@X[4],@X[3]);	# "perpetuate" K_XX_XX...
1047	 } else {			# ... or load next one
1048	  &vmovdqa	(@X[4],&QWP(112-16+16*($Xi/5),"esp"));
1049	 }
1050	  &vpaddd	(@X[3],@X[3],@X[-1&7]);
1051	 eval(shift(@insns));		# ror
1052	 eval(shift(@insns));
1053
1054	&vpxor	(@X[0],@X[0],@X[2]);		# "X[0]"^="X[-6]"
1055	 eval(shift(@insns));		# body_20_39
1056	 eval(shift(@insns));
1057	 eval(shift(@insns));
1058	 eval(shift(@insns));		# rol
1059
1060	&vpsrld	(@X[2],@X[0],30);
1061	  &vmovdqa	(&QWP(0+16*(($Xi-1)&3),"esp"),@X[3]);	# X[]+K xfer to IALU
1062	 eval(shift(@insns));
1063	 eval(shift(@insns));
1064	 eval(shift(@insns));		# ror
1065	 eval(shift(@insns));
1066
1067	&vpslld	(@X[0],@X[0],2);
1068	 eval(shift(@insns));		# body_20_39
1069	 eval(shift(@insns));
1070	 eval(shift(@insns));
1071	 eval(shift(@insns));		# rol
1072	 eval(shift(@insns));
1073	 eval(shift(@insns));
1074	 eval(shift(@insns));		# ror
1075	 eval(shift(@insns));
1076
1077	&vpor	(@X[0],@X[0],@X[2]);	# "X[0]"<<<=2
1078	 eval(shift(@insns));		# body_20_39
1079	 eval(shift(@insns));
1080	  &vmovdqa	(@X[2],&QWP(64+16*(($Xi-6)%3),"esp")) if($Xi<19);	# restore X[] from backtrace buffer
1081	 eval(shift(@insns));
1082	 eval(shift(@insns));		# rol
1083	 eval(shift(@insns));
1084	 eval(shift(@insns));
1085	 eval(shift(@insns));		# ror
1086	 eval(shift(@insns));
1087
1088	 foreach (@insns) { eval; }	# remaining instructions
1089
1090  $Xi++;	push(@X,shift(@X));	# "rotate" X[]
1091}
1092
1093sub Xuplast_avx_80()
1094{ use integer;
1095  my $body = shift;
1096  my @insns = (&$body,&$body,&$body,&$body);	# 32 instructions
1097  my ($a,$b,$c,$d,$e);
1098
1099	 eval(shift(@insns));
1100	  &vpaddd	(@X[3],@X[3],@X[-1&7]);
1101	 eval(shift(@insns));
1102	 eval(shift(@insns));
1103	 eval(shift(@insns));
1104	 eval(shift(@insns));
1105
1106	  &vmovdqa	(&QWP(0+16*(($Xi-1)&3),"esp"),@X[3]);	# X[]+K xfer IALU
1107
1108	 foreach (@insns) { eval; }		# remaining instructions
1109
1110	&mov	($inp=@T[1],&DWP(192+4,"esp"));
1111	&cmp	($inp,&DWP(192+8,"esp"));
1112	&je	(&label("done"));
1113
1114	&vmovdqa(@X[3],&QWP(112+48,"esp"));	# K_00_19
1115	&vmovdqa(@X[2],&QWP(112+64,"esp"));	# pbswap mask
1116	&vmovdqu(@X[-4&7],&QWP(0,$inp));	# load input
1117	&vmovdqu(@X[-3&7],&QWP(16,$inp));
1118	&vmovdqu(@X[-2&7],&QWP(32,$inp));
1119	&vmovdqu(@X[-1&7],&QWP(48,$inp));
1120	&add	($inp,64);
1121	&vpshufb(@X[-4&7],@X[-4&7],@X[2]);		# byte swap
1122	&mov	(&DWP(192+4,"esp"),$inp);
1123	&vmovdqa(&QWP(112-16,"esp"),@X[3]);	# borrow last backtrace slot
1124
1125  $Xi=0;
1126}
1127
1128sub Xloop_avx()
1129{ use integer;
1130  my $body = shift;
1131  my @insns = (&$body,&$body,&$body,&$body);	# 32 instructions
1132  my ($a,$b,$c,$d,$e);
1133
1134	 eval(shift(@insns));
1135	 eval(shift(@insns));
1136	&vpshufb	(@X[($Xi-3)&7],@X[($Xi-3)&7],@X[2]);
1137	 eval(shift(@insns));
1138	 eval(shift(@insns));
1139	&vpaddd	(@X[$Xi&7],@X[($Xi-4)&7],@X[3]);
1140	 eval(shift(@insns));
1141	 eval(shift(@insns));
1142	 eval(shift(@insns));
1143	 eval(shift(@insns));
1144	&vmovdqa	(&QWP(0+16*$Xi,"esp"),@X[$Xi&7]);	# X[]+K xfer to IALU
1145	 eval(shift(@insns));
1146	 eval(shift(@insns));
1147
1148	foreach (@insns) { eval; }
1149  $Xi++;
1150}
1151
1152sub Xtail_avx()
1153{ use integer;
1154  my $body = shift;
1155  my @insns = (&$body,&$body,&$body,&$body);	# 32 instructions
1156  my ($a,$b,$c,$d,$e);
1157
1158	foreach (@insns) { eval; }
1159}
1160
1161&set_label("loop",16);
1162	&Xupdate_avx_16_31(\&body_00_19);
1163	&Xupdate_avx_16_31(\&body_00_19);
1164	&Xupdate_avx_16_31(\&body_00_19);
1165	&Xupdate_avx_16_31(\&body_00_19);
1166	&Xupdate_avx_32_79(\&body_00_19);
1167	&Xupdate_avx_32_79(\&body_20_39);
1168	&Xupdate_avx_32_79(\&body_20_39);
1169	&Xupdate_avx_32_79(\&body_20_39);
1170	&Xupdate_avx_32_79(\&body_20_39);
1171	&Xupdate_avx_32_79(\&body_20_39);
1172	&Xupdate_avx_32_79(\&body_40_59);
1173	&Xupdate_avx_32_79(\&body_40_59);
1174	&Xupdate_avx_32_79(\&body_40_59);
1175	&Xupdate_avx_32_79(\&body_40_59);
1176	&Xupdate_avx_32_79(\&body_40_59);
1177	&Xupdate_avx_32_79(\&body_20_39);
1178	&Xuplast_avx_80(\&body_20_39);	# can jump to "done"
1179
1180				$saved_j=$j; @saved_V=@V;
1181
1182	&Xloop_avx(\&body_20_39);
1183	&Xloop_avx(\&body_20_39);
1184	&Xloop_avx(\&body_20_39);
1185
1186	&mov	(@T[1],&DWP(192,"esp"));	# update context
1187	&add	($A,&DWP(0,@T[1]));
1188	&add	(@T[0],&DWP(4,@T[1]));		# $b
1189	&add	($C,&DWP(8,@T[1]));
1190	&mov	(&DWP(0,@T[1]),$A);
1191	&add	($D,&DWP(12,@T[1]));
1192	&mov	(&DWP(4,@T[1]),@T[0]);
1193	&add	($E,&DWP(16,@T[1]));
1194	&mov	(&DWP(8,@T[1]),$C);
1195	&mov	($B,@T[0]);
1196	&mov	(&DWP(12,@T[1]),$D);
1197	&mov	(&DWP(16,@T[1]),$E);
1198
1199	&jmp	(&label("loop"));
1200
1201&set_label("done",16);		$j=$saved_j; @V=@saved_V;
1202
1203	&Xtail_avx(\&body_20_39);
1204	&Xtail_avx(\&body_20_39);
1205	&Xtail_avx(\&body_20_39);
1206
1207	&vzeroall();
1208
1209	&mov	(@T[1],&DWP(192,"esp"));	# update context
1210	&add	($A,&DWP(0,@T[1]));
1211	&mov	("esp",&DWP(192+12,"esp"));	# restore %esp
1212	&add	(@T[0],&DWP(4,@T[1]));		# $b
1213	&add	($C,&DWP(8,@T[1]));
1214	&mov	(&DWP(0,@T[1]),$A);
1215	&add	($D,&DWP(12,@T[1]));
1216	&mov	(&DWP(4,@T[1]),@T[0]);
1217	&add	($E,&DWP(16,@T[1]));
1218	&mov	(&DWP(8,@T[1]),$C);
1219	&mov	(&DWP(12,@T[1]),$D);
1220	&mov	(&DWP(16,@T[1]),$E);
1221&function_end("_sha1_block_data_order_avx");
1222}
1223&set_label("K_XX_XX",64);
1224&data_word(0x5a827999,0x5a827999,0x5a827999,0x5a827999);	# K_00_19
1225&data_word(0x6ed9eba1,0x6ed9eba1,0x6ed9eba1,0x6ed9eba1);	# K_20_39
1226&data_word(0x8f1bbcdc,0x8f1bbcdc,0x8f1bbcdc,0x8f1bbcdc);	# K_40_59
1227&data_word(0xca62c1d6,0xca62c1d6,0xca62c1d6,0xca62c1d6);	# K_60_79
1228&data_word(0x00010203,0x04050607,0x08090a0b,0x0c0d0e0f);	# pbswap mask
1229}
1230&asciz("SHA1 block transform for x86, CRYPTOGAMS by <appro\@openssl.org>");
1231
1232&asm_finish();
1233