md_rand.c revision 264331
1/* crypto/rand/md_rand.c */
2/* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
3 * All rights reserved.
4 *
5 * This package is an SSL implementation written
6 * by Eric Young (eay@cryptsoft.com).
7 * The implementation was written so as to conform with Netscapes SSL.
8 *
9 * This library is free for commercial and non-commercial use as long as
10 * the following conditions are aheared to.  The following conditions
11 * apply to all code found in this distribution, be it the RC4, RSA,
12 * lhash, DES, etc., code; not just the SSL code.  The SSL documentation
13 * included with this distribution is covered by the same copyright terms
14 * except that the holder is Tim Hudson (tjh@cryptsoft.com).
15 *
16 * Copyright remains Eric Young's, and as such any Copyright notices in
17 * the code are not to be removed.
18 * If this package is used in a product, Eric Young should be given attribution
19 * as the author of the parts of the library used.
20 * This can be in the form of a textual message at program startup or
21 * in documentation (online or textual) provided with the package.
22 *
23 * Redistribution and use in source and binary forms, with or without
24 * modification, are permitted provided that the following conditions
25 * are met:
26 * 1. Redistributions of source code must retain the copyright
27 *    notice, this list of conditions and the following disclaimer.
28 * 2. Redistributions in binary form must reproduce the above copyright
29 *    notice, this list of conditions and the following disclaimer in the
30 *    documentation and/or other materials provided with the distribution.
31 * 3. All advertising materials mentioning features or use of this software
32 *    must display the following acknowledgement:
33 *    "This product includes cryptographic software written by
34 *     Eric Young (eay@cryptsoft.com)"
35 *    The word 'cryptographic' can be left out if the rouines from the library
36 *    being used are not cryptographic related :-).
37 * 4. If you include any Windows specific code (or a derivative thereof) from
38 *    the apps directory (application code) you must include an acknowledgement:
39 *    "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
40 *
41 * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
42 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
43 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
44 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
45 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
46 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
47 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
48 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
49 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
50 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
51 * SUCH DAMAGE.
52 *
53 * The licence and distribution terms for any publically available version or
54 * derivative of this code cannot be changed.  i.e. this code cannot simply be
55 * copied and put under another distribution licence
56 * [including the GNU Public Licence.]
57 */
58/* ====================================================================
59 * Copyright (c) 1998-2001 The OpenSSL Project.  All rights reserved.
60 *
61 * Redistribution and use in source and binary forms, with or without
62 * modification, are permitted provided that the following conditions
63 * are met:
64 *
65 * 1. Redistributions of source code must retain the above copyright
66 *    notice, this list of conditions and the following disclaimer.
67 *
68 * 2. Redistributions in binary form must reproduce the above copyright
69 *    notice, this list of conditions and the following disclaimer in
70 *    the documentation and/or other materials provided with the
71 *    distribution.
72 *
73 * 3. All advertising materials mentioning features or use of this
74 *    software must display the following acknowledgment:
75 *    "This product includes software developed by the OpenSSL Project
76 *    for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
77 *
78 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
79 *    endorse or promote products derived from this software without
80 *    prior written permission. For written permission, please contact
81 *    openssl-core@openssl.org.
82 *
83 * 5. Products derived from this software may not be called "OpenSSL"
84 *    nor may "OpenSSL" appear in their names without prior written
85 *    permission of the OpenSSL Project.
86 *
87 * 6. Redistributions of any form whatsoever must retain the following
88 *    acknowledgment:
89 *    "This product includes software developed by the OpenSSL Project
90 *    for use in the OpenSSL Toolkit (http://www.openssl.org/)"
91 *
92 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
93 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
94 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
95 * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE OpenSSL PROJECT OR
96 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
97 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
98 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
99 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
100 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
101 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
102 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
103 * OF THE POSSIBILITY OF SUCH DAMAGE.
104 * ====================================================================
105 *
106 * This product includes cryptographic software written by Eric Young
107 * (eay@cryptsoft.com).  This product includes software written by Tim
108 * Hudson (tjh@cryptsoft.com).
109 *
110 */
111
112#define OPENSSL_FIPSEVP
113
114#ifdef MD_RAND_DEBUG
115# ifndef NDEBUG
116#   define NDEBUG
117# endif
118#endif
119
120#include <assert.h>
121#include <stdio.h>
122#include <string.h>
123
124#include "e_os.h"
125
126#include <openssl/crypto.h>
127#include <openssl/rand.h>
128#include "rand_lcl.h"
129
130#include <openssl/err.h>
131
132#ifdef BN_DEBUG
133# define PREDICT
134#endif
135
136/* #define PREDICT	1 */
137
138#define STATE_SIZE	1023
139static int state_num=0,state_index=0;
140static unsigned char state[STATE_SIZE+MD_DIGEST_LENGTH];
141static unsigned char md[MD_DIGEST_LENGTH];
142static long md_count[2]={0,0};
143static double entropy=0;
144static int initialized=0;
145
146static unsigned int crypto_lock_rand = 0; /* may be set only when a thread
147                                           * holds CRYPTO_LOCK_RAND
148                                           * (to prevent double locking) */
149/* access to lockin_thread is synchronized by CRYPTO_LOCK_RAND2 */
150static CRYPTO_THREADID locking_threadid; /* valid iff crypto_lock_rand is set */
151
152
153#ifdef PREDICT
154int rand_predictable=0;
155#endif
156
157const char RAND_version[]="RAND" OPENSSL_VERSION_PTEXT;
158
159static void ssleay_rand_cleanup(void);
160static void ssleay_rand_seed(const void *buf, int num);
161static void ssleay_rand_add(const void *buf, int num, double add_entropy);
162static int ssleay_rand_bytes(unsigned char *buf, int num, int pseudo);
163static int ssleay_rand_nopseudo_bytes(unsigned char *buf, int num);
164static int ssleay_rand_pseudo_bytes(unsigned char *buf, int num);
165static int ssleay_rand_status(void);
166
167RAND_METHOD rand_ssleay_meth={
168	ssleay_rand_seed,
169	ssleay_rand_nopseudo_bytes,
170	ssleay_rand_cleanup,
171	ssleay_rand_add,
172	ssleay_rand_pseudo_bytes,
173	ssleay_rand_status
174	};
175
176RAND_METHOD *RAND_SSLeay(void)
177	{
178	return(&rand_ssleay_meth);
179	}
180
181static void ssleay_rand_cleanup(void)
182	{
183	OPENSSL_cleanse(state,sizeof(state));
184	state_num=0;
185	state_index=0;
186	OPENSSL_cleanse(md,MD_DIGEST_LENGTH);
187	md_count[0]=0;
188	md_count[1]=0;
189	entropy=0;
190	initialized=0;
191	}
192
193static void ssleay_rand_add(const void *buf, int num, double add)
194	{
195	int i,j,k,st_idx;
196	long md_c[2];
197	unsigned char local_md[MD_DIGEST_LENGTH];
198	EVP_MD_CTX m;
199	int do_not_lock;
200
201	if (!num)
202		return;
203
204	/*
205	 * (Based on the rand(3) manpage)
206	 *
207	 * The input is chopped up into units of 20 bytes (or less for
208	 * the last block).  Each of these blocks is run through the hash
209	 * function as follows:  The data passed to the hash function
210	 * is the current 'md', the same number of bytes from the 'state'
211	 * (the location determined by in incremented looping index) as
212	 * the current 'block', the new key data 'block', and 'count'
213	 * (which is incremented after each use).
214	 * The result of this is kept in 'md' and also xored into the
215	 * 'state' at the same locations that were used as input into the
216         * hash function.
217	 */
218
219	/* check if we already have the lock */
220	if (crypto_lock_rand)
221		{
222		CRYPTO_THREADID cur;
223		CRYPTO_THREADID_current(&cur);
224		CRYPTO_r_lock(CRYPTO_LOCK_RAND2);
225		do_not_lock = !CRYPTO_THREADID_cmp(&locking_threadid, &cur);
226		CRYPTO_r_unlock(CRYPTO_LOCK_RAND2);
227		}
228	else
229		do_not_lock = 0;
230
231	if (!do_not_lock) CRYPTO_w_lock(CRYPTO_LOCK_RAND);
232	st_idx=state_index;
233
234	/* use our own copies of the counters so that even
235	 * if a concurrent thread seeds with exactly the
236	 * same data and uses the same subarray there's _some_
237	 * difference */
238	md_c[0] = md_count[0];
239	md_c[1] = md_count[1];
240
241	memcpy(local_md, md, sizeof md);
242
243	/* state_index <= state_num <= STATE_SIZE */
244	state_index += num;
245	if (state_index >= STATE_SIZE)
246		{
247		state_index%=STATE_SIZE;
248		state_num=STATE_SIZE;
249		}
250	else if (state_num < STATE_SIZE)
251		{
252		if (state_index > state_num)
253			state_num=state_index;
254		}
255	/* state_index <= state_num <= STATE_SIZE */
256
257	/* state[st_idx], ..., state[(st_idx + num - 1) % STATE_SIZE]
258	 * are what we will use now, but other threads may use them
259	 * as well */
260
261	md_count[1] += (num / MD_DIGEST_LENGTH) + (num % MD_DIGEST_LENGTH > 0);
262
263	if (!do_not_lock) CRYPTO_w_unlock(CRYPTO_LOCK_RAND);
264
265	EVP_MD_CTX_init(&m);
266	for (i=0; i<num; i+=MD_DIGEST_LENGTH)
267		{
268		j=(num-i);
269		j=(j > MD_DIGEST_LENGTH)?MD_DIGEST_LENGTH:j;
270
271		MD_Init(&m);
272		MD_Update(&m,local_md,MD_DIGEST_LENGTH);
273		k=(st_idx+j)-STATE_SIZE;
274		if (k > 0)
275			{
276			MD_Update(&m,&(state[st_idx]),j-k);
277			MD_Update(&m,&(state[0]),k);
278			}
279		else
280			MD_Update(&m,&(state[st_idx]),j);
281
282		/* DO NOT REMOVE THE FOLLOWING CALL TO MD_Update()! */
283		MD_Update(&m,buf,j);
284		/* We know that line may cause programs such as
285		   purify and valgrind to complain about use of
286		   uninitialized data.  The problem is not, it's
287		   with the caller.  Removing that line will make
288		   sure you get really bad randomness and thereby
289		   other problems such as very insecure keys. */
290
291		MD_Update(&m,(unsigned char *)&(md_c[0]),sizeof(md_c));
292		MD_Final(&m,local_md);
293		md_c[1]++;
294
295		buf=(const char *)buf + j;
296
297		for (k=0; k<j; k++)
298			{
299			/* Parallel threads may interfere with this,
300			 * but always each byte of the new state is
301			 * the XOR of some previous value of its
302			 * and local_md (itermediate values may be lost).
303			 * Alway using locking could hurt performance more
304			 * than necessary given that conflicts occur only
305			 * when the total seeding is longer than the random
306			 * state. */
307			state[st_idx++]^=local_md[k];
308			if (st_idx >= STATE_SIZE)
309				st_idx=0;
310			}
311		}
312	EVP_MD_CTX_cleanup(&m);
313
314	if (!do_not_lock) CRYPTO_w_lock(CRYPTO_LOCK_RAND);
315	/* Don't just copy back local_md into md -- this could mean that
316	 * other thread's seeding remains without effect (except for
317	 * the incremented counter).  By XORing it we keep at least as
318	 * much entropy as fits into md. */
319	for (k = 0; k < (int)sizeof(md); k++)
320		{
321		md[k] ^= local_md[k];
322		}
323	if (entropy < ENTROPY_NEEDED) /* stop counting when we have enough */
324	    entropy += add;
325	if (!do_not_lock) CRYPTO_w_unlock(CRYPTO_LOCK_RAND);
326
327#if !defined(OPENSSL_THREADS) && !defined(OPENSSL_SYS_WIN32)
328	assert(md_c[1] == md_count[1]);
329#endif
330	}
331
332static void ssleay_rand_seed(const void *buf, int num)
333	{
334	ssleay_rand_add(buf, num, (double)num);
335	}
336
337static int ssleay_rand_bytes(unsigned char *buf, int num, int pseudo)
338	{
339	static volatile int stirred_pool = 0;
340	int i,j,k,st_num,st_idx;
341	int num_ceil;
342	int ok;
343	long md_c[2];
344	unsigned char local_md[MD_DIGEST_LENGTH];
345	EVP_MD_CTX m;
346#ifndef GETPID_IS_MEANINGLESS
347	pid_t curr_pid = getpid();
348#endif
349	int do_stir_pool = 0;
350
351#ifdef PREDICT
352	if (rand_predictable)
353		{
354		static unsigned char val=0;
355
356		for (i=0; i<num; i++)
357			buf[i]=val++;
358		return(1);
359		}
360#endif
361
362	if (num <= 0)
363		return 1;
364
365	EVP_MD_CTX_init(&m);
366	/* round upwards to multiple of MD_DIGEST_LENGTH/2 */
367	num_ceil = (1 + (num-1)/(MD_DIGEST_LENGTH/2)) * (MD_DIGEST_LENGTH/2);
368
369	/*
370	 * (Based on the rand(3) manpage:)
371	 *
372	 * For each group of 10 bytes (or less), we do the following:
373	 *
374	 * Input into the hash function the local 'md' (which is initialized from
375	 * the global 'md' before any bytes are generated), the bytes that are to
376	 * be overwritten by the random bytes, and bytes from the 'state'
377	 * (incrementing looping index). From this digest output (which is kept
378	 * in 'md'), the top (up to) 10 bytes are returned to the caller and the
379	 * bottom 10 bytes are xored into the 'state'.
380	 *
381	 * Finally, after we have finished 'num' random bytes for the
382	 * caller, 'count' (which is incremented) and the local and global 'md'
383	 * are fed into the hash function and the results are kept in the
384	 * global 'md'.
385	 */
386#ifdef OPENSSL_FIPS
387	/* NB: in FIPS mode we are already under a lock */
388	if (!FIPS_mode())
389#endif
390		CRYPTO_w_lock(CRYPTO_LOCK_RAND);
391
392	/* prevent ssleay_rand_bytes() from trying to obtain the lock again */
393	CRYPTO_w_lock(CRYPTO_LOCK_RAND2);
394	CRYPTO_THREADID_current(&locking_threadid);
395	CRYPTO_w_unlock(CRYPTO_LOCK_RAND2);
396	crypto_lock_rand = 1;
397
398	if (!initialized)
399		{
400		RAND_poll();
401		initialized = 1;
402		}
403
404	if (!stirred_pool)
405		do_stir_pool = 1;
406
407	ok = (entropy >= ENTROPY_NEEDED);
408	if (!ok)
409		{
410		/* If the PRNG state is not yet unpredictable, then seeing
411		 * the PRNG output may help attackers to determine the new
412		 * state; thus we have to decrease the entropy estimate.
413		 * Once we've had enough initial seeding we don't bother to
414		 * adjust the entropy count, though, because we're not ambitious
415		 * to provide *information-theoretic* randomness.
416		 *
417		 * NOTE: This approach fails if the program forks before
418		 * we have enough entropy. Entropy should be collected
419		 * in a separate input pool and be transferred to the
420		 * output pool only when the entropy limit has been reached.
421		 */
422		entropy -= num;
423		if (entropy < 0)
424			entropy = 0;
425		}
426
427	if (do_stir_pool)
428		{
429		/* In the output function only half of 'md' remains secret,
430		 * so we better make sure that the required entropy gets
431		 * 'evenly distributed' through 'state', our randomness pool.
432		 * The input function (ssleay_rand_add) chains all of 'md',
433		 * which makes it more suitable for this purpose.
434		 */
435
436		int n = STATE_SIZE; /* so that the complete pool gets accessed */
437		while (n > 0)
438			{
439#if MD_DIGEST_LENGTH > 20
440# error "Please adjust DUMMY_SEED."
441#endif
442#define DUMMY_SEED "...................." /* at least MD_DIGEST_LENGTH */
443			/* Note that the seed does not matter, it's just that
444			 * ssleay_rand_add expects to have something to hash. */
445			ssleay_rand_add(DUMMY_SEED, MD_DIGEST_LENGTH, 0.0);
446			n -= MD_DIGEST_LENGTH;
447			}
448		if (ok)
449			stirred_pool = 1;
450		}
451
452	st_idx=state_index;
453	st_num=state_num;
454	md_c[0] = md_count[0];
455	md_c[1] = md_count[1];
456	memcpy(local_md, md, sizeof md);
457
458	state_index+=num_ceil;
459	if (state_index > state_num)
460		state_index %= state_num;
461
462	/* state[st_idx], ..., state[(st_idx + num_ceil - 1) % st_num]
463	 * are now ours (but other threads may use them too) */
464
465	md_count[0] += 1;
466
467	/* before unlocking, we must clear 'crypto_lock_rand' */
468	crypto_lock_rand = 0;
469#ifdef OPENSSL_FIPS
470	if (!FIPS_mode())
471#endif
472		CRYPTO_w_unlock(CRYPTO_LOCK_RAND);
473
474	while (num > 0)
475		{
476		/* num_ceil -= MD_DIGEST_LENGTH/2 */
477		j=(num >= MD_DIGEST_LENGTH/2)?MD_DIGEST_LENGTH/2:num;
478		num-=j;
479		MD_Init(&m);
480#ifndef GETPID_IS_MEANINGLESS
481		if (curr_pid) /* just in the first iteration to save time */
482			{
483			MD_Update(&m,(unsigned char*)&curr_pid,sizeof curr_pid);
484			curr_pid = 0;
485			}
486#endif
487		MD_Update(&m,local_md,MD_DIGEST_LENGTH);
488		MD_Update(&m,(unsigned char *)&(md_c[0]),sizeof(md_c));
489
490#ifndef PURIFY /* purify complains */
491		/* The following line uses the supplied buffer as a small
492		 * source of entropy: since this buffer is often uninitialised
493		 * it may cause programs such as purify or valgrind to
494		 * complain. So for those builds it is not used: the removal
495		 * of such a small source of entropy has negligible impact on
496		 * security.
497		 */
498		MD_Update(&m,buf,j);
499#endif
500
501		k=(st_idx+MD_DIGEST_LENGTH/2)-st_num;
502		if (k > 0)
503			{
504			MD_Update(&m,&(state[st_idx]),MD_DIGEST_LENGTH/2-k);
505			MD_Update(&m,&(state[0]),k);
506			}
507		else
508			MD_Update(&m,&(state[st_idx]),MD_DIGEST_LENGTH/2);
509		MD_Final(&m,local_md);
510
511		for (i=0; i<MD_DIGEST_LENGTH/2; i++)
512			{
513			state[st_idx++]^=local_md[i]; /* may compete with other threads */
514			if (st_idx >= st_num)
515				st_idx=0;
516			if (i < j)
517				*(buf++)=local_md[i+MD_DIGEST_LENGTH/2];
518			}
519		}
520
521	MD_Init(&m);
522	MD_Update(&m,(unsigned char *)&(md_c[0]),sizeof(md_c));
523	MD_Update(&m,local_md,MD_DIGEST_LENGTH);
524#ifdef OPENSSL_FIPS
525	if (!FIPS_mode())
526#endif
527		CRYPTO_w_lock(CRYPTO_LOCK_RAND);
528	MD_Update(&m,md,MD_DIGEST_LENGTH);
529	MD_Final(&m,md);
530#ifdef OPENSSL_FIPS
531	if (!FIPS_mode())
532#endif
533		CRYPTO_w_unlock(CRYPTO_LOCK_RAND);
534
535	EVP_MD_CTX_cleanup(&m);
536	if (ok)
537		return(1);
538	else if (pseudo)
539		return 0;
540	else
541		{
542		RANDerr(RAND_F_SSLEAY_RAND_BYTES,RAND_R_PRNG_NOT_SEEDED);
543		ERR_add_error_data(1, "You need to read the OpenSSL FAQ, "
544			"http://www.openssl.org/support/faq.html");
545		return(0);
546		}
547	}
548
549static int ssleay_rand_nopseudo_bytes(unsigned char *buf, int num)
550	{
551	return ssleay_rand_bytes(buf, num, 0);
552	}
553
554/* pseudo-random bytes that are guaranteed to be unique but not
555   unpredictable */
556static int ssleay_rand_pseudo_bytes(unsigned char *buf, int num)
557	{
558	return ssleay_rand_bytes(buf, num, 1);
559	}
560
561static int ssleay_rand_status(void)
562	{
563	CRYPTO_THREADID cur;
564	int ret;
565	int do_not_lock;
566
567	CRYPTO_THREADID_current(&cur);
568	/* check if we already have the lock
569	 * (could happen if a RAND_poll() implementation calls RAND_status()) */
570	if (crypto_lock_rand)
571		{
572		CRYPTO_r_lock(CRYPTO_LOCK_RAND2);
573		do_not_lock = !CRYPTO_THREADID_cmp(&locking_threadid, &cur);
574		CRYPTO_r_unlock(CRYPTO_LOCK_RAND2);
575		}
576	else
577		do_not_lock = 0;
578
579	if (!do_not_lock)
580		{
581		CRYPTO_w_lock(CRYPTO_LOCK_RAND);
582
583		/* prevent ssleay_rand_bytes() from trying to obtain the lock again */
584		CRYPTO_w_lock(CRYPTO_LOCK_RAND2);
585		CRYPTO_THREADID_cpy(&locking_threadid, &cur);
586		CRYPTO_w_unlock(CRYPTO_LOCK_RAND2);
587		crypto_lock_rand = 1;
588		}
589
590	if (!initialized)
591		{
592		RAND_poll();
593		initialized = 1;
594		}
595
596	ret = entropy >= ENTROPY_NEEDED;
597
598	if (!do_not_lock)
599		{
600		/* before unlocking, we must clear 'crypto_lock_rand' */
601		crypto_lock_rand = 0;
602
603		CRYPTO_w_unlock(CRYPTO_LOCK_RAND);
604		}
605
606	return ret;
607	}
608