bn_gf2m.c revision 280304
1/* crypto/bn/bn_gf2m.c */
2/* ====================================================================
3 * Copyright 2002 Sun Microsystems, Inc. ALL RIGHTS RESERVED.
4 *
5 * The Elliptic Curve Public-Key Crypto Library (ECC Code) included
6 * herein is developed by SUN MICROSYSTEMS, INC., and is contributed
7 * to the OpenSSL project.
8 *
9 * The ECC Code is licensed pursuant to the OpenSSL open source
10 * license provided below.
11 *
12 * In addition, Sun covenants to all licensees who provide a reciprocal
13 * covenant with respect to their own patents if any, not to sue under
14 * current and future patent claims necessarily infringed by the making,
15 * using, practicing, selling, offering for sale and/or otherwise
16 * disposing of the ECC Code as delivered hereunder (or portions thereof),
17 * provided that such covenant shall not apply:
18 *  1) for code that a licensee deletes from the ECC Code;
19 *  2) separates from the ECC Code; or
20 *  3) for infringements caused by:
21 *       i) the modification of the ECC Code or
22 *      ii) the combination of the ECC Code with other software or
23 *          devices where such combination causes the infringement.
24 *
25 * The software is originally written by Sheueling Chang Shantz and
26 * Douglas Stebila of Sun Microsystems Laboratories.
27 *
28 */
29
30/*
31 * NOTE: This file is licensed pursuant to the OpenSSL license below and may
32 * be modified; but after modifications, the above covenant may no longer
33 * apply! In such cases, the corresponding paragraph ["In addition, Sun
34 * covenants ... causes the infringement."] and this note can be edited out;
35 * but please keep the Sun copyright notice and attribution.
36 */
37
38/* ====================================================================
39 * Copyright (c) 1998-2002 The OpenSSL Project.  All rights reserved.
40 *
41 * Redistribution and use in source and binary forms, with or without
42 * modification, are permitted provided that the following conditions
43 * are met:
44 *
45 * 1. Redistributions of source code must retain the above copyright
46 *    notice, this list of conditions and the following disclaimer.
47 *
48 * 2. Redistributions in binary form must reproduce the above copyright
49 *    notice, this list of conditions and the following disclaimer in
50 *    the documentation and/or other materials provided with the
51 *    distribution.
52 *
53 * 3. All advertising materials mentioning features or use of this
54 *    software must display the following acknowledgment:
55 *    "This product includes software developed by the OpenSSL Project
56 *    for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
57 *
58 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
59 *    endorse or promote products derived from this software without
60 *    prior written permission. For written permission, please contact
61 *    openssl-core@openssl.org.
62 *
63 * 5. Products derived from this software may not be called "OpenSSL"
64 *    nor may "OpenSSL" appear in their names without prior written
65 *    permission of the OpenSSL Project.
66 *
67 * 6. Redistributions of any form whatsoever must retain the following
68 *    acknowledgment:
69 *    "This product includes software developed by the OpenSSL Project
70 *    for use in the OpenSSL Toolkit (http://www.openssl.org/)"
71 *
72 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
73 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
74 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
75 * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE OpenSSL PROJECT OR
76 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
77 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
78 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
79 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
80 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
81 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
82 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
83 * OF THE POSSIBILITY OF SUCH DAMAGE.
84 * ====================================================================
85 *
86 * This product includes cryptographic software written by Eric Young
87 * (eay@cryptsoft.com).  This product includes software written by Tim
88 * Hudson (tjh@cryptsoft.com).
89 *
90 */
91
92#include <assert.h>
93#include <limits.h>
94#include <stdio.h>
95#include "cryptlib.h"
96#include "bn_lcl.h"
97
98#ifndef OPENSSL_NO_EC2M
99
100/*
101 * Maximum number of iterations before BN_GF2m_mod_solve_quad_arr should
102 * fail.
103 */
104# define MAX_ITERATIONS 50
105
106static const BN_ULONG SQR_tb[16] = { 0, 1, 4, 5, 16, 17, 20, 21,
107    64, 65, 68, 69, 80, 81, 84, 85
108};
109
110/* Platform-specific macros to accelerate squaring. */
111# if defined(SIXTY_FOUR_BIT) || defined(SIXTY_FOUR_BIT_LONG)
112#  define SQR1(w) \
113    SQR_tb[(w) >> 60 & 0xF] << 56 | SQR_tb[(w) >> 56 & 0xF] << 48 | \
114    SQR_tb[(w) >> 52 & 0xF] << 40 | SQR_tb[(w) >> 48 & 0xF] << 32 | \
115    SQR_tb[(w) >> 44 & 0xF] << 24 | SQR_tb[(w) >> 40 & 0xF] << 16 | \
116    SQR_tb[(w) >> 36 & 0xF] <<  8 | SQR_tb[(w) >> 32 & 0xF]
117#  define SQR0(w) \
118    SQR_tb[(w) >> 28 & 0xF] << 56 | SQR_tb[(w) >> 24 & 0xF] << 48 | \
119    SQR_tb[(w) >> 20 & 0xF] << 40 | SQR_tb[(w) >> 16 & 0xF] << 32 | \
120    SQR_tb[(w) >> 12 & 0xF] << 24 | SQR_tb[(w) >>  8 & 0xF] << 16 | \
121    SQR_tb[(w) >>  4 & 0xF] <<  8 | SQR_tb[(w)       & 0xF]
122# endif
123# ifdef THIRTY_TWO_BIT
124#  define SQR1(w) \
125    SQR_tb[(w) >> 28 & 0xF] << 24 | SQR_tb[(w) >> 24 & 0xF] << 16 | \
126    SQR_tb[(w) >> 20 & 0xF] <<  8 | SQR_tb[(w) >> 16 & 0xF]
127#  define SQR0(w) \
128    SQR_tb[(w) >> 12 & 0xF] << 24 | SQR_tb[(w) >>  8 & 0xF] << 16 | \
129    SQR_tb[(w) >>  4 & 0xF] <<  8 | SQR_tb[(w)       & 0xF]
130# endif
131
132# if !defined(OPENSSL_BN_ASM_GF2m)
133/*
134 * Product of two polynomials a, b each with degree < BN_BITS2 - 1, result is
135 * a polynomial r with degree < 2 * BN_BITS - 1 The caller MUST ensure that
136 * the variables have the right amount of space allocated.
137 */
138#  ifdef THIRTY_TWO_BIT
139static void bn_GF2m_mul_1x1(BN_ULONG *r1, BN_ULONG *r0, const BN_ULONG a,
140                            const BN_ULONG b)
141{
142    register BN_ULONG h, l, s;
143    BN_ULONG tab[8], top2b = a >> 30;
144    register BN_ULONG a1, a2, a4;
145
146    a1 = a & (0x3FFFFFFF);
147    a2 = a1 << 1;
148    a4 = a2 << 1;
149
150    tab[0] = 0;
151    tab[1] = a1;
152    tab[2] = a2;
153    tab[3] = a1 ^ a2;
154    tab[4] = a4;
155    tab[5] = a1 ^ a4;
156    tab[6] = a2 ^ a4;
157    tab[7] = a1 ^ a2 ^ a4;
158
159    s = tab[b & 0x7];
160    l = s;
161    s = tab[b >> 3 & 0x7];
162    l ^= s << 3;
163    h = s >> 29;
164    s = tab[b >> 6 & 0x7];
165    l ^= s << 6;
166    h ^= s >> 26;
167    s = tab[b >> 9 & 0x7];
168    l ^= s << 9;
169    h ^= s >> 23;
170    s = tab[b >> 12 & 0x7];
171    l ^= s << 12;
172    h ^= s >> 20;
173    s = tab[b >> 15 & 0x7];
174    l ^= s << 15;
175    h ^= s >> 17;
176    s = tab[b >> 18 & 0x7];
177    l ^= s << 18;
178    h ^= s >> 14;
179    s = tab[b >> 21 & 0x7];
180    l ^= s << 21;
181    h ^= s >> 11;
182    s = tab[b >> 24 & 0x7];
183    l ^= s << 24;
184    h ^= s >> 8;
185    s = tab[b >> 27 & 0x7];
186    l ^= s << 27;
187    h ^= s >> 5;
188    s = tab[b >> 30];
189    l ^= s << 30;
190    h ^= s >> 2;
191
192    /* compensate for the top two bits of a */
193
194    if (top2b & 01) {
195        l ^= b << 30;
196        h ^= b >> 2;
197    }
198    if (top2b & 02) {
199        l ^= b << 31;
200        h ^= b >> 1;
201    }
202
203    *r1 = h;
204    *r0 = l;
205}
206#  endif
207#  if defined(SIXTY_FOUR_BIT) || defined(SIXTY_FOUR_BIT_LONG)
208static void bn_GF2m_mul_1x1(BN_ULONG *r1, BN_ULONG *r0, const BN_ULONG a,
209                            const BN_ULONG b)
210{
211    register BN_ULONG h, l, s;
212    BN_ULONG tab[16], top3b = a >> 61;
213    register BN_ULONG a1, a2, a4, a8;
214
215    a1 = a & (0x1FFFFFFFFFFFFFFFULL);
216    a2 = a1 << 1;
217    a4 = a2 << 1;
218    a8 = a4 << 1;
219
220    tab[0] = 0;
221    tab[1] = a1;
222    tab[2] = a2;
223    tab[3] = a1 ^ a2;
224    tab[4] = a4;
225    tab[5] = a1 ^ a4;
226    tab[6] = a2 ^ a4;
227    tab[7] = a1 ^ a2 ^ a4;
228    tab[8] = a8;
229    tab[9] = a1 ^ a8;
230    tab[10] = a2 ^ a8;
231    tab[11] = a1 ^ a2 ^ a8;
232    tab[12] = a4 ^ a8;
233    tab[13] = a1 ^ a4 ^ a8;
234    tab[14] = a2 ^ a4 ^ a8;
235    tab[15] = a1 ^ a2 ^ a4 ^ a8;
236
237    s = tab[b & 0xF];
238    l = s;
239    s = tab[b >> 4 & 0xF];
240    l ^= s << 4;
241    h = s >> 60;
242    s = tab[b >> 8 & 0xF];
243    l ^= s << 8;
244    h ^= s >> 56;
245    s = tab[b >> 12 & 0xF];
246    l ^= s << 12;
247    h ^= s >> 52;
248    s = tab[b >> 16 & 0xF];
249    l ^= s << 16;
250    h ^= s >> 48;
251    s = tab[b >> 20 & 0xF];
252    l ^= s << 20;
253    h ^= s >> 44;
254    s = tab[b >> 24 & 0xF];
255    l ^= s << 24;
256    h ^= s >> 40;
257    s = tab[b >> 28 & 0xF];
258    l ^= s << 28;
259    h ^= s >> 36;
260    s = tab[b >> 32 & 0xF];
261    l ^= s << 32;
262    h ^= s >> 32;
263    s = tab[b >> 36 & 0xF];
264    l ^= s << 36;
265    h ^= s >> 28;
266    s = tab[b >> 40 & 0xF];
267    l ^= s << 40;
268    h ^= s >> 24;
269    s = tab[b >> 44 & 0xF];
270    l ^= s << 44;
271    h ^= s >> 20;
272    s = tab[b >> 48 & 0xF];
273    l ^= s << 48;
274    h ^= s >> 16;
275    s = tab[b >> 52 & 0xF];
276    l ^= s << 52;
277    h ^= s >> 12;
278    s = tab[b >> 56 & 0xF];
279    l ^= s << 56;
280    h ^= s >> 8;
281    s = tab[b >> 60];
282    l ^= s << 60;
283    h ^= s >> 4;
284
285    /* compensate for the top three bits of a */
286
287    if (top3b & 01) {
288        l ^= b << 61;
289        h ^= b >> 3;
290    }
291    if (top3b & 02) {
292        l ^= b << 62;
293        h ^= b >> 2;
294    }
295    if (top3b & 04) {
296        l ^= b << 63;
297        h ^= b >> 1;
298    }
299
300    *r1 = h;
301    *r0 = l;
302}
303#  endif
304
305/*
306 * Product of two polynomials a, b each with degree < 2 * BN_BITS2 - 1,
307 * result is a polynomial r with degree < 4 * BN_BITS2 - 1 The caller MUST
308 * ensure that the variables have the right amount of space allocated.
309 */
310static void bn_GF2m_mul_2x2(BN_ULONG *r, const BN_ULONG a1, const BN_ULONG a0,
311                            const BN_ULONG b1, const BN_ULONG b0)
312{
313    BN_ULONG m1, m0;
314    /* r[3] = h1, r[2] = h0; r[1] = l1; r[0] = l0 */
315    bn_GF2m_mul_1x1(r + 3, r + 2, a1, b1);
316    bn_GF2m_mul_1x1(r + 1, r, a0, b0);
317    bn_GF2m_mul_1x1(&m1, &m0, a0 ^ a1, b0 ^ b1);
318    /* Correction on m1 ^= l1 ^ h1; m0 ^= l0 ^ h0; */
319    r[2] ^= m1 ^ r[1] ^ r[3];   /* h0 ^= m1 ^ l1 ^ h1; */
320    r[1] = r[3] ^ r[2] ^ r[0] ^ m1 ^ m0; /* l1 ^= l0 ^ h0 ^ m0; */
321}
322# else
323void bn_GF2m_mul_2x2(BN_ULONG *r, BN_ULONG a1, BN_ULONG a0, BN_ULONG b1,
324                     BN_ULONG b0);
325# endif
326
327/*
328 * Add polynomials a and b and store result in r; r could be a or b, a and b
329 * could be equal; r is the bitwise XOR of a and b.
330 */
331int BN_GF2m_add(BIGNUM *r, const BIGNUM *a, const BIGNUM *b)
332{
333    int i;
334    const BIGNUM *at, *bt;
335
336    bn_check_top(a);
337    bn_check_top(b);
338
339    if (a->top < b->top) {
340        at = b;
341        bt = a;
342    } else {
343        at = a;
344        bt = b;
345    }
346
347    if (bn_wexpand(r, at->top) == NULL)
348        return 0;
349
350    for (i = 0; i < bt->top; i++) {
351        r->d[i] = at->d[i] ^ bt->d[i];
352    }
353    for (; i < at->top; i++) {
354        r->d[i] = at->d[i];
355    }
356
357    r->top = at->top;
358    bn_correct_top(r);
359
360    return 1;
361}
362
363/*-
364 * Some functions allow for representation of the irreducible polynomials
365 * as an int[], say p.  The irreducible f(t) is then of the form:
366 *     t^p[0] + t^p[1] + ... + t^p[k]
367 * where m = p[0] > p[1] > ... > p[k] = 0.
368 */
369
370/* Performs modular reduction of a and store result in r.  r could be a. */
371int BN_GF2m_mod_arr(BIGNUM *r, const BIGNUM *a, const int p[])
372{
373    int j, k;
374    int n, dN, d0, d1;
375    BN_ULONG zz, *z;
376
377    bn_check_top(a);
378
379    if (!p[0]) {
380        /* reduction mod 1 => return 0 */
381        BN_zero(r);
382        return 1;
383    }
384
385    /*
386     * Since the algorithm does reduction in the r value, if a != r, copy the
387     * contents of a into r so we can do reduction in r.
388     */
389    if (a != r) {
390        if (!bn_wexpand(r, a->top))
391            return 0;
392        for (j = 0; j < a->top; j++) {
393            r->d[j] = a->d[j];
394        }
395        r->top = a->top;
396    }
397    z = r->d;
398
399    /* start reduction */
400    dN = p[0] / BN_BITS2;
401    for (j = r->top - 1; j > dN;) {
402        zz = z[j];
403        if (z[j] == 0) {
404            j--;
405            continue;
406        }
407        z[j] = 0;
408
409        for (k = 1; p[k] != 0; k++) {
410            /* reducing component t^p[k] */
411            n = p[0] - p[k];
412            d0 = n % BN_BITS2;
413            d1 = BN_BITS2 - d0;
414            n /= BN_BITS2;
415            z[j - n] ^= (zz >> d0);
416            if (d0)
417                z[j - n - 1] ^= (zz << d1);
418        }
419
420        /* reducing component t^0 */
421        n = dN;
422        d0 = p[0] % BN_BITS2;
423        d1 = BN_BITS2 - d0;
424        z[j - n] ^= (zz >> d0);
425        if (d0)
426            z[j - n - 1] ^= (zz << d1);
427    }
428
429    /* final round of reduction */
430    while (j == dN) {
431
432        d0 = p[0] % BN_BITS2;
433        zz = z[dN] >> d0;
434        if (zz == 0)
435            break;
436        d1 = BN_BITS2 - d0;
437
438        /* clear up the top d1 bits */
439        if (d0)
440            z[dN] = (z[dN] << d1) >> d1;
441        else
442            z[dN] = 0;
443        z[0] ^= zz;             /* reduction t^0 component */
444
445        for (k = 1; p[k] != 0; k++) {
446            BN_ULONG tmp_ulong;
447
448            /* reducing component t^p[k] */
449            n = p[k] / BN_BITS2;
450            d0 = p[k] % BN_BITS2;
451            d1 = BN_BITS2 - d0;
452            z[n] ^= (zz << d0);
453            tmp_ulong = zz >> d1;
454            if (d0 && tmp_ulong)
455                z[n + 1] ^= tmp_ulong;
456        }
457
458    }
459
460    bn_correct_top(r);
461    return 1;
462}
463
464/*
465 * Performs modular reduction of a by p and store result in r.  r could be a.
466 * This function calls down to the BN_GF2m_mod_arr implementation; this wrapper
467 * function is only provided for convenience; for best performance, use the
468 * BN_GF2m_mod_arr function.
469 */
470int BN_GF2m_mod(BIGNUM *r, const BIGNUM *a, const BIGNUM *p)
471{
472    int ret = 0;
473    int arr[6];
474    bn_check_top(a);
475    bn_check_top(p);
476    ret = BN_GF2m_poly2arr(p, arr, sizeof(arr) / sizeof(arr[0]));
477    if (!ret || ret > (int)(sizeof(arr) / sizeof(arr[0]))) {
478        BNerr(BN_F_BN_GF2M_MOD, BN_R_INVALID_LENGTH);
479        return 0;
480    }
481    ret = BN_GF2m_mod_arr(r, a, arr);
482    bn_check_top(r);
483    return ret;
484}
485
486/*
487 * Compute the product of two polynomials a and b, reduce modulo p, and store
488 * the result in r.  r could be a or b; a could be b.
489 */
490int BN_GF2m_mod_mul_arr(BIGNUM *r, const BIGNUM *a, const BIGNUM *b,
491                        const int p[], BN_CTX *ctx)
492{
493    int zlen, i, j, k, ret = 0;
494    BIGNUM *s;
495    BN_ULONG x1, x0, y1, y0, zz[4];
496
497    bn_check_top(a);
498    bn_check_top(b);
499
500    if (a == b) {
501        return BN_GF2m_mod_sqr_arr(r, a, p, ctx);
502    }
503
504    BN_CTX_start(ctx);
505    if ((s = BN_CTX_get(ctx)) == NULL)
506        goto err;
507
508    zlen = a->top + b->top + 4;
509    if (!bn_wexpand(s, zlen))
510        goto err;
511    s->top = zlen;
512
513    for (i = 0; i < zlen; i++)
514        s->d[i] = 0;
515
516    for (j = 0; j < b->top; j += 2) {
517        y0 = b->d[j];
518        y1 = ((j + 1) == b->top) ? 0 : b->d[j + 1];
519        for (i = 0; i < a->top; i += 2) {
520            x0 = a->d[i];
521            x1 = ((i + 1) == a->top) ? 0 : a->d[i + 1];
522            bn_GF2m_mul_2x2(zz, x1, x0, y1, y0);
523            for (k = 0; k < 4; k++)
524                s->d[i + j + k] ^= zz[k];
525        }
526    }
527
528    bn_correct_top(s);
529    if (BN_GF2m_mod_arr(r, s, p))
530        ret = 1;
531    bn_check_top(r);
532
533 err:
534    BN_CTX_end(ctx);
535    return ret;
536}
537
538/*
539 * Compute the product of two polynomials a and b, reduce modulo p, and store
540 * the result in r.  r could be a or b; a could equal b. This function calls
541 * down to the BN_GF2m_mod_mul_arr implementation; this wrapper function is
542 * only provided for convenience; for best performance, use the
543 * BN_GF2m_mod_mul_arr function.
544 */
545int BN_GF2m_mod_mul(BIGNUM *r, const BIGNUM *a, const BIGNUM *b,
546                    const BIGNUM *p, BN_CTX *ctx)
547{
548    int ret = 0;
549    const int max = BN_num_bits(p) + 1;
550    int *arr = NULL;
551    bn_check_top(a);
552    bn_check_top(b);
553    bn_check_top(p);
554    if ((arr = (int *)OPENSSL_malloc(sizeof(int) * max)) == NULL)
555        goto err;
556    ret = BN_GF2m_poly2arr(p, arr, max);
557    if (!ret || ret > max) {
558        BNerr(BN_F_BN_GF2M_MOD_MUL, BN_R_INVALID_LENGTH);
559        goto err;
560    }
561    ret = BN_GF2m_mod_mul_arr(r, a, b, arr, ctx);
562    bn_check_top(r);
563 err:
564    if (arr)
565        OPENSSL_free(arr);
566    return ret;
567}
568
569/* Square a, reduce the result mod p, and store it in a.  r could be a. */
570int BN_GF2m_mod_sqr_arr(BIGNUM *r, const BIGNUM *a, const int p[],
571                        BN_CTX *ctx)
572{
573    int i, ret = 0;
574    BIGNUM *s;
575
576    bn_check_top(a);
577    BN_CTX_start(ctx);
578    if ((s = BN_CTX_get(ctx)) == NULL)
579        return 0;
580    if (!bn_wexpand(s, 2 * a->top))
581        goto err;
582
583    for (i = a->top - 1; i >= 0; i--) {
584        s->d[2 * i + 1] = SQR1(a->d[i]);
585        s->d[2 * i] = SQR0(a->d[i]);
586    }
587
588    s->top = 2 * a->top;
589    bn_correct_top(s);
590    if (!BN_GF2m_mod_arr(r, s, p))
591        goto err;
592    bn_check_top(r);
593    ret = 1;
594 err:
595    BN_CTX_end(ctx);
596    return ret;
597}
598
599/*
600 * Square a, reduce the result mod p, and store it in a.  r could be a. This
601 * function calls down to the BN_GF2m_mod_sqr_arr implementation; this
602 * wrapper function is only provided for convenience; for best performance,
603 * use the BN_GF2m_mod_sqr_arr function.
604 */
605int BN_GF2m_mod_sqr(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx)
606{
607    int ret = 0;
608    const int max = BN_num_bits(p) + 1;
609    int *arr = NULL;
610
611    bn_check_top(a);
612    bn_check_top(p);
613    if ((arr = (int *)OPENSSL_malloc(sizeof(int) * max)) == NULL)
614        goto err;
615    ret = BN_GF2m_poly2arr(p, arr, max);
616    if (!ret || ret > max) {
617        BNerr(BN_F_BN_GF2M_MOD_SQR, BN_R_INVALID_LENGTH);
618        goto err;
619    }
620    ret = BN_GF2m_mod_sqr_arr(r, a, arr, ctx);
621    bn_check_top(r);
622 err:
623    if (arr)
624        OPENSSL_free(arr);
625    return ret;
626}
627
628/*
629 * Invert a, reduce modulo p, and store the result in r. r could be a. Uses
630 * Modified Almost Inverse Algorithm (Algorithm 10) from Hankerson, D.,
631 * Hernandez, J.L., and Menezes, A.  "Software Implementation of Elliptic
632 * Curve Cryptography Over Binary Fields".
633 */
634int BN_GF2m_mod_inv(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx)
635{
636    BIGNUM *b, *c = NULL, *u = NULL, *v = NULL, *tmp;
637    int ret = 0;
638
639    bn_check_top(a);
640    bn_check_top(p);
641
642    BN_CTX_start(ctx);
643
644    if ((b = BN_CTX_get(ctx)) == NULL)
645        goto err;
646    if ((c = BN_CTX_get(ctx)) == NULL)
647        goto err;
648    if ((u = BN_CTX_get(ctx)) == NULL)
649        goto err;
650    if ((v = BN_CTX_get(ctx)) == NULL)
651        goto err;
652
653    if (!BN_GF2m_mod(u, a, p))
654        goto err;
655    if (BN_is_zero(u))
656        goto err;
657
658    if (!BN_copy(v, p))
659        goto err;
660# if 0
661    if (!BN_one(b))
662        goto err;
663
664    while (1) {
665        while (!BN_is_odd(u)) {
666            if (BN_is_zero(u))
667                goto err;
668            if (!BN_rshift1(u, u))
669                goto err;
670            if (BN_is_odd(b)) {
671                if (!BN_GF2m_add(b, b, p))
672                    goto err;
673            }
674            if (!BN_rshift1(b, b))
675                goto err;
676        }
677
678        if (BN_abs_is_word(u, 1))
679            break;
680
681        if (BN_num_bits(u) < BN_num_bits(v)) {
682            tmp = u;
683            u = v;
684            v = tmp;
685            tmp = b;
686            b = c;
687            c = tmp;
688        }
689
690        if (!BN_GF2m_add(u, u, v))
691            goto err;
692        if (!BN_GF2m_add(b, b, c))
693            goto err;
694    }
695# else
696    {
697        int i, ubits = BN_num_bits(u), vbits = BN_num_bits(v), /* v is copy
698                                                                * of p */
699            top = p->top;
700        BN_ULONG *udp, *bdp, *vdp, *cdp;
701
702        bn_wexpand(u, top);
703        udp = u->d;
704        for (i = u->top; i < top; i++)
705            udp[i] = 0;
706        u->top = top;
707        bn_wexpand(b, top);
708        bdp = b->d;
709        bdp[0] = 1;
710        for (i = 1; i < top; i++)
711            bdp[i] = 0;
712        b->top = top;
713        bn_wexpand(c, top);
714        cdp = c->d;
715        for (i = 0; i < top; i++)
716            cdp[i] = 0;
717        c->top = top;
718        vdp = v->d;             /* It pays off to "cache" *->d pointers,
719                                 * because it allows optimizer to be more
720                                 * aggressive. But we don't have to "cache"
721                                 * p->d, because *p is declared 'const'... */
722        while (1) {
723            while (ubits && !(udp[0] & 1)) {
724                BN_ULONG u0, u1, b0, b1, mask;
725
726                u0 = udp[0];
727                b0 = bdp[0];
728                mask = (BN_ULONG)0 - (b0 & 1);
729                b0 ^= p->d[0] & mask;
730                for (i = 0; i < top - 1; i++) {
731                    u1 = udp[i + 1];
732                    udp[i] = ((u0 >> 1) | (u1 << (BN_BITS2 - 1))) & BN_MASK2;
733                    u0 = u1;
734                    b1 = bdp[i + 1] ^ (p->d[i + 1] & mask);
735                    bdp[i] = ((b0 >> 1) | (b1 << (BN_BITS2 - 1))) & BN_MASK2;
736                    b0 = b1;
737                }
738                udp[i] = u0 >> 1;
739                bdp[i] = b0 >> 1;
740                ubits--;
741            }
742
743            if (ubits <= BN_BITS2 && udp[0] == 1)
744                break;
745
746            if (ubits < vbits) {
747                i = ubits;
748                ubits = vbits;
749                vbits = i;
750                tmp = u;
751                u = v;
752                v = tmp;
753                tmp = b;
754                b = c;
755                c = tmp;
756                udp = vdp;
757                vdp = v->d;
758                bdp = cdp;
759                cdp = c->d;
760            }
761            for (i = 0; i < top; i++) {
762                udp[i] ^= vdp[i];
763                bdp[i] ^= cdp[i];
764            }
765            if (ubits == vbits) {
766                BN_ULONG ul;
767                int utop = (ubits - 1) / BN_BITS2;
768
769                while ((ul = udp[utop]) == 0 && utop)
770                    utop--;
771                ubits = utop * BN_BITS2 + BN_num_bits_word(ul);
772            }
773        }
774        bn_correct_top(b);
775    }
776# endif
777
778    if (!BN_copy(r, b))
779        goto err;
780    bn_check_top(r);
781    ret = 1;
782
783 err:
784# ifdef BN_DEBUG                /* BN_CTX_end would complain about the
785                                 * expanded form */
786    bn_correct_top(c);
787    bn_correct_top(u);
788    bn_correct_top(v);
789# endif
790    BN_CTX_end(ctx);
791    return ret;
792}
793
794/*
795 * Invert xx, reduce modulo p, and store the result in r. r could be xx.
796 * This function calls down to the BN_GF2m_mod_inv implementation; this
797 * wrapper function is only provided for convenience; for best performance,
798 * use the BN_GF2m_mod_inv function.
799 */
800int BN_GF2m_mod_inv_arr(BIGNUM *r, const BIGNUM *xx, const int p[],
801                        BN_CTX *ctx)
802{
803    BIGNUM *field;
804    int ret = 0;
805
806    bn_check_top(xx);
807    BN_CTX_start(ctx);
808    if ((field = BN_CTX_get(ctx)) == NULL)
809        goto err;
810    if (!BN_GF2m_arr2poly(p, field))
811        goto err;
812
813    ret = BN_GF2m_mod_inv(r, xx, field, ctx);
814    bn_check_top(r);
815
816 err:
817    BN_CTX_end(ctx);
818    return ret;
819}
820
821# ifndef OPENSSL_SUN_GF2M_DIV
822/*
823 * Divide y by x, reduce modulo p, and store the result in r. r could be x
824 * or y, x could equal y.
825 */
826int BN_GF2m_mod_div(BIGNUM *r, const BIGNUM *y, const BIGNUM *x,
827                    const BIGNUM *p, BN_CTX *ctx)
828{
829    BIGNUM *xinv = NULL;
830    int ret = 0;
831
832    bn_check_top(y);
833    bn_check_top(x);
834    bn_check_top(p);
835
836    BN_CTX_start(ctx);
837    xinv = BN_CTX_get(ctx);
838    if (xinv == NULL)
839        goto err;
840
841    if (!BN_GF2m_mod_inv(xinv, x, p, ctx))
842        goto err;
843    if (!BN_GF2m_mod_mul(r, y, xinv, p, ctx))
844        goto err;
845    bn_check_top(r);
846    ret = 1;
847
848 err:
849    BN_CTX_end(ctx);
850    return ret;
851}
852# else
853/*
854 * Divide y by x, reduce modulo p, and store the result in r. r could be x
855 * or y, x could equal y. Uses algorithm Modular_Division_GF(2^m) from
856 * Chang-Shantz, S.  "From Euclid's GCD to Montgomery Multiplication to the
857 * Great Divide".
858 */
859int BN_GF2m_mod_div(BIGNUM *r, const BIGNUM *y, const BIGNUM *x,
860                    const BIGNUM *p, BN_CTX *ctx)
861{
862    BIGNUM *a, *b, *u, *v;
863    int ret = 0;
864
865    bn_check_top(y);
866    bn_check_top(x);
867    bn_check_top(p);
868
869    BN_CTX_start(ctx);
870
871    a = BN_CTX_get(ctx);
872    b = BN_CTX_get(ctx);
873    u = BN_CTX_get(ctx);
874    v = BN_CTX_get(ctx);
875    if (v == NULL)
876        goto err;
877
878    /* reduce x and y mod p */
879    if (!BN_GF2m_mod(u, y, p))
880        goto err;
881    if (!BN_GF2m_mod(a, x, p))
882        goto err;
883    if (!BN_copy(b, p))
884        goto err;
885
886    while (!BN_is_odd(a)) {
887        if (!BN_rshift1(a, a))
888            goto err;
889        if (BN_is_odd(u))
890            if (!BN_GF2m_add(u, u, p))
891                goto err;
892        if (!BN_rshift1(u, u))
893            goto err;
894    }
895
896    do {
897        if (BN_GF2m_cmp(b, a) > 0) {
898            if (!BN_GF2m_add(b, b, a))
899                goto err;
900            if (!BN_GF2m_add(v, v, u))
901                goto err;
902            do {
903                if (!BN_rshift1(b, b))
904                    goto err;
905                if (BN_is_odd(v))
906                    if (!BN_GF2m_add(v, v, p))
907                        goto err;
908                if (!BN_rshift1(v, v))
909                    goto err;
910            } while (!BN_is_odd(b));
911        } else if (BN_abs_is_word(a, 1))
912            break;
913        else {
914            if (!BN_GF2m_add(a, a, b))
915                goto err;
916            if (!BN_GF2m_add(u, u, v))
917                goto err;
918            do {
919                if (!BN_rshift1(a, a))
920                    goto err;
921                if (BN_is_odd(u))
922                    if (!BN_GF2m_add(u, u, p))
923                        goto err;
924                if (!BN_rshift1(u, u))
925                    goto err;
926            } while (!BN_is_odd(a));
927        }
928    } while (1);
929
930    if (!BN_copy(r, u))
931        goto err;
932    bn_check_top(r);
933    ret = 1;
934
935 err:
936    BN_CTX_end(ctx);
937    return ret;
938}
939# endif
940
941/*
942 * Divide yy by xx, reduce modulo p, and store the result in r. r could be xx
943 * * or yy, xx could equal yy. This function calls down to the
944 * BN_GF2m_mod_div implementation; this wrapper function is only provided for
945 * convenience; for best performance, use the BN_GF2m_mod_div function.
946 */
947int BN_GF2m_mod_div_arr(BIGNUM *r, const BIGNUM *yy, const BIGNUM *xx,
948                        const int p[], BN_CTX *ctx)
949{
950    BIGNUM *field;
951    int ret = 0;
952
953    bn_check_top(yy);
954    bn_check_top(xx);
955
956    BN_CTX_start(ctx);
957    if ((field = BN_CTX_get(ctx)) == NULL)
958        goto err;
959    if (!BN_GF2m_arr2poly(p, field))
960        goto err;
961
962    ret = BN_GF2m_mod_div(r, yy, xx, field, ctx);
963    bn_check_top(r);
964
965 err:
966    BN_CTX_end(ctx);
967    return ret;
968}
969
970/*
971 * Compute the bth power of a, reduce modulo p, and store the result in r.  r
972 * could be a. Uses simple square-and-multiply algorithm A.5.1 from IEEE
973 * P1363.
974 */
975int BN_GF2m_mod_exp_arr(BIGNUM *r, const BIGNUM *a, const BIGNUM *b,
976                        const int p[], BN_CTX *ctx)
977{
978    int ret = 0, i, n;
979    BIGNUM *u;
980
981    bn_check_top(a);
982    bn_check_top(b);
983
984    if (BN_is_zero(b))
985        return (BN_one(r));
986
987    if (BN_abs_is_word(b, 1))
988        return (BN_copy(r, a) != NULL);
989
990    BN_CTX_start(ctx);
991    if ((u = BN_CTX_get(ctx)) == NULL)
992        goto err;
993
994    if (!BN_GF2m_mod_arr(u, a, p))
995        goto err;
996
997    n = BN_num_bits(b) - 1;
998    for (i = n - 1; i >= 0; i--) {
999        if (!BN_GF2m_mod_sqr_arr(u, u, p, ctx))
1000            goto err;
1001        if (BN_is_bit_set(b, i)) {
1002            if (!BN_GF2m_mod_mul_arr(u, u, a, p, ctx))
1003                goto err;
1004        }
1005    }
1006    if (!BN_copy(r, u))
1007        goto err;
1008    bn_check_top(r);
1009    ret = 1;
1010 err:
1011    BN_CTX_end(ctx);
1012    return ret;
1013}
1014
1015/*
1016 * Compute the bth power of a, reduce modulo p, and store the result in r.  r
1017 * could be a. This function calls down to the BN_GF2m_mod_exp_arr
1018 * implementation; this wrapper function is only provided for convenience;
1019 * for best performance, use the BN_GF2m_mod_exp_arr function.
1020 */
1021int BN_GF2m_mod_exp(BIGNUM *r, const BIGNUM *a, const BIGNUM *b,
1022                    const BIGNUM *p, BN_CTX *ctx)
1023{
1024    int ret = 0;
1025    const int max = BN_num_bits(p) + 1;
1026    int *arr = NULL;
1027    bn_check_top(a);
1028    bn_check_top(b);
1029    bn_check_top(p);
1030    if ((arr = (int *)OPENSSL_malloc(sizeof(int) * max)) == NULL)
1031        goto err;
1032    ret = BN_GF2m_poly2arr(p, arr, max);
1033    if (!ret || ret > max) {
1034        BNerr(BN_F_BN_GF2M_MOD_EXP, BN_R_INVALID_LENGTH);
1035        goto err;
1036    }
1037    ret = BN_GF2m_mod_exp_arr(r, a, b, arr, ctx);
1038    bn_check_top(r);
1039 err:
1040    if (arr)
1041        OPENSSL_free(arr);
1042    return ret;
1043}
1044
1045/*
1046 * Compute the square root of a, reduce modulo p, and store the result in r.
1047 * r could be a. Uses exponentiation as in algorithm A.4.1 from IEEE P1363.
1048 */
1049int BN_GF2m_mod_sqrt_arr(BIGNUM *r, const BIGNUM *a, const int p[],
1050                         BN_CTX *ctx)
1051{
1052    int ret = 0;
1053    BIGNUM *u;
1054
1055    bn_check_top(a);
1056
1057    if (!p[0]) {
1058        /* reduction mod 1 => return 0 */
1059        BN_zero(r);
1060        return 1;
1061    }
1062
1063    BN_CTX_start(ctx);
1064    if ((u = BN_CTX_get(ctx)) == NULL)
1065        goto err;
1066
1067    if (!BN_set_bit(u, p[0] - 1))
1068        goto err;
1069    ret = BN_GF2m_mod_exp_arr(r, a, u, p, ctx);
1070    bn_check_top(r);
1071
1072 err:
1073    BN_CTX_end(ctx);
1074    return ret;
1075}
1076
1077/*
1078 * Compute the square root of a, reduce modulo p, and store the result in r.
1079 * r could be a. This function calls down to the BN_GF2m_mod_sqrt_arr
1080 * implementation; this wrapper function is only provided for convenience;
1081 * for best performance, use the BN_GF2m_mod_sqrt_arr function.
1082 */
1083int BN_GF2m_mod_sqrt(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx)
1084{
1085    int ret = 0;
1086    const int max = BN_num_bits(p) + 1;
1087    int *arr = NULL;
1088    bn_check_top(a);
1089    bn_check_top(p);
1090    if ((arr = (int *)OPENSSL_malloc(sizeof(int) * max)) == NULL)
1091        goto err;
1092    ret = BN_GF2m_poly2arr(p, arr, max);
1093    if (!ret || ret > max) {
1094        BNerr(BN_F_BN_GF2M_MOD_SQRT, BN_R_INVALID_LENGTH);
1095        goto err;
1096    }
1097    ret = BN_GF2m_mod_sqrt_arr(r, a, arr, ctx);
1098    bn_check_top(r);
1099 err:
1100    if (arr)
1101        OPENSSL_free(arr);
1102    return ret;
1103}
1104
1105/*
1106 * Find r such that r^2 + r = a mod p.  r could be a. If no r exists returns
1107 * 0. Uses algorithms A.4.7 and A.4.6 from IEEE P1363.
1108 */
1109int BN_GF2m_mod_solve_quad_arr(BIGNUM *r, const BIGNUM *a_, const int p[],
1110                               BN_CTX *ctx)
1111{
1112    int ret = 0, count = 0, j;
1113    BIGNUM *a, *z, *rho, *w, *w2, *tmp;
1114
1115    bn_check_top(a_);
1116
1117    if (!p[0]) {
1118        /* reduction mod 1 => return 0 */
1119        BN_zero(r);
1120        return 1;
1121    }
1122
1123    BN_CTX_start(ctx);
1124    a = BN_CTX_get(ctx);
1125    z = BN_CTX_get(ctx);
1126    w = BN_CTX_get(ctx);
1127    if (w == NULL)
1128        goto err;
1129
1130    if (!BN_GF2m_mod_arr(a, a_, p))
1131        goto err;
1132
1133    if (BN_is_zero(a)) {
1134        BN_zero(r);
1135        ret = 1;
1136        goto err;
1137    }
1138
1139    if (p[0] & 0x1) {           /* m is odd */
1140        /* compute half-trace of a */
1141        if (!BN_copy(z, a))
1142            goto err;
1143        for (j = 1; j <= (p[0] - 1) / 2; j++) {
1144            if (!BN_GF2m_mod_sqr_arr(z, z, p, ctx))
1145                goto err;
1146            if (!BN_GF2m_mod_sqr_arr(z, z, p, ctx))
1147                goto err;
1148            if (!BN_GF2m_add(z, z, a))
1149                goto err;
1150        }
1151
1152    } else {                    /* m is even */
1153
1154        rho = BN_CTX_get(ctx);
1155        w2 = BN_CTX_get(ctx);
1156        tmp = BN_CTX_get(ctx);
1157        if (tmp == NULL)
1158            goto err;
1159        do {
1160            if (!BN_rand(rho, p[0], 0, 0))
1161                goto err;
1162            if (!BN_GF2m_mod_arr(rho, rho, p))
1163                goto err;
1164            BN_zero(z);
1165            if (!BN_copy(w, rho))
1166                goto err;
1167            for (j = 1; j <= p[0] - 1; j++) {
1168                if (!BN_GF2m_mod_sqr_arr(z, z, p, ctx))
1169                    goto err;
1170                if (!BN_GF2m_mod_sqr_arr(w2, w, p, ctx))
1171                    goto err;
1172                if (!BN_GF2m_mod_mul_arr(tmp, w2, a, p, ctx))
1173                    goto err;
1174                if (!BN_GF2m_add(z, z, tmp))
1175                    goto err;
1176                if (!BN_GF2m_add(w, w2, rho))
1177                    goto err;
1178            }
1179            count++;
1180        } while (BN_is_zero(w) && (count < MAX_ITERATIONS));
1181        if (BN_is_zero(w)) {
1182            BNerr(BN_F_BN_GF2M_MOD_SOLVE_QUAD_ARR, BN_R_TOO_MANY_ITERATIONS);
1183            goto err;
1184        }
1185    }
1186
1187    if (!BN_GF2m_mod_sqr_arr(w, z, p, ctx))
1188        goto err;
1189    if (!BN_GF2m_add(w, z, w))
1190        goto err;
1191    if (BN_GF2m_cmp(w, a)) {
1192        BNerr(BN_F_BN_GF2M_MOD_SOLVE_QUAD_ARR, BN_R_NO_SOLUTION);
1193        goto err;
1194    }
1195
1196    if (!BN_copy(r, z))
1197        goto err;
1198    bn_check_top(r);
1199
1200    ret = 1;
1201
1202 err:
1203    BN_CTX_end(ctx);
1204    return ret;
1205}
1206
1207/*
1208 * Find r such that r^2 + r = a mod p.  r could be a. If no r exists returns
1209 * 0. This function calls down to the BN_GF2m_mod_solve_quad_arr
1210 * implementation; this wrapper function is only provided for convenience;
1211 * for best performance, use the BN_GF2m_mod_solve_quad_arr function.
1212 */
1213int BN_GF2m_mod_solve_quad(BIGNUM *r, const BIGNUM *a, const BIGNUM *p,
1214                           BN_CTX *ctx)
1215{
1216    int ret = 0;
1217    const int max = BN_num_bits(p) + 1;
1218    int *arr = NULL;
1219    bn_check_top(a);
1220    bn_check_top(p);
1221    if ((arr = (int *)OPENSSL_malloc(sizeof(int) * max)) == NULL)
1222        goto err;
1223    ret = BN_GF2m_poly2arr(p, arr, max);
1224    if (!ret || ret > max) {
1225        BNerr(BN_F_BN_GF2M_MOD_SOLVE_QUAD, BN_R_INVALID_LENGTH);
1226        goto err;
1227    }
1228    ret = BN_GF2m_mod_solve_quad_arr(r, a, arr, ctx);
1229    bn_check_top(r);
1230 err:
1231    if (arr)
1232        OPENSSL_free(arr);
1233    return ret;
1234}
1235
1236/*
1237 * Convert the bit-string representation of a polynomial ( \sum_{i=0}^n a_i *
1238 * x^i) into an array of integers corresponding to the bits with non-zero
1239 * coefficient.  Array is terminated with -1. Up to max elements of the array
1240 * will be filled.  Return value is total number of array elements that would
1241 * be filled if array was large enough.
1242 */
1243int BN_GF2m_poly2arr(const BIGNUM *a, int p[], int max)
1244{
1245    int i, j, k = 0;
1246    BN_ULONG mask;
1247
1248    if (BN_is_zero(a))
1249        return 0;
1250
1251    for (i = a->top - 1; i >= 0; i--) {
1252        if (!a->d[i])
1253            /* skip word if a->d[i] == 0 */
1254            continue;
1255        mask = BN_TBIT;
1256        for (j = BN_BITS2 - 1; j >= 0; j--) {
1257            if (a->d[i] & mask) {
1258                if (k < max)
1259                    p[k] = BN_BITS2 * i + j;
1260                k++;
1261            }
1262            mask >>= 1;
1263        }
1264    }
1265
1266    if (k < max) {
1267        p[k] = -1;
1268        k++;
1269    }
1270
1271    return k;
1272}
1273
1274/*
1275 * Convert the coefficient array representation of a polynomial to a
1276 * bit-string.  The array must be terminated by -1.
1277 */
1278int BN_GF2m_arr2poly(const int p[], BIGNUM *a)
1279{
1280    int i;
1281
1282    bn_check_top(a);
1283    BN_zero(a);
1284    for (i = 0; p[i] != -1; i++) {
1285        if (BN_set_bit(a, p[i]) == 0)
1286            return 0;
1287    }
1288    bn_check_top(a);
1289
1290    return 1;
1291}
1292
1293#endif
1294