umac.c revision 295367
1/* $OpenBSD: umac.c,v 1.11 2014/07/22 07:13:42 guenther Exp $ */
2/* -----------------------------------------------------------------------
3 *
4 * umac.c -- C Implementation UMAC Message Authentication
5 *
6 * Version 0.93b of rfc4418.txt -- 2006 July 18
7 *
8 * For a full description of UMAC message authentication see the UMAC
9 * world-wide-web page at http://www.cs.ucdavis.edu/~rogaway/umac
10 * Please report bugs and suggestions to the UMAC webpage.
11 *
12 * Copyright (c) 1999-2006 Ted Krovetz
13 *
14 * Permission to use, copy, modify, and distribute this software and
15 * its documentation for any purpose and with or without fee, is hereby
16 * granted provided that the above copyright notice appears in all copies
17 * and in supporting documentation, and that the name of the copyright
18 * holder not be used in advertising or publicity pertaining to
19 * distribution of the software without specific, written prior permission.
20 *
21 * Comments should be directed to Ted Krovetz (tdk@acm.org)
22 *
23 * ---------------------------------------------------------------------- */
24
25 /* ////////////////////// IMPORTANT NOTES /////////////////////////////////
26  *
27  * 1) This version does not work properly on messages larger than 16MB
28  *
29  * 2) If you set the switch to use SSE2, then all data must be 16-byte
30  *    aligned
31  *
32  * 3) When calling the function umac(), it is assumed that msg is in
33  * a writable buffer of length divisible by 32 bytes. The message itself
34  * does not have to fill the entire buffer, but bytes beyond msg may be
35  * zeroed.
36  *
37  * 4) Three free AES implementations are supported by this implementation of
38  * UMAC. Paulo Barreto's version is in the public domain and can be found
39  * at http://www.esat.kuleuven.ac.be/~rijmen/rijndael/ (search for
40  * "Barreto"). The only two files needed are rijndael-alg-fst.c and
41  * rijndael-alg-fst.h. Brian Gladman's version is distributed with the GNU
42  * Public lisence at http://fp.gladman.plus.com/AES/index.htm. It
43  * includes a fast IA-32 assembly version. The OpenSSL crypo library is
44  * the third.
45  *
46  * 5) With FORCE_C_ONLY flags set to 0, incorrect results are sometimes
47  * produced under gcc with optimizations set -O3 or higher. Dunno why.
48  *
49  /////////////////////////////////////////////////////////////////////// */
50
51/* ---------------------------------------------------------------------- */
52/* --- User Switches ---------------------------------------------------- */
53/* ---------------------------------------------------------------------- */
54
55#ifndef UMAC_OUTPUT_LEN
56#define UMAC_OUTPUT_LEN     8  /* Alowable: 4, 8, 12, 16                  */
57#endif
58
59#if UMAC_OUTPUT_LEN != 4 && UMAC_OUTPUT_LEN != 8 && \
60    UMAC_OUTPUT_LEN != 12 && UMAC_OUTPUT_LEN != 16
61# error UMAC_OUTPUT_LEN must be defined to 4, 8, 12 or 16
62#endif
63
64/* #define FORCE_C_ONLY        1  ANSI C and 64-bit integers req'd        */
65/* #define AES_IMPLEMENTAION   1  1 = OpenSSL, 2 = Barreto, 3 = Gladman   */
66/* #define SSE2                0  Is SSE2 is available?                   */
67/* #define RUN_TESTS           0  Run basic correctness/speed tests       */
68/* #define UMAC_AE_SUPPORT     0  Enable auhthenticated encrytion         */
69
70/* ---------------------------------------------------------------------- */
71/* -- Global Includes --------------------------------------------------- */
72/* ---------------------------------------------------------------------- */
73
74#include "includes.h"
75#include <sys/types.h>
76#include <string.h>
77#include <stdio.h>
78#include <stdlib.h>
79#include <stddef.h>
80
81#include "xmalloc.h"
82#include "umac.h"
83#include "misc.h"
84
85/* ---------------------------------------------------------------------- */
86/* --- Primitive Data Types ---                                           */
87/* ---------------------------------------------------------------------- */
88
89/* The following assumptions may need change on your system */
90typedef u_int8_t	UINT8;  /* 1 byte   */
91typedef u_int16_t	UINT16; /* 2 byte   */
92typedef u_int32_t	UINT32; /* 4 byte   */
93typedef u_int64_t	UINT64; /* 8 bytes  */
94typedef unsigned int	UWORD;  /* Register */
95
96/* ---------------------------------------------------------------------- */
97/* --- Constants -------------------------------------------------------- */
98/* ---------------------------------------------------------------------- */
99
100#define UMAC_KEY_LEN           16  /* UMAC takes 16 bytes of external key */
101
102/* Message "words" are read from memory in an endian-specific manner.     */
103/* For this implementation to behave correctly, __LITTLE_ENDIAN__ must    */
104/* be set true if the host computer is little-endian.                     */
105
106#if BYTE_ORDER == LITTLE_ENDIAN
107#define __LITTLE_ENDIAN__ 1
108#else
109#define __LITTLE_ENDIAN__ 0
110#endif
111
112/* ---------------------------------------------------------------------- */
113/* ---------------------------------------------------------------------- */
114/* ----- Architecture Specific ------------------------------------------ */
115/* ---------------------------------------------------------------------- */
116/* ---------------------------------------------------------------------- */
117
118
119/* ---------------------------------------------------------------------- */
120/* ---------------------------------------------------------------------- */
121/* ----- Primitive Routines --------------------------------------------- */
122/* ---------------------------------------------------------------------- */
123/* ---------------------------------------------------------------------- */
124
125
126/* ---------------------------------------------------------------------- */
127/* --- 32-bit by 32-bit to 64-bit Multiplication ------------------------ */
128/* ---------------------------------------------------------------------- */
129
130#define MUL64(a,b) ((UINT64)((UINT64)(UINT32)(a) * (UINT64)(UINT32)(b)))
131
132/* ---------------------------------------------------------------------- */
133/* --- Endian Conversion --- Forcing assembly on some platforms           */
134/* ---------------------------------------------------------------------- */
135
136#if (__LITTLE_ENDIAN__)
137#define LOAD_UINT32_REVERSED(p)		get_u32(p)
138#define STORE_UINT32_REVERSED(p,v)	put_u32(p,v)
139#else
140#define LOAD_UINT32_REVERSED(p)		get_u32_le(p)
141#define STORE_UINT32_REVERSED(p,v)	put_u32_le(p,v)
142#endif
143
144#define LOAD_UINT32_LITTLE(p)		(get_u32_le(p))
145#define STORE_UINT32_BIG(p,v)		put_u32(p, v)
146
147/* ---------------------------------------------------------------------- */
148/* ---------------------------------------------------------------------- */
149/* ----- Begin KDF & PDF Section ---------------------------------------- */
150/* ---------------------------------------------------------------------- */
151/* ---------------------------------------------------------------------- */
152
153/* UMAC uses AES with 16 byte block and key lengths */
154#define AES_BLOCK_LEN  16
155
156/* OpenSSL's AES */
157#ifdef WITH_OPENSSL
158#include "openbsd-compat/openssl-compat.h"
159#ifndef USE_BUILTIN_RIJNDAEL
160# include <openssl/aes.h>
161#endif
162typedef AES_KEY aes_int_key[1];
163#define aes_encryption(in,out,int_key)                  \
164  AES_encrypt((u_char *)(in),(u_char *)(out),(AES_KEY *)int_key)
165#define aes_key_setup(key,int_key)                      \
166  AES_set_encrypt_key((const u_char *)(key),UMAC_KEY_LEN*8,int_key)
167#else
168#include "rijndael.h"
169#define AES_ROUNDS ((UMAC_KEY_LEN / 4) + 6)
170typedef UINT8 aes_int_key[AES_ROUNDS+1][4][4];	/* AES internal */
171#define aes_encryption(in,out,int_key) \
172  rijndaelEncrypt((u32 *)(int_key), AES_ROUNDS, (u8 *)(in), (u8 *)(out))
173#define aes_key_setup(key,int_key) \
174  rijndaelKeySetupEnc((u32 *)(int_key), (const unsigned char *)(key), \
175  UMAC_KEY_LEN*8)
176#endif
177
178/* The user-supplied UMAC key is stretched using AES in a counter
179 * mode to supply all random bits needed by UMAC. The kdf function takes
180 * an AES internal key representation 'key' and writes a stream of
181 * 'nbytes' bytes to the memory pointed at by 'bufp'. Each distinct
182 * 'ndx' causes a distinct byte stream.
183 */
184static void kdf(void *bufp, aes_int_key key, UINT8 ndx, int nbytes)
185{
186    UINT8 in_buf[AES_BLOCK_LEN] = {0};
187    UINT8 out_buf[AES_BLOCK_LEN];
188    UINT8 *dst_buf = (UINT8 *)bufp;
189    int i;
190
191    /* Setup the initial value */
192    in_buf[AES_BLOCK_LEN-9] = ndx;
193    in_buf[AES_BLOCK_LEN-1] = i = 1;
194
195    while (nbytes >= AES_BLOCK_LEN) {
196        aes_encryption(in_buf, out_buf, key);
197        memcpy(dst_buf,out_buf,AES_BLOCK_LEN);
198        in_buf[AES_BLOCK_LEN-1] = ++i;
199        nbytes -= AES_BLOCK_LEN;
200        dst_buf += AES_BLOCK_LEN;
201    }
202    if (nbytes) {
203        aes_encryption(in_buf, out_buf, key);
204        memcpy(dst_buf,out_buf,nbytes);
205    }
206}
207
208/* The final UHASH result is XOR'd with the output of a pseudorandom
209 * function. Here, we use AES to generate random output and
210 * xor the appropriate bytes depending on the last bits of nonce.
211 * This scheme is optimized for sequential, increasing big-endian nonces.
212 */
213
214typedef struct {
215    UINT8 cache[AES_BLOCK_LEN];  /* Previous AES output is saved      */
216    UINT8 nonce[AES_BLOCK_LEN];  /* The AES input making above cache  */
217    aes_int_key prf_key;         /* Expanded AES key for PDF          */
218} pdf_ctx;
219
220static void pdf_init(pdf_ctx *pc, aes_int_key prf_key)
221{
222    UINT8 buf[UMAC_KEY_LEN];
223
224    kdf(buf, prf_key, 0, UMAC_KEY_LEN);
225    aes_key_setup(buf, pc->prf_key);
226
227    /* Initialize pdf and cache */
228    memset(pc->nonce, 0, sizeof(pc->nonce));
229    aes_encryption(pc->nonce, pc->cache, pc->prf_key);
230}
231
232static void pdf_gen_xor(pdf_ctx *pc, const UINT8 nonce[8], UINT8 buf[8])
233{
234    /* 'ndx' indicates that we'll be using the 0th or 1st eight bytes
235     * of the AES output. If last time around we returned the ndx-1st
236     * element, then we may have the result in the cache already.
237     */
238
239#if (UMAC_OUTPUT_LEN == 4)
240#define LOW_BIT_MASK 3
241#elif (UMAC_OUTPUT_LEN == 8)
242#define LOW_BIT_MASK 1
243#elif (UMAC_OUTPUT_LEN > 8)
244#define LOW_BIT_MASK 0
245#endif
246    union {
247        UINT8 tmp_nonce_lo[4];
248        UINT32 align;
249    } t;
250#if LOW_BIT_MASK != 0
251    int ndx = nonce[7] & LOW_BIT_MASK;
252#endif
253    *(UINT32 *)t.tmp_nonce_lo = ((const UINT32 *)nonce)[1];
254    t.tmp_nonce_lo[3] &= ~LOW_BIT_MASK; /* zero last bit */
255
256    if ( (((UINT32 *)t.tmp_nonce_lo)[0] != ((UINT32 *)pc->nonce)[1]) ||
257         (((const UINT32 *)nonce)[0] != ((UINT32 *)pc->nonce)[0]) )
258    {
259        ((UINT32 *)pc->nonce)[0] = ((const UINT32 *)nonce)[0];
260        ((UINT32 *)pc->nonce)[1] = ((UINT32 *)t.tmp_nonce_lo)[0];
261        aes_encryption(pc->nonce, pc->cache, pc->prf_key);
262    }
263
264#if (UMAC_OUTPUT_LEN == 4)
265    *((UINT32 *)buf) ^= ((UINT32 *)pc->cache)[ndx];
266#elif (UMAC_OUTPUT_LEN == 8)
267    *((UINT64 *)buf) ^= ((UINT64 *)pc->cache)[ndx];
268#elif (UMAC_OUTPUT_LEN == 12)
269    ((UINT64 *)buf)[0] ^= ((UINT64 *)pc->cache)[0];
270    ((UINT32 *)buf)[2] ^= ((UINT32 *)pc->cache)[2];
271#elif (UMAC_OUTPUT_LEN == 16)
272    ((UINT64 *)buf)[0] ^= ((UINT64 *)pc->cache)[0];
273    ((UINT64 *)buf)[1] ^= ((UINT64 *)pc->cache)[1];
274#endif
275}
276
277/* ---------------------------------------------------------------------- */
278/* ---------------------------------------------------------------------- */
279/* ----- Begin NH Hash Section ------------------------------------------ */
280/* ---------------------------------------------------------------------- */
281/* ---------------------------------------------------------------------- */
282
283/* The NH-based hash functions used in UMAC are described in the UMAC paper
284 * and specification, both of which can be found at the UMAC website.
285 * The interface to this implementation has two
286 * versions, one expects the entire message being hashed to be passed
287 * in a single buffer and returns the hash result immediately. The second
288 * allows the message to be passed in a sequence of buffers. In the
289 * muliple-buffer interface, the client calls the routine nh_update() as
290 * many times as necessary. When there is no more data to be fed to the
291 * hash, the client calls nh_final() which calculates the hash output.
292 * Before beginning another hash calculation the nh_reset() routine
293 * must be called. The single-buffer routine, nh(), is equivalent to
294 * the sequence of calls nh_update() and nh_final(); however it is
295 * optimized and should be prefered whenever the multiple-buffer interface
296 * is not necessary. When using either interface, it is the client's
297 * responsability to pass no more than L1_KEY_LEN bytes per hash result.
298 *
299 * The routine nh_init() initializes the nh_ctx data structure and
300 * must be called once, before any other PDF routine.
301 */
302
303 /* The "nh_aux" routines do the actual NH hashing work. They
304  * expect buffers to be multiples of L1_PAD_BOUNDARY. These routines
305  * produce output for all STREAMS NH iterations in one call,
306  * allowing the parallel implementation of the streams.
307  */
308
309#define STREAMS (UMAC_OUTPUT_LEN / 4) /* Number of times hash is applied  */
310#define L1_KEY_LEN         1024     /* Internal key bytes                 */
311#define L1_KEY_SHIFT         16     /* Toeplitz key shift between streams */
312#define L1_PAD_BOUNDARY      32     /* pad message to boundary multiple   */
313#define ALLOC_BOUNDARY       16     /* Keep buffers aligned to this       */
314#define HASH_BUF_BYTES       64     /* nh_aux_hb buffer multiple          */
315
316typedef struct {
317    UINT8  nh_key [L1_KEY_LEN + L1_KEY_SHIFT * (STREAMS - 1)]; /* NH Key */
318    UINT8  data   [HASH_BUF_BYTES];    /* Incoming data buffer           */
319    int next_data_empty;    /* Bookeeping variable for data buffer.       */
320    int bytes_hashed;        /* Bytes (out of L1_KEY_LEN) incorperated.   */
321    UINT64 state[STREAMS];               /* on-line state     */
322} nh_ctx;
323
324
325#if (UMAC_OUTPUT_LEN == 4)
326
327static void nh_aux(void *kp, const void *dp, void *hp, UINT32 dlen)
328/* NH hashing primitive. Previous (partial) hash result is loaded and
329* then stored via hp pointer. The length of the data pointed at by "dp",
330* "dlen", is guaranteed to be divisible by L1_PAD_BOUNDARY (32).  Key
331* is expected to be endian compensated in memory at key setup.
332*/
333{
334    UINT64 h;
335    UWORD c = dlen / 32;
336    UINT32 *k = (UINT32 *)kp;
337    const UINT32 *d = (const UINT32 *)dp;
338    UINT32 d0,d1,d2,d3,d4,d5,d6,d7;
339    UINT32 k0,k1,k2,k3,k4,k5,k6,k7;
340
341    h = *((UINT64 *)hp);
342    do {
343        d0 = LOAD_UINT32_LITTLE(d+0); d1 = LOAD_UINT32_LITTLE(d+1);
344        d2 = LOAD_UINT32_LITTLE(d+2); d3 = LOAD_UINT32_LITTLE(d+3);
345        d4 = LOAD_UINT32_LITTLE(d+4); d5 = LOAD_UINT32_LITTLE(d+5);
346        d6 = LOAD_UINT32_LITTLE(d+6); d7 = LOAD_UINT32_LITTLE(d+7);
347        k0 = *(k+0); k1 = *(k+1); k2 = *(k+2); k3 = *(k+3);
348        k4 = *(k+4); k5 = *(k+5); k6 = *(k+6); k7 = *(k+7);
349        h += MUL64((k0 + d0), (k4 + d4));
350        h += MUL64((k1 + d1), (k5 + d5));
351        h += MUL64((k2 + d2), (k6 + d6));
352        h += MUL64((k3 + d3), (k7 + d7));
353
354        d += 8;
355        k += 8;
356    } while (--c);
357  *((UINT64 *)hp) = h;
358}
359
360#elif (UMAC_OUTPUT_LEN == 8)
361
362static void nh_aux(void *kp, const void *dp, void *hp, UINT32 dlen)
363/* Same as previous nh_aux, but two streams are handled in one pass,
364 * reading and writing 16 bytes of hash-state per call.
365 */
366{
367  UINT64 h1,h2;
368  UWORD c = dlen / 32;
369  UINT32 *k = (UINT32 *)kp;
370  const UINT32 *d = (const UINT32 *)dp;
371  UINT32 d0,d1,d2,d3,d4,d5,d6,d7;
372  UINT32 k0,k1,k2,k3,k4,k5,k6,k7,
373        k8,k9,k10,k11;
374
375  h1 = *((UINT64 *)hp);
376  h2 = *((UINT64 *)hp + 1);
377  k0 = *(k+0); k1 = *(k+1); k2 = *(k+2); k3 = *(k+3);
378  do {
379    d0 = LOAD_UINT32_LITTLE(d+0); d1 = LOAD_UINT32_LITTLE(d+1);
380    d2 = LOAD_UINT32_LITTLE(d+2); d3 = LOAD_UINT32_LITTLE(d+3);
381    d4 = LOAD_UINT32_LITTLE(d+4); d5 = LOAD_UINT32_LITTLE(d+5);
382    d6 = LOAD_UINT32_LITTLE(d+6); d7 = LOAD_UINT32_LITTLE(d+7);
383    k4 = *(k+4); k5 = *(k+5); k6 = *(k+6); k7 = *(k+7);
384    k8 = *(k+8); k9 = *(k+9); k10 = *(k+10); k11 = *(k+11);
385
386    h1 += MUL64((k0 + d0), (k4 + d4));
387    h2 += MUL64((k4 + d0), (k8 + d4));
388
389    h1 += MUL64((k1 + d1), (k5 + d5));
390    h2 += MUL64((k5 + d1), (k9 + d5));
391
392    h1 += MUL64((k2 + d2), (k6 + d6));
393    h2 += MUL64((k6 + d2), (k10 + d6));
394
395    h1 += MUL64((k3 + d3), (k7 + d7));
396    h2 += MUL64((k7 + d3), (k11 + d7));
397
398    k0 = k8; k1 = k9; k2 = k10; k3 = k11;
399
400    d += 8;
401    k += 8;
402  } while (--c);
403  ((UINT64 *)hp)[0] = h1;
404  ((UINT64 *)hp)[1] = h2;
405}
406
407#elif (UMAC_OUTPUT_LEN == 12)
408
409static void nh_aux(void *kp, const void *dp, void *hp, UINT32 dlen)
410/* Same as previous nh_aux, but two streams are handled in one pass,
411 * reading and writing 24 bytes of hash-state per call.
412*/
413{
414    UINT64 h1,h2,h3;
415    UWORD c = dlen / 32;
416    UINT32 *k = (UINT32 *)kp;
417    const UINT32 *d = (const UINT32 *)dp;
418    UINT32 d0,d1,d2,d3,d4,d5,d6,d7;
419    UINT32 k0,k1,k2,k3,k4,k5,k6,k7,
420        k8,k9,k10,k11,k12,k13,k14,k15;
421
422    h1 = *((UINT64 *)hp);
423    h2 = *((UINT64 *)hp + 1);
424    h3 = *((UINT64 *)hp + 2);
425    k0 = *(k+0); k1 = *(k+1); k2 = *(k+2); k3 = *(k+3);
426    k4 = *(k+4); k5 = *(k+5); k6 = *(k+6); k7 = *(k+7);
427    do {
428        d0 = LOAD_UINT32_LITTLE(d+0); d1 = LOAD_UINT32_LITTLE(d+1);
429        d2 = LOAD_UINT32_LITTLE(d+2); d3 = LOAD_UINT32_LITTLE(d+3);
430        d4 = LOAD_UINT32_LITTLE(d+4); d5 = LOAD_UINT32_LITTLE(d+5);
431        d6 = LOAD_UINT32_LITTLE(d+6); d7 = LOAD_UINT32_LITTLE(d+7);
432        k8 = *(k+8); k9 = *(k+9); k10 = *(k+10); k11 = *(k+11);
433        k12 = *(k+12); k13 = *(k+13); k14 = *(k+14); k15 = *(k+15);
434
435        h1 += MUL64((k0 + d0), (k4 + d4));
436        h2 += MUL64((k4 + d0), (k8 + d4));
437        h3 += MUL64((k8 + d0), (k12 + d4));
438
439        h1 += MUL64((k1 + d1), (k5 + d5));
440        h2 += MUL64((k5 + d1), (k9 + d5));
441        h3 += MUL64((k9 + d1), (k13 + d5));
442
443        h1 += MUL64((k2 + d2), (k6 + d6));
444        h2 += MUL64((k6 + d2), (k10 + d6));
445        h3 += MUL64((k10 + d2), (k14 + d6));
446
447        h1 += MUL64((k3 + d3), (k7 + d7));
448        h2 += MUL64((k7 + d3), (k11 + d7));
449        h3 += MUL64((k11 + d3), (k15 + d7));
450
451        k0 = k8; k1 = k9; k2 = k10; k3 = k11;
452        k4 = k12; k5 = k13; k6 = k14; k7 = k15;
453
454        d += 8;
455        k += 8;
456    } while (--c);
457    ((UINT64 *)hp)[0] = h1;
458    ((UINT64 *)hp)[1] = h2;
459    ((UINT64 *)hp)[2] = h3;
460}
461
462#elif (UMAC_OUTPUT_LEN == 16)
463
464static void nh_aux(void *kp, const void *dp, void *hp, UINT32 dlen)
465/* Same as previous nh_aux, but two streams are handled in one pass,
466 * reading and writing 24 bytes of hash-state per call.
467*/
468{
469    UINT64 h1,h2,h3,h4;
470    UWORD c = dlen / 32;
471    UINT32 *k = (UINT32 *)kp;
472    const UINT32 *d = (const UINT32 *)dp;
473    UINT32 d0,d1,d2,d3,d4,d5,d6,d7;
474    UINT32 k0,k1,k2,k3,k4,k5,k6,k7,
475        k8,k9,k10,k11,k12,k13,k14,k15,
476        k16,k17,k18,k19;
477
478    h1 = *((UINT64 *)hp);
479    h2 = *((UINT64 *)hp + 1);
480    h3 = *((UINT64 *)hp + 2);
481    h4 = *((UINT64 *)hp + 3);
482    k0 = *(k+0); k1 = *(k+1); k2 = *(k+2); k3 = *(k+3);
483    k4 = *(k+4); k5 = *(k+5); k6 = *(k+6); k7 = *(k+7);
484    do {
485        d0 = LOAD_UINT32_LITTLE(d+0); d1 = LOAD_UINT32_LITTLE(d+1);
486        d2 = LOAD_UINT32_LITTLE(d+2); d3 = LOAD_UINT32_LITTLE(d+3);
487        d4 = LOAD_UINT32_LITTLE(d+4); d5 = LOAD_UINT32_LITTLE(d+5);
488        d6 = LOAD_UINT32_LITTLE(d+6); d7 = LOAD_UINT32_LITTLE(d+7);
489        k8 = *(k+8); k9 = *(k+9); k10 = *(k+10); k11 = *(k+11);
490        k12 = *(k+12); k13 = *(k+13); k14 = *(k+14); k15 = *(k+15);
491        k16 = *(k+16); k17 = *(k+17); k18 = *(k+18); k19 = *(k+19);
492
493        h1 += MUL64((k0 + d0), (k4 + d4));
494        h2 += MUL64((k4 + d0), (k8 + d4));
495        h3 += MUL64((k8 + d0), (k12 + d4));
496        h4 += MUL64((k12 + d0), (k16 + d4));
497
498        h1 += MUL64((k1 + d1), (k5 + d5));
499        h2 += MUL64((k5 + d1), (k9 + d5));
500        h3 += MUL64((k9 + d1), (k13 + d5));
501        h4 += MUL64((k13 + d1), (k17 + d5));
502
503        h1 += MUL64((k2 + d2), (k6 + d6));
504        h2 += MUL64((k6 + d2), (k10 + d6));
505        h3 += MUL64((k10 + d2), (k14 + d6));
506        h4 += MUL64((k14 + d2), (k18 + d6));
507
508        h1 += MUL64((k3 + d3), (k7 + d7));
509        h2 += MUL64((k7 + d3), (k11 + d7));
510        h3 += MUL64((k11 + d3), (k15 + d7));
511        h4 += MUL64((k15 + d3), (k19 + d7));
512
513        k0 = k8; k1 = k9; k2 = k10; k3 = k11;
514        k4 = k12; k5 = k13; k6 = k14; k7 = k15;
515        k8 = k16; k9 = k17; k10 = k18; k11 = k19;
516
517        d += 8;
518        k += 8;
519    } while (--c);
520    ((UINT64 *)hp)[0] = h1;
521    ((UINT64 *)hp)[1] = h2;
522    ((UINT64 *)hp)[2] = h3;
523    ((UINT64 *)hp)[3] = h4;
524}
525
526/* ---------------------------------------------------------------------- */
527#endif  /* UMAC_OUTPUT_LENGTH */
528/* ---------------------------------------------------------------------- */
529
530
531/* ---------------------------------------------------------------------- */
532
533static void nh_transform(nh_ctx *hc, const UINT8 *buf, UINT32 nbytes)
534/* This function is a wrapper for the primitive NH hash functions. It takes
535 * as argument "hc" the current hash context and a buffer which must be a
536 * multiple of L1_PAD_BOUNDARY. The key passed to nh_aux is offset
537 * appropriately according to how much message has been hashed already.
538 */
539{
540    UINT8 *key;
541
542    key = hc->nh_key + hc->bytes_hashed;
543    nh_aux(key, buf, hc->state, nbytes);
544}
545
546/* ---------------------------------------------------------------------- */
547
548#if (__LITTLE_ENDIAN__)
549static void endian_convert(void *buf, UWORD bpw, UINT32 num_bytes)
550/* We endian convert the keys on little-endian computers to               */
551/* compensate for the lack of big-endian memory reads during hashing.     */
552{
553    UWORD iters = num_bytes / bpw;
554    if (bpw == 4) {
555        UINT32 *p = (UINT32 *)buf;
556        do {
557            *p = LOAD_UINT32_REVERSED(p);
558            p++;
559        } while (--iters);
560    } else if (bpw == 8) {
561        UINT32 *p = (UINT32 *)buf;
562        UINT32 t;
563        do {
564            t = LOAD_UINT32_REVERSED(p+1);
565            p[1] = LOAD_UINT32_REVERSED(p);
566            p[0] = t;
567            p += 2;
568        } while (--iters);
569    }
570}
571#define endian_convert_if_le(x,y,z) endian_convert((x),(y),(z))
572#else
573#define endian_convert_if_le(x,y,z) do{}while(0)  /* Do nothing */
574#endif
575
576/* ---------------------------------------------------------------------- */
577
578static void nh_reset(nh_ctx *hc)
579/* Reset nh_ctx to ready for hashing of new data */
580{
581    hc->bytes_hashed = 0;
582    hc->next_data_empty = 0;
583    hc->state[0] = 0;
584#if (UMAC_OUTPUT_LEN >= 8)
585    hc->state[1] = 0;
586#endif
587#if (UMAC_OUTPUT_LEN >= 12)
588    hc->state[2] = 0;
589#endif
590#if (UMAC_OUTPUT_LEN == 16)
591    hc->state[3] = 0;
592#endif
593
594}
595
596/* ---------------------------------------------------------------------- */
597
598static void nh_init(nh_ctx *hc, aes_int_key prf_key)
599/* Generate nh_key, endian convert and reset to be ready for hashing.   */
600{
601    kdf(hc->nh_key, prf_key, 1, sizeof(hc->nh_key));
602    endian_convert_if_le(hc->nh_key, 4, sizeof(hc->nh_key));
603    nh_reset(hc);
604}
605
606/* ---------------------------------------------------------------------- */
607
608static void nh_update(nh_ctx *hc, const UINT8 *buf, UINT32 nbytes)
609/* Incorporate nbytes of data into a nh_ctx, buffer whatever is not an    */
610/* even multiple of HASH_BUF_BYTES.                                       */
611{
612    UINT32 i,j;
613
614    j = hc->next_data_empty;
615    if ((j + nbytes) >= HASH_BUF_BYTES) {
616        if (j) {
617            i = HASH_BUF_BYTES - j;
618            memcpy(hc->data+j, buf, i);
619            nh_transform(hc,hc->data,HASH_BUF_BYTES);
620            nbytes -= i;
621            buf += i;
622            hc->bytes_hashed += HASH_BUF_BYTES;
623        }
624        if (nbytes >= HASH_BUF_BYTES) {
625            i = nbytes & ~(HASH_BUF_BYTES - 1);
626            nh_transform(hc, buf, i);
627            nbytes -= i;
628            buf += i;
629            hc->bytes_hashed += i;
630        }
631        j = 0;
632    }
633    memcpy(hc->data + j, buf, nbytes);
634    hc->next_data_empty = j + nbytes;
635}
636
637/* ---------------------------------------------------------------------- */
638
639static void zero_pad(UINT8 *p, int nbytes)
640{
641/* Write "nbytes" of zeroes, beginning at "p" */
642    if (nbytes >= (int)sizeof(UWORD)) {
643        while ((ptrdiff_t)p % sizeof(UWORD)) {
644            *p = 0;
645            nbytes--;
646            p++;
647        }
648        while (nbytes >= (int)sizeof(UWORD)) {
649            *(UWORD *)p = 0;
650            nbytes -= sizeof(UWORD);
651            p += sizeof(UWORD);
652        }
653    }
654    while (nbytes) {
655        *p = 0;
656        nbytes--;
657        p++;
658    }
659}
660
661/* ---------------------------------------------------------------------- */
662
663static void nh_final(nh_ctx *hc, UINT8 *result)
664/* After passing some number of data buffers to nh_update() for integration
665 * into an NH context, nh_final is called to produce a hash result. If any
666 * bytes are in the buffer hc->data, incorporate them into the
667 * NH context. Finally, add into the NH accumulation "state" the total number
668 * of bits hashed. The resulting numbers are written to the buffer "result".
669 * If nh_update was never called, L1_PAD_BOUNDARY zeroes are incorporated.
670 */
671{
672    int nh_len, nbits;
673
674    if (hc->next_data_empty != 0) {
675        nh_len = ((hc->next_data_empty + (L1_PAD_BOUNDARY - 1)) &
676                                                ~(L1_PAD_BOUNDARY - 1));
677        zero_pad(hc->data + hc->next_data_empty,
678                                          nh_len - hc->next_data_empty);
679        nh_transform(hc, hc->data, nh_len);
680        hc->bytes_hashed += hc->next_data_empty;
681    } else if (hc->bytes_hashed == 0) {
682    	nh_len = L1_PAD_BOUNDARY;
683        zero_pad(hc->data, L1_PAD_BOUNDARY);
684        nh_transform(hc, hc->data, nh_len);
685    }
686
687    nbits = (hc->bytes_hashed << 3);
688    ((UINT64 *)result)[0] = ((UINT64 *)hc->state)[0] + nbits;
689#if (UMAC_OUTPUT_LEN >= 8)
690    ((UINT64 *)result)[1] = ((UINT64 *)hc->state)[1] + nbits;
691#endif
692#if (UMAC_OUTPUT_LEN >= 12)
693    ((UINT64 *)result)[2] = ((UINT64 *)hc->state)[2] + nbits;
694#endif
695#if (UMAC_OUTPUT_LEN == 16)
696    ((UINT64 *)result)[3] = ((UINT64 *)hc->state)[3] + nbits;
697#endif
698    nh_reset(hc);
699}
700
701/* ---------------------------------------------------------------------- */
702
703static void nh(nh_ctx *hc, const UINT8 *buf, UINT32 padded_len,
704               UINT32 unpadded_len, UINT8 *result)
705/* All-in-one nh_update() and nh_final() equivalent.
706 * Assumes that padded_len is divisible by L1_PAD_BOUNDARY and result is
707 * well aligned
708 */
709{
710    UINT32 nbits;
711
712    /* Initialize the hash state */
713    nbits = (unpadded_len << 3);
714
715    ((UINT64 *)result)[0] = nbits;
716#if (UMAC_OUTPUT_LEN >= 8)
717    ((UINT64 *)result)[1] = nbits;
718#endif
719#if (UMAC_OUTPUT_LEN >= 12)
720    ((UINT64 *)result)[2] = nbits;
721#endif
722#if (UMAC_OUTPUT_LEN == 16)
723    ((UINT64 *)result)[3] = nbits;
724#endif
725
726    nh_aux(hc->nh_key, buf, result, padded_len);
727}
728
729/* ---------------------------------------------------------------------- */
730/* ---------------------------------------------------------------------- */
731/* ----- Begin UHASH Section -------------------------------------------- */
732/* ---------------------------------------------------------------------- */
733/* ---------------------------------------------------------------------- */
734
735/* UHASH is a multi-layered algorithm. Data presented to UHASH is first
736 * hashed by NH. The NH output is then hashed by a polynomial-hash layer
737 * unless the initial data to be hashed is short. After the polynomial-
738 * layer, an inner-product hash is used to produce the final UHASH output.
739 *
740 * UHASH provides two interfaces, one all-at-once and another where data
741 * buffers are presented sequentially. In the sequential interface, the
742 * UHASH client calls the routine uhash_update() as many times as necessary.
743 * When there is no more data to be fed to UHASH, the client calls
744 * uhash_final() which
745 * calculates the UHASH output. Before beginning another UHASH calculation
746 * the uhash_reset() routine must be called. The all-at-once UHASH routine,
747 * uhash(), is equivalent to the sequence of calls uhash_update() and
748 * uhash_final(); however it is optimized and should be
749 * used whenever the sequential interface is not necessary.
750 *
751 * The routine uhash_init() initializes the uhash_ctx data structure and
752 * must be called once, before any other UHASH routine.
753 */
754
755/* ---------------------------------------------------------------------- */
756/* ----- Constants and uhash_ctx ---------------------------------------- */
757/* ---------------------------------------------------------------------- */
758
759/* ---------------------------------------------------------------------- */
760/* ----- Poly hash and Inner-Product hash Constants --------------------- */
761/* ---------------------------------------------------------------------- */
762
763/* Primes and masks */
764#define p36    ((UINT64)0x0000000FFFFFFFFBull)              /* 2^36 -  5 */
765#define p64    ((UINT64)0xFFFFFFFFFFFFFFC5ull)              /* 2^64 - 59 */
766#define m36    ((UINT64)0x0000000FFFFFFFFFull)  /* The low 36 of 64 bits */
767
768
769/* ---------------------------------------------------------------------- */
770
771typedef struct uhash_ctx {
772    nh_ctx hash;                          /* Hash context for L1 NH hash  */
773    UINT64 poly_key_8[STREAMS];           /* p64 poly keys                */
774    UINT64 poly_accum[STREAMS];           /* poly hash result             */
775    UINT64 ip_keys[STREAMS*4];            /* Inner-product keys           */
776    UINT32 ip_trans[STREAMS];             /* Inner-product translation    */
777    UINT32 msg_len;                       /* Total length of data passed  */
778                                          /* to uhash */
779} uhash_ctx;
780typedef struct uhash_ctx *uhash_ctx_t;
781
782/* ---------------------------------------------------------------------- */
783
784
785/* The polynomial hashes use Horner's rule to evaluate a polynomial one
786 * word at a time. As described in the specification, poly32 and poly64
787 * require keys from special domains. The following implementations exploit
788 * the special domains to avoid overflow. The results are not guaranteed to
789 * be within Z_p32 and Z_p64, but the Inner-Product hash implementation
790 * patches any errant values.
791 */
792
793static UINT64 poly64(UINT64 cur, UINT64 key, UINT64 data)
794{
795    UINT32 key_hi = (UINT32)(key >> 32),
796           key_lo = (UINT32)key,
797           cur_hi = (UINT32)(cur >> 32),
798           cur_lo = (UINT32)cur,
799           x_lo,
800           x_hi;
801    UINT64 X,T,res;
802
803    X =  MUL64(key_hi, cur_lo) + MUL64(cur_hi, key_lo);
804    x_lo = (UINT32)X;
805    x_hi = (UINT32)(X >> 32);
806
807    res = (MUL64(key_hi, cur_hi) + x_hi) * 59 + MUL64(key_lo, cur_lo);
808
809    T = ((UINT64)x_lo << 32);
810    res += T;
811    if (res < T)
812        res += 59;
813
814    res += data;
815    if (res < data)
816        res += 59;
817
818    return res;
819}
820
821
822/* Although UMAC is specified to use a ramped polynomial hash scheme, this
823 * implementation does not handle all ramp levels. Because we don't handle
824 * the ramp up to p128 modulus in this implementation, we are limited to
825 * 2^14 poly_hash() invocations per stream (for a total capacity of 2^24
826 * bytes input to UMAC per tag, ie. 16MB).
827 */
828static void poly_hash(uhash_ctx_t hc, UINT32 data_in[])
829{
830    int i;
831    UINT64 *data=(UINT64*)data_in;
832
833    for (i = 0; i < STREAMS; i++) {
834        if ((UINT32)(data[i] >> 32) == 0xfffffffful) {
835            hc->poly_accum[i] = poly64(hc->poly_accum[i],
836                                       hc->poly_key_8[i], p64 - 1);
837            hc->poly_accum[i] = poly64(hc->poly_accum[i],
838                                       hc->poly_key_8[i], (data[i] - 59));
839        } else {
840            hc->poly_accum[i] = poly64(hc->poly_accum[i],
841                                       hc->poly_key_8[i], data[i]);
842        }
843    }
844}
845
846
847/* ---------------------------------------------------------------------- */
848
849
850/* The final step in UHASH is an inner-product hash. The poly hash
851 * produces a result not neccesarily WORD_LEN bytes long. The inner-
852 * product hash breaks the polyhash output into 16-bit chunks and
853 * multiplies each with a 36 bit key.
854 */
855
856static UINT64 ip_aux(UINT64 t, UINT64 *ipkp, UINT64 data)
857{
858    t = t + ipkp[0] * (UINT64)(UINT16)(data >> 48);
859    t = t + ipkp[1] * (UINT64)(UINT16)(data >> 32);
860    t = t + ipkp[2] * (UINT64)(UINT16)(data >> 16);
861    t = t + ipkp[3] * (UINT64)(UINT16)(data);
862
863    return t;
864}
865
866static UINT32 ip_reduce_p36(UINT64 t)
867{
868/* Divisionless modular reduction */
869    UINT64 ret;
870
871    ret = (t & m36) + 5 * (t >> 36);
872    if (ret >= p36)
873        ret -= p36;
874
875    /* return least significant 32 bits */
876    return (UINT32)(ret);
877}
878
879
880/* If the data being hashed by UHASH is no longer than L1_KEY_LEN, then
881 * the polyhash stage is skipped and ip_short is applied directly to the
882 * NH output.
883 */
884static void ip_short(uhash_ctx_t ahc, UINT8 *nh_res, u_char *res)
885{
886    UINT64 t;
887    UINT64 *nhp = (UINT64 *)nh_res;
888
889    t  = ip_aux(0,ahc->ip_keys, nhp[0]);
890    STORE_UINT32_BIG((UINT32 *)res+0, ip_reduce_p36(t) ^ ahc->ip_trans[0]);
891#if (UMAC_OUTPUT_LEN >= 8)
892    t  = ip_aux(0,ahc->ip_keys+4, nhp[1]);
893    STORE_UINT32_BIG((UINT32 *)res+1, ip_reduce_p36(t) ^ ahc->ip_trans[1]);
894#endif
895#if (UMAC_OUTPUT_LEN >= 12)
896    t  = ip_aux(0,ahc->ip_keys+8, nhp[2]);
897    STORE_UINT32_BIG((UINT32 *)res+2, ip_reduce_p36(t) ^ ahc->ip_trans[2]);
898#endif
899#if (UMAC_OUTPUT_LEN == 16)
900    t  = ip_aux(0,ahc->ip_keys+12, nhp[3]);
901    STORE_UINT32_BIG((UINT32 *)res+3, ip_reduce_p36(t) ^ ahc->ip_trans[3]);
902#endif
903}
904
905/* If the data being hashed by UHASH is longer than L1_KEY_LEN, then
906 * the polyhash stage is not skipped and ip_long is applied to the
907 * polyhash output.
908 */
909static void ip_long(uhash_ctx_t ahc, u_char *res)
910{
911    int i;
912    UINT64 t;
913
914    for (i = 0; i < STREAMS; i++) {
915        /* fix polyhash output not in Z_p64 */
916        if (ahc->poly_accum[i] >= p64)
917            ahc->poly_accum[i] -= p64;
918        t  = ip_aux(0,ahc->ip_keys+(i*4), ahc->poly_accum[i]);
919        STORE_UINT32_BIG((UINT32 *)res+i,
920                         ip_reduce_p36(t) ^ ahc->ip_trans[i]);
921    }
922}
923
924
925/* ---------------------------------------------------------------------- */
926
927/* ---------------------------------------------------------------------- */
928
929/* Reset uhash context for next hash session */
930static int uhash_reset(uhash_ctx_t pc)
931{
932    nh_reset(&pc->hash);
933    pc->msg_len = 0;
934    pc->poly_accum[0] = 1;
935#if (UMAC_OUTPUT_LEN >= 8)
936    pc->poly_accum[1] = 1;
937#endif
938#if (UMAC_OUTPUT_LEN >= 12)
939    pc->poly_accum[2] = 1;
940#endif
941#if (UMAC_OUTPUT_LEN == 16)
942    pc->poly_accum[3] = 1;
943#endif
944    return 1;
945}
946
947/* ---------------------------------------------------------------------- */
948
949/* Given a pointer to the internal key needed by kdf() and a uhash context,
950 * initialize the NH context and generate keys needed for poly and inner-
951 * product hashing. All keys are endian adjusted in memory so that native
952 * loads cause correct keys to be in registers during calculation.
953 */
954static void uhash_init(uhash_ctx_t ahc, aes_int_key prf_key)
955{
956    int i;
957    UINT8 buf[(8*STREAMS+4)*sizeof(UINT64)];
958
959    /* Zero the entire uhash context */
960    memset(ahc, 0, sizeof(uhash_ctx));
961
962    /* Initialize the L1 hash */
963    nh_init(&ahc->hash, prf_key);
964
965    /* Setup L2 hash variables */
966    kdf(buf, prf_key, 2, sizeof(buf));    /* Fill buffer with index 1 key */
967    for (i = 0; i < STREAMS; i++) {
968        /* Fill keys from the buffer, skipping bytes in the buffer not
969         * used by this implementation. Endian reverse the keys if on a
970         * little-endian computer.
971         */
972        memcpy(ahc->poly_key_8+i, buf+24*i, 8);
973        endian_convert_if_le(ahc->poly_key_8+i, 8, 8);
974        /* Mask the 64-bit keys to their special domain */
975        ahc->poly_key_8[i] &= ((UINT64)0x01ffffffu << 32) + 0x01ffffffu;
976        ahc->poly_accum[i] = 1;  /* Our polyhash prepends a non-zero word */
977    }
978
979    /* Setup L3-1 hash variables */
980    kdf(buf, prf_key, 3, sizeof(buf)); /* Fill buffer with index 2 key */
981    for (i = 0; i < STREAMS; i++)
982          memcpy(ahc->ip_keys+4*i, buf+(8*i+4)*sizeof(UINT64),
983                                                 4*sizeof(UINT64));
984    endian_convert_if_le(ahc->ip_keys, sizeof(UINT64),
985                                                  sizeof(ahc->ip_keys));
986    for (i = 0; i < STREAMS*4; i++)
987        ahc->ip_keys[i] %= p36;  /* Bring into Z_p36 */
988
989    /* Setup L3-2 hash variables    */
990    /* Fill buffer with index 4 key */
991    kdf(ahc->ip_trans, prf_key, 4, STREAMS * sizeof(UINT32));
992    endian_convert_if_le(ahc->ip_trans, sizeof(UINT32),
993                         STREAMS * sizeof(UINT32));
994}
995
996/* ---------------------------------------------------------------------- */
997
998#if 0
999static uhash_ctx_t uhash_alloc(u_char key[])
1000{
1001/* Allocate memory and force to a 16-byte boundary. */
1002    uhash_ctx_t ctx;
1003    u_char bytes_to_add;
1004    aes_int_key prf_key;
1005
1006    ctx = (uhash_ctx_t)malloc(sizeof(uhash_ctx)+ALLOC_BOUNDARY);
1007    if (ctx) {
1008        if (ALLOC_BOUNDARY) {
1009            bytes_to_add = ALLOC_BOUNDARY -
1010                              ((ptrdiff_t)ctx & (ALLOC_BOUNDARY -1));
1011            ctx = (uhash_ctx_t)((u_char *)ctx + bytes_to_add);
1012            *((u_char *)ctx - 1) = bytes_to_add;
1013        }
1014        aes_key_setup(key,prf_key);
1015        uhash_init(ctx, prf_key);
1016    }
1017    return (ctx);
1018}
1019#endif
1020
1021/* ---------------------------------------------------------------------- */
1022
1023#if 0
1024static int uhash_free(uhash_ctx_t ctx)
1025{
1026/* Free memory allocated by uhash_alloc */
1027    u_char bytes_to_sub;
1028
1029    if (ctx) {
1030        if (ALLOC_BOUNDARY) {
1031            bytes_to_sub = *((u_char *)ctx - 1);
1032            ctx = (uhash_ctx_t)((u_char *)ctx - bytes_to_sub);
1033        }
1034        free(ctx);
1035    }
1036    return (1);
1037}
1038#endif
1039/* ---------------------------------------------------------------------- */
1040
1041static int uhash_update(uhash_ctx_t ctx, const u_char *input, long len)
1042/* Given len bytes of data, we parse it into L1_KEY_LEN chunks and
1043 * hash each one with NH, calling the polyhash on each NH output.
1044 */
1045{
1046    UWORD bytes_hashed, bytes_remaining;
1047    UINT64 result_buf[STREAMS];
1048    UINT8 *nh_result = (UINT8 *)&result_buf;
1049
1050    if (ctx->msg_len + len <= L1_KEY_LEN) {
1051        nh_update(&ctx->hash, (const UINT8 *)input, len);
1052        ctx->msg_len += len;
1053    } else {
1054
1055         bytes_hashed = ctx->msg_len % L1_KEY_LEN;
1056         if (ctx->msg_len == L1_KEY_LEN)
1057             bytes_hashed = L1_KEY_LEN;
1058
1059         if (bytes_hashed + len >= L1_KEY_LEN) {
1060
1061             /* If some bytes have been passed to the hash function      */
1062             /* then we want to pass at most (L1_KEY_LEN - bytes_hashed) */
1063             /* bytes to complete the current nh_block.                  */
1064             if (bytes_hashed) {
1065                 bytes_remaining = (L1_KEY_LEN - bytes_hashed);
1066                 nh_update(&ctx->hash, (const UINT8 *)input, bytes_remaining);
1067                 nh_final(&ctx->hash, nh_result);
1068                 ctx->msg_len += bytes_remaining;
1069                 poly_hash(ctx,(UINT32 *)nh_result);
1070                 len -= bytes_remaining;
1071                 input += bytes_remaining;
1072             }
1073
1074             /* Hash directly from input stream if enough bytes */
1075             while (len >= L1_KEY_LEN) {
1076                 nh(&ctx->hash, (const UINT8 *)input, L1_KEY_LEN,
1077                                   L1_KEY_LEN, nh_result);
1078                 ctx->msg_len += L1_KEY_LEN;
1079                 len -= L1_KEY_LEN;
1080                 input += L1_KEY_LEN;
1081                 poly_hash(ctx,(UINT32 *)nh_result);
1082             }
1083         }
1084
1085         /* pass remaining < L1_KEY_LEN bytes of input data to NH */
1086         if (len) {
1087             nh_update(&ctx->hash, (const UINT8 *)input, len);
1088             ctx->msg_len += len;
1089         }
1090     }
1091
1092    return (1);
1093}
1094
1095/* ---------------------------------------------------------------------- */
1096
1097static int uhash_final(uhash_ctx_t ctx, u_char *res)
1098/* Incorporate any pending data, pad, and generate tag */
1099{
1100    UINT64 result_buf[STREAMS];
1101    UINT8 *nh_result = (UINT8 *)&result_buf;
1102
1103    if (ctx->msg_len > L1_KEY_LEN) {
1104        if (ctx->msg_len % L1_KEY_LEN) {
1105            nh_final(&ctx->hash, nh_result);
1106            poly_hash(ctx,(UINT32 *)nh_result);
1107        }
1108        ip_long(ctx, res);
1109    } else {
1110        nh_final(&ctx->hash, nh_result);
1111        ip_short(ctx,nh_result, res);
1112    }
1113    uhash_reset(ctx);
1114    return (1);
1115}
1116
1117/* ---------------------------------------------------------------------- */
1118
1119#if 0
1120static int uhash(uhash_ctx_t ahc, u_char *msg, long len, u_char *res)
1121/* assumes that msg is in a writable buffer of length divisible by */
1122/* L1_PAD_BOUNDARY. Bytes beyond msg[len] may be zeroed.           */
1123{
1124    UINT8 nh_result[STREAMS*sizeof(UINT64)];
1125    UINT32 nh_len;
1126    int extra_zeroes_needed;
1127
1128    /* If the message to be hashed is no longer than L1_HASH_LEN, we skip
1129     * the polyhash.
1130     */
1131    if (len <= L1_KEY_LEN) {
1132    	if (len == 0)                  /* If zero length messages will not */
1133    		nh_len = L1_PAD_BOUNDARY;  /* be seen, comment out this case   */
1134    	else
1135        	nh_len = ((len + (L1_PAD_BOUNDARY - 1)) & ~(L1_PAD_BOUNDARY - 1));
1136        extra_zeroes_needed = nh_len - len;
1137        zero_pad((UINT8 *)msg + len, extra_zeroes_needed);
1138        nh(&ahc->hash, (UINT8 *)msg, nh_len, len, nh_result);
1139        ip_short(ahc,nh_result, res);
1140    } else {
1141        /* Otherwise, we hash each L1_KEY_LEN chunk with NH, passing the NH
1142         * output to poly_hash().
1143         */
1144        do {
1145            nh(&ahc->hash, (UINT8 *)msg, L1_KEY_LEN, L1_KEY_LEN, nh_result);
1146            poly_hash(ahc,(UINT32 *)nh_result);
1147            len -= L1_KEY_LEN;
1148            msg += L1_KEY_LEN;
1149        } while (len >= L1_KEY_LEN);
1150        if (len) {
1151            nh_len = ((len + (L1_PAD_BOUNDARY - 1)) & ~(L1_PAD_BOUNDARY - 1));
1152            extra_zeroes_needed = nh_len - len;
1153            zero_pad((UINT8 *)msg + len, extra_zeroes_needed);
1154            nh(&ahc->hash, (UINT8 *)msg, nh_len, len, nh_result);
1155            poly_hash(ahc,(UINT32 *)nh_result);
1156        }
1157
1158        ip_long(ahc, res);
1159    }
1160
1161    uhash_reset(ahc);
1162    return 1;
1163}
1164#endif
1165
1166/* ---------------------------------------------------------------------- */
1167/* ---------------------------------------------------------------------- */
1168/* ----- Begin UMAC Section --------------------------------------------- */
1169/* ---------------------------------------------------------------------- */
1170/* ---------------------------------------------------------------------- */
1171
1172/* The UMAC interface has two interfaces, an all-at-once interface where
1173 * the entire message to be authenticated is passed to UMAC in one buffer,
1174 * and a sequential interface where the message is presented a little at a
1175 * time. The all-at-once is more optimaized than the sequential version and
1176 * should be preferred when the sequential interface is not required.
1177 */
1178struct umac_ctx {
1179    uhash_ctx hash;          /* Hash function for message compression    */
1180    pdf_ctx pdf;             /* PDF for hashed output                    */
1181    void *free_ptr;          /* Address to free this struct via          */
1182} umac_ctx;
1183
1184/* ---------------------------------------------------------------------- */
1185
1186#if 0
1187int umac_reset(struct umac_ctx *ctx)
1188/* Reset the hash function to begin a new authentication.        */
1189{
1190    uhash_reset(&ctx->hash);
1191    return (1);
1192}
1193#endif
1194
1195/* ---------------------------------------------------------------------- */
1196
1197int umac_delete(struct umac_ctx *ctx)
1198/* Deallocate the ctx structure */
1199{
1200    if (ctx) {
1201        if (ALLOC_BOUNDARY)
1202            ctx = (struct umac_ctx *)ctx->free_ptr;
1203        free(ctx);
1204    }
1205    return (1);
1206}
1207
1208/* ---------------------------------------------------------------------- */
1209
1210struct umac_ctx *umac_new(const u_char key[])
1211/* Dynamically allocate a umac_ctx struct, initialize variables,
1212 * generate subkeys from key. Align to 16-byte boundary.
1213 */
1214{
1215    struct umac_ctx *ctx, *octx;
1216    size_t bytes_to_add;
1217    aes_int_key prf_key;
1218
1219    octx = ctx = xcalloc(1, sizeof(*ctx) + ALLOC_BOUNDARY);
1220    if (ctx) {
1221        if (ALLOC_BOUNDARY) {
1222            bytes_to_add = ALLOC_BOUNDARY -
1223                              ((ptrdiff_t)ctx & (ALLOC_BOUNDARY - 1));
1224            ctx = (struct umac_ctx *)((u_char *)ctx + bytes_to_add);
1225        }
1226        ctx->free_ptr = octx;
1227        aes_key_setup(key, prf_key);
1228        pdf_init(&ctx->pdf, prf_key);
1229        uhash_init(&ctx->hash, prf_key);
1230    }
1231
1232    return (ctx);
1233}
1234
1235/* ---------------------------------------------------------------------- */
1236
1237int umac_final(struct umac_ctx *ctx, u_char tag[], const u_char nonce[8])
1238/* Incorporate any pending data, pad, and generate tag */
1239{
1240    uhash_final(&ctx->hash, (u_char *)tag);
1241    pdf_gen_xor(&ctx->pdf, (const UINT8 *)nonce, (UINT8 *)tag);
1242
1243    return (1);
1244}
1245
1246/* ---------------------------------------------------------------------- */
1247
1248int umac_update(struct umac_ctx *ctx, const u_char *input, long len)
1249/* Given len bytes of data, we parse it into L1_KEY_LEN chunks and   */
1250/* hash each one, calling the PDF on the hashed output whenever the hash- */
1251/* output buffer is full.                                                 */
1252{
1253    uhash_update(&ctx->hash, input, len);
1254    return (1);
1255}
1256
1257/* ---------------------------------------------------------------------- */
1258
1259#if 0
1260int umac(struct umac_ctx *ctx, u_char *input,
1261         long len, u_char tag[],
1262         u_char nonce[8])
1263/* All-in-one version simply calls umac_update() and umac_final().        */
1264{
1265    uhash(&ctx->hash, input, len, (u_char *)tag);
1266    pdf_gen_xor(&ctx->pdf, (UINT8 *)nonce, (UINT8 *)tag);
1267
1268    return (1);
1269}
1270#endif
1271
1272/* ---------------------------------------------------------------------- */
1273/* ---------------------------------------------------------------------- */
1274/* ----- End UMAC Section ----------------------------------------------- */
1275/* ---------------------------------------------------------------------- */
1276/* ---------------------------------------------------------------------- */
1277