umac.c revision 258343
1/* $OpenBSD: umac.c,v 1.8 2013/11/08 00:39:15 djm Exp $ */
2/* -----------------------------------------------------------------------
3 *
4 * umac.c -- C Implementation UMAC Message Authentication
5 *
6 * Version 0.93b of rfc4418.txt -- 2006 July 18
7 *
8 * For a full description of UMAC message authentication see the UMAC
9 * world-wide-web page at http://www.cs.ucdavis.edu/~rogaway/umac
10 * Please report bugs and suggestions to the UMAC webpage.
11 *
12 * Copyright (c) 1999-2006 Ted Krovetz
13 *
14 * Permission to use, copy, modify, and distribute this software and
15 * its documentation for any purpose and with or without fee, is hereby
16 * granted provided that the above copyright notice appears in all copies
17 * and in supporting documentation, and that the name of the copyright
18 * holder not be used in advertising or publicity pertaining to
19 * distribution of the software without specific, written prior permission.
20 *
21 * Comments should be directed to Ted Krovetz (tdk@acm.org)
22 *
23 * ---------------------------------------------------------------------- */
24
25 /* ////////////////////// IMPORTANT NOTES /////////////////////////////////
26  *
27  * 1) This version does not work properly on messages larger than 16MB
28  *
29  * 2) If you set the switch to use SSE2, then all data must be 16-byte
30  *    aligned
31  *
32  * 3) When calling the function umac(), it is assumed that msg is in
33  * a writable buffer of length divisible by 32 bytes. The message itself
34  * does not have to fill the entire buffer, but bytes beyond msg may be
35  * zeroed.
36  *
37  * 4) Three free AES implementations are supported by this implementation of
38  * UMAC. Paulo Barreto's version is in the public domain and can be found
39  * at http://www.esat.kuleuven.ac.be/~rijmen/rijndael/ (search for
40  * "Barreto"). The only two files needed are rijndael-alg-fst.c and
41  * rijndael-alg-fst.h. Brian Gladman's version is distributed with the GNU
42  * Public lisence at http://fp.gladman.plus.com/AES/index.htm. It
43  * includes a fast IA-32 assembly version. The OpenSSL crypo library is
44  * the third.
45  *
46  * 5) With FORCE_C_ONLY flags set to 0, incorrect results are sometimes
47  * produced under gcc with optimizations set -O3 or higher. Dunno why.
48  *
49  /////////////////////////////////////////////////////////////////////// */
50
51/* ---------------------------------------------------------------------- */
52/* --- User Switches ---------------------------------------------------- */
53/* ---------------------------------------------------------------------- */
54
55#ifndef UMAC_OUTPUT_LEN
56#define UMAC_OUTPUT_LEN     8  /* Alowable: 4, 8, 12, 16                  */
57#endif
58
59#if UMAC_OUTPUT_LEN != 4 && UMAC_OUTPUT_LEN != 8 && \
60    UMAC_OUTPUT_LEN != 12 && UMAC_OUTPUT_LEN != 16
61# error UMAC_OUTPUT_LEN must be defined to 4, 8, 12 or 16
62#endif
63
64/* #define FORCE_C_ONLY        1  ANSI C and 64-bit integers req'd        */
65/* #define AES_IMPLEMENTAION   1  1 = OpenSSL, 2 = Barreto, 3 = Gladman   */
66/* #define SSE2                0  Is SSE2 is available?                   */
67/* #define RUN_TESTS           0  Run basic correctness/speed tests       */
68/* #define UMAC_AE_SUPPORT     0  Enable auhthenticated encrytion         */
69
70/* ---------------------------------------------------------------------- */
71/* -- Global Includes --------------------------------------------------- */
72/* ---------------------------------------------------------------------- */
73
74#include "includes.h"
75#include <sys/types.h>
76
77#include "xmalloc.h"
78#include "umac.h"
79#include <string.h>
80#include <stdlib.h>
81#include <stddef.h>
82
83/* ---------------------------------------------------------------------- */
84/* --- Primitive Data Types ---                                           */
85/* ---------------------------------------------------------------------- */
86
87/* The following assumptions may need change on your system */
88typedef u_int8_t	UINT8;  /* 1 byte   */
89typedef u_int16_t	UINT16; /* 2 byte   */
90typedef u_int32_t	UINT32; /* 4 byte   */
91typedef u_int64_t	UINT64; /* 8 bytes  */
92typedef unsigned int	UWORD;  /* Register */
93
94/* ---------------------------------------------------------------------- */
95/* --- Constants -------------------------------------------------------- */
96/* ---------------------------------------------------------------------- */
97
98#define UMAC_KEY_LEN           16  /* UMAC takes 16 bytes of external key */
99
100/* Message "words" are read from memory in an endian-specific manner.     */
101/* For this implementation to behave correctly, __LITTLE_ENDIAN__ must    */
102/* be set true if the host computer is little-endian.                     */
103
104#if BYTE_ORDER == LITTLE_ENDIAN
105#define __LITTLE_ENDIAN__ 1
106#else
107#define __LITTLE_ENDIAN__ 0
108#endif
109
110/* ---------------------------------------------------------------------- */
111/* ---------------------------------------------------------------------- */
112/* ----- Architecture Specific ------------------------------------------ */
113/* ---------------------------------------------------------------------- */
114/* ---------------------------------------------------------------------- */
115
116
117/* ---------------------------------------------------------------------- */
118/* ---------------------------------------------------------------------- */
119/* ----- Primitive Routines --------------------------------------------- */
120/* ---------------------------------------------------------------------- */
121/* ---------------------------------------------------------------------- */
122
123
124/* ---------------------------------------------------------------------- */
125/* --- 32-bit by 32-bit to 64-bit Multiplication ------------------------ */
126/* ---------------------------------------------------------------------- */
127
128#define MUL64(a,b) ((UINT64)((UINT64)(UINT32)(a) * (UINT64)(UINT32)(b)))
129
130/* ---------------------------------------------------------------------- */
131/* --- Endian Conversion --- Forcing assembly on some platforms           */
132/* ---------------------------------------------------------------------- */
133
134#if HAVE_SWAP32
135#define LOAD_UINT32_REVERSED(p)		(swap32(*(const UINT32 *)(p)))
136#define STORE_UINT32_REVERSED(p,v) 	(*(UINT32 *)(p) = swap32(v))
137#else /* HAVE_SWAP32 */
138
139static UINT32 LOAD_UINT32_REVERSED(const void *ptr)
140{
141    UINT32 temp = *(const UINT32 *)ptr;
142    temp = (temp >> 24) | ((temp & 0x00FF0000) >> 8 )
143         | ((temp & 0x0000FF00) << 8 ) | (temp << 24);
144    return (UINT32)temp;
145}
146
147# if (__LITTLE_ENDIAN__)
148static void STORE_UINT32_REVERSED(void *ptr, UINT32 x)
149{
150    UINT32 i = (UINT32)x;
151    *(UINT32 *)ptr = (i >> 24) | ((i & 0x00FF0000) >> 8 )
152                   | ((i & 0x0000FF00) << 8 ) | (i << 24);
153}
154# endif /* __LITTLE_ENDIAN */
155#endif /* HAVE_SWAP32 */
156
157/* The following definitions use the above reversal-primitives to do the right
158 * thing on endian specific load and stores.
159 */
160
161#if (__LITTLE_ENDIAN__)
162#define LOAD_UINT32_LITTLE(ptr)     (*(const UINT32 *)(ptr))
163#define STORE_UINT32_BIG(ptr,x)     STORE_UINT32_REVERSED(ptr,x)
164#else
165#define LOAD_UINT32_LITTLE(ptr)     LOAD_UINT32_REVERSED(ptr)
166#define STORE_UINT32_BIG(ptr,x)     (*(UINT32 *)(ptr) = (UINT32)(x))
167#endif
168
169/* ---------------------------------------------------------------------- */
170/* ---------------------------------------------------------------------- */
171/* ----- Begin KDF & PDF Section ---------------------------------------- */
172/* ---------------------------------------------------------------------- */
173/* ---------------------------------------------------------------------- */
174
175/* UMAC uses AES with 16 byte block and key lengths */
176#define AES_BLOCK_LEN  16
177
178/* OpenSSL's AES */
179#include "openbsd-compat/openssl-compat.h"
180#ifndef USE_BUILTIN_RIJNDAEL
181# include <openssl/aes.h>
182#endif
183typedef AES_KEY aes_int_key[1];
184#define aes_encryption(in,out,int_key)                  \
185  AES_encrypt((u_char *)(in),(u_char *)(out),(AES_KEY *)int_key)
186#define aes_key_setup(key,int_key)                      \
187  AES_set_encrypt_key((const u_char *)(key),UMAC_KEY_LEN*8,int_key)
188
189/* The user-supplied UMAC key is stretched using AES in a counter
190 * mode to supply all random bits needed by UMAC. The kdf function takes
191 * an AES internal key representation 'key' and writes a stream of
192 * 'nbytes' bytes to the memory pointed at by 'bufp'. Each distinct
193 * 'ndx' causes a distinct byte stream.
194 */
195static void kdf(void *bufp, aes_int_key key, UINT8 ndx, int nbytes)
196{
197    UINT8 in_buf[AES_BLOCK_LEN] = {0};
198    UINT8 out_buf[AES_BLOCK_LEN];
199    UINT8 *dst_buf = (UINT8 *)bufp;
200    int i;
201
202    /* Setup the initial value */
203    in_buf[AES_BLOCK_LEN-9] = ndx;
204    in_buf[AES_BLOCK_LEN-1] = i = 1;
205
206    while (nbytes >= AES_BLOCK_LEN) {
207        aes_encryption(in_buf, out_buf, key);
208        memcpy(dst_buf,out_buf,AES_BLOCK_LEN);
209        in_buf[AES_BLOCK_LEN-1] = ++i;
210        nbytes -= AES_BLOCK_LEN;
211        dst_buf += AES_BLOCK_LEN;
212    }
213    if (nbytes) {
214        aes_encryption(in_buf, out_buf, key);
215        memcpy(dst_buf,out_buf,nbytes);
216    }
217}
218
219/* The final UHASH result is XOR'd with the output of a pseudorandom
220 * function. Here, we use AES to generate random output and
221 * xor the appropriate bytes depending on the last bits of nonce.
222 * This scheme is optimized for sequential, increasing big-endian nonces.
223 */
224
225typedef struct {
226    UINT8 cache[AES_BLOCK_LEN];  /* Previous AES output is saved      */
227    UINT8 nonce[AES_BLOCK_LEN];  /* The AES input making above cache  */
228    aes_int_key prf_key;         /* Expanded AES key for PDF          */
229} pdf_ctx;
230
231static void pdf_init(pdf_ctx *pc, aes_int_key prf_key)
232{
233    UINT8 buf[UMAC_KEY_LEN];
234
235    kdf(buf, prf_key, 0, UMAC_KEY_LEN);
236    aes_key_setup(buf, pc->prf_key);
237
238    /* Initialize pdf and cache */
239    memset(pc->nonce, 0, sizeof(pc->nonce));
240    aes_encryption(pc->nonce, pc->cache, pc->prf_key);
241}
242
243static void pdf_gen_xor(pdf_ctx *pc, const UINT8 nonce[8], UINT8 buf[8])
244{
245    /* 'ndx' indicates that we'll be using the 0th or 1st eight bytes
246     * of the AES output. If last time around we returned the ndx-1st
247     * element, then we may have the result in the cache already.
248     */
249
250#if (UMAC_OUTPUT_LEN == 4)
251#define LOW_BIT_MASK 3
252#elif (UMAC_OUTPUT_LEN == 8)
253#define LOW_BIT_MASK 1
254#elif (UMAC_OUTPUT_LEN > 8)
255#define LOW_BIT_MASK 0
256#endif
257    union {
258        UINT8 tmp_nonce_lo[4];
259        UINT32 align;
260    } t;
261#if LOW_BIT_MASK != 0
262    int ndx = nonce[7] & LOW_BIT_MASK;
263#endif
264    *(UINT32 *)t.tmp_nonce_lo = ((const UINT32 *)nonce)[1];
265    t.tmp_nonce_lo[3] &= ~LOW_BIT_MASK; /* zero last bit */
266
267    if ( (((UINT32 *)t.tmp_nonce_lo)[0] != ((UINT32 *)pc->nonce)[1]) ||
268         (((const UINT32 *)nonce)[0] != ((UINT32 *)pc->nonce)[0]) )
269    {
270        ((UINT32 *)pc->nonce)[0] = ((const UINT32 *)nonce)[0];
271        ((UINT32 *)pc->nonce)[1] = ((UINT32 *)t.tmp_nonce_lo)[0];
272        aes_encryption(pc->nonce, pc->cache, pc->prf_key);
273    }
274
275#if (UMAC_OUTPUT_LEN == 4)
276    *((UINT32 *)buf) ^= ((UINT32 *)pc->cache)[ndx];
277#elif (UMAC_OUTPUT_LEN == 8)
278    *((UINT64 *)buf) ^= ((UINT64 *)pc->cache)[ndx];
279#elif (UMAC_OUTPUT_LEN == 12)
280    ((UINT64 *)buf)[0] ^= ((UINT64 *)pc->cache)[0];
281    ((UINT32 *)buf)[2] ^= ((UINT32 *)pc->cache)[2];
282#elif (UMAC_OUTPUT_LEN == 16)
283    ((UINT64 *)buf)[0] ^= ((UINT64 *)pc->cache)[0];
284    ((UINT64 *)buf)[1] ^= ((UINT64 *)pc->cache)[1];
285#endif
286}
287
288/* ---------------------------------------------------------------------- */
289/* ---------------------------------------------------------------------- */
290/* ----- Begin NH Hash Section ------------------------------------------ */
291/* ---------------------------------------------------------------------- */
292/* ---------------------------------------------------------------------- */
293
294/* The NH-based hash functions used in UMAC are described in the UMAC paper
295 * and specification, both of which can be found at the UMAC website.
296 * The interface to this implementation has two
297 * versions, one expects the entire message being hashed to be passed
298 * in a single buffer and returns the hash result immediately. The second
299 * allows the message to be passed in a sequence of buffers. In the
300 * muliple-buffer interface, the client calls the routine nh_update() as
301 * many times as necessary. When there is no more data to be fed to the
302 * hash, the client calls nh_final() which calculates the hash output.
303 * Before beginning another hash calculation the nh_reset() routine
304 * must be called. The single-buffer routine, nh(), is equivalent to
305 * the sequence of calls nh_update() and nh_final(); however it is
306 * optimized and should be prefered whenever the multiple-buffer interface
307 * is not necessary. When using either interface, it is the client's
308 * responsability to pass no more than L1_KEY_LEN bytes per hash result.
309 *
310 * The routine nh_init() initializes the nh_ctx data structure and
311 * must be called once, before any other PDF routine.
312 */
313
314 /* The "nh_aux" routines do the actual NH hashing work. They
315  * expect buffers to be multiples of L1_PAD_BOUNDARY. These routines
316  * produce output for all STREAMS NH iterations in one call,
317  * allowing the parallel implementation of the streams.
318  */
319
320#define STREAMS (UMAC_OUTPUT_LEN / 4) /* Number of times hash is applied  */
321#define L1_KEY_LEN         1024     /* Internal key bytes                 */
322#define L1_KEY_SHIFT         16     /* Toeplitz key shift between streams */
323#define L1_PAD_BOUNDARY      32     /* pad message to boundary multiple   */
324#define ALLOC_BOUNDARY       16     /* Keep buffers aligned to this       */
325#define HASH_BUF_BYTES       64     /* nh_aux_hb buffer multiple          */
326
327typedef struct {
328    UINT8  nh_key [L1_KEY_LEN + L1_KEY_SHIFT * (STREAMS - 1)]; /* NH Key */
329    UINT8  data   [HASH_BUF_BYTES];    /* Incoming data buffer           */
330    int next_data_empty;    /* Bookeeping variable for data buffer.       */
331    int bytes_hashed;        /* Bytes (out of L1_KEY_LEN) incorperated.   */
332    UINT64 state[STREAMS];               /* on-line state     */
333} nh_ctx;
334
335
336#if (UMAC_OUTPUT_LEN == 4)
337
338static void nh_aux(void *kp, const void *dp, void *hp, UINT32 dlen)
339/* NH hashing primitive. Previous (partial) hash result is loaded and
340* then stored via hp pointer. The length of the data pointed at by "dp",
341* "dlen", is guaranteed to be divisible by L1_PAD_BOUNDARY (32).  Key
342* is expected to be endian compensated in memory at key setup.
343*/
344{
345    UINT64 h;
346    UWORD c = dlen / 32;
347    UINT32 *k = (UINT32 *)kp;
348    const UINT32 *d = (const UINT32 *)dp;
349    UINT32 d0,d1,d2,d3,d4,d5,d6,d7;
350    UINT32 k0,k1,k2,k3,k4,k5,k6,k7;
351
352    h = *((UINT64 *)hp);
353    do {
354        d0 = LOAD_UINT32_LITTLE(d+0); d1 = LOAD_UINT32_LITTLE(d+1);
355        d2 = LOAD_UINT32_LITTLE(d+2); d3 = LOAD_UINT32_LITTLE(d+3);
356        d4 = LOAD_UINT32_LITTLE(d+4); d5 = LOAD_UINT32_LITTLE(d+5);
357        d6 = LOAD_UINT32_LITTLE(d+6); d7 = LOAD_UINT32_LITTLE(d+7);
358        k0 = *(k+0); k1 = *(k+1); k2 = *(k+2); k3 = *(k+3);
359        k4 = *(k+4); k5 = *(k+5); k6 = *(k+6); k7 = *(k+7);
360        h += MUL64((k0 + d0), (k4 + d4));
361        h += MUL64((k1 + d1), (k5 + d5));
362        h += MUL64((k2 + d2), (k6 + d6));
363        h += MUL64((k3 + d3), (k7 + d7));
364
365        d += 8;
366        k += 8;
367    } while (--c);
368  *((UINT64 *)hp) = h;
369}
370
371#elif (UMAC_OUTPUT_LEN == 8)
372
373static void nh_aux(void *kp, const void *dp, void *hp, UINT32 dlen)
374/* Same as previous nh_aux, but two streams are handled in one pass,
375 * reading and writing 16 bytes of hash-state per call.
376 */
377{
378  UINT64 h1,h2;
379  UWORD c = dlen / 32;
380  UINT32 *k = (UINT32 *)kp;
381  const UINT32 *d = (const UINT32 *)dp;
382  UINT32 d0,d1,d2,d3,d4,d5,d6,d7;
383  UINT32 k0,k1,k2,k3,k4,k5,k6,k7,
384        k8,k9,k10,k11;
385
386  h1 = *((UINT64 *)hp);
387  h2 = *((UINT64 *)hp + 1);
388  k0 = *(k+0); k1 = *(k+1); k2 = *(k+2); k3 = *(k+3);
389  do {
390    d0 = LOAD_UINT32_LITTLE(d+0); d1 = LOAD_UINT32_LITTLE(d+1);
391    d2 = LOAD_UINT32_LITTLE(d+2); d3 = LOAD_UINT32_LITTLE(d+3);
392    d4 = LOAD_UINT32_LITTLE(d+4); d5 = LOAD_UINT32_LITTLE(d+5);
393    d6 = LOAD_UINT32_LITTLE(d+6); d7 = LOAD_UINT32_LITTLE(d+7);
394    k4 = *(k+4); k5 = *(k+5); k6 = *(k+6); k7 = *(k+7);
395    k8 = *(k+8); k9 = *(k+9); k10 = *(k+10); k11 = *(k+11);
396
397    h1 += MUL64((k0 + d0), (k4 + d4));
398    h2 += MUL64((k4 + d0), (k8 + d4));
399
400    h1 += MUL64((k1 + d1), (k5 + d5));
401    h2 += MUL64((k5 + d1), (k9 + d5));
402
403    h1 += MUL64((k2 + d2), (k6 + d6));
404    h2 += MUL64((k6 + d2), (k10 + d6));
405
406    h1 += MUL64((k3 + d3), (k7 + d7));
407    h2 += MUL64((k7 + d3), (k11 + d7));
408
409    k0 = k8; k1 = k9; k2 = k10; k3 = k11;
410
411    d += 8;
412    k += 8;
413  } while (--c);
414  ((UINT64 *)hp)[0] = h1;
415  ((UINT64 *)hp)[1] = h2;
416}
417
418#elif (UMAC_OUTPUT_LEN == 12)
419
420static void nh_aux(void *kp, const void *dp, void *hp, UINT32 dlen)
421/* Same as previous nh_aux, but two streams are handled in one pass,
422 * reading and writing 24 bytes of hash-state per call.
423*/
424{
425    UINT64 h1,h2,h3;
426    UWORD c = dlen / 32;
427    UINT32 *k = (UINT32 *)kp;
428    const UINT32 *d = (const UINT32 *)dp;
429    UINT32 d0,d1,d2,d3,d4,d5,d6,d7;
430    UINT32 k0,k1,k2,k3,k4,k5,k6,k7,
431        k8,k9,k10,k11,k12,k13,k14,k15;
432
433    h1 = *((UINT64 *)hp);
434    h2 = *((UINT64 *)hp + 1);
435    h3 = *((UINT64 *)hp + 2);
436    k0 = *(k+0); k1 = *(k+1); k2 = *(k+2); k3 = *(k+3);
437    k4 = *(k+4); k5 = *(k+5); k6 = *(k+6); k7 = *(k+7);
438    do {
439        d0 = LOAD_UINT32_LITTLE(d+0); d1 = LOAD_UINT32_LITTLE(d+1);
440        d2 = LOAD_UINT32_LITTLE(d+2); d3 = LOAD_UINT32_LITTLE(d+3);
441        d4 = LOAD_UINT32_LITTLE(d+4); d5 = LOAD_UINT32_LITTLE(d+5);
442        d6 = LOAD_UINT32_LITTLE(d+6); d7 = LOAD_UINT32_LITTLE(d+7);
443        k8 = *(k+8); k9 = *(k+9); k10 = *(k+10); k11 = *(k+11);
444        k12 = *(k+12); k13 = *(k+13); k14 = *(k+14); k15 = *(k+15);
445
446        h1 += MUL64((k0 + d0), (k4 + d4));
447        h2 += MUL64((k4 + d0), (k8 + d4));
448        h3 += MUL64((k8 + d0), (k12 + d4));
449
450        h1 += MUL64((k1 + d1), (k5 + d5));
451        h2 += MUL64((k5 + d1), (k9 + d5));
452        h3 += MUL64((k9 + d1), (k13 + d5));
453
454        h1 += MUL64((k2 + d2), (k6 + d6));
455        h2 += MUL64((k6 + d2), (k10 + d6));
456        h3 += MUL64((k10 + d2), (k14 + d6));
457
458        h1 += MUL64((k3 + d3), (k7 + d7));
459        h2 += MUL64((k7 + d3), (k11 + d7));
460        h3 += MUL64((k11 + d3), (k15 + d7));
461
462        k0 = k8; k1 = k9; k2 = k10; k3 = k11;
463        k4 = k12; k5 = k13; k6 = k14; k7 = k15;
464
465        d += 8;
466        k += 8;
467    } while (--c);
468    ((UINT64 *)hp)[0] = h1;
469    ((UINT64 *)hp)[1] = h2;
470    ((UINT64 *)hp)[2] = h3;
471}
472
473#elif (UMAC_OUTPUT_LEN == 16)
474
475static void nh_aux(void *kp, const void *dp, void *hp, UINT32 dlen)
476/* Same as previous nh_aux, but two streams are handled in one pass,
477 * reading and writing 24 bytes of hash-state per call.
478*/
479{
480    UINT64 h1,h2,h3,h4;
481    UWORD c = dlen / 32;
482    UINT32 *k = (UINT32 *)kp;
483    const UINT32 *d = (const UINT32 *)dp;
484    UINT32 d0,d1,d2,d3,d4,d5,d6,d7;
485    UINT32 k0,k1,k2,k3,k4,k5,k6,k7,
486        k8,k9,k10,k11,k12,k13,k14,k15,
487        k16,k17,k18,k19;
488
489    h1 = *((UINT64 *)hp);
490    h2 = *((UINT64 *)hp + 1);
491    h3 = *((UINT64 *)hp + 2);
492    h4 = *((UINT64 *)hp + 3);
493    k0 = *(k+0); k1 = *(k+1); k2 = *(k+2); k3 = *(k+3);
494    k4 = *(k+4); k5 = *(k+5); k6 = *(k+6); k7 = *(k+7);
495    do {
496        d0 = LOAD_UINT32_LITTLE(d+0); d1 = LOAD_UINT32_LITTLE(d+1);
497        d2 = LOAD_UINT32_LITTLE(d+2); d3 = LOAD_UINT32_LITTLE(d+3);
498        d4 = LOAD_UINT32_LITTLE(d+4); d5 = LOAD_UINT32_LITTLE(d+5);
499        d6 = LOAD_UINT32_LITTLE(d+6); d7 = LOAD_UINT32_LITTLE(d+7);
500        k8 = *(k+8); k9 = *(k+9); k10 = *(k+10); k11 = *(k+11);
501        k12 = *(k+12); k13 = *(k+13); k14 = *(k+14); k15 = *(k+15);
502        k16 = *(k+16); k17 = *(k+17); k18 = *(k+18); k19 = *(k+19);
503
504        h1 += MUL64((k0 + d0), (k4 + d4));
505        h2 += MUL64((k4 + d0), (k8 + d4));
506        h3 += MUL64((k8 + d0), (k12 + d4));
507        h4 += MUL64((k12 + d0), (k16 + d4));
508
509        h1 += MUL64((k1 + d1), (k5 + d5));
510        h2 += MUL64((k5 + d1), (k9 + d5));
511        h3 += MUL64((k9 + d1), (k13 + d5));
512        h4 += MUL64((k13 + d1), (k17 + d5));
513
514        h1 += MUL64((k2 + d2), (k6 + d6));
515        h2 += MUL64((k6 + d2), (k10 + d6));
516        h3 += MUL64((k10 + d2), (k14 + d6));
517        h4 += MUL64((k14 + d2), (k18 + d6));
518
519        h1 += MUL64((k3 + d3), (k7 + d7));
520        h2 += MUL64((k7 + d3), (k11 + d7));
521        h3 += MUL64((k11 + d3), (k15 + d7));
522        h4 += MUL64((k15 + d3), (k19 + d7));
523
524        k0 = k8; k1 = k9; k2 = k10; k3 = k11;
525        k4 = k12; k5 = k13; k6 = k14; k7 = k15;
526        k8 = k16; k9 = k17; k10 = k18; k11 = k19;
527
528        d += 8;
529        k += 8;
530    } while (--c);
531    ((UINT64 *)hp)[0] = h1;
532    ((UINT64 *)hp)[1] = h2;
533    ((UINT64 *)hp)[2] = h3;
534    ((UINT64 *)hp)[3] = h4;
535}
536
537/* ---------------------------------------------------------------------- */
538#endif  /* UMAC_OUTPUT_LENGTH */
539/* ---------------------------------------------------------------------- */
540
541
542/* ---------------------------------------------------------------------- */
543
544static void nh_transform(nh_ctx *hc, const UINT8 *buf, UINT32 nbytes)
545/* This function is a wrapper for the primitive NH hash functions. It takes
546 * as argument "hc" the current hash context and a buffer which must be a
547 * multiple of L1_PAD_BOUNDARY. The key passed to nh_aux is offset
548 * appropriately according to how much message has been hashed already.
549 */
550{
551    UINT8 *key;
552
553    key = hc->nh_key + hc->bytes_hashed;
554    nh_aux(key, buf, hc->state, nbytes);
555}
556
557/* ---------------------------------------------------------------------- */
558
559#if (__LITTLE_ENDIAN__)
560static void endian_convert(void *buf, UWORD bpw, UINT32 num_bytes)
561/* We endian convert the keys on little-endian computers to               */
562/* compensate for the lack of big-endian memory reads during hashing.     */
563{
564    UWORD iters = num_bytes / bpw;
565    if (bpw == 4) {
566        UINT32 *p = (UINT32 *)buf;
567        do {
568            *p = LOAD_UINT32_REVERSED(p);
569            p++;
570        } while (--iters);
571    } else if (bpw == 8) {
572        UINT32 *p = (UINT32 *)buf;
573        UINT32 t;
574        do {
575            t = LOAD_UINT32_REVERSED(p+1);
576            p[1] = LOAD_UINT32_REVERSED(p);
577            p[0] = t;
578            p += 2;
579        } while (--iters);
580    }
581}
582#define endian_convert_if_le(x,y,z) endian_convert((x),(y),(z))
583#else
584#define endian_convert_if_le(x,y,z) do{}while(0)  /* Do nothing */
585#endif
586
587/* ---------------------------------------------------------------------- */
588
589static void nh_reset(nh_ctx *hc)
590/* Reset nh_ctx to ready for hashing of new data */
591{
592    hc->bytes_hashed = 0;
593    hc->next_data_empty = 0;
594    hc->state[0] = 0;
595#if (UMAC_OUTPUT_LEN >= 8)
596    hc->state[1] = 0;
597#endif
598#if (UMAC_OUTPUT_LEN >= 12)
599    hc->state[2] = 0;
600#endif
601#if (UMAC_OUTPUT_LEN == 16)
602    hc->state[3] = 0;
603#endif
604
605}
606
607/* ---------------------------------------------------------------------- */
608
609static void nh_init(nh_ctx *hc, aes_int_key prf_key)
610/* Generate nh_key, endian convert and reset to be ready for hashing.   */
611{
612    kdf(hc->nh_key, prf_key, 1, sizeof(hc->nh_key));
613    endian_convert_if_le(hc->nh_key, 4, sizeof(hc->nh_key));
614    nh_reset(hc);
615}
616
617/* ---------------------------------------------------------------------- */
618
619static void nh_update(nh_ctx *hc, const UINT8 *buf, UINT32 nbytes)
620/* Incorporate nbytes of data into a nh_ctx, buffer whatever is not an    */
621/* even multiple of HASH_BUF_BYTES.                                       */
622{
623    UINT32 i,j;
624
625    j = hc->next_data_empty;
626    if ((j + nbytes) >= HASH_BUF_BYTES) {
627        if (j) {
628            i = HASH_BUF_BYTES - j;
629            memcpy(hc->data+j, buf, i);
630            nh_transform(hc,hc->data,HASH_BUF_BYTES);
631            nbytes -= i;
632            buf += i;
633            hc->bytes_hashed += HASH_BUF_BYTES;
634        }
635        if (nbytes >= HASH_BUF_BYTES) {
636            i = nbytes & ~(HASH_BUF_BYTES - 1);
637            nh_transform(hc, buf, i);
638            nbytes -= i;
639            buf += i;
640            hc->bytes_hashed += i;
641        }
642        j = 0;
643    }
644    memcpy(hc->data + j, buf, nbytes);
645    hc->next_data_empty = j + nbytes;
646}
647
648/* ---------------------------------------------------------------------- */
649
650static void zero_pad(UINT8 *p, int nbytes)
651{
652/* Write "nbytes" of zeroes, beginning at "p" */
653    if (nbytes >= (int)sizeof(UWORD)) {
654        while ((ptrdiff_t)p % sizeof(UWORD)) {
655            *p = 0;
656            nbytes--;
657            p++;
658        }
659        while (nbytes >= (int)sizeof(UWORD)) {
660            *(UWORD *)p = 0;
661            nbytes -= sizeof(UWORD);
662            p += sizeof(UWORD);
663        }
664    }
665    while (nbytes) {
666        *p = 0;
667        nbytes--;
668        p++;
669    }
670}
671
672/* ---------------------------------------------------------------------- */
673
674static void nh_final(nh_ctx *hc, UINT8 *result)
675/* After passing some number of data buffers to nh_update() for integration
676 * into an NH context, nh_final is called to produce a hash result. If any
677 * bytes are in the buffer hc->data, incorporate them into the
678 * NH context. Finally, add into the NH accumulation "state" the total number
679 * of bits hashed. The resulting numbers are written to the buffer "result".
680 * If nh_update was never called, L1_PAD_BOUNDARY zeroes are incorporated.
681 */
682{
683    int nh_len, nbits;
684
685    if (hc->next_data_empty != 0) {
686        nh_len = ((hc->next_data_empty + (L1_PAD_BOUNDARY - 1)) &
687                                                ~(L1_PAD_BOUNDARY - 1));
688        zero_pad(hc->data + hc->next_data_empty,
689                                          nh_len - hc->next_data_empty);
690        nh_transform(hc, hc->data, nh_len);
691        hc->bytes_hashed += hc->next_data_empty;
692    } else if (hc->bytes_hashed == 0) {
693    	nh_len = L1_PAD_BOUNDARY;
694        zero_pad(hc->data, L1_PAD_BOUNDARY);
695        nh_transform(hc, hc->data, nh_len);
696    }
697
698    nbits = (hc->bytes_hashed << 3);
699    ((UINT64 *)result)[0] = ((UINT64 *)hc->state)[0] + nbits;
700#if (UMAC_OUTPUT_LEN >= 8)
701    ((UINT64 *)result)[1] = ((UINT64 *)hc->state)[1] + nbits;
702#endif
703#if (UMAC_OUTPUT_LEN >= 12)
704    ((UINT64 *)result)[2] = ((UINT64 *)hc->state)[2] + nbits;
705#endif
706#if (UMAC_OUTPUT_LEN == 16)
707    ((UINT64 *)result)[3] = ((UINT64 *)hc->state)[3] + nbits;
708#endif
709    nh_reset(hc);
710}
711
712/* ---------------------------------------------------------------------- */
713
714static void nh(nh_ctx *hc, const UINT8 *buf, UINT32 padded_len,
715               UINT32 unpadded_len, UINT8 *result)
716/* All-in-one nh_update() and nh_final() equivalent.
717 * Assumes that padded_len is divisible by L1_PAD_BOUNDARY and result is
718 * well aligned
719 */
720{
721    UINT32 nbits;
722
723    /* Initialize the hash state */
724    nbits = (unpadded_len << 3);
725
726    ((UINT64 *)result)[0] = nbits;
727#if (UMAC_OUTPUT_LEN >= 8)
728    ((UINT64 *)result)[1] = nbits;
729#endif
730#if (UMAC_OUTPUT_LEN >= 12)
731    ((UINT64 *)result)[2] = nbits;
732#endif
733#if (UMAC_OUTPUT_LEN == 16)
734    ((UINT64 *)result)[3] = nbits;
735#endif
736
737    nh_aux(hc->nh_key, buf, result, padded_len);
738}
739
740/* ---------------------------------------------------------------------- */
741/* ---------------------------------------------------------------------- */
742/* ----- Begin UHASH Section -------------------------------------------- */
743/* ---------------------------------------------------------------------- */
744/* ---------------------------------------------------------------------- */
745
746/* UHASH is a multi-layered algorithm. Data presented to UHASH is first
747 * hashed by NH. The NH output is then hashed by a polynomial-hash layer
748 * unless the initial data to be hashed is short. After the polynomial-
749 * layer, an inner-product hash is used to produce the final UHASH output.
750 *
751 * UHASH provides two interfaces, one all-at-once and another where data
752 * buffers are presented sequentially. In the sequential interface, the
753 * UHASH client calls the routine uhash_update() as many times as necessary.
754 * When there is no more data to be fed to UHASH, the client calls
755 * uhash_final() which
756 * calculates the UHASH output. Before beginning another UHASH calculation
757 * the uhash_reset() routine must be called. The all-at-once UHASH routine,
758 * uhash(), is equivalent to the sequence of calls uhash_update() and
759 * uhash_final(); however it is optimized and should be
760 * used whenever the sequential interface is not necessary.
761 *
762 * The routine uhash_init() initializes the uhash_ctx data structure and
763 * must be called once, before any other UHASH routine.
764 */
765
766/* ---------------------------------------------------------------------- */
767/* ----- Constants and uhash_ctx ---------------------------------------- */
768/* ---------------------------------------------------------------------- */
769
770/* ---------------------------------------------------------------------- */
771/* ----- Poly hash and Inner-Product hash Constants --------------------- */
772/* ---------------------------------------------------------------------- */
773
774/* Primes and masks */
775#define p36    ((UINT64)0x0000000FFFFFFFFBull)              /* 2^36 -  5 */
776#define p64    ((UINT64)0xFFFFFFFFFFFFFFC5ull)              /* 2^64 - 59 */
777#define m36    ((UINT64)0x0000000FFFFFFFFFull)  /* The low 36 of 64 bits */
778
779
780/* ---------------------------------------------------------------------- */
781
782typedef struct uhash_ctx {
783    nh_ctx hash;                          /* Hash context for L1 NH hash  */
784    UINT64 poly_key_8[STREAMS];           /* p64 poly keys                */
785    UINT64 poly_accum[STREAMS];           /* poly hash result             */
786    UINT64 ip_keys[STREAMS*4];            /* Inner-product keys           */
787    UINT32 ip_trans[STREAMS];             /* Inner-product translation    */
788    UINT32 msg_len;                       /* Total length of data passed  */
789                                          /* to uhash */
790} uhash_ctx;
791typedef struct uhash_ctx *uhash_ctx_t;
792
793/* ---------------------------------------------------------------------- */
794
795
796/* The polynomial hashes use Horner's rule to evaluate a polynomial one
797 * word at a time. As described in the specification, poly32 and poly64
798 * require keys from special domains. The following implementations exploit
799 * the special domains to avoid overflow. The results are not guaranteed to
800 * be within Z_p32 and Z_p64, but the Inner-Product hash implementation
801 * patches any errant values.
802 */
803
804static UINT64 poly64(UINT64 cur, UINT64 key, UINT64 data)
805{
806    UINT32 key_hi = (UINT32)(key >> 32),
807           key_lo = (UINT32)key,
808           cur_hi = (UINT32)(cur >> 32),
809           cur_lo = (UINT32)cur,
810           x_lo,
811           x_hi;
812    UINT64 X,T,res;
813
814    X =  MUL64(key_hi, cur_lo) + MUL64(cur_hi, key_lo);
815    x_lo = (UINT32)X;
816    x_hi = (UINT32)(X >> 32);
817
818    res = (MUL64(key_hi, cur_hi) + x_hi) * 59 + MUL64(key_lo, cur_lo);
819
820    T = ((UINT64)x_lo << 32);
821    res += T;
822    if (res < T)
823        res += 59;
824
825    res += data;
826    if (res < data)
827        res += 59;
828
829    return res;
830}
831
832
833/* Although UMAC is specified to use a ramped polynomial hash scheme, this
834 * implementation does not handle all ramp levels. Because we don't handle
835 * the ramp up to p128 modulus in this implementation, we are limited to
836 * 2^14 poly_hash() invocations per stream (for a total capacity of 2^24
837 * bytes input to UMAC per tag, ie. 16MB).
838 */
839static void poly_hash(uhash_ctx_t hc, UINT32 data_in[])
840{
841    int i;
842    UINT64 *data=(UINT64*)data_in;
843
844    for (i = 0; i < STREAMS; i++) {
845        if ((UINT32)(data[i] >> 32) == 0xfffffffful) {
846            hc->poly_accum[i] = poly64(hc->poly_accum[i],
847                                       hc->poly_key_8[i], p64 - 1);
848            hc->poly_accum[i] = poly64(hc->poly_accum[i],
849                                       hc->poly_key_8[i], (data[i] - 59));
850        } else {
851            hc->poly_accum[i] = poly64(hc->poly_accum[i],
852                                       hc->poly_key_8[i], data[i]);
853        }
854    }
855}
856
857
858/* ---------------------------------------------------------------------- */
859
860
861/* The final step in UHASH is an inner-product hash. The poly hash
862 * produces a result not neccesarily WORD_LEN bytes long. The inner-
863 * product hash breaks the polyhash output into 16-bit chunks and
864 * multiplies each with a 36 bit key.
865 */
866
867static UINT64 ip_aux(UINT64 t, UINT64 *ipkp, UINT64 data)
868{
869    t = t + ipkp[0] * (UINT64)(UINT16)(data >> 48);
870    t = t + ipkp[1] * (UINT64)(UINT16)(data >> 32);
871    t = t + ipkp[2] * (UINT64)(UINT16)(data >> 16);
872    t = t + ipkp[3] * (UINT64)(UINT16)(data);
873
874    return t;
875}
876
877static UINT32 ip_reduce_p36(UINT64 t)
878{
879/* Divisionless modular reduction */
880    UINT64 ret;
881
882    ret = (t & m36) + 5 * (t >> 36);
883    if (ret >= p36)
884        ret -= p36;
885
886    /* return least significant 32 bits */
887    return (UINT32)(ret);
888}
889
890
891/* If the data being hashed by UHASH is no longer than L1_KEY_LEN, then
892 * the polyhash stage is skipped and ip_short is applied directly to the
893 * NH output.
894 */
895static void ip_short(uhash_ctx_t ahc, UINT8 *nh_res, u_char *res)
896{
897    UINT64 t;
898    UINT64 *nhp = (UINT64 *)nh_res;
899
900    t  = ip_aux(0,ahc->ip_keys, nhp[0]);
901    STORE_UINT32_BIG((UINT32 *)res+0, ip_reduce_p36(t) ^ ahc->ip_trans[0]);
902#if (UMAC_OUTPUT_LEN >= 8)
903    t  = ip_aux(0,ahc->ip_keys+4, nhp[1]);
904    STORE_UINT32_BIG((UINT32 *)res+1, ip_reduce_p36(t) ^ ahc->ip_trans[1]);
905#endif
906#if (UMAC_OUTPUT_LEN >= 12)
907    t  = ip_aux(0,ahc->ip_keys+8, nhp[2]);
908    STORE_UINT32_BIG((UINT32 *)res+2, ip_reduce_p36(t) ^ ahc->ip_trans[2]);
909#endif
910#if (UMAC_OUTPUT_LEN == 16)
911    t  = ip_aux(0,ahc->ip_keys+12, nhp[3]);
912    STORE_UINT32_BIG((UINT32 *)res+3, ip_reduce_p36(t) ^ ahc->ip_trans[3]);
913#endif
914}
915
916/* If the data being hashed by UHASH is longer than L1_KEY_LEN, then
917 * the polyhash stage is not skipped and ip_long is applied to the
918 * polyhash output.
919 */
920static void ip_long(uhash_ctx_t ahc, u_char *res)
921{
922    int i;
923    UINT64 t;
924
925    for (i = 0; i < STREAMS; i++) {
926        /* fix polyhash output not in Z_p64 */
927        if (ahc->poly_accum[i] >= p64)
928            ahc->poly_accum[i] -= p64;
929        t  = ip_aux(0,ahc->ip_keys+(i*4), ahc->poly_accum[i]);
930        STORE_UINT32_BIG((UINT32 *)res+i,
931                         ip_reduce_p36(t) ^ ahc->ip_trans[i]);
932    }
933}
934
935
936/* ---------------------------------------------------------------------- */
937
938/* ---------------------------------------------------------------------- */
939
940/* Reset uhash context for next hash session */
941static int uhash_reset(uhash_ctx_t pc)
942{
943    nh_reset(&pc->hash);
944    pc->msg_len = 0;
945    pc->poly_accum[0] = 1;
946#if (UMAC_OUTPUT_LEN >= 8)
947    pc->poly_accum[1] = 1;
948#endif
949#if (UMAC_OUTPUT_LEN >= 12)
950    pc->poly_accum[2] = 1;
951#endif
952#if (UMAC_OUTPUT_LEN == 16)
953    pc->poly_accum[3] = 1;
954#endif
955    return 1;
956}
957
958/* ---------------------------------------------------------------------- */
959
960/* Given a pointer to the internal key needed by kdf() and a uhash context,
961 * initialize the NH context and generate keys needed for poly and inner-
962 * product hashing. All keys are endian adjusted in memory so that native
963 * loads cause correct keys to be in registers during calculation.
964 */
965static void uhash_init(uhash_ctx_t ahc, aes_int_key prf_key)
966{
967    int i;
968    UINT8 buf[(8*STREAMS+4)*sizeof(UINT64)];
969
970    /* Zero the entire uhash context */
971    memset(ahc, 0, sizeof(uhash_ctx));
972
973    /* Initialize the L1 hash */
974    nh_init(&ahc->hash, prf_key);
975
976    /* Setup L2 hash variables */
977    kdf(buf, prf_key, 2, sizeof(buf));    /* Fill buffer with index 1 key */
978    for (i = 0; i < STREAMS; i++) {
979        /* Fill keys from the buffer, skipping bytes in the buffer not
980         * used by this implementation. Endian reverse the keys if on a
981         * little-endian computer.
982         */
983        memcpy(ahc->poly_key_8+i, buf+24*i, 8);
984        endian_convert_if_le(ahc->poly_key_8+i, 8, 8);
985        /* Mask the 64-bit keys to their special domain */
986        ahc->poly_key_8[i] &= ((UINT64)0x01ffffffu << 32) + 0x01ffffffu;
987        ahc->poly_accum[i] = 1;  /* Our polyhash prepends a non-zero word */
988    }
989
990    /* Setup L3-1 hash variables */
991    kdf(buf, prf_key, 3, sizeof(buf)); /* Fill buffer with index 2 key */
992    for (i = 0; i < STREAMS; i++)
993          memcpy(ahc->ip_keys+4*i, buf+(8*i+4)*sizeof(UINT64),
994                                                 4*sizeof(UINT64));
995    endian_convert_if_le(ahc->ip_keys, sizeof(UINT64),
996                                                  sizeof(ahc->ip_keys));
997    for (i = 0; i < STREAMS*4; i++)
998        ahc->ip_keys[i] %= p36;  /* Bring into Z_p36 */
999
1000    /* Setup L3-2 hash variables    */
1001    /* Fill buffer with index 4 key */
1002    kdf(ahc->ip_trans, prf_key, 4, STREAMS * sizeof(UINT32));
1003    endian_convert_if_le(ahc->ip_trans, sizeof(UINT32),
1004                         STREAMS * sizeof(UINT32));
1005}
1006
1007/* ---------------------------------------------------------------------- */
1008
1009#if 0
1010static uhash_ctx_t uhash_alloc(u_char key[])
1011{
1012/* Allocate memory and force to a 16-byte boundary. */
1013    uhash_ctx_t ctx;
1014    u_char bytes_to_add;
1015    aes_int_key prf_key;
1016
1017    ctx = (uhash_ctx_t)malloc(sizeof(uhash_ctx)+ALLOC_BOUNDARY);
1018    if (ctx) {
1019        if (ALLOC_BOUNDARY) {
1020            bytes_to_add = ALLOC_BOUNDARY -
1021                              ((ptrdiff_t)ctx & (ALLOC_BOUNDARY -1));
1022            ctx = (uhash_ctx_t)((u_char *)ctx + bytes_to_add);
1023            *((u_char *)ctx - 1) = bytes_to_add;
1024        }
1025        aes_key_setup(key,prf_key);
1026        uhash_init(ctx, prf_key);
1027    }
1028    return (ctx);
1029}
1030#endif
1031
1032/* ---------------------------------------------------------------------- */
1033
1034#if 0
1035static int uhash_free(uhash_ctx_t ctx)
1036{
1037/* Free memory allocated by uhash_alloc */
1038    u_char bytes_to_sub;
1039
1040    if (ctx) {
1041        if (ALLOC_BOUNDARY) {
1042            bytes_to_sub = *((u_char *)ctx - 1);
1043            ctx = (uhash_ctx_t)((u_char *)ctx - bytes_to_sub);
1044        }
1045        free(ctx);
1046    }
1047    return (1);
1048}
1049#endif
1050/* ---------------------------------------------------------------------- */
1051
1052static int uhash_update(uhash_ctx_t ctx, const u_char *input, long len)
1053/* Given len bytes of data, we parse it into L1_KEY_LEN chunks and
1054 * hash each one with NH, calling the polyhash on each NH output.
1055 */
1056{
1057    UWORD bytes_hashed, bytes_remaining;
1058    UINT64 result_buf[STREAMS];
1059    UINT8 *nh_result = (UINT8 *)&result_buf;
1060
1061    if (ctx->msg_len + len <= L1_KEY_LEN) {
1062        nh_update(&ctx->hash, (const UINT8 *)input, len);
1063        ctx->msg_len += len;
1064    } else {
1065
1066         bytes_hashed = ctx->msg_len % L1_KEY_LEN;
1067         if (ctx->msg_len == L1_KEY_LEN)
1068             bytes_hashed = L1_KEY_LEN;
1069
1070         if (bytes_hashed + len >= L1_KEY_LEN) {
1071
1072             /* If some bytes have been passed to the hash function      */
1073             /* then we want to pass at most (L1_KEY_LEN - bytes_hashed) */
1074             /* bytes to complete the current nh_block.                  */
1075             if (bytes_hashed) {
1076                 bytes_remaining = (L1_KEY_LEN - bytes_hashed);
1077                 nh_update(&ctx->hash, (const UINT8 *)input, bytes_remaining);
1078                 nh_final(&ctx->hash, nh_result);
1079                 ctx->msg_len += bytes_remaining;
1080                 poly_hash(ctx,(UINT32 *)nh_result);
1081                 len -= bytes_remaining;
1082                 input += bytes_remaining;
1083             }
1084
1085             /* Hash directly from input stream if enough bytes */
1086             while (len >= L1_KEY_LEN) {
1087                 nh(&ctx->hash, (const UINT8 *)input, L1_KEY_LEN,
1088                                   L1_KEY_LEN, nh_result);
1089                 ctx->msg_len += L1_KEY_LEN;
1090                 len -= L1_KEY_LEN;
1091                 input += L1_KEY_LEN;
1092                 poly_hash(ctx,(UINT32 *)nh_result);
1093             }
1094         }
1095
1096         /* pass remaining < L1_KEY_LEN bytes of input data to NH */
1097         if (len) {
1098             nh_update(&ctx->hash, (const UINT8 *)input, len);
1099             ctx->msg_len += len;
1100         }
1101     }
1102
1103    return (1);
1104}
1105
1106/* ---------------------------------------------------------------------- */
1107
1108static int uhash_final(uhash_ctx_t ctx, u_char *res)
1109/* Incorporate any pending data, pad, and generate tag */
1110{
1111    UINT64 result_buf[STREAMS];
1112    UINT8 *nh_result = (UINT8 *)&result_buf;
1113
1114    if (ctx->msg_len > L1_KEY_LEN) {
1115        if (ctx->msg_len % L1_KEY_LEN) {
1116            nh_final(&ctx->hash, nh_result);
1117            poly_hash(ctx,(UINT32 *)nh_result);
1118        }
1119        ip_long(ctx, res);
1120    } else {
1121        nh_final(&ctx->hash, nh_result);
1122        ip_short(ctx,nh_result, res);
1123    }
1124    uhash_reset(ctx);
1125    return (1);
1126}
1127
1128/* ---------------------------------------------------------------------- */
1129
1130#if 0
1131static int uhash(uhash_ctx_t ahc, u_char *msg, long len, u_char *res)
1132/* assumes that msg is in a writable buffer of length divisible by */
1133/* L1_PAD_BOUNDARY. Bytes beyond msg[len] may be zeroed.           */
1134{
1135    UINT8 nh_result[STREAMS*sizeof(UINT64)];
1136    UINT32 nh_len;
1137    int extra_zeroes_needed;
1138
1139    /* If the message to be hashed is no longer than L1_HASH_LEN, we skip
1140     * the polyhash.
1141     */
1142    if (len <= L1_KEY_LEN) {
1143    	if (len == 0)                  /* If zero length messages will not */
1144    		nh_len = L1_PAD_BOUNDARY;  /* be seen, comment out this case   */
1145    	else
1146        	nh_len = ((len + (L1_PAD_BOUNDARY - 1)) & ~(L1_PAD_BOUNDARY - 1));
1147        extra_zeroes_needed = nh_len - len;
1148        zero_pad((UINT8 *)msg + len, extra_zeroes_needed);
1149        nh(&ahc->hash, (UINT8 *)msg, nh_len, len, nh_result);
1150        ip_short(ahc,nh_result, res);
1151    } else {
1152        /* Otherwise, we hash each L1_KEY_LEN chunk with NH, passing the NH
1153         * output to poly_hash().
1154         */
1155        do {
1156            nh(&ahc->hash, (UINT8 *)msg, L1_KEY_LEN, L1_KEY_LEN, nh_result);
1157            poly_hash(ahc,(UINT32 *)nh_result);
1158            len -= L1_KEY_LEN;
1159            msg += L1_KEY_LEN;
1160        } while (len >= L1_KEY_LEN);
1161        if (len) {
1162            nh_len = ((len + (L1_PAD_BOUNDARY - 1)) & ~(L1_PAD_BOUNDARY - 1));
1163            extra_zeroes_needed = nh_len - len;
1164            zero_pad((UINT8 *)msg + len, extra_zeroes_needed);
1165            nh(&ahc->hash, (UINT8 *)msg, nh_len, len, nh_result);
1166            poly_hash(ahc,(UINT32 *)nh_result);
1167        }
1168
1169        ip_long(ahc, res);
1170    }
1171
1172    uhash_reset(ahc);
1173    return 1;
1174}
1175#endif
1176
1177/* ---------------------------------------------------------------------- */
1178/* ---------------------------------------------------------------------- */
1179/* ----- Begin UMAC Section --------------------------------------------- */
1180/* ---------------------------------------------------------------------- */
1181/* ---------------------------------------------------------------------- */
1182
1183/* The UMAC interface has two interfaces, an all-at-once interface where
1184 * the entire message to be authenticated is passed to UMAC in one buffer,
1185 * and a sequential interface where the message is presented a little at a
1186 * time. The all-at-once is more optimaized than the sequential version and
1187 * should be preferred when the sequential interface is not required.
1188 */
1189struct umac_ctx {
1190    uhash_ctx hash;          /* Hash function for message compression    */
1191    pdf_ctx pdf;             /* PDF for hashed output                    */
1192    void *free_ptr;          /* Address to free this struct via          */
1193} umac_ctx;
1194
1195/* ---------------------------------------------------------------------- */
1196
1197#if 0
1198int umac_reset(struct umac_ctx *ctx)
1199/* Reset the hash function to begin a new authentication.        */
1200{
1201    uhash_reset(&ctx->hash);
1202    return (1);
1203}
1204#endif
1205
1206/* ---------------------------------------------------------------------- */
1207
1208int umac_delete(struct umac_ctx *ctx)
1209/* Deallocate the ctx structure */
1210{
1211    if (ctx) {
1212        if (ALLOC_BOUNDARY)
1213            ctx = (struct umac_ctx *)ctx->free_ptr;
1214        free(ctx);
1215    }
1216    return (1);
1217}
1218
1219/* ---------------------------------------------------------------------- */
1220
1221struct umac_ctx *umac_new(const u_char key[])
1222/* Dynamically allocate a umac_ctx struct, initialize variables,
1223 * generate subkeys from key. Align to 16-byte boundary.
1224 */
1225{
1226    struct umac_ctx *ctx, *octx;
1227    size_t bytes_to_add;
1228    aes_int_key prf_key;
1229
1230    octx = ctx = xcalloc(1, sizeof(*ctx) + ALLOC_BOUNDARY);
1231    if (ctx) {
1232        if (ALLOC_BOUNDARY) {
1233            bytes_to_add = ALLOC_BOUNDARY -
1234                              ((ptrdiff_t)ctx & (ALLOC_BOUNDARY - 1));
1235            ctx = (struct umac_ctx *)((u_char *)ctx + bytes_to_add);
1236        }
1237        ctx->free_ptr = octx;
1238        aes_key_setup(key, prf_key);
1239        pdf_init(&ctx->pdf, prf_key);
1240        uhash_init(&ctx->hash, prf_key);
1241    }
1242
1243    return (ctx);
1244}
1245
1246/* ---------------------------------------------------------------------- */
1247
1248int umac_final(struct umac_ctx *ctx, u_char tag[], const u_char nonce[8])
1249/* Incorporate any pending data, pad, and generate tag */
1250{
1251    uhash_final(&ctx->hash, (u_char *)tag);
1252    pdf_gen_xor(&ctx->pdf, (const UINT8 *)nonce, (UINT8 *)tag);
1253
1254    return (1);
1255}
1256
1257/* ---------------------------------------------------------------------- */
1258
1259int umac_update(struct umac_ctx *ctx, const u_char *input, long len)
1260/* Given len bytes of data, we parse it into L1_KEY_LEN chunks and   */
1261/* hash each one, calling the PDF on the hashed output whenever the hash- */
1262/* output buffer is full.                                                 */
1263{
1264    uhash_update(&ctx->hash, input, len);
1265    return (1);
1266}
1267
1268/* ---------------------------------------------------------------------- */
1269
1270#if 0
1271int umac(struct umac_ctx *ctx, u_char *input,
1272         long len, u_char tag[],
1273         u_char nonce[8])
1274/* All-in-one version simply calls umac_update() and umac_final().        */
1275{
1276    uhash(&ctx->hash, input, len, (u_char *)tag);
1277    pdf_gen_xor(&ctx->pdf, (UINT8 *)nonce, (UINT8 *)tag);
1278
1279    return (1);
1280}
1281#endif
1282
1283/* ---------------------------------------------------------------------- */
1284/* ---------------------------------------------------------------------- */
1285/* ----- End UMAC Section ----------------------------------------------- */
1286/* ---------------------------------------------------------------------- */
1287/* ---------------------------------------------------------------------- */
1288