moduli.c revision 295367
1/* $OpenBSD: moduli.c,v 1.30 2015/01/20 23:14:00 deraadt Exp $ */
2/*
3 * Copyright 1994 Phil Karn <karn@qualcomm.com>
4 * Copyright 1996-1998, 2003 William Allen Simpson <wsimpson@greendragon.com>
5 * Copyright 2000 Niels Provos <provos@citi.umich.edu>
6 * All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 *    notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 *    notice, this list of conditions and the following disclaimer in the
15 *    documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
18 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
19 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
20 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
21 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
22 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
26 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 */
28
29/*
30 * Two-step process to generate safe primes for DHGEX
31 *
32 *  Sieve candidates for "safe" primes,
33 *  suitable for use as Diffie-Hellman moduli;
34 *  that is, where q = (p-1)/2 is also prime.
35 *
36 * First step: generate candidate primes (memory intensive)
37 * Second step: test primes' safety (processor intensive)
38 */
39
40#include "includes.h"
41
42#ifdef WITH_OPENSSL
43
44#include <sys/param.h>	/* MAX */
45#include <sys/types.h>
46
47#include <openssl/bn.h>
48#include <openssl/dh.h>
49
50#include <errno.h>
51#include <stdio.h>
52#include <stdlib.h>
53#include <string.h>
54#include <stdarg.h>
55#include <time.h>
56#include <unistd.h>
57#include <limits.h>
58
59#include "xmalloc.h"
60#include "dh.h"
61#include "log.h"
62#include "misc.h"
63
64#include "openbsd-compat/openssl-compat.h"
65
66/*
67 * File output defines
68 */
69
70/* need line long enough for largest moduli plus headers */
71#define QLINESIZE		(100+8192)
72
73/*
74 * Size: decimal.
75 * Specifies the number of the most significant bit (0 to M).
76 * WARNING: internally, usually 1 to N.
77 */
78#define QSIZE_MINIMUM		(511)
79
80/*
81 * Prime sieving defines
82 */
83
84/* Constant: assuming 8 bit bytes and 32 bit words */
85#define SHIFT_BIT	(3)
86#define SHIFT_BYTE	(2)
87#define SHIFT_WORD	(SHIFT_BIT+SHIFT_BYTE)
88#define SHIFT_MEGABYTE	(20)
89#define SHIFT_MEGAWORD	(SHIFT_MEGABYTE-SHIFT_BYTE)
90
91/*
92 * Using virtual memory can cause thrashing.  This should be the largest
93 * number that is supported without a large amount of disk activity --
94 * that would increase the run time from hours to days or weeks!
95 */
96#define LARGE_MINIMUM	(8UL)	/* megabytes */
97
98/*
99 * Do not increase this number beyond the unsigned integer bit size.
100 * Due to a multiple of 4, it must be LESS than 128 (yielding 2**30 bits).
101 */
102#define LARGE_MAXIMUM	(127UL)	/* megabytes */
103
104/*
105 * Constant: when used with 32-bit integers, the largest sieve prime
106 * has to be less than 2**32.
107 */
108#define SMALL_MAXIMUM	(0xffffffffUL)
109
110/* Constant: can sieve all primes less than 2**32, as 65537**2 > 2**32-1. */
111#define TINY_NUMBER	(1UL<<16)
112
113/* Ensure enough bit space for testing 2*q. */
114#define TEST_MAXIMUM	(1UL<<16)
115#define TEST_MINIMUM	(QSIZE_MINIMUM + 1)
116/* real TEST_MINIMUM	(1UL << (SHIFT_WORD - TEST_POWER)) */
117#define TEST_POWER	(3)	/* 2**n, n < SHIFT_WORD */
118
119/* bit operations on 32-bit words */
120#define BIT_CLEAR(a,n)	((a)[(n)>>SHIFT_WORD] &= ~(1L << ((n) & 31)))
121#define BIT_SET(a,n)	((a)[(n)>>SHIFT_WORD] |= (1L << ((n) & 31)))
122#define BIT_TEST(a,n)	((a)[(n)>>SHIFT_WORD] & (1L << ((n) & 31)))
123
124/*
125 * Prime testing defines
126 */
127
128/* Minimum number of primality tests to perform */
129#define TRIAL_MINIMUM	(4)
130
131/*
132 * Sieving data (XXX - move to struct)
133 */
134
135/* sieve 2**16 */
136static u_int32_t *TinySieve, tinybits;
137
138/* sieve 2**30 in 2**16 parts */
139static u_int32_t *SmallSieve, smallbits, smallbase;
140
141/* sieve relative to the initial value */
142static u_int32_t *LargeSieve, largewords, largetries, largenumbers;
143static u_int32_t largebits, largememory;	/* megabytes */
144static BIGNUM *largebase;
145
146int gen_candidates(FILE *, u_int32_t, u_int32_t, BIGNUM *);
147int prime_test(FILE *, FILE *, u_int32_t, u_int32_t, char *, unsigned long,
148    unsigned long);
149
150/*
151 * print moduli out in consistent form,
152 */
153static int
154qfileout(FILE * ofile, u_int32_t otype, u_int32_t otests, u_int32_t otries,
155    u_int32_t osize, u_int32_t ogenerator, BIGNUM * omodulus)
156{
157	struct tm *gtm;
158	time_t time_now;
159	int res;
160
161	time(&time_now);
162	gtm = gmtime(&time_now);
163
164	res = fprintf(ofile, "%04d%02d%02d%02d%02d%02d %u %u %u %u %x ",
165	    gtm->tm_year + 1900, gtm->tm_mon + 1, gtm->tm_mday,
166	    gtm->tm_hour, gtm->tm_min, gtm->tm_sec,
167	    otype, otests, otries, osize, ogenerator);
168
169	if (res < 0)
170		return (-1);
171
172	if (BN_print_fp(ofile, omodulus) < 1)
173		return (-1);
174
175	res = fprintf(ofile, "\n");
176	fflush(ofile);
177
178	return (res > 0 ? 0 : -1);
179}
180
181
182/*
183 ** Sieve p's and q's with small factors
184 */
185static void
186sieve_large(u_int32_t s)
187{
188	u_int32_t r, u;
189
190	debug3("sieve_large %u", s);
191	largetries++;
192	/* r = largebase mod s */
193	r = BN_mod_word(largebase, s);
194	if (r == 0)
195		u = 0; /* s divides into largebase exactly */
196	else
197		u = s - r; /* largebase+u is first entry divisible by s */
198
199	if (u < largebits * 2) {
200		/*
201		 * The sieve omits p's and q's divisible by 2, so ensure that
202		 * largebase+u is odd. Then, step through the sieve in
203		 * increments of 2*s
204		 */
205		if (u & 0x1)
206			u += s; /* Make largebase+u odd, and u even */
207
208		/* Mark all multiples of 2*s */
209		for (u /= 2; u < largebits; u += s)
210			BIT_SET(LargeSieve, u);
211	}
212
213	/* r = p mod s */
214	r = (2 * r + 1) % s;
215	if (r == 0)
216		u = 0; /* s divides p exactly */
217	else
218		u = s - r; /* p+u is first entry divisible by s */
219
220	if (u < largebits * 4) {
221		/*
222		 * The sieve omits p's divisible by 4, so ensure that
223		 * largebase+u is not. Then, step through the sieve in
224		 * increments of 4*s
225		 */
226		while (u & 0x3) {
227			if (SMALL_MAXIMUM - u < s)
228				return;
229			u += s;
230		}
231
232		/* Mark all multiples of 4*s */
233		for (u /= 4; u < largebits; u += s)
234			BIT_SET(LargeSieve, u);
235	}
236}
237
238/*
239 * list candidates for Sophie-Germain primes (where q = (p-1)/2)
240 * to standard output.
241 * The list is checked against small known primes (less than 2**30).
242 */
243int
244gen_candidates(FILE *out, u_int32_t memory, u_int32_t power, BIGNUM *start)
245{
246	BIGNUM *q;
247	u_int32_t j, r, s, t;
248	u_int32_t smallwords = TINY_NUMBER >> 6;
249	u_int32_t tinywords = TINY_NUMBER >> 6;
250	time_t time_start, time_stop;
251	u_int32_t i;
252	int ret = 0;
253
254	largememory = memory;
255
256	if (memory != 0 &&
257	    (memory < LARGE_MINIMUM || memory > LARGE_MAXIMUM)) {
258		error("Invalid memory amount (min %ld, max %ld)",
259		    LARGE_MINIMUM, LARGE_MAXIMUM);
260		return (-1);
261	}
262
263	/*
264	 * Set power to the length in bits of the prime to be generated.
265	 * This is changed to 1 less than the desired safe prime moduli p.
266	 */
267	if (power > TEST_MAXIMUM) {
268		error("Too many bits: %u > %lu", power, TEST_MAXIMUM);
269		return (-1);
270	} else if (power < TEST_MINIMUM) {
271		error("Too few bits: %u < %u", power, TEST_MINIMUM);
272		return (-1);
273	}
274	power--; /* decrement before squaring */
275
276	/*
277	 * The density of ordinary primes is on the order of 1/bits, so the
278	 * density of safe primes should be about (1/bits)**2. Set test range
279	 * to something well above bits**2 to be reasonably sure (but not
280	 * guaranteed) of catching at least one safe prime.
281	 */
282	largewords = ((power * power) >> (SHIFT_WORD - TEST_POWER));
283
284	/*
285	 * Need idea of how much memory is available. We don't have to use all
286	 * of it.
287	 */
288	if (largememory > LARGE_MAXIMUM) {
289		logit("Limited memory: %u MB; limit %lu MB",
290		    largememory, LARGE_MAXIMUM);
291		largememory = LARGE_MAXIMUM;
292	}
293
294	if (largewords <= (largememory << SHIFT_MEGAWORD)) {
295		logit("Increased memory: %u MB; need %u bytes",
296		    largememory, (largewords << SHIFT_BYTE));
297		largewords = (largememory << SHIFT_MEGAWORD);
298	} else if (largememory > 0) {
299		logit("Decreased memory: %u MB; want %u bytes",
300		    largememory, (largewords << SHIFT_BYTE));
301		largewords = (largememory << SHIFT_MEGAWORD);
302	}
303
304	TinySieve = xcalloc(tinywords, sizeof(u_int32_t));
305	tinybits = tinywords << SHIFT_WORD;
306
307	SmallSieve = xcalloc(smallwords, sizeof(u_int32_t));
308	smallbits = smallwords << SHIFT_WORD;
309
310	/*
311	 * dynamically determine available memory
312	 */
313	while ((LargeSieve = calloc(largewords, sizeof(u_int32_t))) == NULL)
314		largewords -= (1L << (SHIFT_MEGAWORD - 2)); /* 1/4 MB chunks */
315
316	largebits = largewords << SHIFT_WORD;
317	largenumbers = largebits * 2;	/* even numbers excluded */
318
319	/* validation check: count the number of primes tried */
320	largetries = 0;
321	if ((q = BN_new()) == NULL)
322		fatal("BN_new failed");
323
324	/*
325	 * Generate random starting point for subprime search, or use
326	 * specified parameter.
327	 */
328	if ((largebase = BN_new()) == NULL)
329		fatal("BN_new failed");
330	if (start == NULL) {
331		if (BN_rand(largebase, power, 1, 1) == 0)
332			fatal("BN_rand failed");
333	} else {
334		if (BN_copy(largebase, start) == NULL)
335			fatal("BN_copy: failed");
336	}
337
338	/* ensure odd */
339	if (BN_set_bit(largebase, 0) == 0)
340		fatal("BN_set_bit: failed");
341
342	time(&time_start);
343
344	logit("%.24s Sieve next %u plus %u-bit", ctime(&time_start),
345	    largenumbers, power);
346	debug2("start point: 0x%s", BN_bn2hex(largebase));
347
348	/*
349	 * TinySieve
350	 */
351	for (i = 0; i < tinybits; i++) {
352		if (BIT_TEST(TinySieve, i))
353			continue; /* 2*i+3 is composite */
354
355		/* The next tiny prime */
356		t = 2 * i + 3;
357
358		/* Mark all multiples of t */
359		for (j = i + t; j < tinybits; j += t)
360			BIT_SET(TinySieve, j);
361
362		sieve_large(t);
363	}
364
365	/*
366	 * Start the small block search at the next possible prime. To avoid
367	 * fencepost errors, the last pass is skipped.
368	 */
369	for (smallbase = TINY_NUMBER + 3;
370	    smallbase < (SMALL_MAXIMUM - TINY_NUMBER);
371	    smallbase += TINY_NUMBER) {
372		for (i = 0; i < tinybits; i++) {
373			if (BIT_TEST(TinySieve, i))
374				continue; /* 2*i+3 is composite */
375
376			/* The next tiny prime */
377			t = 2 * i + 3;
378			r = smallbase % t;
379
380			if (r == 0) {
381				s = 0; /* t divides into smallbase exactly */
382			} else {
383				/* smallbase+s is first entry divisible by t */
384				s = t - r;
385			}
386
387			/*
388			 * The sieve omits even numbers, so ensure that
389			 * smallbase+s is odd. Then, step through the sieve
390			 * in increments of 2*t
391			 */
392			if (s & 1)
393				s += t; /* Make smallbase+s odd, and s even */
394
395			/* Mark all multiples of 2*t */
396			for (s /= 2; s < smallbits; s += t)
397				BIT_SET(SmallSieve, s);
398		}
399
400		/*
401		 * SmallSieve
402		 */
403		for (i = 0; i < smallbits; i++) {
404			if (BIT_TEST(SmallSieve, i))
405				continue; /* 2*i+smallbase is composite */
406
407			/* The next small prime */
408			sieve_large((2 * i) + smallbase);
409		}
410
411		memset(SmallSieve, 0, smallwords << SHIFT_BYTE);
412	}
413
414	time(&time_stop);
415
416	logit("%.24s Sieved with %u small primes in %ld seconds",
417	    ctime(&time_stop), largetries, (long) (time_stop - time_start));
418
419	for (j = r = 0; j < largebits; j++) {
420		if (BIT_TEST(LargeSieve, j))
421			continue; /* Definitely composite, skip */
422
423		debug2("test q = largebase+%u", 2 * j);
424		if (BN_set_word(q, 2 * j) == 0)
425			fatal("BN_set_word failed");
426		if (BN_add(q, q, largebase) == 0)
427			fatal("BN_add failed");
428		if (qfileout(out, MODULI_TYPE_SOPHIE_GERMAIN,
429		    MODULI_TESTS_SIEVE, largetries,
430		    (power - 1) /* MSB */, (0), q) == -1) {
431			ret = -1;
432			break;
433		}
434
435		r++; /* count q */
436	}
437
438	time(&time_stop);
439
440	free(LargeSieve);
441	free(SmallSieve);
442	free(TinySieve);
443
444	logit("%.24s Found %u candidates", ctime(&time_stop), r);
445
446	return (ret);
447}
448
449static void
450write_checkpoint(char *cpfile, u_int32_t lineno)
451{
452	FILE *fp;
453	char tmp[PATH_MAX];
454	int r;
455
456	r = snprintf(tmp, sizeof(tmp), "%s.XXXXXXXXXX", cpfile);
457	if (r == -1 || r >= PATH_MAX) {
458		logit("write_checkpoint: temp pathname too long");
459		return;
460	}
461	if ((r = mkstemp(tmp)) == -1) {
462		logit("mkstemp(%s): %s", tmp, strerror(errno));
463		return;
464	}
465	if ((fp = fdopen(r, "w")) == NULL) {
466		logit("write_checkpoint: fdopen: %s", strerror(errno));
467		unlink(tmp);
468		close(r);
469		return;
470	}
471	if (fprintf(fp, "%lu\n", (unsigned long)lineno) > 0 && fclose(fp) == 0
472	    && rename(tmp, cpfile) == 0)
473		debug3("wrote checkpoint line %lu to '%s'",
474		    (unsigned long)lineno, cpfile);
475	else
476		logit("failed to write to checkpoint file '%s': %s", cpfile,
477		    strerror(errno));
478}
479
480static unsigned long
481read_checkpoint(char *cpfile)
482{
483	FILE *fp;
484	unsigned long lineno = 0;
485
486	if ((fp = fopen(cpfile, "r")) == NULL)
487		return 0;
488	if (fscanf(fp, "%lu\n", &lineno) < 1)
489		logit("Failed to load checkpoint from '%s'", cpfile);
490	else
491		logit("Loaded checkpoint from '%s' line %lu", cpfile, lineno);
492	fclose(fp);
493	return lineno;
494}
495
496static unsigned long
497count_lines(FILE *f)
498{
499	unsigned long count = 0;
500	char lp[QLINESIZE + 1];
501
502	if (fseek(f, 0, SEEK_SET) != 0) {
503		debug("input file is not seekable");
504		return ULONG_MAX;
505	}
506	while (fgets(lp, QLINESIZE + 1, f) != NULL)
507		count++;
508	rewind(f);
509	debug("input file has %lu lines", count);
510	return count;
511}
512
513static char *
514fmt_time(time_t seconds)
515{
516	int day, hr, min;
517	static char buf[128];
518
519	min = (seconds / 60) % 60;
520	hr = (seconds / 60 / 60) % 24;
521	day = seconds / 60 / 60 / 24;
522	if (day > 0)
523		snprintf(buf, sizeof buf, "%dd %d:%02d", day, hr, min);
524	else
525		snprintf(buf, sizeof buf, "%d:%02d", hr, min);
526	return buf;
527}
528
529static void
530print_progress(unsigned long start_lineno, unsigned long current_lineno,
531    unsigned long end_lineno)
532{
533	static time_t time_start, time_prev;
534	time_t time_now, elapsed;
535	unsigned long num_to_process, processed, remaining, percent, eta;
536	double time_per_line;
537	char *eta_str;
538
539	time_now = monotime();
540	if (time_start == 0) {
541		time_start = time_prev = time_now;
542		return;
543	}
544	/* print progress after 1m then once per 5m */
545	if (time_now - time_prev < 5 * 60)
546		return;
547	time_prev = time_now;
548	elapsed = time_now - time_start;
549	processed = current_lineno - start_lineno;
550	remaining = end_lineno - current_lineno;
551	num_to_process = end_lineno - start_lineno;
552	time_per_line = (double)elapsed / processed;
553	/* if we don't know how many we're processing just report count+time */
554	time(&time_now);
555	if (end_lineno == ULONG_MAX) {
556		logit("%.24s processed %lu in %s", ctime(&time_now),
557		    processed, fmt_time(elapsed));
558		return;
559	}
560	percent = 100 * processed / num_to_process;
561	eta = time_per_line * remaining;
562	eta_str = xstrdup(fmt_time(eta));
563	logit("%.24s processed %lu of %lu (%lu%%) in %s, ETA %s",
564	    ctime(&time_now), processed, num_to_process, percent,
565	    fmt_time(elapsed), eta_str);
566	free(eta_str);
567}
568
569/*
570 * perform a Miller-Rabin primality test
571 * on the list of candidates
572 * (checking both q and p)
573 * The result is a list of so-call "safe" primes
574 */
575int
576prime_test(FILE *in, FILE *out, u_int32_t trials, u_int32_t generator_wanted,
577    char *checkpoint_file, unsigned long start_lineno, unsigned long num_lines)
578{
579	BIGNUM *q, *p, *a;
580	BN_CTX *ctx;
581	char *cp, *lp;
582	u_int32_t count_in = 0, count_out = 0, count_possible = 0;
583	u_int32_t generator_known, in_tests, in_tries, in_type, in_size;
584	unsigned long last_processed = 0, end_lineno;
585	time_t time_start, time_stop;
586	int res;
587
588	if (trials < TRIAL_MINIMUM) {
589		error("Minimum primality trials is %d", TRIAL_MINIMUM);
590		return (-1);
591	}
592
593	if (num_lines == 0)
594		end_lineno = count_lines(in);
595	else
596		end_lineno = start_lineno + num_lines;
597
598	time(&time_start);
599
600	if ((p = BN_new()) == NULL)
601		fatal("BN_new failed");
602	if ((q = BN_new()) == NULL)
603		fatal("BN_new failed");
604	if ((ctx = BN_CTX_new()) == NULL)
605		fatal("BN_CTX_new failed");
606
607	debug2("%.24s Final %u Miller-Rabin trials (%x generator)",
608	    ctime(&time_start), trials, generator_wanted);
609
610	if (checkpoint_file != NULL)
611		last_processed = read_checkpoint(checkpoint_file);
612	last_processed = start_lineno = MAX(last_processed, start_lineno);
613	if (end_lineno == ULONG_MAX)
614		debug("process from line %lu from pipe", last_processed);
615	else
616		debug("process from line %lu to line %lu", last_processed,
617		    end_lineno);
618
619	res = 0;
620	lp = xmalloc(QLINESIZE + 1);
621	while (fgets(lp, QLINESIZE + 1, in) != NULL && count_in < end_lineno) {
622		count_in++;
623		if (count_in <= last_processed) {
624			debug3("skipping line %u, before checkpoint or "
625			    "specified start line", count_in);
626			continue;
627		}
628		if (checkpoint_file != NULL)
629			write_checkpoint(checkpoint_file, count_in);
630		print_progress(start_lineno, count_in, end_lineno);
631		if (strlen(lp) < 14 || *lp == '!' || *lp == '#') {
632			debug2("%10u: comment or short line", count_in);
633			continue;
634		}
635
636		/* XXX - fragile parser */
637		/* time */
638		cp = &lp[14];	/* (skip) */
639
640		/* type */
641		in_type = strtoul(cp, &cp, 10);
642
643		/* tests */
644		in_tests = strtoul(cp, &cp, 10);
645
646		if (in_tests & MODULI_TESTS_COMPOSITE) {
647			debug2("%10u: known composite", count_in);
648			continue;
649		}
650
651		/* tries */
652		in_tries = strtoul(cp, &cp, 10);
653
654		/* size (most significant bit) */
655		in_size = strtoul(cp, &cp, 10);
656
657		/* generator (hex) */
658		generator_known = strtoul(cp, &cp, 16);
659
660		/* Skip white space */
661		cp += strspn(cp, " ");
662
663		/* modulus (hex) */
664		switch (in_type) {
665		case MODULI_TYPE_SOPHIE_GERMAIN:
666			debug2("%10u: (%u) Sophie-Germain", count_in, in_type);
667			a = q;
668			if (BN_hex2bn(&a, cp) == 0)
669				fatal("BN_hex2bn failed");
670			/* p = 2*q + 1 */
671			if (BN_lshift(p, q, 1) == 0)
672				fatal("BN_lshift failed");
673			if (BN_add_word(p, 1) == 0)
674				fatal("BN_add_word failed");
675			in_size += 1;
676			generator_known = 0;
677			break;
678		case MODULI_TYPE_UNSTRUCTURED:
679		case MODULI_TYPE_SAFE:
680		case MODULI_TYPE_SCHNORR:
681		case MODULI_TYPE_STRONG:
682		case MODULI_TYPE_UNKNOWN:
683			debug2("%10u: (%u)", count_in, in_type);
684			a = p;
685			if (BN_hex2bn(&a, cp) == 0)
686				fatal("BN_hex2bn failed");
687			/* q = (p-1) / 2 */
688			if (BN_rshift(q, p, 1) == 0)
689				fatal("BN_rshift failed");
690			break;
691		default:
692			debug2("Unknown prime type");
693			break;
694		}
695
696		/*
697		 * due to earlier inconsistencies in interpretation, check
698		 * the proposed bit size.
699		 */
700		if ((u_int32_t)BN_num_bits(p) != (in_size + 1)) {
701			debug2("%10u: bit size %u mismatch", count_in, in_size);
702			continue;
703		}
704		if (in_size < QSIZE_MINIMUM) {
705			debug2("%10u: bit size %u too short", count_in, in_size);
706			continue;
707		}
708
709		if (in_tests & MODULI_TESTS_MILLER_RABIN)
710			in_tries += trials;
711		else
712			in_tries = trials;
713
714		/*
715		 * guess unknown generator
716		 */
717		if (generator_known == 0) {
718			if (BN_mod_word(p, 24) == 11)
719				generator_known = 2;
720			else if (BN_mod_word(p, 12) == 5)
721				generator_known = 3;
722			else {
723				u_int32_t r = BN_mod_word(p, 10);
724
725				if (r == 3 || r == 7)
726					generator_known = 5;
727			}
728		}
729		/*
730		 * skip tests when desired generator doesn't match
731		 */
732		if (generator_wanted > 0 &&
733		    generator_wanted != generator_known) {
734			debug2("%10u: generator %d != %d",
735			    count_in, generator_known, generator_wanted);
736			continue;
737		}
738
739		/*
740		 * Primes with no known generator are useless for DH, so
741		 * skip those.
742		 */
743		if (generator_known == 0) {
744			debug2("%10u: no known generator", count_in);
745			continue;
746		}
747
748		count_possible++;
749
750		/*
751		 * The (1/4)^N performance bound on Miller-Rabin is
752		 * extremely pessimistic, so don't spend a lot of time
753		 * really verifying that q is prime until after we know
754		 * that p is also prime. A single pass will weed out the
755		 * vast majority of composite q's.
756		 */
757		if (BN_is_prime_ex(q, 1, ctx, NULL) <= 0) {
758			debug("%10u: q failed first possible prime test",
759			    count_in);
760			continue;
761		}
762
763		/*
764		 * q is possibly prime, so go ahead and really make sure
765		 * that p is prime. If it is, then we can go back and do
766		 * the same for q. If p is composite, chances are that
767		 * will show up on the first Rabin-Miller iteration so it
768		 * doesn't hurt to specify a high iteration count.
769		 */
770		if (!BN_is_prime_ex(p, trials, ctx, NULL)) {
771			debug("%10u: p is not prime", count_in);
772			continue;
773		}
774		debug("%10u: p is almost certainly prime", count_in);
775
776		/* recheck q more rigorously */
777		if (!BN_is_prime_ex(q, trials - 1, ctx, NULL)) {
778			debug("%10u: q is not prime", count_in);
779			continue;
780		}
781		debug("%10u: q is almost certainly prime", count_in);
782
783		if (qfileout(out, MODULI_TYPE_SAFE,
784		    in_tests | MODULI_TESTS_MILLER_RABIN,
785		    in_tries, in_size, generator_known, p)) {
786			res = -1;
787			break;
788		}
789
790		count_out++;
791	}
792
793	time(&time_stop);
794	free(lp);
795	BN_free(p);
796	BN_free(q);
797	BN_CTX_free(ctx);
798
799	if (checkpoint_file != NULL)
800		unlink(checkpoint_file);
801
802	logit("%.24s Found %u safe primes of %u candidates in %ld seconds",
803	    ctime(&time_stop), count_out, count_possible,
804	    (long) (time_stop - time_start));
805
806	return (res);
807}
808
809#endif /* WITH_OPENSSL */
810