trees.c revision 313796
1/* trees.c -- output deflated data using Huffman coding
2 * Copyright (C) 1995-2017 Jean-loup Gailly
3 * detect_data_type() function provided freely by Cosmin Truta, 2006
4 * For conditions of distribution and use, see copyright notice in zlib.h
5 */
6
7/*
8 *  ALGORITHM
9 *
10 *      The "deflation" process uses several Huffman trees. The more
11 *      common source values are represented by shorter bit sequences.
12 *
13 *      Each code tree is stored in a compressed form which is itself
14 * a Huffman encoding of the lengths of all the code strings (in
15 * ascending order by source values).  The actual code strings are
16 * reconstructed from the lengths in the inflate process, as described
17 * in the deflate specification.
18 *
19 *  REFERENCES
20 *
21 *      Deutsch, L.P.,"'Deflate' Compressed Data Format Specification".
22 *      Available in ftp.uu.net:/pub/archiving/zip/doc/deflate-1.1.doc
23 *
24 *      Storer, James A.
25 *          Data Compression:  Methods and Theory, pp. 49-50.
26 *          Computer Science Press, 1988.  ISBN 0-7167-8156-5.
27 *
28 *      Sedgewick, R.
29 *          Algorithms, p290.
30 *          Addison-Wesley, 1983. ISBN 0-201-06672-6.
31 */
32
33/* @(#) $Id$ */
34
35/* #define GEN_TREES_H */
36
37#include "deflate.h"
38
39#ifdef ZLIB_DEBUG
40#  include <ctype.h>
41#endif
42
43/* ===========================================================================
44 * Constants
45 */
46
47#define MAX_BL_BITS 7
48/* Bit length codes must not exceed MAX_BL_BITS bits */
49
50#define END_BLOCK 256
51/* end of block literal code */
52
53#define REP_3_6      16
54/* repeat previous bit length 3-6 times (2 bits of repeat count) */
55
56#define REPZ_3_10    17
57/* repeat a zero length 3-10 times  (3 bits of repeat count) */
58
59#define REPZ_11_138  18
60/* repeat a zero length 11-138 times  (7 bits of repeat count) */
61
62local const int extra_lbits[LENGTH_CODES] /* extra bits for each length code */
63   = {0,0,0,0,0,0,0,0,1,1,1,1,2,2,2,2,3,3,3,3,4,4,4,4,5,5,5,5,0};
64
65local const int extra_dbits[D_CODES] /* extra bits for each distance code */
66   = {0,0,0,0,1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,11,11,12,12,13,13};
67
68local const int extra_blbits[BL_CODES]/* extra bits for each bit length code */
69   = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,3,7};
70
71local const uch bl_order[BL_CODES]
72   = {16,17,18,0,8,7,9,6,10,5,11,4,12,3,13,2,14,1,15};
73/* The lengths of the bit length codes are sent in order of decreasing
74 * probability, to avoid transmitting the lengths for unused bit length codes.
75 */
76
77/* ===========================================================================
78 * Local data. These are initialized only once.
79 */
80
81#define DIST_CODE_LEN  512 /* see definition of array dist_code below */
82
83#if defined(GEN_TREES_H) || !defined(STDC)
84/* non ANSI compilers may not accept trees.h */
85
86local ct_data static_ltree[L_CODES+2];
87/* The static literal tree. Since the bit lengths are imposed, there is no
88 * need for the L_CODES extra codes used during heap construction. However
89 * The codes 286 and 287 are needed to build a canonical tree (see _tr_init
90 * below).
91 */
92
93local ct_data static_dtree[D_CODES];
94/* The static distance tree. (Actually a trivial tree since all codes use
95 * 5 bits.)
96 */
97
98uch _dist_code[DIST_CODE_LEN];
99/* Distance codes. The first 256 values correspond to the distances
100 * 3 .. 258, the last 256 values correspond to the top 8 bits of
101 * the 15 bit distances.
102 */
103
104uch _length_code[MAX_MATCH-MIN_MATCH+1];
105/* length code for each normalized match length (0 == MIN_MATCH) */
106
107local int base_length[LENGTH_CODES];
108/* First normalized length for each code (0 = MIN_MATCH) */
109
110local int base_dist[D_CODES];
111/* First normalized distance for each code (0 = distance of 1) */
112
113#else
114#  include "trees.h"
115#endif /* GEN_TREES_H */
116
117struct static_tree_desc_s {
118    const ct_data *static_tree;  /* static tree or NULL */
119    const intf *extra_bits;      /* extra bits for each code or NULL */
120    int     extra_base;          /* base index for extra_bits */
121    int     elems;               /* max number of elements in the tree */
122    int     max_length;          /* max bit length for the codes */
123};
124
125local const static_tree_desc  static_l_desc =
126{static_ltree, extra_lbits, LITERALS+1, L_CODES, MAX_BITS};
127
128local const static_tree_desc  static_d_desc =
129{static_dtree, extra_dbits, 0,          D_CODES, MAX_BITS};
130
131local const static_tree_desc  static_bl_desc =
132{(const ct_data *)0, extra_blbits, 0,   BL_CODES, MAX_BL_BITS};
133
134/* ===========================================================================
135 * Local (static) routines in this file.
136 */
137
138local void tr_static_init OF((void));
139local void init_block     OF((deflate_state *s));
140local void pqdownheap     OF((deflate_state *s, ct_data *tree, int k));
141local void gen_bitlen     OF((deflate_state *s, tree_desc *desc));
142local void gen_codes      OF((ct_data *tree, int max_code, ushf *bl_count));
143local void build_tree     OF((deflate_state *s, tree_desc *desc));
144local void scan_tree      OF((deflate_state *s, ct_data *tree, int max_code));
145local void send_tree      OF((deflate_state *s, ct_data *tree, int max_code));
146local int  build_bl_tree  OF((deflate_state *s));
147local void send_all_trees OF((deflate_state *s, int lcodes, int dcodes,
148                              int blcodes));
149local void compress_block OF((deflate_state *s, const ct_data *ltree,
150                              const ct_data *dtree));
151local int  detect_data_type OF((deflate_state *s));
152local unsigned bi_reverse OF((unsigned value, int length));
153local void bi_windup      OF((deflate_state *s));
154local void bi_flush       OF((deflate_state *s));
155
156#ifdef GEN_TREES_H
157local void gen_trees_header OF((void));
158#endif
159
160#ifndef ZLIB_DEBUG
161#  define send_code(s, c, tree) send_bits(s, tree[c].Code, tree[c].Len)
162   /* Send a code of the given tree. c and tree must not have side effects */
163
164#else /* !ZLIB_DEBUG */
165#  define send_code(s, c, tree) \
166     { if (z_verbose>2) fprintf(stderr,"\ncd %3d ",(c)); \
167       send_bits(s, tree[c].Code, tree[c].Len); }
168#endif
169
170/* ===========================================================================
171 * Output a short LSB first on the stream.
172 * IN assertion: there is enough room in pendingBuf.
173 */
174#define put_short(s, w) { \
175    put_byte(s, (uch)((w) & 0xff)); \
176    put_byte(s, (uch)((ush)(w) >> 8)); \
177}
178
179/* ===========================================================================
180 * Send a value on a given number of bits.
181 * IN assertion: length <= 16 and value fits in length bits.
182 */
183#ifdef ZLIB_DEBUG
184local void send_bits      OF((deflate_state *s, int value, int length));
185
186local void send_bits(s, value, length)
187    deflate_state *s;
188    int value;  /* value to send */
189    int length; /* number of bits */
190{
191    Tracevv((stderr," l %2d v %4x ", length, value));
192    Assert(length > 0 && length <= 15, "invalid length");
193    s->bits_sent += (ulg)length;
194
195    /* If not enough room in bi_buf, use (valid) bits from bi_buf and
196     * (16 - bi_valid) bits from value, leaving (width - (16-bi_valid))
197     * unused bits in value.
198     */
199    if (s->bi_valid > (int)Buf_size - length) {
200        s->bi_buf |= (ush)value << s->bi_valid;
201        put_short(s, s->bi_buf);
202        s->bi_buf = (ush)value >> (Buf_size - s->bi_valid);
203        s->bi_valid += length - Buf_size;
204    } else {
205        s->bi_buf |= (ush)value << s->bi_valid;
206        s->bi_valid += length;
207    }
208}
209#else /* !ZLIB_DEBUG */
210
211#define send_bits(s, value, length) \
212{ int len = length;\
213  if (s->bi_valid > (int)Buf_size - len) {\
214    int val = (int)value;\
215    s->bi_buf |= (ush)val << s->bi_valid;\
216    put_short(s, s->bi_buf);\
217    s->bi_buf = (ush)val >> (Buf_size - s->bi_valid);\
218    s->bi_valid += len - Buf_size;\
219  } else {\
220    s->bi_buf |= (ush)(value) << s->bi_valid;\
221    s->bi_valid += len;\
222  }\
223}
224#endif /* ZLIB_DEBUG */
225
226
227/* the arguments must not have side effects */
228
229/* ===========================================================================
230 * Initialize the various 'constant' tables.
231 */
232local void tr_static_init()
233{
234#if defined(GEN_TREES_H) || !defined(STDC)
235    static int static_init_done = 0;
236    int n;        /* iterates over tree elements */
237    int bits;     /* bit counter */
238    int length;   /* length value */
239    int code;     /* code value */
240    int dist;     /* distance index */
241    ush bl_count[MAX_BITS+1];
242    /* number of codes at each bit length for an optimal tree */
243
244    if (static_init_done) return;
245
246    /* For some embedded targets, global variables are not initialized: */
247#ifdef NO_INIT_GLOBAL_POINTERS
248    static_l_desc.static_tree = static_ltree;
249    static_l_desc.extra_bits = extra_lbits;
250    static_d_desc.static_tree = static_dtree;
251    static_d_desc.extra_bits = extra_dbits;
252    static_bl_desc.extra_bits = extra_blbits;
253#endif
254
255    /* Initialize the mapping length (0..255) -> length code (0..28) */
256    length = 0;
257    for (code = 0; code < LENGTH_CODES-1; code++) {
258        base_length[code] = length;
259        for (n = 0; n < (1<<extra_lbits[code]); n++) {
260            _length_code[length++] = (uch)code;
261        }
262    }
263    Assert (length == 256, "tr_static_init: length != 256");
264    /* Note that the length 255 (match length 258) can be represented
265     * in two different ways: code 284 + 5 bits or code 285, so we
266     * overwrite length_code[255] to use the best encoding:
267     */
268    _length_code[length-1] = (uch)code;
269
270    /* Initialize the mapping dist (0..32K) -> dist code (0..29) */
271    dist = 0;
272    for (code = 0 ; code < 16; code++) {
273        base_dist[code] = dist;
274        for (n = 0; n < (1<<extra_dbits[code]); n++) {
275            _dist_code[dist++] = (uch)code;
276        }
277    }
278    Assert (dist == 256, "tr_static_init: dist != 256");
279    dist >>= 7; /* from now on, all distances are divided by 128 */
280    for ( ; code < D_CODES; code++) {
281        base_dist[code] = dist << 7;
282        for (n = 0; n < (1<<(extra_dbits[code]-7)); n++) {
283            _dist_code[256 + dist++] = (uch)code;
284        }
285    }
286    Assert (dist == 256, "tr_static_init: 256+dist != 512");
287
288    /* Construct the codes of the static literal tree */
289    for (bits = 0; bits <= MAX_BITS; bits++) bl_count[bits] = 0;
290    n = 0;
291    while (n <= 143) static_ltree[n++].Len = 8, bl_count[8]++;
292    while (n <= 255) static_ltree[n++].Len = 9, bl_count[9]++;
293    while (n <= 279) static_ltree[n++].Len = 7, bl_count[7]++;
294    while (n <= 287) static_ltree[n++].Len = 8, bl_count[8]++;
295    /* Codes 286 and 287 do not exist, but we must include them in the
296     * tree construction to get a canonical Huffman tree (longest code
297     * all ones)
298     */
299    gen_codes((ct_data *)static_ltree, L_CODES+1, bl_count);
300
301    /* The static distance tree is trivial: */
302    for (n = 0; n < D_CODES; n++) {
303        static_dtree[n].Len = 5;
304        static_dtree[n].Code = bi_reverse((unsigned)n, 5);
305    }
306    static_init_done = 1;
307
308#  ifdef GEN_TREES_H
309    gen_trees_header();
310#  endif
311#endif /* defined(GEN_TREES_H) || !defined(STDC) */
312}
313
314/* ===========================================================================
315 * Genererate the file trees.h describing the static trees.
316 */
317#ifdef GEN_TREES_H
318#  ifndef ZLIB_DEBUG
319#    include <stdio.h>
320#  endif
321
322#  define SEPARATOR(i, last, width) \
323      ((i) == (last)? "\n};\n\n" :    \
324       ((i) % (width) == (width)-1 ? ",\n" : ", "))
325
326void gen_trees_header()
327{
328    FILE *header = fopen("trees.h", "w");
329    int i;
330
331    Assert (header != NULL, "Can't open trees.h");
332    fprintf(header,
333            "/* header created automatically with -DGEN_TREES_H */\n\n");
334
335    fprintf(header, "local const ct_data static_ltree[L_CODES+2] = {\n");
336    for (i = 0; i < L_CODES+2; i++) {
337        fprintf(header, "{{%3u},{%3u}}%s", static_ltree[i].Code,
338                static_ltree[i].Len, SEPARATOR(i, L_CODES+1, 5));
339    }
340
341    fprintf(header, "local const ct_data static_dtree[D_CODES] = {\n");
342    for (i = 0; i < D_CODES; i++) {
343        fprintf(header, "{{%2u},{%2u}}%s", static_dtree[i].Code,
344                static_dtree[i].Len, SEPARATOR(i, D_CODES-1, 5));
345    }
346
347    fprintf(header, "const uch ZLIB_INTERNAL _dist_code[DIST_CODE_LEN] = {\n");
348    for (i = 0; i < DIST_CODE_LEN; i++) {
349        fprintf(header, "%2u%s", _dist_code[i],
350                SEPARATOR(i, DIST_CODE_LEN-1, 20));
351    }
352
353    fprintf(header,
354        "const uch ZLIB_INTERNAL _length_code[MAX_MATCH-MIN_MATCH+1]= {\n");
355    for (i = 0; i < MAX_MATCH-MIN_MATCH+1; i++) {
356        fprintf(header, "%2u%s", _length_code[i],
357                SEPARATOR(i, MAX_MATCH-MIN_MATCH, 20));
358    }
359
360    fprintf(header, "local const int base_length[LENGTH_CODES] = {\n");
361    for (i = 0; i < LENGTH_CODES; i++) {
362        fprintf(header, "%1u%s", base_length[i],
363                SEPARATOR(i, LENGTH_CODES-1, 20));
364    }
365
366    fprintf(header, "local const int base_dist[D_CODES] = {\n");
367    for (i = 0; i < D_CODES; i++) {
368        fprintf(header, "%5u%s", base_dist[i],
369                SEPARATOR(i, D_CODES-1, 10));
370    }
371
372    fclose(header);
373}
374#endif /* GEN_TREES_H */
375
376/* ===========================================================================
377 * Initialize the tree data structures for a new zlib stream.
378 */
379void ZLIB_INTERNAL _tr_init(s)
380    deflate_state *s;
381{
382    tr_static_init();
383
384    s->l_desc.dyn_tree = s->dyn_ltree;
385    s->l_desc.stat_desc = &static_l_desc;
386
387    s->d_desc.dyn_tree = s->dyn_dtree;
388    s->d_desc.stat_desc = &static_d_desc;
389
390    s->bl_desc.dyn_tree = s->bl_tree;
391    s->bl_desc.stat_desc = &static_bl_desc;
392
393    s->bi_buf = 0;
394    s->bi_valid = 0;
395#ifdef ZLIB_DEBUG
396    s->compressed_len = 0L;
397    s->bits_sent = 0L;
398#endif
399
400    /* Initialize the first block of the first file: */
401    init_block(s);
402}
403
404/* ===========================================================================
405 * Initialize a new block.
406 */
407local void init_block(s)
408    deflate_state *s;
409{
410    int n; /* iterates over tree elements */
411
412    /* Initialize the trees. */
413    for (n = 0; n < L_CODES;  n++) s->dyn_ltree[n].Freq = 0;
414    for (n = 0; n < D_CODES;  n++) s->dyn_dtree[n].Freq = 0;
415    for (n = 0; n < BL_CODES; n++) s->bl_tree[n].Freq = 0;
416
417    s->dyn_ltree[END_BLOCK].Freq = 1;
418    s->opt_len = s->static_len = 0L;
419    s->last_lit = s->matches = 0;
420}
421
422#define SMALLEST 1
423/* Index within the heap array of least frequent node in the Huffman tree */
424
425
426/* ===========================================================================
427 * Remove the smallest element from the heap and recreate the heap with
428 * one less element. Updates heap and heap_len.
429 */
430#define pqremove(s, tree, top) \
431{\
432    top = s->heap[SMALLEST]; \
433    s->heap[SMALLEST] = s->heap[s->heap_len--]; \
434    pqdownheap(s, tree, SMALLEST); \
435}
436
437/* ===========================================================================
438 * Compares to subtrees, using the tree depth as tie breaker when
439 * the subtrees have equal frequency. This minimizes the worst case length.
440 */
441#define smaller(tree, n, m, depth) \
442   (tree[n].Freq < tree[m].Freq || \
443   (tree[n].Freq == tree[m].Freq && depth[n] <= depth[m]))
444
445/* ===========================================================================
446 * Restore the heap property by moving down the tree starting at node k,
447 * exchanging a node with the smallest of its two sons if necessary, stopping
448 * when the heap property is re-established (each father smaller than its
449 * two sons).
450 */
451local void pqdownheap(s, tree, k)
452    deflate_state *s;
453    ct_data *tree;  /* the tree to restore */
454    int k;               /* node to move down */
455{
456    int v = s->heap[k];
457    int j = k << 1;  /* left son of k */
458    while (j <= s->heap_len) {
459        /* Set j to the smallest of the two sons: */
460        if (j < s->heap_len &&
461            smaller(tree, s->heap[j+1], s->heap[j], s->depth)) {
462            j++;
463        }
464        /* Exit if v is smaller than both sons */
465        if (smaller(tree, v, s->heap[j], s->depth)) break;
466
467        /* Exchange v with the smallest son */
468        s->heap[k] = s->heap[j];  k = j;
469
470        /* And continue down the tree, setting j to the left son of k */
471        j <<= 1;
472    }
473    s->heap[k] = v;
474}
475
476/* ===========================================================================
477 * Compute the optimal bit lengths for a tree and update the total bit length
478 * for the current block.
479 * IN assertion: the fields freq and dad are set, heap[heap_max] and
480 *    above are the tree nodes sorted by increasing frequency.
481 * OUT assertions: the field len is set to the optimal bit length, the
482 *     array bl_count contains the frequencies for each bit length.
483 *     The length opt_len is updated; static_len is also updated if stree is
484 *     not null.
485 */
486local void gen_bitlen(s, desc)
487    deflate_state *s;
488    tree_desc *desc;    /* the tree descriptor */
489{
490    ct_data *tree        = desc->dyn_tree;
491    int max_code         = desc->max_code;
492    const ct_data *stree = desc->stat_desc->static_tree;
493    const intf *extra    = desc->stat_desc->extra_bits;
494    int base             = desc->stat_desc->extra_base;
495    int max_length       = desc->stat_desc->max_length;
496    int h;              /* heap index */
497    int n, m;           /* iterate over the tree elements */
498    int bits;           /* bit length */
499    int xbits;          /* extra bits */
500    ush f;              /* frequency */
501    int overflow = 0;   /* number of elements with bit length too large */
502
503    for (bits = 0; bits <= MAX_BITS; bits++) s->bl_count[bits] = 0;
504
505    /* In a first pass, compute the optimal bit lengths (which may
506     * overflow in the case of the bit length tree).
507     */
508    tree[s->heap[s->heap_max]].Len = 0; /* root of the heap */
509
510    for (h = s->heap_max+1; h < HEAP_SIZE; h++) {
511        n = s->heap[h];
512        bits = tree[tree[n].Dad].Len + 1;
513        if (bits > max_length) bits = max_length, overflow++;
514        tree[n].Len = (ush)bits;
515        /* We overwrite tree[n].Dad which is no longer needed */
516
517        if (n > max_code) continue; /* not a leaf node */
518
519        s->bl_count[bits]++;
520        xbits = 0;
521        if (n >= base) xbits = extra[n-base];
522        f = tree[n].Freq;
523        s->opt_len += (ulg)f * (unsigned)(bits + xbits);
524        if (stree) s->static_len += (ulg)f * (unsigned)(stree[n].Len + xbits);
525    }
526    if (overflow == 0) return;
527
528    Tracev((stderr,"\nbit length overflow\n"));
529    /* This happens for example on obj2 and pic of the Calgary corpus */
530
531    /* Find the first bit length which could increase: */
532    do {
533        bits = max_length-1;
534        while (s->bl_count[bits] == 0) bits--;
535        s->bl_count[bits]--;      /* move one leaf down the tree */
536        s->bl_count[bits+1] += 2; /* move one overflow item as its brother */
537        s->bl_count[max_length]--;
538        /* The brother of the overflow item also moves one step up,
539         * but this does not affect bl_count[max_length]
540         */
541        overflow -= 2;
542    } while (overflow > 0);
543
544    /* Now recompute all bit lengths, scanning in increasing frequency.
545     * h is still equal to HEAP_SIZE. (It is simpler to reconstruct all
546     * lengths instead of fixing only the wrong ones. This idea is taken
547     * from 'ar' written by Haruhiko Okumura.)
548     */
549    for (bits = max_length; bits != 0; bits--) {
550        n = s->bl_count[bits];
551        while (n != 0) {
552            m = s->heap[--h];
553            if (m > max_code) continue;
554            if ((unsigned) tree[m].Len != (unsigned) bits) {
555                Tracev((stderr,"code %d bits %d->%d\n", m, tree[m].Len, bits));
556                s->opt_len += ((ulg)bits - tree[m].Len) * tree[m].Freq;
557                tree[m].Len = (ush)bits;
558            }
559            n--;
560        }
561    }
562}
563
564/* ===========================================================================
565 * Generate the codes for a given tree and bit counts (which need not be
566 * optimal).
567 * IN assertion: the array bl_count contains the bit length statistics for
568 * the given tree and the field len is set for all tree elements.
569 * OUT assertion: the field code is set for all tree elements of non
570 *     zero code length.
571 */
572local void gen_codes (tree, max_code, bl_count)
573    ct_data *tree;             /* the tree to decorate */
574    int max_code;              /* largest code with non zero frequency */
575    ushf *bl_count;            /* number of codes at each bit length */
576{
577    ush next_code[MAX_BITS+1]; /* next code value for each bit length */
578    unsigned code = 0;         /* running code value */
579    int bits;                  /* bit index */
580    int n;                     /* code index */
581
582    /* The distribution counts are first used to generate the code values
583     * without bit reversal.
584     */
585    for (bits = 1; bits <= MAX_BITS; bits++) {
586        code = (code + bl_count[bits-1]) << 1;
587        next_code[bits] = (ush)code;
588    }
589    /* Check that the bit counts in bl_count are consistent. The last code
590     * must be all ones.
591     */
592    Assert (code + bl_count[MAX_BITS]-1 == (1<<MAX_BITS)-1,
593            "inconsistent bit counts");
594    Tracev((stderr,"\ngen_codes: max_code %d ", max_code));
595
596    for (n = 0;  n <= max_code; n++) {
597        int len = tree[n].Len;
598        if (len == 0) continue;
599        /* Now reverse the bits */
600        tree[n].Code = (ush)bi_reverse(next_code[len]++, len);
601
602        Tracecv(tree != static_ltree, (stderr,"\nn %3d %c l %2d c %4x (%x) ",
603             n, (isgraph(n) ? n : ' '), len, tree[n].Code, next_code[len]-1));
604    }
605}
606
607/* ===========================================================================
608 * Construct one Huffman tree and assigns the code bit strings and lengths.
609 * Update the total bit length for the current block.
610 * IN assertion: the field freq is set for all tree elements.
611 * OUT assertions: the fields len and code are set to the optimal bit length
612 *     and corresponding code. The length opt_len is updated; static_len is
613 *     also updated if stree is not null. The field max_code is set.
614 */
615local void build_tree(s, desc)
616    deflate_state *s;
617    tree_desc *desc; /* the tree descriptor */
618{
619    ct_data *tree         = desc->dyn_tree;
620    const ct_data *stree  = desc->stat_desc->static_tree;
621    int elems             = desc->stat_desc->elems;
622    int n, m;          /* iterate over heap elements */
623    int max_code = -1; /* largest code with non zero frequency */
624    int node;          /* new node being created */
625
626    /* Construct the initial heap, with least frequent element in
627     * heap[SMALLEST]. The sons of heap[n] are heap[2*n] and heap[2*n+1].
628     * heap[0] is not used.
629     */
630    s->heap_len = 0, s->heap_max = HEAP_SIZE;
631
632    for (n = 0; n < elems; n++) {
633        if (tree[n].Freq != 0) {
634            s->heap[++(s->heap_len)] = max_code = n;
635            s->depth[n] = 0;
636        } else {
637            tree[n].Len = 0;
638        }
639    }
640
641    /* The pkzip format requires that at least one distance code exists,
642     * and that at least one bit should be sent even if there is only one
643     * possible code. So to avoid special checks later on we force at least
644     * two codes of non zero frequency.
645     */
646    while (s->heap_len < 2) {
647        node = s->heap[++(s->heap_len)] = (max_code < 2 ? ++max_code : 0);
648        tree[node].Freq = 1;
649        s->depth[node] = 0;
650        s->opt_len--; if (stree) s->static_len -= stree[node].Len;
651        /* node is 0 or 1 so it does not have extra bits */
652    }
653    desc->max_code = max_code;
654
655    /* The elements heap[heap_len/2+1 .. heap_len] are leaves of the tree,
656     * establish sub-heaps of increasing lengths:
657     */
658    for (n = s->heap_len/2; n >= 1; n--) pqdownheap(s, tree, n);
659
660    /* Construct the Huffman tree by repeatedly combining the least two
661     * frequent nodes.
662     */
663    node = elems;              /* next internal node of the tree */
664    do {
665        pqremove(s, tree, n);  /* n = node of least frequency */
666        m = s->heap[SMALLEST]; /* m = node of next least frequency */
667
668        s->heap[--(s->heap_max)] = n; /* keep the nodes sorted by frequency */
669        s->heap[--(s->heap_max)] = m;
670
671        /* Create a new node father of n and m */
672        tree[node].Freq = tree[n].Freq + tree[m].Freq;
673        s->depth[node] = (uch)((s->depth[n] >= s->depth[m] ?
674                                s->depth[n] : s->depth[m]) + 1);
675        tree[n].Dad = tree[m].Dad = (ush)node;
676#ifdef DUMP_BL_TREE
677        if (tree == s->bl_tree) {
678            fprintf(stderr,"\nnode %d(%d), sons %d(%d) %d(%d)",
679                    node, tree[node].Freq, n, tree[n].Freq, m, tree[m].Freq);
680        }
681#endif
682        /* and insert the new node in the heap */
683        s->heap[SMALLEST] = node++;
684        pqdownheap(s, tree, SMALLEST);
685
686    } while (s->heap_len >= 2);
687
688    s->heap[--(s->heap_max)] = s->heap[SMALLEST];
689
690    /* At this point, the fields freq and dad are set. We can now
691     * generate the bit lengths.
692     */
693    gen_bitlen(s, (tree_desc *)desc);
694
695    /* The field len is now set, we can generate the bit codes */
696    gen_codes ((ct_data *)tree, max_code, s->bl_count);
697}
698
699/* ===========================================================================
700 * Scan a literal or distance tree to determine the frequencies of the codes
701 * in the bit length tree.
702 */
703local void scan_tree (s, tree, max_code)
704    deflate_state *s;
705    ct_data *tree;   /* the tree to be scanned */
706    int max_code;    /* and its largest code of non zero frequency */
707{
708    int n;                     /* iterates over all tree elements */
709    int prevlen = -1;          /* last emitted length */
710    int curlen;                /* length of current code */
711    int nextlen = tree[0].Len; /* length of next code */
712    int count = 0;             /* repeat count of the current code */
713    int max_count = 7;         /* max repeat count */
714    int min_count = 4;         /* min repeat count */
715
716    if (nextlen == 0) max_count = 138, min_count = 3;
717    tree[max_code+1].Len = (ush)0xffff; /* guard */
718
719    for (n = 0; n <= max_code; n++) {
720        curlen = nextlen; nextlen = tree[n+1].Len;
721        if (++count < max_count && curlen == nextlen) {
722            continue;
723        } else if (count < min_count) {
724            s->bl_tree[curlen].Freq += count;
725        } else if (curlen != 0) {
726            if (curlen != prevlen) s->bl_tree[curlen].Freq++;
727            s->bl_tree[REP_3_6].Freq++;
728        } else if (count <= 10) {
729            s->bl_tree[REPZ_3_10].Freq++;
730        } else {
731            s->bl_tree[REPZ_11_138].Freq++;
732        }
733        count = 0; prevlen = curlen;
734        if (nextlen == 0) {
735            max_count = 138, min_count = 3;
736        } else if (curlen == nextlen) {
737            max_count = 6, min_count = 3;
738        } else {
739            max_count = 7, min_count = 4;
740        }
741    }
742}
743
744/* ===========================================================================
745 * Send a literal or distance tree in compressed form, using the codes in
746 * bl_tree.
747 */
748local void send_tree (s, tree, max_code)
749    deflate_state *s;
750    ct_data *tree; /* the tree to be scanned */
751    int max_code;       /* and its largest code of non zero frequency */
752{
753    int n;                     /* iterates over all tree elements */
754    int prevlen = -1;          /* last emitted length */
755    int curlen;                /* length of current code */
756    int nextlen = tree[0].Len; /* length of next code */
757    int count = 0;             /* repeat count of the current code */
758    int max_count = 7;         /* max repeat count */
759    int min_count = 4;         /* min repeat count */
760
761    /* tree[max_code+1].Len = -1; */  /* guard already set */
762    if (nextlen == 0) max_count = 138, min_count = 3;
763
764    for (n = 0; n <= max_code; n++) {
765        curlen = nextlen; nextlen = tree[n+1].Len;
766        if (++count < max_count && curlen == nextlen) {
767            continue;
768        } else if (count < min_count) {
769            do { send_code(s, curlen, s->bl_tree); } while (--count != 0);
770
771        } else if (curlen != 0) {
772            if (curlen != prevlen) {
773                send_code(s, curlen, s->bl_tree); count--;
774            }
775            Assert(count >= 3 && count <= 6, " 3_6?");
776            send_code(s, REP_3_6, s->bl_tree); send_bits(s, count-3, 2);
777
778        } else if (count <= 10) {
779            send_code(s, REPZ_3_10, s->bl_tree); send_bits(s, count-3, 3);
780
781        } else {
782            send_code(s, REPZ_11_138, s->bl_tree); send_bits(s, count-11, 7);
783        }
784        count = 0; prevlen = curlen;
785        if (nextlen == 0) {
786            max_count = 138, min_count = 3;
787        } else if (curlen == nextlen) {
788            max_count = 6, min_count = 3;
789        } else {
790            max_count = 7, min_count = 4;
791        }
792    }
793}
794
795/* ===========================================================================
796 * Construct the Huffman tree for the bit lengths and return the index in
797 * bl_order of the last bit length code to send.
798 */
799local int build_bl_tree(s)
800    deflate_state *s;
801{
802    int max_blindex;  /* index of last bit length code of non zero freq */
803
804    /* Determine the bit length frequencies for literal and distance trees */
805    scan_tree(s, (ct_data *)s->dyn_ltree, s->l_desc.max_code);
806    scan_tree(s, (ct_data *)s->dyn_dtree, s->d_desc.max_code);
807
808    /* Build the bit length tree: */
809    build_tree(s, (tree_desc *)(&(s->bl_desc)));
810    /* opt_len now includes the length of the tree representations, except
811     * the lengths of the bit lengths codes and the 5+5+4 bits for the counts.
812     */
813
814    /* Determine the number of bit length codes to send. The pkzip format
815     * requires that at least 4 bit length codes be sent. (appnote.txt says
816     * 3 but the actual value used is 4.)
817     */
818    for (max_blindex = BL_CODES-1; max_blindex >= 3; max_blindex--) {
819        if (s->bl_tree[bl_order[max_blindex]].Len != 0) break;
820    }
821    /* Update opt_len to include the bit length tree and counts */
822    s->opt_len += 3*((ulg)max_blindex+1) + 5+5+4;
823    Tracev((stderr, "\ndyn trees: dyn %ld, stat %ld",
824            s->opt_len, s->static_len));
825
826    return max_blindex;
827}
828
829/* ===========================================================================
830 * Send the header for a block using dynamic Huffman trees: the counts, the
831 * lengths of the bit length codes, the literal tree and the distance tree.
832 * IN assertion: lcodes >= 257, dcodes >= 1, blcodes >= 4.
833 */
834local void send_all_trees(s, lcodes, dcodes, blcodes)
835    deflate_state *s;
836    int lcodes, dcodes, blcodes; /* number of codes for each tree */
837{
838    int rank;                    /* index in bl_order */
839
840    Assert (lcodes >= 257 && dcodes >= 1 && blcodes >= 4, "not enough codes");
841    Assert (lcodes <= L_CODES && dcodes <= D_CODES && blcodes <= BL_CODES,
842            "too many codes");
843    Tracev((stderr, "\nbl counts: "));
844    send_bits(s, lcodes-257, 5); /* not +255 as stated in appnote.txt */
845    send_bits(s, dcodes-1,   5);
846    send_bits(s, blcodes-4,  4); /* not -3 as stated in appnote.txt */
847    for (rank = 0; rank < blcodes; rank++) {
848        Tracev((stderr, "\nbl code %2d ", bl_order[rank]));
849        send_bits(s, s->bl_tree[bl_order[rank]].Len, 3);
850    }
851    Tracev((stderr, "\nbl tree: sent %ld", s->bits_sent));
852
853    send_tree(s, (ct_data *)s->dyn_ltree, lcodes-1); /* literal tree */
854    Tracev((stderr, "\nlit tree: sent %ld", s->bits_sent));
855
856    send_tree(s, (ct_data *)s->dyn_dtree, dcodes-1); /* distance tree */
857    Tracev((stderr, "\ndist tree: sent %ld", s->bits_sent));
858}
859
860/* ===========================================================================
861 * Send a stored block
862 */
863void ZLIB_INTERNAL _tr_stored_block(s, buf, stored_len, last)
864    deflate_state *s;
865    charf *buf;       /* input block */
866    ulg stored_len;   /* length of input block */
867    int last;         /* one if this is the last block for a file */
868{
869    send_bits(s, (STORED_BLOCK<<1)+last, 3);    /* send block type */
870    bi_windup(s);        /* align on byte boundary */
871    put_short(s, (ush)stored_len);
872    put_short(s, (ush)~stored_len);
873    zmemcpy(s->pending_buf + s->pending, (Bytef *)buf, stored_len);
874    s->pending += stored_len;
875#ifdef ZLIB_DEBUG
876    s->compressed_len = (s->compressed_len + 3 + 7) & (ulg)~7L;
877    s->compressed_len += (stored_len + 4) << 3;
878    s->bits_sent += 2*16;
879    s->bits_sent += stored_len<<3;
880#endif
881}
882
883/* ===========================================================================
884 * Flush the bits in the bit buffer to pending output (leaves at most 7 bits)
885 */
886void ZLIB_INTERNAL _tr_flush_bits(s)
887    deflate_state *s;
888{
889    bi_flush(s);
890}
891
892/* ===========================================================================
893 * Send one empty static block to give enough lookahead for inflate.
894 * This takes 10 bits, of which 7 may remain in the bit buffer.
895 */
896void ZLIB_INTERNAL _tr_align(s)
897    deflate_state *s;
898{
899    send_bits(s, STATIC_TREES<<1, 3);
900    send_code(s, END_BLOCK, static_ltree);
901#ifdef ZLIB_DEBUG
902    s->compressed_len += 10L; /* 3 for block type, 7 for EOB */
903#endif
904    bi_flush(s);
905}
906
907/* ===========================================================================
908 * Determine the best encoding for the current block: dynamic trees, static
909 * trees or store, and write out the encoded block.
910 */
911void ZLIB_INTERNAL _tr_flush_block(s, buf, stored_len, last)
912    deflate_state *s;
913    charf *buf;       /* input block, or NULL if too old */
914    ulg stored_len;   /* length of input block */
915    int last;         /* one if this is the last block for a file */
916{
917    ulg opt_lenb, static_lenb; /* opt_len and static_len in bytes */
918    int max_blindex = 0;  /* index of last bit length code of non zero freq */
919
920    /* Build the Huffman trees unless a stored block is forced */
921    if (s->level > 0) {
922
923        /* Check if the file is binary or text */
924        if (s->strm->data_type == Z_UNKNOWN)
925            s->strm->data_type = detect_data_type(s);
926
927        /* Construct the literal and distance trees */
928        build_tree(s, (tree_desc *)(&(s->l_desc)));
929        Tracev((stderr, "\nlit data: dyn %ld, stat %ld", s->opt_len,
930                s->static_len));
931
932        build_tree(s, (tree_desc *)(&(s->d_desc)));
933        Tracev((stderr, "\ndist data: dyn %ld, stat %ld", s->opt_len,
934                s->static_len));
935        /* At this point, opt_len and static_len are the total bit lengths of
936         * the compressed block data, excluding the tree representations.
937         */
938
939        /* Build the bit length tree for the above two trees, and get the index
940         * in bl_order of the last bit length code to send.
941         */
942        max_blindex = build_bl_tree(s);
943
944        /* Determine the best encoding. Compute the block lengths in bytes. */
945        opt_lenb = (s->opt_len+3+7)>>3;
946        static_lenb = (s->static_len+3+7)>>3;
947
948        Tracev((stderr, "\nopt %lu(%lu) stat %lu(%lu) stored %lu lit %u ",
949                opt_lenb, s->opt_len, static_lenb, s->static_len, stored_len,
950                s->last_lit));
951
952        if (static_lenb <= opt_lenb) opt_lenb = static_lenb;
953
954    } else {
955        Assert(buf != (char*)0, "lost buf");
956        opt_lenb = static_lenb = stored_len + 5; /* force a stored block */
957    }
958
959#ifdef FORCE_STORED
960    if (buf != (char*)0) { /* force stored block */
961#else
962    if (stored_len+4 <= opt_lenb && buf != (char*)0) {
963                       /* 4: two words for the lengths */
964#endif
965        /* The test buf != NULL is only necessary if LIT_BUFSIZE > WSIZE.
966         * Otherwise we can't have processed more than WSIZE input bytes since
967         * the last block flush, because compression would have been
968         * successful. If LIT_BUFSIZE <= WSIZE, it is never too late to
969         * transform a block into a stored block.
970         */
971        _tr_stored_block(s, buf, stored_len, last);
972
973#ifdef FORCE_STATIC
974    } else if (static_lenb >= 0) { /* force static trees */
975#else
976    } else if (s->strategy == Z_FIXED || static_lenb == opt_lenb) {
977#endif
978        send_bits(s, (STATIC_TREES<<1)+last, 3);
979        compress_block(s, (const ct_data *)static_ltree,
980                       (const ct_data *)static_dtree);
981#ifdef ZLIB_DEBUG
982        s->compressed_len += 3 + s->static_len;
983#endif
984    } else {
985        send_bits(s, (DYN_TREES<<1)+last, 3);
986        send_all_trees(s, s->l_desc.max_code+1, s->d_desc.max_code+1,
987                       max_blindex+1);
988        compress_block(s, (const ct_data *)s->dyn_ltree,
989                       (const ct_data *)s->dyn_dtree);
990#ifdef ZLIB_DEBUG
991        s->compressed_len += 3 + s->opt_len;
992#endif
993    }
994    Assert (s->compressed_len == s->bits_sent, "bad compressed size");
995    /* The above check is made mod 2^32, for files larger than 512 MB
996     * and uLong implemented on 32 bits.
997     */
998    init_block(s);
999
1000    if (last) {
1001        bi_windup(s);
1002#ifdef ZLIB_DEBUG
1003        s->compressed_len += 7;  /* align on byte boundary */
1004#endif
1005    }
1006    Tracev((stderr,"\ncomprlen %lu(%lu) ", s->compressed_len>>3,
1007           s->compressed_len-7*last));
1008}
1009
1010/* ===========================================================================
1011 * Save the match info and tally the frequency counts. Return true if
1012 * the current block must be flushed.
1013 */
1014int ZLIB_INTERNAL _tr_tally (s, dist, lc)
1015    deflate_state *s;
1016    unsigned dist;  /* distance of matched string */
1017    unsigned lc;    /* match length-MIN_MATCH or unmatched char (if dist==0) */
1018{
1019    s->d_buf[s->last_lit] = (ush)dist;
1020    s->l_buf[s->last_lit++] = (uch)lc;
1021    if (dist == 0) {
1022        /* lc is the unmatched char */
1023        s->dyn_ltree[lc].Freq++;
1024    } else {
1025        s->matches++;
1026        /* Here, lc is the match length - MIN_MATCH */
1027        dist--;             /* dist = match distance - 1 */
1028        Assert((ush)dist < (ush)MAX_DIST(s) &&
1029               (ush)lc <= (ush)(MAX_MATCH-MIN_MATCH) &&
1030               (ush)d_code(dist) < (ush)D_CODES,  "_tr_tally: bad match");
1031
1032        s->dyn_ltree[_length_code[lc]+LITERALS+1].Freq++;
1033        s->dyn_dtree[d_code(dist)].Freq++;
1034    }
1035
1036#ifdef TRUNCATE_BLOCK
1037    /* Try to guess if it is profitable to stop the current block here */
1038    if ((s->last_lit & 0x1fff) == 0 && s->level > 2) {
1039        /* Compute an upper bound for the compressed length */
1040        ulg out_length = (ulg)s->last_lit*8L;
1041        ulg in_length = (ulg)((long)s->strstart - s->block_start);
1042        int dcode;
1043        for (dcode = 0; dcode < D_CODES; dcode++) {
1044            out_length += (ulg)s->dyn_dtree[dcode].Freq *
1045                (5L+extra_dbits[dcode]);
1046        }
1047        out_length >>= 3;
1048        Tracev((stderr,"\nlast_lit %u, in %ld, out ~%ld(%ld%%) ",
1049               s->last_lit, in_length, out_length,
1050               100L - out_length*100L/in_length));
1051        if (s->matches < s->last_lit/2 && out_length < in_length/2) return 1;
1052    }
1053#endif
1054    return (s->last_lit == s->lit_bufsize-1);
1055    /* We avoid equality with lit_bufsize because of wraparound at 64K
1056     * on 16 bit machines and because stored blocks are restricted to
1057     * 64K-1 bytes.
1058     */
1059}
1060
1061/* ===========================================================================
1062 * Send the block data compressed using the given Huffman trees
1063 */
1064local void compress_block(s, ltree, dtree)
1065    deflate_state *s;
1066    const ct_data *ltree; /* literal tree */
1067    const ct_data *dtree; /* distance tree */
1068{
1069    unsigned dist;      /* distance of matched string */
1070    int lc;             /* match length or unmatched char (if dist == 0) */
1071    unsigned lx = 0;    /* running index in l_buf */
1072    unsigned code;      /* the code to send */
1073    int extra;          /* number of extra bits to send */
1074
1075    if (s->last_lit != 0) do {
1076        dist = s->d_buf[lx];
1077        lc = s->l_buf[lx++];
1078        if (dist == 0) {
1079            send_code(s, lc, ltree); /* send a literal byte */
1080            Tracecv(isgraph(lc), (stderr," '%c' ", lc));
1081        } else {
1082            /* Here, lc is the match length - MIN_MATCH */
1083            code = _length_code[lc];
1084            send_code(s, code+LITERALS+1, ltree); /* send the length code */
1085            extra = extra_lbits[code];
1086            if (extra != 0) {
1087                lc -= base_length[code];
1088                send_bits(s, lc, extra);       /* send the extra length bits */
1089            }
1090            dist--; /* dist is now the match distance - 1 */
1091            code = d_code(dist);
1092            Assert (code < D_CODES, "bad d_code");
1093
1094            send_code(s, code, dtree);       /* send the distance code */
1095            extra = extra_dbits[code];
1096            if (extra != 0) {
1097                dist -= (unsigned)base_dist[code];
1098                send_bits(s, dist, extra);   /* send the extra distance bits */
1099            }
1100        } /* literal or match pair ? */
1101
1102        /* Check that the overlay between pending_buf and d_buf+l_buf is ok: */
1103        Assert((uInt)(s->pending) < s->lit_bufsize + 2*lx,
1104               "pendingBuf overflow");
1105
1106    } while (lx < s->last_lit);
1107
1108    send_code(s, END_BLOCK, ltree);
1109}
1110
1111/* ===========================================================================
1112 * Check if the data type is TEXT or BINARY, using the following algorithm:
1113 * - TEXT if the two conditions below are satisfied:
1114 *    a) There are no non-portable control characters belonging to the
1115 *       "black list" (0..6, 14..25, 28..31).
1116 *    b) There is at least one printable character belonging to the
1117 *       "white list" (9 {TAB}, 10 {LF}, 13 {CR}, 32..255).
1118 * - BINARY otherwise.
1119 * - The following partially-portable control characters form a
1120 *   "gray list" that is ignored in this detection algorithm:
1121 *   (7 {BEL}, 8 {BS}, 11 {VT}, 12 {FF}, 26 {SUB}, 27 {ESC}).
1122 * IN assertion: the fields Freq of dyn_ltree are set.
1123 */
1124local int detect_data_type(s)
1125    deflate_state *s;
1126{
1127    /* black_mask is the bit mask of black-listed bytes
1128     * set bits 0..6, 14..25, and 28..31
1129     * 0xf3ffc07f = binary 11110011111111111100000001111111
1130     */
1131    unsigned long black_mask = 0xf3ffc07fUL;
1132    int n;
1133
1134    /* Check for non-textual ("black-listed") bytes. */
1135    for (n = 0; n <= 31; n++, black_mask >>= 1)
1136        if ((black_mask & 1) && (s->dyn_ltree[n].Freq != 0))
1137            return Z_BINARY;
1138
1139    /* Check for textual ("white-listed") bytes. */
1140    if (s->dyn_ltree[9].Freq != 0 || s->dyn_ltree[10].Freq != 0
1141            || s->dyn_ltree[13].Freq != 0)
1142        return Z_TEXT;
1143    for (n = 32; n < LITERALS; n++)
1144        if (s->dyn_ltree[n].Freq != 0)
1145            return Z_TEXT;
1146
1147    /* There are no "black-listed" or "white-listed" bytes:
1148     * this stream either is empty or has tolerated ("gray-listed") bytes only.
1149     */
1150    return Z_BINARY;
1151}
1152
1153/* ===========================================================================
1154 * Reverse the first len bits of a code, using straightforward code (a faster
1155 * method would use a table)
1156 * IN assertion: 1 <= len <= 15
1157 */
1158local unsigned bi_reverse(code, len)
1159    unsigned code; /* the value to invert */
1160    int len;       /* its bit length */
1161{
1162    register unsigned res = 0;
1163    do {
1164        res |= code & 1;
1165        code >>= 1, res <<= 1;
1166    } while (--len > 0);
1167    return res >> 1;
1168}
1169
1170/* ===========================================================================
1171 * Flush the bit buffer, keeping at most 7 bits in it.
1172 */
1173local void bi_flush(s)
1174    deflate_state *s;
1175{
1176    if (s->bi_valid == 16) {
1177        put_short(s, s->bi_buf);
1178        s->bi_buf = 0;
1179        s->bi_valid = 0;
1180    } else if (s->bi_valid >= 8) {
1181        put_byte(s, (Byte)s->bi_buf);
1182        s->bi_buf >>= 8;
1183        s->bi_valid -= 8;
1184    }
1185}
1186
1187/* ===========================================================================
1188 * Flush the bit buffer and align the output on a byte boundary
1189 */
1190local void bi_windup(s)
1191    deflate_state *s;
1192{
1193    if (s->bi_valid > 8) {
1194        put_short(s, s->bi_buf);
1195    } else if (s->bi_valid > 0) {
1196        put_byte(s, (Byte)s->bi_buf);
1197    }
1198    s->bi_buf = 0;
1199    s->bi_valid = 0;
1200#ifdef ZLIB_DEBUG
1201    s->bits_sent = (s->bits_sent+7) & ~7;
1202#endif
1203}
1204