deflate.c revision 313796
1/* deflate.c -- compress data using the deflation algorithm
2 * Copyright (C) 1995-2017 Jean-loup Gailly and Mark Adler
3 * For conditions of distribution and use, see copyright notice in zlib.h
4 */
5
6/*
7 *  ALGORITHM
8 *
9 *      The "deflation" process depends on being able to identify portions
10 *      of the input text which are identical to earlier input (within a
11 *      sliding window trailing behind the input currently being processed).
12 *
13 *      The most straightforward technique turns out to be the fastest for
14 *      most input files: try all possible matches and select the longest.
15 *      The key feature of this algorithm is that insertions into the string
16 *      dictionary are very simple and thus fast, and deletions are avoided
17 *      completely. Insertions are performed at each input character, whereas
18 *      string matches are performed only when the previous match ends. So it
19 *      is preferable to spend more time in matches to allow very fast string
20 *      insertions and avoid deletions. The matching algorithm for small
21 *      strings is inspired from that of Rabin & Karp. A brute force approach
22 *      is used to find longer strings when a small match has been found.
23 *      A similar algorithm is used in comic (by Jan-Mark Wams) and freeze
24 *      (by Leonid Broukhis).
25 *         A previous version of this file used a more sophisticated algorithm
26 *      (by Fiala and Greene) which is guaranteed to run in linear amortized
27 *      time, but has a larger average cost, uses more memory and is patented.
28 *      However the F&G algorithm may be faster for some highly redundant
29 *      files if the parameter max_chain_length (described below) is too large.
30 *
31 *  ACKNOWLEDGEMENTS
32 *
33 *      The idea of lazy evaluation of matches is due to Jan-Mark Wams, and
34 *      I found it in 'freeze' written by Leonid Broukhis.
35 *      Thanks to many people for bug reports and testing.
36 *
37 *  REFERENCES
38 *
39 *      Deutsch, L.P.,"DEFLATE Compressed Data Format Specification".
40 *      Available in http://tools.ietf.org/html/rfc1951
41 *
42 *      A description of the Rabin and Karp algorithm is given in the book
43 *         "Algorithms" by R. Sedgewick, Addison-Wesley, p252.
44 *
45 *      Fiala,E.R., and Greene,D.H.
46 *         Data Compression with Finite Windows, Comm.ACM, 32,4 (1989) 490-595
47 *
48 */
49
50/* @(#) $Id$ */
51
52#include "deflate.h"
53
54const char deflate_copyright[] =
55   " deflate 1.2.11 Copyright 1995-2017 Jean-loup Gailly and Mark Adler ";
56/*
57  If you use the zlib library in a product, an acknowledgment is welcome
58  in the documentation of your product. If for some reason you cannot
59  include such an acknowledgment, I would appreciate that you keep this
60  copyright string in the executable of your product.
61 */
62
63/* ===========================================================================
64 *  Function prototypes.
65 */
66typedef enum {
67    need_more,      /* block not completed, need more input or more output */
68    block_done,     /* block flush performed */
69    finish_started, /* finish started, need only more output at next deflate */
70    finish_done     /* finish done, accept no more input or output */
71} block_state;
72
73typedef block_state (*compress_func) OF((deflate_state *s, int flush));
74/* Compression function. Returns the block state after the call. */
75
76local int deflateStateCheck      OF((z_streamp strm));
77local void slide_hash     OF((deflate_state *s));
78local void fill_window    OF((deflate_state *s));
79local block_state deflate_stored OF((deflate_state *s, int flush));
80local block_state deflate_fast   OF((deflate_state *s, int flush));
81#ifndef FASTEST
82local block_state deflate_slow   OF((deflate_state *s, int flush));
83#endif
84local block_state deflate_rle    OF((deflate_state *s, int flush));
85local block_state deflate_huff   OF((deflate_state *s, int flush));
86local void lm_init        OF((deflate_state *s));
87local void putShortMSB    OF((deflate_state *s, uInt b));
88local void flush_pending  OF((z_streamp strm));
89local unsigned read_buf   OF((z_streamp strm, Bytef *buf, unsigned size));
90#ifdef ASMV
91#  pragma message("Assembler code may have bugs -- use at your own risk")
92      void match_init OF((void)); /* asm code initialization */
93      uInt longest_match  OF((deflate_state *s, IPos cur_match));
94#else
95local uInt longest_match  OF((deflate_state *s, IPos cur_match));
96#endif
97
98#ifdef ZLIB_DEBUG
99local  void check_match OF((deflate_state *s, IPos start, IPos match,
100                            int length));
101#endif
102
103/* ===========================================================================
104 * Local data
105 */
106
107#define NIL 0
108/* Tail of hash chains */
109
110#ifndef TOO_FAR
111#  define TOO_FAR 4096
112#endif
113/* Matches of length 3 are discarded if their distance exceeds TOO_FAR */
114
115/* Values for max_lazy_match, good_match and max_chain_length, depending on
116 * the desired pack level (0..9). The values given below have been tuned to
117 * exclude worst case performance for pathological files. Better values may be
118 * found for specific files.
119 */
120typedef struct config_s {
121   ush good_length; /* reduce lazy search above this match length */
122   ush max_lazy;    /* do not perform lazy search above this match length */
123   ush nice_length; /* quit search above this match length */
124   ush max_chain;
125   compress_func func;
126} config;
127
128#ifdef FASTEST
129local const config configuration_table[2] = {
130/*      good lazy nice chain */
131/* 0 */ {0,    0,  0,    0, deflate_stored},  /* store only */
132/* 1 */ {4,    4,  8,    4, deflate_fast}}; /* max speed, no lazy matches */
133#else
134local const config configuration_table[10] = {
135/*      good lazy nice chain */
136/* 0 */ {0,    0,  0,    0, deflate_stored},  /* store only */
137/* 1 */ {4,    4,  8,    4, deflate_fast}, /* max speed, no lazy matches */
138/* 2 */ {4,    5, 16,    8, deflate_fast},
139/* 3 */ {4,    6, 32,   32, deflate_fast},
140
141/* 4 */ {4,    4, 16,   16, deflate_slow},  /* lazy matches */
142/* 5 */ {8,   16, 32,   32, deflate_slow},
143/* 6 */ {8,   16, 128, 128, deflate_slow},
144/* 7 */ {8,   32, 128, 256, deflate_slow},
145/* 8 */ {32, 128, 258, 1024, deflate_slow},
146/* 9 */ {32, 258, 258, 4096, deflate_slow}}; /* max compression */
147#endif
148
149/* Note: the deflate() code requires max_lazy >= MIN_MATCH and max_chain >= 4
150 * For deflate_fast() (levels <= 3) good is ignored and lazy has a different
151 * meaning.
152 */
153
154/* rank Z_BLOCK between Z_NO_FLUSH and Z_PARTIAL_FLUSH */
155#define RANK(f) (((f) * 2) - ((f) > 4 ? 9 : 0))
156
157/* ===========================================================================
158 * Update a hash value with the given input byte
159 * IN  assertion: all calls to UPDATE_HASH are made with consecutive input
160 *    characters, so that a running hash key can be computed from the previous
161 *    key instead of complete recalculation each time.
162 */
163#define UPDATE_HASH(s,h,c) (h = (((h)<<s->hash_shift) ^ (c)) & s->hash_mask)
164
165
166/* ===========================================================================
167 * Insert string str in the dictionary and set match_head to the previous head
168 * of the hash chain (the most recent string with same hash key). Return
169 * the previous length of the hash chain.
170 * If this file is compiled with -DFASTEST, the compression level is forced
171 * to 1, and no hash chains are maintained.
172 * IN  assertion: all calls to INSERT_STRING are made with consecutive input
173 *    characters and the first MIN_MATCH bytes of str are valid (except for
174 *    the last MIN_MATCH-1 bytes of the input file).
175 */
176#ifdef FASTEST
177#define INSERT_STRING(s, str, match_head) \
178   (UPDATE_HASH(s, s->ins_h, s->window[(str) + (MIN_MATCH-1)]), \
179    match_head = s->head[s->ins_h], \
180    s->head[s->ins_h] = (Pos)(str))
181#else
182#define INSERT_STRING(s, str, match_head) \
183   (UPDATE_HASH(s, s->ins_h, s->window[(str) + (MIN_MATCH-1)]), \
184    match_head = s->prev[(str) & s->w_mask] = s->head[s->ins_h], \
185    s->head[s->ins_h] = (Pos)(str))
186#endif
187
188/* ===========================================================================
189 * Initialize the hash table (avoiding 64K overflow for 16 bit systems).
190 * prev[] will be initialized on the fly.
191 */
192#define CLEAR_HASH(s) \
193    s->head[s->hash_size-1] = NIL; \
194    zmemzero((Bytef *)s->head, (unsigned)(s->hash_size-1)*sizeof(*s->head));
195
196/* ===========================================================================
197 * Slide the hash table when sliding the window down (could be avoided with 32
198 * bit values at the expense of memory usage). We slide even when level == 0 to
199 * keep the hash table consistent if we switch back to level > 0 later.
200 */
201local void slide_hash(s)
202    deflate_state *s;
203{
204    unsigned n, m;
205    Posf *p;
206    uInt wsize = s->w_size;
207
208    n = s->hash_size;
209    p = &s->head[n];
210    do {
211        m = *--p;
212        *p = (Pos)(m >= wsize ? m - wsize : NIL);
213    } while (--n);
214    n = wsize;
215#ifndef FASTEST
216    p = &s->prev[n];
217    do {
218        m = *--p;
219        *p = (Pos)(m >= wsize ? m - wsize : NIL);
220        /* If n is not on any hash chain, prev[n] is garbage but
221         * its value will never be used.
222         */
223    } while (--n);
224#endif
225}
226
227/* ========================================================================= */
228int ZEXPORT deflateInit_(strm, level, version, stream_size)
229    z_streamp strm;
230    int level;
231    const char *version;
232    int stream_size;
233{
234    return deflateInit2_(strm, level, Z_DEFLATED, MAX_WBITS, DEF_MEM_LEVEL,
235                         Z_DEFAULT_STRATEGY, version, stream_size);
236    /* To do: ignore strm->next_in if we use it as window */
237}
238
239/* ========================================================================= */
240int ZEXPORT deflateInit2_(strm, level, method, windowBits, memLevel, strategy,
241                  version, stream_size)
242    z_streamp strm;
243    int  level;
244    int  method;
245    int  windowBits;
246    int  memLevel;
247    int  strategy;
248    const char *version;
249    int stream_size;
250{
251    deflate_state *s;
252    int wrap = 1;
253    static const char my_version[] = ZLIB_VERSION;
254
255    ushf *overlay;
256    /* We overlay pending_buf and d_buf+l_buf. This works since the average
257     * output size for (length,distance) codes is <= 24 bits.
258     */
259
260    if (version == Z_NULL || version[0] != my_version[0] ||
261        stream_size != sizeof(z_stream)) {
262        return Z_VERSION_ERROR;
263    }
264    if (strm == Z_NULL) return Z_STREAM_ERROR;
265
266    strm->msg = Z_NULL;
267    if (strm->zalloc == (alloc_func)0) {
268#ifdef Z_SOLO
269        return Z_STREAM_ERROR;
270#else
271        strm->zalloc = zcalloc;
272        strm->opaque = (voidpf)0;
273#endif
274    }
275    if (strm->zfree == (free_func)0)
276#ifdef Z_SOLO
277        return Z_STREAM_ERROR;
278#else
279        strm->zfree = zcfree;
280#endif
281
282#ifdef FASTEST
283    if (level != 0) level = 1;
284#else
285    if (level == Z_DEFAULT_COMPRESSION) level = 6;
286#endif
287
288    if (windowBits < 0) { /* suppress zlib wrapper */
289        wrap = 0;
290        windowBits = -windowBits;
291    }
292#ifdef GZIP
293    else if (windowBits > 15) {
294        wrap = 2;       /* write gzip wrapper instead */
295        windowBits -= 16;
296    }
297#endif
298    if (memLevel < 1 || memLevel > MAX_MEM_LEVEL || method != Z_DEFLATED ||
299        windowBits < 8 || windowBits > 15 || level < 0 || level > 9 ||
300        strategy < 0 || strategy > Z_FIXED || (windowBits == 8 && wrap != 1)) {
301        return Z_STREAM_ERROR;
302    }
303    if (windowBits == 8) windowBits = 9;  /* until 256-byte window bug fixed */
304    s = (deflate_state *) ZALLOC(strm, 1, sizeof(deflate_state));
305    if (s == Z_NULL) return Z_MEM_ERROR;
306    strm->state = (struct internal_state FAR *)s;
307    s->strm = strm;
308    s->status = INIT_STATE;     /* to pass state test in deflateReset() */
309
310    s->wrap = wrap;
311    s->gzhead = Z_NULL;
312    s->w_bits = (uInt)windowBits;
313    s->w_size = 1 << s->w_bits;
314    s->w_mask = s->w_size - 1;
315
316    s->hash_bits = (uInt)memLevel + 7;
317    s->hash_size = 1 << s->hash_bits;
318    s->hash_mask = s->hash_size - 1;
319    s->hash_shift =  ((s->hash_bits+MIN_MATCH-1)/MIN_MATCH);
320
321    s->window = (Bytef *) ZALLOC(strm, s->w_size, 2*sizeof(Byte));
322    s->prev   = (Posf *)  ZALLOC(strm, s->w_size, sizeof(Pos));
323    s->head   = (Posf *)  ZALLOC(strm, s->hash_size, sizeof(Pos));
324
325    s->high_water = 0;      /* nothing written to s->window yet */
326
327    s->lit_bufsize = 1 << (memLevel + 6); /* 16K elements by default */
328
329    overlay = (ushf *) ZALLOC(strm, s->lit_bufsize, sizeof(ush)+2);
330    s->pending_buf = (uchf *) overlay;
331    s->pending_buf_size = (ulg)s->lit_bufsize * (sizeof(ush)+2L);
332
333    if (s->window == Z_NULL || s->prev == Z_NULL || s->head == Z_NULL ||
334        s->pending_buf == Z_NULL) {
335        s->status = FINISH_STATE;
336        strm->msg = ERR_MSG(Z_MEM_ERROR);
337        deflateEnd (strm);
338        return Z_MEM_ERROR;
339    }
340    s->d_buf = overlay + s->lit_bufsize/sizeof(ush);
341    s->l_buf = s->pending_buf + (1+sizeof(ush))*s->lit_bufsize;
342
343    s->level = level;
344    s->strategy = strategy;
345    s->method = (Byte)method;
346
347    return deflateReset(strm);
348}
349
350/* =========================================================================
351 * Check for a valid deflate stream state. Return 0 if ok, 1 if not.
352 */
353local int deflateStateCheck (strm)
354    z_streamp strm;
355{
356    deflate_state *s;
357    if (strm == Z_NULL ||
358        strm->zalloc == (alloc_func)0 || strm->zfree == (free_func)0)
359        return 1;
360    s = strm->state;
361    if (s == Z_NULL || s->strm != strm || (s->status != INIT_STATE &&
362#ifdef GZIP
363                                           s->status != GZIP_STATE &&
364#endif
365                                           s->status != EXTRA_STATE &&
366                                           s->status != NAME_STATE &&
367                                           s->status != COMMENT_STATE &&
368                                           s->status != HCRC_STATE &&
369                                           s->status != BUSY_STATE &&
370                                           s->status != FINISH_STATE))
371        return 1;
372    return 0;
373}
374
375/* ========================================================================= */
376int ZEXPORT deflateSetDictionary (strm, dictionary, dictLength)
377    z_streamp strm;
378    const Bytef *dictionary;
379    uInt  dictLength;
380{
381    deflate_state *s;
382    uInt str, n;
383    int wrap;
384    unsigned avail;
385    z_const unsigned char *next;
386
387    if (deflateStateCheck(strm) || dictionary == Z_NULL)
388        return Z_STREAM_ERROR;
389    s = strm->state;
390    wrap = s->wrap;
391    if (wrap == 2 || (wrap == 1 && s->status != INIT_STATE) || s->lookahead)
392        return Z_STREAM_ERROR;
393
394    /* when using zlib wrappers, compute Adler-32 for provided dictionary */
395    if (wrap == 1)
396        strm->adler = adler32(strm->adler, dictionary, dictLength);
397    s->wrap = 0;                    /* avoid computing Adler-32 in read_buf */
398
399    /* if dictionary would fill window, just replace the history */
400    if (dictLength >= s->w_size) {
401        if (wrap == 0) {            /* already empty otherwise */
402            CLEAR_HASH(s);
403            s->strstart = 0;
404            s->block_start = 0L;
405            s->insert = 0;
406        }
407        dictionary += dictLength - s->w_size;  /* use the tail */
408        dictLength = s->w_size;
409    }
410
411    /* insert dictionary into window and hash */
412    avail = strm->avail_in;
413    next = strm->next_in;
414    strm->avail_in = dictLength;
415    strm->next_in = (z_const Bytef *)dictionary;
416    fill_window(s);
417    while (s->lookahead >= MIN_MATCH) {
418        str = s->strstart;
419        n = s->lookahead - (MIN_MATCH-1);
420        do {
421            UPDATE_HASH(s, s->ins_h, s->window[str + MIN_MATCH-1]);
422#ifndef FASTEST
423            s->prev[str & s->w_mask] = s->head[s->ins_h];
424#endif
425            s->head[s->ins_h] = (Pos)str;
426            str++;
427        } while (--n);
428        s->strstart = str;
429        s->lookahead = MIN_MATCH-1;
430        fill_window(s);
431    }
432    s->strstart += s->lookahead;
433    s->block_start = (long)s->strstart;
434    s->insert = s->lookahead;
435    s->lookahead = 0;
436    s->match_length = s->prev_length = MIN_MATCH-1;
437    s->match_available = 0;
438    strm->next_in = next;
439    strm->avail_in = avail;
440    s->wrap = wrap;
441    return Z_OK;
442}
443
444/* ========================================================================= */
445int ZEXPORT deflateGetDictionary (strm, dictionary, dictLength)
446    z_streamp strm;
447    Bytef *dictionary;
448    uInt  *dictLength;
449{
450    deflate_state *s;
451    uInt len;
452
453    if (deflateStateCheck(strm))
454        return Z_STREAM_ERROR;
455    s = strm->state;
456    len = s->strstart + s->lookahead;
457    if (len > s->w_size)
458        len = s->w_size;
459    if (dictionary != Z_NULL && len)
460        zmemcpy(dictionary, s->window + s->strstart + s->lookahead - len, len);
461    if (dictLength != Z_NULL)
462        *dictLength = len;
463    return Z_OK;
464}
465
466/* ========================================================================= */
467int ZEXPORT deflateResetKeep (strm)
468    z_streamp strm;
469{
470    deflate_state *s;
471
472    if (deflateStateCheck(strm)) {
473        return Z_STREAM_ERROR;
474    }
475
476    strm->total_in = strm->total_out = 0;
477    strm->msg = Z_NULL; /* use zfree if we ever allocate msg dynamically */
478    strm->data_type = Z_UNKNOWN;
479
480    s = (deflate_state *)strm->state;
481    s->pending = 0;
482    s->pending_out = s->pending_buf;
483
484    if (s->wrap < 0) {
485        s->wrap = -s->wrap; /* was made negative by deflate(..., Z_FINISH); */
486    }
487    s->status =
488#ifdef GZIP
489        s->wrap == 2 ? GZIP_STATE :
490#endif
491        s->wrap ? INIT_STATE : BUSY_STATE;
492    strm->adler =
493#ifdef GZIP
494        s->wrap == 2 ? crc32(0L, Z_NULL, 0) :
495#endif
496        adler32(0L, Z_NULL, 0);
497    s->last_flush = Z_NO_FLUSH;
498
499    _tr_init(s);
500
501    return Z_OK;
502}
503
504/* ========================================================================= */
505int ZEXPORT deflateReset (strm)
506    z_streamp strm;
507{
508    int ret;
509
510    ret = deflateResetKeep(strm);
511    if (ret == Z_OK)
512        lm_init(strm->state);
513    return ret;
514}
515
516/* ========================================================================= */
517int ZEXPORT deflateSetHeader (strm, head)
518    z_streamp strm;
519    gz_headerp head;
520{
521    if (deflateStateCheck(strm) || strm->state->wrap != 2)
522        return Z_STREAM_ERROR;
523    strm->state->gzhead = head;
524    return Z_OK;
525}
526
527/* ========================================================================= */
528int ZEXPORT deflatePending (strm, pending, bits)
529    unsigned *pending;
530    int *bits;
531    z_streamp strm;
532{
533    if (deflateStateCheck(strm)) return Z_STREAM_ERROR;
534    if (pending != Z_NULL)
535        *pending = strm->state->pending;
536    if (bits != Z_NULL)
537        *bits = strm->state->bi_valid;
538    return Z_OK;
539}
540
541/* ========================================================================= */
542int ZEXPORT deflatePrime (strm, bits, value)
543    z_streamp strm;
544    int bits;
545    int value;
546{
547    deflate_state *s;
548    int put;
549
550    if (deflateStateCheck(strm)) return Z_STREAM_ERROR;
551    s = strm->state;
552    if ((Bytef *)(s->d_buf) < s->pending_out + ((Buf_size + 7) >> 3))
553        return Z_BUF_ERROR;
554    do {
555        put = Buf_size - s->bi_valid;
556        if (put > bits)
557            put = bits;
558        s->bi_buf |= (ush)((value & ((1 << put) - 1)) << s->bi_valid);
559        s->bi_valid += put;
560        _tr_flush_bits(s);
561        value >>= put;
562        bits -= put;
563    } while (bits);
564    return Z_OK;
565}
566
567/* ========================================================================= */
568int ZEXPORT deflateParams(strm, level, strategy)
569    z_streamp strm;
570    int level;
571    int strategy;
572{
573    deflate_state *s;
574    compress_func func;
575
576    if (deflateStateCheck(strm)) return Z_STREAM_ERROR;
577    s = strm->state;
578
579#ifdef FASTEST
580    if (level != 0) level = 1;
581#else
582    if (level == Z_DEFAULT_COMPRESSION) level = 6;
583#endif
584    if (level < 0 || level > 9 || strategy < 0 || strategy > Z_FIXED) {
585        return Z_STREAM_ERROR;
586    }
587    func = configuration_table[s->level].func;
588
589    if ((strategy != s->strategy || func != configuration_table[level].func) &&
590        s->high_water) {
591        /* Flush the last buffer: */
592        int err = deflate(strm, Z_BLOCK);
593        if (err == Z_STREAM_ERROR)
594            return err;
595        if (strm->avail_out == 0)
596            return Z_BUF_ERROR;
597    }
598    if (s->level != level) {
599        if (s->level == 0 && s->matches != 0) {
600            if (s->matches == 1)
601                slide_hash(s);
602            else
603                CLEAR_HASH(s);
604            s->matches = 0;
605        }
606        s->level = level;
607        s->max_lazy_match   = configuration_table[level].max_lazy;
608        s->good_match       = configuration_table[level].good_length;
609        s->nice_match       = configuration_table[level].nice_length;
610        s->max_chain_length = configuration_table[level].max_chain;
611    }
612    s->strategy = strategy;
613    return Z_OK;
614}
615
616/* ========================================================================= */
617int ZEXPORT deflateTune(strm, good_length, max_lazy, nice_length, max_chain)
618    z_streamp strm;
619    int good_length;
620    int max_lazy;
621    int nice_length;
622    int max_chain;
623{
624    deflate_state *s;
625
626    if (deflateStateCheck(strm)) return Z_STREAM_ERROR;
627    s = strm->state;
628    s->good_match = (uInt)good_length;
629    s->max_lazy_match = (uInt)max_lazy;
630    s->nice_match = nice_length;
631    s->max_chain_length = (uInt)max_chain;
632    return Z_OK;
633}
634
635/* =========================================================================
636 * For the default windowBits of 15 and memLevel of 8, this function returns
637 * a close to exact, as well as small, upper bound on the compressed size.
638 * They are coded as constants here for a reason--if the #define's are
639 * changed, then this function needs to be changed as well.  The return
640 * value for 15 and 8 only works for those exact settings.
641 *
642 * For any setting other than those defaults for windowBits and memLevel,
643 * the value returned is a conservative worst case for the maximum expansion
644 * resulting from using fixed blocks instead of stored blocks, which deflate
645 * can emit on compressed data for some combinations of the parameters.
646 *
647 * This function could be more sophisticated to provide closer upper bounds for
648 * every combination of windowBits and memLevel.  But even the conservative
649 * upper bound of about 14% expansion does not seem onerous for output buffer
650 * allocation.
651 */
652uLong ZEXPORT deflateBound(strm, sourceLen)
653    z_streamp strm;
654    uLong sourceLen;
655{
656    deflate_state *s;
657    uLong complen, wraplen;
658
659    /* conservative upper bound for compressed data */
660    complen = sourceLen +
661              ((sourceLen + 7) >> 3) + ((sourceLen + 63) >> 6) + 5;
662
663    /* if can't get parameters, return conservative bound plus zlib wrapper */
664    if (deflateStateCheck(strm))
665        return complen + 6;
666
667    /* compute wrapper length */
668    s = strm->state;
669    switch (s->wrap) {
670    case 0:                                 /* raw deflate */
671        wraplen = 0;
672        break;
673    case 1:                                 /* zlib wrapper */
674        wraplen = 6 + (s->strstart ? 4 : 0);
675        break;
676#ifdef GZIP
677    case 2:                                 /* gzip wrapper */
678        wraplen = 18;
679        if (s->gzhead != Z_NULL) {          /* user-supplied gzip header */
680            Bytef *str;
681            if (s->gzhead->extra != Z_NULL)
682                wraplen += 2 + s->gzhead->extra_len;
683            str = s->gzhead->name;
684            if (str != Z_NULL)
685                do {
686                    wraplen++;
687                } while (*str++);
688            str = s->gzhead->comment;
689            if (str != Z_NULL)
690                do {
691                    wraplen++;
692                } while (*str++);
693            if (s->gzhead->hcrc)
694                wraplen += 2;
695        }
696        break;
697#endif
698    default:                                /* for compiler happiness */
699        wraplen = 6;
700    }
701
702    /* if not default parameters, return conservative bound */
703    if (s->w_bits != 15 || s->hash_bits != 8 + 7)
704        return complen + wraplen;
705
706    /* default settings: return tight bound for that case */
707    return sourceLen + (sourceLen >> 12) + (sourceLen >> 14) +
708           (sourceLen >> 25) + 13 - 6 + wraplen;
709}
710
711/* =========================================================================
712 * Put a short in the pending buffer. The 16-bit value is put in MSB order.
713 * IN assertion: the stream state is correct and there is enough room in
714 * pending_buf.
715 */
716local void putShortMSB (s, b)
717    deflate_state *s;
718    uInt b;
719{
720    put_byte(s, (Byte)(b >> 8));
721    put_byte(s, (Byte)(b & 0xff));
722}
723
724/* =========================================================================
725 * Flush as much pending output as possible. All deflate() output, except for
726 * some deflate_stored() output, goes through this function so some
727 * applications may wish to modify it to avoid allocating a large
728 * strm->next_out buffer and copying into it. (See also read_buf()).
729 */
730local void flush_pending(strm)
731    z_streamp strm;
732{
733    unsigned len;
734    deflate_state *s = strm->state;
735
736    _tr_flush_bits(s);
737    len = s->pending;
738    if (len > strm->avail_out) len = strm->avail_out;
739    if (len == 0) return;
740
741    zmemcpy(strm->next_out, s->pending_out, len);
742    strm->next_out  += len;
743    s->pending_out  += len;
744    strm->total_out += len;
745    strm->avail_out -= len;
746    s->pending      -= len;
747    if (s->pending == 0) {
748        s->pending_out = s->pending_buf;
749    }
750}
751
752/* ===========================================================================
753 * Update the header CRC with the bytes s->pending_buf[beg..s->pending - 1].
754 */
755#define HCRC_UPDATE(beg) \
756    do { \
757        if (s->gzhead->hcrc && s->pending > (beg)) \
758            strm->adler = crc32(strm->adler, s->pending_buf + (beg), \
759                                s->pending - (beg)); \
760    } while (0)
761
762/* ========================================================================= */
763int ZEXPORT deflate (strm, flush)
764    z_streamp strm;
765    int flush;
766{
767    int old_flush; /* value of flush param for previous deflate call */
768    deflate_state *s;
769
770    if (deflateStateCheck(strm) || flush > Z_BLOCK || flush < 0) {
771        return Z_STREAM_ERROR;
772    }
773    s = strm->state;
774
775    if (strm->next_out == Z_NULL ||
776        (strm->avail_in != 0 && strm->next_in == Z_NULL) ||
777        (s->status == FINISH_STATE && flush != Z_FINISH)) {
778        ERR_RETURN(strm, Z_STREAM_ERROR);
779    }
780    if (strm->avail_out == 0) ERR_RETURN(strm, Z_BUF_ERROR);
781
782    old_flush = s->last_flush;
783    s->last_flush = flush;
784
785    /* Flush as much pending output as possible */
786    if (s->pending != 0) {
787        flush_pending(strm);
788        if (strm->avail_out == 0) {
789            /* Since avail_out is 0, deflate will be called again with
790             * more output space, but possibly with both pending and
791             * avail_in equal to zero. There won't be anything to do,
792             * but this is not an error situation so make sure we
793             * return OK instead of BUF_ERROR at next call of deflate:
794             */
795            s->last_flush = -1;
796            return Z_OK;
797        }
798
799    /* Make sure there is something to do and avoid duplicate consecutive
800     * flushes. For repeated and useless calls with Z_FINISH, we keep
801     * returning Z_STREAM_END instead of Z_BUF_ERROR.
802     */
803    } else if (strm->avail_in == 0 && RANK(flush) <= RANK(old_flush) &&
804               flush != Z_FINISH) {
805        ERR_RETURN(strm, Z_BUF_ERROR);
806    }
807
808    /* User must not provide more input after the first FINISH: */
809    if (s->status == FINISH_STATE && strm->avail_in != 0) {
810        ERR_RETURN(strm, Z_BUF_ERROR);
811    }
812
813    /* Write the header */
814    if (s->status == INIT_STATE) {
815        /* zlib header */
816        uInt header = (Z_DEFLATED + ((s->w_bits-8)<<4)) << 8;
817        uInt level_flags;
818
819        if (s->strategy >= Z_HUFFMAN_ONLY || s->level < 2)
820            level_flags = 0;
821        else if (s->level < 6)
822            level_flags = 1;
823        else if (s->level == 6)
824            level_flags = 2;
825        else
826            level_flags = 3;
827        header |= (level_flags << 6);
828        if (s->strstart != 0) header |= PRESET_DICT;
829        header += 31 - (header % 31);
830
831        putShortMSB(s, header);
832
833        /* Save the adler32 of the preset dictionary: */
834        if (s->strstart != 0) {
835            putShortMSB(s, (uInt)(strm->adler >> 16));
836            putShortMSB(s, (uInt)(strm->adler & 0xffff));
837        }
838        strm->adler = adler32(0L, Z_NULL, 0);
839        s->status = BUSY_STATE;
840
841        /* Compression must start with an empty pending buffer */
842        flush_pending(strm);
843        if (s->pending != 0) {
844            s->last_flush = -1;
845            return Z_OK;
846        }
847    }
848#ifdef GZIP
849    if (s->status == GZIP_STATE) {
850        /* gzip header */
851        strm->adler = crc32(0L, Z_NULL, 0);
852        put_byte(s, 31);
853        put_byte(s, 139);
854        put_byte(s, 8);
855        if (s->gzhead == Z_NULL) {
856            put_byte(s, 0);
857            put_byte(s, 0);
858            put_byte(s, 0);
859            put_byte(s, 0);
860            put_byte(s, 0);
861            put_byte(s, s->level == 9 ? 2 :
862                     (s->strategy >= Z_HUFFMAN_ONLY || s->level < 2 ?
863                      4 : 0));
864            put_byte(s, OS_CODE);
865            s->status = BUSY_STATE;
866
867            /* Compression must start with an empty pending buffer */
868            flush_pending(strm);
869            if (s->pending != 0) {
870                s->last_flush = -1;
871                return Z_OK;
872            }
873        }
874        else {
875            put_byte(s, (s->gzhead->text ? 1 : 0) +
876                     (s->gzhead->hcrc ? 2 : 0) +
877                     (s->gzhead->extra == Z_NULL ? 0 : 4) +
878                     (s->gzhead->name == Z_NULL ? 0 : 8) +
879                     (s->gzhead->comment == Z_NULL ? 0 : 16)
880                     );
881            put_byte(s, (Byte)(s->gzhead->time & 0xff));
882            put_byte(s, (Byte)((s->gzhead->time >> 8) & 0xff));
883            put_byte(s, (Byte)((s->gzhead->time >> 16) & 0xff));
884            put_byte(s, (Byte)((s->gzhead->time >> 24) & 0xff));
885            put_byte(s, s->level == 9 ? 2 :
886                     (s->strategy >= Z_HUFFMAN_ONLY || s->level < 2 ?
887                      4 : 0));
888            put_byte(s, s->gzhead->os & 0xff);
889            if (s->gzhead->extra != Z_NULL) {
890                put_byte(s, s->gzhead->extra_len & 0xff);
891                put_byte(s, (s->gzhead->extra_len >> 8) & 0xff);
892            }
893            if (s->gzhead->hcrc)
894                strm->adler = crc32(strm->adler, s->pending_buf,
895                                    s->pending);
896            s->gzindex = 0;
897            s->status = EXTRA_STATE;
898        }
899    }
900    if (s->status == EXTRA_STATE) {
901        if (s->gzhead->extra != Z_NULL) {
902            ulg beg = s->pending;   /* start of bytes to update crc */
903            uInt left = (s->gzhead->extra_len & 0xffff) - s->gzindex;
904            while (s->pending + left > s->pending_buf_size) {
905                uInt copy = s->pending_buf_size - s->pending;
906                zmemcpy(s->pending_buf + s->pending,
907                        s->gzhead->extra + s->gzindex, copy);
908                s->pending = s->pending_buf_size;
909                HCRC_UPDATE(beg);
910                s->gzindex += copy;
911                flush_pending(strm);
912                if (s->pending != 0) {
913                    s->last_flush = -1;
914                    return Z_OK;
915                }
916                beg = 0;
917                left -= copy;
918            }
919            zmemcpy(s->pending_buf + s->pending,
920                    s->gzhead->extra + s->gzindex, left);
921            s->pending += left;
922            HCRC_UPDATE(beg);
923            s->gzindex = 0;
924        }
925        s->status = NAME_STATE;
926    }
927    if (s->status == NAME_STATE) {
928        if (s->gzhead->name != Z_NULL) {
929            ulg beg = s->pending;   /* start of bytes to update crc */
930            int val;
931            do {
932                if (s->pending == s->pending_buf_size) {
933                    HCRC_UPDATE(beg);
934                    flush_pending(strm);
935                    if (s->pending != 0) {
936                        s->last_flush = -1;
937                        return Z_OK;
938                    }
939                    beg = 0;
940                }
941                val = s->gzhead->name[s->gzindex++];
942                put_byte(s, val);
943            } while (val != 0);
944            HCRC_UPDATE(beg);
945            s->gzindex = 0;
946        }
947        s->status = COMMENT_STATE;
948    }
949    if (s->status == COMMENT_STATE) {
950        if (s->gzhead->comment != Z_NULL) {
951            ulg beg = s->pending;   /* start of bytes to update crc */
952            int val;
953            do {
954                if (s->pending == s->pending_buf_size) {
955                    HCRC_UPDATE(beg);
956                    flush_pending(strm);
957                    if (s->pending != 0) {
958                        s->last_flush = -1;
959                        return Z_OK;
960                    }
961                    beg = 0;
962                }
963                val = s->gzhead->comment[s->gzindex++];
964                put_byte(s, val);
965            } while (val != 0);
966            HCRC_UPDATE(beg);
967        }
968        s->status = HCRC_STATE;
969    }
970    if (s->status == HCRC_STATE) {
971        if (s->gzhead->hcrc) {
972            if (s->pending + 2 > s->pending_buf_size) {
973                flush_pending(strm);
974                if (s->pending != 0) {
975                    s->last_flush = -1;
976                    return Z_OK;
977                }
978            }
979            put_byte(s, (Byte)(strm->adler & 0xff));
980            put_byte(s, (Byte)((strm->adler >> 8) & 0xff));
981            strm->adler = crc32(0L, Z_NULL, 0);
982        }
983        s->status = BUSY_STATE;
984
985        /* Compression must start with an empty pending buffer */
986        flush_pending(strm);
987        if (s->pending != 0) {
988            s->last_flush = -1;
989            return Z_OK;
990        }
991    }
992#endif
993
994    /* Start a new block or continue the current one.
995     */
996    if (strm->avail_in != 0 || s->lookahead != 0 ||
997        (flush != Z_NO_FLUSH && s->status != FINISH_STATE)) {
998        block_state bstate;
999
1000        bstate = s->level == 0 ? deflate_stored(s, flush) :
1001                 s->strategy == Z_HUFFMAN_ONLY ? deflate_huff(s, flush) :
1002                 s->strategy == Z_RLE ? deflate_rle(s, flush) :
1003                 (*(configuration_table[s->level].func))(s, flush);
1004
1005        if (bstate == finish_started || bstate == finish_done) {
1006            s->status = FINISH_STATE;
1007        }
1008        if (bstate == need_more || bstate == finish_started) {
1009            if (strm->avail_out == 0) {
1010                s->last_flush = -1; /* avoid BUF_ERROR next call, see above */
1011            }
1012            return Z_OK;
1013            /* If flush != Z_NO_FLUSH && avail_out == 0, the next call
1014             * of deflate should use the same flush parameter to make sure
1015             * that the flush is complete. So we don't have to output an
1016             * empty block here, this will be done at next call. This also
1017             * ensures that for a very small output buffer, we emit at most
1018             * one empty block.
1019             */
1020        }
1021        if (bstate == block_done) {
1022            if (flush == Z_PARTIAL_FLUSH) {
1023                _tr_align(s);
1024            } else if (flush != Z_BLOCK) { /* FULL_FLUSH or SYNC_FLUSH */
1025                _tr_stored_block(s, (char*)0, 0L, 0);
1026                /* For a full flush, this empty block will be recognized
1027                 * as a special marker by inflate_sync().
1028                 */
1029                if (flush == Z_FULL_FLUSH) {
1030                    CLEAR_HASH(s);             /* forget history */
1031                    if (s->lookahead == 0) {
1032                        s->strstart = 0;
1033                        s->block_start = 0L;
1034                        s->insert = 0;
1035                    }
1036                }
1037            }
1038            flush_pending(strm);
1039            if (strm->avail_out == 0) {
1040              s->last_flush = -1; /* avoid BUF_ERROR at next call, see above */
1041              return Z_OK;
1042            }
1043        }
1044    }
1045
1046    if (flush != Z_FINISH) return Z_OK;
1047    if (s->wrap <= 0) return Z_STREAM_END;
1048
1049    /* Write the trailer */
1050#ifdef GZIP
1051    if (s->wrap == 2) {
1052        put_byte(s, (Byte)(strm->adler & 0xff));
1053        put_byte(s, (Byte)((strm->adler >> 8) & 0xff));
1054        put_byte(s, (Byte)((strm->adler >> 16) & 0xff));
1055        put_byte(s, (Byte)((strm->adler >> 24) & 0xff));
1056        put_byte(s, (Byte)(strm->total_in & 0xff));
1057        put_byte(s, (Byte)((strm->total_in >> 8) & 0xff));
1058        put_byte(s, (Byte)((strm->total_in >> 16) & 0xff));
1059        put_byte(s, (Byte)((strm->total_in >> 24) & 0xff));
1060    }
1061    else
1062#endif
1063    {
1064        putShortMSB(s, (uInt)(strm->adler >> 16));
1065        putShortMSB(s, (uInt)(strm->adler & 0xffff));
1066    }
1067    flush_pending(strm);
1068    /* If avail_out is zero, the application will call deflate again
1069     * to flush the rest.
1070     */
1071    if (s->wrap > 0) s->wrap = -s->wrap; /* write the trailer only once! */
1072    return s->pending != 0 ? Z_OK : Z_STREAM_END;
1073}
1074
1075/* ========================================================================= */
1076int ZEXPORT deflateEnd (strm)
1077    z_streamp strm;
1078{
1079    int status;
1080
1081    if (deflateStateCheck(strm)) return Z_STREAM_ERROR;
1082
1083    status = strm->state->status;
1084
1085    /* Deallocate in reverse order of allocations: */
1086    TRY_FREE(strm, strm->state->pending_buf);
1087    TRY_FREE(strm, strm->state->head);
1088    TRY_FREE(strm, strm->state->prev);
1089    TRY_FREE(strm, strm->state->window);
1090
1091    ZFREE(strm, strm->state);
1092    strm->state = Z_NULL;
1093
1094    return status == BUSY_STATE ? Z_DATA_ERROR : Z_OK;
1095}
1096
1097/* =========================================================================
1098 * Copy the source state to the destination state.
1099 * To simplify the source, this is not supported for 16-bit MSDOS (which
1100 * doesn't have enough memory anyway to duplicate compression states).
1101 */
1102int ZEXPORT deflateCopy (dest, source)
1103    z_streamp dest;
1104    z_streamp source;
1105{
1106#ifdef MAXSEG_64K
1107    return Z_STREAM_ERROR;
1108#else
1109    deflate_state *ds;
1110    deflate_state *ss;
1111    ushf *overlay;
1112
1113
1114    if (deflateStateCheck(source) || dest == Z_NULL) {
1115        return Z_STREAM_ERROR;
1116    }
1117
1118    ss = source->state;
1119
1120    zmemcpy((voidpf)dest, (voidpf)source, sizeof(z_stream));
1121
1122    ds = (deflate_state *) ZALLOC(dest, 1, sizeof(deflate_state));
1123    if (ds == Z_NULL) return Z_MEM_ERROR;
1124    dest->state = (struct internal_state FAR *) ds;
1125    zmemcpy((voidpf)ds, (voidpf)ss, sizeof(deflate_state));
1126    ds->strm = dest;
1127
1128    ds->window = (Bytef *) ZALLOC(dest, ds->w_size, 2*sizeof(Byte));
1129    ds->prev   = (Posf *)  ZALLOC(dest, ds->w_size, sizeof(Pos));
1130    ds->head   = (Posf *)  ZALLOC(dest, ds->hash_size, sizeof(Pos));
1131    overlay = (ushf *) ZALLOC(dest, ds->lit_bufsize, sizeof(ush)+2);
1132    ds->pending_buf = (uchf *) overlay;
1133
1134    if (ds->window == Z_NULL || ds->prev == Z_NULL || ds->head == Z_NULL ||
1135        ds->pending_buf == Z_NULL) {
1136        deflateEnd (dest);
1137        return Z_MEM_ERROR;
1138    }
1139    /* following zmemcpy do not work for 16-bit MSDOS */
1140    zmemcpy(ds->window, ss->window, ds->w_size * 2 * sizeof(Byte));
1141    zmemcpy((voidpf)ds->prev, (voidpf)ss->prev, ds->w_size * sizeof(Pos));
1142    zmemcpy((voidpf)ds->head, (voidpf)ss->head, ds->hash_size * sizeof(Pos));
1143    zmemcpy(ds->pending_buf, ss->pending_buf, (uInt)ds->pending_buf_size);
1144
1145    ds->pending_out = ds->pending_buf + (ss->pending_out - ss->pending_buf);
1146    ds->d_buf = overlay + ds->lit_bufsize/sizeof(ush);
1147    ds->l_buf = ds->pending_buf + (1+sizeof(ush))*ds->lit_bufsize;
1148
1149    ds->l_desc.dyn_tree = ds->dyn_ltree;
1150    ds->d_desc.dyn_tree = ds->dyn_dtree;
1151    ds->bl_desc.dyn_tree = ds->bl_tree;
1152
1153    return Z_OK;
1154#endif /* MAXSEG_64K */
1155}
1156
1157/* ===========================================================================
1158 * Read a new buffer from the current input stream, update the adler32
1159 * and total number of bytes read.  All deflate() input goes through
1160 * this function so some applications may wish to modify it to avoid
1161 * allocating a large strm->next_in buffer and copying from it.
1162 * (See also flush_pending()).
1163 */
1164local unsigned read_buf(strm, buf, size)
1165    z_streamp strm;
1166    Bytef *buf;
1167    unsigned size;
1168{
1169    unsigned len = strm->avail_in;
1170
1171    if (len > size) len = size;
1172    if (len == 0) return 0;
1173
1174    strm->avail_in  -= len;
1175
1176    zmemcpy(buf, strm->next_in, len);
1177    if (strm->state->wrap == 1) {
1178        strm->adler = adler32(strm->adler, buf, len);
1179    }
1180#ifdef GZIP
1181    else if (strm->state->wrap == 2) {
1182        strm->adler = crc32(strm->adler, buf, len);
1183    }
1184#endif
1185    strm->next_in  += len;
1186    strm->total_in += len;
1187
1188    return len;
1189}
1190
1191/* ===========================================================================
1192 * Initialize the "longest match" routines for a new zlib stream
1193 */
1194local void lm_init (s)
1195    deflate_state *s;
1196{
1197    s->window_size = (ulg)2L*s->w_size;
1198
1199    CLEAR_HASH(s);
1200
1201    /* Set the default configuration parameters:
1202     */
1203    s->max_lazy_match   = configuration_table[s->level].max_lazy;
1204    s->good_match       = configuration_table[s->level].good_length;
1205    s->nice_match       = configuration_table[s->level].nice_length;
1206    s->max_chain_length = configuration_table[s->level].max_chain;
1207
1208    s->strstart = 0;
1209    s->block_start = 0L;
1210    s->lookahead = 0;
1211    s->insert = 0;
1212    s->match_length = s->prev_length = MIN_MATCH-1;
1213    s->match_available = 0;
1214    s->ins_h = 0;
1215#ifndef FASTEST
1216#ifdef ASMV
1217    match_init(); /* initialize the asm code */
1218#endif
1219#endif
1220}
1221
1222#ifndef FASTEST
1223/* ===========================================================================
1224 * Set match_start to the longest match starting at the given string and
1225 * return its length. Matches shorter or equal to prev_length are discarded,
1226 * in which case the result is equal to prev_length and match_start is
1227 * garbage.
1228 * IN assertions: cur_match is the head of the hash chain for the current
1229 *   string (strstart) and its distance is <= MAX_DIST, and prev_length >= 1
1230 * OUT assertion: the match length is not greater than s->lookahead.
1231 */
1232#ifndef ASMV
1233/* For 80x86 and 680x0, an optimized version will be provided in match.asm or
1234 * match.S. The code will be functionally equivalent.
1235 */
1236local uInt longest_match(s, cur_match)
1237    deflate_state *s;
1238    IPos cur_match;                             /* current match */
1239{
1240    unsigned chain_length = s->max_chain_length;/* max hash chain length */
1241    register Bytef *scan = s->window + s->strstart; /* current string */
1242    register Bytef *match;                      /* matched string */
1243    register int len;                           /* length of current match */
1244    int best_len = (int)s->prev_length;         /* best match length so far */
1245    int nice_match = s->nice_match;             /* stop if match long enough */
1246    IPos limit = s->strstart > (IPos)MAX_DIST(s) ?
1247        s->strstart - (IPos)MAX_DIST(s) : NIL;
1248    /* Stop when cur_match becomes <= limit. To simplify the code,
1249     * we prevent matches with the string of window index 0.
1250     */
1251    Posf *prev = s->prev;
1252    uInt wmask = s->w_mask;
1253
1254#ifdef UNALIGNED_OK
1255    /* Compare two bytes at a time. Note: this is not always beneficial.
1256     * Try with and without -DUNALIGNED_OK to check.
1257     */
1258    register Bytef *strend = s->window + s->strstart + MAX_MATCH - 1;
1259    register ush scan_start = *(ushf*)scan;
1260    register ush scan_end   = *(ushf*)(scan+best_len-1);
1261#else
1262    register Bytef *strend = s->window + s->strstart + MAX_MATCH;
1263    register Byte scan_end1  = scan[best_len-1];
1264    register Byte scan_end   = scan[best_len];
1265#endif
1266
1267    /* The code is optimized for HASH_BITS >= 8 and MAX_MATCH-2 multiple of 16.
1268     * It is easy to get rid of this optimization if necessary.
1269     */
1270    Assert(s->hash_bits >= 8 && MAX_MATCH == 258, "Code too clever");
1271
1272    /* Do not waste too much time if we already have a good match: */
1273    if (s->prev_length >= s->good_match) {
1274        chain_length >>= 2;
1275    }
1276    /* Do not look for matches beyond the end of the input. This is necessary
1277     * to make deflate deterministic.
1278     */
1279    if ((uInt)nice_match > s->lookahead) nice_match = (int)s->lookahead;
1280
1281    Assert((ulg)s->strstart <= s->window_size-MIN_LOOKAHEAD, "need lookahead");
1282
1283    do {
1284        Assert(cur_match < s->strstart, "no future");
1285        match = s->window + cur_match;
1286
1287        /* Skip to next match if the match length cannot increase
1288         * or if the match length is less than 2.  Note that the checks below
1289         * for insufficient lookahead only occur occasionally for performance
1290         * reasons.  Therefore uninitialized memory will be accessed, and
1291         * conditional jumps will be made that depend on those values.
1292         * However the length of the match is limited to the lookahead, so
1293         * the output of deflate is not affected by the uninitialized values.
1294         */
1295#if (defined(UNALIGNED_OK) && MAX_MATCH == 258)
1296        /* This code assumes sizeof(unsigned short) == 2. Do not use
1297         * UNALIGNED_OK if your compiler uses a different size.
1298         */
1299        if (*(ushf*)(match+best_len-1) != scan_end ||
1300            *(ushf*)match != scan_start) continue;
1301
1302        /* It is not necessary to compare scan[2] and match[2] since they are
1303         * always equal when the other bytes match, given that the hash keys
1304         * are equal and that HASH_BITS >= 8. Compare 2 bytes at a time at
1305         * strstart+3, +5, ... up to strstart+257. We check for insufficient
1306         * lookahead only every 4th comparison; the 128th check will be made
1307         * at strstart+257. If MAX_MATCH-2 is not a multiple of 8, it is
1308         * necessary to put more guard bytes at the end of the window, or
1309         * to check more often for insufficient lookahead.
1310         */
1311        Assert(scan[2] == match[2], "scan[2]?");
1312        scan++, match++;
1313        do {
1314        } while (*(ushf*)(scan+=2) == *(ushf*)(match+=2) &&
1315                 *(ushf*)(scan+=2) == *(ushf*)(match+=2) &&
1316                 *(ushf*)(scan+=2) == *(ushf*)(match+=2) &&
1317                 *(ushf*)(scan+=2) == *(ushf*)(match+=2) &&
1318                 scan < strend);
1319        /* The funny "do {}" generates better code on most compilers */
1320
1321        /* Here, scan <= window+strstart+257 */
1322        Assert(scan <= s->window+(unsigned)(s->window_size-1), "wild scan");
1323        if (*scan == *match) scan++;
1324
1325        len = (MAX_MATCH - 1) - (int)(strend-scan);
1326        scan = strend - (MAX_MATCH-1);
1327
1328#else /* UNALIGNED_OK */
1329
1330        if (match[best_len]   != scan_end  ||
1331            match[best_len-1] != scan_end1 ||
1332            *match            != *scan     ||
1333            *++match          != scan[1])      continue;
1334
1335        /* The check at best_len-1 can be removed because it will be made
1336         * again later. (This heuristic is not always a win.)
1337         * It is not necessary to compare scan[2] and match[2] since they
1338         * are always equal when the other bytes match, given that
1339         * the hash keys are equal and that HASH_BITS >= 8.
1340         */
1341        scan += 2, match++;
1342        Assert(*scan == *match, "match[2]?");
1343
1344        /* We check for insufficient lookahead only every 8th comparison;
1345         * the 256th check will be made at strstart+258.
1346         */
1347        do {
1348        } while (*++scan == *++match && *++scan == *++match &&
1349                 *++scan == *++match && *++scan == *++match &&
1350                 *++scan == *++match && *++scan == *++match &&
1351                 *++scan == *++match && *++scan == *++match &&
1352                 scan < strend);
1353
1354        Assert(scan <= s->window+(unsigned)(s->window_size-1), "wild scan");
1355
1356        len = MAX_MATCH - (int)(strend - scan);
1357        scan = strend - MAX_MATCH;
1358
1359#endif /* UNALIGNED_OK */
1360
1361        if (len > best_len) {
1362            s->match_start = cur_match;
1363            best_len = len;
1364            if (len >= nice_match) break;
1365#ifdef UNALIGNED_OK
1366            scan_end = *(ushf*)(scan+best_len-1);
1367#else
1368            scan_end1  = scan[best_len-1];
1369            scan_end   = scan[best_len];
1370#endif
1371        }
1372    } while ((cur_match = prev[cur_match & wmask]) > limit
1373             && --chain_length != 0);
1374
1375    if ((uInt)best_len <= s->lookahead) return (uInt)best_len;
1376    return s->lookahead;
1377}
1378#endif /* ASMV */
1379
1380#else /* FASTEST */
1381
1382/* ---------------------------------------------------------------------------
1383 * Optimized version for FASTEST only
1384 */
1385local uInt longest_match(s, cur_match)
1386    deflate_state *s;
1387    IPos cur_match;                             /* current match */
1388{
1389    register Bytef *scan = s->window + s->strstart; /* current string */
1390    register Bytef *match;                       /* matched string */
1391    register int len;                           /* length of current match */
1392    register Bytef *strend = s->window + s->strstart + MAX_MATCH;
1393
1394    /* The code is optimized for HASH_BITS >= 8 and MAX_MATCH-2 multiple of 16.
1395     * It is easy to get rid of this optimization if necessary.
1396     */
1397    Assert(s->hash_bits >= 8 && MAX_MATCH == 258, "Code too clever");
1398
1399    Assert((ulg)s->strstart <= s->window_size-MIN_LOOKAHEAD, "need lookahead");
1400
1401    Assert(cur_match < s->strstart, "no future");
1402
1403    match = s->window + cur_match;
1404
1405    /* Return failure if the match length is less than 2:
1406     */
1407    if (match[0] != scan[0] || match[1] != scan[1]) return MIN_MATCH-1;
1408
1409    /* The check at best_len-1 can be removed because it will be made
1410     * again later. (This heuristic is not always a win.)
1411     * It is not necessary to compare scan[2] and match[2] since they
1412     * are always equal when the other bytes match, given that
1413     * the hash keys are equal and that HASH_BITS >= 8.
1414     */
1415    scan += 2, match += 2;
1416    Assert(*scan == *match, "match[2]?");
1417
1418    /* We check for insufficient lookahead only every 8th comparison;
1419     * the 256th check will be made at strstart+258.
1420     */
1421    do {
1422    } while (*++scan == *++match && *++scan == *++match &&
1423             *++scan == *++match && *++scan == *++match &&
1424             *++scan == *++match && *++scan == *++match &&
1425             *++scan == *++match && *++scan == *++match &&
1426             scan < strend);
1427
1428    Assert(scan <= s->window+(unsigned)(s->window_size-1), "wild scan");
1429
1430    len = MAX_MATCH - (int)(strend - scan);
1431
1432    if (len < MIN_MATCH) return MIN_MATCH - 1;
1433
1434    s->match_start = cur_match;
1435    return (uInt)len <= s->lookahead ? (uInt)len : s->lookahead;
1436}
1437
1438#endif /* FASTEST */
1439
1440#ifdef ZLIB_DEBUG
1441
1442#define EQUAL 0
1443/* result of memcmp for equal strings */
1444
1445/* ===========================================================================
1446 * Check that the match at match_start is indeed a match.
1447 */
1448local void check_match(s, start, match, length)
1449    deflate_state *s;
1450    IPos start, match;
1451    int length;
1452{
1453    /* check that the match is indeed a match */
1454    if (zmemcmp(s->window + match,
1455                s->window + start, length) != EQUAL) {
1456        fprintf(stderr, " start %u, match %u, length %d\n",
1457                start, match, length);
1458        do {
1459            fprintf(stderr, "%c%c", s->window[match++], s->window[start++]);
1460        } while (--length != 0);
1461        z_error("invalid match");
1462    }
1463    if (z_verbose > 1) {
1464        fprintf(stderr,"\\[%d,%d]", start-match, length);
1465        do { putc(s->window[start++], stderr); } while (--length != 0);
1466    }
1467}
1468#else
1469#  define check_match(s, start, match, length)
1470#endif /* ZLIB_DEBUG */
1471
1472/* ===========================================================================
1473 * Fill the window when the lookahead becomes insufficient.
1474 * Updates strstart and lookahead.
1475 *
1476 * IN assertion: lookahead < MIN_LOOKAHEAD
1477 * OUT assertions: strstart <= window_size-MIN_LOOKAHEAD
1478 *    At least one byte has been read, or avail_in == 0; reads are
1479 *    performed for at least two bytes (required for the zip translate_eol
1480 *    option -- not supported here).
1481 */
1482local void fill_window(s)
1483    deflate_state *s;
1484{
1485    unsigned n;
1486    unsigned more;    /* Amount of free space at the end of the window. */
1487    uInt wsize = s->w_size;
1488
1489    Assert(s->lookahead < MIN_LOOKAHEAD, "already enough lookahead");
1490
1491    do {
1492        more = (unsigned)(s->window_size -(ulg)s->lookahead -(ulg)s->strstart);
1493
1494        /* Deal with !@#$% 64K limit: */
1495        if (sizeof(int) <= 2) {
1496            if (more == 0 && s->strstart == 0 && s->lookahead == 0) {
1497                more = wsize;
1498
1499            } else if (more == (unsigned)(-1)) {
1500                /* Very unlikely, but possible on 16 bit machine if
1501                 * strstart == 0 && lookahead == 1 (input done a byte at time)
1502                 */
1503                more--;
1504            }
1505        }
1506
1507        /* If the window is almost full and there is insufficient lookahead,
1508         * move the upper half to the lower one to make room in the upper half.
1509         */
1510        if (s->strstart >= wsize+MAX_DIST(s)) {
1511
1512            zmemcpy(s->window, s->window+wsize, (unsigned)wsize - more);
1513            s->match_start -= wsize;
1514            s->strstart    -= wsize; /* we now have strstart >= MAX_DIST */
1515            s->block_start -= (long) wsize;
1516            slide_hash(s);
1517            more += wsize;
1518        }
1519        if (s->strm->avail_in == 0) break;
1520
1521        /* If there was no sliding:
1522         *    strstart <= WSIZE+MAX_DIST-1 && lookahead <= MIN_LOOKAHEAD - 1 &&
1523         *    more == window_size - lookahead - strstart
1524         * => more >= window_size - (MIN_LOOKAHEAD-1 + WSIZE + MAX_DIST-1)
1525         * => more >= window_size - 2*WSIZE + 2
1526         * In the BIG_MEM or MMAP case (not yet supported),
1527         *   window_size == input_size + MIN_LOOKAHEAD  &&
1528         *   strstart + s->lookahead <= input_size => more >= MIN_LOOKAHEAD.
1529         * Otherwise, window_size == 2*WSIZE so more >= 2.
1530         * If there was sliding, more >= WSIZE. So in all cases, more >= 2.
1531         */
1532        Assert(more >= 2, "more < 2");
1533
1534        n = read_buf(s->strm, s->window + s->strstart + s->lookahead, more);
1535        s->lookahead += n;
1536
1537        /* Initialize the hash value now that we have some input: */
1538        if (s->lookahead + s->insert >= MIN_MATCH) {
1539            uInt str = s->strstart - s->insert;
1540            s->ins_h = s->window[str];
1541            UPDATE_HASH(s, s->ins_h, s->window[str + 1]);
1542#if MIN_MATCH != 3
1543            Call UPDATE_HASH() MIN_MATCH-3 more times
1544#endif
1545            while (s->insert) {
1546                UPDATE_HASH(s, s->ins_h, s->window[str + MIN_MATCH-1]);
1547#ifndef FASTEST
1548                s->prev[str & s->w_mask] = s->head[s->ins_h];
1549#endif
1550                s->head[s->ins_h] = (Pos)str;
1551                str++;
1552                s->insert--;
1553                if (s->lookahead + s->insert < MIN_MATCH)
1554                    break;
1555            }
1556        }
1557        /* If the whole input has less than MIN_MATCH bytes, ins_h is garbage,
1558         * but this is not important since only literal bytes will be emitted.
1559         */
1560
1561    } while (s->lookahead < MIN_LOOKAHEAD && s->strm->avail_in != 0);
1562
1563    /* If the WIN_INIT bytes after the end of the current data have never been
1564     * written, then zero those bytes in order to avoid memory check reports of
1565     * the use of uninitialized (or uninitialised as Julian writes) bytes by
1566     * the longest match routines.  Update the high water mark for the next
1567     * time through here.  WIN_INIT is set to MAX_MATCH since the longest match
1568     * routines allow scanning to strstart + MAX_MATCH, ignoring lookahead.
1569     */
1570    if (s->high_water < s->window_size) {
1571        ulg curr = s->strstart + (ulg)(s->lookahead);
1572        ulg init;
1573
1574        if (s->high_water < curr) {
1575            /* Previous high water mark below current data -- zero WIN_INIT
1576             * bytes or up to end of window, whichever is less.
1577             */
1578            init = s->window_size - curr;
1579            if (init > WIN_INIT)
1580                init = WIN_INIT;
1581            zmemzero(s->window + curr, (unsigned)init);
1582            s->high_water = curr + init;
1583        }
1584        else if (s->high_water < (ulg)curr + WIN_INIT) {
1585            /* High water mark at or above current data, but below current data
1586             * plus WIN_INIT -- zero out to current data plus WIN_INIT, or up
1587             * to end of window, whichever is less.
1588             */
1589            init = (ulg)curr + WIN_INIT - s->high_water;
1590            if (init > s->window_size - s->high_water)
1591                init = s->window_size - s->high_water;
1592            zmemzero(s->window + s->high_water, (unsigned)init);
1593            s->high_water += init;
1594        }
1595    }
1596
1597    Assert((ulg)s->strstart <= s->window_size - MIN_LOOKAHEAD,
1598           "not enough room for search");
1599}
1600
1601/* ===========================================================================
1602 * Flush the current block, with given end-of-file flag.
1603 * IN assertion: strstart is set to the end of the current match.
1604 */
1605#define FLUSH_BLOCK_ONLY(s, last) { \
1606   _tr_flush_block(s, (s->block_start >= 0L ? \
1607                   (charf *)&s->window[(unsigned)s->block_start] : \
1608                   (charf *)Z_NULL), \
1609                (ulg)((long)s->strstart - s->block_start), \
1610                (last)); \
1611   s->block_start = s->strstart; \
1612   flush_pending(s->strm); \
1613   Tracev((stderr,"[FLUSH]")); \
1614}
1615
1616/* Same but force premature exit if necessary. */
1617#define FLUSH_BLOCK(s, last) { \
1618   FLUSH_BLOCK_ONLY(s, last); \
1619   if (s->strm->avail_out == 0) return (last) ? finish_started : need_more; \
1620}
1621
1622/* Maximum stored block length in deflate format (not including header). */
1623#define MAX_STORED 65535
1624
1625/* Minimum of a and b. */
1626#define MIN(a, b) ((a) > (b) ? (b) : (a))
1627
1628/* ===========================================================================
1629 * Copy without compression as much as possible from the input stream, return
1630 * the current block state.
1631 *
1632 * In case deflateParams() is used to later switch to a non-zero compression
1633 * level, s->matches (otherwise unused when storing) keeps track of the number
1634 * of hash table slides to perform. If s->matches is 1, then one hash table
1635 * slide will be done when switching. If s->matches is 2, the maximum value
1636 * allowed here, then the hash table will be cleared, since two or more slides
1637 * is the same as a clear.
1638 *
1639 * deflate_stored() is written to minimize the number of times an input byte is
1640 * copied. It is most efficient with large input and output buffers, which
1641 * maximizes the opportunites to have a single copy from next_in to next_out.
1642 */
1643local block_state deflate_stored(s, flush)
1644    deflate_state *s;
1645    int flush;
1646{
1647    /* Smallest worthy block size when not flushing or finishing. By default
1648     * this is 32K. This can be as small as 507 bytes for memLevel == 1. For
1649     * large input and output buffers, the stored block size will be larger.
1650     */
1651    unsigned min_block = MIN(s->pending_buf_size - 5, s->w_size);
1652
1653    /* Copy as many min_block or larger stored blocks directly to next_out as
1654     * possible. If flushing, copy the remaining available input to next_out as
1655     * stored blocks, if there is enough space.
1656     */
1657    unsigned len, left, have, last = 0;
1658    unsigned used = s->strm->avail_in;
1659    do {
1660        /* Set len to the maximum size block that we can copy directly with the
1661         * available input data and output space. Set left to how much of that
1662         * would be copied from what's left in the window.
1663         */
1664        len = MAX_STORED;       /* maximum deflate stored block length */
1665        have = (s->bi_valid + 42) >> 3;         /* number of header bytes */
1666        if (s->strm->avail_out < have)          /* need room for header */
1667            break;
1668            /* maximum stored block length that will fit in avail_out: */
1669        have = s->strm->avail_out - have;
1670        left = s->strstart - s->block_start;    /* bytes left in window */
1671        if (len > (ulg)left + s->strm->avail_in)
1672            len = left + s->strm->avail_in;     /* limit len to the input */
1673        if (len > have)
1674            len = have;                         /* limit len to the output */
1675
1676        /* If the stored block would be less than min_block in length, or if
1677         * unable to copy all of the available input when flushing, then try
1678         * copying to the window and the pending buffer instead. Also don't
1679         * write an empty block when flushing -- deflate() does that.
1680         */
1681        if (len < min_block && ((len == 0 && flush != Z_FINISH) ||
1682                                flush == Z_NO_FLUSH ||
1683                                len != left + s->strm->avail_in))
1684            break;
1685
1686        /* Make a dummy stored block in pending to get the header bytes,
1687         * including any pending bits. This also updates the debugging counts.
1688         */
1689        last = flush == Z_FINISH && len == left + s->strm->avail_in ? 1 : 0;
1690        _tr_stored_block(s, (char *)0, 0L, last);
1691
1692        /* Replace the lengths in the dummy stored block with len. */
1693        s->pending_buf[s->pending - 4] = len;
1694        s->pending_buf[s->pending - 3] = len >> 8;
1695        s->pending_buf[s->pending - 2] = ~len;
1696        s->pending_buf[s->pending - 1] = ~len >> 8;
1697
1698        /* Write the stored block header bytes. */
1699        flush_pending(s->strm);
1700
1701#ifdef ZLIB_DEBUG
1702        /* Update debugging counts for the data about to be copied. */
1703        s->compressed_len += len << 3;
1704        s->bits_sent += len << 3;
1705#endif
1706
1707        /* Copy uncompressed bytes from the window to next_out. */
1708        if (left) {
1709            if (left > len)
1710                left = len;
1711            zmemcpy(s->strm->next_out, s->window + s->block_start, left);
1712            s->strm->next_out += left;
1713            s->strm->avail_out -= left;
1714            s->strm->total_out += left;
1715            s->block_start += left;
1716            len -= left;
1717        }
1718
1719        /* Copy uncompressed bytes directly from next_in to next_out, updating
1720         * the check value.
1721         */
1722        if (len) {
1723            read_buf(s->strm, s->strm->next_out, len);
1724            s->strm->next_out += len;
1725            s->strm->avail_out -= len;
1726            s->strm->total_out += len;
1727        }
1728    } while (last == 0);
1729
1730    /* Update the sliding window with the last s->w_size bytes of the copied
1731     * data, or append all of the copied data to the existing window if less
1732     * than s->w_size bytes were copied. Also update the number of bytes to
1733     * insert in the hash tables, in the event that deflateParams() switches to
1734     * a non-zero compression level.
1735     */
1736    used -= s->strm->avail_in;      /* number of input bytes directly copied */
1737    if (used) {
1738        /* If any input was used, then no unused input remains in the window,
1739         * therefore s->block_start == s->strstart.
1740         */
1741        if (used >= s->w_size) {    /* supplant the previous history */
1742            s->matches = 2;         /* clear hash */
1743            zmemcpy(s->window, s->strm->next_in - s->w_size, s->w_size);
1744            s->strstart = s->w_size;
1745        }
1746        else {
1747            if (s->window_size - s->strstart <= used) {
1748                /* Slide the window down. */
1749                s->strstart -= s->w_size;
1750                zmemcpy(s->window, s->window + s->w_size, s->strstart);
1751                if (s->matches < 2)
1752                    s->matches++;   /* add a pending slide_hash() */
1753            }
1754            zmemcpy(s->window + s->strstart, s->strm->next_in - used, used);
1755            s->strstart += used;
1756        }
1757        s->block_start = s->strstart;
1758        s->insert += MIN(used, s->w_size - s->insert);
1759    }
1760    if (s->high_water < s->strstart)
1761        s->high_water = s->strstart;
1762
1763    /* If the last block was written to next_out, then done. */
1764    if (last)
1765        return finish_done;
1766
1767    /* If flushing and all input has been consumed, then done. */
1768    if (flush != Z_NO_FLUSH && flush != Z_FINISH &&
1769        s->strm->avail_in == 0 && (long)s->strstart == s->block_start)
1770        return block_done;
1771
1772    /* Fill the window with any remaining input. */
1773    have = s->window_size - s->strstart - 1;
1774    if (s->strm->avail_in > have && s->block_start >= (long)s->w_size) {
1775        /* Slide the window down. */
1776        s->block_start -= s->w_size;
1777        s->strstart -= s->w_size;
1778        zmemcpy(s->window, s->window + s->w_size, s->strstart);
1779        if (s->matches < 2)
1780            s->matches++;           /* add a pending slide_hash() */
1781        have += s->w_size;          /* more space now */
1782    }
1783    if (have > s->strm->avail_in)
1784        have = s->strm->avail_in;
1785    if (have) {
1786        read_buf(s->strm, s->window + s->strstart, have);
1787        s->strstart += have;
1788    }
1789    if (s->high_water < s->strstart)
1790        s->high_water = s->strstart;
1791
1792    /* There was not enough avail_out to write a complete worthy or flushed
1793     * stored block to next_out. Write a stored block to pending instead, if we
1794     * have enough input for a worthy block, or if flushing and there is enough
1795     * room for the remaining input as a stored block in the pending buffer.
1796     */
1797    have = (s->bi_valid + 42) >> 3;         /* number of header bytes */
1798        /* maximum stored block length that will fit in pending: */
1799    have = MIN(s->pending_buf_size - have, MAX_STORED);
1800    min_block = MIN(have, s->w_size);
1801    left = s->strstart - s->block_start;
1802    if (left >= min_block ||
1803        ((left || flush == Z_FINISH) && flush != Z_NO_FLUSH &&
1804         s->strm->avail_in == 0 && left <= have)) {
1805        len = MIN(left, have);
1806        last = flush == Z_FINISH && s->strm->avail_in == 0 &&
1807               len == left ? 1 : 0;
1808        _tr_stored_block(s, (charf *)s->window + s->block_start, len, last);
1809        s->block_start += len;
1810        flush_pending(s->strm);
1811    }
1812
1813    /* We've done all we can with the available input and output. */
1814    return last ? finish_started : need_more;
1815}
1816
1817/* ===========================================================================
1818 * Compress as much as possible from the input stream, return the current
1819 * block state.
1820 * This function does not perform lazy evaluation of matches and inserts
1821 * new strings in the dictionary only for unmatched strings or for short
1822 * matches. It is used only for the fast compression options.
1823 */
1824local block_state deflate_fast(s, flush)
1825    deflate_state *s;
1826    int flush;
1827{
1828    IPos hash_head;       /* head of the hash chain */
1829    int bflush;           /* set if current block must be flushed */
1830
1831    for (;;) {
1832        /* Make sure that we always have enough lookahead, except
1833         * at the end of the input file. We need MAX_MATCH bytes
1834         * for the next match, plus MIN_MATCH bytes to insert the
1835         * string following the next match.
1836         */
1837        if (s->lookahead < MIN_LOOKAHEAD) {
1838            fill_window(s);
1839            if (s->lookahead < MIN_LOOKAHEAD && flush == Z_NO_FLUSH) {
1840                return need_more;
1841            }
1842            if (s->lookahead == 0) break; /* flush the current block */
1843        }
1844
1845        /* Insert the string window[strstart .. strstart+2] in the
1846         * dictionary, and set hash_head to the head of the hash chain:
1847         */
1848        hash_head = NIL;
1849        if (s->lookahead >= MIN_MATCH) {
1850            INSERT_STRING(s, s->strstart, hash_head);
1851        }
1852
1853        /* Find the longest match, discarding those <= prev_length.
1854         * At this point we have always match_length < MIN_MATCH
1855         */
1856        if (hash_head != NIL && s->strstart - hash_head <= MAX_DIST(s)) {
1857            /* To simplify the code, we prevent matches with the string
1858             * of window index 0 (in particular we have to avoid a match
1859             * of the string with itself at the start of the input file).
1860             */
1861            s->match_length = longest_match (s, hash_head);
1862            /* longest_match() sets match_start */
1863        }
1864        if (s->match_length >= MIN_MATCH) {
1865            check_match(s, s->strstart, s->match_start, s->match_length);
1866
1867            _tr_tally_dist(s, s->strstart - s->match_start,
1868                           s->match_length - MIN_MATCH, bflush);
1869
1870            s->lookahead -= s->match_length;
1871
1872            /* Insert new strings in the hash table only if the match length
1873             * is not too large. This saves time but degrades compression.
1874             */
1875#ifndef FASTEST
1876            if (s->match_length <= s->max_insert_length &&
1877                s->lookahead >= MIN_MATCH) {
1878                s->match_length--; /* string at strstart already in table */
1879                do {
1880                    s->strstart++;
1881                    INSERT_STRING(s, s->strstart, hash_head);
1882                    /* strstart never exceeds WSIZE-MAX_MATCH, so there are
1883                     * always MIN_MATCH bytes ahead.
1884                     */
1885                } while (--s->match_length != 0);
1886                s->strstart++;
1887            } else
1888#endif
1889            {
1890                s->strstart += s->match_length;
1891                s->match_length = 0;
1892                s->ins_h = s->window[s->strstart];
1893                UPDATE_HASH(s, s->ins_h, s->window[s->strstart+1]);
1894#if MIN_MATCH != 3
1895                Call UPDATE_HASH() MIN_MATCH-3 more times
1896#endif
1897                /* If lookahead < MIN_MATCH, ins_h is garbage, but it does not
1898                 * matter since it will be recomputed at next deflate call.
1899                 */
1900            }
1901        } else {
1902            /* No match, output a literal byte */
1903            Tracevv((stderr,"%c", s->window[s->strstart]));
1904            _tr_tally_lit (s, s->window[s->strstart], bflush);
1905            s->lookahead--;
1906            s->strstart++;
1907        }
1908        if (bflush) FLUSH_BLOCK(s, 0);
1909    }
1910    s->insert = s->strstart < MIN_MATCH-1 ? s->strstart : MIN_MATCH-1;
1911    if (flush == Z_FINISH) {
1912        FLUSH_BLOCK(s, 1);
1913        return finish_done;
1914    }
1915    if (s->last_lit)
1916        FLUSH_BLOCK(s, 0);
1917    return block_done;
1918}
1919
1920#ifndef FASTEST
1921/* ===========================================================================
1922 * Same as above, but achieves better compression. We use a lazy
1923 * evaluation for matches: a match is finally adopted only if there is
1924 * no better match at the next window position.
1925 */
1926local block_state deflate_slow(s, flush)
1927    deflate_state *s;
1928    int flush;
1929{
1930    IPos hash_head;          /* head of hash chain */
1931    int bflush;              /* set if current block must be flushed */
1932
1933    /* Process the input block. */
1934    for (;;) {
1935        /* Make sure that we always have enough lookahead, except
1936         * at the end of the input file. We need MAX_MATCH bytes
1937         * for the next match, plus MIN_MATCH bytes to insert the
1938         * string following the next match.
1939         */
1940        if (s->lookahead < MIN_LOOKAHEAD) {
1941            fill_window(s);
1942            if (s->lookahead < MIN_LOOKAHEAD && flush == Z_NO_FLUSH) {
1943                return need_more;
1944            }
1945            if (s->lookahead == 0) break; /* flush the current block */
1946        }
1947
1948        /* Insert the string window[strstart .. strstart+2] in the
1949         * dictionary, and set hash_head to the head of the hash chain:
1950         */
1951        hash_head = NIL;
1952        if (s->lookahead >= MIN_MATCH) {
1953            INSERT_STRING(s, s->strstart, hash_head);
1954        }
1955
1956        /* Find the longest match, discarding those <= prev_length.
1957         */
1958        s->prev_length = s->match_length, s->prev_match = s->match_start;
1959        s->match_length = MIN_MATCH-1;
1960
1961        if (hash_head != NIL && s->prev_length < s->max_lazy_match &&
1962            s->strstart - hash_head <= MAX_DIST(s)) {
1963            /* To simplify the code, we prevent matches with the string
1964             * of window index 0 (in particular we have to avoid a match
1965             * of the string with itself at the start of the input file).
1966             */
1967            s->match_length = longest_match (s, hash_head);
1968            /* longest_match() sets match_start */
1969
1970            if (s->match_length <= 5 && (s->strategy == Z_FILTERED
1971#if TOO_FAR <= 32767
1972                || (s->match_length == MIN_MATCH &&
1973                    s->strstart - s->match_start > TOO_FAR)
1974#endif
1975                )) {
1976
1977                /* If prev_match is also MIN_MATCH, match_start is garbage
1978                 * but we will ignore the current match anyway.
1979                 */
1980                s->match_length = MIN_MATCH-1;
1981            }
1982        }
1983        /* If there was a match at the previous step and the current
1984         * match is not better, output the previous match:
1985         */
1986        if (s->prev_length >= MIN_MATCH && s->match_length <= s->prev_length) {
1987            uInt max_insert = s->strstart + s->lookahead - MIN_MATCH;
1988            /* Do not insert strings in hash table beyond this. */
1989
1990            check_match(s, s->strstart-1, s->prev_match, s->prev_length);
1991
1992            _tr_tally_dist(s, s->strstart -1 - s->prev_match,
1993                           s->prev_length - MIN_MATCH, bflush);
1994
1995            /* Insert in hash table all strings up to the end of the match.
1996             * strstart-1 and strstart are already inserted. If there is not
1997             * enough lookahead, the last two strings are not inserted in
1998             * the hash table.
1999             */
2000            s->lookahead -= s->prev_length-1;
2001            s->prev_length -= 2;
2002            do {
2003                if (++s->strstart <= max_insert) {
2004                    INSERT_STRING(s, s->strstart, hash_head);
2005                }
2006            } while (--s->prev_length != 0);
2007            s->match_available = 0;
2008            s->match_length = MIN_MATCH-1;
2009            s->strstart++;
2010
2011            if (bflush) FLUSH_BLOCK(s, 0);
2012
2013        } else if (s->match_available) {
2014            /* If there was no match at the previous position, output a
2015             * single literal. If there was a match but the current match
2016             * is longer, truncate the previous match to a single literal.
2017             */
2018            Tracevv((stderr,"%c", s->window[s->strstart-1]));
2019            _tr_tally_lit(s, s->window[s->strstart-1], bflush);
2020            if (bflush) {
2021                FLUSH_BLOCK_ONLY(s, 0);
2022            }
2023            s->strstart++;
2024            s->lookahead--;
2025            if (s->strm->avail_out == 0) return need_more;
2026        } else {
2027            /* There is no previous match to compare with, wait for
2028             * the next step to decide.
2029             */
2030            s->match_available = 1;
2031            s->strstart++;
2032            s->lookahead--;
2033        }
2034    }
2035    Assert (flush != Z_NO_FLUSH, "no flush?");
2036    if (s->match_available) {
2037        Tracevv((stderr,"%c", s->window[s->strstart-1]));
2038        _tr_tally_lit(s, s->window[s->strstart-1], bflush);
2039        s->match_available = 0;
2040    }
2041    s->insert = s->strstart < MIN_MATCH-1 ? s->strstart : MIN_MATCH-1;
2042    if (flush == Z_FINISH) {
2043        FLUSH_BLOCK(s, 1);
2044        return finish_done;
2045    }
2046    if (s->last_lit)
2047        FLUSH_BLOCK(s, 0);
2048    return block_done;
2049}
2050#endif /* FASTEST */
2051
2052/* ===========================================================================
2053 * For Z_RLE, simply look for runs of bytes, generate matches only of distance
2054 * one.  Do not maintain a hash table.  (It will be regenerated if this run of
2055 * deflate switches away from Z_RLE.)
2056 */
2057local block_state deflate_rle(s, flush)
2058    deflate_state *s;
2059    int flush;
2060{
2061    int bflush;             /* set if current block must be flushed */
2062    uInt prev;              /* byte at distance one to match */
2063    Bytef *scan, *strend;   /* scan goes up to strend for length of run */
2064
2065    for (;;) {
2066        /* Make sure that we always have enough lookahead, except
2067         * at the end of the input file. We need MAX_MATCH bytes
2068         * for the longest run, plus one for the unrolled loop.
2069         */
2070        if (s->lookahead <= MAX_MATCH) {
2071            fill_window(s);
2072            if (s->lookahead <= MAX_MATCH && flush == Z_NO_FLUSH) {
2073                return need_more;
2074            }
2075            if (s->lookahead == 0) break; /* flush the current block */
2076        }
2077
2078        /* See how many times the previous byte repeats */
2079        s->match_length = 0;
2080        if (s->lookahead >= MIN_MATCH && s->strstart > 0) {
2081            scan = s->window + s->strstart - 1;
2082            prev = *scan;
2083            if (prev == *++scan && prev == *++scan && prev == *++scan) {
2084                strend = s->window + s->strstart + MAX_MATCH;
2085                do {
2086                } while (prev == *++scan && prev == *++scan &&
2087                         prev == *++scan && prev == *++scan &&
2088                         prev == *++scan && prev == *++scan &&
2089                         prev == *++scan && prev == *++scan &&
2090                         scan < strend);
2091                s->match_length = MAX_MATCH - (uInt)(strend - scan);
2092                if (s->match_length > s->lookahead)
2093                    s->match_length = s->lookahead;
2094            }
2095            Assert(scan <= s->window+(uInt)(s->window_size-1), "wild scan");
2096        }
2097
2098        /* Emit match if have run of MIN_MATCH or longer, else emit literal */
2099        if (s->match_length >= MIN_MATCH) {
2100            check_match(s, s->strstart, s->strstart - 1, s->match_length);
2101
2102            _tr_tally_dist(s, 1, s->match_length - MIN_MATCH, bflush);
2103
2104            s->lookahead -= s->match_length;
2105            s->strstart += s->match_length;
2106            s->match_length = 0;
2107        } else {
2108            /* No match, output a literal byte */
2109            Tracevv((stderr,"%c", s->window[s->strstart]));
2110            _tr_tally_lit (s, s->window[s->strstart], bflush);
2111            s->lookahead--;
2112            s->strstart++;
2113        }
2114        if (bflush) FLUSH_BLOCK(s, 0);
2115    }
2116    s->insert = 0;
2117    if (flush == Z_FINISH) {
2118        FLUSH_BLOCK(s, 1);
2119        return finish_done;
2120    }
2121    if (s->last_lit)
2122        FLUSH_BLOCK(s, 0);
2123    return block_done;
2124}
2125
2126/* ===========================================================================
2127 * For Z_HUFFMAN_ONLY, do not look for matches.  Do not maintain a hash table.
2128 * (It will be regenerated if this run of deflate switches away from Huffman.)
2129 */
2130local block_state deflate_huff(s, flush)
2131    deflate_state *s;
2132    int flush;
2133{
2134    int bflush;             /* set if current block must be flushed */
2135
2136    for (;;) {
2137        /* Make sure that we have a literal to write. */
2138        if (s->lookahead == 0) {
2139            fill_window(s);
2140            if (s->lookahead == 0) {
2141                if (flush == Z_NO_FLUSH)
2142                    return need_more;
2143                break;      /* flush the current block */
2144            }
2145        }
2146
2147        /* Output a literal byte */
2148        s->match_length = 0;
2149        Tracevv((stderr,"%c", s->window[s->strstart]));
2150        _tr_tally_lit (s, s->window[s->strstart], bflush);
2151        s->lookahead--;
2152        s->strstart++;
2153        if (bflush) FLUSH_BLOCK(s, 0);
2154    }
2155    s->insert = 0;
2156    if (flush == Z_FINISH) {
2157        FLUSH_BLOCK(s, 1);
2158        return finish_done;
2159    }
2160    if (s->last_lit)
2161        FLUSH_BLOCK(s, 0);
2162    return block_done;
2163}
2164