crc32.c revision 313796
1/* crc32.c -- compute the CRC-32 of a data stream
2 * Copyright (C) 1995-2006, 2010, 2011, 2012, 2016 Mark Adler
3 * For conditions of distribution and use, see copyright notice in zlib.h
4 *
5 * Thanks to Rodney Brown <rbrown64@csc.com.au> for his contribution of faster
6 * CRC methods: exclusive-oring 32 bits of data at a time, and pre-computing
7 * tables for updating the shift register in one step with three exclusive-ors
8 * instead of four steps with four exclusive-ors.  This results in about a
9 * factor of two increase in speed on a Power PC G4 (PPC7455) using gcc -O3.
10 */
11
12/* @(#) $Id$ */
13
14/*
15  Note on the use of DYNAMIC_CRC_TABLE: there is no mutex or semaphore
16  protection on the static variables used to control the first-use generation
17  of the crc tables.  Therefore, if you #define DYNAMIC_CRC_TABLE, you should
18  first call get_crc_table() to initialize the tables before allowing more than
19  one thread to use crc32().
20
21  DYNAMIC_CRC_TABLE and MAKECRCH can be #defined to write out crc32.h.
22 */
23
24#ifdef MAKECRCH
25#  include <stdio.h>
26#  ifndef DYNAMIC_CRC_TABLE
27#    define DYNAMIC_CRC_TABLE
28#  endif /* !DYNAMIC_CRC_TABLE */
29#endif /* MAKECRCH */
30
31#include "zutil.h"      /* for STDC and FAR definitions */
32
33/* Definitions for doing the crc four data bytes at a time. */
34#if !defined(NOBYFOUR) && defined(Z_U4)
35#  define BYFOUR
36#endif
37#ifdef BYFOUR
38   local unsigned long crc32_little OF((unsigned long,
39                        const unsigned char FAR *, z_size_t));
40   local unsigned long crc32_big OF((unsigned long,
41                        const unsigned char FAR *, z_size_t));
42#  define TBLS 8
43#else
44#  define TBLS 1
45#endif /* BYFOUR */
46
47/* Local functions for crc concatenation */
48local unsigned long gf2_matrix_times OF((unsigned long *mat,
49                                         unsigned long vec));
50local void gf2_matrix_square OF((unsigned long *square, unsigned long *mat));
51local uLong crc32_combine_ OF((uLong crc1, uLong crc2, z_off64_t len2));
52
53
54#ifdef DYNAMIC_CRC_TABLE
55
56local volatile int crc_table_empty = 1;
57local z_crc_t FAR crc_table[TBLS][256];
58local void make_crc_table OF((void));
59#ifdef MAKECRCH
60   local void write_table OF((FILE *, const z_crc_t FAR *));
61#endif /* MAKECRCH */
62/*
63  Generate tables for a byte-wise 32-bit CRC calculation on the polynomial:
64  x^32+x^26+x^23+x^22+x^16+x^12+x^11+x^10+x^8+x^7+x^5+x^4+x^2+x+1.
65
66  Polynomials over GF(2) are represented in binary, one bit per coefficient,
67  with the lowest powers in the most significant bit.  Then adding polynomials
68  is just exclusive-or, and multiplying a polynomial by x is a right shift by
69  one.  If we call the above polynomial p, and represent a byte as the
70  polynomial q, also with the lowest power in the most significant bit (so the
71  byte 0xb1 is the polynomial x^7+x^3+x+1), then the CRC is (q*x^32) mod p,
72  where a mod b means the remainder after dividing a by b.
73
74  This calculation is done using the shift-register method of multiplying and
75  taking the remainder.  The register is initialized to zero, and for each
76  incoming bit, x^32 is added mod p to the register if the bit is a one (where
77  x^32 mod p is p+x^32 = x^26+...+1), and the register is multiplied mod p by
78  x (which is shifting right by one and adding x^32 mod p if the bit shifted
79  out is a one).  We start with the highest power (least significant bit) of
80  q and repeat for all eight bits of q.
81
82  The first table is simply the CRC of all possible eight bit values.  This is
83  all the information needed to generate CRCs on data a byte at a time for all
84  combinations of CRC register values and incoming bytes.  The remaining tables
85  allow for word-at-a-time CRC calculation for both big-endian and little-
86  endian machines, where a word is four bytes.
87*/
88local void make_crc_table()
89{
90    z_crc_t c;
91    int n, k;
92    z_crc_t poly;                       /* polynomial exclusive-or pattern */
93    /* terms of polynomial defining this crc (except x^32): */
94    static volatile int first = 1;      /* flag to limit concurrent making */
95    static const unsigned char p[] = {0,1,2,4,5,7,8,10,11,12,16,22,23,26};
96
97    /* See if another task is already doing this (not thread-safe, but better
98       than nothing -- significantly reduces duration of vulnerability in
99       case the advice about DYNAMIC_CRC_TABLE is ignored) */
100    if (first) {
101        first = 0;
102
103        /* make exclusive-or pattern from polynomial (0xedb88320UL) */
104        poly = 0;
105        for (n = 0; n < (int)(sizeof(p)/sizeof(unsigned char)); n++)
106            poly |= (z_crc_t)1 << (31 - p[n]);
107
108        /* generate a crc for every 8-bit value */
109        for (n = 0; n < 256; n++) {
110            c = (z_crc_t)n;
111            for (k = 0; k < 8; k++)
112                c = c & 1 ? poly ^ (c >> 1) : c >> 1;
113            crc_table[0][n] = c;
114        }
115
116#ifdef BYFOUR
117        /* generate crc for each value followed by one, two, and three zeros,
118           and then the byte reversal of those as well as the first table */
119        for (n = 0; n < 256; n++) {
120            c = crc_table[0][n];
121            crc_table[4][n] = ZSWAP32(c);
122            for (k = 1; k < 4; k++) {
123                c = crc_table[0][c & 0xff] ^ (c >> 8);
124                crc_table[k][n] = c;
125                crc_table[k + 4][n] = ZSWAP32(c);
126            }
127        }
128#endif /* BYFOUR */
129
130        crc_table_empty = 0;
131    }
132    else {      /* not first */
133        /* wait for the other guy to finish (not efficient, but rare) */
134        while (crc_table_empty)
135            ;
136    }
137
138#ifdef MAKECRCH
139    /* write out CRC tables to crc32.h */
140    {
141        FILE *out;
142
143        out = fopen("crc32.h", "w");
144        if (out == NULL) return;
145        fprintf(out, "/* crc32.h -- tables for rapid CRC calculation\n");
146        fprintf(out, " * Generated automatically by crc32.c\n */\n\n");
147        fprintf(out, "local const z_crc_t FAR ");
148        fprintf(out, "crc_table[TBLS][256] =\n{\n  {\n");
149        write_table(out, crc_table[0]);
150#  ifdef BYFOUR
151        fprintf(out, "#ifdef BYFOUR\n");
152        for (k = 1; k < 8; k++) {
153            fprintf(out, "  },\n  {\n");
154            write_table(out, crc_table[k]);
155        }
156        fprintf(out, "#endif\n");
157#  endif /* BYFOUR */
158        fprintf(out, "  }\n};\n");
159        fclose(out);
160    }
161#endif /* MAKECRCH */
162}
163
164#ifdef MAKECRCH
165local void write_table(out, table)
166    FILE *out;
167    const z_crc_t FAR *table;
168{
169    int n;
170
171    for (n = 0; n < 256; n++)
172        fprintf(out, "%s0x%08lxUL%s", n % 5 ? "" : "    ",
173                (unsigned long)(table[n]),
174                n == 255 ? "\n" : (n % 5 == 4 ? ",\n" : ", "));
175}
176#endif /* MAKECRCH */
177
178#else /* !DYNAMIC_CRC_TABLE */
179/* ========================================================================
180 * Tables of CRC-32s of all single-byte values, made by make_crc_table().
181 */
182#include "crc32.h"
183#endif /* DYNAMIC_CRC_TABLE */
184
185/* =========================================================================
186 * This function can be used by asm versions of crc32()
187 */
188const z_crc_t FAR * ZEXPORT get_crc_table()
189{
190#ifdef DYNAMIC_CRC_TABLE
191    if (crc_table_empty)
192        make_crc_table();
193#endif /* DYNAMIC_CRC_TABLE */
194    return (const z_crc_t FAR *)crc_table;
195}
196
197/* ========================================================================= */
198#define DO1 crc = crc_table[0][((int)crc ^ (*buf++)) & 0xff] ^ (crc >> 8)
199#define DO8 DO1; DO1; DO1; DO1; DO1; DO1; DO1; DO1
200
201/* ========================================================================= */
202unsigned long ZEXPORT crc32_z(crc, buf, len)
203    unsigned long crc;
204    const unsigned char FAR *buf;
205    z_size_t len;
206{
207    if (buf == Z_NULL) return 0UL;
208
209#ifdef DYNAMIC_CRC_TABLE
210    if (crc_table_empty)
211        make_crc_table();
212#endif /* DYNAMIC_CRC_TABLE */
213
214#ifdef BYFOUR
215    if (sizeof(void *) == sizeof(ptrdiff_t)) {
216        z_crc_t endian;
217
218        endian = 1;
219        if (*((unsigned char *)(&endian)))
220            return crc32_little(crc, buf, len);
221        else
222            return crc32_big(crc, buf, len);
223    }
224#endif /* BYFOUR */
225    crc = crc ^ 0xffffffffUL;
226    while (len >= 8) {
227        DO8;
228        len -= 8;
229    }
230    if (len) do {
231        DO1;
232    } while (--len);
233    return crc ^ 0xffffffffUL;
234}
235
236/* ========================================================================= */
237unsigned long ZEXPORT crc32(crc, buf, len)
238    unsigned long crc;
239    const unsigned char FAR *buf;
240    uInt len;
241{
242    return crc32_z(crc, buf, len);
243}
244
245#ifdef BYFOUR
246
247/*
248   This BYFOUR code accesses the passed unsigned char * buffer with a 32-bit
249   integer pointer type. This violates the strict aliasing rule, where a
250   compiler can assume, for optimization purposes, that two pointers to
251   fundamentally different types won't ever point to the same memory. This can
252   manifest as a problem only if one of the pointers is written to. This code
253   only reads from those pointers. So long as this code remains isolated in
254   this compilation unit, there won't be a problem. For this reason, this code
255   should not be copied and pasted into a compilation unit in which other code
256   writes to the buffer that is passed to these routines.
257 */
258
259/* ========================================================================= */
260#define DOLIT4 c ^= *buf4++; \
261        c = crc_table[3][c & 0xff] ^ crc_table[2][(c >> 8) & 0xff] ^ \
262            crc_table[1][(c >> 16) & 0xff] ^ crc_table[0][c >> 24]
263#define DOLIT32 DOLIT4; DOLIT4; DOLIT4; DOLIT4; DOLIT4; DOLIT4; DOLIT4; DOLIT4
264
265/* ========================================================================= */
266local unsigned long crc32_little(crc, buf, len)
267    unsigned long crc;
268    const unsigned char FAR *buf;
269    z_size_t len;
270{
271    register z_crc_t c;
272    register const z_crc_t FAR *buf4;
273
274    c = (z_crc_t)crc;
275    c = ~c;
276    while (len && ((ptrdiff_t)buf & 3)) {
277        c = crc_table[0][(c ^ *buf++) & 0xff] ^ (c >> 8);
278        len--;
279    }
280
281    buf4 = (const z_crc_t FAR *)(const void FAR *)buf;
282    while (len >= 32) {
283        DOLIT32;
284        len -= 32;
285    }
286    while (len >= 4) {
287        DOLIT4;
288        len -= 4;
289    }
290    buf = (const unsigned char FAR *)buf4;
291
292    if (len) do {
293        c = crc_table[0][(c ^ *buf++) & 0xff] ^ (c >> 8);
294    } while (--len);
295    c = ~c;
296    return (unsigned long)c;
297}
298
299/* ========================================================================= */
300#define DOBIG4 c ^= *buf4++; \
301        c = crc_table[4][c & 0xff] ^ crc_table[5][(c >> 8) & 0xff] ^ \
302            crc_table[6][(c >> 16) & 0xff] ^ crc_table[7][c >> 24]
303#define DOBIG32 DOBIG4; DOBIG4; DOBIG4; DOBIG4; DOBIG4; DOBIG4; DOBIG4; DOBIG4
304
305/* ========================================================================= */
306local unsigned long crc32_big(crc, buf, len)
307    unsigned long crc;
308    const unsigned char FAR *buf;
309    z_size_t len;
310{
311    register z_crc_t c;
312    register const z_crc_t FAR *buf4;
313
314    c = ZSWAP32((z_crc_t)crc);
315    c = ~c;
316    while (len && ((ptrdiff_t)buf & 3)) {
317        c = crc_table[4][(c >> 24) ^ *buf++] ^ (c << 8);
318        len--;
319    }
320
321    buf4 = (const z_crc_t FAR *)(const void FAR *)buf;
322    while (len >= 32) {
323        DOBIG32;
324        len -= 32;
325    }
326    while (len >= 4) {
327        DOBIG4;
328        len -= 4;
329    }
330    buf = (const unsigned char FAR *)buf4;
331
332    if (len) do {
333        c = crc_table[4][(c >> 24) ^ *buf++] ^ (c << 8);
334    } while (--len);
335    c = ~c;
336    return (unsigned long)(ZSWAP32(c));
337}
338
339#endif /* BYFOUR */
340
341#define GF2_DIM 32      /* dimension of GF(2) vectors (length of CRC) */
342
343/* ========================================================================= */
344local unsigned long gf2_matrix_times(mat, vec)
345    unsigned long *mat;
346    unsigned long vec;
347{
348    unsigned long sum;
349
350    sum = 0;
351    while (vec) {
352        if (vec & 1)
353            sum ^= *mat;
354        vec >>= 1;
355        mat++;
356    }
357    return sum;
358}
359
360/* ========================================================================= */
361local void gf2_matrix_square(square, mat)
362    unsigned long *square;
363    unsigned long *mat;
364{
365    int n;
366
367    for (n = 0; n < GF2_DIM; n++)
368        square[n] = gf2_matrix_times(mat, mat[n]);
369}
370
371/* ========================================================================= */
372local uLong crc32_combine_(crc1, crc2, len2)
373    uLong crc1;
374    uLong crc2;
375    z_off64_t len2;
376{
377    int n;
378    unsigned long row;
379    unsigned long even[GF2_DIM];    /* even-power-of-two zeros operator */
380    unsigned long odd[GF2_DIM];     /* odd-power-of-two zeros operator */
381
382    /* degenerate case (also disallow negative lengths) */
383    if (len2 <= 0)
384        return crc1;
385
386    /* put operator for one zero bit in odd */
387    odd[0] = 0xedb88320UL;          /* CRC-32 polynomial */
388    row = 1;
389    for (n = 1; n < GF2_DIM; n++) {
390        odd[n] = row;
391        row <<= 1;
392    }
393
394    /* put operator for two zero bits in even */
395    gf2_matrix_square(even, odd);
396
397    /* put operator for four zero bits in odd */
398    gf2_matrix_square(odd, even);
399
400    /* apply len2 zeros to crc1 (first square will put the operator for one
401       zero byte, eight zero bits, in even) */
402    do {
403        /* apply zeros operator for this bit of len2 */
404        gf2_matrix_square(even, odd);
405        if (len2 & 1)
406            crc1 = gf2_matrix_times(even, crc1);
407        len2 >>= 1;
408
409        /* if no more bits set, then done */
410        if (len2 == 0)
411            break;
412
413        /* another iteration of the loop with odd and even swapped */
414        gf2_matrix_square(odd, even);
415        if (len2 & 1)
416            crc1 = gf2_matrix_times(odd, crc1);
417        len2 >>= 1;
418
419        /* if no more bits set, then done */
420    } while (len2 != 0);
421
422    /* return combined crc */
423    crc1 ^= crc2;
424    return crc1;
425}
426
427/* ========================================================================= */
428uLong ZEXPORT crc32_combine(crc1, crc2, len2)
429    uLong crc1;
430    uLong crc2;
431    z_off_t len2;
432{
433    return crc32_combine_(crc1, crc2, len2);
434}
435
436uLong ZEXPORT crc32_combine64(crc1, crc2, len2)
437    uLong crc1;
438    uLong crc2;
439    z_off64_t len2;
440{
441    return crc32_combine_(crc1, crc2, len2);
442}
443