simple_coder.c revision 312518
1///////////////////////////////////////////////////////////////////////////////
2//
3/// \file       simple_coder.c
4/// \brief      Wrapper for simple filters
5///
6/// Simple filters don't change the size of the data i.e. number of bytes
7/// in equals the number of bytes out.
8//
9//  Author:     Lasse Collin
10//
11//  This file has been put into the public domain.
12//  You can do whatever you want with this file.
13//
14///////////////////////////////////////////////////////////////////////////////
15
16#include "simple_private.h"
17
18
19/// Copied or encodes/decodes more data to out[].
20static lzma_ret
21copy_or_code(lzma_simple_coder *coder, const lzma_allocator *allocator,
22		const uint8_t *restrict in, size_t *restrict in_pos,
23		size_t in_size, uint8_t *restrict out,
24		size_t *restrict out_pos, size_t out_size, lzma_action action)
25{
26	assert(!coder->end_was_reached);
27
28	if (coder->next.code == NULL) {
29		lzma_bufcpy(in, in_pos, in_size, out, out_pos, out_size);
30
31		// Check if end of stream was reached.
32		if (coder->is_encoder && action == LZMA_FINISH
33				&& *in_pos == in_size)
34			coder->end_was_reached = true;
35
36	} else {
37		// Call the next coder in the chain to provide us some data.
38		const lzma_ret ret = coder->next.code(
39				coder->next.coder, allocator,
40				in, in_pos, in_size,
41				out, out_pos, out_size, action);
42
43		if (ret == LZMA_STREAM_END) {
44			assert(!coder->is_encoder
45					|| action == LZMA_FINISH);
46			coder->end_was_reached = true;
47
48		} else if (ret != LZMA_OK) {
49			return ret;
50		}
51	}
52
53	return LZMA_OK;
54}
55
56
57static size_t
58call_filter(lzma_simple_coder *coder, uint8_t *buffer, size_t size)
59{
60	const size_t filtered = coder->filter(coder->simple,
61			coder->now_pos, coder->is_encoder,
62			buffer, size);
63	coder->now_pos += filtered;
64	return filtered;
65}
66
67
68static lzma_ret
69simple_code(void *coder_ptr, const lzma_allocator *allocator,
70		const uint8_t *restrict in, size_t *restrict in_pos,
71		size_t in_size, uint8_t *restrict out,
72		size_t *restrict out_pos, size_t out_size, lzma_action action)
73{
74	lzma_simple_coder *coder = coder_ptr;
75
76	// TODO: Add partial support for LZMA_SYNC_FLUSH. We can support it
77	// in cases when the filter is able to filter everything. With most
78	// simple filters it can be done at offset that is a multiple of 2,
79	// 4, or 16. With x86 filter, it needs good luck, and thus cannot
80	// be made to work predictably.
81	if (action == LZMA_SYNC_FLUSH)
82		return LZMA_OPTIONS_ERROR;
83
84	// Flush already filtered data from coder->buffer[] to out[].
85	if (coder->pos < coder->filtered) {
86		lzma_bufcpy(coder->buffer, &coder->pos, coder->filtered,
87				out, out_pos, out_size);
88
89		// If we couldn't flush all the filtered data, return to
90		// application immediately.
91		if (coder->pos < coder->filtered)
92			return LZMA_OK;
93
94		if (coder->end_was_reached) {
95			assert(coder->filtered == coder->size);
96			return LZMA_STREAM_END;
97		}
98	}
99
100	// If we get here, there is no filtered data left in the buffer.
101	coder->filtered = 0;
102
103	assert(!coder->end_was_reached);
104
105	// If there is more output space left than there is unfiltered data
106	// in coder->buffer[], flush coder->buffer[] to out[], and copy/code
107	// more data to out[] hopefully filling it completely. Then filter
108	// the data in out[]. This step is where most of the data gets
109	// filtered if the buffer sizes used by the application are reasonable.
110	const size_t out_avail = out_size - *out_pos;
111	const size_t buf_avail = coder->size - coder->pos;
112	if (out_avail > buf_avail || buf_avail == 0) {
113		// Store the old position so that we know from which byte
114		// to start filtering.
115		const size_t out_start = *out_pos;
116
117		// Flush data from coder->buffer[] to out[], but don't reset
118		// coder->pos and coder->size yet. This way the coder can be
119		// restarted if the next filter in the chain returns e.g.
120		// LZMA_MEM_ERROR.
121		memcpy(out + *out_pos, coder->buffer + coder->pos, buf_avail);
122		*out_pos += buf_avail;
123
124		// Copy/Encode/Decode more data to out[].
125		{
126			const lzma_ret ret = copy_or_code(coder, allocator,
127					in, in_pos, in_size,
128					out, out_pos, out_size, action);
129			assert(ret != LZMA_STREAM_END);
130			if (ret != LZMA_OK)
131				return ret;
132		}
133
134		// Filter out[].
135		const size_t size = *out_pos - out_start;
136		const size_t filtered = call_filter(
137				coder, out + out_start, size);
138
139		const size_t unfiltered = size - filtered;
140		assert(unfiltered <= coder->allocated / 2);
141
142		// Now we can update coder->pos and coder->size, because
143		// the next coder in the chain (if any) was successful.
144		coder->pos = 0;
145		coder->size = unfiltered;
146
147		if (coder->end_was_reached) {
148			// The last byte has been copied to out[] already.
149			// They are left as is.
150			coder->size = 0;
151
152		} else if (unfiltered > 0) {
153			// There is unfiltered data left in out[]. Copy it to
154			// coder->buffer[] and rewind *out_pos appropriately.
155			*out_pos -= unfiltered;
156			memcpy(coder->buffer, out + *out_pos, unfiltered);
157		}
158	} else if (coder->pos > 0) {
159		memmove(coder->buffer, coder->buffer + coder->pos, buf_avail);
160		coder->size -= coder->pos;
161		coder->pos = 0;
162	}
163
164	assert(coder->pos == 0);
165
166	// If coder->buffer[] isn't empty, try to fill it by copying/decoding
167	// more data. Then filter coder->buffer[] and copy the successfully
168	// filtered data to out[]. It is probable, that some filtered and
169	// unfiltered data will be left to coder->buffer[].
170	if (coder->size > 0) {
171		{
172			const lzma_ret ret = copy_or_code(coder, allocator,
173					in, in_pos, in_size,
174					coder->buffer, &coder->size,
175					coder->allocated, action);
176			assert(ret != LZMA_STREAM_END);
177			if (ret != LZMA_OK)
178				return ret;
179		}
180
181		coder->filtered = call_filter(
182				coder, coder->buffer, coder->size);
183
184		// Everything is considered to be filtered if coder->buffer[]
185		// contains the last bytes of the data.
186		if (coder->end_was_reached)
187			coder->filtered = coder->size;
188
189		// Flush as much as possible.
190		lzma_bufcpy(coder->buffer, &coder->pos, coder->filtered,
191				out, out_pos, out_size);
192	}
193
194	// Check if we got everything done.
195	if (coder->end_was_reached && coder->pos == coder->size)
196		return LZMA_STREAM_END;
197
198	return LZMA_OK;
199}
200
201
202static void
203simple_coder_end(void *coder_ptr, const lzma_allocator *allocator)
204{
205	lzma_simple_coder *coder = coder_ptr;
206	lzma_next_end(&coder->next, allocator);
207	lzma_free(coder->simple, allocator);
208	lzma_free(coder, allocator);
209	return;
210}
211
212
213static lzma_ret
214simple_coder_update(void *coder_ptr, const lzma_allocator *allocator,
215		const lzma_filter *filters_null lzma_attribute((__unused__)),
216		const lzma_filter *reversed_filters)
217{
218	lzma_simple_coder *coder = coder_ptr;
219
220	// No update support, just call the next filter in the chain.
221	return lzma_next_filter_update(
222			&coder->next, allocator, reversed_filters + 1);
223}
224
225
226extern lzma_ret
227lzma_simple_coder_init(lzma_next_coder *next, const lzma_allocator *allocator,
228		const lzma_filter_info *filters,
229		size_t (*filter)(void *simple, uint32_t now_pos,
230			bool is_encoder, uint8_t *buffer, size_t size),
231		size_t simple_size, size_t unfiltered_max,
232		uint32_t alignment, bool is_encoder)
233{
234	// Allocate memory for the lzma_simple_coder structure if needed.
235	lzma_simple_coder *coder = next->coder;
236	if (coder == NULL) {
237		// Here we allocate space also for the temporary buffer. We
238		// need twice the size of unfiltered_max, because then it
239		// is always possible to filter at least unfiltered_max bytes
240		// more data in coder->buffer[] if it can be filled completely.
241		coder = lzma_alloc(sizeof(lzma_simple_coder)
242				+ 2 * unfiltered_max, allocator);
243		if (coder == NULL)
244			return LZMA_MEM_ERROR;
245
246		next->coder = coder;
247		next->code = &simple_code;
248		next->end = &simple_coder_end;
249		next->update = &simple_coder_update;
250
251		coder->next = LZMA_NEXT_CODER_INIT;
252		coder->filter = filter;
253		coder->allocated = 2 * unfiltered_max;
254
255		// Allocate memory for filter-specific data structure.
256		if (simple_size > 0) {
257			coder->simple = lzma_alloc(simple_size, allocator);
258			if (coder->simple == NULL)
259				return LZMA_MEM_ERROR;
260		} else {
261			coder->simple = NULL;
262		}
263	}
264
265	if (filters[0].options != NULL) {
266		const lzma_options_bcj *simple = filters[0].options;
267		coder->now_pos = simple->start_offset;
268		if (coder->now_pos & (alignment - 1))
269			return LZMA_OPTIONS_ERROR;
270	} else {
271		coder->now_pos = 0;
272	}
273
274	// Reset variables.
275	coder->is_encoder = is_encoder;
276	coder->end_was_reached = false;
277	coder->pos = 0;
278	coder->filtered = 0;
279	coder->size = 0;
280
281	return lzma_next_filter_init(&coder->next, allocator, filters + 1);
282}
283