val_sigcrypt.c revision 294190
1/*
2 * validator/val_sigcrypt.c - validator signature crypto functions.
3 *
4 * Copyright (c) 2007, NLnet Labs. All rights reserved.
5 *
6 * This software is open source.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 *
12 * Redistributions of source code must retain the above copyright notice,
13 * this list of conditions and the following disclaimer.
14 *
15 * Redistributions in binary form must reproduce the above copyright notice,
16 * this list of conditions and the following disclaimer in the documentation
17 * and/or other materials provided with the distribution.
18 *
19 * Neither the name of the NLNET LABS nor the names of its contributors may
20 * be used to endorse or promote products derived from this software without
21 * specific prior written permission.
22 *
23 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
24 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
25 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
26 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
27 * HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
28 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
29 * TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
30 * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
31 * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
32 * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
33 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
34 */
35
36/**
37 * \file
38 *
39 * This file contains helper functions for the validator module.
40 * The functions help with signature verification and checking, the
41 * bridging between RR wireformat data and crypto calls.
42 */
43#include "config.h"
44#include "validator/val_sigcrypt.h"
45#include "validator/val_secalgo.h"
46#include "validator/validator.h"
47#include "util/data/msgreply.h"
48#include "util/data/msgparse.h"
49#include "util/data/dname.h"
50#include "util/rbtree.h"
51#include "util/module.h"
52#include "util/net_help.h"
53#include "util/regional.h"
54#include "sldns/keyraw.h"
55#include "sldns/sbuffer.h"
56#include "sldns/parseutil.h"
57#include "sldns/wire2str.h"
58
59#include <ctype.h>
60#if !defined(HAVE_SSL) && !defined(HAVE_NSS) && !defined(HAVE_NETTLE)
61#error "Need crypto library to do digital signature cryptography"
62#endif
63
64#ifdef HAVE_OPENSSL_ERR_H
65#include <openssl/err.h>
66#endif
67
68#ifdef HAVE_OPENSSL_RAND_H
69#include <openssl/rand.h>
70#endif
71
72#ifdef HAVE_OPENSSL_CONF_H
73#include <openssl/conf.h>
74#endif
75
76#ifdef HAVE_OPENSSL_ENGINE_H
77#include <openssl/engine.h>
78#endif
79
80/** return number of rrs in an rrset */
81static size_t
82rrset_get_count(struct ub_packed_rrset_key* rrset)
83{
84	struct packed_rrset_data* d = (struct packed_rrset_data*)
85	rrset->entry.data;
86	if(!d) return 0;
87	return d->count;
88}
89
90/**
91 * Get RR signature count
92 */
93static size_t
94rrset_get_sigcount(struct ub_packed_rrset_key* k)
95{
96	struct packed_rrset_data* d = (struct packed_rrset_data*)k->entry.data;
97	return d->rrsig_count;
98}
99
100/**
101 * Get signature keytag value
102 * @param k: rrset (with signatures)
103 * @param sig_idx: signature index.
104 * @return keytag or 0 if malformed rrsig.
105 */
106static uint16_t
107rrset_get_sig_keytag(struct ub_packed_rrset_key* k, size_t sig_idx)
108{
109	uint16_t t;
110	struct packed_rrset_data* d = (struct packed_rrset_data*)k->entry.data;
111	log_assert(sig_idx < d->rrsig_count);
112	if(d->rr_len[d->count + sig_idx] < 2+18)
113		return 0;
114	memmove(&t, d->rr_data[d->count + sig_idx]+2+16, 2);
115	return ntohs(t);
116}
117
118/**
119 * Get signature signing algorithm value
120 * @param k: rrset (with signatures)
121 * @param sig_idx: signature index.
122 * @return algo or 0 if malformed rrsig.
123 */
124static int
125rrset_get_sig_algo(struct ub_packed_rrset_key* k, size_t sig_idx)
126{
127	struct packed_rrset_data* d = (struct packed_rrset_data*)k->entry.data;
128	log_assert(sig_idx < d->rrsig_count);
129	if(d->rr_len[d->count + sig_idx] < 2+3)
130		return 0;
131	return (int)d->rr_data[d->count + sig_idx][2+2];
132}
133
134/** get rdata pointer and size */
135static void
136rrset_get_rdata(struct ub_packed_rrset_key* k, size_t idx, uint8_t** rdata,
137	size_t* len)
138{
139	struct packed_rrset_data* d = (struct packed_rrset_data*)k->entry.data;
140	log_assert(d && idx < (d->count + d->rrsig_count));
141	*rdata = d->rr_data[idx];
142	*len = d->rr_len[idx];
143}
144
145uint16_t
146dnskey_get_flags(struct ub_packed_rrset_key* k, size_t idx)
147{
148	uint8_t* rdata;
149	size_t len;
150	uint16_t f;
151	rrset_get_rdata(k, idx, &rdata, &len);
152	if(len < 2+2)
153		return 0;
154	memmove(&f, rdata+2, 2);
155	f = ntohs(f);
156	return f;
157}
158
159/**
160 * Get DNSKEY protocol value from rdata
161 * @param k: DNSKEY rrset.
162 * @param idx: which key.
163 * @return protocol octet value
164 */
165static int
166dnskey_get_protocol(struct ub_packed_rrset_key* k, size_t idx)
167{
168	uint8_t* rdata;
169	size_t len;
170	rrset_get_rdata(k, idx, &rdata, &len);
171	if(len < 2+4)
172		return 0;
173	return (int)rdata[2+2];
174}
175
176int
177dnskey_get_algo(struct ub_packed_rrset_key* k, size_t idx)
178{
179	uint8_t* rdata;
180	size_t len;
181	rrset_get_rdata(k, idx, &rdata, &len);
182	if(len < 2+4)
183		return 0;
184	return (int)rdata[2+3];
185}
186
187/** get public key rdata field from a dnskey RR and do some checks */
188static void
189dnskey_get_pubkey(struct ub_packed_rrset_key* k, size_t idx,
190	unsigned char** pk, unsigned int* pklen)
191{
192	uint8_t* rdata;
193	size_t len;
194	rrset_get_rdata(k, idx, &rdata, &len);
195	if(len < 2+5) {
196		*pk = NULL;
197		*pklen = 0;
198		return;
199	}
200	*pk = (unsigned char*)rdata+2+4;
201	*pklen = (unsigned)len-2-4;
202}
203
204int
205ds_get_key_algo(struct ub_packed_rrset_key* k, size_t idx)
206{
207	uint8_t* rdata;
208	size_t len;
209	rrset_get_rdata(k, idx, &rdata, &len);
210	if(len < 2+3)
211		return 0;
212	return (int)rdata[2+2];
213}
214
215int
216ds_get_digest_algo(struct ub_packed_rrset_key* k, size_t idx)
217{
218	uint8_t* rdata;
219	size_t len;
220	rrset_get_rdata(k, idx, &rdata, &len);
221	if(len < 2+4)
222		return 0;
223	return (int)rdata[2+3];
224}
225
226uint16_t
227ds_get_keytag(struct ub_packed_rrset_key* ds_rrset, size_t ds_idx)
228{
229	uint16_t t;
230	uint8_t* rdata;
231	size_t len;
232	rrset_get_rdata(ds_rrset, ds_idx, &rdata, &len);
233	if(len < 2+2)
234		return 0;
235	memmove(&t, rdata+2, 2);
236	return ntohs(t);
237}
238
239/**
240 * Return pointer to the digest in a DS RR.
241 * @param k: DS rrset.
242 * @param idx: which DS.
243 * @param digest: digest data is returned.
244 *	on error, this is NULL.
245 * @param len: length of digest is returned.
246 *	on error, the length is 0.
247 */
248static void
249ds_get_sigdata(struct ub_packed_rrset_key* k, size_t idx, uint8_t** digest,
250        size_t* len)
251{
252	uint8_t* rdata;
253	size_t rdlen;
254	rrset_get_rdata(k, idx, &rdata, &rdlen);
255	if(rdlen < 2+5) {
256		*digest = NULL;
257		*len = 0;
258		return;
259	}
260	*digest = rdata + 2 + 4;
261	*len = rdlen - 2 - 4;
262}
263
264/**
265 * Return size of DS digest according to its hash algorithm.
266 * @param k: DS rrset.
267 * @param idx: which DS.
268 * @return size in bytes of digest, or 0 if not supported.
269 */
270static size_t
271ds_digest_size_algo(struct ub_packed_rrset_key* k, size_t idx)
272{
273	return ds_digest_size_supported(ds_get_digest_algo(k, idx));
274}
275
276/**
277 * Create a DS digest for a DNSKEY entry.
278 *
279 * @param env: module environment. Uses scratch space.
280 * @param dnskey_rrset: DNSKEY rrset.
281 * @param dnskey_idx: index of RR in rrset.
282 * @param ds_rrset: DS rrset
283 * @param ds_idx: index of RR in DS rrset.
284 * @param digest: digest is returned in here (must be correctly sized).
285 * @return false on error.
286 */
287static int
288ds_create_dnskey_digest(struct module_env* env,
289	struct ub_packed_rrset_key* dnskey_rrset, size_t dnskey_idx,
290	struct ub_packed_rrset_key* ds_rrset, size_t ds_idx,
291	uint8_t* digest)
292{
293	sldns_buffer* b = env->scratch_buffer;
294	uint8_t* dnskey_rdata;
295	size_t dnskey_len;
296	rrset_get_rdata(dnskey_rrset, dnskey_idx, &dnskey_rdata, &dnskey_len);
297
298	/* create digest source material in buffer
299	 * digest = digest_algorithm( DNSKEY owner name | DNSKEY RDATA);
300	 *	DNSKEY RDATA = Flags | Protocol | Algorithm | Public Key. */
301	sldns_buffer_clear(b);
302	sldns_buffer_write(b, dnskey_rrset->rk.dname,
303		dnskey_rrset->rk.dname_len);
304	query_dname_tolower(sldns_buffer_begin(b));
305	sldns_buffer_write(b, dnskey_rdata+2, dnskey_len-2); /* skip rdatalen*/
306	sldns_buffer_flip(b);
307
308	return secalgo_ds_digest(ds_get_digest_algo(ds_rrset, ds_idx),
309		(unsigned char*)sldns_buffer_begin(b), sldns_buffer_limit(b),
310		(unsigned char*)digest);
311}
312
313int ds_digest_match_dnskey(struct module_env* env,
314	struct ub_packed_rrset_key* dnskey_rrset, size_t dnskey_idx,
315	struct ub_packed_rrset_key* ds_rrset, size_t ds_idx)
316{
317	uint8_t* ds;	/* DS digest */
318	size_t dslen;
319	uint8_t* digest; /* generated digest */
320	size_t digestlen = ds_digest_size_algo(ds_rrset, ds_idx);
321
322	if(digestlen == 0) {
323		verbose(VERB_QUERY, "DS fail: not supported, or DS RR "
324			"format error");
325		return 0; /* not supported, or DS RR format error */
326	}
327	/* check digest length in DS with length from hash function */
328	ds_get_sigdata(ds_rrset, ds_idx, &ds, &dslen);
329	if(!ds || dslen != digestlen) {
330		verbose(VERB_QUERY, "DS fail: DS RR algo and digest do not "
331			"match each other");
332		return 0; /* DS algorithm and digest do not match */
333	}
334
335	digest = regional_alloc(env->scratch, digestlen);
336	if(!digest) {
337		verbose(VERB_QUERY, "DS fail: out of memory");
338		return 0; /* mem error */
339	}
340	if(!ds_create_dnskey_digest(env, dnskey_rrset, dnskey_idx, ds_rrset,
341		ds_idx, digest)) {
342		verbose(VERB_QUERY, "DS fail: could not calc key digest");
343		return 0; /* digest algo failed */
344	}
345	if(memcmp(digest, ds, dslen) != 0) {
346		verbose(VERB_QUERY, "DS fail: digest is different");
347		return 0; /* digest different */
348	}
349	return 1;
350}
351
352int
353ds_digest_algo_is_supported(struct ub_packed_rrset_key* ds_rrset,
354	size_t ds_idx)
355{
356	return (ds_digest_size_algo(ds_rrset, ds_idx) != 0);
357}
358
359int
360ds_key_algo_is_supported(struct ub_packed_rrset_key* ds_rrset,
361	size_t ds_idx)
362{
363	return dnskey_algo_id_is_supported(ds_get_key_algo(ds_rrset, ds_idx));
364}
365
366uint16_t
367dnskey_calc_keytag(struct ub_packed_rrset_key* dnskey_rrset, size_t dnskey_idx)
368{
369	uint8_t* data;
370	size_t len;
371	rrset_get_rdata(dnskey_rrset, dnskey_idx, &data, &len);
372	/* do not pass rdatalen to ldns */
373	return sldns_calc_keytag_raw(data+2, len-2);
374}
375
376int dnskey_algo_is_supported(struct ub_packed_rrset_key* dnskey_rrset,
377        size_t dnskey_idx)
378{
379	return dnskey_algo_id_is_supported(dnskey_get_algo(dnskey_rrset,
380		dnskey_idx));
381}
382
383void algo_needs_init_dnskey_add(struct algo_needs* n,
384        struct ub_packed_rrset_key* dnskey, uint8_t* sigalg)
385{
386	uint8_t algo;
387	size_t i, total = n->num;
388	size_t num = rrset_get_count(dnskey);
389
390	for(i=0; i<num; i++) {
391		algo = (uint8_t)dnskey_get_algo(dnskey, i);
392		if(!dnskey_algo_id_is_supported((int)algo))
393			continue;
394		if(n->needs[algo] == 0) {
395			n->needs[algo] = 1;
396			sigalg[total] = algo;
397			total++;
398		}
399	}
400	sigalg[total] = 0;
401	n->num = total;
402}
403
404void algo_needs_init_list(struct algo_needs* n, uint8_t* sigalg)
405{
406	uint8_t algo;
407	size_t total = 0;
408
409	memset(n->needs, 0, sizeof(uint8_t)*ALGO_NEEDS_MAX);
410	while( (algo=*sigalg++) != 0) {
411		log_assert(dnskey_algo_id_is_supported((int)algo));
412		log_assert(n->needs[algo] == 0);
413		n->needs[algo] = 1;
414		total++;
415	}
416	n->num = total;
417}
418
419void algo_needs_init_ds(struct algo_needs* n, struct ub_packed_rrset_key* ds,
420	int fav_ds_algo, uint8_t* sigalg)
421{
422	uint8_t algo;
423	size_t i, total = 0;
424	size_t num = rrset_get_count(ds);
425
426	memset(n->needs, 0, sizeof(uint8_t)*ALGO_NEEDS_MAX);
427	for(i=0; i<num; i++) {
428		if(ds_get_digest_algo(ds, i) != fav_ds_algo)
429			continue;
430		algo = (uint8_t)ds_get_key_algo(ds, i);
431		if(!dnskey_algo_id_is_supported((int)algo))
432			continue;
433		log_assert(algo != 0); /* we do not support 0 and is EOS */
434		if(n->needs[algo] == 0) {
435			n->needs[algo] = 1;
436			sigalg[total] = algo;
437			total++;
438		}
439	}
440	sigalg[total] = 0;
441	n->num = total;
442}
443
444int algo_needs_set_secure(struct algo_needs* n, uint8_t algo)
445{
446	if(n->needs[algo]) {
447		n->needs[algo] = 0;
448		n->num --;
449		if(n->num == 0) /* done! */
450			return 1;
451	}
452	return 0;
453}
454
455void algo_needs_set_bogus(struct algo_needs* n, uint8_t algo)
456{
457	if(n->needs[algo]) n->needs[algo] = 2; /* need it, but bogus */
458}
459
460size_t algo_needs_num_missing(struct algo_needs* n)
461{
462	return n->num;
463}
464
465int algo_needs_missing(struct algo_needs* n)
466{
467	int i;
468	/* first check if a needed algo was bogus - report that */
469	for(i=0; i<ALGO_NEEDS_MAX; i++)
470		if(n->needs[i] == 2)
471			return 0;
472	/* now check which algo is missing */
473	for(i=0; i<ALGO_NEEDS_MAX; i++)
474		if(n->needs[i] == 1)
475			return i;
476	return 0;
477}
478
479enum sec_status
480dnskeyset_verify_rrset(struct module_env* env, struct val_env* ve,
481	struct ub_packed_rrset_key* rrset, struct ub_packed_rrset_key* dnskey,
482	uint8_t* sigalg, char** reason)
483{
484	enum sec_status sec;
485	size_t i, num;
486	rbtree_t* sortree = NULL;
487	/* make sure that for all DNSKEY algorithms there are valid sigs */
488	struct algo_needs needs;
489	int alg;
490
491	num = rrset_get_sigcount(rrset);
492	if(num == 0) {
493		verbose(VERB_QUERY, "rrset failed to verify due to a lack of "
494			"signatures");
495		*reason = "no signatures";
496		return sec_status_bogus;
497	}
498
499	if(sigalg) {
500		algo_needs_init_list(&needs, sigalg);
501		if(algo_needs_num_missing(&needs) == 0) {
502			verbose(VERB_QUERY, "zone has no known algorithms");
503			*reason = "zone has no known algorithms";
504			return sec_status_insecure;
505		}
506	}
507	for(i=0; i<num; i++) {
508		sec = dnskeyset_verify_rrset_sig(env, ve, *env->now, rrset,
509			dnskey, i, &sortree, reason);
510		/* see which algorithm has been fixed up */
511		if(sec == sec_status_secure) {
512			if(!sigalg)
513				return sec; /* done! */
514			else if(algo_needs_set_secure(&needs,
515				(uint8_t)rrset_get_sig_algo(rrset, i)))
516				return sec; /* done! */
517		} else if(sigalg && sec == sec_status_bogus) {
518			algo_needs_set_bogus(&needs,
519				(uint8_t)rrset_get_sig_algo(rrset, i));
520		}
521	}
522	if(sigalg && (alg=algo_needs_missing(&needs)) != 0) {
523		verbose(VERB_ALGO, "rrset failed to verify: "
524			"no valid signatures for %d algorithms",
525			(int)algo_needs_num_missing(&needs));
526		algo_needs_reason(env, alg, reason, "no signatures");
527	} else {
528		verbose(VERB_ALGO, "rrset failed to verify: "
529			"no valid signatures");
530	}
531	return sec_status_bogus;
532}
533
534void algo_needs_reason(struct module_env* env, int alg, char** reason, char* s)
535{
536	char buf[256];
537	sldns_lookup_table *t = sldns_lookup_by_id(sldns_algorithms, alg);
538	if(t&&t->name)
539		snprintf(buf, sizeof(buf), "%s with algorithm %s", s, t->name);
540	else	snprintf(buf, sizeof(buf), "%s with algorithm ALG%u", s,
541			(unsigned)alg);
542	*reason = regional_strdup(env->scratch, buf);
543	if(!*reason)
544		*reason = s;
545}
546
547enum sec_status
548dnskey_verify_rrset(struct module_env* env, struct val_env* ve,
549        struct ub_packed_rrset_key* rrset, struct ub_packed_rrset_key* dnskey,
550	size_t dnskey_idx, char** reason)
551{
552	enum sec_status sec;
553	size_t i, num, numchecked = 0;
554	rbtree_t* sortree = NULL;
555	int buf_canon = 0;
556	uint16_t tag = dnskey_calc_keytag(dnskey, dnskey_idx);
557	int algo = dnskey_get_algo(dnskey, dnskey_idx);
558
559	num = rrset_get_sigcount(rrset);
560	if(num == 0) {
561		verbose(VERB_QUERY, "rrset failed to verify due to a lack of "
562			"signatures");
563		*reason = "no signatures";
564		return sec_status_bogus;
565	}
566	for(i=0; i<num; i++) {
567		/* see if sig matches keytag and algo */
568		if(algo != rrset_get_sig_algo(rrset, i) ||
569			tag != rrset_get_sig_keytag(rrset, i))
570			continue;
571		buf_canon = 0;
572		sec = dnskey_verify_rrset_sig(env->scratch,
573			env->scratch_buffer, ve, *env->now, rrset,
574			dnskey, dnskey_idx, i, &sortree, &buf_canon, reason);
575		if(sec == sec_status_secure)
576			return sec;
577		numchecked ++;
578	}
579	verbose(VERB_ALGO, "rrset failed to verify: all signatures are bogus");
580	if(!numchecked) *reason = "signature missing";
581	return sec_status_bogus;
582}
583
584enum sec_status
585dnskeyset_verify_rrset_sig(struct module_env* env, struct val_env* ve,
586	time_t now, struct ub_packed_rrset_key* rrset,
587	struct ub_packed_rrset_key* dnskey, size_t sig_idx,
588	struct rbtree_t** sortree, char** reason)
589{
590	/* find matching keys and check them */
591	enum sec_status sec = sec_status_bogus;
592	uint16_t tag = rrset_get_sig_keytag(rrset, sig_idx);
593	int algo = rrset_get_sig_algo(rrset, sig_idx);
594	size_t i, num = rrset_get_count(dnskey);
595	size_t numchecked = 0;
596	int buf_canon = 0;
597	verbose(VERB_ALGO, "verify sig %d %d", (int)tag, algo);
598	if(!dnskey_algo_id_is_supported(algo)) {
599		verbose(VERB_QUERY, "verify sig: unknown algorithm");
600		return sec_status_insecure;
601	}
602
603	for(i=0; i<num; i++) {
604		/* see if key matches keytag and algo */
605		if(algo != dnskey_get_algo(dnskey, i) ||
606			tag != dnskey_calc_keytag(dnskey, i))
607			continue;
608		numchecked ++;
609
610		/* see if key verifies */
611		sec = dnskey_verify_rrset_sig(env->scratch,
612			env->scratch_buffer, ve, now, rrset, dnskey, i,
613			sig_idx, sortree, &buf_canon, reason);
614		if(sec == sec_status_secure)
615			return sec;
616	}
617	if(numchecked == 0) {
618		*reason = "signatures from unknown keys";
619		verbose(VERB_QUERY, "verify: could not find appropriate key");
620		return sec_status_bogus;
621	}
622	return sec_status_bogus;
623}
624
625/**
626 * RR entries in a canonical sorted tree of RRs
627 */
628struct canon_rr {
629	/** rbtree node, key is this structure */
630	rbnode_t node;
631	/** rrset the RR is in */
632	struct ub_packed_rrset_key* rrset;
633	/** which RR in the rrset */
634	size_t rr_idx;
635};
636
637/**
638 * Compare two RR for canonical order, in a field-style sweep.
639 * @param d: rrset data
640 * @param desc: ldns wireformat descriptor.
641 * @param i: first RR to compare
642 * @param j: first RR to compare
643 * @return comparison code.
644 */
645static int
646canonical_compare_byfield(struct packed_rrset_data* d,
647	const sldns_rr_descriptor* desc, size_t i, size_t j)
648{
649	/* sweep across rdata, keep track of some state:
650	 * 	which rr field, and bytes left in field.
651	 * 	current position in rdata, length left.
652	 * 	are we in a dname, length left in a label.
653	 */
654	int wfi = -1;	/* current wireformat rdata field (rdf) */
655	int wfj = -1;
656	uint8_t* di = d->rr_data[i]+2; /* ptr to current rdata byte */
657	uint8_t* dj = d->rr_data[j]+2;
658	size_t ilen = d->rr_len[i]-2; /* length left in rdata */
659	size_t jlen = d->rr_len[j]-2;
660	int dname_i = 0;  /* true if these bytes are part of a name */
661	int dname_j = 0;
662	size_t lablen_i = 0; /* 0 for label length byte,for first byte of rdf*/
663	size_t lablen_j = 0; /* otherwise remaining length of rdf or label */
664	int dname_num_i = (int)desc->_dname_count; /* decreased at root label */
665	int dname_num_j = (int)desc->_dname_count;
666
667	/* loop while there are rdata bytes available for both rrs,
668	 * and still some lowercasing needs to be done; either the dnames
669	 * have not been reached yet, or they are currently being processed */
670	while(ilen > 0 && jlen > 0 && (dname_num_i > 0 || dname_num_j > 0)) {
671		/* compare these two bytes */
672		/* lowercase if in a dname and not a label length byte */
673		if( ((dname_i && lablen_i)?(uint8_t)tolower((int)*di):*di)
674		 != ((dname_j && lablen_j)?(uint8_t)tolower((int)*dj):*dj)
675		 ) {
676		  if(((dname_i && lablen_i)?(uint8_t)tolower((int)*di):*di)
677		  < ((dname_j && lablen_j)?(uint8_t)tolower((int)*dj):*dj))
678		 	return -1;
679		    return 1;
680		}
681		ilen--;
682		jlen--;
683		/* bytes are equal */
684
685		/* advance field i */
686		/* lablen 0 means that this byte is the first byte of the
687		 * next rdata field; inspect this rdata field and setup
688		 * to process the rest of this rdata field.
689		 * The reason to first read the byte, then setup the rdf,
690		 * is that we are then sure the byte is available and short
691		 * rdata is handled gracefully (even if it is a formerr). */
692		if(lablen_i == 0) {
693			if(dname_i) {
694				/* scan this dname label */
695				/* capture length to lowercase */
696				lablen_i = (size_t)*di;
697				if(lablen_i == 0) {
698					/* end root label */
699					dname_i = 0;
700					dname_num_i--;
701					/* if dname num is 0, then the
702					 * remainder is binary only */
703					if(dname_num_i == 0)
704						lablen_i = ilen;
705				}
706			} else {
707				/* scan this rdata field */
708				wfi++;
709				if(desc->_wireformat[wfi]
710					== LDNS_RDF_TYPE_DNAME) {
711					dname_i = 1;
712					lablen_i = (size_t)*di;
713					if(lablen_i == 0) {
714						dname_i = 0;
715						dname_num_i--;
716						if(dname_num_i == 0)
717							lablen_i = ilen;
718					}
719				} else if(desc->_wireformat[wfi]
720					== LDNS_RDF_TYPE_STR)
721					lablen_i = (size_t)*di;
722				else	lablen_i = get_rdf_size(
723					desc->_wireformat[wfi]) - 1;
724			}
725		} else	lablen_i--;
726
727		/* advance field j; same as for i */
728		if(lablen_j == 0) {
729			if(dname_j) {
730				lablen_j = (size_t)*dj;
731				if(lablen_j == 0) {
732					dname_j = 0;
733					dname_num_j--;
734					if(dname_num_j == 0)
735						lablen_j = jlen;
736				}
737			} else {
738				wfj++;
739				if(desc->_wireformat[wfj]
740					== LDNS_RDF_TYPE_DNAME) {
741					dname_j = 1;
742					lablen_j = (size_t)*dj;
743					if(lablen_j == 0) {
744						dname_j = 0;
745						dname_num_j--;
746						if(dname_num_j == 0)
747							lablen_j = jlen;
748					}
749				} else if(desc->_wireformat[wfj]
750					== LDNS_RDF_TYPE_STR)
751					lablen_j = (size_t)*dj;
752				else	lablen_j = get_rdf_size(
753					desc->_wireformat[wfj]) - 1;
754			}
755		} else	lablen_j--;
756		di++;
757		dj++;
758	}
759	/* end of the loop; because we advanced byte by byte; now we have
760	 * that the rdata has ended, or that there is a binary remainder */
761	/* shortest first */
762	if(ilen == 0 && jlen == 0)
763		return 0;
764	if(ilen == 0)
765		return -1;
766	if(jlen == 0)
767		return 1;
768	/* binary remainder, capture comparison in wfi variable */
769	if((wfi = memcmp(di, dj, (ilen<jlen)?ilen:jlen)) != 0)
770		return wfi;
771	if(ilen < jlen)
772		return -1;
773	if(jlen < ilen)
774		return 1;
775	return 0;
776}
777
778/**
779 * Compare two RRs in the same RRset and determine their relative
780 * canonical order.
781 * @param rrset: the rrset in which to perform compares.
782 * @param i: first RR to compare
783 * @param j: first RR to compare
784 * @return 0 if RR i== RR j, -1 if <, +1 if >.
785 */
786static int
787canonical_compare(struct ub_packed_rrset_key* rrset, size_t i, size_t j)
788{
789	struct packed_rrset_data* d = (struct packed_rrset_data*)
790		rrset->entry.data;
791	const sldns_rr_descriptor* desc;
792	uint16_t type = ntohs(rrset->rk.type);
793	size_t minlen;
794	int c;
795
796	if(i==j)
797		return 0;
798
799	switch(type) {
800		/* These RR types have only a name as RDATA.
801		 * This name has to be canonicalized.*/
802		case LDNS_RR_TYPE_NS:
803		case LDNS_RR_TYPE_MD:
804		case LDNS_RR_TYPE_MF:
805		case LDNS_RR_TYPE_CNAME:
806		case LDNS_RR_TYPE_MB:
807		case LDNS_RR_TYPE_MG:
808		case LDNS_RR_TYPE_MR:
809		case LDNS_RR_TYPE_PTR:
810		case LDNS_RR_TYPE_DNAME:
811			/* the wireread function has already checked these
812			 * dname's for correctness, and this double checks */
813			if(!dname_valid(d->rr_data[i]+2, d->rr_len[i]-2) ||
814				!dname_valid(d->rr_data[j]+2, d->rr_len[j]-2))
815				return 0;
816			return query_dname_compare(d->rr_data[i]+2,
817				d->rr_data[j]+2);
818
819		/* These RR types have STR and fixed size rdata fields
820		 * before one or more name fields that need canonicalizing,
821		 * and after that a byte-for byte remainder can be compared.
822		 */
823		/* type starts with the name; remainder is binary compared */
824		case LDNS_RR_TYPE_NXT:
825		/* use rdata field formats */
826		case LDNS_RR_TYPE_MINFO:
827		case LDNS_RR_TYPE_RP:
828		case LDNS_RR_TYPE_SOA:
829		case LDNS_RR_TYPE_RT:
830		case LDNS_RR_TYPE_AFSDB:
831		case LDNS_RR_TYPE_KX:
832		case LDNS_RR_TYPE_MX:
833		case LDNS_RR_TYPE_SIG:
834		/* RRSIG signer name has to be downcased */
835		case LDNS_RR_TYPE_RRSIG:
836		case LDNS_RR_TYPE_PX:
837		case LDNS_RR_TYPE_NAPTR:
838		case LDNS_RR_TYPE_SRV:
839			desc = sldns_rr_descript(type);
840			log_assert(desc);
841			/* this holds for the types that need canonicalizing */
842			log_assert(desc->_minimum == desc->_maximum);
843			return canonical_compare_byfield(d, desc, i, j);
844
845		case LDNS_RR_TYPE_HINFO: /* no longer downcased */
846		case LDNS_RR_TYPE_NSEC:
847	default:
848		/* For unknown RR types, or types not listed above,
849		 * no canonicalization is needed, do binary compare */
850		/* byte for byte compare, equal means shortest first*/
851		minlen = d->rr_len[i]-2;
852		if(minlen > d->rr_len[j]-2)
853			minlen = d->rr_len[j]-2;
854		c = memcmp(d->rr_data[i]+2, d->rr_data[j]+2, minlen);
855		if(c!=0)
856			return c;
857		/* rdata equal, shortest is first */
858		if(d->rr_len[i] < d->rr_len[j])
859			return -1;
860		if(d->rr_len[i] > d->rr_len[j])
861			return 1;
862		/* rdata equal, length equal */
863		break;
864	}
865	return 0;
866}
867
868int
869canonical_tree_compare(const void* k1, const void* k2)
870{
871	struct canon_rr* r1 = (struct canon_rr*)k1;
872	struct canon_rr* r2 = (struct canon_rr*)k2;
873	log_assert(r1->rrset == r2->rrset);
874	return canonical_compare(r1->rrset, r1->rr_idx, r2->rr_idx);
875}
876
877/**
878 * Sort RRs for rrset in canonical order.
879 * Does not actually canonicalize the RR rdatas.
880 * Does not touch rrsigs.
881 * @param rrset: to sort.
882 * @param d: rrset data.
883 * @param sortree: tree to sort into.
884 * @param rrs: rr storage.
885 */
886static void
887canonical_sort(struct ub_packed_rrset_key* rrset, struct packed_rrset_data* d,
888	rbtree_t* sortree, struct canon_rr* rrs)
889{
890	size_t i;
891	/* insert into rbtree to sort and detect duplicates */
892	for(i=0; i<d->count; i++) {
893		rrs[i].node.key = &rrs[i];
894		rrs[i].rrset = rrset;
895		rrs[i].rr_idx = i;
896		if(!rbtree_insert(sortree, &rrs[i].node)) {
897			/* this was a duplicate */
898		}
899	}
900}
901
902/**
903 * Inser canonical owner name into buffer.
904 * @param buf: buffer to insert into at current position.
905 * @param k: rrset with its owner name.
906 * @param sig: signature with signer name and label count.
907 * 	must be length checked, at least 18 bytes long.
908 * @param can_owner: position in buffer returned for future use.
909 * @param can_owner_len: length of canonical owner name.
910 */
911static void
912insert_can_owner(sldns_buffer* buf, struct ub_packed_rrset_key* k,
913	uint8_t* sig, uint8_t** can_owner, size_t* can_owner_len)
914{
915	int rrsig_labels = (int)sig[3];
916	int fqdn_labels = dname_signame_label_count(k->rk.dname);
917	*can_owner = sldns_buffer_current(buf);
918	if(rrsig_labels == fqdn_labels) {
919		/* no change */
920		sldns_buffer_write(buf, k->rk.dname, k->rk.dname_len);
921		query_dname_tolower(*can_owner);
922		*can_owner_len = k->rk.dname_len;
923		return;
924	}
925	log_assert(rrsig_labels < fqdn_labels);
926	/* *. | fqdn(rightmost rrsig_labels) */
927	if(rrsig_labels < fqdn_labels) {
928		int i;
929		uint8_t* nm = k->rk.dname;
930		size_t len = k->rk.dname_len;
931		/* so skip fqdn_labels-rrsig_labels */
932		for(i=0; i<fqdn_labels-rrsig_labels; i++) {
933			dname_remove_label(&nm, &len);
934		}
935		*can_owner_len = len+2;
936		sldns_buffer_write(buf, (uint8_t*)"\001*", 2);
937		sldns_buffer_write(buf, nm, len);
938		query_dname_tolower(*can_owner);
939	}
940}
941
942/**
943 * Canonicalize Rdata in buffer.
944 * @param buf: buffer at position just after the rdata.
945 * @param rrset: rrset with type.
946 * @param len: length of the rdata (including rdatalen uint16).
947 */
948static void
949canonicalize_rdata(sldns_buffer* buf, struct ub_packed_rrset_key* rrset,
950	size_t len)
951{
952	uint8_t* datstart = sldns_buffer_current(buf)-len+2;
953	switch(ntohs(rrset->rk.type)) {
954		case LDNS_RR_TYPE_NXT:
955		case LDNS_RR_TYPE_NS:
956		case LDNS_RR_TYPE_MD:
957		case LDNS_RR_TYPE_MF:
958		case LDNS_RR_TYPE_CNAME:
959		case LDNS_RR_TYPE_MB:
960		case LDNS_RR_TYPE_MG:
961		case LDNS_RR_TYPE_MR:
962		case LDNS_RR_TYPE_PTR:
963		case LDNS_RR_TYPE_DNAME:
964			/* type only has a single argument, the name */
965			query_dname_tolower(datstart);
966			return;
967		case LDNS_RR_TYPE_MINFO:
968		case LDNS_RR_TYPE_RP:
969		case LDNS_RR_TYPE_SOA:
970			/* two names after another */
971			query_dname_tolower(datstart);
972			query_dname_tolower(datstart +
973				dname_valid(datstart, len-2));
974			return;
975		case LDNS_RR_TYPE_RT:
976		case LDNS_RR_TYPE_AFSDB:
977		case LDNS_RR_TYPE_KX:
978		case LDNS_RR_TYPE_MX:
979			/* skip fixed part */
980			if(len < 2+2+1) /* rdlen, skiplen, 1byteroot */
981				return;
982			datstart += 2;
983			query_dname_tolower(datstart);
984			return;
985		case LDNS_RR_TYPE_SIG:
986		/* downcase the RRSIG, compat with BIND (kept it from SIG) */
987		case LDNS_RR_TYPE_RRSIG:
988			/* skip fixed part */
989			if(len < 2+18+1)
990				return;
991			datstart += 18;
992			query_dname_tolower(datstart);
993			return;
994		case LDNS_RR_TYPE_PX:
995			/* skip, then two names after another */
996			if(len < 2+2+1)
997				return;
998			datstart += 2;
999			query_dname_tolower(datstart);
1000			query_dname_tolower(datstart +
1001				dname_valid(datstart, len-2-2));
1002			return;
1003		case LDNS_RR_TYPE_NAPTR:
1004			if(len < 2+4)
1005				return;
1006			len -= 2+4;
1007			datstart += 4;
1008			if(len < (size_t)datstart[0]+1) /* skip text field */
1009				return;
1010			len -= (size_t)datstart[0]+1;
1011			datstart += (size_t)datstart[0]+1;
1012			if(len < (size_t)datstart[0]+1) /* skip text field */
1013				return;
1014			len -= (size_t)datstart[0]+1;
1015			datstart += (size_t)datstart[0]+1;
1016			if(len < (size_t)datstart[0]+1) /* skip text field */
1017				return;
1018			len -= (size_t)datstart[0]+1;
1019			datstart += (size_t)datstart[0]+1;
1020			if(len < 1)	/* check name is at least 1 byte*/
1021				return;
1022			query_dname_tolower(datstart);
1023			return;
1024		case LDNS_RR_TYPE_SRV:
1025			/* skip fixed part */
1026			if(len < 2+6+1)
1027				return;
1028			datstart += 6;
1029			query_dname_tolower(datstart);
1030			return;
1031
1032		/* do not canonicalize NSEC rdata name, compat with
1033		 * from bind 9.4 signer, where it does not do so */
1034		case LDNS_RR_TYPE_NSEC: /* type starts with the name */
1035		case LDNS_RR_TYPE_HINFO: /* not downcased */
1036		/* A6 not supported */
1037		default:
1038			/* nothing to do for unknown types */
1039			return;
1040	}
1041}
1042
1043int rrset_canonical_equal(struct regional* region,
1044	struct ub_packed_rrset_key* k1, struct ub_packed_rrset_key* k2)
1045{
1046	struct rbtree_t sortree1, sortree2;
1047	struct canon_rr *rrs1, *rrs2, *p1, *p2;
1048	struct packed_rrset_data* d1=(struct packed_rrset_data*)k1->entry.data;
1049	struct packed_rrset_data* d2=(struct packed_rrset_data*)k2->entry.data;
1050	struct ub_packed_rrset_key fk;
1051	struct packed_rrset_data fd;
1052	size_t flen[2];
1053	uint8_t* fdata[2];
1054
1055	/* basic compare */
1056	if(k1->rk.dname_len != k2->rk.dname_len ||
1057		k1->rk.flags != k2->rk.flags ||
1058		k1->rk.type != k2->rk.type ||
1059		k1->rk.rrset_class != k2->rk.rrset_class ||
1060		query_dname_compare(k1->rk.dname, k2->rk.dname) != 0)
1061		return 0;
1062	if(d1->ttl != d2->ttl ||
1063		d1->count != d2->count ||
1064		d1->rrsig_count != d2->rrsig_count ||
1065		d1->trust != d2->trust ||
1066		d1->security != d2->security)
1067		return 0;
1068
1069	/* init */
1070	memset(&fk, 0, sizeof(fk));
1071	memset(&fd, 0, sizeof(fd));
1072	fk.entry.data = &fd;
1073	fd.count = 2;
1074	fd.rr_len = flen;
1075	fd.rr_data = fdata;
1076	rbtree_init(&sortree1, &canonical_tree_compare);
1077	rbtree_init(&sortree2, &canonical_tree_compare);
1078	if(d1->count > RR_COUNT_MAX || d2->count > RR_COUNT_MAX)
1079		return 1; /* protection against integer overflow */
1080	rrs1 = regional_alloc(region, sizeof(struct canon_rr)*d1->count);
1081	rrs2 = regional_alloc(region, sizeof(struct canon_rr)*d2->count);
1082	if(!rrs1 || !rrs2) return 1; /* alloc failure */
1083
1084	/* sort */
1085	canonical_sort(k1, d1, &sortree1, rrs1);
1086	canonical_sort(k2, d2, &sortree2, rrs2);
1087
1088	/* compare canonical-sorted RRs for canonical-equality */
1089	if(sortree1.count != sortree2.count)
1090		return 0;
1091	p1 = (struct canon_rr*)rbtree_first(&sortree1);
1092	p2 = (struct canon_rr*)rbtree_first(&sortree2);
1093	while(p1 != (struct canon_rr*)RBTREE_NULL &&
1094		p2 != (struct canon_rr*)RBTREE_NULL) {
1095		flen[0] = d1->rr_len[p1->rr_idx];
1096		flen[1] = d2->rr_len[p2->rr_idx];
1097		fdata[0] = d1->rr_data[p1->rr_idx];
1098		fdata[1] = d2->rr_data[p2->rr_idx];
1099
1100		if(canonical_compare(&fk, 0, 1) != 0)
1101			return 0;
1102		p1 = (struct canon_rr*)rbtree_next(&p1->node);
1103		p2 = (struct canon_rr*)rbtree_next(&p2->node);
1104	}
1105	return 1;
1106}
1107
1108/**
1109 * Create canonical form of rrset in the scratch buffer.
1110 * @param region: temporary region.
1111 * @param buf: the buffer to use.
1112 * @param k: the rrset to insert.
1113 * @param sig: RRSIG rdata to include.
1114 * @param siglen: RRSIG rdata len excluding signature field, but inclusive
1115 * 	signer name length.
1116 * @param sortree: if NULL is passed a new sorted rrset tree is built.
1117 * 	Otherwise it is reused.
1118 * @return false on alloc error.
1119 */
1120static int
1121rrset_canonical(struct regional* region, sldns_buffer* buf,
1122	struct ub_packed_rrset_key* k, uint8_t* sig, size_t siglen,
1123	struct rbtree_t** sortree)
1124{
1125	struct packed_rrset_data* d = (struct packed_rrset_data*)k->entry.data;
1126	uint8_t* can_owner = NULL;
1127	size_t can_owner_len = 0;
1128	struct canon_rr* walk;
1129	struct canon_rr* rrs;
1130
1131	if(!*sortree) {
1132		*sortree = (struct rbtree_t*)regional_alloc(region,
1133			sizeof(rbtree_t));
1134		if(!*sortree)
1135			return 0;
1136		if(d->count > RR_COUNT_MAX)
1137			return 0; /* integer overflow protection */
1138		rrs = regional_alloc(region, sizeof(struct canon_rr)*d->count);
1139		if(!rrs) {
1140			*sortree = NULL;
1141			return 0;
1142		}
1143		rbtree_init(*sortree, &canonical_tree_compare);
1144		canonical_sort(k, d, *sortree, rrs);
1145	}
1146
1147	sldns_buffer_clear(buf);
1148	sldns_buffer_write(buf, sig, siglen);
1149	/* canonicalize signer name */
1150	query_dname_tolower(sldns_buffer_begin(buf)+18);
1151	RBTREE_FOR(walk, struct canon_rr*, (*sortree)) {
1152		/* see if there is enough space left in the buffer */
1153		if(sldns_buffer_remaining(buf) < can_owner_len + 2 + 2 + 4
1154			+ d->rr_len[walk->rr_idx]) {
1155			log_err("verify: failed to canonicalize, "
1156				"rrset too big");
1157			return 0;
1158		}
1159		/* determine canonical owner name */
1160		if(can_owner)
1161			sldns_buffer_write(buf, can_owner, can_owner_len);
1162		else	insert_can_owner(buf, k, sig, &can_owner,
1163				&can_owner_len);
1164		sldns_buffer_write(buf, &k->rk.type, 2);
1165		sldns_buffer_write(buf, &k->rk.rrset_class, 2);
1166		sldns_buffer_write(buf, sig+4, 4);
1167		sldns_buffer_write(buf, d->rr_data[walk->rr_idx],
1168			d->rr_len[walk->rr_idx]);
1169		canonicalize_rdata(buf, k, d->rr_len[walk->rr_idx]);
1170	}
1171	sldns_buffer_flip(buf);
1172	return 1;
1173}
1174
1175/** pretty print rrsig error with dates */
1176static void
1177sigdate_error(const char* str, int32_t expi, int32_t incep, int32_t now)
1178{
1179	struct tm tm;
1180	char expi_buf[16];
1181	char incep_buf[16];
1182	char now_buf[16];
1183	time_t te, ti, tn;
1184
1185	if(verbosity < VERB_QUERY)
1186		return;
1187	te = (time_t)expi;
1188	ti = (time_t)incep;
1189	tn = (time_t)now;
1190	memset(&tm, 0, sizeof(tm));
1191	if(gmtime_r(&te, &tm) && strftime(expi_buf, 15, "%Y%m%d%H%M%S", &tm)
1192	 &&gmtime_r(&ti, &tm) && strftime(incep_buf, 15, "%Y%m%d%H%M%S", &tm)
1193	 &&gmtime_r(&tn, &tm) && strftime(now_buf, 15, "%Y%m%d%H%M%S", &tm)) {
1194		log_info("%s expi=%s incep=%s now=%s", str, expi_buf,
1195			incep_buf, now_buf);
1196	} else
1197		log_info("%s expi=%u incep=%u now=%u", str, (unsigned)expi,
1198			(unsigned)incep, (unsigned)now);
1199}
1200
1201/** check rrsig dates */
1202static int
1203check_dates(struct val_env* ve, uint32_t unow,
1204	uint8_t* expi_p, uint8_t* incep_p, char** reason)
1205{
1206	/* read out the dates */
1207	int32_t expi, incep, now;
1208	memmove(&expi, expi_p, sizeof(expi));
1209	memmove(&incep, incep_p, sizeof(incep));
1210	expi = ntohl(expi);
1211	incep = ntohl(incep);
1212
1213	/* get current date */
1214	if(ve->date_override) {
1215		if(ve->date_override == -1) {
1216			verbose(VERB_ALGO, "date override: ignore date");
1217			return 1;
1218		}
1219		now = ve->date_override;
1220		verbose(VERB_ALGO, "date override option %d", (int)now);
1221	} else	now = (int32_t)unow;
1222
1223	/* check them */
1224	if(incep - expi > 0) {
1225		sigdate_error("verify: inception after expiration, "
1226			"signature bad", expi, incep, now);
1227		*reason = "signature inception after expiration";
1228		return 0;
1229	}
1230	if(incep - now > 0) {
1231		/* within skew ? (calc here to avoid calculation normally) */
1232		int32_t skew = (expi-incep)/10;
1233		if(skew < ve->skew_min) skew = ve->skew_min;
1234		if(skew > ve->skew_max) skew = ve->skew_max;
1235		if(incep - now > skew) {
1236			sigdate_error("verify: signature bad, current time is"
1237				" before inception date", expi, incep, now);
1238			*reason = "signature before inception date";
1239			return 0;
1240		}
1241		sigdate_error("verify warning suspicious signature inception "
1242			" or bad local clock", expi, incep, now);
1243	}
1244	if(now - expi > 0) {
1245		int32_t skew = (expi-incep)/10;
1246		if(skew < ve->skew_min) skew = ve->skew_min;
1247		if(skew > ve->skew_max) skew = ve->skew_max;
1248		if(now - expi > skew) {
1249			sigdate_error("verify: signature expired", expi,
1250				incep, now);
1251			*reason = "signature expired";
1252			return 0;
1253		}
1254		sigdate_error("verify warning suspicious signature expiration "
1255			" or bad local clock", expi, incep, now);
1256	}
1257	return 1;
1258}
1259
1260/** adjust rrset TTL for verified rrset, compare to original TTL and expi */
1261static void
1262adjust_ttl(struct val_env* ve, uint32_t unow,
1263	struct ub_packed_rrset_key* rrset, uint8_t* orig_p,
1264	uint8_t* expi_p, uint8_t* incep_p)
1265{
1266	struct packed_rrset_data* d =
1267		(struct packed_rrset_data*)rrset->entry.data;
1268	/* read out the dates */
1269	int32_t origttl, expittl, expi, incep, now;
1270	memmove(&origttl, orig_p, sizeof(origttl));
1271	memmove(&expi, expi_p, sizeof(expi));
1272	memmove(&incep, incep_p, sizeof(incep));
1273	expi = ntohl(expi);
1274	incep = ntohl(incep);
1275	origttl = ntohl(origttl);
1276
1277	/* get current date */
1278	if(ve->date_override) {
1279		now = ve->date_override;
1280	} else	now = (int32_t)unow;
1281	expittl = expi - now;
1282
1283	/* so now:
1284	 * d->ttl: rrset ttl read from message or cache. May be reduced
1285	 * origttl: original TTL from signature, authoritative TTL max.
1286	 * expittl: TTL until the signature expires.
1287	 *
1288	 * Use the smallest of these.
1289	 */
1290	if(d->ttl > (time_t)origttl) {
1291		verbose(VERB_QUERY, "rrset TTL larger than original TTL,"
1292			" adjusting TTL downwards");
1293		d->ttl = origttl;
1294	}
1295	if(expittl > 0 && d->ttl > (time_t)expittl) {
1296		verbose(VERB_ALGO, "rrset TTL larger than sig expiration ttl,"
1297			" adjusting TTL downwards");
1298		d->ttl = expittl;
1299	}
1300}
1301
1302enum sec_status
1303dnskey_verify_rrset_sig(struct regional* region, sldns_buffer* buf,
1304	struct val_env* ve, time_t now,
1305        struct ub_packed_rrset_key* rrset, struct ub_packed_rrset_key* dnskey,
1306        size_t dnskey_idx, size_t sig_idx,
1307	struct rbtree_t** sortree, int* buf_canon, char** reason)
1308{
1309	enum sec_status sec;
1310	uint8_t* sig;		/* RRSIG rdata */
1311	size_t siglen;
1312	size_t rrnum = rrset_get_count(rrset);
1313	uint8_t* signer;	/* rrsig signer name */
1314	size_t signer_len;
1315	unsigned char* sigblock; /* signature rdata field */
1316	unsigned int sigblock_len;
1317	uint16_t ktag;		/* DNSKEY key tag */
1318	unsigned char* key;	/* public key rdata field */
1319	unsigned int keylen;
1320	rrset_get_rdata(rrset, rrnum + sig_idx, &sig, &siglen);
1321	/* min length of rdatalen, fixed rrsig, root signer, 1 byte sig */
1322	if(siglen < 2+20) {
1323		verbose(VERB_QUERY, "verify: signature too short");
1324		*reason = "signature too short";
1325		return sec_status_bogus;
1326	}
1327
1328	if(!(dnskey_get_flags(dnskey, dnskey_idx) & DNSKEY_BIT_ZSK)) {
1329		verbose(VERB_QUERY, "verify: dnskey without ZSK flag");
1330		*reason = "dnskey without ZSK flag";
1331		return sec_status_bogus;
1332	}
1333
1334	if(dnskey_get_protocol(dnskey, dnskey_idx) != LDNS_DNSSEC_KEYPROTO) {
1335		/* RFC 4034 says DNSKEY PROTOCOL MUST be 3 */
1336		verbose(VERB_QUERY, "verify: dnskey has wrong key protocol");
1337		*reason = "dnskey has wrong protocolnumber";
1338		return sec_status_bogus;
1339	}
1340
1341	/* verify as many fields in rrsig as possible */
1342	signer = sig+2+18;
1343	signer_len = dname_valid(signer, siglen-2-18);
1344	if(!signer_len) {
1345		verbose(VERB_QUERY, "verify: malformed signer name");
1346		*reason = "signer name malformed";
1347		return sec_status_bogus; /* signer name invalid */
1348	}
1349	if(!dname_subdomain_c(rrset->rk.dname, signer)) {
1350		verbose(VERB_QUERY, "verify: signer name is off-tree");
1351		*reason = "signer name off-tree";
1352		return sec_status_bogus; /* signer name offtree */
1353	}
1354	sigblock = (unsigned char*)signer+signer_len;
1355	if(siglen < 2+18+signer_len+1) {
1356		verbose(VERB_QUERY, "verify: too short, no signature data");
1357		*reason = "signature too short, no signature data";
1358		return sec_status_bogus; /* sig rdf is < 1 byte */
1359	}
1360	sigblock_len = (unsigned int)(siglen - 2 - 18 - signer_len);
1361
1362	/* verify key dname == sig signer name */
1363	if(query_dname_compare(signer, dnskey->rk.dname) != 0) {
1364		verbose(VERB_QUERY, "verify: wrong key for rrsig");
1365		log_nametypeclass(VERB_QUERY, "RRSIG signername is",
1366			signer, 0, 0);
1367		log_nametypeclass(VERB_QUERY, "the key name is",
1368			dnskey->rk.dname, 0, 0);
1369		*reason = "signer name mismatches key name";
1370		return sec_status_bogus;
1371	}
1372
1373	/* verify covered type */
1374	/* memcmp works because type is in network format for rrset */
1375	if(memcmp(sig+2, &rrset->rk.type, 2) != 0) {
1376		verbose(VERB_QUERY, "verify: wrong type covered");
1377		*reason = "signature covers wrong type";
1378		return sec_status_bogus;
1379	}
1380	/* verify keytag and sig algo (possibly again) */
1381	if((int)sig[2+2] != dnskey_get_algo(dnskey, dnskey_idx)) {
1382		verbose(VERB_QUERY, "verify: wrong algorithm");
1383		*reason = "signature has wrong algorithm";
1384		return sec_status_bogus;
1385	}
1386	ktag = htons(dnskey_calc_keytag(dnskey, dnskey_idx));
1387	if(memcmp(sig+2+16, &ktag, 2) != 0) {
1388		verbose(VERB_QUERY, "verify: wrong keytag");
1389		*reason = "signature has wrong keytag";
1390		return sec_status_bogus;
1391	}
1392
1393	/* verify labels is in a valid range */
1394	if((int)sig[2+3] > dname_signame_label_count(rrset->rk.dname)) {
1395		verbose(VERB_QUERY, "verify: labelcount out of range");
1396		*reason = "signature labelcount out of range";
1397		return sec_status_bogus;
1398	}
1399
1400	/* original ttl, always ok */
1401
1402	if(!*buf_canon) {
1403		/* create rrset canonical format in buffer, ready for
1404		 * signature */
1405		if(!rrset_canonical(region, buf, rrset, sig+2,
1406			18 + signer_len, sortree)) {
1407			log_err("verify: failed due to alloc error");
1408			return sec_status_unchecked;
1409		}
1410		*buf_canon = 1;
1411	}
1412
1413	/* check that dnskey is available */
1414	dnskey_get_pubkey(dnskey, dnskey_idx, &key, &keylen);
1415	if(!key) {
1416		verbose(VERB_QUERY, "verify: short DNSKEY RR");
1417		return sec_status_unchecked;
1418	}
1419
1420	/* verify */
1421	sec = verify_canonrrset(buf, (int)sig[2+2],
1422		sigblock, sigblock_len, key, keylen, reason);
1423
1424	if(sec == sec_status_secure) {
1425		/* check if TTL is too high - reduce if so */
1426		adjust_ttl(ve, now, rrset, sig+2+4, sig+2+8, sig+2+12);
1427
1428		/* verify inception, expiration dates
1429		 * Do this last so that if you ignore expired-sigs the
1430		 * rest is sure to be OK. */
1431		if(!check_dates(ve, now, sig+2+8, sig+2+12, reason)) {
1432			return sec_status_bogus;
1433		}
1434	}
1435
1436	return sec;
1437}
1438