key.c revision 270026
1/*-
2 * Copyright (c) 1991, 1993, 1994
3 *	The Regents of the University of California.  All rights reserved.
4 * Copyright (c) 1991, 1993, 1994, 1995, 1996
5 *	Keith Bostic.  All rights reserved.
6 *
7 * See the LICENSE file for redistribution information.
8 */
9
10#include "config.h"
11
12#ifndef lint
13static const char sccsid[] = "$Id: key.c,v 10.54 2013/11/13 12:15:27 zy Exp $";
14#endif /* not lint */
15
16#include <sys/types.h>
17#include <sys/queue.h>
18#include <sys/time.h>
19
20#include <bitstring.h>
21#include <ctype.h>
22#include <errno.h>
23#include <limits.h>
24#include <stdio.h>
25#include <stdlib.h>
26#include <string.h>
27#include <strings.h>
28#include <unistd.h>
29
30#include "common.h"
31#include "../vi/vi.h"
32
33static int	v_event_append __P((SCR *, EVENT *));
34static int	v_event_grow __P((SCR *, int));
35static int	v_key_cmp __P((const void *, const void *));
36static void	v_keyval __P((SCR *, int, scr_keyval_t));
37static void	v_sync __P((SCR *, int));
38
39/*
40 * !!!
41 * Historic vi always used:
42 *
43 *	^D: autoindent deletion
44 *	^H: last character deletion
45 *	^W: last word deletion
46 *	^Q: quote the next character (if not used in flow control).
47 *	^V: quote the next character
48 *
49 * regardless of the user's choices for these characters.  The user's erase
50 * and kill characters worked in addition to these characters.  Nvi wires
51 * down the above characters, but in addition permits the VEOF, VERASE, VKILL
52 * and VWERASE characters described by the user's termios structure.
53 *
54 * Ex was not consistent with this scheme, as it historically ran in tty
55 * cooked mode.  This meant that the scroll command and autoindent erase
56 * characters were mapped to the user's EOF character, and the character
57 * and word deletion characters were the user's tty character and word
58 * deletion characters.  This implementation makes it all consistent, as
59 * described above for vi.
60 *
61 * !!!
62 * This means that all screens share a special key set.
63 */
64KEYLIST keylist[] = {
65	{K_BACKSLASH,	  '\\'},	/*  \ */
66	{K_CARAT,	   '^'},	/*  ^ */
67	{K_CNTRLD,	'\004'},	/* ^D */
68	{K_CNTRLR,	'\022'},	/* ^R */
69	{K_CNTRLT,	'\024'},	/* ^T */
70	{K_CNTRLZ,	'\032'},	/* ^Z */
71	{K_COLON,	   ':'},	/*  : */
72	{K_CR,		  '\r'},	/* \r */
73	{K_ESCAPE,	'\033'},	/* ^[ */
74	{K_FORMFEED,	  '\f'},	/* \f */
75	{K_HEXCHAR,	'\030'},	/* ^X */
76	{K_NL,		  '\n'},	/* \n */
77	{K_RIGHTBRACE,	   '}'},	/*  } */
78	{K_RIGHTPAREN,	   ')'},	/*  ) */
79	{K_TAB,		  '\t'},	/* \t */
80	{K_VERASE,	  '\b'},	/* \b */
81	{K_VKILL,	'\025'},	/* ^U */
82	{K_VLNEXT,	'\021'},	/* ^Q */
83	{K_VLNEXT,	'\026'},	/* ^V */
84	{K_VWERASE,	'\027'},	/* ^W */
85	{K_ZERO,	   '0'},	/*  0 */
86
87#define	ADDITIONAL_CHARACTERS	4
88	{K_NOTUSED, 0},			/* VEOF, VERASE, VKILL, VWERASE */
89	{K_NOTUSED, 0},
90	{K_NOTUSED, 0},
91	{K_NOTUSED, 0},
92};
93static int nkeylist =
94    (sizeof(keylist) / sizeof(keylist[0])) - ADDITIONAL_CHARACTERS;
95
96/*
97 * v_key_init --
98 *	Initialize the special key lookup table.
99 *
100 * PUBLIC: int v_key_init __P((SCR *));
101 */
102int
103v_key_init(SCR *sp)
104{
105	int ch;
106	GS *gp;
107	KEYLIST *kp;
108	int cnt;
109
110	gp = sp->gp;
111
112	v_key_ilookup(sp);
113
114	v_keyval(sp, K_CNTRLD, KEY_VEOF);
115	v_keyval(sp, K_VERASE, KEY_VERASE);
116	v_keyval(sp, K_VKILL, KEY_VKILL);
117	v_keyval(sp, K_VWERASE, KEY_VWERASE);
118
119	/* Sort the special key list. */
120	qsort(keylist, nkeylist, sizeof(keylist[0]), v_key_cmp);
121
122	/* Initialize the fast lookup table. */
123	for (kp = keylist, cnt = nkeylist; cnt--; ++kp)
124		gp->special_key[kp->ch] = kp->value;
125
126	/* Find a non-printable character to use as a message separator. */
127	for (ch = 1; ch <= UCHAR_MAX; ++ch)
128		if (!isprint(ch)) {
129			gp->noprint = ch;
130			break;
131		}
132	if (ch != gp->noprint) {
133		msgq(sp, M_ERR, "079|No non-printable character found");
134		return (1);
135	}
136	return (0);
137}
138
139/*
140 * v_keyval --
141 *	Set key values.
142 *
143 * We've left some open slots in the keylist table, and if these values exist,
144 * we put them into place.  Note, they may reset (or duplicate) values already
145 * in the table, so we check for that first.
146 */
147static void
148v_keyval(
149	SCR *sp,
150	int val,
151	scr_keyval_t name)
152{
153	KEYLIST *kp;
154	CHAR_T ch;
155	int dne;
156
157	/* Get the key's value from the screen. */
158	if (sp->gp->scr_keyval(sp, name, &ch, &dne))
159		return;
160	if (dne)
161		return;
162
163	/* Check for duplication. */
164	for (kp = keylist; kp->value != K_NOTUSED; ++kp)
165		if (kp->ch == ch) {
166			kp->value = val;
167			return;
168		}
169
170	/* Add a new entry. */
171	if (kp->value == K_NOTUSED) {
172		keylist[nkeylist].ch = ch;
173		keylist[nkeylist].value = val;
174		++nkeylist;
175	}
176}
177
178/*
179 * v_key_ilookup --
180 *	Build the fast-lookup key display array.
181 *
182 * PUBLIC: void v_key_ilookup __P((SCR *));
183 */
184void
185v_key_ilookup(SCR *sp)
186{
187	UCHAR_T ch;
188	char *p, *t;
189	GS *gp;
190	size_t len;
191
192	for (gp = sp->gp, ch = 0;; ++ch) {
193		for (p = gp->cname[ch].name, t = v_key_name(sp, ch),
194		    len = gp->cname[ch].len = sp->clen; len--;)
195			*p++ = *t++;
196		if (ch == MAX_FAST_KEY)
197			break;
198	}
199}
200
201/*
202 * v_key_len --
203 *	Return the length of the string that will display the key.
204 *	This routine is the backup for the KEY_LEN() macro.
205 *
206 * PUBLIC: size_t v_key_len __P((SCR *, ARG_CHAR_T));
207 */
208size_t
209v_key_len(
210	SCR *sp,
211	ARG_CHAR_T ch)
212{
213	(void)v_key_name(sp, ch);
214	return (sp->clen);
215}
216
217/*
218 * v_key_name --
219 *	Return the string that will display the key.  This routine
220 *	is the backup for the KEY_NAME() macro.
221 *
222 * PUBLIC: char *v_key_name __P((SCR *, ARG_CHAR_T));
223 */
224char *
225v_key_name(
226	SCR *sp,
227	ARG_CHAR_T ach)
228{
229	static const char hexdigit[] = "0123456789abcdef";
230	static const char octdigit[] = "01234567";
231	int ch;
232	size_t len;
233	char *chp;
234
235	/*
236	 * Cache the last checked character.  It won't be a problem
237	 * since nvi will rescan the mapping when settings changed.
238	 */
239	if (ach && sp->lastc == ach)
240		return (sp->cname);
241	sp->lastc = ach;
242
243#ifdef USE_WIDECHAR
244	len = wctomb(sp->cname, ach);
245	if (len > MB_CUR_MAX)
246#endif
247		sp->cname[(len = 1)-1] = (u_char)ach;
248
249	ch = (u_char)sp->cname[0];
250	sp->cname[len] = '\0';
251
252	/* See if the character was explicitly declared printable or not. */
253	if ((chp = O_STR(sp, O_PRINT)) != NULL)
254		if (strstr(chp, sp->cname) != NULL)
255			goto done;
256	if ((chp = O_STR(sp, O_NOPRINT)) != NULL)
257		if (strstr(chp, sp->cname) != NULL)
258			goto nopr;
259
260	/*
261	 * Historical (ARPA standard) mappings.  Printable characters are left
262	 * alone.  Control characters less than 0x20 are represented as '^'
263	 * followed by the character offset from the '@' character in the ASCII
264	 * character set.  Del (0x7f) is represented as '^' followed by '?'.
265	 *
266	 * XXX
267	 * The following code depends on the current locale being identical to
268	 * the ASCII map from 0x40 to 0x5f (since 0x1f + 0x40 == 0x5f).  I'm
269	 * told that this is a reasonable assumption...
270	 *
271	 * XXX
272	 * The code prints non-printable wide characters in 4 or 5 digits
273	 * Unicode escape sequences, so only supports plane 0 to 15.
274	 */
275	if (CAN_PRINT(sp, ach))
276		goto done;
277nopr:	if (iscntrl(ch) && (ch < 0x20 || ch == 0x7f)) {
278		sp->cname[0] = '^';
279		sp->cname[1] = ch == 0x7f ? '?' : '@' + ch;
280		len = 2;
281		goto done;
282	}
283#ifdef USE_WIDECHAR
284	if (INTISWIDE(ach)) {
285		int uc = -1;
286
287		if (!strcmp(codeset(), "UTF-8"))
288			uc = decode_utf8(sp->cname);
289#ifdef USE_ICONV
290		else {
291			char buf[sizeof(sp->cname)] = "";
292			size_t left = sizeof(sp->cname);
293			char *in = sp->cname;
294			char *out = buf;
295			iconv(sp->conv.id[IC_IE_TO_UTF16],
296			    (iconv_src_t)&in, &len, &out, &left);
297			iconv(sp->conv.id[IC_IE_TO_UTF16],
298			    NULL, NULL, NULL, NULL);
299			uc = decode_utf16(buf, 1);
300		}
301#endif
302		if (uc >= 0) {
303			len = snprintf(sp->cname, sizeof(sp->cname),
304			    uc < 0x10000 ? "\\u%04x" : "\\U%05X", uc);
305			goto done;
306		}
307	}
308#endif
309	if (O_ISSET(sp, O_OCTAL)) {
310		sp->cname[0] = '\\';
311		sp->cname[1] = octdigit[(ch & 0300) >> 6];
312		sp->cname[2] = octdigit[(ch &  070) >> 3];
313		sp->cname[3] = octdigit[ ch &   07      ];
314	} else {
315		sp->cname[0] = '\\';
316		sp->cname[1] = 'x';
317		sp->cname[2] = hexdigit[(ch & 0xf0) >> 4];
318		sp->cname[3] = hexdigit[ ch & 0x0f      ];
319	}
320	len = 4;
321done:	sp->cname[sp->clen = len] = '\0';
322	return (sp->cname);
323}
324
325/*
326 * v_key_val --
327 *	Fill in the value for a key.  This routine is the backup
328 *	for the KEY_VAL() macro.
329 *
330 * PUBLIC: e_key_t v_key_val __P((SCR *, ARG_CHAR_T));
331 */
332e_key_t
333v_key_val(
334	SCR *sp,
335	ARG_CHAR_T ch)
336{
337	KEYLIST k, *kp;
338
339	k.ch = ch;
340	kp = bsearch(&k, keylist, nkeylist, sizeof(keylist[0]), v_key_cmp);
341	return (kp == NULL ? K_NOTUSED : kp->value);
342}
343
344/*
345 * v_event_push --
346 *	Push events/keys onto the front of the buffer.
347 *
348 * There is a single input buffer in ex/vi.  Characters are put onto the
349 * end of the buffer by the terminal input routines, and pushed onto the
350 * front of the buffer by various other functions in ex/vi.  Each key has
351 * an associated flag value, which indicates if it has already been quoted,
352 * and if it is the result of a mapping or an abbreviation.
353 *
354 * PUBLIC: int v_event_push __P((SCR *, EVENT *, CHAR_T *, size_t, u_int));
355 */
356int
357v_event_push(
358	SCR *sp,
359	EVENT *p_evp,			/* Push event. */
360	CHAR_T *p_s,			/* Push characters. */
361	size_t nitems,			/* Number of items to push. */
362	u_int flags)			/* CH_* flags. */
363{
364	EVENT *evp;
365	GS *gp;
366	size_t total;
367
368	/* If we have room, stuff the items into the buffer. */
369	gp = sp->gp;
370	if (nitems <= gp->i_next ||
371	    (gp->i_event != NULL && gp->i_cnt == 0 && nitems <= gp->i_nelem)) {
372		if (gp->i_cnt != 0)
373			gp->i_next -= nitems;
374		goto copy;
375	}
376
377	/*
378	 * If there are currently items in the queue, shift them up,
379	 * leaving some extra room.  Get enough space plus a little
380	 * extra.
381	 */
382#define	TERM_PUSH_SHIFT	30
383	total = gp->i_cnt + gp->i_next + nitems + TERM_PUSH_SHIFT;
384	if (total >= gp->i_nelem && v_event_grow(sp, MAX(total, 64)))
385		return (1);
386	if (gp->i_cnt)
387		BCOPY(gp->i_event + gp->i_next,
388		    gp->i_event + TERM_PUSH_SHIFT + nitems, gp->i_cnt);
389	gp->i_next = TERM_PUSH_SHIFT;
390
391	/* Put the new items into the queue. */
392copy:	gp->i_cnt += nitems;
393	for (evp = gp->i_event + gp->i_next; nitems--; ++evp) {
394		if (p_evp != NULL)
395			*evp = *p_evp++;
396		else {
397			evp->e_event = E_CHARACTER;
398			evp->e_c = *p_s++;
399			evp->e_value = KEY_VAL(sp, evp->e_c);
400			F_INIT(&evp->e_ch, flags);
401		}
402	}
403	return (0);
404}
405
406/*
407 * v_event_append --
408 *	Append events onto the tail of the buffer.
409 */
410static int
411v_event_append(
412	SCR *sp,
413	EVENT *argp)
414{
415	CHAR_T *s;			/* Characters. */
416	EVENT *evp;
417	GS *gp;
418	size_t nevents;			/* Number of events. */
419
420	/* Grow the buffer as necessary. */
421	nevents = argp->e_event == E_STRING ? argp->e_len : 1;
422	gp = sp->gp;
423	if (gp->i_event == NULL ||
424	    nevents > gp->i_nelem - (gp->i_next + gp->i_cnt))
425		v_event_grow(sp, MAX(nevents, 64));
426	evp = gp->i_event + gp->i_next + gp->i_cnt;
427	gp->i_cnt += nevents;
428
429	/* Transform strings of characters into single events. */
430	if (argp->e_event == E_STRING)
431		for (s = argp->e_csp; nevents--; ++evp) {
432			evp->e_event = E_CHARACTER;
433			evp->e_c = *s++;
434			evp->e_value = KEY_VAL(sp, evp->e_c);
435			evp->e_flags = 0;
436		}
437	else
438		*evp = *argp;
439	return (0);
440}
441
442/* Remove events from the queue. */
443#define	QREM(len) {							\
444	if ((gp->i_cnt -= len) == 0)					\
445		gp->i_next = 0;						\
446	else								\
447		gp->i_next += len;					\
448}
449
450/*
451 * v_event_get --
452 *	Return the next event.
453 *
454 * !!!
455 * The flag EC_NODIGIT probably needs some explanation.  First, the idea of
456 * mapping keys is that one or more keystrokes act like a function key.
457 * What's going on is that vi is reading a number, and the character following
458 * the number may or may not be mapped (EC_MAPCOMMAND).  For example, if the
459 * user is entering the z command, a valid command is "z40+", and we don't want
460 * to map the '+', i.e. if '+' is mapped to "xxx", we don't want to change it
461 * into "z40xxx".  However, if the user enters "35x", we want to put all of the
462 * characters through the mapping code.
463 *
464 * Historical practice is a bit muddled here.  (Surprise!)  It always permitted
465 * mapping digits as long as they weren't the first character of the map, e.g.
466 * ":map ^A1 xxx" was okay.  It also permitted the mapping of the digits 1-9
467 * (the digit 0 was a special case as it doesn't indicate the start of a count)
468 * as the first character of the map, but then ignored those mappings.  While
469 * it's probably stupid to map digits, vi isn't your mother.
470 *
471 * The way this works is that the EC_MAPNODIGIT causes term_key to return the
472 * end-of-digit without "looking" at the next character, i.e. leaving it as the
473 * user entered it.  Presumably, the next term_key call will tell us how the
474 * user wants it handled.
475 *
476 * There is one more complication.  Users might map keys to digits, and, as
477 * it's described above, the commands:
478 *
479 *	:map g 1G
480 *	d2g
481 *
482 * would return the keys "d2<end-of-digits>1G", when the user probably wanted
483 * "d21<end-of-digits>G".  So, if a map starts off with a digit we continue as
484 * before, otherwise, we pretend we haven't mapped the character, and return
485 * <end-of-digits>.
486 *
487 * Now that that's out of the way, let's talk about Energizer Bunny macros.
488 * It's easy to create macros that expand to a loop, e.g. map x 3x.  It's
489 * fairly easy to detect this example, because it's all internal to term_key.
490 * If we're expanding a macro and it gets big enough, at some point we can
491 * assume it's looping and kill it.  The examples that are tough are the ones
492 * where the parser is involved, e.g. map x "ayyx"byy.  We do an expansion
493 * on 'x', and get "ayyx"byy.  We then return the first 4 characters, and then
494 * find the looping macro again.  There is no way that we can detect this
495 * without doing a full parse of the command, because the character that might
496 * cause the loop (in this case 'x') may be a literal character, e.g. the map
497 * map x "ayy"xyy"byy is perfectly legal and won't cause a loop.
498 *
499 * Historic vi tried to detect looping macros by disallowing obvious cases in
500 * the map command, maps that that ended with the same letter as they started
501 * (which wrongly disallowed "map x 'x"), and detecting macros that expanded
502 * too many times before keys were returned to the command parser.  It didn't
503 * get many (most?) of the tricky cases right, however, and it was certainly
504 * possible to create macros that ran forever.  And, even if it did figure out
505 * what was going on, the user was usually tossed into ex mode.  Finally, any
506 * changes made before vi realized that the macro was recursing were left in
507 * place.  We recover gracefully, but the only recourse the user has in an
508 * infinite macro loop is to interrupt.
509 *
510 * !!!
511 * It is historic practice that mapping characters to themselves as the first
512 * part of the mapped string was legal, and did not cause infinite loops, i.e.
513 * ":map! { {^M^T" and ":map n nz." were known to work.  The initial, matching
514 * characters were returned instead of being remapped.
515 *
516 * !!!
517 * It is also historic practice that the macro "map ] ]]^" caused a single ]
518 * keypress to behave as the command ]] (the ^ got the map past the vi check
519 * for "tail recursion").  Conversely, the mapping "map n nn^" went recursive.
520 * What happened was that, in the historic vi, maps were expanded as the keys
521 * were retrieved, but not all at once and not centrally.  So, the keypress ]
522 * pushed ]]^ on the stack, and then the first ] from the stack was passed to
523 * the ]] command code.  The ]] command then retrieved a key without entering
524 * the mapping code.  This could bite us anytime a user has a map that depends
525 * on secondary keys NOT being mapped.  I can't see any possible way to make
526 * this work in here without the complete abandonment of Rationality Itself.
527 *
528 * XXX
529 * The final issue is recovery.  It would be possible to undo all of the work
530 * that was done by the macro if we entered a record into the log so that we
531 * knew when the macro started, and, in fact, this might be worth doing at some
532 * point.  Given that this might make the log grow unacceptably (consider that
533 * cursor keys are done with maps), for now we leave any changes made in place.
534 *
535 * PUBLIC: int v_event_get __P((SCR *, EVENT *, int, u_int32_t));
536 */
537int
538v_event_get(
539	SCR *sp,
540	EVENT *argp,
541	int timeout,
542	u_int32_t flags)
543{
544	EVENT *evp, ev;
545	GS *gp;
546	SEQ *qp;
547	int init_nomap, ispartial, istimeout, remap_cnt;
548
549	gp = sp->gp;
550
551	/* If simply checking for interrupts, argp may be NULL. */
552	if (argp == NULL)
553		argp = &ev;
554
555retry:	istimeout = remap_cnt = 0;
556
557	/*
558	 * If the queue isn't empty and we're timing out for characters,
559	 * return immediately.
560	 */
561	if (gp->i_cnt != 0 && LF_ISSET(EC_TIMEOUT))
562		return (0);
563
564	/*
565	 * If the queue is empty, we're checking for interrupts, or we're
566	 * timing out for characters, get more events.
567	 */
568	if (gp->i_cnt == 0 || LF_ISSET(EC_INTERRUPT | EC_TIMEOUT)) {
569		/*
570		 * If we're reading new characters, check any scripting
571		 * windows for input.
572		 */
573		if (F_ISSET(gp, G_SCRWIN) && sscr_input(sp))
574			return (1);
575loop:		if (gp->scr_event(sp, argp,
576		    LF_ISSET(EC_INTERRUPT | EC_QUOTED | EC_RAW), timeout))
577			return (1);
578		switch (argp->e_event) {
579		case E_ERR:
580		case E_SIGHUP:
581		case E_SIGTERM:
582			/*
583			 * Fatal conditions cause the file to be synced to
584			 * disk immediately.
585			 */
586			v_sync(sp, RCV_ENDSESSION | RCV_PRESERVE |
587			    (argp->e_event == E_SIGTERM ? 0: RCV_EMAIL));
588			return (1);
589		case E_TIMEOUT:
590			istimeout = 1;
591			break;
592		case E_INTERRUPT:
593			/* Set the global interrupt flag. */
594			F_SET(sp->gp, G_INTERRUPTED);
595
596			/*
597			 * If the caller was interested in interrupts, return
598			 * immediately.
599			 */
600			if (LF_ISSET(EC_INTERRUPT))
601				return (0);
602			goto append;
603		default:
604append:			if (v_event_append(sp, argp))
605				return (1);
606			break;
607		}
608	}
609
610	/*
611	 * If the caller was only interested in interrupts or timeouts, return
612	 * immediately.  (We may have gotten characters, and that's okay, they
613	 * were queued up for later use.)
614	 */
615	if (LF_ISSET(EC_INTERRUPT | EC_TIMEOUT))
616		return (0);
617
618newmap:	evp = &gp->i_event[gp->i_next];
619
620	/*
621	 * If the next event in the queue isn't a character event, return
622	 * it, we're done.
623	 */
624	if (evp->e_event != E_CHARACTER) {
625		*argp = *evp;
626		QREM(1);
627		return (0);
628	}
629
630	/*
631	 * If the key isn't mappable because:
632	 *
633	 *	+ ... the timeout has expired
634	 *	+ ... it's not a mappable key
635	 *	+ ... neither the command or input map flags are set
636	 *	+ ... there are no maps that can apply to it
637	 *
638	 * return it forthwith.
639	 */
640	if (istimeout || F_ISSET(&evp->e_ch, CH_NOMAP) ||
641	    !LF_ISSET(EC_MAPCOMMAND | EC_MAPINPUT) ||
642	    ((evp->e_c & ~MAX_BIT_SEQ) == 0 &&
643	    !bit_test(gp->seqb, evp->e_c)))
644		goto nomap;
645
646	/* Search the map. */
647	qp = seq_find(sp, NULL, evp, NULL, gp->i_cnt,
648	    LF_ISSET(EC_MAPCOMMAND) ? SEQ_COMMAND : SEQ_INPUT, &ispartial);
649
650	/*
651	 * If get a partial match, get more characters and retry the map.
652	 * If time out without further characters, return the characters
653	 * unmapped.
654	 *
655	 * !!!
656	 * <escape> characters are a problem.  Cursor keys start with <escape>
657	 * characters, so there's almost always a map in place that begins with
658	 * an <escape> character.  If we timeout <escape> keys in the same way
659	 * that we timeout other keys, the user will get a noticeable pause as
660	 * they enter <escape> to terminate input mode.  If key timeout is set
661	 * for a slow link, users will get an even longer pause.  Nvi used to
662	 * simply timeout <escape> characters at 1/10th of a second, but this
663	 * loses over PPP links where the latency is greater than 100Ms.
664	 */
665	if (ispartial) {
666		if (O_ISSET(sp, O_TIMEOUT))
667			timeout = (evp->e_value == K_ESCAPE ?
668			    O_VAL(sp, O_ESCAPETIME) :
669			    O_VAL(sp, O_KEYTIME)) * 100;
670		else
671			timeout = 0;
672		goto loop;
673	}
674
675	/* If no map, return the character. */
676	if (qp == NULL) {
677nomap:		if (!ISDIGIT(evp->e_c) && LF_ISSET(EC_MAPNODIGIT))
678			goto not_digit;
679		*argp = *evp;
680		QREM(1);
681		return (0);
682	}
683
684	/*
685	 * If looking for the end of a digit string, and the first character
686	 * of the map is it, pretend we haven't seen the character.
687	 */
688	if (LF_ISSET(EC_MAPNODIGIT) &&
689	    qp->output != NULL && !ISDIGIT(qp->output[0])) {
690not_digit:	argp->e_c = CH_NOT_DIGIT;
691		argp->e_value = K_NOTUSED;
692		argp->e_event = E_CHARACTER;
693		F_INIT(&argp->e_ch, 0);
694		return (0);
695	}
696
697	/* Find out if the initial segments are identical. */
698	init_nomap = !e_memcmp(qp->output, &gp->i_event[gp->i_next], qp->ilen);
699
700	/* Delete the mapped characters from the queue. */
701	QREM(qp->ilen);
702
703	/* If keys mapped to nothing, go get more. */
704	if (qp->output == NULL)
705		goto retry;
706
707	/* If remapping characters... */
708	if (O_ISSET(sp, O_REMAP)) {
709		/*
710		 * Periodically check for interrupts.  Always check the first
711		 * time through, because it's possible to set up a map that
712		 * will return a character every time, but will expand to more,
713		 * e.g. "map! a aaaa" will always return a 'a', but we'll never
714		 * get anywhere useful.
715		 */
716		if ((++remap_cnt == 1 || remap_cnt % 10 == 0) &&
717		    (gp->scr_event(sp, &ev,
718		    EC_INTERRUPT, 0) || ev.e_event == E_INTERRUPT)) {
719			F_SET(sp->gp, G_INTERRUPTED);
720			argp->e_event = E_INTERRUPT;
721			return (0);
722		}
723
724		/*
725		 * If an initial part of the characters mapped, they are not
726		 * further remapped -- return the first one.  Push the rest
727		 * of the characters, or all of the characters if no initial
728		 * part mapped, back on the queue.
729		 */
730		if (init_nomap) {
731			if (v_event_push(sp, NULL, qp->output + qp->ilen,
732			    qp->olen - qp->ilen, CH_MAPPED))
733				return (1);
734			if (v_event_push(sp, NULL,
735			    qp->output, qp->ilen, CH_NOMAP | CH_MAPPED))
736				return (1);
737			evp = &gp->i_event[gp->i_next];
738			goto nomap;
739		}
740		if (v_event_push(sp, NULL, qp->output, qp->olen, CH_MAPPED))
741			return (1);
742		goto newmap;
743	}
744
745	/* Else, push the characters on the queue and return one. */
746	if (v_event_push(sp, NULL, qp->output, qp->olen, CH_MAPPED | CH_NOMAP))
747		return (1);
748
749	goto nomap;
750}
751
752/*
753 * v_sync --
754 *	Walk the screen lists, sync'ing files to their backup copies.
755 */
756static void
757v_sync(
758	SCR *sp,
759	int flags)
760{
761	GS *gp;
762
763	gp = sp->gp;
764	TAILQ_FOREACH(sp, gp->dq, q)
765		rcv_sync(sp, flags);
766	TAILQ_FOREACH(sp, gp->hq, q)
767		rcv_sync(sp, flags);
768}
769
770/*
771 * v_event_err --
772 *	Unexpected event.
773 *
774 * PUBLIC: void v_event_err __P((SCR *, EVENT *));
775 */
776void
777v_event_err(
778	SCR *sp,
779	EVENT *evp)
780{
781	switch (evp->e_event) {
782	case E_CHARACTER:
783		msgq(sp, M_ERR, "276|Unexpected character event");
784		break;
785	case E_EOF:
786		msgq(sp, M_ERR, "277|Unexpected end-of-file event");
787		break;
788	case E_INTERRUPT:
789		msgq(sp, M_ERR, "279|Unexpected interrupt event");
790		break;
791	case E_REPAINT:
792		msgq(sp, M_ERR, "281|Unexpected repaint event");
793		break;
794	case E_STRING:
795		msgq(sp, M_ERR, "285|Unexpected string event");
796		break;
797	case E_TIMEOUT:
798		msgq(sp, M_ERR, "286|Unexpected timeout event");
799		break;
800	case E_WRESIZE:
801		msgq(sp, M_ERR, "316|Unexpected resize event");
802		break;
803
804	/*
805	 * Theoretically, none of these can occur, as they're handled at the
806	 * top editor level.
807	 */
808	case E_ERR:
809	case E_SIGHUP:
810	case E_SIGTERM:
811	default:
812		abort();
813	}
814
815	/* Free any allocated memory. */
816	if (evp->e_asp != NULL)
817		free(evp->e_asp);
818}
819
820/*
821 * v_event_flush --
822 *	Flush any flagged keys, returning if any keys were flushed.
823 *
824 * PUBLIC: int v_event_flush __P((SCR *, u_int));
825 */
826int
827v_event_flush(
828	SCR *sp,
829	u_int flags)
830{
831	GS *gp;
832	int rval;
833
834	for (rval = 0, gp = sp->gp; gp->i_cnt != 0 &&
835	    F_ISSET(&gp->i_event[gp->i_next].e_ch, flags); rval = 1)
836		QREM(1);
837	return (rval);
838}
839
840/*
841 * v_event_grow --
842 *	Grow the terminal queue.
843 */
844static int
845v_event_grow(
846	SCR *sp,
847	int add)
848{
849	GS *gp;
850	size_t new_nelem, olen;
851
852	gp = sp->gp;
853	new_nelem = gp->i_nelem + add;
854	olen = gp->i_nelem * sizeof(gp->i_event[0]);
855	BINC_RET(sp, EVENT, gp->i_event, olen, new_nelem * sizeof(gp->i_event[0]));
856	gp->i_nelem = olen / sizeof(gp->i_event[0]);
857	return (0);
858}
859
860/*
861 * v_key_cmp --
862 *	Compare two keys for sorting.
863 */
864static int
865v_key_cmp(
866	const void *ap,
867	const void *bp)
868{
869	return (((KEYLIST *)ap)->ch - ((KEYLIST *)bp)->ch);
870}
871