refclock_parse.c revision 285612
1/*
2 * /src/NTP/REPOSITORY/ntp4-dev/ntpd/refclock_parse.c,v 4.81 2009/05/01 10:15:29 kardel RELEASE_20090105_A
3 *
4 * refclock_parse.c,v 4.81 2009/05/01 10:15:29 kardel RELEASE_20090105_A
5 *
6 * generic reference clock driver for several DCF/GPS/MSF/... receivers
7 *
8 * PPS notes:
9 *   On systems that support PPSAPI (RFC2783) PPSAPI is the
10 *   preferred interface.
11 *
12 *   Optionally make use of a STREAMS module for input processing where
13 *   available and configured. This STREAMS module reduces the time
14 *   stamp latency for serial and PPS events.
15 *   Currently the STREAMS module is only available for Suns running
16 *   SunOS 4.x and SunOS5.x.
17 *
18 * Copyright (c) 1995-2015 by Frank Kardel <kardel <AT> ntp.org>
19 * Copyright (c) 1989-1994 by Frank Kardel, Friedrich-Alexander Universitaet Erlangen-Nuernberg, Germany
20 *
21 * Redistribution and use in source and binary forms, with or without
22 * modification, are permitted provided that the following conditions
23 * are met:
24 * 1. Redistributions of source code must retain the above copyright
25 *    notice, this list of conditions and the following disclaimer.
26 * 2. Redistributions in binary form must reproduce the above copyright
27 *    notice, this list of conditions and the following disclaimer in the
28 *    documentation and/or other materials provided with the distribution.
29 * 3. Neither the name of the author nor the names of its contributors
30 *    may be used to endorse or promote products derived from this software
31 *    without specific prior written permission.
32 *
33 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
34 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
35 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
36 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
37 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
38 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
39 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
40 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
41 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
42 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
43 * SUCH DAMAGE.
44 *
45 */
46
47#ifdef HAVE_CONFIG_H
48# include "config.h"
49#endif
50
51#include "ntp_types.h"
52
53#if defined(REFCLOCK) && defined(CLOCK_PARSE)
54
55/*
56 * This driver currently provides the support for
57 *   - Meinberg receiver DCF77 PZF535 (TCXO version)        (DCF)
58 *   - Meinberg receiver DCF77 PZF535 (OCXO version)        (DCF)
59 *   - Meinberg receiver DCF77 PZF509                       (DCF)
60 *   - Meinberg receiver DCF77 AM receivers (e.g. C51)      (DCF)
61 *   - IGEL CLOCK                                           (DCF)
62 *   - ELV DCF7000                                          (DCF)
63 *   - Schmid clock                                         (DCF)
64 *   - Conrad DCF77 receiver module                         (DCF)
65 *   - FAU DCF77 NTP receiver (TimeBrick)                   (DCF)
66 *   - WHARTON 400A Series clock                            (DCF)
67 *
68 *   - Meinberg GPS receivers                               (GPS)
69 *   - Trimble (TSIP and TAIP protocol)                     (GPS)
70 *
71 *   - RCC8000 MSF Receiver                                 (MSF)
72 *   - VARITEXT clock                                       (MSF)
73 */
74
75/*
76 * Meinberg receivers are usually connected via a
77 * 9600/7E1 or 19200/8N1 serial line.
78 *
79 * The Meinberg GPS receivers also have a special NTP time stamp
80 * format. The firmware release is Uni-Erlangen.
81 *
82 * Meinberg generic receiver setup:
83 *      output time code every second
84 *      Baud rate 9600 7E2S
85 *
86 * Meinberg GPS receiver setup:
87 *      output time code every second
88 *      Baudrate 19200 8N1
89 *
90 * This software supports the standard data formats used
91 * in Meinberg receivers.
92 *
93 * Special software versions are only sensible for the
94 * oldest GPS receiver, GPS16x. For newer receiver types
95 * the output string format can be configured at the device,
96 * and the device name is generally GPSxxx instead of GPS16x.
97 *
98 * Meinberg can be reached via: http://www.meinberg.de/
99 */
100
101#include "ntpd.h"
102#include "ntp_refclock.h"
103#include "timevalops.h"		/* includes <sys/time.h> */
104#include "ntp_control.h"
105#include "ntp_string.h"
106
107#include <stdio.h>
108#include <ctype.h>
109#ifndef TM_IN_SYS_TIME
110# include <time.h>
111#endif
112
113#ifdef HAVE_UNISTD_H
114# include <unistd.h>
115#endif
116
117#if !defined(STREAM) && !defined(HAVE_SYSV_TTYS) && !defined(HAVE_BSD_TTYS) && !defined(HAVE_TERMIOS)
118# include "Bletch:  Define one of {STREAM,HAVE_SYSV_TTYS,HAVE_TERMIOS}"
119#endif
120
121#ifdef STREAM
122# include <sys/stream.h>
123# include <sys/stropts.h>
124#endif
125
126#ifdef HAVE_TERMIOS
127# include <termios.h>
128# define TTY_GETATTR(_FD_, _ARG_) tcgetattr((_FD_), (_ARG_))
129# define TTY_SETATTR(_FD_, _ARG_) tcsetattr((_FD_), TCSANOW, (_ARG_))
130# undef HAVE_SYSV_TTYS
131#endif
132
133#ifdef HAVE_SYSV_TTYS
134# define TTY_GETATTR(_FD_, _ARG_) ioctl((_FD_), TCGETA, (_ARG_))
135# define TTY_SETATTR(_FD_, _ARG_) ioctl((_FD_), TCSETAW, (_ARG_))
136#endif
137
138#ifdef HAVE_BSD_TTYS
139/* #error CURRENTLY NO BSD TTY SUPPORT */
140# include "Bletch: BSD TTY not currently supported"
141#endif
142
143#ifdef HAVE_SYS_IOCTL_H
144# include <sys/ioctl.h>
145#endif
146
147#ifdef HAVE_PPSAPI
148# include "ppsapi_timepps.h"
149# include "refclock_atom.h"
150#endif
151
152#ifdef PPS
153# ifdef HAVE_SYS_PPSCLOCK_H
154#  include <sys/ppsclock.h>
155# endif
156# ifdef HAVE_TIO_SERIAL_STUFF
157#  include <linux/serial.h>
158# endif
159#endif
160
161# define BUFFER_SIZE(_BUF, _PTR)       ((int)((_BUF) + sizeof(_BUF) - (_PTR)))
162# define BUFFER_SIZES(_BUF, _PTR, _SZ) ((int)((_BUF) + (_SZ) - (_PTR)))
163
164/*
165 * document type of PPS interfacing - copy of ifdef mechanism in local_input()
166 */
167#undef PPS_METHOD
168
169#ifdef HAVE_PPSAPI
170#define PPS_METHOD "PPS API"
171#else
172#ifdef TIOCDCDTIMESTAMP
173#define PPS_METHOD "TIOCDCDTIMESTAMP"
174#else /* TIOCDCDTIMESTAMP */
175#if defined(HAVE_STRUCT_PPSCLOCKEV) && (defined(HAVE_CIOGETEV) || defined(HAVE_TIOCGPPSEV))
176#ifdef HAVE_CIOGETEV
177#define PPS_METHOD "CIOGETEV"
178#endif
179#ifdef HAVE_TIOCGPPSEV
180#define PPS_METHOD "TIOCGPPSEV"
181#endif
182#endif
183#endif /* TIOCDCDTIMESTAMP */
184#endif /* HAVE_PPSAPI */
185
186/*
187 * COND_DEF can be conditionally defined as DEF or 0. If defined as DEF
188 * then some more parse-specific variables are flagged to be printed with
189 * "ntpq -c cv <assid>". This can be lengthy, so by default COND_DEF
190 * should be defined as 0.
191 */
192#if 0
193# define COND_DEF   DEF   // enable this for testing
194#else
195# define COND_DEF   0     // enable this by default
196#endif
197
198#include "ntp_io.h"
199#include "ntp_stdlib.h"
200
201#include "parse.h"
202#include "mbg_gps166.h"
203#include "trimble.h"
204#include "binio.h"
205#include "ascii.h"
206#include "ieee754io.h"
207#include "recvbuff.h"
208
209static char rcsid[] = "refclock_parse.c,v 4.81 2009/05/01 10:15:29 kardel RELEASE_20090105_A+POWERUPTRUST";
210
211/**===========================================================================
212 ** external interface to ntp mechanism
213 **/
214
215static	int	parse_start	(int, struct peer *);
216static	void	parse_shutdown	(int, struct peer *);
217static	void	parse_poll	(int, struct peer *);
218static	void	parse_control	(int, const struct refclockstat *, struct refclockstat *, struct peer *);
219
220struct	refclock refclock_parse = {
221	parse_start,
222	parse_shutdown,
223	parse_poll,
224	parse_control,
225	noentry,
226	noentry,
227	NOFLAGS
228};
229
230/*
231 * Definitions
232 */
233#define	MAXUNITS	4	/* maximum number of "PARSE" units permitted */
234#define PARSEDEVICE	"/dev/refclock-%d" /* device to open %d is unit number */
235#define PARSEPPSDEVICE	"/dev/refclockpps-%d" /* optional pps device to open %d is unit number */
236
237#undef ABS
238#define ABS(_X_) (((_X_) < 0) ? -(_X_) : (_X_))
239
240#define PARSE_HARDPPS_DISABLE 0
241#define PARSE_HARDPPS_ENABLE  1
242
243/**===========================================================================
244 ** function vector for dynamically binding io handling mechanism
245 **/
246
247struct parseunit;		/* to keep inquiring minds happy */
248
249typedef struct bind
250{
251  const char *bd_description;	                                /* name of type of binding */
252  int	(*bd_init)     (struct parseunit *);			/* initialize */
253  void	(*bd_end)      (struct parseunit *);			/* end */
254  int   (*bd_setcs)    (struct parseunit *, parsectl_t *);	/* set character size */
255  int	(*bd_disable)  (struct parseunit *);			/* disable */
256  int	(*bd_enable)   (struct parseunit *);			/* enable */
257  int	(*bd_getfmt)   (struct parseunit *, parsectl_t *);	/* get format */
258  int	(*bd_setfmt)   (struct parseunit *, parsectl_t *);	/* setfmt */
259  int	(*bd_timecode) (struct parseunit *, parsectl_t *);	/* get time code */
260  void	(*bd_receive)  (struct recvbuf *);			/* receive operation */
261  int	(*bd_io_input) (struct recvbuf *);			/* input operation */
262} bind_t;
263
264#define PARSE_END(_X_)			(*(_X_)->binding->bd_end)(_X_)
265#define PARSE_SETCS(_X_, _CS_)		(*(_X_)->binding->bd_setcs)(_X_, _CS_)
266#define PARSE_ENABLE(_X_)		(*(_X_)->binding->bd_enable)(_X_)
267#define PARSE_DISABLE(_X_)		(*(_X_)->binding->bd_disable)(_X_)
268#define PARSE_GETFMT(_X_, _DCT_)	(*(_X_)->binding->bd_getfmt)(_X_, _DCT_)
269#define PARSE_SETFMT(_X_, _DCT_)	(*(_X_)->binding->bd_setfmt)(_X_, _DCT_)
270#define PARSE_GETTIMECODE(_X_, _DCT_)	(*(_X_)->binding->bd_timecode)(_X_, _DCT_)
271
272/*
273 * special handling flags
274 */
275#define PARSE_F_PPSONSECOND	0x00000001 /* PPS pulses are on second */
276#define PARSE_F_POWERUPTRUST	0x00000100 /* POWERUP state ist trusted for */
277                                           /* trusttime after SYNC was seen */
278/**===========================================================================
279 ** error message regression handling
280 **
281 ** there are quite a few errors that can occur in rapid succession such as
282 ** noisy input data or no data at all. in order to reduce the amount of
283 ** syslog messages in such case, we are using a backoff algorithm. We limit
284 ** the number of error messages of a certain class to 1 per time unit. if a
285 ** configurable number of messages is displayed that way, we move on to the
286 ** next time unit / count for that class. a count of messages that have been
287 ** suppressed is held and displayed whenever a corresponding message is
288 ** displayed. the time units for a message class will also be displayed.
289 ** whenever an error condition clears we reset the error message state,
290 ** thus we would still generate much output on pathological conditions
291 ** where the system oscillates between OK and NOT OK states. coping
292 ** with that condition is currently considered too complicated.
293 **/
294
295#define ERR_ALL	        (unsigned)~0	/* "all" errors */
296#define ERR_BADDATA	(unsigned)0	/* unusable input data/conversion errors */
297#define ERR_NODATA	(unsigned)1	/* no input data */
298#define ERR_BADIO	(unsigned)2	/* read/write/select errors */
299#define ERR_BADSTATUS	(unsigned)3	/* unsync states */
300#define ERR_BADEVENT	(unsigned)4	/* non nominal events */
301#define ERR_INTERNAL	(unsigned)5	/* internal error */
302#define ERR_CNT		(unsigned)(ERR_INTERNAL+1)
303
304#define ERR(_X_)	if (list_err(parse, (_X_)))
305
306struct errorregression
307{
308	u_long err_count;	/* number of repititions per class */
309	u_long err_delay;	/* minimum delay between messages */
310};
311
312static struct errorregression
313err_baddata[] =			/* error messages for bad input data */
314{
315	{ 1,       0 },		/* output first message immediately */
316	{ 5,      60 },		/* output next five messages in 60 second intervals */
317	{ 3,    3600 },		/* output next 3 messages in hour intervals */
318	{ 0, 12*3600 }		/* repeat messages only every 12 hours */
319};
320
321static struct errorregression
322err_nodata[] =			/* error messages for missing input data */
323{
324	{ 1,       0 },		/* output first message immediately */
325	{ 5,      60 },		/* output next five messages in 60 second intervals */
326	{ 3,    3600 },		/* output next 3 messages in hour intervals */
327	{ 0, 12*3600 }		/* repeat messages only every 12 hours */
328};
329
330static struct errorregression
331err_badstatus[] =		/* unsynchronized state messages */
332{
333	{ 1,       0 },		/* output first message immediately */
334	{ 5,      60 },		/* output next five messages in 60 second intervals */
335	{ 3,    3600 },		/* output next 3 messages in hour intervals */
336	{ 0, 12*3600 }		/* repeat messages only every 12 hours */
337};
338
339static struct errorregression
340err_badio[] =			/* io failures (bad reads, selects, ...) */
341{
342	{ 1,       0 },		/* output first message immediately */
343	{ 5,      60 },		/* output next five messages in 60 second intervals */
344	{ 5,    3600 },		/* output next 3 messages in hour intervals */
345	{ 0, 12*3600 }		/* repeat messages only every 12 hours */
346};
347
348static struct errorregression
349err_badevent[] =		/* non nominal events */
350{
351	{ 20,      0 },		/* output first message immediately */
352	{ 6,      60 },		/* output next five messages in 60 second intervals */
353	{ 5,    3600 },		/* output next 3 messages in hour intervals */
354	{ 0, 12*3600 }		/* repeat messages only every 12 hours */
355};
356
357static struct errorregression
358err_internal[] =		/* really bad things - basically coding/OS errors */
359{
360	{ 0,       0 },		/* output all messages immediately */
361};
362
363static struct errorregression *
364err_tbl[] =
365{
366	err_baddata,
367	err_nodata,
368	err_badio,
369	err_badstatus,
370	err_badevent,
371	err_internal
372};
373
374struct errorinfo
375{
376	u_long err_started;	/* begin time (ntp) of error condition */
377	u_long err_last;	/* last time (ntp) error occurred */
378	u_long err_cnt;	/* number of error repititions */
379	u_long err_suppressed;	/* number of suppressed messages */
380	struct errorregression *err_stage; /* current error stage */
381};
382
383/**===========================================================================
384 ** refclock instance data
385 **/
386
387struct parseunit
388{
389	/*
390	 * NTP management
391	 */
392	struct peer         *peer;		/* backlink to peer structure - refclock inactive if 0  */
393	struct refclockproc *generic;		/* backlink to refclockproc structure */
394
395	/*
396	 * PARSE io
397	 */
398	bind_t	     *binding;	        /* io handling binding */
399
400	/*
401	 * parse state
402	 */
403	parse_t	      parseio;	        /* io handling structure (user level parsing) */
404
405	/*
406	 * type specific parameters
407	 */
408	struct parse_clockinfo   *parse_type;	        /* link to clock description */
409
410	/*
411	 * clock state handling/reporting
412	 */
413	u_char	      flags;	        /* flags (leap_control) */
414	u_long	      lastchange;       /* time (ntp) when last state change accured */
415	u_long	      statetime[CEVNT_MAX+1]; /* accumulated time of clock states */
416	u_long        pollneeddata; 	/* current_time(!=0) for receive sample expected in PPS mode */
417	u_short	      lastformat;       /* last format used */
418	u_long        lastsync;		/* time (ntp) when clock was last seen fully synchronized */
419        u_long        maxunsync;        /* max time in seconds a receiver is trusted after loosing synchronisation */
420        double        ppsphaseadjust;   /* phase adjustment of PPS time stamp */
421        u_long        lastmissed;       /* time (ntp) when poll didn't get data (powerup heuristic) */
422	u_long        ppsserial;        /* magic cookie for ppsclock serials (avoids stale ppsclock data) */
423	int	      ppsfd;	        /* fd to ise for PPS io */
424#ifdef HAVE_PPSAPI
425        int           hardppsstate;     /* current hard pps state */
426	struct refclock_atom atom;      /* PPSAPI structure */
427#endif
428	parsetime_t   timedata;		/* last (parse module) data */
429	void         *localdata;        /* optional local, receiver-specific data */
430        unsigned long localstate;       /* private local state */
431	struct errorinfo errors[ERR_CNT];  /* error state table for suppressing excessive error messages */
432	struct ctl_var *kv;	        /* additional pseudo variables */
433	u_long        laststatistic;    /* time when staticstics where output */
434};
435
436
437/**===========================================================================
438 ** Clockinfo section all parameter for specific clock types
439 ** includes NTP parameters, TTY parameters and IO handling parameters
440 **/
441
442static	void	poll_dpoll	(struct parseunit *);
443static	void	poll_poll	(struct peer *);
444static	int	poll_init	(struct parseunit *);
445
446typedef struct poll_info
447{
448	u_long      rate;		/* poll rate - once every "rate" seconds - 0 off */
449	const char *string;		/* string to send for polling */
450	u_long      count;		/* number of characters in string */
451} poll_info_t;
452
453#define NO_CL_FLAGS	0
454#define NO_POLL		0
455#define NO_INIT		0
456#define NO_END		0
457#define NO_EVENT	0
458#define NO_LCLDATA	0
459#define NO_MESSAGE	0
460#define NO_PPSDELAY     0
461
462#define DCF_ID		"DCF"	/* generic DCF */
463#define DCF_A_ID	"DCFa"	/* AM demodulation */
464#define DCF_P_ID	"DCFp"	/* psuedo random phase shift */
465#define GPS_ID		"GPS"	/* GPS receiver */
466
467#define NOCLOCK_ROOTDELAY       0.0
468#define NOCLOCK_BASEDELAY       0.0
469#define NOCLOCK_DESCRIPTION     0
470#define NOCLOCK_MAXUNSYNC       0
471#define NOCLOCK_CFLAG           0
472#define NOCLOCK_IFLAG           0
473#define NOCLOCK_OFLAG           0
474#define NOCLOCK_LFLAG           0
475#define NOCLOCK_ID              "TILT"
476#define NOCLOCK_POLL            NO_POLL
477#define NOCLOCK_INIT            NO_INIT
478#define NOCLOCK_END             NO_END
479#define NOCLOCK_DATA            NO_LCLDATA
480#define NOCLOCK_FORMAT          ""
481#define NOCLOCK_TYPE            CTL_SST_TS_UNSPEC
482#define NOCLOCK_SAMPLES         0
483#define NOCLOCK_KEEP            0
484
485#define DCF_TYPE		CTL_SST_TS_LF
486#define GPS_TYPE		CTL_SST_TS_UHF
487
488/*
489 * receiver specific constants
490 */
491#define MBG_SPEED		(B9600)
492#define MBG_CFLAG		(CS7|PARENB|CREAD|CLOCAL|HUPCL|CSTOPB)
493#define MBG_IFLAG		(IGNBRK|IGNPAR|ISTRIP)
494#define MBG_OFLAG		0
495#define MBG_LFLAG		0
496#define MBG_FLAGS               PARSE_F_PPSONSECOND
497
498/*
499 * Meinberg DCF77 receivers
500 */
501#define	DCFUA31_ROOTDELAY	0.0  /* 0 */
502#define	DCFUA31_BASEDELAY	0.010  /* 10.7421875ms: 10 ms (+/- 3 ms) */
503#define	DCFUA31_DESCRIPTION	"Meinberg DCF77 C51 or compatible"
504#define DCFUA31_MAXUNSYNC       60*30       /* only trust clock for 1/2 hour */
505#define DCFUA31_SPEED		MBG_SPEED
506#define DCFUA31_CFLAG           MBG_CFLAG
507#define DCFUA31_IFLAG           MBG_IFLAG
508#define DCFUA31_OFLAG           MBG_OFLAG
509#define DCFUA31_LFLAG           MBG_LFLAG
510#define DCFUA31_SAMPLES		5
511#define DCFUA31_KEEP		3
512#define DCFUA31_FORMAT		"Meinberg Standard"
513
514/*
515 * Meinberg DCF PZF535/TCXO (FM/PZF) receiver
516 */
517#define	DCFPZF535_ROOTDELAY	0.0
518#define	DCFPZF535_BASEDELAY	0.001968  /* 1.968ms +- 104us (oscilloscope) - relative to start (end of STX) */
519#define	DCFPZF535_DESCRIPTION	"Meinberg DCF PZF 535/509 / TCXO"
520#define DCFPZF535_MAXUNSYNC     60*60*12           /* only trust clock for 12 hours
521						    * @ 5e-8df/f we have accumulated
522						    * at most 2.16 ms (thus we move to
523						    * NTP synchronisation */
524#define DCFPZF535_SPEED		MBG_SPEED
525#define DCFPZF535_CFLAG         MBG_CFLAG
526#define DCFPZF535_IFLAG         MBG_IFLAG
527#define DCFPZF535_OFLAG         MBG_OFLAG
528#define DCFPZF535_LFLAG         MBG_LFLAG
529#define DCFPZF535_SAMPLES	       5
530#define DCFPZF535_KEEP		       3
531#define DCFPZF535_FORMAT	"Meinberg Standard"
532
533/*
534 * Meinberg DCF PZF535/OCXO receiver
535 */
536#define	DCFPZF535OCXO_ROOTDELAY	0.0
537#define	DCFPZF535OCXO_BASEDELAY	0.001968 /* 1.968ms +- 104us (oscilloscope) - relative to start (end of STX) */
538#define	DCFPZF535OCXO_DESCRIPTION "Meinberg DCF PZF 535/509 / OCXO"
539#define DCFPZF535OCXO_MAXUNSYNC     60*60*96       /* only trust clock for 4 days
540						    * @ 5e-9df/f we have accumulated
541						    * at most an error of 1.73 ms
542						    * (thus we move to NTP synchronisation) */
543#define DCFPZF535OCXO_SPEED	    MBG_SPEED
544#define DCFPZF535OCXO_CFLAG         MBG_CFLAG
545#define DCFPZF535OCXO_IFLAG         MBG_IFLAG
546#define DCFPZF535OCXO_OFLAG         MBG_OFLAG
547#define DCFPZF535OCXO_LFLAG         MBG_LFLAG
548#define DCFPZF535OCXO_SAMPLES		   5
549#define DCFPZF535OCXO_KEEP	           3
550#define DCFPZF535OCXO_FORMAT	    "Meinberg Standard"
551
552/*
553 * Meinberg GPS receivers
554 */
555static	void	gps16x_message	 (struct parseunit *, parsetime_t *);
556static  int     gps16x_poll_init (struct parseunit *);
557
558#define	GPS16X_ROOTDELAY	0.0         /* nothing here */
559#define	GPS16X_BASEDELAY	0.001968         /* XXX to be fixed ! 1.968ms +- 104us (oscilloscope) - relative to start (end of STX) */
560#define	GPS16X_DESCRIPTION      "Meinberg GPS receiver"
561#define GPS16X_MAXUNSYNC        60*60*96       /* only trust clock for 4 days
562						* @ 5e-9df/f we have accumulated
563						* at most an error of 1.73 ms
564						* (thus we move to NTP synchronisation) */
565#define GPS16X_SPEED		B19200
566#define GPS16X_CFLAG            (CS8|CREAD|CLOCAL|HUPCL)
567#define GPS16X_IFLAG            (IGNBRK|IGNPAR)
568#define GPS16X_OFLAG            MBG_OFLAG
569#define GPS16X_LFLAG            MBG_LFLAG
570#define GPS16X_POLLRATE	6
571#define GPS16X_POLLCMD	""
572#define GPS16X_CMDSIZE	0
573
574static poll_info_t gps16x_pollinfo = { GPS16X_POLLRATE, GPS16X_POLLCMD, GPS16X_CMDSIZE };
575
576#define GPS16X_INIT		gps16x_poll_init
577#define GPS16X_POLL	        0
578#define GPS16X_END		0
579#define GPS16X_DATA		((void *)(&gps16x_pollinfo))
580#define GPS16X_MESSAGE		gps16x_message
581#define GPS16X_ID		GPS_ID
582#define GPS16X_FORMAT		"Meinberg GPS Extended"
583#define GPS16X_SAMPLES		5
584#define GPS16X_KEEP		3
585
586/*
587 * ELV DCF7000 Wallclock-Receiver/Switching Clock (Kit)
588 *
589 * This is really not the hottest clock - but before you have nothing ...
590 */
591#define DCF7000_ROOTDELAY	0.0 /* 0 */
592#define DCF7000_BASEDELAY	0.405 /* slow blow */
593#define DCF7000_DESCRIPTION	"ELV DCF7000"
594#define DCF7000_MAXUNSYNC	(60*5) /* sorry - but it just was not build as a clock */
595#define DCF7000_SPEED		(B9600)
596#define DCF7000_CFLAG           (CS8|CREAD|PARENB|PARODD|CLOCAL|HUPCL)
597#define DCF7000_IFLAG		(IGNBRK)
598#define DCF7000_OFLAG		0
599#define DCF7000_LFLAG		0
600#define DCF7000_SAMPLES		5
601#define DCF7000_KEEP		3
602#define DCF7000_FORMAT		"ELV DCF7000"
603
604/*
605 * Schmid DCF Receiver Kit
606 *
607 * When the WSDCF clock is operating optimally we want the primary clock
608 * distance to come out at 300 ms.  Thus, peer.distance in the WSDCF peer
609 * structure is set to 290 ms and we compute delays which are at least
610 * 10 ms long.  The following are 290 ms and 10 ms expressed in u_fp format
611 */
612#define WS_POLLRATE	1	/* every second - watch interdependency with poll routine */
613#define WS_POLLCMD	"\163"
614#define WS_CMDSIZE	1
615
616static poll_info_t wsdcf_pollinfo = { WS_POLLRATE, WS_POLLCMD, WS_CMDSIZE };
617
618#define WSDCF_INIT		poll_init
619#define WSDCF_POLL		poll_dpoll
620#define WSDCF_END		0
621#define WSDCF_DATA		((void *)(&wsdcf_pollinfo))
622#define	WSDCF_ROOTDELAY		0.0	/* 0 */
623#define	WSDCF_BASEDELAY	 	0.010	/*  ~  10ms */
624#define WSDCF_DESCRIPTION	"WS/DCF Receiver"
625#define WSDCF_FORMAT		"Schmid"
626#define WSDCF_MAXUNSYNC		(60*60)	/* assume this beast hold at 1 h better than 2 ms XXX-must verify */
627#define WSDCF_SPEED		(B1200)
628#define WSDCF_CFLAG		(CS8|CREAD|CLOCAL)
629#define WSDCF_IFLAG		0
630#define WSDCF_OFLAG		0
631#define WSDCF_LFLAG		0
632#define WSDCF_SAMPLES		5
633#define WSDCF_KEEP		3
634
635/*
636 * RAW DCF77 - input of DCF marks via RS232 - many variants
637 */
638#define RAWDCF_FLAGS		0
639#define RAWDCF_ROOTDELAY	0.0 /* 0 */
640#define RAWDCF_BASEDELAY	0.258
641#define RAWDCF_FORMAT		"RAW DCF77 Timecode"
642#define RAWDCF_MAXUNSYNC	(0) /* sorry - its a true receiver - no signal - no time */
643#define RAWDCF_SPEED		(B50)
644#ifdef NO_PARENB_IGNPAR /* Was: defined(SYS_IRIX4) || defined(SYS_IRIX5) */
645/* somehow doesn't grok PARENB & IGNPAR (mj) */
646# define RAWDCF_CFLAG            (CS8|CREAD|CLOCAL)
647#else
648# define RAWDCF_CFLAG            (CS8|CREAD|CLOCAL|PARENB)
649#endif
650#ifdef RAWDCF_NO_IGNPAR /* Was: defined(SYS_LINUX) && defined(CLOCK_RAWDCF) */
651# define RAWDCF_IFLAG		0
652#else
653# define RAWDCF_IFLAG		(IGNPAR)
654#endif
655#define RAWDCF_OFLAG		0
656#define RAWDCF_LFLAG		0
657#define RAWDCF_SAMPLES		20
658#define RAWDCF_KEEP		12
659#define RAWDCF_INIT		0
660
661/*
662 * RAW DCF variants
663 */
664/*
665 * Conrad receiver
666 *
667 * simplest (cheapest) DCF clock - e. g. DCF77 receiver by Conrad
668 * (~40DM - roughly $30 ) followed by a level converter for RS232
669 */
670#define CONRAD_BASEDELAY	0.292 /* Conrad receiver @ 50 Baud on a Sun */
671#define CONRAD_DESCRIPTION	"RAW DCF77 CODE (Conrad DCF77 receiver module)"
672
673/* Gude Analog- und Digitalsystem GmbH 'Expert mouseCLOCK USB v2.0' */
674#define GUDE_EMC_USB_V20_SPEED            (B4800)
675#define GUDE_EMC_USB_V20_BASEDELAY        0.425 /* USB serial<->USB converter FTDI232R */
676#define GUDE_EMC_USB_V20_DESCRIPTION      "RAW DCF77 CODE (Expert mouseCLOCK USB v2.0)"
677
678/*
679 * TimeBrick receiver
680 */
681#define TIMEBRICK_BASEDELAY	0.210 /* TimeBrick @ 50 Baud on a Sun */
682#define TIMEBRICK_DESCRIPTION	"RAW DCF77 CODE (TimeBrick)"
683
684/*
685 * IGEL:clock receiver
686 */
687#define IGELCLOCK_BASEDELAY	0.258 /* IGEL:clock receiver */
688#define IGELCLOCK_DESCRIPTION	"RAW DCF77 CODE (IGEL:clock)"
689#define IGELCLOCK_SPEED		(B1200)
690#define IGELCLOCK_CFLAG		(CS8|CREAD|HUPCL|CLOCAL)
691
692/*
693 * RAWDCF receivers that need to be powered from DTR
694 * (like Expert mouse clock)
695 */
696static	int	rawdcf_init_1	(struct parseunit *);
697#define RAWDCFDTRSET_DESCRIPTION	"RAW DCF77 CODE (DTR SET/RTS CLR)"
698#define RAWDCFDTRSET75_DESCRIPTION	"RAW DCF77 CODE (DTR SET/RTS CLR @ 75 baud)"
699#define RAWDCFDTRSET_INIT 		rawdcf_init_1
700
701/*
702 * RAWDCF receivers that need to be powered from
703 * DTR CLR and RTS SET
704 */
705static	int	rawdcf_init_2	(struct parseunit *);
706#define RAWDCFDTRCLRRTSSET_DESCRIPTION	"RAW DCF77 CODE (DTR CLR/RTS SET)"
707#define RAWDCFDTRCLRRTSSET75_DESCRIPTION "RAW DCF77 CODE (DTR CLR/RTS SET @ 75 baud)"
708#define RAWDCFDTRCLRRTSSET_INIT	rawdcf_init_2
709
710/*
711 * Trimble GPS receivers (TAIP and TSIP protocols)
712 */
713#ifndef TRIM_POLLRATE
714#define TRIM_POLLRATE	0	/* only true direct polling */
715#endif
716
717#define TRIM_TAIPPOLLCMD	">SRM;FR_FLAG=F;EC_FLAG=F<>QTM<"
718#define TRIM_TAIPCMDSIZE	(sizeof(TRIM_TAIPPOLLCMD)-1)
719
720static poll_info_t trimbletaip_pollinfo = { TRIM_POLLRATE, TRIM_TAIPPOLLCMD, TRIM_TAIPCMDSIZE };
721static	int	trimbletaip_init	(struct parseunit *);
722static	void	trimbletaip_event	(struct parseunit *, int);
723
724/* query time & UTC correction data */
725static char tsipquery[] = { DLE, 0x21, DLE, ETX, DLE, 0x2F, DLE, ETX };
726
727static poll_info_t trimbletsip_pollinfo = { TRIM_POLLRATE, tsipquery, sizeof(tsipquery) };
728static	int	trimbletsip_init	(struct parseunit *);
729static	void	trimbletsip_end   	(struct parseunit *);
730static	void	trimbletsip_message	(struct parseunit *, parsetime_t *);
731static	void	trimbletsip_event	(struct parseunit *, int);
732
733#define TRIMBLETSIP_IDLE_TIME	    (300) /* 5 minutes silence at most */
734#define TRIMBLE_RESET_HOLDOFF       TRIMBLETSIP_IDLE_TIME
735
736#define TRIMBLETAIP_SPEED	    (B4800)
737#define TRIMBLETAIP_CFLAG           (CS8|CREAD|CLOCAL)
738#define TRIMBLETAIP_IFLAG           (BRKINT|IGNPAR|ISTRIP|ICRNL|IXON)
739#define TRIMBLETAIP_OFLAG           (OPOST|ONLCR)
740#define TRIMBLETAIP_LFLAG           (0)
741
742#define TRIMBLETSIP_SPEED	    (B9600)
743#define TRIMBLETSIP_CFLAG           (CS8|CLOCAL|CREAD|PARENB|PARODD)
744#define TRIMBLETSIP_IFLAG           (IGNBRK)
745#define TRIMBLETSIP_OFLAG           (0)
746#define TRIMBLETSIP_LFLAG           (ICANON)
747
748#define TRIMBLETSIP_SAMPLES	    5
749#define TRIMBLETSIP_KEEP	    3
750#define TRIMBLETAIP_SAMPLES	    5
751#define TRIMBLETAIP_KEEP	    3
752
753#define TRIMBLETAIP_FLAGS	    (PARSE_F_PPSONSECOND)
754#define TRIMBLETSIP_FLAGS	    (TRIMBLETAIP_FLAGS)
755
756#define TRIMBLETAIP_POLL	    poll_dpoll
757#define TRIMBLETSIP_POLL	    poll_dpoll
758
759#define TRIMBLETAIP_INIT	    trimbletaip_init
760#define TRIMBLETSIP_INIT	    trimbletsip_init
761
762#define TRIMBLETAIP_EVENT	    trimbletaip_event
763
764#define TRIMBLETSIP_EVENT	    trimbletsip_event
765#define TRIMBLETSIP_MESSAGE	    trimbletsip_message
766
767#define TRIMBLETAIP_END		    0
768#define TRIMBLETSIP_END		    trimbletsip_end
769
770#define TRIMBLETAIP_DATA	    ((void *)(&trimbletaip_pollinfo))
771#define TRIMBLETSIP_DATA	    ((void *)(&trimbletsip_pollinfo))
772
773#define TRIMBLETAIP_ID		    GPS_ID
774#define TRIMBLETSIP_ID		    GPS_ID
775
776#define TRIMBLETAIP_FORMAT	    "Trimble TAIP"
777#define TRIMBLETSIP_FORMAT	    "Trimble TSIP"
778
779#define TRIMBLETAIP_ROOTDELAY        0x0
780#define TRIMBLETSIP_ROOTDELAY        0x0
781
782#define TRIMBLETAIP_BASEDELAY        0.0
783#define TRIMBLETSIP_BASEDELAY        0.020	/* GPS time message latency */
784
785#define TRIMBLETAIP_DESCRIPTION      "Trimble GPS (TAIP) receiver"
786#define TRIMBLETSIP_DESCRIPTION      "Trimble GPS (TSIP) receiver"
787
788#define TRIMBLETAIP_MAXUNSYNC        0
789#define TRIMBLETSIP_MAXUNSYNC        0
790
791#define TRIMBLETAIP_EOL		    '<'
792
793/*
794 * RadioCode Clocks RCC 800 receiver
795 */
796#define RCC_POLLRATE   0       /* only true direct polling */
797#define RCC_POLLCMD    "\r"
798#define RCC_CMDSIZE    1
799
800static poll_info_t rcc8000_pollinfo = { RCC_POLLRATE, RCC_POLLCMD, RCC_CMDSIZE };
801#define RCC8000_FLAGS		0
802#define RCC8000_POLL            poll_dpoll
803#define RCC8000_INIT            poll_init
804#define RCC8000_END             0
805#define RCC8000_DATA            ((void *)(&rcc8000_pollinfo))
806#define RCC8000_ROOTDELAY       0.0
807#define RCC8000_BASEDELAY       0.0
808#define RCC8000_ID              "MSF"
809#define RCC8000_DESCRIPTION     "RCC 8000 MSF Receiver"
810#define RCC8000_FORMAT          "Radiocode RCC8000"
811#define RCC8000_MAXUNSYNC       (60*60) /* should be ok for an hour */
812#define RCC8000_SPEED		(B2400)
813#define RCC8000_CFLAG           (CS8|CREAD|CLOCAL)
814#define RCC8000_IFLAG           (IGNBRK|IGNPAR)
815#define RCC8000_OFLAG           0
816#define RCC8000_LFLAG           0
817#define RCC8000_SAMPLES         5
818#define RCC8000_KEEP	        3
819
820/*
821 * Hopf Radio clock 6021 Format
822 *
823 */
824#define HOPF6021_ROOTDELAY	0.0
825#define HOPF6021_BASEDELAY	0.0
826#define HOPF6021_DESCRIPTION	"HOPF 6021"
827#define HOPF6021_FORMAT         "hopf Funkuhr 6021"
828#define HOPF6021_MAXUNSYNC	(60*60)  /* should be ok for an hour */
829#define HOPF6021_SPEED         (B9600)
830#define HOPF6021_CFLAG          (CS8|CREAD|CLOCAL)
831#define HOPF6021_IFLAG		(IGNBRK|ISTRIP)
832#define HOPF6021_OFLAG		0
833#define HOPF6021_LFLAG		0
834#define HOPF6021_FLAGS          0
835#define HOPF6021_SAMPLES        5
836#define HOPF6021_KEEP	        3
837
838/*
839 * Diem's Computime Radio Clock Receiver
840 */
841#define COMPUTIME_FLAGS       0
842#define COMPUTIME_ROOTDELAY   0.0
843#define COMPUTIME_BASEDELAY   0.0
844#define COMPUTIME_ID          DCF_ID
845#define COMPUTIME_DESCRIPTION "Diem's Computime receiver"
846#define COMPUTIME_FORMAT      "Diem's Computime Radio Clock"
847#define COMPUTIME_TYPE        DCF_TYPE
848#define COMPUTIME_MAXUNSYNC   (60*60)       /* only trust clock for 1 hour */
849#define COMPUTIME_SPEED       (B9600)
850#define COMPUTIME_CFLAG       (CSTOPB|CS7|CREAD|CLOCAL)
851#define COMPUTIME_IFLAG       (IGNBRK|IGNPAR|ISTRIP)
852#define COMPUTIME_OFLAG       0
853#define COMPUTIME_LFLAG       0
854#define COMPUTIME_SAMPLES     5
855#define COMPUTIME_KEEP        3
856
857/*
858 * Varitext Radio Clock Receiver
859 */
860#define VARITEXT_FLAGS       0
861#define VARITEXT_ROOTDELAY   0.0
862#define VARITEXT_BASEDELAY   0.0
863#define VARITEXT_ID          "MSF"
864#define VARITEXT_DESCRIPTION "Varitext receiver"
865#define VARITEXT_FORMAT      "Varitext Radio Clock"
866#define VARITEXT_TYPE        DCF_TYPE
867#define VARITEXT_MAXUNSYNC   (60*60)       /* only trust clock for 1 hour */
868#define VARITEXT_SPEED       (B9600)
869#define VARITEXT_CFLAG       (CS7|CREAD|CLOCAL|PARENB|PARODD)
870#define VARITEXT_IFLAG       (IGNPAR|IGNBRK|INPCK) /*|ISTRIP)*/
871#define VARITEXT_OFLAG       0
872#define VARITEXT_LFLAG       0
873#define VARITEXT_SAMPLES     32
874#define VARITEXT_KEEP        20
875
876/*
877 * SEL240x Satellite Sychronized Clock
878 */
879#define SEL240X_POLLRATE	0 /* only true direct polling */
880#define SEL240X_POLLCMD		"BUB8"
881#define SEL240X_CMDSIZE		4
882
883static poll_info_t sel240x_pollinfo = { SEL240X_POLLRATE,
884	                                SEL240X_POLLCMD,
885					SEL240X_CMDSIZE };
886#define SEL240X_FLAGS		(PARSE_F_PPSONSECOND)
887#define SEL240X_POLL		poll_dpoll
888#define SEL240X_INIT		poll_init
889#define SEL240X_END		0
890#define SEL240X_DATA            ((void *)(&sel240x_pollinfo))
891#define SEL240X_ROOTDELAY	0.0
892#define SEL240X_BASEDELAY	0.0
893#define SEL240X_ID		GPS_ID
894#define SEL240X_DESCRIPTION	"SEL240x Satellite Synchronized Clock"
895#define SEL240X_FORMAT		"SEL B8"
896#define SEL240X_MAXUNSYNC	60*60*12 /* only trust clock for 12 hours */
897#define SEL240X_SPEED		(B9600)
898#define SEL240X_CFLAG		(CS8|CREAD|CLOCAL)
899#define SEL240X_IFLAG		(IGNBRK|IGNPAR)
900#define SEL240X_OFLAG		(0)
901#define SEL240X_LFLAG		(0)
902#define SEL240X_SAMPLES		5
903#define SEL240X_KEEP		3
904
905static struct parse_clockinfo
906{
907	u_long  cl_flags;		/* operation flags (PPS interpretation, trust handling) */
908  void  (*cl_poll)    (struct parseunit *);			/* active poll routine */
909  int   (*cl_init)    (struct parseunit *);			/* active poll init routine */
910  void  (*cl_event)   (struct parseunit *, int);		/* special event handling (e.g. reset clock) */
911  void  (*cl_end)     (struct parseunit *);			/* active poll end routine */
912  void  (*cl_message) (struct parseunit *, parsetime_t *);	/* process a lower layer message */
913	void   *cl_data;		/* local data area for "poll" mechanism */
914	double    cl_rootdelay;		/* rootdelay */
915	double    cl_basedelay;		/* current offset by which the RS232
916				time code is delayed from the actual time */
917	const char *cl_id;		/* ID code */
918	const char *cl_description;		/* device name */
919	const char *cl_format;		/* fixed format */
920	u_char  cl_type;		/* clock type (ntp control) */
921	u_long  cl_maxunsync;		/* time to trust oscillator after losing synch */
922	u_long  cl_speed;		/* terminal input & output baudrate */
923	u_long  cl_cflag;             /* terminal control flags */
924	u_long  cl_iflag;             /* terminal input flags */
925	u_long  cl_oflag;             /* terminal output flags */
926	u_long  cl_lflag;             /* terminal local flags */
927	u_long  cl_samples;	      /* samples for median filter */
928	u_long  cl_keep;              /* samples for median filter to keep */
929} parse_clockinfo[] =
930{
931	{				/* mode 0 */
932		MBG_FLAGS,
933		NO_POLL,
934		NO_INIT,
935		NO_EVENT,
936		NO_END,
937		NO_MESSAGE,
938		NO_LCLDATA,
939		DCFPZF535_ROOTDELAY,
940		DCFPZF535_BASEDELAY,
941		DCF_P_ID,
942		DCFPZF535_DESCRIPTION,
943		DCFPZF535_FORMAT,
944		DCF_TYPE,
945		DCFPZF535_MAXUNSYNC,
946		DCFPZF535_SPEED,
947		DCFPZF535_CFLAG,
948		DCFPZF535_IFLAG,
949		DCFPZF535_OFLAG,
950		DCFPZF535_LFLAG,
951		DCFPZF535_SAMPLES,
952		DCFPZF535_KEEP
953	},
954	{				/* mode 1 */
955		MBG_FLAGS,
956		NO_POLL,
957		NO_INIT,
958		NO_EVENT,
959		NO_END,
960		NO_MESSAGE,
961		NO_LCLDATA,
962		DCFPZF535OCXO_ROOTDELAY,
963		DCFPZF535OCXO_BASEDELAY,
964		DCF_P_ID,
965		DCFPZF535OCXO_DESCRIPTION,
966		DCFPZF535OCXO_FORMAT,
967		DCF_TYPE,
968		DCFPZF535OCXO_MAXUNSYNC,
969		DCFPZF535OCXO_SPEED,
970		DCFPZF535OCXO_CFLAG,
971		DCFPZF535OCXO_IFLAG,
972		DCFPZF535OCXO_OFLAG,
973		DCFPZF535OCXO_LFLAG,
974		DCFPZF535OCXO_SAMPLES,
975		DCFPZF535OCXO_KEEP
976	},
977	{				/* mode 2 */
978		MBG_FLAGS,
979		NO_POLL,
980		NO_INIT,
981		NO_EVENT,
982		NO_END,
983		NO_MESSAGE,
984		NO_LCLDATA,
985		DCFUA31_ROOTDELAY,
986		DCFUA31_BASEDELAY,
987		DCF_A_ID,
988		DCFUA31_DESCRIPTION,
989		DCFUA31_FORMAT,
990		DCF_TYPE,
991		DCFUA31_MAXUNSYNC,
992		DCFUA31_SPEED,
993		DCFUA31_CFLAG,
994		DCFUA31_IFLAG,
995		DCFUA31_OFLAG,
996		DCFUA31_LFLAG,
997		DCFUA31_SAMPLES,
998		DCFUA31_KEEP
999	},
1000	{				/* mode 3 */
1001		MBG_FLAGS,
1002		NO_POLL,
1003		NO_INIT,
1004		NO_EVENT,
1005		NO_END,
1006		NO_MESSAGE,
1007		NO_LCLDATA,
1008		DCF7000_ROOTDELAY,
1009		DCF7000_BASEDELAY,
1010		DCF_A_ID,
1011		DCF7000_DESCRIPTION,
1012		DCF7000_FORMAT,
1013		DCF_TYPE,
1014		DCF7000_MAXUNSYNC,
1015		DCF7000_SPEED,
1016		DCF7000_CFLAG,
1017		DCF7000_IFLAG,
1018		DCF7000_OFLAG,
1019		DCF7000_LFLAG,
1020		DCF7000_SAMPLES,
1021		DCF7000_KEEP
1022	},
1023	{				/* mode 4 */
1024		NO_CL_FLAGS,
1025		WSDCF_POLL,
1026		WSDCF_INIT,
1027		NO_EVENT,
1028		WSDCF_END,
1029		NO_MESSAGE,
1030		WSDCF_DATA,
1031		WSDCF_ROOTDELAY,
1032		WSDCF_BASEDELAY,
1033		DCF_A_ID,
1034		WSDCF_DESCRIPTION,
1035		WSDCF_FORMAT,
1036		DCF_TYPE,
1037		WSDCF_MAXUNSYNC,
1038		WSDCF_SPEED,
1039		WSDCF_CFLAG,
1040		WSDCF_IFLAG,
1041		WSDCF_OFLAG,
1042		WSDCF_LFLAG,
1043		WSDCF_SAMPLES,
1044		WSDCF_KEEP
1045	},
1046	{				/* mode 5 */
1047		RAWDCF_FLAGS,
1048		NO_POLL,
1049		RAWDCF_INIT,
1050		NO_EVENT,
1051		NO_END,
1052		NO_MESSAGE,
1053		NO_LCLDATA,
1054		RAWDCF_ROOTDELAY,
1055		CONRAD_BASEDELAY,
1056		DCF_A_ID,
1057		CONRAD_DESCRIPTION,
1058		RAWDCF_FORMAT,
1059		DCF_TYPE,
1060		RAWDCF_MAXUNSYNC,
1061		RAWDCF_SPEED,
1062		RAWDCF_CFLAG,
1063		RAWDCF_IFLAG,
1064		RAWDCF_OFLAG,
1065		RAWDCF_LFLAG,
1066		RAWDCF_SAMPLES,
1067		RAWDCF_KEEP
1068	},
1069	{				/* mode 6 */
1070		RAWDCF_FLAGS,
1071		NO_POLL,
1072		RAWDCF_INIT,
1073		NO_EVENT,
1074		NO_END,
1075		NO_MESSAGE,
1076		NO_LCLDATA,
1077		RAWDCF_ROOTDELAY,
1078		TIMEBRICK_BASEDELAY,
1079		DCF_A_ID,
1080		TIMEBRICK_DESCRIPTION,
1081		RAWDCF_FORMAT,
1082		DCF_TYPE,
1083		RAWDCF_MAXUNSYNC,
1084		RAWDCF_SPEED,
1085		RAWDCF_CFLAG,
1086		RAWDCF_IFLAG,
1087		RAWDCF_OFLAG,
1088		RAWDCF_LFLAG,
1089		RAWDCF_SAMPLES,
1090		RAWDCF_KEEP
1091	},
1092	{				/* mode 7 */
1093		MBG_FLAGS,
1094		GPS16X_POLL,
1095		GPS16X_INIT,
1096		NO_EVENT,
1097		GPS16X_END,
1098		GPS16X_MESSAGE,
1099		GPS16X_DATA,
1100		GPS16X_ROOTDELAY,
1101		GPS16X_BASEDELAY,
1102		GPS16X_ID,
1103		GPS16X_DESCRIPTION,
1104		GPS16X_FORMAT,
1105		GPS_TYPE,
1106		GPS16X_MAXUNSYNC,
1107		GPS16X_SPEED,
1108		GPS16X_CFLAG,
1109		GPS16X_IFLAG,
1110		GPS16X_OFLAG,
1111		GPS16X_LFLAG,
1112		GPS16X_SAMPLES,
1113		GPS16X_KEEP
1114	},
1115	{				/* mode 8 */
1116		RAWDCF_FLAGS,
1117		NO_POLL,
1118		NO_INIT,
1119		NO_EVENT,
1120		NO_END,
1121		NO_MESSAGE,
1122		NO_LCLDATA,
1123		RAWDCF_ROOTDELAY,
1124		IGELCLOCK_BASEDELAY,
1125		DCF_A_ID,
1126		IGELCLOCK_DESCRIPTION,
1127		RAWDCF_FORMAT,
1128		DCF_TYPE,
1129		RAWDCF_MAXUNSYNC,
1130		IGELCLOCK_SPEED,
1131		IGELCLOCK_CFLAG,
1132		RAWDCF_IFLAG,
1133		RAWDCF_OFLAG,
1134		RAWDCF_LFLAG,
1135		RAWDCF_SAMPLES,
1136		RAWDCF_KEEP
1137	},
1138	{				/* mode 9 */
1139		TRIMBLETAIP_FLAGS,
1140#if TRIM_POLLRATE		/* DHD940515: Allow user config */
1141		NO_POLL,
1142#else
1143		TRIMBLETAIP_POLL,
1144#endif
1145		TRIMBLETAIP_INIT,
1146		TRIMBLETAIP_EVENT,
1147		TRIMBLETAIP_END,
1148		NO_MESSAGE,
1149		TRIMBLETAIP_DATA,
1150		TRIMBLETAIP_ROOTDELAY,
1151		TRIMBLETAIP_BASEDELAY,
1152		TRIMBLETAIP_ID,
1153		TRIMBLETAIP_DESCRIPTION,
1154		TRIMBLETAIP_FORMAT,
1155		GPS_TYPE,
1156		TRIMBLETAIP_MAXUNSYNC,
1157		TRIMBLETAIP_SPEED,
1158		TRIMBLETAIP_CFLAG,
1159		TRIMBLETAIP_IFLAG,
1160		TRIMBLETAIP_OFLAG,
1161		TRIMBLETAIP_LFLAG,
1162		TRIMBLETAIP_SAMPLES,
1163		TRIMBLETAIP_KEEP
1164	},
1165	{				/* mode 10 */
1166		TRIMBLETSIP_FLAGS,
1167#if TRIM_POLLRATE		/* DHD940515: Allow user config */
1168		NO_POLL,
1169#else
1170		TRIMBLETSIP_POLL,
1171#endif
1172		TRIMBLETSIP_INIT,
1173		TRIMBLETSIP_EVENT,
1174		TRIMBLETSIP_END,
1175		TRIMBLETSIP_MESSAGE,
1176		TRIMBLETSIP_DATA,
1177		TRIMBLETSIP_ROOTDELAY,
1178		TRIMBLETSIP_BASEDELAY,
1179		TRIMBLETSIP_ID,
1180		TRIMBLETSIP_DESCRIPTION,
1181		TRIMBLETSIP_FORMAT,
1182		GPS_TYPE,
1183		TRIMBLETSIP_MAXUNSYNC,
1184		TRIMBLETSIP_SPEED,
1185		TRIMBLETSIP_CFLAG,
1186		TRIMBLETSIP_IFLAG,
1187		TRIMBLETSIP_OFLAG,
1188		TRIMBLETSIP_LFLAG,
1189		TRIMBLETSIP_SAMPLES,
1190		TRIMBLETSIP_KEEP
1191	},
1192	{                             /* mode 11 */
1193		NO_CL_FLAGS,
1194		RCC8000_POLL,
1195		RCC8000_INIT,
1196		NO_EVENT,
1197		RCC8000_END,
1198		NO_MESSAGE,
1199		RCC8000_DATA,
1200		RCC8000_ROOTDELAY,
1201		RCC8000_BASEDELAY,
1202		RCC8000_ID,
1203		RCC8000_DESCRIPTION,
1204		RCC8000_FORMAT,
1205		DCF_TYPE,
1206		RCC8000_MAXUNSYNC,
1207		RCC8000_SPEED,
1208		RCC8000_CFLAG,
1209		RCC8000_IFLAG,
1210		RCC8000_OFLAG,
1211		RCC8000_LFLAG,
1212		RCC8000_SAMPLES,
1213		RCC8000_KEEP
1214	},
1215	{                             /* mode 12 */
1216		HOPF6021_FLAGS,
1217		NO_POLL,
1218		NO_INIT,
1219		NO_EVENT,
1220		NO_END,
1221		NO_MESSAGE,
1222		NO_LCLDATA,
1223		HOPF6021_ROOTDELAY,
1224		HOPF6021_BASEDELAY,
1225		DCF_ID,
1226		HOPF6021_DESCRIPTION,
1227		HOPF6021_FORMAT,
1228		DCF_TYPE,
1229		HOPF6021_MAXUNSYNC,
1230		HOPF6021_SPEED,
1231		HOPF6021_CFLAG,
1232		HOPF6021_IFLAG,
1233		HOPF6021_OFLAG,
1234		HOPF6021_LFLAG,
1235		HOPF6021_SAMPLES,
1236		HOPF6021_KEEP
1237	},
1238	{                            /* mode 13 */
1239		COMPUTIME_FLAGS,
1240		NO_POLL,
1241		NO_INIT,
1242		NO_EVENT,
1243		NO_END,
1244		NO_MESSAGE,
1245		NO_LCLDATA,
1246		COMPUTIME_ROOTDELAY,
1247		COMPUTIME_BASEDELAY,
1248		COMPUTIME_ID,
1249		COMPUTIME_DESCRIPTION,
1250		COMPUTIME_FORMAT,
1251		COMPUTIME_TYPE,
1252		COMPUTIME_MAXUNSYNC,
1253		COMPUTIME_SPEED,
1254		COMPUTIME_CFLAG,
1255		COMPUTIME_IFLAG,
1256		COMPUTIME_OFLAG,
1257		COMPUTIME_LFLAG,
1258		COMPUTIME_SAMPLES,
1259		COMPUTIME_KEEP
1260	},
1261	{				/* mode 14 */
1262		RAWDCF_FLAGS,
1263		NO_POLL,
1264		RAWDCFDTRSET_INIT,
1265		NO_EVENT,
1266		NO_END,
1267		NO_MESSAGE,
1268		NO_LCLDATA,
1269		RAWDCF_ROOTDELAY,
1270		RAWDCF_BASEDELAY,
1271		DCF_A_ID,
1272		RAWDCFDTRSET_DESCRIPTION,
1273		RAWDCF_FORMAT,
1274		DCF_TYPE,
1275		RAWDCF_MAXUNSYNC,
1276		RAWDCF_SPEED,
1277		RAWDCF_CFLAG,
1278		RAWDCF_IFLAG,
1279		RAWDCF_OFLAG,
1280		RAWDCF_LFLAG,
1281		RAWDCF_SAMPLES,
1282		RAWDCF_KEEP
1283	},
1284	{				/* mode 15 */
1285		0,				/* operation flags (io modes) */
1286  		NO_POLL,			/* active poll routine */
1287		NO_INIT,			/* active poll init routine */
1288  		NO_EVENT,		        /* special event handling (e.g. reset clock) */
1289  		NO_END,				/* active poll end routine */
1290  		NO_MESSAGE,			/* process a lower layer message */
1291		NO_LCLDATA,			/* local data area for "poll" mechanism */
1292		0,				/* rootdelay */
1293		11.0 /* bits */ / 9600,		/* current offset by which the RS232
1294				           	time code is delayed from the actual time */
1295		DCF_ID,				/* ID code */
1296		"WHARTON 400A Series clock",	/* device name */
1297		"WHARTON 400A Series clock Output Format 1",	/* fixed format */
1298			/* Must match a format-name in a libparse/clk_xxx.c file */
1299		DCF_TYPE,			/* clock type (ntp control) */
1300		(1*60*60),		        /* time to trust oscillator after losing synch */
1301		B9600,				/* terminal input & output baudrate */
1302		(CS8|CREAD|PARENB|CLOCAL|HUPCL),/* terminal control flags */
1303		0,				/* terminal input flags */
1304		0,				/* terminal output flags */
1305		0,				/* terminal local flags */
1306		5,				/* samples for median filter */
1307		3,				/* samples for median filter to keep */
1308	},
1309	{				/* mode 16 - RAWDCF RTS set, DTR clr */
1310		RAWDCF_FLAGS,
1311		NO_POLL,
1312		RAWDCFDTRCLRRTSSET_INIT,
1313		NO_EVENT,
1314		NO_END,
1315		NO_MESSAGE,
1316		NO_LCLDATA,
1317		RAWDCF_ROOTDELAY,
1318		RAWDCF_BASEDELAY,
1319		DCF_A_ID,
1320		RAWDCFDTRCLRRTSSET_DESCRIPTION,
1321		RAWDCF_FORMAT,
1322		DCF_TYPE,
1323		RAWDCF_MAXUNSYNC,
1324		RAWDCF_SPEED,
1325		RAWDCF_CFLAG,
1326		RAWDCF_IFLAG,
1327		RAWDCF_OFLAG,
1328		RAWDCF_LFLAG,
1329		RAWDCF_SAMPLES,
1330		RAWDCF_KEEP
1331	},
1332        {                            /* mode 17 */
1333                VARITEXT_FLAGS,
1334                NO_POLL,
1335                NO_INIT,
1336                NO_EVENT,
1337                NO_END,
1338                NO_MESSAGE,
1339                NO_LCLDATA,
1340                VARITEXT_ROOTDELAY,
1341                VARITEXT_BASEDELAY,
1342                VARITEXT_ID,
1343                VARITEXT_DESCRIPTION,
1344                VARITEXT_FORMAT,
1345                VARITEXT_TYPE,
1346                VARITEXT_MAXUNSYNC,
1347                VARITEXT_SPEED,
1348                VARITEXT_CFLAG,
1349                VARITEXT_IFLAG,
1350                VARITEXT_OFLAG,
1351                VARITEXT_LFLAG,
1352                VARITEXT_SAMPLES,
1353                VARITEXT_KEEP
1354        },
1355	{				/* mode 18 */
1356		MBG_FLAGS,
1357		NO_POLL,
1358		NO_INIT,
1359		NO_EVENT,
1360		GPS16X_END,
1361		GPS16X_MESSAGE,
1362		GPS16X_DATA,
1363		GPS16X_ROOTDELAY,
1364		GPS16X_BASEDELAY,
1365		GPS16X_ID,
1366		GPS16X_DESCRIPTION,
1367		GPS16X_FORMAT,
1368		GPS_TYPE,
1369		GPS16X_MAXUNSYNC,
1370		GPS16X_SPEED,
1371		GPS16X_CFLAG,
1372		GPS16X_IFLAG,
1373		GPS16X_OFLAG,
1374		GPS16X_LFLAG,
1375		GPS16X_SAMPLES,
1376		GPS16X_KEEP
1377	},
1378	{				/* mode 19 */
1379		RAWDCF_FLAGS,
1380		NO_POLL,
1381		RAWDCF_INIT,
1382		NO_EVENT,
1383		NO_END,
1384		NO_MESSAGE,
1385		NO_LCLDATA,
1386		RAWDCF_ROOTDELAY,
1387		GUDE_EMC_USB_V20_BASEDELAY,
1388		DCF_A_ID,
1389		GUDE_EMC_USB_V20_DESCRIPTION,
1390		RAWDCF_FORMAT,
1391		DCF_TYPE,
1392		RAWDCF_MAXUNSYNC,
1393		GUDE_EMC_USB_V20_SPEED,
1394		RAWDCF_CFLAG,
1395		RAWDCF_IFLAG,
1396		RAWDCF_OFLAG,
1397		RAWDCF_LFLAG,
1398		RAWDCF_SAMPLES,
1399		RAWDCF_KEEP
1400	},
1401	{				/* mode 20, like mode 14 but driven by 75 baud */
1402		RAWDCF_FLAGS,
1403		NO_POLL,
1404		RAWDCFDTRSET_INIT,
1405		NO_EVENT,
1406		NO_END,
1407		NO_MESSAGE,
1408		NO_LCLDATA,
1409		RAWDCF_ROOTDELAY,
1410		RAWDCF_BASEDELAY,
1411		DCF_A_ID,
1412		RAWDCFDTRSET75_DESCRIPTION,
1413		RAWDCF_FORMAT,
1414		DCF_TYPE,
1415		RAWDCF_MAXUNSYNC,
1416		B75,
1417		RAWDCF_CFLAG,
1418		RAWDCF_IFLAG,
1419		RAWDCF_OFLAG,
1420		RAWDCF_LFLAG,
1421		RAWDCF_SAMPLES,
1422		RAWDCF_KEEP
1423	},
1424	{				/* mode 21, like mode 16 but driven by 75 baud
1425					 - RAWDCF RTS set, DTR clr */
1426		RAWDCF_FLAGS,
1427		NO_POLL,
1428		RAWDCFDTRCLRRTSSET_INIT,
1429		NO_EVENT,
1430		NO_END,
1431		NO_MESSAGE,
1432		NO_LCLDATA,
1433		RAWDCF_ROOTDELAY,
1434		RAWDCF_BASEDELAY,
1435		DCF_A_ID,
1436		RAWDCFDTRCLRRTSSET75_DESCRIPTION,
1437		RAWDCF_FORMAT,
1438		DCF_TYPE,
1439		RAWDCF_MAXUNSYNC,
1440		B75,
1441		RAWDCF_CFLAG,
1442		RAWDCF_IFLAG,
1443		RAWDCF_OFLAG,
1444		RAWDCF_LFLAG,
1445		RAWDCF_SAMPLES,
1446		RAWDCF_KEEP
1447	},
1448	{				/* mode 22 - like 2 with POWERUP trust */
1449		MBG_FLAGS | PARSE_F_POWERUPTRUST,
1450		NO_POLL,
1451		NO_INIT,
1452		NO_EVENT,
1453		NO_END,
1454		NO_MESSAGE,
1455		NO_LCLDATA,
1456		DCFUA31_ROOTDELAY,
1457		DCFUA31_BASEDELAY,
1458		DCF_A_ID,
1459		DCFUA31_DESCRIPTION,
1460		DCFUA31_FORMAT,
1461		DCF_TYPE,
1462		DCFUA31_MAXUNSYNC,
1463		DCFUA31_SPEED,
1464		DCFUA31_CFLAG,
1465		DCFUA31_IFLAG,
1466		DCFUA31_OFLAG,
1467		DCFUA31_LFLAG,
1468		DCFUA31_SAMPLES,
1469		DCFUA31_KEEP
1470	},
1471	{				/* mode 23 - like 7 with POWERUP trust */
1472		MBG_FLAGS | PARSE_F_POWERUPTRUST,
1473		GPS16X_POLL,
1474		GPS16X_INIT,
1475		NO_EVENT,
1476		GPS16X_END,
1477		GPS16X_MESSAGE,
1478		GPS16X_DATA,
1479		GPS16X_ROOTDELAY,
1480		GPS16X_BASEDELAY,
1481		GPS16X_ID,
1482		GPS16X_DESCRIPTION,
1483		GPS16X_FORMAT,
1484		GPS_TYPE,
1485		GPS16X_MAXUNSYNC,
1486		GPS16X_SPEED,
1487		GPS16X_CFLAG,
1488		GPS16X_IFLAG,
1489		GPS16X_OFLAG,
1490		GPS16X_LFLAG,
1491		GPS16X_SAMPLES,
1492		GPS16X_KEEP
1493	},
1494	{				/* mode 24 */
1495		SEL240X_FLAGS,
1496		SEL240X_POLL,
1497		SEL240X_INIT,
1498		NO_EVENT,
1499		SEL240X_END,
1500		NO_MESSAGE,
1501		SEL240X_DATA,
1502		SEL240X_ROOTDELAY,
1503		SEL240X_BASEDELAY,
1504		SEL240X_ID,
1505		SEL240X_DESCRIPTION,
1506		SEL240X_FORMAT,
1507		GPS_TYPE,
1508		SEL240X_MAXUNSYNC,
1509		SEL240X_SPEED,
1510		SEL240X_CFLAG,
1511		SEL240X_IFLAG,
1512		SEL240X_OFLAG,
1513		SEL240X_LFLAG,
1514		SEL240X_SAMPLES,
1515		SEL240X_KEEP
1516	},
1517};
1518
1519static int ncltypes = sizeof(parse_clockinfo) / sizeof(struct parse_clockinfo);
1520
1521#define CLK_REALTYPE(x) ((int)(((x)->ttl) & 0x7F))
1522#define CLK_TYPE(x)	((CLK_REALTYPE(x) >= ncltypes) ? ~0 : CLK_REALTYPE(x))
1523#define CLK_UNIT(x)	((int)REFCLOCKUNIT(&(x)->srcadr))
1524#define CLK_PPS(x)	(((x)->ttl) & 0x80)
1525
1526/*
1527 * Other constant stuff
1528 */
1529#define	PARSEHSREFID	0x7f7f08ff	/* 127.127.8.255 refid for hi strata */
1530
1531#define PARSESTATISTICS   (60*60)	        /* output state statistics every hour */
1532
1533static int notice = 0;
1534
1535#define PARSE_STATETIME(parse, i) ((parse->generic->currentstatus == i) ? parse->statetime[i] + current_time - parse->lastchange : parse->statetime[i])
1536
1537static void parse_event   (struct parseunit *, int);
1538static void parse_process (struct parseunit *, parsetime_t *);
1539static void clear_err     (struct parseunit *, u_long);
1540static int  list_err      (struct parseunit *, u_long);
1541static char * l_mktime    (u_long);
1542
1543/**===========================================================================
1544 ** implementation error message regression module
1545 **/
1546static void
1547clear_err(
1548	struct parseunit *parse,
1549	u_long            lstate
1550	)
1551{
1552	if (lstate == ERR_ALL)
1553	{
1554		size_t i;
1555
1556		for (i = 0; i < ERR_CNT; i++)
1557		{
1558			parse->errors[i].err_stage   = err_tbl[i];
1559			parse->errors[i].err_cnt     = 0;
1560			parse->errors[i].err_last    = 0;
1561			parse->errors[i].err_started = 0;
1562			parse->errors[i].err_suppressed = 0;
1563		}
1564	}
1565	else
1566	{
1567		parse->errors[lstate].err_stage   = err_tbl[lstate];
1568		parse->errors[lstate].err_cnt     = 0;
1569		parse->errors[lstate].err_last    = 0;
1570		parse->errors[lstate].err_started = 0;
1571		parse->errors[lstate].err_suppressed = 0;
1572	}
1573}
1574
1575static int
1576list_err(
1577	struct parseunit *parse,
1578	u_long            lstate
1579	)
1580{
1581	int do_it;
1582	struct errorinfo *err = &parse->errors[lstate];
1583
1584	if (err->err_started == 0)
1585	{
1586		err->err_started = current_time;
1587	}
1588
1589	do_it = (current_time - err->err_last) >= err->err_stage->err_delay;
1590
1591	if (do_it)
1592	    err->err_cnt++;
1593
1594	if (err->err_stage->err_count &&
1595	    (err->err_cnt >= err->err_stage->err_count))
1596	{
1597		err->err_stage++;
1598		err->err_cnt = 0;
1599	}
1600
1601	if (!err->err_cnt && do_it)
1602	    msyslog(LOG_INFO, "PARSE receiver #%d: interval for following error message class is at least %s",
1603		    CLK_UNIT(parse->peer), l_mktime(err->err_stage->err_delay));
1604
1605	if (!do_it)
1606	    err->err_suppressed++;
1607	else
1608	    err->err_last = current_time;
1609
1610	if (do_it && err->err_suppressed)
1611	{
1612		msyslog(LOG_INFO, "PARSE receiver #%d: %ld message%s suppressed, error condition class persists for %s",
1613			CLK_UNIT(parse->peer), err->err_suppressed, (err->err_suppressed == 1) ? " was" : "s where",
1614			l_mktime(current_time - err->err_started));
1615		err->err_suppressed = 0;
1616	}
1617
1618	return do_it;
1619}
1620
1621/*--------------------------------------------------
1622 * mkreadable - make a printable ascii string (without
1623 * embedded quotes so that the ntpq protocol isn't
1624 * fooled
1625 */
1626#ifndef isprint
1627#define isprint(_X_) (((_X_) > 0x1F) && ((_X_) < 0x7F))
1628#endif
1629
1630static char *
1631mkreadable(
1632	char  *buffer,
1633	long  blen,
1634	const char  *src,
1635	u_long  srclen,
1636	int hex
1637	)
1638{
1639	static const char ellipsis[] = "...";
1640	char *b    = buffer;
1641	char *endb = NULL;
1642
1643	if (blen < 4)
1644		return NULL;		/* don't bother with mini buffers */
1645
1646	endb = buffer + blen - sizeof(ellipsis);
1647
1648	blen--;			/* account for '\0' */
1649
1650	while (blen && srclen--)
1651	{
1652		if (!hex &&             /* no binary only */
1653		    (*src != '\\') &&   /* no plain \ */
1654		    (*src != '"') &&    /* no " */
1655		    isprint((unsigned char)*src))	/* only printables */
1656		{			/* they are easy... */
1657			*buffer++ = *src++;
1658			blen--;
1659		}
1660		else
1661		{
1662			if (blen < 4)
1663			{
1664				while (blen--)
1665				{
1666					*buffer++ = '.';
1667				}
1668				*buffer = '\0';
1669				return b;
1670			}
1671			else
1672			{
1673				if (*src == '\\')
1674				{
1675					memcpy(buffer, "\\\\", 2);
1676					buffer += 2;
1677					blen   -= 2;
1678					src++;
1679				}
1680				else
1681				{
1682					snprintf(buffer, blen, "\\x%02x", *src++);
1683					blen   -= 4;
1684					buffer += 4;
1685				}
1686			}
1687		}
1688		if (srclen && !blen && endb) /* overflow - set last chars to ... */
1689			memcpy(endb, ellipsis, sizeof(ellipsis));
1690	}
1691
1692	*buffer = '\0';
1693	return b;
1694}
1695
1696
1697/*--------------------------------------------------
1698 * mkascii - make a printable ascii string
1699 * assumes (unless defined better) 7-bit ASCII
1700 */
1701static char *
1702mkascii(
1703	char  *buffer,
1704	long  blen,
1705	const char  *src,
1706	u_long  srclen
1707	)
1708{
1709	return mkreadable(buffer, blen, src, srclen, 0);
1710}
1711
1712/**===========================================================================
1713 ** implementation of i/o handling methods
1714 ** (all STREAM, partial STREAM, user level)
1715 **/
1716
1717/*
1718 * define possible io handling methods
1719 */
1720#ifdef STREAM
1721static int  ppsclock_init   (struct parseunit *);
1722static int  stream_init     (struct parseunit *);
1723static void stream_end      (struct parseunit *);
1724static int  stream_enable   (struct parseunit *);
1725static int  stream_disable  (struct parseunit *);
1726static int  stream_setcs    (struct parseunit *, parsectl_t *);
1727static int  stream_getfmt   (struct parseunit *, parsectl_t *);
1728static int  stream_setfmt   (struct parseunit *, parsectl_t *);
1729static int  stream_timecode (struct parseunit *, parsectl_t *);
1730static void stream_receive  (struct recvbuf *);
1731#endif
1732
1733static int  local_init     (struct parseunit *);
1734static void local_end      (struct parseunit *);
1735static int  local_nop      (struct parseunit *);
1736static int  local_setcs    (struct parseunit *, parsectl_t *);
1737static int  local_getfmt   (struct parseunit *, parsectl_t *);
1738static int  local_setfmt   (struct parseunit *, parsectl_t *);
1739static int  local_timecode (struct parseunit *, parsectl_t *);
1740static void local_receive  (struct recvbuf *);
1741static int  local_input    (struct recvbuf *);
1742
1743static bind_t io_bindings[] =
1744{
1745#ifdef STREAM
1746	{
1747		"parse STREAM",
1748		stream_init,
1749		stream_end,
1750		stream_setcs,
1751		stream_disable,
1752		stream_enable,
1753		stream_getfmt,
1754		stream_setfmt,
1755		stream_timecode,
1756		stream_receive,
1757		0,
1758	},
1759	{
1760		"ppsclock STREAM",
1761		ppsclock_init,
1762		local_end,
1763		local_setcs,
1764		local_nop,
1765		local_nop,
1766		local_getfmt,
1767		local_setfmt,
1768		local_timecode,
1769		local_receive,
1770		local_input,
1771	},
1772#endif
1773	{
1774		"normal",
1775		local_init,
1776		local_end,
1777		local_setcs,
1778		local_nop,
1779		local_nop,
1780		local_getfmt,
1781		local_setfmt,
1782		local_timecode,
1783		local_receive,
1784		local_input,
1785	},
1786	{
1787		(char *)0,
1788		NULL,
1789		NULL,
1790		NULL,
1791		NULL,
1792		NULL,
1793		NULL,
1794		NULL,
1795		NULL,
1796		NULL,
1797		NULL,
1798	}
1799};
1800
1801#ifdef STREAM
1802
1803/*--------------------------------------------------
1804 * ppsclock STREAM init
1805 */
1806static int
1807ppsclock_init(
1808	struct parseunit *parse
1809	)
1810{
1811        static char m1[] = "ppsclocd";
1812	static char m2[] = "ppsclock";
1813
1814	/*
1815	 * now push the parse streams module
1816	 * it will ensure exclusive access to the device
1817	 */
1818	if (ioctl(parse->ppsfd, I_PUSH, (caddr_t)m1) == -1 &&
1819	    ioctl(parse->ppsfd, I_PUSH, (caddr_t)m2) == -1)
1820	{
1821		if (errno != EINVAL)
1822		{
1823			msyslog(LOG_ERR, "PARSE receiver #%d: ppsclock_init: ioctl(fd, I_PUSH, \"ppsclock\"): %m",
1824				CLK_UNIT(parse->peer));
1825		}
1826		return 0;
1827	}
1828	if (!local_init(parse))
1829	{
1830		(void)ioctl(parse->ppsfd, I_POP, (caddr_t)0);
1831		return 0;
1832	}
1833
1834	parse->flags |= PARSE_PPSCLOCK;
1835	return 1;
1836}
1837
1838/*--------------------------------------------------
1839 * parse STREAM init
1840 */
1841static int
1842stream_init(
1843	struct parseunit *parse
1844	)
1845{
1846	static char m1[] = "parse";
1847	/*
1848	 * now push the parse streams module
1849	 * to test whether it is there (neat interface 8-( )
1850	 */
1851	if (ioctl(parse->generic->io.fd, I_PUSH, (caddr_t)m1) == -1)
1852	{
1853		if (errno != EINVAL) /* accept non-existence */
1854		{
1855			msyslog(LOG_ERR, "PARSE receiver #%d: stream_init: ioctl(fd, I_PUSH, \"parse\"): %m", CLK_UNIT(parse->peer));
1856		}
1857		return 0;
1858	}
1859	else
1860	{
1861		while(ioctl(parse->generic->io.fd, I_POP, (caddr_t)0) == 0)
1862		    /* empty loop */;
1863
1864		/*
1865		 * now push it a second time after we have removed all
1866		 * module garbage
1867		 */
1868		if (ioctl(parse->generic->io.fd, I_PUSH, (caddr_t)m1) == -1)
1869		{
1870			msyslog(LOG_ERR, "PARSE receiver #%d: stream_init: ioctl(fd, I_PUSH, \"parse\"): %m", CLK_UNIT(parse->peer));
1871			return 0;
1872		}
1873		else
1874		{
1875			return 1;
1876		}
1877	}
1878}
1879
1880/*--------------------------------------------------
1881 * parse STREAM end
1882 */
1883static void
1884stream_end(
1885	struct parseunit *parse
1886	)
1887{
1888	while(ioctl(parse->generic->io.fd, I_POP, (caddr_t)0) == 0)
1889	    /* empty loop */;
1890}
1891
1892/*--------------------------------------------------
1893 * STREAM setcs
1894 */
1895static int
1896stream_setcs(
1897	struct parseunit *parse,
1898	parsectl_t  *tcl
1899	)
1900{
1901	struct strioctl strioc;
1902
1903	strioc.ic_cmd     = PARSEIOC_SETCS;
1904	strioc.ic_timout  = 0;
1905	strioc.ic_dp      = (char *)tcl;
1906	strioc.ic_len     = sizeof (*tcl);
1907
1908	if (ioctl(parse->generic->io.fd, I_STR, (caddr_t)&strioc) == -1)
1909	{
1910		msyslog(LOG_ERR, "PARSE receiver #%d: stream_setcs: ioctl(fd, I_STR, PARSEIOC_SETCS): %m", CLK_UNIT(parse->peer));
1911		return 0;
1912	}
1913	return 1;
1914}
1915
1916/*--------------------------------------------------
1917 * STREAM enable
1918 */
1919static int
1920stream_enable(
1921	struct parseunit *parse
1922	)
1923{
1924	struct strioctl strioc;
1925
1926	strioc.ic_cmd     = PARSEIOC_ENABLE;
1927	strioc.ic_timout  = 0;
1928	strioc.ic_dp      = (char *)0;
1929	strioc.ic_len     = 0;
1930
1931	if (ioctl(parse->generic->io.fd, I_STR, (caddr_t)&strioc) == -1)
1932	{
1933		msyslog(LOG_ERR, "PARSE receiver #%d: stream_enable: ioctl(fd, I_STR, PARSEIOC_ENABLE): %m", CLK_UNIT(parse->peer));
1934		return 0;
1935	}
1936	parse->generic->io.clock_recv = stream_receive; /* ok - parse input in kernel */
1937	return 1;
1938}
1939
1940/*--------------------------------------------------
1941 * STREAM disable
1942 */
1943static int
1944stream_disable(
1945	struct parseunit *parse
1946	)
1947{
1948	struct strioctl strioc;
1949
1950	strioc.ic_cmd     = PARSEIOC_DISABLE;
1951	strioc.ic_timout  = 0;
1952	strioc.ic_dp      = (char *)0;
1953	strioc.ic_len     = 0;
1954
1955	if (ioctl(parse->generic->io.fd, I_STR, (caddr_t)&strioc) == -1)
1956	{
1957		msyslog(LOG_ERR, "PARSE receiver #%d: stream_disable: ioctl(fd, I_STR, PARSEIOC_DISABLE): %m", CLK_UNIT(parse->peer));
1958		return 0;
1959	}
1960	parse->generic->io.clock_recv = local_receive; /* ok - parse input in daemon */
1961	return 1;
1962}
1963
1964/*--------------------------------------------------
1965 * STREAM getfmt
1966 */
1967static int
1968stream_getfmt(
1969	struct parseunit *parse,
1970	parsectl_t  *tcl
1971	)
1972{
1973	struct strioctl strioc;
1974
1975	strioc.ic_cmd     = PARSEIOC_GETFMT;
1976	strioc.ic_timout  = 0;
1977	strioc.ic_dp      = (char *)tcl;
1978	strioc.ic_len     = sizeof (*tcl);
1979	if (ioctl(parse->generic->io.fd, I_STR, (caddr_t)&strioc) == -1)
1980	{
1981		msyslog(LOG_ERR, "PARSE receiver #%d: ioctl(fd, I_STR, PARSEIOC_GETFMT): %m", CLK_UNIT(parse->peer));
1982		return 0;
1983	}
1984	return 1;
1985}
1986
1987/*--------------------------------------------------
1988 * STREAM setfmt
1989 */
1990static int
1991stream_setfmt(
1992	struct parseunit *parse,
1993	parsectl_t  *tcl
1994	)
1995{
1996	struct strioctl strioc;
1997
1998	strioc.ic_cmd     = PARSEIOC_SETFMT;
1999	strioc.ic_timout  = 0;
2000	strioc.ic_dp      = (char *)tcl;
2001	strioc.ic_len     = sizeof (*tcl);
2002
2003	if (ioctl(parse->generic->io.fd, I_STR, (caddr_t)&strioc) == -1)
2004	{
2005		msyslog(LOG_ERR, "PARSE receiver #%d: stream_setfmt: ioctl(fd, I_STR, PARSEIOC_SETFMT): %m", CLK_UNIT(parse->peer));
2006		return 0;
2007	}
2008	return 1;
2009}
2010
2011
2012/*--------------------------------------------------
2013 * STREAM timecode
2014 */
2015static int
2016stream_timecode(
2017	struct parseunit *parse,
2018	parsectl_t  *tcl
2019	)
2020{
2021	struct strioctl strioc;
2022
2023	strioc.ic_cmd     = PARSEIOC_TIMECODE;
2024	strioc.ic_timout  = 0;
2025	strioc.ic_dp      = (char *)tcl;
2026	strioc.ic_len     = sizeof (*tcl);
2027
2028	if (ioctl(parse->generic->io.fd, I_STR, (caddr_t)&strioc) == -1)
2029	{
2030		ERR(ERR_INTERNAL)
2031			msyslog(LOG_ERR, "PARSE receiver #%d: stream_timecode: ioctl(fd, I_STR, PARSEIOC_TIMECODE): %m", CLK_UNIT(parse->peer));
2032		return 0;
2033	}
2034	clear_err(parse, ERR_INTERNAL);
2035	return 1;
2036}
2037
2038/*--------------------------------------------------
2039 * STREAM receive
2040 */
2041static void
2042stream_receive(
2043	struct recvbuf *rbufp
2044	)
2045{
2046	struct parseunit * parse;
2047	parsetime_t parsetime;
2048
2049	parse = (struct parseunit *)rbufp->recv_peer->procptr->unitptr;
2050	if (!parse->peer)
2051	    return;
2052
2053	if (rbufp->recv_length != sizeof(parsetime_t))
2054	{
2055		ERR(ERR_BADIO)
2056			msyslog(LOG_ERR,"PARSE receiver #%d: stream_receive: bad size (got %d expected %d)",
2057				CLK_UNIT(parse->peer), rbufp->recv_length, (int)sizeof(parsetime_t));
2058		parse_event(parse, CEVNT_BADREPLY);
2059		return;
2060	}
2061	clear_err(parse, ERR_BADIO);
2062
2063	memmove((caddr_t)&parsetime,
2064		(caddr_t)rbufp->recv_buffer,
2065		sizeof(parsetime_t));
2066
2067#ifdef DEBUG
2068	if (debug > 3)
2069	  {
2070	    printf("PARSE receiver #%d: status %06x, state %08x, time %lx.%08lx, stime %lx.%08lx, ptime %lx.%08lx\n",
2071		   CLK_UNIT(parse->peer),
2072		   (unsigned int)parsetime.parse_status,
2073		   (unsigned int)parsetime.parse_state,
2074		   (unsigned long)parsetime.parse_time.tv.tv_sec,
2075		   (unsigned long)parsetime.parse_time.tv.tv_usec,
2076		   (unsigned long)parsetime.parse_stime.tv.tv_sec,
2077		   (unsigned long)parsetime.parse_stime.tv.tv_usec,
2078		   (unsigned long)parsetime.parse_ptime.tv.tv_sec,
2079		   (unsigned long)parsetime.parse_ptime.tv.tv_usec);
2080	  }
2081#endif
2082
2083	/*
2084	 * switch time stamp world - be sure to normalize small usec field
2085	 * errors.
2086	 */
2087
2088	parsetime.parse_stime.fp = tval_stamp_to_lfp(parsetime.parse_stime.tv);
2089
2090	if (PARSE_TIMECODE(parsetime.parse_state))
2091	{
2092		parsetime.parse_time.fp = tval_stamp_to_lfp(parsetime.parse_time.tv);
2093	}
2094
2095	if (PARSE_PPS(parsetime.parse_state))
2096	{
2097		parsetime.parse_ptime.fp = tval_stamp_to_lfp(parsetime.parse_ptime.tv);
2098	}
2099
2100	parse_process(parse, &parsetime);
2101}
2102#endif
2103
2104/*--------------------------------------------------
2105 * local init
2106 */
2107static int
2108local_init(
2109	struct parseunit *parse
2110	)
2111{
2112	return parse_ioinit(&parse->parseio);
2113}
2114
2115/*--------------------------------------------------
2116 * local end
2117 */
2118static void
2119local_end(
2120	struct parseunit *parse
2121	)
2122{
2123	parse_ioend(&parse->parseio);
2124}
2125
2126
2127/*--------------------------------------------------
2128 * local nop
2129 */
2130static int
2131local_nop(
2132	struct parseunit *parse
2133	)
2134{
2135	return 1;
2136}
2137
2138/*--------------------------------------------------
2139 * local setcs
2140 */
2141static int
2142local_setcs(
2143	struct parseunit *parse,
2144	parsectl_t  *tcl
2145	)
2146{
2147	return parse_setcs(tcl, &parse->parseio);
2148}
2149
2150/*--------------------------------------------------
2151 * local getfmt
2152 */
2153static int
2154local_getfmt(
2155	struct parseunit *parse,
2156	parsectl_t  *tcl
2157	)
2158{
2159	return parse_getfmt(tcl, &parse->parseio);
2160}
2161
2162/*--------------------------------------------------
2163 * local setfmt
2164 */
2165static int
2166local_setfmt(
2167	struct parseunit *parse,
2168	parsectl_t  *tcl
2169	)
2170{
2171	return parse_setfmt(tcl, &parse->parseio);
2172}
2173
2174/*--------------------------------------------------
2175 * local timecode
2176 */
2177static int
2178local_timecode(
2179	struct parseunit *parse,
2180	parsectl_t  *tcl
2181	)
2182{
2183	return parse_timecode(tcl, &parse->parseio);
2184}
2185
2186
2187/*--------------------------------------------------
2188 * local input
2189 */
2190static int
2191local_input(
2192	struct recvbuf *rbufp
2193	)
2194{
2195	struct parseunit * parse;
2196
2197	int count;
2198	unsigned char *s;
2199	timestamp_t ts;
2200
2201	parse = (struct parseunit *)rbufp->recv_peer->procptr->unitptr;
2202	if (!parse->peer)
2203		return 0;
2204
2205	/*
2206	 * eat all characters, parsing then and feeding complete samples
2207	 */
2208	count = rbufp->recv_length;
2209	s = (unsigned char *)rbufp->recv_buffer;
2210	ts.fp = rbufp->recv_time;
2211
2212	while (count--)
2213	{
2214		if (parse_ioread(&parse->parseio, (unsigned int)(*s++), &ts))
2215		{
2216			struct recvbuf *buf;
2217
2218			/*
2219			 * got something good to eat
2220			 */
2221			if (!PARSE_PPS(parse->parseio.parse_dtime.parse_state))
2222			{
2223#ifdef HAVE_PPSAPI
2224				if (parse->flags & PARSE_PPSCLOCK)
2225				{
2226					struct timespec pps_timeout;
2227					pps_info_t      pps_info;
2228
2229					pps_timeout.tv_sec  = 0;
2230					pps_timeout.tv_nsec = 0;
2231
2232					if (time_pps_fetch(parse->atom.handle, PPS_TSFMT_TSPEC, &pps_info,
2233							   &pps_timeout) == 0)
2234					{
2235						if (pps_info.assert_sequence + pps_info.clear_sequence != parse->ppsserial)
2236						{
2237							double dtemp;
2238
2239						        struct timespec pts;
2240							/*
2241							 * add PPS time stamp if available via ppsclock module
2242							 * and not supplied already.
2243							 */
2244							if (parse->flags & PARSE_CLEAR)
2245							  pts = pps_info.clear_timestamp;
2246							else
2247							  pts = pps_info.assert_timestamp;
2248
2249							parse->parseio.parse_dtime.parse_ptime.fp.l_ui = (uint32_t) (pts.tv_sec + JAN_1970);
2250
2251							dtemp = (double) pts.tv_nsec / 1e9;
2252							if (dtemp < 0.) {
2253								dtemp += 1;
2254								parse->parseio.parse_dtime.parse_ptime.fp.l_ui--;
2255							}
2256							if (dtemp > 1.) {
2257								dtemp -= 1;
2258								parse->parseio.parse_dtime.parse_ptime.fp.l_ui++;
2259							}
2260							parse->parseio.parse_dtime.parse_ptime.fp.l_uf = (uint32_t)(dtemp * FRAC);
2261
2262							parse->parseio.parse_dtime.parse_state |= PARSEB_PPS|PARSEB_S_PPS;
2263#ifdef DEBUG
2264							if (debug > 3)
2265							{
2266								printf(
2267								       "parse: local_receive: fd %d PPSAPI seq %ld - PPS %s\n",
2268								       rbufp->fd,
2269								       (long)pps_info.assert_sequence + (long)pps_info.clear_sequence,
2270								       lfptoa(&parse->parseio.parse_dtime.parse_ptime.fp, 6));
2271							}
2272#endif
2273						}
2274#ifdef DEBUG
2275						else
2276						{
2277							if (debug > 3)
2278							{
2279								printf(
2280								       "parse: local_receive: fd %d PPSAPI seq assert %ld, seq clear %ld - NO PPS event\n",
2281								       rbufp->fd,
2282								       (long)pps_info.assert_sequence, (long)pps_info.clear_sequence);
2283							}
2284						}
2285#endif
2286						parse->ppsserial = pps_info.assert_sequence + pps_info.clear_sequence;
2287					}
2288#ifdef DEBUG
2289					else
2290					{
2291						if (debug > 3)
2292						{
2293							printf(
2294							       "parse: local_receive: fd %d PPSAPI time_pps_fetch errno = %d\n",
2295							       rbufp->fd,
2296							       errno);
2297						}
2298					}
2299#endif
2300				}
2301#else
2302#ifdef TIOCDCDTIMESTAMP
2303				struct timeval dcd_time;
2304
2305				if (ioctl(parse->ppsfd, TIOCDCDTIMESTAMP, &dcd_time) != -1)
2306				{
2307					l_fp tstmp;
2308
2309					TVTOTS(&dcd_time, &tstmp);
2310					tstmp.l_ui += JAN_1970;
2311					L_SUB(&ts.fp, &tstmp);
2312					if (ts.fp.l_ui == 0)
2313					{
2314#ifdef DEBUG
2315						if (debug)
2316						{
2317							printf(
2318							       "parse: local_receive: fd %d DCDTIMESTAMP %s\n",
2319							       parse->ppsfd,
2320							       lfptoa(&tstmp, 6));
2321							printf(" sigio %s\n",
2322							       lfptoa(&ts.fp, 6));
2323						}
2324#endif
2325						parse->parseio.parse_dtime.parse_ptime.fp = tstmp;
2326						parse->parseio.parse_dtime.parse_state |= PARSEB_PPS|PARSEB_S_PPS;
2327					}
2328				}
2329#else /* TIOCDCDTIMESTAMP */
2330#if defined(HAVE_STRUCT_PPSCLOCKEV) && (defined(HAVE_CIOGETEV) || defined(HAVE_TIOCGPPSEV))
2331				if (parse->flags & PARSE_PPSCLOCK)
2332				  {
2333				    l_fp tts;
2334				    struct ppsclockev ev;
2335
2336#ifdef HAVE_CIOGETEV
2337				    if (ioctl(parse->ppsfd, CIOGETEV, (caddr_t)&ev) == 0)
2338#endif
2339#ifdef HAVE_TIOCGPPSEV
2340				    if (ioctl(parse->ppsfd, TIOCGPPSEV, (caddr_t)&ev) == 0)
2341#endif
2342					{
2343					  if (ev.serial != parse->ppsserial)
2344					    {
2345					      /*
2346					       * add PPS time stamp if available via ppsclock module
2347					       * and not supplied already.
2348					       */
2349					      if (!buftvtots((const char *)&ev.tv, &tts))
2350						{
2351						  ERR(ERR_BADDATA)
2352						    msyslog(LOG_ERR,"parse: local_receive: timestamp conversion error (buftvtots) (ppsclockev.tv)");
2353						}
2354					      else
2355						{
2356						  parse->parseio.parse_dtime.parse_ptime.fp = tts;
2357						  parse->parseio.parse_dtime.parse_state |= PARSEB_PPS|PARSEB_S_PPS;
2358						}
2359					    }
2360					  parse->ppsserial = ev.serial;
2361					}
2362				  }
2363#endif
2364#endif /* TIOCDCDTIMESTAMP */
2365#endif /* !HAVE_PPSAPI */
2366			}
2367			if (count)
2368			{	/* simulate receive */
2369				buf = get_free_recv_buffer();
2370				if (buf != NULL) {
2371					memmove((caddr_t)buf->recv_buffer,
2372						(caddr_t)&parse->parseio.parse_dtime,
2373						sizeof(parsetime_t));
2374					buf->recv_length  = sizeof(parsetime_t);
2375					buf->recv_time    = rbufp->recv_time;
2376#ifndef HAVE_IO_COMPLETION_PORT
2377					buf->srcadr       = rbufp->srcadr;
2378#endif
2379					buf->dstadr       = rbufp->dstadr;
2380					buf->receiver     = rbufp->receiver;
2381					buf->fd           = rbufp->fd;
2382					buf->X_from_where = rbufp->X_from_where;
2383					parse->generic->io.recvcount++;
2384					packets_received++;
2385					add_full_recv_buffer(buf);
2386#ifdef HAVE_IO_COMPLETION_PORT
2387					SetEvent(WaitableIoEventHandle);
2388#endif
2389				}
2390				parse_iodone(&parse->parseio);
2391			}
2392			else
2393			{
2394				memmove((caddr_t)rbufp->recv_buffer,
2395					(caddr_t)&parse->parseio.parse_dtime,
2396					sizeof(parsetime_t));
2397				parse_iodone(&parse->parseio);
2398				rbufp->recv_length = sizeof(parsetime_t);
2399				return 1; /* got something & in place return */
2400			}
2401		}
2402	}
2403	return 0;		/* nothing to pass up */
2404}
2405
2406/*--------------------------------------------------
2407 * local receive
2408 */
2409static void
2410local_receive(
2411	struct recvbuf *rbufp
2412	)
2413{
2414	struct parseunit * parse;
2415	parsetime_t parsetime;
2416
2417	parse = (struct parseunit *)rbufp->recv_peer->procptr->unitptr;
2418	if (!parse->peer)
2419	    return;
2420
2421	if (rbufp->recv_length != sizeof(parsetime_t))
2422	{
2423		ERR(ERR_BADIO)
2424			msyslog(LOG_ERR,"PARSE receiver #%d: local_receive: bad size (got %d expected %d)",
2425				CLK_UNIT(parse->peer), rbufp->recv_length, (int)sizeof(parsetime_t));
2426		parse_event(parse, CEVNT_BADREPLY);
2427		return;
2428	}
2429	clear_err(parse, ERR_BADIO);
2430
2431	memmove((caddr_t)&parsetime,
2432		(caddr_t)rbufp->recv_buffer,
2433		sizeof(parsetime_t));
2434
2435#ifdef DEBUG
2436	if (debug > 3)
2437	  {
2438	    printf("PARSE receiver #%d: status %06x, state %08x, time(fp) %lx.%08lx, stime(fp) %lx.%08lx, ptime(fp) %lx.%08lx\n",
2439		   CLK_UNIT(parse->peer),
2440		   (unsigned int)parsetime.parse_status,
2441		   (unsigned int)parsetime.parse_state,
2442		   (unsigned long)parsetime.parse_time.fp.l_ui,
2443		   (unsigned long)parsetime.parse_time.fp.l_uf,
2444		   (unsigned long)parsetime.parse_stime.fp.l_ui,
2445		   (unsigned long)parsetime.parse_stime.fp.l_uf,
2446		   (unsigned long)parsetime.parse_ptime.fp.l_ui,
2447		   (unsigned long)parsetime.parse_ptime.fp.l_uf);
2448	  }
2449#endif
2450
2451	parse_process(parse, &parsetime);
2452}
2453
2454/*--------------------------------------------------
2455 * init_iobinding - find and initialize lower layers
2456 */
2457static bind_t *
2458init_iobinding(
2459	struct parseunit *parse
2460	)
2461{
2462  bind_t *b = io_bindings;
2463
2464	while (b->bd_description != (char *)0)
2465	{
2466		if ((*b->bd_init)(parse))
2467		{
2468			return b;
2469		}
2470		b++;
2471	}
2472	return (bind_t *)0;
2473}
2474
2475/**===========================================================================
2476 ** support routines
2477 **/
2478
2479static NTP_PRINTF(4, 5) char *
2480ap(char *buffer, size_t len, char *pos, const char *fmt, ...)
2481{
2482	va_list va;
2483	int l;
2484	size_t rem = len - (pos - buffer);
2485
2486	if (rem == 0)
2487		return pos;
2488
2489	va_start(va, fmt);
2490	l = vsnprintf(pos, rem, fmt, va);
2491	va_end(va);
2492
2493	if (l != -1) {
2494		rem--;
2495		if (rem >= (size_t)l)
2496			pos += l;
2497		else
2498			pos += rem;
2499	}
2500
2501	return pos;
2502}
2503
2504/*--------------------------------------------------
2505 * convert a flag field to a string
2506 */
2507static char *
2508parsestate(
2509	u_long lstate,
2510	char *buffer,
2511	int size
2512	)
2513{
2514	static struct bits
2515	{
2516		u_long      bit;
2517		const char *name;
2518	} flagstrings[] =
2519	  {
2520		  { PARSEB_ANNOUNCE,   "DST SWITCH WARNING" },
2521		  { PARSEB_POWERUP,    "NOT SYNCHRONIZED" },
2522		  { PARSEB_NOSYNC,     "TIME CODE NOT CONFIRMED" },
2523		  { PARSEB_DST,        "DST" },
2524		  { PARSEB_UTC,        "UTC DISPLAY" },
2525		  { PARSEB_LEAPADD,    "LEAP ADD WARNING" },
2526		  { PARSEB_LEAPDEL,    "LEAP DELETE WARNING" },
2527		  { PARSEB_LEAPSECOND, "LEAP SECOND" },
2528		  { PARSEB_CALLBIT,    "CALL BIT" },
2529		  { PARSEB_TIMECODE,   "TIME CODE" },
2530		  { PARSEB_PPS,        "PPS" },
2531		  { PARSEB_POSITION,   "POSITION" },
2532		  { 0,		       NULL }
2533	  };
2534
2535	static struct sbits
2536	{
2537		u_long      bit;
2538		const char *name;
2539	} sflagstrings[] =
2540	  {
2541		  { PARSEB_S_LEAP,     "LEAP INDICATION" },
2542		  { PARSEB_S_PPS,      "PPS SIGNAL" },
2543		  { PARSEB_S_CALLBIT,  "CALLBIT" },
2544		  { PARSEB_S_POSITION, "POSITION" },
2545		  { 0,		       NULL }
2546	  };
2547	int i;
2548	char *s, *t;
2549
2550	*buffer = '\0';
2551	s = t = buffer;
2552
2553	i = 0;
2554	while (flagstrings[i].bit)
2555	{
2556		if (flagstrings[i].bit & lstate)
2557		{
2558			if (s != t)
2559				t = ap(buffer, size, t, "; ");
2560			t = ap(buffer, size, t, "%s", flagstrings[i].name);
2561		}
2562		i++;
2563	}
2564
2565	if (lstate & (PARSEB_S_LEAP|PARSEB_S_CALLBIT|PARSEB_S_PPS|PARSEB_S_POSITION))
2566	{
2567		if (s != t)
2568			t = ap(buffer, size, t, "; ");
2569
2570		t = ap(buffer, size, t, "(");
2571
2572		s = t;
2573
2574		i = 0;
2575		while (sflagstrings[i].bit)
2576		{
2577			if (sflagstrings[i].bit & lstate)
2578			{
2579				if (t != s)
2580				{
2581					t = ap(buffer, size, t, "; ");
2582				}
2583
2584				t = ap(buffer, size, t, "%s",
2585				    sflagstrings[i].name);
2586			}
2587			i++;
2588		}
2589		t = ap(buffer, size, t, ")");
2590	}
2591	return buffer;
2592}
2593
2594/*--------------------------------------------------
2595 * convert a status flag field to a string
2596 */
2597static char *
2598parsestatus(
2599	u_long lstate,
2600	char *buffer,
2601	int size
2602	)
2603{
2604	static struct bits
2605	{
2606		u_long      bit;
2607		const char *name;
2608	} flagstrings[] =
2609	  {
2610		  { CVT_OK,      "CONVERSION SUCCESSFUL" },
2611		  { CVT_NONE,    "NO CONVERSION" },
2612		  { CVT_FAIL,    "CONVERSION FAILED" },
2613		  { CVT_BADFMT,  "ILLEGAL FORMAT" },
2614		  { CVT_BADDATE, "DATE ILLEGAL" },
2615		  { CVT_BADTIME, "TIME ILLEGAL" },
2616		  { CVT_ADDITIONAL, "ADDITIONAL DATA" },
2617		  { 0,		 NULL }
2618	  };
2619	int i;
2620	char *t;
2621
2622	t = buffer;
2623	*buffer = '\0';
2624
2625	i = 0;
2626	while (flagstrings[i].bit)
2627	{
2628		if (flagstrings[i].bit & lstate)
2629		{
2630			if (t != buffer)
2631				t = ap(buffer, size, t, "; ");
2632			t = ap(buffer, size, t, "%s", flagstrings[i].name);
2633		}
2634		i++;
2635	}
2636
2637	return buffer;
2638}
2639
2640/*--------------------------------------------------
2641 * convert a clock status flag field to a string
2642 */
2643static const char *
2644clockstatus(
2645	u_long lstate
2646	)
2647{
2648	static char buffer[20];
2649	static struct status
2650	{
2651		u_long      value;
2652		const char *name;
2653	} flagstrings[] =
2654	  {
2655		  { CEVNT_NOMINAL, "NOMINAL" },
2656		  { CEVNT_TIMEOUT, "NO RESPONSE" },
2657		  { CEVNT_BADREPLY,"BAD FORMAT" },
2658		  { CEVNT_FAULT,   "FAULT" },
2659		  { CEVNT_PROP,    "PROPAGATION DELAY" },
2660		  { CEVNT_BADDATE, "ILLEGAL DATE" },
2661		  { CEVNT_BADTIME, "ILLEGAL TIME" },
2662		  { (unsigned)~0L, NULL }
2663	  };
2664	int i;
2665
2666	i = 0;
2667	while (flagstrings[i].value != (u_int)~0)
2668	{
2669		if (flagstrings[i].value == lstate)
2670		{
2671			return flagstrings[i].name;
2672		}
2673		i++;
2674	}
2675
2676	snprintf(buffer, sizeof(buffer), "unknown #%ld", (u_long)lstate);
2677
2678	return buffer;
2679}
2680
2681
2682/*--------------------------------------------------
2683 * l_mktime - make representation of a relative time
2684 */
2685static char *
2686l_mktime(
2687	u_long delta
2688	)
2689{
2690	u_long tmp, m, s;
2691	static char buffer[40];
2692	char *t;
2693
2694	buffer[0] = '\0';
2695	t = buffer;
2696
2697	if ((tmp = delta / (60*60*24)) != 0)
2698	{
2699		t = ap(buffer, sizeof(buffer), t, "%ldd+", (u_long)tmp);
2700		delta -= tmp * 60*60*24;
2701	}
2702
2703	s = delta % 60;
2704	delta /= 60;
2705	m = delta % 60;
2706	delta /= 60;
2707
2708	t = ap(buffer, sizeof(buffer), t, "%02d:%02d:%02d",
2709	     (int)delta, (int)m, (int)s);
2710
2711	return buffer;
2712}
2713
2714
2715/*--------------------------------------------------
2716 * parse_statistics - list summary of clock states
2717 */
2718static void
2719parse_statistics(
2720	struct parseunit *parse
2721	)
2722{
2723	int i;
2724
2725	NLOG(NLOG_CLOCKSTATIST) /* conditional if clause for conditional syslog */
2726		{
2727			msyslog(LOG_INFO, "PARSE receiver #%d: running time: %s",
2728				CLK_UNIT(parse->peer),
2729				l_mktime(current_time - parse->generic->timestarted));
2730
2731			msyslog(LOG_INFO, "PARSE receiver #%d: current status: %s",
2732				CLK_UNIT(parse->peer),
2733				clockstatus(parse->generic->currentstatus));
2734
2735			for (i = 0; i <= CEVNT_MAX; i++)
2736			{
2737				u_long s_time;
2738				u_long percent, d = current_time - parse->generic->timestarted;
2739
2740				percent = s_time = PARSE_STATETIME(parse, i);
2741
2742				while (((u_long)(~0) / 10000) < percent)
2743				{
2744					percent /= 10;
2745					d       /= 10;
2746				}
2747
2748				if (d)
2749				    percent = (percent * 10000) / d;
2750				else
2751				    percent = 10000;
2752
2753				if (s_time)
2754				    msyslog(LOG_INFO, "PARSE receiver #%d: state %18s: %13s (%3ld.%02ld%%)",
2755					    CLK_UNIT(parse->peer),
2756					    clockstatus((unsigned int)i),
2757					    l_mktime(s_time),
2758					    percent / 100, percent % 100);
2759			}
2760		}
2761}
2762
2763/*--------------------------------------------------
2764 * cparse_statistics - wrapper for statistics call
2765 */
2766static void
2767cparse_statistics(
2768        struct parseunit *parse
2769	)
2770{
2771	if (parse->laststatistic + PARSESTATISTICS < current_time)
2772		parse_statistics(parse);
2773	parse->laststatistic = current_time;
2774}
2775
2776/**===========================================================================
2777 ** ntp interface routines
2778 **/
2779
2780/*--------------------------------------------------
2781 * parse_shutdown - shut down a PARSE clock
2782 */
2783static void
2784parse_shutdown(
2785	int unit,
2786	struct peer *peer
2787	)
2788{
2789	struct parseunit *parse = NULL;
2790
2791	if (peer && peer->procptr)
2792		parse = peer->procptr->unitptr;
2793
2794	if (!parse)
2795	{
2796		/* nothing to clean up */
2797		return;
2798	}
2799
2800	if (!parse->peer)
2801	{
2802		msyslog(LOG_INFO, "PARSE receiver #%d: INTERNAL ERROR - unit already inactive - shutdown ignored", unit);
2803		return;
2804	}
2805
2806#ifdef HAVE_PPSAPI
2807	if (parse->flags & PARSE_PPSCLOCK)
2808	{
2809		(void)time_pps_destroy(parse->atom.handle);
2810	}
2811#endif
2812	if (parse->generic->io.fd != parse->ppsfd && parse->ppsfd != -1)
2813		(void)closeserial(parse->ppsfd);  /* close separate PPS source */
2814
2815	/*
2816	 * print statistics a last time and
2817	 * stop statistics machine
2818	 */
2819	parse_statistics(parse);
2820
2821	if (parse->parse_type->cl_end)
2822	{
2823		parse->parse_type->cl_end(parse);
2824	}
2825
2826	/*
2827	 * cleanup before leaving this world
2828	 */
2829	if (parse->binding)
2830	    PARSE_END(parse);
2831
2832	/*
2833	 * Tell the I/O module to turn us off.  We're history.
2834	 */
2835	io_closeclock(&parse->generic->io);
2836
2837	free_varlist(parse->kv);
2838
2839	NLOG(NLOG_CLOCKINFO) /* conditional if clause for conditional syslog */
2840		msyslog(LOG_INFO, "PARSE receiver #%d: reference clock \"%s\" removed",
2841			CLK_UNIT(parse->peer), parse->parse_type->cl_description);
2842
2843	parse->peer = (struct peer *)0; /* unused now */
2844	peer->procptr->unitptr = (caddr_t)0;
2845	free(parse);
2846}
2847
2848#ifdef HAVE_PPSAPI
2849/*----------------------------------------
2850 * set up HARDPPS via PPSAPI
2851 */
2852static void
2853parse_hardpps(
2854	      struct parseunit *parse,
2855	      int mode
2856	      )
2857{
2858        if (parse->hardppsstate == mode)
2859	        return;
2860
2861	if (CLK_PPS(parse->peer) && (parse->flags & PARSE_PPSKERNEL)) {
2862		int	i = 0;
2863
2864		if (mode == PARSE_HARDPPS_ENABLE)
2865		        {
2866			        if (parse->flags & PARSE_CLEAR)
2867				        i = PPS_CAPTURECLEAR;
2868				else
2869				        i = PPS_CAPTUREASSERT;
2870			}
2871
2872		if (time_pps_kcbind(parse->atom.handle, PPS_KC_HARDPPS, i,
2873		    PPS_TSFMT_TSPEC) < 0) {
2874		        msyslog(LOG_ERR, "PARSE receiver #%d: time_pps_kcbind failed: %m",
2875				CLK_UNIT(parse->peer));
2876		} else {
2877		        NLOG(NLOG_CLOCKINFO)
2878		                msyslog(LOG_INFO, "PARSE receiver #%d: kernel PPS synchronisation %sabled",
2879					CLK_UNIT(parse->peer), (mode == PARSE_HARDPPS_ENABLE) ? "en" : "dis");
2880			/*
2881			 * tell the rest, that we have a kernel PPS source, iff we ever enable HARDPPS
2882			 */
2883			if (mode == PARSE_HARDPPS_ENABLE)
2884			        hardpps_enable = 1;
2885		}
2886	}
2887
2888	parse->hardppsstate = mode;
2889}
2890
2891/*----------------------------------------
2892 * set up PPS via PPSAPI
2893 */
2894static int
2895parse_ppsapi(
2896	     struct parseunit *parse
2897	)
2898{
2899	int cap, mode_ppsoffset;
2900	const char *cp;
2901
2902	parse->flags &= (u_char) (~PARSE_PPSCLOCK);
2903
2904	/*
2905	 * collect PPSAPI offset capability - should move into generic handling
2906	 */
2907	if (time_pps_getcap(parse->atom.handle, &cap) < 0) {
2908		msyslog(LOG_ERR, "PARSE receiver #%d: parse_ppsapi: time_pps_getcap failed: %m",
2909			CLK_UNIT(parse->peer));
2910
2911		return 0;
2912	}
2913
2914	/*
2915	 * initialize generic PPSAPI interface
2916	 *
2917	 * we leave out CLK_FLAG3 as time_pps_kcbind()
2918	 * is handled here for now. Ideally this should also
2919	 * be part of the generic PPSAPI interface
2920	 */
2921	if (!refclock_params(parse->flags & (CLK_FLAG1|CLK_FLAG2|CLK_FLAG4), &parse->atom))
2922		return 0;
2923
2924	/* nb. only turn things on, if someone else has turned something
2925	 *	on before we get here, leave it alone!
2926	 */
2927
2928	if (parse->flags & PARSE_CLEAR) {
2929		cp = "CLEAR";
2930		mode_ppsoffset = PPS_OFFSETCLEAR;
2931	} else {
2932		cp = "ASSERT";
2933		mode_ppsoffset = PPS_OFFSETASSERT;
2934	}
2935
2936	msyslog(LOG_INFO, "PARSE receiver #%d: initializing PPS to %s",
2937		CLK_UNIT(parse->peer), cp);
2938
2939	if (!(mode_ppsoffset & cap)) {
2940	  msyslog(LOG_WARNING, "PARSE receiver #%d: Cannot set PPS_%sCLEAR, this will increase jitter (PPS API capabilities=0x%x)",
2941		  CLK_UNIT(parse->peer), cp, cap);
2942		mode_ppsoffset = 0;
2943	} else {
2944		if (mode_ppsoffset == PPS_OFFSETCLEAR)
2945			{
2946				parse->atom.pps_params.clear_offset.tv_sec = (time_t)(-parse->ppsphaseadjust);
2947				parse->atom.pps_params.clear_offset.tv_nsec = (long)(-1e9*(parse->ppsphaseadjust - (double)(long)parse->ppsphaseadjust));
2948			}
2949
2950		if (mode_ppsoffset == PPS_OFFSETASSERT)
2951			{
2952				parse->atom.pps_params.assert_offset.tv_sec = (time_t)(-parse->ppsphaseadjust);
2953				parse->atom.pps_params.assert_offset.tv_nsec = (long)(-1e9*(parse->ppsphaseadjust - (double)(long)parse->ppsphaseadjust));
2954			}
2955	}
2956
2957	parse->atom.pps_params.mode |= mode_ppsoffset;
2958
2959	if (time_pps_setparams(parse->atom.handle, &parse->atom.pps_params) < 0) {
2960	  msyslog(LOG_ERR, "PARSE receiver #%d: FAILED set PPS parameters: %m",
2961		  CLK_UNIT(parse->peer));
2962		return 0;
2963	}
2964
2965	parse->flags |= PARSE_PPSCLOCK;
2966	return 1;
2967}
2968#else
2969#define parse_hardpps(_PARSE_, _MODE_) /* empty */
2970#endif
2971
2972/*--------------------------------------------------
2973 * parse_start - open the PARSE devices and initialize data for processing
2974 */
2975static int
2976parse_start(
2977	int sysunit,
2978	struct peer *peer
2979	)
2980{
2981	u_int unit;
2982	int fd232;
2983#ifdef HAVE_TERMIOS
2984	struct termios tio;		/* NEEDED FOR A LONG TIME ! */
2985#endif
2986#ifdef HAVE_SYSV_TTYS
2987	struct termio tio;		/* NEEDED FOR A LONG TIME ! */
2988#endif
2989	struct parseunit * parse;
2990	char parsedev[sizeof(PARSEDEVICE)+20];
2991	char parseppsdev[sizeof(PARSEPPSDEVICE)+20];
2992	parsectl_t tmp_ctl;
2993	u_int type;
2994
2995	/*
2996	 * get out Copyright information once
2997	 */
2998	if (!notice)
2999        {
3000		NLOG(NLOG_CLOCKINFO) /* conditional if clause for conditional syslog */
3001			msyslog(LOG_INFO, "NTP PARSE support: Copyright (c) 1989-2015, Frank Kardel");
3002		notice = 1;
3003	}
3004
3005	type = CLK_TYPE(peer);
3006	unit = CLK_UNIT(peer);
3007
3008	if ((type == (u_int)~0) || (parse_clockinfo[type].cl_description == (char *)0))
3009	{
3010		msyslog(LOG_ERR, "PARSE receiver #%d: parse_start: unsupported clock type %d (max %d)",
3011			unit, CLK_REALTYPE(peer), ncltypes-1);
3012		return 0;
3013	}
3014
3015	/*
3016	 * Unit okay, attempt to open the device.
3017	 */
3018	(void) snprintf(parsedev, sizeof(parsedev), PARSEDEVICE, unit);
3019	(void) snprintf(parseppsdev, sizeof(parsedev), PARSEPPSDEVICE, unit);
3020
3021#ifndef O_NOCTTY
3022#define O_NOCTTY 0
3023#endif
3024#ifndef O_NONBLOCK
3025#define O_NONBLOCK 0
3026#endif
3027
3028	fd232 = tty_open(parsedev, O_RDWR | O_NOCTTY | O_NONBLOCK, 0777);
3029
3030	if (fd232 == -1)
3031	{
3032		msyslog(LOG_ERR, "PARSE receiver #%d: parse_start: open of %s failed: %m", unit, parsedev);
3033		return 0;
3034	}
3035
3036	parse = emalloc_zero(sizeof(*parse));
3037
3038	parse->generic = peer->procptr;	 /* link up */
3039	parse->generic->unitptr = (caddr_t)parse; /* link down */
3040
3041	/*
3042	 * Set up the structures
3043	 */
3044	parse->generic->timestarted    = current_time;
3045	parse->lastchange     = current_time;
3046
3047	parse->flags          = 0;
3048	parse->pollneeddata   = 0;
3049	parse->laststatistic  = current_time;
3050	parse->lastformat     = (unsigned short)~0;	/* assume no format known */
3051	parse->timedata.parse_status = (unsigned short)~0;	/* be sure to mark initial status change */
3052	parse->lastmissed     = 0;	/* assume got everything */
3053	parse->ppsserial      = 0;
3054	parse->ppsfd	      = -1;
3055	parse->localdata      = (void *)0;
3056	parse->localstate     = 0;
3057	parse->kv             = (struct ctl_var *)0;
3058
3059	clear_err(parse, ERR_ALL);
3060
3061	parse->parse_type     = &parse_clockinfo[type];
3062
3063	parse->maxunsync      = parse->parse_type->cl_maxunsync;
3064
3065	parse->generic->fudgetime1 = parse->parse_type->cl_basedelay;
3066
3067	parse->generic->fudgetime2 = 0.0;
3068	parse->ppsphaseadjust = parse->generic->fudgetime2;
3069
3070	parse->generic->clockdesc  = parse->parse_type->cl_description;
3071
3072	peer->rootdelay       = parse->parse_type->cl_rootdelay;
3073	peer->sstclktype      = parse->parse_type->cl_type;
3074	peer->precision       = sys_precision;
3075
3076	peer->stratum         = STRATUM_REFCLOCK;
3077
3078	if (peer->stratum <= 1)
3079	    memmove((char *)&parse->generic->refid, parse->parse_type->cl_id, 4);
3080	else
3081	    parse->generic->refid = htonl(PARSEHSREFID);
3082
3083	parse->generic->io.fd = fd232;
3084
3085	parse->peer = peer;		/* marks it also as busy */
3086
3087	/*
3088	 * configure terminal line
3089	 */
3090	if (TTY_GETATTR(fd232, &tio) == -1)
3091	{
3092		msyslog(LOG_ERR, "PARSE receiver #%d: parse_start: tcgetattr(%d, &tio): %m", unit, fd232);
3093		parse_shutdown(CLK_UNIT(parse->peer), peer); /* let our cleaning staff do the work */
3094		return 0;
3095	}
3096	else
3097	{
3098#ifndef _PC_VDISABLE
3099		memset((char *)tio.c_cc, 0, sizeof(tio.c_cc));
3100#else
3101		int disablec;
3102		errno = 0;		/* pathconf can deliver -1 without changing errno ! */
3103
3104		disablec = fpathconf(parse->generic->io.fd, _PC_VDISABLE);
3105		if (disablec == -1 && errno)
3106		{
3107			msyslog(LOG_ERR, "PARSE receiver #%d: parse_start: fpathconf(fd, _PC_VDISABLE): %m", CLK_UNIT(parse->peer));
3108			memset((char *)tio.c_cc, 0, sizeof(tio.c_cc)); /* best guess */
3109		}
3110		else
3111		    if (disablec != -1)
3112			memset((char *)tio.c_cc, disablec, sizeof(tio.c_cc));
3113#endif
3114
3115#if defined (VMIN) || defined(VTIME)
3116		if ((parse_clockinfo[type].cl_lflag & ICANON) == 0)
3117		{
3118#ifdef VMIN
3119			tio.c_cc[VMIN]   = 1;
3120#endif
3121#ifdef VTIME
3122			tio.c_cc[VTIME]  = 0;
3123#endif
3124		}
3125#endif
3126
3127		tio.c_cflag = (tcflag_t) parse_clockinfo[type].cl_cflag;
3128		tio.c_iflag = (tcflag_t) parse_clockinfo[type].cl_iflag;
3129		tio.c_oflag = (tcflag_t) parse_clockinfo[type].cl_oflag;
3130		tio.c_lflag = (tcflag_t) parse_clockinfo[type].cl_lflag;
3131
3132
3133#ifdef HAVE_TERMIOS
3134		if ((cfsetospeed(&tio, (speed_t) parse_clockinfo[type].cl_speed) == -1) ||
3135		    (cfsetispeed(&tio, (speed_t) parse_clockinfo[type].cl_speed) == -1))
3136		{
3137			msyslog(LOG_ERR, "PARSE receiver #%d: parse_start: tcset{i,o}speed(&tio, speed): %m", unit);
3138			parse_shutdown(CLK_UNIT(parse->peer), peer); /* let our cleaning staff do the work */
3139			return 0;
3140		}
3141#else
3142		tio.c_cflag     |= parse_clockinfo[type].cl_speed;
3143#endif
3144
3145		/*
3146		 * set up pps device
3147		 * if the PARSEPPSDEVICE can be opened that will be used
3148		 * for PPS else PARSEDEVICE will be used
3149		 */
3150		parse->ppsfd = tty_open(parseppsdev, O_RDWR | O_NOCTTY | O_NONBLOCK, 0777);
3151
3152		if (parse->ppsfd == -1)
3153		{
3154			parse->ppsfd = fd232;
3155		}
3156
3157/*
3158 * Linux PPS - the old way
3159 */
3160#if defined(HAVE_TIO_SERIAL_STUFF)		/* Linux hack: define PPS interface */
3161		{
3162			struct serial_struct	ss;
3163			if (ioctl(parse->ppsfd, TIOCGSERIAL, &ss) < 0 ||
3164			    (
3165#ifdef ASYNC_LOW_LATENCY
3166			     ss.flags |= ASYNC_LOW_LATENCY,
3167#endif
3168#ifndef HAVE_PPSAPI
3169#ifdef ASYNC_PPS_CD_NEG
3170			     ss.flags |= ASYNC_PPS_CD_NEG,
3171#endif
3172#endif
3173			     ioctl(parse->ppsfd, TIOCSSERIAL, &ss)) < 0) {
3174				msyslog(LOG_NOTICE, "refclock_parse: TIOCSSERIAL fd %d, %m", parse->ppsfd);
3175				msyslog(LOG_NOTICE,
3176					"refclock_parse: optional PPS processing not available");
3177			} else {
3178				parse->flags    |= PARSE_PPSCLOCK;
3179#ifdef ASYNC_PPS_CD_NEG
3180				NLOG(NLOG_CLOCKINFO)
3181				  msyslog(LOG_INFO,
3182					  "refclock_parse: PPS detection on");
3183#endif
3184			}
3185		}
3186#endif
3187
3188/*
3189 * SUN the Solaris way
3190 */
3191#ifdef HAVE_TIOCSPPS			/* SUN PPS support */
3192		if (CLK_PPS(parse->peer))
3193		    {
3194			int i = 1;
3195
3196			if (ioctl(parse->ppsfd, TIOCSPPS, (caddr_t)&i) == 0)
3197			    {
3198				parse->flags |= PARSE_PPSCLOCK;
3199			    }
3200		    }
3201#endif
3202
3203/*
3204 * PPS via PPSAPI
3205 */
3206#if defined(HAVE_PPSAPI)
3207		parse->hardppsstate = PARSE_HARDPPS_DISABLE;
3208		if (CLK_PPS(parse->peer))
3209		{
3210		  if (!refclock_ppsapi(parse->ppsfd, &parse->atom))
3211		    {
3212		      msyslog(LOG_NOTICE, "PARSE receiver #%d: parse_start: could not set up PPS: %m", CLK_UNIT(parse->peer));
3213		    }
3214		  else
3215		    {
3216		      parse_ppsapi(parse);
3217		    }
3218		}
3219#endif
3220
3221		if (TTY_SETATTR(fd232, &tio) == -1)
3222		{
3223			msyslog(LOG_ERR, "PARSE receiver #%d: parse_start: tcsetattr(%d, &tio): %m", unit, fd232);
3224			parse_shutdown(CLK_UNIT(parse->peer), peer); /* let our cleaning staff do the work */
3225			return 0;
3226		}
3227	}
3228
3229	/*
3230	 * pick correct input machine
3231	 */
3232	parse->generic->io.srcclock = peer;
3233	parse->generic->io.datalen = 0;
3234
3235	parse->binding = init_iobinding(parse);
3236
3237	if (parse->binding == (bind_t *)0)
3238		{
3239			msyslog(LOG_ERR, "PARSE receiver #%d: parse_start: io sub system initialisation failed.", CLK_UNIT(parse->peer));
3240			parse_shutdown(CLK_UNIT(parse->peer), peer); /* let our cleaning staff do the work */
3241			return 0;			/* well, ok - special initialisation broke */
3242		}
3243
3244	parse->generic->io.clock_recv = parse->binding->bd_receive; /* pick correct receive routine */
3245	parse->generic->io.io_input   = parse->binding->bd_io_input; /* pick correct input routine */
3246
3247	/*
3248	 * as we always(?) get 8 bit chars we want to be
3249	 * sure, that the upper bits are zero for less
3250	 * than 8 bit I/O - so we pass that information on.
3251	 * note that there can be only one bit count format
3252	 * per file descriptor
3253	 */
3254
3255	switch (tio.c_cflag & CSIZE)
3256	{
3257	    case CS5:
3258		tmp_ctl.parsesetcs.parse_cs = PARSE_IO_CS5;
3259		break;
3260
3261	    case CS6:
3262		tmp_ctl.parsesetcs.parse_cs = PARSE_IO_CS6;
3263		break;
3264
3265	    case CS7:
3266		tmp_ctl.parsesetcs.parse_cs = PARSE_IO_CS7;
3267		break;
3268
3269	    case CS8:
3270		tmp_ctl.parsesetcs.parse_cs = PARSE_IO_CS8;
3271		break;
3272	}
3273
3274	if (!PARSE_SETCS(parse, &tmp_ctl))
3275	{
3276		msyslog(LOG_ERR, "PARSE receiver #%d: parse_start: parse_setcs() FAILED.", unit);
3277		parse_shutdown(CLK_UNIT(parse->peer), peer); /* let our cleaning staff do the work */
3278		return 0;			/* well, ok - special initialisation broke */
3279	}
3280
3281	strlcpy(tmp_ctl.parseformat.parse_buffer, parse->parse_type->cl_format, sizeof(tmp_ctl.parseformat.parse_buffer));
3282	tmp_ctl.parseformat.parse_count = (u_short) strlen(tmp_ctl.parseformat.parse_buffer);
3283
3284	if (!PARSE_SETFMT(parse, &tmp_ctl))
3285	{
3286		msyslog(LOG_ERR, "PARSE receiver #%d: parse_start: parse_setfmt() FAILED.", unit);
3287		parse_shutdown(CLK_UNIT(parse->peer), peer); /* let our cleaning staff do the work */
3288		return 0;			/* well, ok - special initialisation broke */
3289	}
3290
3291	/*
3292	 * get rid of all IO accumulated so far
3293	 */
3294#ifdef HAVE_TERMIOS
3295	(void) tcflush(parse->generic->io.fd, TCIOFLUSH);
3296#else
3297#if defined(TCFLSH) && defined(TCIOFLUSH)
3298	{
3299		int flshcmd = TCIOFLUSH;
3300
3301		(void) ioctl(parse->generic->io.fd, TCFLSH, (caddr_t)&flshcmd);
3302	}
3303#endif
3304#endif
3305
3306	/*
3307	 * try to do any special initializations
3308	 */
3309	if (parse->parse_type->cl_init)
3310		{
3311			if (parse->parse_type->cl_init(parse))
3312				{
3313					parse_shutdown(CLK_UNIT(parse->peer), peer); /* let our cleaning staff do the work */
3314					return 0;		/* well, ok - special initialisation broke */
3315				}
3316		}
3317
3318	/*
3319	 * Insert in async io device list.
3320	 */
3321	if (!io_addclock(&parse->generic->io))
3322        {
3323		msyslog(LOG_ERR,
3324			"PARSE receiver #%d: parse_start: addclock %s fails (ABORT - clock type requires async io)", CLK_UNIT(parse->peer), parsedev);
3325		parse_shutdown(CLK_UNIT(parse->peer), peer); /* let our cleaning staff do the work */
3326		return 0;
3327	}
3328
3329	/*
3330	 * print out configuration
3331	 */
3332	NLOG(NLOG_CLOCKINFO)
3333		{
3334			/* conditional if clause for conditional syslog */
3335			msyslog(LOG_INFO, "PARSE receiver #%d: reference clock \"%s\" (I/O device %s, PPS device %s) added",
3336				CLK_UNIT(parse->peer),
3337				parse->parse_type->cl_description, parsedev,
3338				(parse->ppsfd != parse->generic->io.fd) ? parseppsdev : parsedev);
3339
3340			msyslog(LOG_INFO, "PARSE receiver #%d: Stratum %d, trust time %s, precision %d",
3341				CLK_UNIT(parse->peer),
3342				parse->peer->stratum,
3343				l_mktime(parse->maxunsync), parse->peer->precision);
3344
3345			msyslog(LOG_INFO, "PARSE receiver #%d: rootdelay %.6f s, phase adjustment %.6f s, PPS phase adjustment %.6f s, %s IO handling",
3346				CLK_UNIT(parse->peer),
3347				parse->parse_type->cl_rootdelay,
3348				parse->generic->fudgetime1,
3349				parse->ppsphaseadjust,
3350                                parse->binding->bd_description);
3351
3352			msyslog(LOG_INFO, "PARSE receiver #%d: Format recognition: %s", CLK_UNIT(parse->peer),
3353				parse->parse_type->cl_format);
3354                        msyslog(LOG_INFO, "PARSE receiver #%d: %sPPS support%s", CLK_UNIT(parse->peer),
3355				CLK_PPS(parse->peer) ? "" : "NO ",
3356				CLK_PPS(parse->peer) ?
3357#ifdef PPS_METHOD
3358				" (implementation " PPS_METHOD ")"
3359#else
3360				""
3361#endif
3362				: ""
3363				);
3364		}
3365
3366	return 1;
3367}
3368
3369/*--------------------------------------------------
3370 * parse_ctl - process changes on flags/time values
3371 */
3372static void
3373parse_ctl(
3374	    struct parseunit *parse,
3375	    const struct refclockstat *in
3376	    )
3377{
3378        if (in)
3379	{
3380		if (in->haveflags & (CLK_HAVEFLAG1|CLK_HAVEFLAG2|CLK_HAVEFLAG3|CLK_HAVEFLAG4))
3381		{
3382		  u_char mask = CLK_FLAG1|CLK_FLAG2|CLK_FLAG3|CLK_FLAG4;
3383		  parse->flags = (parse->flags & (u_char)(~mask)) | (in->flags & mask);
3384#if defined(HAVE_PPSAPI)
3385		  if (CLK_PPS(parse->peer))
3386		    {
3387		      parse_ppsapi(parse);
3388		    }
3389#endif
3390		}
3391
3392		if (in->haveflags & CLK_HAVETIME1)
3393                {
3394		  parse->generic->fudgetime1 = in->fudgetime1;
3395		  msyslog(LOG_INFO, "PARSE receiver #%d: new phase adjustment %.6f s",
3396			  CLK_UNIT(parse->peer),
3397			  parse->generic->fudgetime1);
3398		}
3399
3400		if (in->haveflags & CLK_HAVETIME2)
3401                {
3402		  parse->generic->fudgetime2 = in->fudgetime2;
3403		  if (parse->flags & PARSE_TRUSTTIME)
3404		    {
3405		      parse->maxunsync = (u_long)ABS(in->fudgetime2);
3406		      msyslog(LOG_INFO, "PARSE receiver #%d: new trust time %s",
3407			      CLK_UNIT(parse->peer),
3408			      l_mktime(parse->maxunsync));
3409		    }
3410		  else
3411		    {
3412		      parse->ppsphaseadjust = in->fudgetime2;
3413		      msyslog(LOG_INFO, "PARSE receiver #%d: new PPS phase adjustment %.6f s",
3414			  CLK_UNIT(parse->peer),
3415			      parse->ppsphaseadjust);
3416#if defined(HAVE_PPSAPI)
3417		      if (CLK_PPS(parse->peer))
3418		      {
3419			      parse_ppsapi(parse);
3420		      }
3421#endif
3422		    }
3423		}
3424	}
3425}
3426
3427/*--------------------------------------------------
3428 * parse_poll - called by the transmit procedure
3429 */
3430static void
3431parse_poll(
3432	int unit,
3433	struct peer *peer
3434	)
3435{
3436	struct parseunit *parse = peer->procptr->unitptr;
3437
3438	if (peer != parse->peer)
3439	{
3440		msyslog(LOG_ERR,
3441			"PARSE receiver #%d: poll: INTERNAL: peer incorrect",
3442			unit);
3443		return;
3444	}
3445
3446	/*
3447	 * Update clock stat counters
3448	 */
3449	parse->generic->polls++;
3450
3451	if (parse->pollneeddata &&
3452	    ((int)(current_time - parse->pollneeddata) > (1<<(max(min(parse->peer->hpoll, parse->peer->ppoll), parse->peer->minpoll)))))
3453	{
3454		/*
3455		 * start worrying when exceeding a poll inteval
3456		 * bad news - didn't get a response last time
3457		 */
3458		parse->lastmissed = current_time;
3459		parse_event(parse, CEVNT_TIMEOUT);
3460
3461		ERR(ERR_NODATA)
3462			msyslog(LOG_WARNING, "PARSE receiver #%d: no data from device within poll interval (check receiver / wiring)", CLK_UNIT(parse->peer));
3463	}
3464
3465	/*
3466	 * we just mark that we want the next sample for the clock filter
3467	 */
3468	parse->pollneeddata = current_time;
3469
3470	if (parse->parse_type->cl_poll)
3471	{
3472		parse->parse_type->cl_poll(parse);
3473	}
3474
3475	cparse_statistics(parse);
3476
3477	return;
3478}
3479
3480#define LEN_STATES 300		/* length of state string */
3481
3482/*--------------------------------------------------
3483 * parse_control - set fudge factors, return statistics
3484 */
3485static void
3486parse_control(
3487	int unit,
3488	const struct refclockstat *in,
3489	struct refclockstat *out,
3490	struct peer *peer
3491	)
3492{
3493	struct parseunit *parse = peer->procptr->unitptr;
3494	parsectl_t tmpctl;
3495
3496	static char outstatus[400];	/* status output buffer */
3497
3498	if (out)
3499	{
3500		out->lencode       = 0;
3501		out->p_lastcode    = 0;
3502		out->kv_list       = (struct ctl_var *)0;
3503	}
3504
3505	if (!parse || !parse->peer)
3506	{
3507		msyslog(LOG_ERR, "PARSE receiver #%d: parse_control: unit invalid (UNIT INACTIVE)",
3508			unit);
3509		return;
3510	}
3511
3512	unit = CLK_UNIT(parse->peer);
3513
3514	/*
3515	 * handle changes
3516	 */
3517	parse_ctl(parse, in);
3518
3519	/*
3520	 * supply data
3521	 */
3522	if (out)
3523	{
3524		u_long sum = 0;
3525		char *tt, *start;
3526		int i;
3527
3528		outstatus[0] = '\0';
3529
3530		out->type       = REFCLK_PARSE;
3531
3532		/*
3533		 * keep fudgetime2 in sync with TRUSTTIME/MAXUNSYNC flag1
3534		 */
3535		parse->generic->fudgetime2 = (parse->flags & PARSE_TRUSTTIME) ? (double)parse->maxunsync : parse->ppsphaseadjust;
3536
3537		/*
3538		 * figure out skew between PPS and RS232 - just for informational
3539		 * purposes
3540		 */
3541		if (PARSE_SYNC(parse->timedata.parse_state))
3542		{
3543			if (PARSE_PPS(parse->timedata.parse_state) && PARSE_TIMECODE(parse->timedata.parse_state))
3544			{
3545				l_fp off;
3546
3547				/*
3548				 * we have a PPS and RS232 signal - calculate the skew
3549				 * WARNING: assumes on TIMECODE == PULSE (timecode after pulse)
3550				 */
3551				off = parse->timedata.parse_stime.fp;
3552				L_SUB(&off, &parse->timedata.parse_ptime.fp); /* true offset */
3553				tt = add_var(&out->kv_list, 80, RO);
3554				snprintf(tt, 80, "refclock_ppsskew=%s", lfptoms(&off, 6));
3555			}
3556		}
3557
3558		if (PARSE_PPS(parse->timedata.parse_state))
3559		{
3560			tt = add_var(&out->kv_list, 80, RO|DEF);
3561			snprintf(tt, 80, "refclock_ppstime=\"%s\"", gmprettydate(&parse->timedata.parse_ptime.fp));
3562		}
3563
3564		start = tt = add_var(&out->kv_list, 128, RO|DEF);
3565		tt = ap(start, 128, tt, "refclock_time=\"");
3566
3567		if (parse->timedata.parse_time.fp.l_ui == 0)
3568		{
3569			tt = ap(start, 128, tt, "<UNDEFINED>\"");
3570		}
3571		else
3572		{
3573			tt = ap(start, 128, tt, "%s\"",
3574			    gmprettydate(&parse->timedata.parse_time.fp));
3575		}
3576
3577		if (!PARSE_GETTIMECODE(parse, &tmpctl))
3578		{
3579			ERR(ERR_INTERNAL)
3580				msyslog(LOG_ERR, "PARSE receiver #%d: parse_control: parse_timecode() FAILED", unit);
3581		}
3582		else
3583		{
3584			start = tt = add_var(&out->kv_list, 512, RO|DEF);
3585			tt = ap(start, 512, tt, "refclock_status=\"");
3586
3587			/*
3588			 * copy PPS flags from last read transaction (informational only)
3589			 */
3590			tmpctl.parsegettc.parse_state |= parse->timedata.parse_state &
3591				(PARSEB_PPS|PARSEB_S_PPS);
3592
3593			(void)parsestate(tmpctl.parsegettc.parse_state, tt, BUFFER_SIZES(start, tt, 512));
3594
3595			tt += strlen(tt);
3596
3597			tt = ap(start, 512, tt, "\"");
3598
3599			if (tmpctl.parsegettc.parse_count)
3600			    mkascii(outstatus+strlen(outstatus), (int)(sizeof(outstatus)- strlen(outstatus) - 1),
3601				    tmpctl.parsegettc.parse_buffer, (unsigned)(tmpctl.parsegettc.parse_count));
3602
3603		}
3604
3605		tmpctl.parseformat.parse_format = tmpctl.parsegettc.parse_format;
3606
3607		if (!PARSE_GETFMT(parse, &tmpctl))
3608		{
3609			ERR(ERR_INTERNAL)
3610				msyslog(LOG_ERR, "PARSE receiver #%d: parse_control: parse_getfmt() FAILED", unit);
3611		}
3612		else
3613		{
3614			int count = tmpctl.parseformat.parse_count - 1;
3615
3616			start = tt = add_var(&out->kv_list, 80, RO|DEF);
3617			tt = ap(start, 80, tt, "refclock_format=\"");
3618
3619			if (count > 0) {
3620				tt = ap(start, 80, tt, "%*.*s",
3621			        	count,
3622			        	count,
3623			        	tmpctl.parseformat.parse_buffer);
3624			}
3625
3626			tt = ap(start, 80, tt, "\"");
3627		}
3628
3629		/*
3630		 * gather state statistics
3631		 */
3632
3633		start = tt = add_var(&out->kv_list, LEN_STATES, RO|DEF);
3634		tt = ap(start, LEN_STATES, tt, "refclock_states=\"");
3635
3636		for (i = 0; i <= CEVNT_MAX; i++)
3637		{
3638			u_long s_time;
3639			u_long d = current_time - parse->generic->timestarted;
3640			u_long percent;
3641
3642			percent = s_time = PARSE_STATETIME(parse, i);
3643
3644			while (((u_long)(~0) / 10000) < percent)
3645			{
3646				percent /= 10;
3647				d       /= 10;
3648			}
3649
3650			if (d)
3651			    percent = (percent * 10000) / d;
3652			else
3653			    percent = 10000;
3654
3655			if (s_time)
3656			{
3657				char item[80];
3658				int count;
3659
3660				snprintf(item, 80, "%s%s%s: %s (%d.%02d%%)",
3661					sum ? "; " : "",
3662					(parse->generic->currentstatus == i) ? "*" : "",
3663					clockstatus((unsigned int)i),
3664					l_mktime(s_time),
3665					(int)(percent / 100), (int)(percent % 100));
3666				if ((count = (int) strlen(item)) < (LEN_STATES - 40 - (tt - start)))
3667					{
3668						tt = ap(start, LEN_STATES, tt,
3669						    "%s", item);
3670					}
3671				sum += s_time;
3672			}
3673		}
3674
3675		tt = ap(start, LEN_STATES, tt,
3676		    "; running time: %s\"", l_mktime(sum));
3677
3678		tt = add_var(&out->kv_list, 32, RO);
3679		snprintf(tt, 32,  "refclock_id=\"%s\"", parse->parse_type->cl_id);
3680
3681		tt = add_var(&out->kv_list, 80, RO);
3682		snprintf(tt, 80,  "refclock_iomode=\"%s\"", parse->binding->bd_description);
3683
3684		tt = add_var(&out->kv_list, 128, RO);
3685		snprintf(tt, 128, "refclock_driver_version=\"%s\"", rcsid);
3686
3687		{
3688			struct ctl_var *k;
3689
3690			k = parse->kv;
3691			while (k && !(k->flags & EOV))
3692			{
3693				set_var(&out->kv_list, k->text, strlen(k->text)+1, k->flags);
3694				k++;
3695			}
3696		}
3697
3698		out->lencode       = (u_short) strlen(outstatus);
3699		out->p_lastcode    = outstatus;
3700	}
3701}
3702
3703/**===========================================================================
3704 ** processing routines
3705 **/
3706
3707/*--------------------------------------------------
3708 * event handling - note that nominal events will also be posted
3709 * keep track of state dwelling times
3710 */
3711static void
3712parse_event(
3713	struct parseunit *parse,
3714	int event
3715	)
3716{
3717	if (parse->generic->currentstatus != (u_char) event)
3718	{
3719		parse->statetime[parse->generic->currentstatus] += current_time - parse->lastchange;
3720		parse->lastchange              = current_time;
3721
3722		if (parse->parse_type->cl_event)
3723		    parse->parse_type->cl_event(parse, event);
3724
3725		if (event == CEVNT_NOMINAL)
3726		{
3727			NLOG(NLOG_CLOCKSTATUS)
3728				msyslog(LOG_INFO, "PARSE receiver #%d: SYNCHRONIZED",
3729					CLK_UNIT(parse->peer));
3730		}
3731
3732		refclock_report(parse->peer, event);
3733	}
3734}
3735
3736/*--------------------------------------------------
3737 * process a PARSE time sample
3738 */
3739static void
3740parse_process(
3741	struct parseunit *parse,
3742	parsetime_t      *parsetime
3743	)
3744{
3745	l_fp off, rectime, reftime;
3746	double fudge;
3747
3748	/* silence warning: 'off.Ul_i.Xl_i' may be used uninitialized in this function */
3749	ZERO(off);
3750
3751	/*
3752	 * check for changes in conversion status
3753	 * (only one for each new status !)
3754	 */
3755	if (((parsetime->parse_status & CVT_MASK) != CVT_OK) &&
3756	    ((parsetime->parse_status & CVT_MASK) != CVT_NONE) &&
3757	    (parse->timedata.parse_status != parsetime->parse_status))
3758	{
3759		char buffer[400];
3760
3761		NLOG(NLOG_CLOCKINFO) /* conditional if clause for conditional syslog */
3762			msyslog(LOG_WARNING, "PARSE receiver #%d: conversion status \"%s\"",
3763				CLK_UNIT(parse->peer), parsestatus(parsetime->parse_status, buffer, sizeof(buffer)));
3764
3765		if ((parsetime->parse_status & CVT_MASK) == CVT_FAIL)
3766		{
3767			/*
3768			 * tell more about the story - list time code
3769			 * there is a slight change for a race condition and
3770			 * the time code might be overwritten by the next packet
3771			 */
3772			parsectl_t tmpctl;
3773
3774			if (!PARSE_GETTIMECODE(parse, &tmpctl))
3775			{
3776				ERR(ERR_INTERNAL)
3777					msyslog(LOG_ERR, "PARSE receiver #%d: parse_process: parse_timecode() FAILED", CLK_UNIT(parse->peer));
3778			}
3779			else
3780			{
3781				ERR(ERR_BADDATA)
3782					msyslog(LOG_WARNING, "PARSE receiver #%d: FAILED TIMECODE: \"%s\" (check receiver configuration / wiring)",
3783						CLK_UNIT(parse->peer), mkascii(buffer, sizeof buffer, tmpctl.parsegettc.parse_buffer, (unsigned)(tmpctl.parsegettc.parse_count - 1)));
3784			}
3785			/* copy status to show only changes in case of failures */
3786			parse->timedata.parse_status = parsetime->parse_status;
3787		}
3788	}
3789
3790	/*
3791	 * examine status and post appropriate events
3792	 */
3793	if ((parsetime->parse_status & CVT_MASK) != CVT_OK)
3794	{
3795		/*
3796		 * got bad data - tell the rest of the system
3797		 */
3798		switch (parsetime->parse_status & CVT_MASK)
3799		{
3800		case CVT_NONE:
3801			if ((parsetime->parse_status & CVT_ADDITIONAL) &&
3802			    parse->parse_type->cl_message)
3803				parse->parse_type->cl_message(parse, parsetime);
3804			/*
3805			 * save PPS information that comes piggyback
3806			 */
3807			if (PARSE_PPS(parsetime->parse_state))
3808			  {
3809			    parse->timedata.parse_state |= PARSEB_PPS|PARSEB_S_PPS;
3810			    parse->timedata.parse_ptime  = parsetime->parse_ptime;
3811			  }
3812			break; 		/* well, still waiting - timeout is handled at higher levels */
3813
3814		case CVT_FAIL:
3815			if (parsetime->parse_status & CVT_BADFMT)
3816			{
3817				parse_event(parse, CEVNT_BADREPLY);
3818			}
3819			else
3820				if (parsetime->parse_status & CVT_BADDATE)
3821				{
3822					parse_event(parse, CEVNT_BADDATE);
3823				}
3824				else
3825					if (parsetime->parse_status & CVT_BADTIME)
3826					{
3827						parse_event(parse, CEVNT_BADTIME);
3828					}
3829					else
3830					{
3831						parse_event(parse, CEVNT_BADREPLY); /* for the lack of something better */
3832					}
3833		}
3834		return;			/* skip the rest - useless */
3835	}
3836
3837	/*
3838	 * check for format changes
3839	 * (in case somebody has swapped clocks 8-)
3840	 */
3841	if (parse->lastformat != parsetime->parse_format)
3842	{
3843		parsectl_t tmpctl;
3844
3845		tmpctl.parseformat.parse_format = parsetime->parse_format;
3846
3847		if (!PARSE_GETFMT(parse, &tmpctl))
3848		{
3849			ERR(ERR_INTERNAL)
3850				msyslog(LOG_ERR, "PARSE receiver #%d: parse_getfmt() FAILED", CLK_UNIT(parse->peer));
3851		}
3852		else
3853		{
3854			NLOG(NLOG_CLOCKINFO) /* conditional if clause for conditional syslog */
3855				msyslog(LOG_INFO, "PARSE receiver #%d: packet format \"%s\"",
3856					CLK_UNIT(parse->peer), tmpctl.parseformat.parse_buffer);
3857		}
3858		parse->lastformat = parsetime->parse_format;
3859	}
3860
3861	/*
3862	 * now, any changes ?
3863	 */
3864	if ((parse->timedata.parse_state ^ parsetime->parse_state) &
3865	    ~(unsigned)(PARSEB_PPS|PARSEB_S_PPS))
3866	{
3867		char tmp1[200];
3868		char tmp2[200];
3869		/*
3870		 * something happend - except for PPS events
3871		 */
3872
3873		(void) parsestate(parsetime->parse_state, tmp1, sizeof(tmp1));
3874		(void) parsestate(parse->timedata.parse_state, tmp2, sizeof(tmp2));
3875
3876		NLOG(NLOG_CLOCKINFO) /* conditional if clause for conditional syslog */
3877			msyslog(LOG_INFO,"PARSE receiver #%d: STATE CHANGE: %s -> %s",
3878				CLK_UNIT(parse->peer), tmp2, tmp1);
3879	}
3880
3881	/*
3882	 * carry on PPS information if still usable
3883	 */
3884	if (PARSE_PPS(parse->timedata.parse_state) && !PARSE_PPS(parsetime->parse_state))
3885        {
3886	        parsetime->parse_state |= PARSEB_PPS|PARSEB_S_PPS;
3887		parsetime->parse_ptime  = parse->timedata.parse_ptime;
3888	}
3889
3890	/*
3891	 * remember for future
3892	 */
3893	parse->timedata = *parsetime;
3894
3895	/*
3896	 * check to see, whether the clock did a complete powerup or lost PZF signal
3897	 * and post correct events for current condition
3898	 */
3899	if (PARSE_POWERUP(parsetime->parse_state))
3900	{
3901		/*
3902		 * this is bad, as we have completely lost synchronisation
3903		 * well this is a problem with the receiver here
3904		 * for PARSE Meinberg DCF77 receivers the lost synchronisation
3905		 * is true as it is the powerup state and the time is taken
3906		 * from a crude real time clock chip
3907		 * for the PZF/GPS series this is only partly true, as
3908		 * PARSE_POWERUP only means that the pseudo random
3909		 * phase shift sequence cannot be found. this is only
3910		 * bad, if we have never seen the clock in the SYNC
3911		 * state, where the PHASE and EPOCH are correct.
3912		 * for reporting events the above business does not
3913		 * really matter, but we can use the time code
3914		 * even in the POWERUP state after having seen
3915		 * the clock in the synchronized state (PZF class
3916		 * receivers) unless we have had a telegram disruption
3917		 * after having seen the clock in the SYNC state. we
3918		 * thus require having seen the clock in SYNC state
3919		 * *after* having missed telegrams (noresponse) from
3920		 * the clock. one problem remains: we might use erroneously
3921		 * POWERUP data if the disruption is shorter than 1 polling
3922		 * interval. fortunately powerdowns last usually longer than 64
3923		 * seconds and the receiver is at least 2 minutes in the
3924		 * POWERUP or NOSYNC state before switching to SYNC
3925		 * for GPS receivers this can mean antenna problems and other causes.
3926		 * the additional grace period can be enables by a clock
3927		 * mode having the PARSE_F_POWERUPTRUST flag in cl_flag set.
3928		 */
3929		parse_event(parse, CEVNT_FAULT);
3930		NLOG(NLOG_CLOCKSTATUS)
3931			ERR(ERR_BADSTATUS)
3932			msyslog(LOG_ERR,"PARSE receiver #%d: NOT SYNCHRONIZED/RECEIVER PROBLEMS",
3933				CLK_UNIT(parse->peer));
3934	}
3935	else
3936	{
3937		/*
3938		 * we have two states left
3939		 *
3940		 * SYNC:
3941		 *  this state means that the EPOCH (timecode) and PHASE
3942		 *  information has be read correctly (at least two
3943		 *  successive PARSE timecodes were received correctly)
3944		 *  this is the best possible state - full trust
3945		 *
3946		 * NOSYNC:
3947		 *  The clock should be on phase with respect to the second
3948		 *  signal, but the timecode has not been received correctly within
3949		 *  at least the last two minutes. this is a sort of half baked state
3950		 *  for PARSE Meinberg DCF77 clocks this is bad news (clock running
3951		 *  without timecode confirmation)
3952		 *  PZF 535 has also no time confirmation, but the phase should be
3953		 *  very precise as the PZF signal can be decoded
3954		 */
3955
3956		if (PARSE_SYNC(parsetime->parse_state))
3957		{
3958			/*
3959			 * currently completely synchronized - best possible state
3960			 */
3961			parse->lastsync = current_time;
3962			clear_err(parse, ERR_BADSTATUS);
3963		}
3964		else
3965		{
3966			/*
3967			 * we have had some problems receiving the time code
3968			 */
3969			parse_event(parse, CEVNT_PROP);
3970			NLOG(NLOG_CLOCKSTATUS)
3971				ERR(ERR_BADSTATUS)
3972				msyslog(LOG_ERR,"PARSE receiver #%d: TIMECODE NOT CONFIRMED",
3973					CLK_UNIT(parse->peer));
3974		}
3975	}
3976
3977	fudge = parse->generic->fudgetime1; /* standard RS232 Fudgefactor */
3978
3979	if (PARSE_TIMECODE(parsetime->parse_state))
3980	{
3981		rectime = parsetime->parse_stime.fp;
3982		off = reftime = parsetime->parse_time.fp;
3983
3984		L_SUB(&off, &rectime); /* prepare for PPS adjustments logic */
3985
3986#ifdef DEBUG
3987		if (debug > 3)
3988			printf("PARSE receiver #%d: Reftime %s, Recvtime %s - initial offset %s\n",
3989			       CLK_UNIT(parse->peer),
3990			       prettydate(&reftime),
3991			       prettydate(&rectime),
3992			       lfptoa(&off,6));
3993#endif
3994	}
3995
3996	if (PARSE_PPS(parsetime->parse_state) && CLK_PPS(parse->peer))
3997	{
3998		l_fp offset;
3999		double ppsphaseadjust = parse->ppsphaseadjust;
4000
4001#ifdef HAVE_PPSAPI
4002		/*
4003		 * set fudge = 0.0 if already included in PPS time stamps
4004		 */
4005		if (parse->atom.pps_params.mode & (PPS_OFFSETCLEAR|PPS_OFFSETASSERT))
4006		        {
4007			        ppsphaseadjust = 0.0;
4008			}
4009#endif
4010
4011		/*
4012		 * we have a PPS signal - much better than the RS232 stuff (we hope)
4013		 */
4014		offset = parsetime->parse_ptime.fp;
4015
4016#ifdef DEBUG
4017		if (debug > 3)
4018			printf("PARSE receiver #%d: PPStime %s\n",
4019				CLK_UNIT(parse->peer),
4020				prettydate(&offset));
4021#endif
4022		if (PARSE_TIMECODE(parsetime->parse_state))
4023		{
4024			if (M_ISGEQ(off.l_i, off.l_uf, -1, 0x80000000) &&
4025			    M_ISGEQ(0, 0x7fffffff, off.l_i, off.l_uf))
4026			{
4027				fudge = ppsphaseadjust; /* pick PPS fudge factor */
4028
4029				/*
4030				 * RS232 offsets within [-0.5..0.5[ - take PPS offsets
4031				 */
4032
4033				if (parse->parse_type->cl_flags & PARSE_F_PPSONSECOND)
4034				{
4035					reftime = off = offset;
4036					if (reftime.l_uf & 0x80000000)
4037						reftime.l_ui++;
4038					reftime.l_uf = 0;
4039
4040
4041					/*
4042					 * implied on second offset
4043					 */
4044					off.l_uf = ~off.l_uf; /* map [0.5..1[ -> [-0.5..0[ */
4045					off.l_i = (off.l_uf & 0x80000000) ? -1 : 0; /* sign extend */
4046				}
4047				else
4048				{
4049					/*
4050					 * time code describes pulse
4051					 */
4052					reftime = off = parsetime->parse_time.fp;
4053
4054					L_SUB(&off, &offset); /* true offset */
4055				}
4056			}
4057			/*
4058			 * take RS232 offset when PPS when out of bounds
4059			 */
4060		}
4061		else
4062		{
4063			fudge = ppsphaseadjust; /* pick PPS fudge factor */
4064			/*
4065			 * Well, no time code to guide us - assume on second pulse
4066			 * and pray, that we are within [-0.5..0.5[
4067			 */
4068			off = offset;
4069			reftime = offset;
4070			if (reftime.l_uf & 0x80000000)
4071				reftime.l_ui++;
4072			reftime.l_uf = 0;
4073			/*
4074			 * implied on second offset
4075			 */
4076			off.l_uf = ~off.l_uf; /* map [0.5..1[ -> [-0.5..0[ */
4077			off.l_i = (off.l_uf & 0x80000000) ? -1 : 0; /* sign extend */
4078		}
4079	}
4080	else
4081	{
4082		if (!PARSE_TIMECODE(parsetime->parse_state))
4083		{
4084			/*
4085			 * Well, no PPS, no TIMECODE, no more work ...
4086			 */
4087			if ((parsetime->parse_status & CVT_ADDITIONAL) &&
4088			    parse->parse_type->cl_message)
4089				parse->parse_type->cl_message(parse, parsetime);
4090			return;
4091		}
4092	}
4093
4094#ifdef DEBUG
4095	if (debug > 3)
4096		printf("PARSE receiver #%d: Reftime %s, Recvtime %s - final offset %s\n",
4097			CLK_UNIT(parse->peer),
4098			prettydate(&reftime),
4099			prettydate(&rectime),
4100			lfptoa(&off,6));
4101#endif
4102
4103
4104	rectime = reftime;
4105	L_SUB(&rectime, &off);	/* just to keep the ntp interface happy */
4106
4107#ifdef DEBUG
4108	if (debug > 3)
4109		printf("PARSE receiver #%d: calculated Reftime %s, Recvtime %s\n",
4110			CLK_UNIT(parse->peer),
4111			prettydate(&reftime),
4112			prettydate(&rectime));
4113#endif
4114
4115	if ((parsetime->parse_status & CVT_ADDITIONAL) &&
4116	    parse->parse_type->cl_message)
4117		parse->parse_type->cl_message(parse, parsetime);
4118
4119	if (PARSE_SYNC(parsetime->parse_state))
4120	{
4121		/*
4122		 * log OK status
4123		 */
4124		parse_event(parse, CEVNT_NOMINAL);
4125	}
4126
4127	clear_err(parse, ERR_BADIO);
4128	clear_err(parse, ERR_BADDATA);
4129	clear_err(parse, ERR_NODATA);
4130	clear_err(parse, ERR_INTERNAL);
4131
4132	/*
4133	 * and now stick it into the clock machine
4134	 * samples are only valid iff lastsync is not too old and
4135	 * we have seen the clock in sync at least once
4136	 * after the last time we didn't see an expected data telegram
4137	 * at startup being not in sync is also bad just like
4138	 * POWERUP state unless PARSE_F_POWERUPTRUST is set
4139	 * see the clock states section above for more reasoning
4140	 */
4141	if (((current_time - parse->lastsync) > parse->maxunsync)           ||
4142	    (parse->lastsync < parse->lastmissed)                           ||
4143	    ((parse->lastsync == 0) && !PARSE_SYNC(parsetime->parse_state)) ||
4144	    (((parse->parse_type->cl_flags & PARSE_F_POWERUPTRUST) == 0) &&
4145	     PARSE_POWERUP(parsetime->parse_state)))
4146	{
4147		parse->generic->leap = LEAP_NOTINSYNC;
4148		parse->lastsync = 0;	/* wait for full sync again */
4149	}
4150	else
4151	{
4152		if (PARSE_LEAPADD(parsetime->parse_state))
4153		{
4154			/*
4155			 * we pick this state also for time code that pass leap warnings
4156			 * without direction information (as earth is currently slowing
4157			 * down).
4158			 */
4159			parse->generic->leap = (parse->flags & PARSE_LEAP_DELETE) ? LEAP_DELSECOND : LEAP_ADDSECOND;
4160		}
4161		else
4162		    if (PARSE_LEAPDEL(parsetime->parse_state))
4163		    {
4164			    parse->generic->leap = LEAP_DELSECOND;
4165		    }
4166		    else
4167		    {
4168			    parse->generic->leap = LEAP_NOWARNING;
4169		    }
4170	}
4171
4172	if (parse->generic->leap != LEAP_NOTINSYNC)
4173	{
4174	        /*
4175		 * only good/trusted samples are interesting
4176		 */
4177#ifdef DEBUG
4178	        if (debug > 2)
4179			{
4180				       printf("PARSE receiver #%d: refclock_process_offset(reftime=%s, rectime=%s, Fudge=%f)\n",
4181				       CLK_UNIT(parse->peer),
4182				       prettydate(&reftime),
4183				       prettydate(&rectime),
4184				       fudge);
4185			}
4186#endif
4187		parse->generic->lastref = reftime;
4188
4189		refclock_process_offset(parse->generic, reftime, rectime, fudge);
4190
4191#ifdef HAVE_PPSAPI
4192		/*
4193		 * pass PPS information on to PPS clock
4194		 */
4195		if (PARSE_PPS(parsetime->parse_state) && CLK_PPS(parse->peer))
4196			{
4197				parse->peer->flags |= (FLAG_PPS | FLAG_TSTAMP_PPS);
4198				parse_hardpps(parse, PARSE_HARDPPS_ENABLE);
4199			}
4200#endif
4201	} else {
4202		parse_hardpps(parse, PARSE_HARDPPS_DISABLE);
4203		parse->peer->flags &= ~(FLAG_PPS | FLAG_TSTAMP_PPS);
4204	}
4205
4206	/*
4207	 * ready, unless the machine wants a sample or
4208	 * we are in fast startup mode (peer->dist > MAXDISTANCE)
4209	 */
4210	if (!parse->pollneeddata && parse->peer->disp <= MAXDISTANCE)
4211	    return;
4212
4213	parse->pollneeddata = 0;
4214
4215	parse->timedata.parse_state &= ~(unsigned)(PARSEB_PPS|PARSEB_S_PPS);
4216
4217	refclock_receive(parse->peer);
4218}
4219
4220/**===========================================================================
4221 ** special code for special clocks
4222 **/
4223
4224static void
4225mk_utcinfo(
4226	   char *t,  // pointer to the output string buffer
4227	   int wnt,
4228	   int wnlsf,
4229	   int dn,
4230	   int dtls,
4231	   int dtlsf,
4232	   int size  // size of the output string buffer
4233	   )
4234{
4235	/*
4236	 * The week number transmitted by the GPS satellites for the leap date
4237	 * is truncated to 8 bits only. If the nearest leap second date is off
4238	 * the current date by more than +/- 128 weeks then conversion to a
4239	 * calendar date is ambiguous. On the other hand, if a leap second is
4240	 * currently being announced (i.e. dtlsf != dtls) then the week number
4241	 * wnlsf is close enough, and we can unambiguously determine the date
4242	 * for which the leap second is scheduled.
4243	 */
4244	if ( dtlsf != dtls )
4245	{
4246		time_t t_ls;
4247		struct tm *tm;
4248		int n = 0;
4249
4250		if (wnlsf < GPSWRAP)
4251			wnlsf += GPSWEEKS;
4252
4253		if (wnt < GPSWRAP)
4254			wnt += GPSWEEKS;
4255
4256		t_ls = (time_t) wnlsf * SECSPERWEEK
4257			+ (time_t) dn * SECSPERDAY
4258			+ GPS_SEC_BIAS - 1;
4259
4260		tm = gmtime( &t_ls );
4261		if (tm == NULL)  // gmtime() failed
4262		{
4263			snprintf( t, size, "** (gmtime() failed in mk_utcinfo())" );
4264			return;
4265		}
4266
4267		n += snprintf( t, size, "UTC offset transition from %is to %is due to leap second %s",
4268				dtls, dtlsf, ( dtls < dtlsf ) ? "insertion" : "deletion" );
4269		n += snprintf( t + n, size - n, " at UTC midnight at the end of %s, %04i-%02i-%02i",
4270				daynames[tm->tm_wday], tm->tm_year + 1900, tm->tm_mon + 1, tm->tm_mday );
4271	}
4272	else
4273		snprintf( t, size, "UTC offset parameter: %is, no leap second announced.\n", dtls );
4274
4275}
4276
4277#ifdef CLOCK_MEINBERG
4278/**===========================================================================
4279 ** Meinberg GPS receiver support
4280 **/
4281
4282/*------------------------------------------------------------
4283 * gps16x_message - process messages from Meinberg GPS receiver
4284 */
4285static void
4286gps16x_message(
4287	       struct parseunit *parse,
4288	       parsetime_t      *parsetime
4289	       )
4290{
4291	if (parse->timedata.parse_msglen && parsetime->parse_msg[0] == SOH)
4292	{
4293		GPS_MSG_HDR header;
4294		unsigned char *bufp = (unsigned char *)parsetime->parse_msg + 1;
4295
4296#ifdef DEBUG
4297		if (debug > 2)
4298		{
4299			char msgbuffer[600];
4300
4301			mkreadable(msgbuffer, sizeof(msgbuffer), (char *)parsetime->parse_msg, parsetime->parse_msglen, 1);
4302			printf("PARSE receiver #%d: received message (%d bytes) >%s<\n",
4303				CLK_UNIT(parse->peer),
4304				parsetime->parse_msglen,
4305				msgbuffer);
4306		}
4307#endif
4308		get_mbg_header(&bufp, &header);
4309		if (header.hdr_csum == mbg_csum(parsetime->parse_msg + 1, 6) &&
4310		    (header.len == 0 ||
4311		     (header.len < sizeof(parsetime->parse_msg) &&
4312		      header.data_csum == mbg_csum(bufp, header.len))))
4313		{
4314			/*
4315			 * clean message
4316			 */
4317			switch (header.cmd)
4318			{
4319			case GPS_SW_REV:
4320				{
4321					char buffer[64];
4322					SW_REV gps_sw_rev;
4323
4324					get_mbg_sw_rev(&bufp, &gps_sw_rev);
4325					snprintf(buffer, sizeof(buffer), "meinberg_gps_version=\"%x.%02x%s%s\"",
4326						(gps_sw_rev.code >> 8) & 0xFF,
4327						gps_sw_rev.code & 0xFF,
4328						gps_sw_rev.name[0] ? " " : "",
4329						gps_sw_rev.name);
4330					set_var(&parse->kv, buffer, strlen(buffer)+1, RO|DEF);
4331				}
4332			break;
4333
4334			case GPS_BVAR_STAT:
4335				{
4336					static struct state
4337					{
4338						BVAR_STAT flag; /* status flag */
4339						const char *string; /* bit name */
4340					} states[] =
4341					  {
4342						  { BVAR_CFGH_INVALID,     "Configuration/Health" },
4343						  { BVAR_ALM_NOT_COMPLETE, "Almanachs" },
4344						  { BVAR_UTC_INVALID,      "UTC Correction" },
4345						  { BVAR_IONO_INVALID,     "Ionospheric Correction" },
4346						  { BVAR_RCVR_POS_INVALID, "Receiver Position" },
4347						  { 0, "" }
4348					  };
4349					BVAR_STAT status;
4350					struct state *s = states;
4351					char buffer[512];
4352					char *p, *b;
4353
4354					status = (BVAR_STAT) get_lsb_short(&bufp);
4355					p = b = buffer;
4356					p = ap(buffer, sizeof(buffer), p,
4357					    "meinberg_gps_status=\"[0x%04x] ",
4358					    status);
4359
4360					if (status)
4361					{
4362						p = ap(buffer, sizeof(buffer), p, "incomplete buffered data: ");
4363						b = p;
4364						while (s->flag)
4365						{
4366							if (status & s->flag)
4367							{
4368								if (p != b)
4369								{
4370									p = ap(buffer, sizeof(buffer), p, ", ");
4371								}
4372
4373								p = ap(buffer, sizeof(buffer), p, "%s", (const char *)s->string);
4374							}
4375							s++;
4376						}
4377						p = ap(buffer, sizeof(buffer), p, "\"");
4378					}
4379					else
4380					{
4381						p = ap(buffer, sizeof(buffer), p, "<all buffered data complete>\"");
4382					}
4383
4384					set_var(&parse->kv, buffer, strlen(buffer)+1, RO|DEF);
4385				}
4386			break;
4387
4388			case GPS_POS_XYZ:
4389				{
4390					XYZ xyz;
4391					char buffer[256];
4392
4393					get_mbg_xyz(&bufp, xyz);
4394					snprintf(buffer, sizeof(buffer), "gps_position(XYZ)=\"%s m, %s m, %s m\"",
4395						mfptoa(xyz[XP].l_ui, xyz[XP].l_uf, 1),
4396						mfptoa(xyz[YP].l_ui, xyz[YP].l_uf, 1),
4397						mfptoa(xyz[ZP].l_ui, xyz[ZP].l_uf, 1));
4398
4399					set_var(&parse->kv, buffer, sizeof(buffer), RO|DEF);
4400				}
4401			break;
4402
4403			case GPS_POS_LLA:
4404				{
4405					LLA lla;
4406					char buffer[256];
4407
4408					get_mbg_lla(&bufp, lla);
4409
4410					snprintf(buffer, sizeof(buffer), "gps_position(LLA)=\"%s deg, %s deg, %s m\"",
4411						mfptoa(lla[LAT].l_ui, lla[LAT].l_uf, 4),
4412						mfptoa(lla[LON].l_ui, lla[LON].l_uf, 4),
4413						mfptoa(lla[ALT].l_ui, lla[ALT].l_uf, 1));
4414
4415					set_var(&parse->kv, buffer, sizeof(buffer), RO|DEF);
4416				}
4417			break;
4418
4419			case GPS_TZDL:
4420				break;
4421
4422			case GPS_PORT_PARM:
4423				break;
4424
4425			case GPS_SYNTH:
4426				break;
4427
4428			case GPS_ANT_INFO:
4429				{
4430					ANT_INFO antinfo;
4431					char buffer[512];
4432					char *p, *q;
4433
4434					get_mbg_antinfo(&bufp, &antinfo);
4435					p = buffer;
4436					p = ap(buffer, sizeof(buffer), p, "meinberg_antenna_status=\"");
4437					switch (antinfo.status)
4438					{
4439					case ANT_INVALID: // No other fields valid since antenna has not yet been disconnected
4440						p = ap(buffer, sizeof(buffer),
4441						    p, "<OK>");
4442						break;
4443
4444					case ANT_DISCONN: // Antenna is disconnected, tm_reconn and delta_t not yet set
4445						q = ap(buffer, sizeof(buffer),
4446						    p, "DISCONNECTED since ");
4447						NLOG(NLOG_CLOCKSTATUS)
4448							ERR(ERR_BADSTATUS)
4449							msyslog(LOG_ERR,"PARSE receiver #%d: ANTENNA FAILURE: %s",
4450								CLK_UNIT(parse->peer), p);
4451
4452						p = q;
4453						mbg_tm_str(&p, &antinfo.tm_disconn, BUFFER_SIZE(buffer, p), 0);
4454						*p = '\0';
4455						break;
4456
4457					case ANT_RECONN: // Antenna had been disconnect, but receiver sync. after reconnect, so all fields valid
4458						p = ap(buffer, sizeof(buffer),
4459						    p, "SYNC AFTER RECONNECT on ");
4460						mbg_tm_str(&p, &antinfo.tm_reconn, BUFFER_SIZE(buffer, p), 0);
4461						p = ap(buffer, sizeof(buffer),
4462							p, ", clock offset at reconnect %c%ld.%07ld s, disconnect time ",
4463							(antinfo.delta_t < 0) ? '-' : '+',
4464							(long) ABS(antinfo.delta_t) / 10000,
4465							(long) ABS(antinfo.delta_t) % 10000);
4466						mbg_tm_str(&p, &antinfo.tm_disconn, BUFFER_SIZE(buffer, p), 0);
4467						*p = '\0';
4468						break;
4469
4470					default:
4471						p = ap(buffer, sizeof(buffer),
4472						    p, "bad status 0x%04x",
4473						    antinfo.status);
4474						break;
4475					}
4476
4477					p = ap(buffer, sizeof(buffer), p, "\"");
4478
4479					set_var(&parse->kv, buffer, sizeof(buffer), RO|DEF);
4480				}
4481			break;
4482
4483			case GPS_UCAP:
4484				break;
4485
4486			case GPS_CFGH:
4487				{
4488					CFGH cfgh;
4489					char buffer[512];
4490					char *p;
4491
4492					get_mbg_cfgh(&bufp, &cfgh);
4493					if (cfgh.valid)
4494					{
4495						const char *cp;
4496						uint16_t tmp_val;
4497						int i;
4498
4499						p = buffer;
4500						p = ap(buffer, sizeof(buffer),
4501						    p, "gps_tot_51=\"");
4502						mbg_tgps_str(&p, &cfgh.tot_51, BUFFER_SIZE(buffer, p));
4503						p = ap(buffer, sizeof(buffer),
4504						    p, "\"");
4505						set_var(&parse->kv, buffer, sizeof(buffer), RO|COND_DEF);
4506
4507						p = buffer;
4508						p = ap(buffer, sizeof(buffer),
4509						    p, "gps_tot_63=\"");
4510						mbg_tgps_str(&p, &cfgh.tot_63, BUFFER_SIZE(buffer, p));
4511						p = ap(buffer, sizeof(buffer),
4512						    p, "\"");
4513						set_var(&parse->kv, buffer, sizeof(buffer), RO|COND_DEF);
4514
4515						p = buffer;
4516						p = ap(buffer, sizeof(buffer),
4517						    p, "gps_t0a=\"");
4518						mbg_tgps_str(&p, &cfgh.t0a, BUFFER_SIZE(buffer, p));
4519						p = ap(buffer, sizeof(buffer),
4520						    p, "\"");
4521						set_var(&parse->kv, buffer, sizeof(buffer), RO|COND_DEF);
4522
4523						for (i = 0; i < N_SVNO_GPS; i++)
4524						{
4525							p = buffer;
4526							p = ap(buffer, sizeof(buffer), p, "sv_info[%d]=\"PRN%d", i, i + N_SVNO_GPS);
4527
4528							tmp_val = cfgh.health[i];  /* a 6 bit SV health code */
4529							p = ap(buffer, sizeof(buffer), p, "; health=0x%02x (", tmp_val);
4530							/* "All Ones" has a special meaning" */
4531							if (tmp_val == 0x3F) /* satellite is unusable or doesn't even exist */
4532								cp = "SV UNAVAILABLE";
4533							else {
4534								/* The MSB contains a summary of the 3 MSBs of the 8 bit health code,
4535								 * indicating if the data sent by the satellite is OK or not. */
4536								p = ap(buffer, sizeof(buffer), p, "DATA %s, ", (tmp_val & 0x20) ? "BAD" : "OK" );
4537
4538								/* The 5 LSBs contain the status of the different signals sent by the satellite. */
4539								switch (tmp_val & 0x1F)
4540								{
4541									case 0x00: cp = "SIGNAL OK";              break;
4542									/* codes 0x01 through 0x1B indicate that one or more
4543									 * specific signal components are weak or dead.
4544									 * We don't decode this here in detail. */
4545									case 0x1C: cp = "SV IS TEMP OUT";         break;
4546									case 0x1D: cp = "SV WILL BE TEMP OUT";    break;
4547									default:   cp = "TRANSMISSION PROBLEMS";  break;
4548								}
4549							}
4550							p = ap(buffer, sizeof(buffer), p, "%s)", cp );
4551
4552							tmp_val = cfgh.cfg[i];  /* a 4 bit SV configuration/type code */
4553							p = ap(buffer, sizeof(buffer), p, "; cfg=0x%02x (", tmp_val);
4554							switch (tmp_val & 0x7)
4555							{
4556								case 0x00:  cp = "(reserved)";        break;
4557								case 0x01:  cp = "BLOCK II/IIA/IIR";  break;
4558								case 0x02:  cp = "BLOCK IIR-M";       break;
4559								case 0x03:  cp = "BLOCK IIF";         break;
4560								case 0x04:  cp = "BLOCK III";         break;
4561								default:   cp = "unknown SV type";   break;
4562							}
4563							p = ap(buffer, sizeof(buffer), p, "%s", cp );
4564							if (tmp_val & 0x08)  /* A-S is on, P-code is encrypted */
4565								p = ap( buffer, sizeof(buffer), p, ", A-S on" );
4566
4567							p = ap(buffer, sizeof(buffer), p, ")\"");
4568							set_var(&parse->kv, buffer, sizeof(buffer), RO|COND_DEF);
4569						}
4570					}
4571				}
4572			break;
4573
4574			case GPS_ALM:
4575				break;
4576
4577			case GPS_EPH:
4578				break;
4579
4580			case GPS_UTC:
4581				{
4582					UTC utc;
4583					char buffer[512];
4584					char *p;
4585
4586					p = buffer;
4587
4588					get_mbg_utc(&bufp, &utc);
4589
4590					if (utc.valid)
4591					{
4592						p = ap(buffer, sizeof(buffer), p, "gps_utc_correction=\"");
4593						mk_utcinfo(p, utc.t0t.wn, utc.WNlsf, utc.DNt, utc.delta_tls, utc.delta_tlsf, BUFFER_SIZE(buffer, p));
4594						p += strlen(p);
4595						p = ap(buffer, sizeof(buffer), p, "\"");
4596					}
4597					else
4598					{
4599						p = ap(buffer, sizeof(buffer), p, "gps_utc_correction=\"<NO UTC DATA>\"");
4600					}
4601					set_var(&parse->kv, buffer, sizeof(buffer), RO|DEF);
4602				}
4603			break;
4604
4605			case GPS_IONO:
4606				break;
4607
4608			case GPS_ASCII_MSG:
4609				{
4610					ASCII_MSG gps_ascii_msg;
4611					char buffer[128];
4612
4613					get_mbg_ascii_msg(&bufp, &gps_ascii_msg);
4614
4615					if (gps_ascii_msg.valid)
4616						{
4617							char buffer1[128];
4618							mkreadable(buffer1, sizeof(buffer1), gps_ascii_msg.s, strlen(gps_ascii_msg.s), (int)0);
4619
4620							snprintf(buffer, sizeof(buffer), "gps_message=\"%s\"", buffer1);
4621						}
4622					else
4623						snprintf(buffer, sizeof(buffer), "gps_message=<NONE>");
4624
4625					set_var(&parse->kv, buffer, sizeof(buffer), RO|DEF);
4626				}
4627
4628			break;
4629
4630			default:
4631				break;
4632			}
4633		}
4634		else
4635		{
4636			msyslog(LOG_DEBUG, "PARSE receiver #%d: gps16x_message: message checksum error: hdr_csum = 0x%x (expected 0x%x), "
4637			                   "data_len = %d, data_csum = 0x%x (expected 0x%x)",
4638				CLK_UNIT(parse->peer),
4639				header.hdr_csum, mbg_csum(parsetime->parse_msg + 1, 6),
4640				header.len,
4641				header.data_csum, mbg_csum(bufp, (unsigned)((header.len < sizeof(parsetime->parse_msg)) ? header.len : 0)));
4642		}
4643	}
4644
4645	return;
4646}
4647
4648/*------------------------------------------------------------
4649 * gps16x_poll - query the reciver peridically
4650 */
4651static void
4652gps16x_poll(
4653	    struct peer *peer
4654	    )
4655{
4656	struct parseunit *parse = peer->procptr->unitptr;
4657
4658	static GPS_MSG_HDR sequence[] =
4659	{
4660		{ GPS_SW_REV,          0, 0, 0 },
4661		{ GPS_BVAR_STAT,       0, 0, 0 },
4662		{ GPS_UTC,             0, 0, 0 },
4663		{ GPS_ASCII_MSG,       0, 0, 0 },
4664		{ GPS_ANT_INFO,        0, 0, 0 },
4665		{ GPS_CFGH,            0, 0, 0 },
4666		{ GPS_POS_XYZ,         0, 0, 0 },
4667		{ GPS_POS_LLA,         0, 0, 0 },
4668		{ (unsigned short)~0,  0, 0, 0 }
4669	};
4670
4671	int rtc;
4672	unsigned char cmd_buffer[64];
4673	unsigned char *outp = cmd_buffer;
4674	GPS_MSG_HDR *header;
4675
4676	if (((poll_info_t *)parse->parse_type->cl_data)->rate)
4677	{
4678		parse->peer->procptr->nextaction = current_time + ((poll_info_t *)parse->parse_type->cl_data)->rate;
4679	}
4680
4681	if (sequence[parse->localstate].cmd == (unsigned short)~0)
4682		parse->localstate = 0;
4683
4684	header = sequence + parse->localstate++;
4685
4686	*outp++ = SOH;		/* start command */
4687
4688	put_mbg_header(&outp, header);
4689	outp = cmd_buffer + 1;
4690
4691	header->hdr_csum = (short)mbg_csum(outp, 6);
4692	put_mbg_header(&outp, header);
4693
4694#ifdef DEBUG
4695	if (debug > 2)
4696	{
4697		char buffer[128];
4698
4699		mkreadable(buffer, sizeof(buffer), (char *)cmd_buffer, (unsigned)(outp - cmd_buffer), 1);
4700		printf("PARSE receiver #%d: transmitted message #%ld (%d bytes) >%s<\n",
4701		       CLK_UNIT(parse->peer),
4702		       parse->localstate - 1,
4703		       (int)(outp - cmd_buffer),
4704		       buffer);
4705	}
4706#endif
4707
4708	rtc = (int) write(parse->generic->io.fd, cmd_buffer, (unsigned long)(outp - cmd_buffer));
4709
4710	if (rtc < 0)
4711	{
4712		ERR(ERR_BADIO)
4713			msyslog(LOG_ERR, "PARSE receiver #%d: gps16x_poll: failed to send cmd to clock: %m", CLK_UNIT(parse->peer));
4714	}
4715	else
4716	if (rtc != outp - cmd_buffer)
4717	{
4718		ERR(ERR_BADIO)
4719			msyslog(LOG_ERR, "PARSE receiver #%d: gps16x_poll: failed to send cmd incomplete (%d of %d bytes sent)", CLK_UNIT(parse->peer), rtc, (int)(outp - cmd_buffer));
4720	}
4721
4722	clear_err(parse, ERR_BADIO);
4723	return;
4724}
4725
4726/*--------------------------------------------------
4727 * init routine - setup timer
4728 */
4729static int
4730gps16x_poll_init(
4731	struct parseunit *parse
4732	)
4733{
4734	if (((poll_info_t *)parse->parse_type->cl_data)->rate)
4735	{
4736		parse->peer->procptr->action = gps16x_poll;
4737		gps16x_poll(parse->peer);
4738	}
4739
4740	return 0;
4741}
4742
4743#else
4744static void
4745gps16x_message(
4746	       struct parseunit *parse,
4747	       parsetime_t      *parsetime
4748	       )
4749{}
4750static int
4751gps16x_poll_init(
4752	struct parseunit *parse
4753	)
4754{
4755	return 1;
4756}
4757#endif /* CLOCK_MEINBERG */
4758
4759/**===========================================================================
4760 ** clock polling support
4761 **/
4762
4763/*--------------------------------------------------
4764 * direct poll routine
4765 */
4766static void
4767poll_dpoll(
4768	struct parseunit *parse
4769	)
4770{
4771	long rtc;
4772	const char *ps = ((poll_info_t *)parse->parse_type->cl_data)->string;
4773	long ct = ((poll_info_t *)parse->parse_type->cl_data)->count;
4774
4775	rtc = write(parse->generic->io.fd, ps, ct);
4776	if (rtc < 0)
4777	{
4778		ERR(ERR_BADIO)
4779			msyslog(LOG_ERR, "PARSE receiver #%d: poll_dpoll: failed to send cmd to clock: %m", CLK_UNIT(parse->peer));
4780	}
4781	else
4782	    if (rtc != ct)
4783	    {
4784		    ERR(ERR_BADIO)
4785			    msyslog(LOG_ERR, "PARSE receiver #%d: poll_dpoll: failed to send cmd incomplete (%ld of %ld bytes sent)", CLK_UNIT(parse->peer), rtc, ct);
4786	    }
4787	clear_err(parse, ERR_BADIO);
4788}
4789
4790/*--------------------------------------------------
4791 * periodic poll routine
4792 */
4793static void
4794poll_poll(
4795	struct peer *peer
4796	)
4797{
4798	struct parseunit *parse = peer->procptr->unitptr;
4799
4800	if (parse->parse_type->cl_poll)
4801		parse->parse_type->cl_poll(parse);
4802
4803	if (((poll_info_t *)parse->parse_type->cl_data)->rate)
4804	{
4805		parse->peer->procptr->nextaction = current_time + ((poll_info_t *)parse->parse_type->cl_data)->rate;
4806	}
4807}
4808
4809/*--------------------------------------------------
4810 * init routine - setup timer
4811 */
4812static int
4813poll_init(
4814	struct parseunit *parse
4815	)
4816{
4817	if (((poll_info_t *)parse->parse_type->cl_data)->rate)
4818	{
4819		parse->peer->procptr->action = poll_poll;
4820		poll_poll(parse->peer);
4821	}
4822
4823	return 0;
4824}
4825
4826/**===========================================================================
4827 ** Trimble support
4828 **/
4829
4830/*-------------------------------------------------------------
4831 * trimble TAIP init routine - setup EOL and then do poll_init.
4832 */
4833static int
4834trimbletaip_init(
4835	struct parseunit *parse
4836	)
4837{
4838#ifdef HAVE_TERMIOS
4839	struct termios tio;
4840#endif
4841#ifdef HAVE_SYSV_TTYS
4842	struct termio tio;
4843#endif
4844	/*
4845	 * configure terminal line for trimble receiver
4846	 */
4847	if (TTY_GETATTR(parse->generic->io.fd, &tio) == -1)
4848	{
4849		msyslog(LOG_ERR, "PARSE receiver #%d: trimbletaip_init: tcgetattr(fd, &tio): %m", CLK_UNIT(parse->peer));
4850		return 0;
4851	}
4852	else
4853	{
4854		tio.c_cc[VEOL] = TRIMBLETAIP_EOL;
4855
4856		if (TTY_SETATTR(parse->generic->io.fd, &tio) == -1)
4857		{
4858			msyslog(LOG_ERR, "PARSE receiver #%d: trimbletaip_init: tcsetattr(fd, &tio): %m", CLK_UNIT(parse->peer));
4859			return 0;
4860		}
4861	}
4862	return poll_init(parse);
4863}
4864
4865/*--------------------------------------------------
4866 * trimble TAIP event routine - reset receiver upon data format trouble
4867 */
4868static const char *taipinit[] = {
4869	">FPV00000000<",
4870	">SRM;ID_FLAG=F;CS_FLAG=T;EC_FLAG=F;FR_FLAG=T;CR_FLAG=F<",
4871	">FTM00020001<",
4872	(char *)0
4873};
4874
4875static void
4876trimbletaip_event(
4877	struct parseunit *parse,
4878	int event
4879	)
4880{
4881	switch (event)
4882	{
4883	    case CEVNT_BADREPLY:	/* reset on garbled input */
4884	    case CEVNT_TIMEOUT:		/* reset on no input */
4885		    {
4886			    const char **iv;
4887
4888			    iv = taipinit;
4889			    while (*iv)
4890			    {
4891				    int rtc = (int) write(parse->generic->io.fd, *iv, strlen(*iv));
4892				    if (rtc < 0)
4893				    {
4894					    msyslog(LOG_ERR, "PARSE receiver #%d: trimbletaip_event: failed to send cmd to clock: %m", CLK_UNIT(parse->peer));
4895					    return;
4896				    }
4897				    else
4898				    {
4899					    if (rtc != (int)strlen(*iv))
4900					    {
4901						    msyslog(LOG_ERR, "PARSE receiver #%d: trimbletaip_event: failed to send cmd incomplete (%d of %d bytes sent)",
4902							    CLK_UNIT(parse->peer), rtc, (int)strlen(*iv));
4903						    return;
4904					    }
4905				    }
4906				    iv++;
4907			    }
4908
4909			    NLOG(NLOG_CLOCKINFO)
4910				    ERR(ERR_BADIO)
4911				    msyslog(LOG_ERR, "PARSE receiver #%d: trimbletaip_event: RECEIVER INITIALIZED",
4912					    CLK_UNIT(parse->peer));
4913		    }
4914		    break;
4915
4916	    default:			/* ignore */
4917		break;
4918	}
4919}
4920
4921/*
4922 * This driver supports the Trimble SVee Six Plus GPS receiver module.
4923 * It should support other Trimble receivers which use the Trimble Standard
4924 * Interface Protocol (see below).
4925 *
4926 * The module has a serial I/O port for command/data and a 1 pulse-per-second
4927 * output, about 1 microsecond wide. The leading edge of the pulse is
4928 * coincident with the change of the GPS second. This is the same as
4929 * the change of the UTC second +/- ~1 microsecond. Some other clocks
4930 * specifically use a feature in the data message as a timing reference, but
4931 * the SVee Six Plus does not do this. In fact there is considerable jitter
4932 * on the timing of the messages, so this driver only supports the use
4933 * of the PPS pulse for accurate timing. Where it is determined that
4934 * the offset is way off, when first starting up ntpd for example,
4935 * the timing of the data stream is used until the offset becomes low enough
4936 * (|offset| < CLOCK_MAX), at which point the pps offset is used.
4937 *
4938 * It can use either option for receiving PPS information - the 'ppsclock'
4939 * stream pushed onto the serial data interface to timestamp the Carrier
4940 * Detect interrupts, where the 1PPS connects to the CD line. This only
4941 * works on SunOS 4.1.x currently. To select this, define PPSPPS in
4942 * Config.local. The other option is to use a pulse-stretcher/level-converter
4943 * to convert the PPS pulse into a RS232 start pulse & feed this into another
4944 * tty port. To use this option, define PPSCLK in Config.local. The pps input,
4945 * by whichever method, is handled in ntp_loopfilter.c
4946 *
4947 * The receiver uses a serial message protocol called Trimble Standard
4948 * Interface Protocol (it can support others but this driver only supports
4949 * TSIP). Messages in this protocol have the following form:
4950 *
4951 * <DLE><id> ... <data> ... <DLE><ETX>
4952 *
4953 * Any bytes within the <data> portion of value 10 hex (<DLE>) are doubled
4954 * on transmission and compressed back to one on reception. Otherwise
4955 * the values of data bytes can be anything. The serial interface is RS-422
4956 * asynchronous using 9600 baud, 8 data bits with odd party (**note** 9 bits
4957 * in total!), and 1 stop bit. The protocol supports byte, integer, single,
4958 * and double datatypes. Integers are two bytes, sent most significant first.
4959 * Singles are IEEE754 single precision floating point numbers (4 byte) sent
4960 * sign & exponent first. Doubles are IEEE754 double precision floating point
4961 * numbers (8 byte) sent sign & exponent first.
4962 * The receiver supports a large set of messages, only a small subset of
4963 * which are used here. From driver to receiver the following are used:
4964 *
4965 *  ID    Description
4966 *
4967 *  21    Request current time
4968 *  22    Mode Select
4969 *  2C    Set/Request operating parameters
4970 *  2F    Request UTC info
4971 *  35    Set/Request I/O options
4972
4973 * From receiver to driver the following are recognised:
4974 *
4975 *  ID    Description
4976 *
4977 *  41    GPS Time
4978 *  44    Satellite selection, PDOP, mode
4979 *  46    Receiver health
4980 *  4B    Machine code/status
4981 *  4C    Report operating parameters (debug only)
4982 *  4F    UTC correction data (used to get leap second warnings)
4983 *  55    I/O options (debug only)
4984 *
4985 * All others are accepted but ignored.
4986 *
4987 */
4988
4989#define PI		3.1415926535898	/* lots of sig figs */
4990#define D2R		PI/180.0
4991
4992/*-------------------------------------------------------------------
4993 * sendcmd, sendbyte, sendetx, sendflt, sendint implement the command
4994 * interface to the receiver.
4995 *
4996 * CAVEAT: the sendflt, sendint routines are byte order dependend and
4997 * float implementation dependend - these must be converted to portable
4998 * versions !
4999 *
5000 * CURRENT LIMITATION: float implementation. This runs only on systems
5001 * with IEEE754 floats as native floats
5002 */
5003
5004typedef struct trimble
5005{
5006	u_long last_msg;	/* last message received */
5007	u_long last_reset;	/* last time a reset was issued */
5008	u_char qtracking;	/* query tracking status */
5009	u_long ctrack;		/* current tracking set */
5010	u_long ltrack;		/* last tracking set */
5011} trimble_t;
5012
5013union uval {
5014	u_char  bd[8];
5015	int     iv;
5016	float   fv;
5017	double  dv;
5018};
5019
5020struct txbuf
5021{
5022	short idx;			/* index to first unused byte */
5023	u_char *txt;			/* pointer to actual data buffer */
5024};
5025
5026void	sendcmd		(struct txbuf *buf, int c);
5027void	sendbyte	(struct txbuf *buf, int b);
5028void	sendetx		(struct txbuf *buf, struct parseunit *parse);
5029void	sendint		(struct txbuf *buf, int a);
5030void	sendflt		(struct txbuf *buf, double a);
5031
5032void
5033sendcmd(
5034	struct txbuf *buf,
5035	int c
5036	)
5037{
5038	buf->txt[0] = DLE;
5039	buf->txt[1] = (u_char)c;
5040	buf->idx = 2;
5041}
5042
5043void	sendcmd		(struct txbuf *buf, int c);
5044void	sendbyte	(struct txbuf *buf, int b);
5045void	sendetx		(struct txbuf *buf, struct parseunit *parse);
5046void	sendint		(struct txbuf *buf, int a);
5047void	sendflt		(struct txbuf *buf, double a);
5048
5049void
5050sendbyte(
5051	struct txbuf *buf,
5052	int b
5053	)
5054{
5055	if (b == DLE)
5056	    buf->txt[buf->idx++] = DLE;
5057	buf->txt[buf->idx++] = (u_char)b;
5058}
5059
5060void
5061sendetx(
5062	struct txbuf *buf,
5063	struct parseunit *parse
5064	)
5065{
5066	buf->txt[buf->idx++] = DLE;
5067	buf->txt[buf->idx++] = ETX;
5068
5069	if (write(parse->generic->io.fd, buf->txt, (unsigned long)buf->idx) != buf->idx)
5070	{
5071		ERR(ERR_BADIO)
5072			msyslog(LOG_ERR, "PARSE receiver #%d: sendetx: failed to send cmd to clock: %m", CLK_UNIT(parse->peer));
5073	}
5074	else
5075	{
5076#ifdef DEBUG
5077	  if (debug > 2)
5078	  {
5079		  char buffer[256];
5080
5081		  mkreadable(buffer, sizeof(buffer), (char *)buf->txt, (unsigned)buf->idx, 1);
5082		  printf("PARSE receiver #%d: transmitted message (%d bytes) >%s<\n",
5083			 CLK_UNIT(parse->peer),
5084			 buf->idx, buffer);
5085	  }
5086#endif
5087		clear_err(parse, ERR_BADIO);
5088	}
5089}
5090
5091void
5092sendint(
5093	struct txbuf *buf,
5094	int a
5095	)
5096{
5097	/* send 16bit int, msbyte first */
5098	sendbyte(buf, (u_char)((a>>8) & 0xff));
5099	sendbyte(buf, (u_char)(a & 0xff));
5100}
5101
5102void
5103sendflt(
5104	struct txbuf *buf,
5105	double a
5106	)
5107{
5108	int i;
5109	union uval uval;
5110
5111	uval.fv = (float) a;
5112#ifdef WORDS_BIGENDIAN
5113	for (i=0; i<=3; i++)
5114#else
5115	    for (i=3; i>=0; i--)
5116#endif
5117		sendbyte(buf, uval.bd[i]);
5118}
5119
5120#define TRIM_POS_OPT	0x13	/* output position with high precision */
5121#define TRIM_TIME_OPT	0x03	/* use UTC time stamps, on second */
5122
5123/*--------------------------------------------------
5124 * trimble TSIP setup routine
5125 */
5126static int
5127trimbletsip_setup(
5128		  struct parseunit *parse,
5129		  const char *reason
5130		  )
5131{
5132	u_char buffer[256];
5133	struct txbuf buf;
5134	trimble_t *t = parse->localdata;
5135
5136	if (t && t->last_reset &&
5137	    ((t->last_reset + TRIMBLE_RESET_HOLDOFF) > current_time)) {
5138		return 1;	/* not yet */
5139	}
5140
5141	if (t)
5142		t->last_reset = current_time;
5143
5144	buf.txt = buffer;
5145
5146	sendcmd(&buf, CMD_CVERSION);	/* request software versions */
5147	sendetx(&buf, parse);
5148
5149	sendcmd(&buf, CMD_COPERPARAM);	/* set operating parameters */
5150	sendbyte(&buf, 4);	/* static */
5151	sendflt(&buf, 5.0*D2R);	/* elevation angle mask = 10 deg XXX */
5152	sendflt(&buf, 4.0);	/* s/n ratio mask = 6 XXX */
5153	sendflt(&buf, 12.0);	/* PDOP mask = 12 */
5154	sendflt(&buf, 8.0);	/* PDOP switch level = 8 */
5155	sendetx(&buf, parse);
5156
5157	sendcmd(&buf, CMD_CMODESEL);	/* fix mode select */
5158	sendbyte(&buf, 1);	/* time transfer mode */
5159	sendetx(&buf, parse);
5160
5161	sendcmd(&buf, CMD_CMESSAGE);	/* request system message */
5162	sendetx(&buf, parse);
5163
5164	sendcmd(&buf, CMD_CSUPER);	/* superpacket fix */
5165	sendbyte(&buf, 0x2);	/* binary mode */
5166	sendetx(&buf, parse);
5167
5168	sendcmd(&buf, CMD_CIOOPTIONS);	/* set I/O options */
5169	sendbyte(&buf, TRIM_POS_OPT);	/* position output */
5170	sendbyte(&buf, 0x00);	/* no velocity output */
5171	sendbyte(&buf, TRIM_TIME_OPT);	/* UTC, compute on seconds */
5172	sendbyte(&buf, 0x00);	/* no raw measurements */
5173	sendetx(&buf, parse);
5174
5175	sendcmd(&buf, CMD_CUTCPARAM);	/* request UTC correction data */
5176	sendetx(&buf, parse);
5177
5178	NLOG(NLOG_CLOCKINFO)
5179		ERR(ERR_BADIO)
5180		msyslog(LOG_ERR, "PARSE receiver #%d: trimbletsip_setup: RECEIVER RE-INITIALIZED (%s)", CLK_UNIT(parse->peer), reason);
5181
5182	return 0;
5183}
5184
5185/*--------------------------------------------------
5186 * TRIMBLE TSIP check routine
5187 */
5188static void
5189trimble_check(
5190	      struct peer *peer
5191	      )
5192{
5193	struct parseunit *parse = peer->procptr->unitptr;
5194	trimble_t *t = parse->localdata;
5195	u_char buffer[256];
5196	struct txbuf buf;
5197	buf.txt = buffer;
5198
5199	if (t)
5200	{
5201		if (current_time > t->last_msg + TRIMBLETSIP_IDLE_TIME)
5202			(void)trimbletsip_setup(parse, "message timeout");
5203	}
5204
5205	poll_poll(parse->peer);	/* emit query string and re-arm timer */
5206
5207	if (t && t->qtracking)
5208	{
5209		u_long oldsats = t->ltrack & ~t->ctrack;
5210
5211		t->qtracking = 0;
5212		t->ltrack = t->ctrack;
5213
5214		if (oldsats)
5215		{
5216			int i;
5217
5218			for (i = 0; oldsats; i++) {
5219				if (oldsats & (1 << i))
5220					{
5221						sendcmd(&buf, CMD_CSTATTRACK);
5222						sendbyte(&buf, i+1);	/* old sat */
5223						sendetx(&buf, parse);
5224					}
5225				oldsats &= ~(1 << i);
5226			}
5227		}
5228
5229		sendcmd(&buf, CMD_CSTATTRACK);
5230		sendbyte(&buf, 0x00);	/* current tracking set */
5231		sendetx(&buf, parse);
5232	}
5233}
5234
5235/*--------------------------------------------------
5236 * TRIMBLE TSIP end routine
5237 */
5238static void
5239trimbletsip_end(
5240	      struct parseunit *parse
5241	      )
5242{	trimble_t *t = parse->localdata;
5243
5244	if (t)
5245	{
5246		free(t);
5247		parse->localdata = NULL;
5248	}
5249	parse->peer->procptr->nextaction = 0;
5250	parse->peer->procptr->action = NULL;
5251}
5252
5253/*--------------------------------------------------
5254 * TRIMBLE TSIP init routine
5255 */
5256static int
5257trimbletsip_init(
5258	struct parseunit *parse
5259	)
5260{
5261#if defined(VEOL) || defined(VEOL2)
5262#ifdef HAVE_TERMIOS
5263	struct termios tio;		/* NEEDED FOR A LONG TIME ! */
5264#endif
5265#ifdef HAVE_SYSV_TTYS
5266	struct termio tio;		/* NEEDED FOR A LONG TIME ! */
5267#endif
5268	/*
5269	 * allocate local data area
5270	 */
5271	if (!parse->localdata)
5272	{
5273		trimble_t *t;
5274
5275		t = (trimble_t *)(parse->localdata = emalloc(sizeof(trimble_t)));
5276
5277		if (t)
5278		{
5279			memset((char *)t, 0, sizeof(trimble_t));
5280			t->last_msg = current_time;
5281		}
5282	}
5283
5284	parse->peer->procptr->action     = trimble_check;
5285	parse->peer->procptr->nextaction = current_time;
5286
5287	/*
5288	 * configure terminal line for ICANON mode with VEOL characters
5289	 */
5290	if (TTY_GETATTR(parse->generic->io.fd, &tio) == -1)
5291	{
5292		msyslog(LOG_ERR, "PARSE receiver #%d: trimbletsip_init: tcgetattr(%d, &tio): %m", CLK_UNIT(parse->peer), parse->generic->io.fd);
5293		return 0;
5294	}
5295	else
5296	{
5297		if ((parse_clockinfo[CLK_TYPE(parse->peer)].cl_lflag & ICANON))
5298		{
5299#ifdef VEOL
5300			tio.c_cc[VEOL]  = ETX;
5301#endif
5302#ifdef VEOL2
5303			tio.c_cc[VEOL2]  = DLE;
5304#endif
5305		}
5306
5307		if (TTY_SETATTR(parse->generic->io.fd, &tio) == -1)
5308		{
5309			msyslog(LOG_ERR, "PARSE receiver #%d: trimbletsip_init: tcsetattr(%d, &tio): %m", CLK_UNIT(parse->peer), parse->generic->io.fd);
5310			return 0;
5311		}
5312	}
5313#endif
5314	return trimbletsip_setup(parse, "initial startup");
5315}
5316
5317/*------------------------------------------------------------
5318 * trimbletsip_event - handle Trimble events
5319 * simple evente handler - attempt to re-initialize receiver
5320 */
5321static void
5322trimbletsip_event(
5323	struct parseunit *parse,
5324	int event
5325	)
5326{
5327	switch (event)
5328	{
5329	    case CEVNT_BADREPLY:	/* reset on garbled input */
5330	    case CEVNT_TIMEOUT:		/* reset on no input */
5331		    (void)trimbletsip_setup(parse, "event BAD_REPLY/TIMEOUT");
5332		    break;
5333
5334	    default:			/* ignore */
5335		break;
5336	}
5337}
5338
5339/*
5340 * getflt, getint convert fields in the incoming data into the
5341 * appropriate type of item
5342 *
5343 * CAVEAT: these routines are currently definitely byte order dependent
5344 * and assume Representation(float) == IEEE754
5345 * These functions MUST be converted to portable versions (especially
5346 * converting the float representation into ntp_fp formats in order
5347 * to avoid floating point operations at all!
5348 */
5349
5350static float
5351getflt(
5352	u_char *bp
5353	)
5354{
5355	union uval uval;
5356
5357#ifdef WORDS_BIGENDIAN
5358	uval.bd[0] = *bp++;
5359	uval.bd[1] = *bp++;
5360	uval.bd[2] = *bp++;
5361	uval.bd[3] = *bp;
5362#else  /* ! WORDS_BIGENDIAN */
5363	uval.bd[3] = *bp++;
5364	uval.bd[2] = *bp++;
5365	uval.bd[1] = *bp++;
5366	uval.bd[0] = *bp;
5367#endif /* ! WORDS_BIGENDIAN */
5368	return uval.fv;
5369}
5370
5371static double
5372getdbl(
5373	u_char *bp
5374	)
5375{
5376	union uval uval;
5377
5378#ifdef WORDS_BIGENDIAN
5379	uval.bd[0] = *bp++;
5380	uval.bd[1] = *bp++;
5381	uval.bd[2] = *bp++;
5382	uval.bd[3] = *bp++;
5383	uval.bd[4] = *bp++;
5384	uval.bd[5] = *bp++;
5385	uval.bd[6] = *bp++;
5386	uval.bd[7] = *bp;
5387#else  /* ! WORDS_BIGENDIAN */
5388	uval.bd[7] = *bp++;
5389	uval.bd[6] = *bp++;
5390	uval.bd[5] = *bp++;
5391	uval.bd[4] = *bp++;
5392	uval.bd[3] = *bp++;
5393	uval.bd[2] = *bp++;
5394	uval.bd[1] = *bp++;
5395	uval.bd[0] = *bp;
5396#endif /* ! WORDS_BIGENDIAN */
5397	return uval.dv;
5398}
5399
5400static int
5401getshort(
5402	 unsigned char *p
5403	 )
5404{
5405	return (int) get_msb_short(&p);
5406}
5407
5408/*--------------------------------------------------
5409 * trimbletsip_message - process trimble messages
5410 */
5411#define RTOD (180.0 / 3.1415926535898)
5412#define mb(_X_) (buffer[2+(_X_)]) /* shortcut for buffer access */
5413
5414static void
5415trimbletsip_message(
5416		    struct parseunit *parse,
5417		    parsetime_t      *parsetime
5418		    )
5419{
5420	unsigned char *buffer = parsetime->parse_msg;
5421	unsigned int   size   = parsetime->parse_msglen;
5422
5423	if ((size < 4) ||
5424	    (buffer[0]      != DLE) ||
5425	    (buffer[size-1] != ETX) ||
5426	    (buffer[size-2] != DLE))
5427	{
5428#ifdef DEBUG
5429		if (debug > 2) {
5430			size_t i;
5431
5432			printf("TRIMBLE BAD packet, size %d:\n	", size);
5433			for (i = 0; i < size; i++) {
5434				printf ("%2.2x, ", buffer[i]&0xff);
5435				if (i%16 == 15) printf("\n\t");
5436			}
5437			printf("\n");
5438		}
5439#endif
5440		return;
5441	}
5442	else
5443	{
5444		u_short var_flag;
5445		trimble_t *tr = parse->localdata;
5446		unsigned int cmd = buffer[1];
5447		char pbuffer[200];
5448		char *t = pbuffer;
5449		cmd_info_t *s;
5450
5451#ifdef DEBUG
5452		if (debug > 3) {
5453			size_t i;
5454
5455			printf("TRIMBLE packet 0x%02x, size %d:\n	", cmd, size);
5456			for (i = 0; i < size; i++) {
5457				printf ("%2.2x, ", buffer[i]&0xff);
5458				if (i%16 == 15) printf("\n\t");
5459			}
5460			printf("\n");
5461		}
5462#endif
5463
5464		if (tr)
5465			tr->last_msg = current_time;
5466
5467		s = trimble_convert(cmd, trimble_rcmds);
5468
5469		if (s)
5470		{
5471			t = ap(pbuffer, sizeof(pbuffer), t, "%s=\"", s->varname);
5472		}
5473		else
5474		{
5475			DPRINTF(1, ("TRIMBLE UNKNOWN COMMAND 0x%02x\n", cmd));
5476			return;
5477		}
5478
5479		var_flag = (u_short) s->varmode;
5480
5481		switch(cmd)
5482		{
5483		case CMD_RCURTIME:
5484			t = ap(pbuffer, sizeof(pbuffer), t, "%f, %d, %f",
5485				 getflt((unsigned char *)&mb(0)), getshort((unsigned char *)&mb(4)),
5486				 getflt((unsigned char *)&mb(6)));
5487			break;
5488
5489		case CMD_RBEST4:
5490			t = ap(pbuffer, sizeof(pbuffer), t, "mode: ");
5491			switch (mb(0) & 0xF)
5492			{
5493			default:
5494				t = ap(pbuffer, sizeof(pbuffer), t,
5495				    "0x%x", mb(0) & 0x7);
5496				break;
5497
5498			case 1:
5499				t = ap(pbuffer, sizeof(pbuffer), t, "0D");
5500				break;
5501
5502			case 3:
5503				t = ap(pbuffer, sizeof(pbuffer), t, "2D");
5504				break;
5505
5506			case 4:
5507				t = ap(pbuffer, sizeof(pbuffer), t, "3D");
5508				break;
5509			}
5510			if (mb(0) & 0x10)
5511				t = ap(pbuffer, sizeof(pbuffer), t, "-MANUAL, ");
5512			else
5513				t = ap(pbuffer, sizeof(pbuffer), t, "-AUTO, ");
5514
5515			t = ap(pbuffer, sizeof(pbuffer), t, "satellites %02d %02d %02d %02d, PDOP %.2f, HDOP %.2f, VDOP %.2f, TDOP %.2f",
5516				mb(1), mb(2), mb(3), mb(4),
5517				getflt((unsigned char *)&mb(5)),
5518				getflt((unsigned char *)&mb(9)),
5519				getflt((unsigned char *)&mb(13)),
5520				getflt((unsigned char *)&mb(17)));
5521
5522			break;
5523
5524		case CMD_RVERSION:
5525			t = ap(pbuffer, sizeof(pbuffer), t, "%d.%d (%d/%d/%d)",
5526				mb(0)&0xff, mb(1)&0xff, 1900+(mb(4)&0xff), mb(2)&0xff, mb(3)&0xff);
5527			break;
5528
5529		case CMD_RRECVHEALTH:
5530		{
5531			static const char *msgs[] =
5532			{
5533				"Battery backup failed",
5534				"Signal processor error",
5535				"Alignment error, channel or chip 1",
5536				"Alignment error, channel or chip 2",
5537				"Antenna feed line fault",
5538				"Excessive ref freq. error",
5539				"<BIT 6>",
5540				"<BIT 7>"
5541			};
5542
5543			int i, bits;
5544
5545			switch (mb(0) & 0xFF)
5546			{
5547			default:
5548				t = ap(pbuffer, sizeof(pbuffer), t, "illegal value 0x%02x", mb(0) & 0xFF);
5549				break;
5550			case 0x00:
5551				t = ap(pbuffer, sizeof(pbuffer), t, "doing position fixes");
5552				break;
5553			case 0x01:
5554				t = ap(pbuffer, sizeof(pbuffer), t, "no GPS time yet");
5555				break;
5556			case 0x03:
5557				t = ap(pbuffer, sizeof(pbuffer), t, "PDOP too high");
5558				break;
5559			case 0x08:
5560				t = ap(pbuffer, sizeof(pbuffer), t, "no usable satellites");
5561				break;
5562			case 0x09:
5563				t = ap(pbuffer, sizeof(pbuffer), t, "only ONE usable satellite");
5564				break;
5565			case 0x0A:
5566				t = ap(pbuffer, sizeof(pbuffer), t, "only TWO usable satellites");
5567				break;
5568			case 0x0B:
5569				t = ap(pbuffer, sizeof(pbuffer), t, "only THREE usable satellites");
5570				break;
5571			case 0x0C:
5572				t = ap(pbuffer, sizeof(pbuffer), t, "the chosen satellite is unusable");
5573				break;
5574			}
5575
5576			bits = mb(1) & 0xFF;
5577
5578			for (i = 0; i < 8; i++)
5579				if (bits & (0x1<<i))
5580				{
5581					t = ap(pbuffer, sizeof(pbuffer), t, ", %s", msgs[i]);
5582				}
5583		}
5584		break;
5585
5586		case CMD_RMESSAGE:
5587			mkreadable(t, (int)BUFFER_SIZE(pbuffer, t), (char *)&mb(0), (unsigned)(size - 2 - (&mb(0) - buffer)), 0);
5588			break;
5589
5590		case CMD_RMACHSTAT:
5591		{
5592			static const char *msgs[] =
5593			{
5594				"Synthesizer Fault",
5595				"Battery Powered Time Clock Fault",
5596				"A-to-D Converter Fault",
5597				"The almanac stored in the receiver is not complete and current",
5598				"<BIT 4>",
5599				"<BIT 5",
5600				"<BIT 6>",
5601				"<BIT 7>"
5602			};
5603
5604			int i, bits;
5605
5606			t = ap(pbuffer, sizeof(pbuffer), t, "machine id 0x%02x", mb(0) & 0xFF);
5607			bits = mb(1) & 0xFF;
5608
5609			for (i = 0; i < 8; i++)
5610				if (bits & (0x1<<i))
5611				{
5612					t = ap(pbuffer, sizeof(pbuffer), t, ", %s", msgs[i]);
5613				}
5614
5615			t = ap(pbuffer, sizeof(pbuffer), t, ", Superpackets %ssupported", (mb(2) & 0xFF) ? "" :"un" );
5616		}
5617		break;
5618
5619		case CMD_ROPERPARAM:
5620			t = ap(pbuffer, sizeof(pbuffer), t, "%2x %.1f %.1f %.1f %.1f",
5621				mb(0), getflt((unsigned char *)&mb(1)), getflt((unsigned char *)&mb(5)),
5622				getflt((unsigned char *)&mb(9)), getflt((unsigned char *)&mb(13)));
5623			break;
5624
5625		case CMD_RUTCPARAM:
5626		{
5627			float t0t = getflt((unsigned char *)&mb(14));
5628			short wnt = (short) getshort((unsigned char *)&mb(18));
5629			short dtls = (short) getshort((unsigned char *)&mb(12));
5630			short wnlsf = (short) getshort((unsigned char *)&mb(20));
5631			short dn = (short) getshort((unsigned char *)&mb(22));
5632			short dtlsf = (short) getshort((unsigned char *)&mb(24));
5633
5634			if ((int)t0t != 0)
5635			{
5636				mk_utcinfo(t, wnt, wnlsf, dn, dtls, dtlsf, BUFFER_SIZE(pbuffer, t));
5637			}
5638			else
5639			{
5640			        t = ap(pbuffer, sizeof(pbuffer), t, "<NO UTC DATA>");
5641			}
5642		}
5643		break;
5644
5645		case CMD_RSAT1BIAS:
5646			t = ap(pbuffer, sizeof(pbuffer), t, "%.1fm %.2fm/s at %.1fs",
5647				getflt(&mb(0)), getflt(&mb(4)), getflt(&mb(8)));
5648			break;
5649
5650		case CMD_RIOOPTIONS:
5651		{
5652			t = ap(pbuffer, sizeof(pbuffer), t, "%02x %02x %02x %02x",
5653				mb(0), mb(1), mb(2), mb(3));
5654			if (mb(0) != TRIM_POS_OPT ||
5655			    mb(2) != TRIM_TIME_OPT)
5656			{
5657				(void)trimbletsip_setup(parse, "bad io options");
5658			}
5659		}
5660		break;
5661
5662		case CMD_RSPOSXYZ:
5663		{
5664			double x = getflt((unsigned char *)&mb(0));
5665			double y = getflt((unsigned char *)&mb(4));
5666			double z = getflt((unsigned char *)&mb(8));
5667			double f = getflt((unsigned char *)&mb(12));
5668
5669			if (f > 0.0)
5670			  t = ap(pbuffer, sizeof(pbuffer), t, "x= %.1fm, y= %.1fm, z= %.1fm, time_of_fix= %f sec",
5671				  x, y, z,
5672				  f);
5673			else
5674				return;
5675		}
5676		break;
5677
5678		case CMD_RSLLAPOS:
5679		{
5680			double lat = getflt((unsigned char *)&mb(0));
5681			double lng = getflt((unsigned char *)&mb(4));
5682			double f   = getflt((unsigned char *)&mb(12));
5683
5684			if (f > 0.0)
5685			  t = ap(pbuffer, sizeof(pbuffer), t, "lat %f %c, long %f %c, alt %.2fm",
5686				  ((lat < 0.0) ? (-lat) : (lat))*RTOD, (lat < 0.0 ? 'S' : 'N'),
5687				  ((lng < 0.0) ? (-lng) : (lng))*RTOD, (lng < 0.0 ? 'W' : 'E'),
5688				  getflt((unsigned char *)&mb(8)));
5689			else
5690				return;
5691		}
5692		break;
5693
5694		case CMD_RDOUBLEXYZ:
5695		{
5696			double x = getdbl((unsigned char *)&mb(0));
5697			double y = getdbl((unsigned char *)&mb(8));
5698			double z = getdbl((unsigned char *)&mb(16));
5699			t = ap(pbuffer, sizeof(pbuffer), t, "x= %.1fm, y= %.1fm, z= %.1fm",
5700				x, y, z);
5701		}
5702		break;
5703
5704		case CMD_RDOUBLELLA:
5705		{
5706			double lat = getdbl((unsigned char *)&mb(0));
5707			double lng = getdbl((unsigned char *)&mb(8));
5708			t = ap(pbuffer, sizeof(pbuffer), t, "lat %f %c, lon %f %c, alt %.2fm",
5709				((lat < 0.0) ? (-lat) : (lat))*RTOD, (lat < 0.0 ? 'S' : 'N'),
5710				((lng < 0.0) ? (-lng) : (lng))*RTOD, (lng < 0.0 ? 'W' : 'E'),
5711				getdbl((unsigned char *)&mb(16)));
5712		}
5713		break;
5714
5715		case CMD_RALLINVIEW:
5716		{
5717			int i, sats;
5718
5719			t = ap(pbuffer, sizeof(pbuffer), t, "mode: ");
5720			switch (mb(0) & 0x7)
5721			{
5722			default:
5723				t = ap(pbuffer, sizeof(pbuffer), t, "0x%x", mb(0) & 0x7);
5724				break;
5725
5726			case 3:
5727				t = ap(pbuffer, sizeof(pbuffer), t, "2D");
5728				break;
5729
5730			case 4:
5731				t = ap(pbuffer, sizeof(pbuffer), t, "3D");
5732				break;
5733			}
5734			if (mb(0) & 0x8)
5735				t = ap(pbuffer, sizeof(pbuffer), t, "-MANUAL, ");
5736			else
5737				t = ap(pbuffer, sizeof(pbuffer), t, "-AUTO, ");
5738
5739			sats = (mb(0)>>4) & 0xF;
5740
5741			t = ap(pbuffer, sizeof(pbuffer), t, "PDOP %.2f, HDOP %.2f, VDOP %.2f, TDOP %.2f, %d satellite%s in view: ",
5742				getflt((unsigned char *)&mb(1)),
5743				getflt((unsigned char *)&mb(5)),
5744				getflt((unsigned char *)&mb(9)),
5745				getflt((unsigned char *)&mb(13)),
5746				sats, (sats == 1) ? "" : "s");
5747
5748			for (i=0; i < sats; i++)
5749			{
5750				t = ap(pbuffer, sizeof(pbuffer), t, "%s%02d", i ? ", " : "", mb(17+i));
5751				if (tr)
5752					tr->ctrack |= (1 << (mb(17+i)-1));
5753			}
5754
5755			if (tr)
5756			{	/* mark for tracking status query */
5757				tr->qtracking = 1;
5758			}
5759		}
5760		break;
5761
5762		case CMD_RSTATTRACK:
5763		{
5764			t = ap(pbuffer, sizeof(pbuffer), t-2, "[%02d]=\"", mb(0)); /* add index to var name */
5765			if (getflt((unsigned char *)&mb(4)) < 0.0)
5766			{
5767				t = ap(pbuffer, sizeof(pbuffer), t, "<NO MEASUREMENTS>");
5768				var_flag &= (u_short)(~DEF);
5769			}
5770			else
5771			{
5772				t = ap(pbuffer, sizeof(pbuffer), t, "ch=%d, acq=%s, eph=%d, signal_level= %5.2f, elevation= %5.2f, azimuth= %6.2f",
5773					(mb(1) & 0xFF)>>3,
5774					mb(2) ? ((mb(2) == 1) ? "ACQ" : "SRCH") : "NEVER",
5775					mb(3),
5776					getflt((unsigned char *)&mb(4)),
5777					getflt((unsigned char *)&mb(12)) * RTOD,
5778					getflt((unsigned char *)&mb(16)) * RTOD);
5779				if (mb(20))
5780				{
5781					var_flag &= (u_short)(~DEF);
5782					t = ap(pbuffer, sizeof(pbuffer), t, ", OLD");
5783				}
5784				if (mb(22))
5785				{
5786					if (mb(22) == 1)
5787						t = ap(pbuffer, sizeof(pbuffer), t, ", BAD PARITY");
5788					else
5789						if (mb(22) == 2)
5790							t = ap(pbuffer, sizeof(pbuffer), t, ", BAD EPH HEALTH");
5791				}
5792				if (mb(23))
5793					t = ap(pbuffer, sizeof(pbuffer), t, ", collecting data");
5794			}
5795		}
5796		break;
5797
5798		default:
5799			t = ap(pbuffer, sizeof(pbuffer), t, "<UNDECODED>");
5800			break;
5801		}
5802
5803		t = ap(pbuffer, sizeof(pbuffer), t, "\"");
5804		set_var(&parse->kv, pbuffer, sizeof(pbuffer), var_flag);
5805	}
5806}
5807
5808
5809/**============================================================
5810 ** RAWDCF support
5811 **/
5812
5813/*--------------------------------------------------
5814 * rawdcf_init_1 - set up modem lines for RAWDCF receivers
5815 * SET DTR line
5816 */
5817#if defined(TIOCMSET) && (defined(TIOCM_DTR) || defined(CIOCM_DTR))
5818static int
5819rawdcf_init_1(
5820	struct parseunit *parse
5821	)
5822{
5823	/* fixed 2000 for using with Linux by Wolfram Pienkoss <wp@bszh.de> */
5824	/*
5825	 * You can use the RS232 to supply the power for a DCF77 receiver.
5826	 * Here a voltage between the DTR and the RTS line is used. Unfortunately
5827	 * the name has changed from CIOCM_DTR to TIOCM_DTR recently.
5828	 */
5829	int sl232;
5830
5831	if (ioctl(parse->generic->io.fd, TIOCMGET, (caddr_t)&sl232) == -1)
5832	{
5833		msyslog(LOG_NOTICE, "PARSE receiver #%d: rawdcf_init_1: WARNING: ioctl(fd, TIOCMGET, [C|T]IOCM_DTR): %m", CLK_UNIT(parse->peer));
5834		return 0;
5835	}
5836
5837#ifdef TIOCM_DTR
5838	sl232 = (sl232 & ~TIOCM_RTS) | TIOCM_DTR;	/* turn on DTR, clear RTS for power supply */
5839#else
5840	sl232 = (sl232 & ~CIOCM_RTS) | CIOCM_DTR;	/* turn on DTR, clear RTS for power supply */
5841#endif
5842
5843	if (ioctl(parse->generic->io.fd, TIOCMSET, (caddr_t)&sl232) == -1)
5844	{
5845		msyslog(LOG_NOTICE, "PARSE receiver #%d: rawdcf_init_1: WARNING: ioctl(fd, TIOCMSET, [C|T]IOCM_DTR): %m", CLK_UNIT(parse->peer));
5846	}
5847	return 0;
5848}
5849#else
5850static int
5851rawdcfdtr_init_1(
5852	struct parseunit *parse
5853	)
5854{
5855	msyslog(LOG_NOTICE, "PARSE receiver #%d: rawdcf_init_1: WARNING: OS interface incapable of setting DTR to power DCF modules", CLK_UNIT(parse->peer));
5856	return 0;
5857}
5858#endif  /* DTR initialisation type */
5859
5860/*--------------------------------------------------
5861 * rawdcf_init_2 - set up modem lines for RAWDCF receivers
5862 * CLR DTR line, SET RTS line
5863 */
5864#if defined(TIOCMSET) &&  (defined(TIOCM_RTS) || defined(CIOCM_RTS))
5865static int
5866rawdcf_init_2(
5867	struct parseunit *parse
5868	)
5869{
5870	/* fixed 2000 for using with Linux by Wolfram Pienkoss <wp@bszh.de> */
5871	/*
5872	 * You can use the RS232 to supply the power for a DCF77 receiver.
5873	 * Here a voltage between the DTR and the RTS line is used. Unfortunately
5874	 * the name has changed from CIOCM_DTR to TIOCM_DTR recently.
5875	 */
5876	int sl232;
5877
5878	if (ioctl(parse->generic->io.fd, TIOCMGET, (caddr_t)&sl232) == -1)
5879	{
5880		msyslog(LOG_NOTICE, "PARSE receiver #%d: rawdcf_init_2: WARNING: ioctl(fd, TIOCMGET, [C|T]IOCM_RTS): %m", CLK_UNIT(parse->peer));
5881		return 0;
5882	}
5883
5884#ifdef TIOCM_RTS
5885	sl232 = (sl232 & ~TIOCM_DTR) | TIOCM_RTS;	/* turn on RTS, clear DTR for power supply */
5886#else
5887	sl232 = (sl232 & ~CIOCM_DTR) | CIOCM_RTS;	/* turn on RTS, clear DTR for power supply */
5888#endif
5889
5890	if (ioctl(parse->generic->io.fd, TIOCMSET, (caddr_t)&sl232) == -1)
5891	{
5892		msyslog(LOG_NOTICE, "PARSE receiver #%d: rawdcf_init_2: WARNING: ioctl(fd, TIOCMSET, [C|T]IOCM_RTS): %m", CLK_UNIT(parse->peer));
5893	}
5894	return 0;
5895}
5896#else
5897static int
5898rawdcf_init_2(
5899	struct parseunit *parse
5900	)
5901{
5902	msyslog(LOG_NOTICE, "PARSE receiver #%d: rawdcf_init_2: WARNING: OS interface incapable of setting RTS to power DCF modules", CLK_UNIT(parse->peer));
5903	return 0;
5904}
5905#endif  /* DTR initialisation type */
5906
5907#else	/* defined(REFCLOCK) && defined(PARSE) */
5908NONEMPTY_TRANSLATION_UNIT
5909#endif	/* defined(REFCLOCK) && defined(PARSE) */
5910
5911/*
5912 * History:
5913 *
5914 * refclock_parse.c,v
5915 * Revision 4.81  2009/05/01 10:15:29  kardel
5916 * use new refclock_ppsapi interface
5917 *
5918 * Revision 4.80  2007/08/11 12:06:29  kardel
5919 * update comments wrt/ to PPS
5920 *
5921 * Revision 4.79  2007/08/11 11:52:23  kardel
5922 * - terminate io bindings before io_closeclock() will close our file descriptor
5923 *
5924 * Revision 4.78  2006/12/22 20:08:27  kardel
5925 * Bug 746 (RFE): add configuration for Expert mouseCLOCK USB v2.0 as mode 19
5926 *
5927 * Revision 4.77  2006/08/05 07:44:49  kardel
5928 * support optionally separate PPS devices via /dev/refclockpps-{0..3}
5929 *
5930 * Revision 4.76  2006/06/22 18:40:47  kardel
5931 * clean up signedness (gcc 4)
5932 *
5933 * Revision 4.75  2006/06/22 16:58:10  kardel
5934 * Bug #632: call parse_ppsapi() in parse_ctl() when updating
5935 * the PPS offset. Fix sign of offset passed to kernel.
5936 *
5937 * Revision 4.74  2006/06/18 21:18:37  kardel
5938 * NetBSD Coverity CID 3796: possible NULL deref
5939 *
5940 * Revision 4.73  2006/05/26 14:23:46  kardel
5941 * cleanup of copyright info
5942 *
5943 * Revision 4.72  2006/05/26 14:19:43  kardel
5944 * cleanup of ioctl cruft
5945 *
5946 * Revision 4.71  2006/05/26 14:15:57  kardel
5947 * delay adding refclock to async refclock io after all initializations
5948 *
5949 * Revision 4.70  2006/05/25 18:20:50  kardel
5950 * bug #619
5951 * terminate parse io engine after de-registering
5952 * from refclock io engine
5953 *
5954 * Revision 4.69  2006/05/25 17:28:02  kardel
5955 * complete refclock io structure initialization *before* inserting it into the
5956 * refclock input machine (avoids null pointer deref) (bug #619)
5957 *
5958 * Revision 4.68  2006/05/01 17:02:51  kardel
5959 * copy receiver method also for newlwy created receive buffers
5960 *
5961 * Revision 4.67  2006/05/01 14:37:29  kardel
5962 * If an input buffer parses into more than one message do insert the
5963 * parsed message in a new input buffer instead of processing it
5964 * directly. This avoids deed complicated processing in signal
5965 * handling.
5966 *
5967 * Revision 4.66  2006/03/18 00:45:30  kardel
5968 * coverity fixes found in NetBSD coverity scan
5969 *
5970 * Revision 4.65  2006/01/26 06:08:33  kardel
5971 * output errno on PPS setup failure
5972 *
5973 * Revision 4.64  2005/11/09 20:44:47  kardel
5974 * utilize full PPS timestamp resolution from PPS API
5975 *
5976 * Revision 4.63  2005/10/07 22:10:25  kardel
5977 * bounded buffer implementation
5978 *
5979 * Revision 4.62.2.2  2005/09/25 10:20:16  kardel
5980 * avoid unexpected buffer overflows due to sprintf("%f") on strange floats:
5981 * replace almost all str* and *printf functions be their buffer bounded
5982 * counterparts
5983 *
5984 * Revision 4.62.2.1  2005/08/27 16:19:27  kardel
5985 * limit re-set rate of trimble clocks
5986 *
5987 * Revision 4.62  2005/08/06 17:40:00  kardel
5988 * cleanup size handling wrt/ to buffer boundaries
5989 *
5990 * Revision 4.61  2005/07/27 21:16:19  kardel
5991 * fix a long (> 11 years) misconfiguration wrt/ Meinberg cflag factory
5992 * default setup. CSTOPB was missing for the 7E2 default data format of
5993 * the DCF77 clocks.
5994 *
5995 * Revision 4.60  2005/07/17 21:14:44  kardel
5996 * change contents of version string to include the RCS/CVS Id
5997 *
5998 * Revision 4.59  2005/07/06 06:56:38  kardel
5999 * syntax error
6000 *
6001 * Revision 4.58  2005/07/04 13:10:40  kardel
6002 * fix bug 455: tripping over NULL pointer on cleanup
6003 * fix shadow storage logic for ppsphaseadjust and trustime wrt/ time2
6004 * fix compiler warnings for some platforms wrt/ printf formatstrings and
6005 *     varying structure element sizes
6006 * reorder assignment in binding to avoid tripping over NULL pointers
6007 *
6008 * Revision 4.57  2005/06/25 09:25:19  kardel
6009 * sort out log output sequence
6010 *
6011 * Revision 4.56  2005/06/14 21:47:27  kardel
6012 * collect samples only if samples are ok (sync or trusted flywheel)
6013 * propagate pps phase adjustment value to kernel via PPSAPI to help HARDPPS
6014 * en- and dis-able HARDPPS in correlation to receiver sync state
6015 *
6016 * Revision 4.55  2005/06/02 21:28:31  kardel
6017 * clarify trust logic
6018 *
6019 * Revision 4.54  2005/06/02 17:06:49  kardel
6020 * change status reporting to use fixed refclock_report()
6021 *
6022 * Revision 4.53  2005/06/02 16:33:31  kardel
6023 * fix acceptance of clocks unsync clocks right at start
6024 *
6025 * Revision 4.52  2005/05/26 21:55:06  kardel
6026 * cleanup status reporting
6027 *
6028 * Revision 4.51  2005/05/26 19:19:14  kardel
6029 * implement fast refclock startup
6030 *
6031 * Revision 4.50  2005/04/16 20:51:35  kardel
6032 * set hardpps_enable = 1 when binding a kernel PPS source
6033 *
6034 * Revision 4.49  2005/04/16 17:29:26  kardel
6035 * add non polling clock type 18 for just listenning to Meinberg clocks
6036 *
6037 * Revision 4.48  2005/04/16 16:22:27  kardel
6038 * bk sync 20050415 ntp-dev
6039 *
6040 * Revision 4.47  2004/11/29 10:42:48  kardel
6041 * bk sync ntp-dev 20041129
6042 *
6043 * Revision 4.46  2004/11/29 10:26:29  kardel
6044 * keep fudgetime2 in sync with trusttime/ppsphaseadjust depending in flag1
6045 *
6046 * Revision 4.45  2004/11/14 20:53:20  kardel
6047 * clear PPS flags after using them
6048 *
6049 * Revision 4.44  2004/11/14 15:29:41  kardel
6050 * support PPSAPI, upgrade Copyright to Berkeley style
6051 *
6052 * Revision 4.43  2001/05/26 22:53:16  kardel
6053 * 20010526 reconcilation
6054 *
6055 * Revision 4.42  2000/05/14 15:31:51  kardel
6056 * PPSAPI && RAWDCF modemline support
6057 *
6058 * Revision 4.41  2000/04/09 19:50:45  kardel
6059 * fixed rawdcfdtr_init() -> rawdcf_init_1
6060 *
6061 * Revision 4.40  2000/04/09 15:27:55  kardel
6062 * modem line fiddle in rawdcf_init_2
6063 *
6064 * Revision 4.39  2000/03/18 09:16:55  kardel
6065 * PPSAPI integration
6066 *
6067 * Revision 4.38  2000/03/05 20:25:06  kardel
6068 * support PPSAPI
6069 *
6070 * Revision 4.37  2000/03/05 20:11:14  kardel
6071 * 4.0.99g reconcilation
6072 *
6073 * Revision 4.36  1999/11/28 17:18:20  kardel
6074 * disabled burst mode
6075 *
6076 * Revision 4.35  1999/11/28 09:14:14  kardel
6077 * RECON_4_0_98F
6078 *
6079 * Revision 4.34  1999/05/14 06:08:05  kardel
6080 * store current_time in a suitable container (u_long)
6081 *
6082 * Revision 4.33  1999/05/13 21:48:38  kardel
6083 * double the no response timeout interval
6084 *
6085 * Revision 4.32  1999/05/13 20:09:13  kardel
6086 * complain only about missing polls after a full poll interval
6087 *
6088 * Revision 4.31  1999/05/13 19:59:32  kardel
6089 * add clock type 16 for RTS set DTR clr in RAWDCF
6090 *
6091 * Revision 4.30  1999/02/28 20:36:43  kardel
6092 * fixed printf fmt
6093 *
6094 * Revision 4.29  1999/02/28 19:58:23  kardel
6095 * updated copyright information
6096 *
6097 * Revision 4.28  1999/02/28 19:01:50  kardel
6098 * improved debug out on sent Meinberg messages
6099 *
6100 * Revision 4.27  1999/02/28 18:05:55  kardel
6101 * no linux/ppsclock.h stuff
6102 *
6103 * Revision 4.26  1999/02/28 15:27:27  kardel
6104 * wharton clock integration
6105 *
6106 * Revision 4.25  1999/02/28 14:04:46  kardel
6107 * added missing double quotes to UTC information string
6108 *
6109 * Revision 4.24  1999/02/28 12:06:50  kardel
6110 * (parse_control): using gmprettydate instead of prettydate()
6111 * (mk_utcinfo): new function for formatting GPS derived UTC information
6112 * (gps16x_message): changed to use mk_utcinfo()
6113 * (trimbletsip_message): changed to use mk_utcinfo()
6114 * ignoring position information in unsynchronized mode
6115 * (parse_start): augument linux support for optional ASYNC_LOW_LATENCY
6116 *
6117 * Revision 4.23  1999/02/23 19:47:53  kardel
6118 * fixed #endifs
6119 * (stream_receive): fixed formats
6120 *
6121 * Revision 4.22  1999/02/22 06:21:02  kardel
6122 * use new autoconfig symbols
6123 *
6124 * Revision 4.21  1999/02/21 12:18:13  kardel
6125 * 4.91f reconcilation
6126 *
6127 * Revision 4.20  1999/02/21 10:53:36  kardel
6128 * initial Linux PPSkit version
6129 *
6130 * Revision 4.19  1999/02/07 09:10:45  kardel
6131 * clarify STREAMS mitigation rules in comment
6132 *
6133 * Revision 4.18  1998/12/20 23:45:34  kardel
6134 * fix types and warnings
6135 *
6136 * Revision 4.17  1998/11/15 21:24:51  kardel
6137 * cannot access mbg_ routines when CLOCK_MEINBERG
6138 * is not defined
6139 *
6140 * Revision 4.16  1998/11/15 20:28:17  kardel
6141 * Release 4.0.73e13 reconcilation
6142 *
6143 * Revision 4.15  1998/08/22 21:56:08  kardel
6144 * fixed IO handling for non-STREAM IO
6145 *
6146 * Revision 4.14  1998/08/16 19:00:48  kardel
6147 * (gps16x_message): reduced UTC parameter information (dropped A0,A1)
6148 * made uval a local variable (killed one of the last globals)
6149 * (sendetx): added logging of messages when in debug mode
6150 * (trimble_check): added periodic checks to facilitate re-initialization
6151 * (trimbletsip_init): made use of EOL character if in non-kernel operation
6152 * (trimbletsip_message): extended message interpretation
6153 * (getdbl): fixed data conversion
6154 *
6155 * Revision 4.13  1998/08/09 22:29:13  kardel
6156 * Trimble TSIP support
6157 *
6158 * Revision 4.12  1998/07/11 10:05:34  kardel
6159 * Release 4.0.73d reconcilation
6160 *
6161 * Revision 4.11  1998/06/14 21:09:42  kardel
6162 * Sun acc cleanup
6163 *
6164 * Revision 4.10  1998/06/13 12:36:45  kardel
6165 * signed/unsigned, name clashes
6166 *
6167 * Revision 4.9  1998/06/12 15:30:00  kardel
6168 * prototype fixes
6169 *
6170 * Revision 4.8  1998/06/12 11:19:42  kardel
6171 * added direct input processing routine for refclocks in
6172 * order to avaiod that single character io gobbles up all
6173 * receive buffers and drops input data. (Problem started
6174 * with fast machines so a character a buffer was possible
6175 * one of the few cases where faster machines break existing
6176 * allocation algorithms)
6177 *
6178 * Revision 4.7  1998/06/06 18:35:20  kardel
6179 * (parse_start): added BURST mode initialisation
6180 *
6181 * Revision 4.6  1998/05/27 06:12:46  kardel
6182 * RAWDCF_BASEDELAY default added
6183 * old comment removed
6184 * casts for ioctl()
6185 *
6186 * Revision 4.5  1998/05/25 22:05:09  kardel
6187 * RAWDCF_SETDTR option removed
6188 * clock type 14 attempts to set DTR for
6189 * power supply of RAWDCF receivers
6190 *
6191 * Revision 4.4  1998/05/24 16:20:47  kardel
6192 * updated comments referencing Meinberg clocks
6193 * added RAWDCF clock with DTR set option as type 14
6194 *
6195 * Revision 4.3  1998/05/24 10:48:33  kardel
6196 * calibrated CONRAD RAWDCF default fudge factor
6197 *
6198 * Revision 4.2  1998/05/24 09:59:35  kardel
6199 * corrected version information (ntpq support)
6200 *
6201 * Revision 4.1  1998/05/24 09:52:31  kardel
6202 * use fixed format only (new IO model)
6203 * output debug to stdout instead of msyslog()
6204 * don't include >"< in ASCII output in order not to confuse
6205 * ntpq parsing
6206 *
6207 * Revision 4.0  1998/04/10 19:52:11  kardel
6208 * Start 4.0 release version numbering
6209 *
6210 * Revision 1.2  1998/04/10 19:28:04  kardel
6211 * initial NTP VERSION 4 integration of PARSE with GPS166 binary support
6212 * derived from 3.105.1.2 from V3 tree
6213 *
6214 * Revision information 3.1 - 3.105 from log deleted 1998/04/10 kardel
6215 *
6216 */
6217