ntp_crypto.c revision 316069
1/*
2 * ntp_crypto.c - NTP version 4 public key routines
3 */
4#ifdef HAVE_CONFIG_H
5#include <config.h>
6#endif
7
8#ifdef AUTOKEY
9#include <stdio.h>
10#include <stdlib.h>	/* strtoul */
11#include <sys/types.h>
12#include <sys/param.h>
13#include <unistd.h>
14#include <fcntl.h>
15
16#include "ntpd.h"
17#include "ntp_stdlib.h"
18#include "ntp_unixtime.h"
19#include "ntp_string.h"
20#include "ntp_random.h"
21#include "ntp_assert.h"
22#include "ntp_calendar.h"
23#include "ntp_leapsec.h"
24
25#include "openssl/asn1.h"
26#include "openssl/bn.h"
27#include "openssl/crypto.h"
28#include "openssl/err.h"
29#include "openssl/evp.h"
30#include "openssl/opensslv.h"
31#include "openssl/pem.h"
32#include "openssl/rand.h"
33#include "openssl/x509.h"
34#include "openssl/x509v3.h"
35#include "libssl_compat.h"
36
37#ifdef KERNEL_PLL
38#include "ntp_syscall.h"
39#endif /* KERNEL_PLL */
40
41/*
42 * calcomp - compare two calendar structures, ignoring yearday and weekday; like strcmp
43 * No, it's not a plotter.  If you don't understand that, you're too young.
44 */
45static int calcomp(struct calendar *pjd1, struct calendar *pjd2)
46{
47	int32_t diff;	/* large enough to hold the signed difference between two uint16_t values */
48
49	diff = pjd1->year - pjd2->year;
50	if (diff < 0) return -1; else if (diff > 0) return 1;
51	/* same year; compare months */
52	diff = pjd1->month - pjd2->month;
53	if (diff < 0) return -1; else if (diff > 0) return 1;
54	/* same year and month; compare monthday */
55	diff = pjd1->monthday - pjd2->monthday;
56	if (diff < 0) return -1; else if (diff > 0) return 1;
57	/* same year and month and monthday; compare time */
58	diff = pjd1->hour - pjd2->hour;
59	if (diff < 0) return -1; else if (diff > 0) return 1;
60	diff = pjd1->minute - pjd2->minute;
61	if (diff < 0) return -1; else if (diff > 0) return 1;
62	diff = pjd1->second - pjd2->second;
63	if (diff < 0) return -1; else if (diff > 0) return 1;
64	/* identical */
65	return 0;
66}
67
68/*
69 * Extension field message format
70 *
71 * These are always signed and saved before sending in network byte
72 * order. They must be converted to and from host byte order for
73 * processing.
74 *
75 * +-------+-------+
76 * |   op  |  len  | <- extension pointer
77 * +-------+-------+
78 * |    associd    |
79 * +---------------+
80 * |   timestamp   | <- value pointer
81 * +---------------+
82 * |   filestamp   |
83 * +---------------+
84 * |   value len   |
85 * +---------------+
86 * |               |
87 * =     value     =
88 * |               |
89 * +---------------+
90 * | signature len |
91 * +---------------+
92 * |               |
93 * =   signature   =
94 * |               |
95 * +---------------+
96 *
97 * The CRYPTO_RESP bit is set to 0 for requests, 1 for responses.
98 * Requests carry the association ID of the receiver; responses carry
99 * the association ID of the sender. Some messages include only the
100 * operation/length and association ID words and so have length 8
101 * octets. Ohers include the value structure and associated value and
102 * signature fields. These messages include the timestamp, filestamp,
103 * value and signature words and so have length at least 24 octets. The
104 * signature and/or value fields can be empty, in which case the
105 * respective length words are zero. An empty value with nonempty
106 * signature is syntactically valid, but semantically questionable.
107 *
108 * The filestamp represents the time when a cryptographic data file such
109 * as a public/private key pair is created. It follows every reference
110 * depending on that file and serves as a means to obsolete earlier data
111 * of the same type. The timestamp represents the time when the
112 * cryptographic data of the message were last signed. Creation of a
113 * cryptographic data file or signing a message can occur only when the
114 * creator or signor is synchronized to an authoritative source and
115 * proventicated to a trusted authority.
116 *
117 * Note there are several conditions required for server trust. First,
118 * the public key on the server certificate must be verified, which can
119 * involve a hike along the certificate trail to a trusted host. Next,
120 * the server trust must be confirmed by one of several identity
121 * schemes. Valid cryptographic values are signed with attached
122 * timestamp and filestamp. Individual packet trust is confirmed
123 * relative to these values by a message digest with keys generated by a
124 * reverse-order pseudorandom hash.
125 *
126 * State decomposition. These flags are lit in the order given. They are
127 * dim only when the association is demobilized.
128 *
129 * CRYPTO_FLAG_ENAB	Lit upon acceptance of a CRYPTO_ASSOC message
130 * CRYPTO_FLAG_CERT	Lit when a self-digned trusted certificate is
131 *			accepted.
132 * CRYPTO_FLAG_VRFY	Lit when identity is confirmed.
133 * CRYPTO_FLAG_PROV	Lit when the first signature is verified.
134 * CRYPTO_FLAG_COOK	Lit when a valid cookie is accepted.
135 * CRYPTO_FLAG_AUTO	Lit when valid autokey values are accepted.
136 * CRYPTO_FLAG_SIGN	Lit when the server signed certificate is
137 *			accepted.
138 * CRYPTO_FLAG_LEAP	Lit when the leapsecond values are accepted.
139 */
140/*
141 * Cryptodefines
142 */
143#define TAI_1972	10	/* initial TAI offset (s) */
144#define MAX_LEAP	100	/* max UTC leapseconds (s) */
145#define VALUE_LEN	(6 * 4) /* min response field length */
146#define MAX_VALLEN	(65535 - VALUE_LEN)
147#define YEAR		(60 * 60 * 24 * 365) /* seconds in year */
148
149/*
150 * Global cryptodata in host byte order
151 */
152u_int32	crypto_flags = 0x0;	/* status word */
153int	crypto_nid = KEY_TYPE_MD5; /* digest nid */
154char	*sys_hostname = NULL;
155char	*sys_groupname = NULL;
156static char *host_filename = NULL;	/* host file name */
157static char *ident_filename = NULL;	/* group file name */
158
159/*
160 * Global cryptodata in network byte order
161 */
162struct cert_info *cinfo = NULL;	/* certificate info/value cache */
163struct cert_info *cert_host = NULL; /* host certificate */
164struct pkey_info *pkinfo = NULL; /* key info/value cache */
165struct value hostval;		/* host value */
166struct value pubkey;		/* public key */
167struct value tai_leap;		/* leapseconds values */
168struct pkey_info *iffkey_info = NULL; /* IFF keys */
169struct pkey_info *gqkey_info = NULL; /* GQ keys */
170struct pkey_info *mvkey_info = NULL; /* MV keys */
171
172/*
173 * Private cryptodata in host byte order
174 */
175static char *passwd = NULL;	/* private key password */
176static EVP_PKEY *host_pkey = NULL; /* host key */
177static EVP_PKEY *sign_pkey = NULL; /* sign key */
178static const EVP_MD *sign_digest = NULL; /* sign digest */
179static u_int sign_siglen;	/* sign key length */
180static char *rand_file = NULL;	/* random seed file */
181
182/*
183 * Cryptotypes
184 */
185static	int	crypto_verify	(struct exten *, struct value *,
186				    struct peer *);
187static	int	crypto_encrypt	(const u_char *, u_int, keyid_t *,
188				    struct value *);
189static	int	crypto_alice	(struct peer *, struct value *);
190static	int	crypto_alice2	(struct peer *, struct value *);
191static	int	crypto_alice3	(struct peer *, struct value *);
192static	int	crypto_bob	(struct exten *, struct value *);
193static	int	crypto_bob2	(struct exten *, struct value *);
194static	int	crypto_bob3	(struct exten *, struct value *);
195static	int	crypto_iff	(struct exten *, struct peer *);
196static	int	crypto_gq	(struct exten *, struct peer *);
197static	int	crypto_mv	(struct exten *, struct peer *);
198static	int	crypto_send	(struct exten *, struct value *, int);
199static	tstamp_t crypto_time	(void);
200static	void	asn_to_calendar		(const ASN1_TIME *, struct calendar*);
201static	struct cert_info *cert_parse (const u_char *, long, tstamp_t);
202static	int	cert_sign	(struct exten *, struct value *);
203static	struct cert_info *cert_install (struct exten *, struct peer *);
204static	int	cert_hike	(struct peer *, struct cert_info *);
205static	void	cert_free	(struct cert_info *);
206static	struct pkey_info *crypto_key (char *, char *, sockaddr_u *);
207static	void	bighash		(BIGNUM *, BIGNUM *);
208static	struct cert_info *crypto_cert (char *);
209static	u_int	exten_payload_size(const struct exten *);
210
211#ifdef SYS_WINNT
212int
213readlink(char * link, char * file, int len) {
214	return (-1);
215}
216#endif
217
218/*
219 * session_key - generate session key
220 *
221 * This routine generates a session key from the source address,
222 * destination address, key ID and private value. The value of the
223 * session key is the MD5 hash of these values, while the next key ID is
224 * the first four octets of the hash.
225 *
226 * Returns the next key ID or 0 if there is no destination address.
227 */
228keyid_t
229session_key(
230	sockaddr_u *srcadr, 	/* source address */
231	sockaddr_u *dstadr, 	/* destination address */
232	keyid_t	keyno,		/* key ID */
233	keyid_t	private,	/* private value */
234	u_long	lifetime 	/* key lifetime */
235	)
236{
237	EVP_MD_CTX *ctx;	/* message digest context */
238	u_char dgst[EVP_MAX_MD_SIZE]; /* message digest */
239	keyid_t	keyid;		/* key identifer */
240	u_int32	header[10];	/* data in network byte order */
241	u_int	hdlen, len;
242
243	if (!dstadr)
244		return 0;
245
246	/*
247	 * Generate the session key and key ID. If the lifetime is
248	 * greater than zero, install the key and call it trusted.
249	 */
250	hdlen = 0;
251	switch(AF(srcadr)) {
252	case AF_INET:
253		header[0] = NSRCADR(srcadr);
254		header[1] = NSRCADR(dstadr);
255		header[2] = htonl(keyno);
256		header[3] = htonl(private);
257		hdlen = 4 * sizeof(u_int32);
258		break;
259
260	case AF_INET6:
261		memcpy(&header[0], PSOCK_ADDR6(srcadr),
262		    sizeof(struct in6_addr));
263		memcpy(&header[4], PSOCK_ADDR6(dstadr),
264		    sizeof(struct in6_addr));
265		header[8] = htonl(keyno);
266		header[9] = htonl(private);
267		hdlen = 10 * sizeof(u_int32);
268		break;
269	}
270	ctx = EVP_MD_CTX_new();
271	EVP_DigestInit(ctx, EVP_get_digestbynid(crypto_nid));
272	EVP_DigestUpdate(ctx, (u_char *)header, hdlen);
273	EVP_DigestFinal(ctx, dgst, &len);
274	EVP_MD_CTX_free(ctx);
275	memcpy(&keyid, dgst, 4);
276	keyid = ntohl(keyid);
277	if (lifetime != 0) {
278		MD5auth_setkey(keyno, crypto_nid, dgst, len, NULL);
279		authtrust(keyno, lifetime);
280	}
281	DPRINTF(2, ("session_key: %s > %s %08x %08x hash %08x life %lu\n",
282		    stoa(srcadr), stoa(dstadr), keyno,
283		    private, keyid, lifetime));
284
285	return (keyid);
286}
287
288
289/*
290 * make_keylist - generate key list
291 *
292 * Returns
293 * XEVNT_OK	success
294 * XEVNT_ERR	protocol error
295 *
296 * This routine constructs a pseudo-random sequence by repeatedly
297 * hashing the session key starting from a given source address,
298 * destination address, private value and the next key ID of the
299 * preceeding session key. The last entry on the list is saved along
300 * with its sequence number and public signature.
301 */
302int
303make_keylist(
304	struct peer *peer,	/* peer structure pointer */
305	struct interface *dstadr /* interface */
306	)
307{
308	EVP_MD_CTX *ctx;	/* signature context */
309	tstamp_t tstamp;	/* NTP timestamp */
310	struct autokey *ap;	/* autokey pointer */
311	struct value *vp;	/* value pointer */
312	keyid_t	keyid = 0;	/* next key ID */
313	keyid_t	cookie;		/* private value */
314	long	lifetime;
315	u_int	len, mpoll;
316	int	i;
317
318	if (!dstadr)
319		return XEVNT_ERR;
320
321	/*
322	 * Allocate the key list if necessary.
323	 */
324	tstamp = crypto_time();
325	if (peer->keylist == NULL)
326		peer->keylist = eallocarray(NTP_MAXSESSION,
327					    sizeof(keyid_t));
328
329	/*
330	 * Generate an initial key ID which is unique and greater than
331	 * NTP_MAXKEY.
332	 */
333	while (1) {
334		keyid = ntp_random() & 0xffffffff;
335		if (keyid <= NTP_MAXKEY)
336			continue;
337
338		if (authhavekey(keyid))
339			continue;
340		break;
341	}
342
343	/*
344	 * Generate up to NTP_MAXSESSION session keys. Stop if the
345	 * next one would not be unique or not a session key ID or if
346	 * it would expire before the next poll. The private value
347	 * included in the hash is zero if broadcast mode, the peer
348	 * cookie if client mode or the host cookie if symmetric modes.
349	 */
350	mpoll = 1 << min(peer->ppoll, peer->hpoll);
351	lifetime = min(1U << sys_automax, NTP_MAXSESSION * mpoll);
352	if (peer->hmode == MODE_BROADCAST)
353		cookie = 0;
354	else
355		cookie = peer->pcookie;
356	for (i = 0; i < NTP_MAXSESSION; i++) {
357		peer->keylist[i] = keyid;
358		peer->keynumber = i;
359		keyid = session_key(&dstadr->sin, &peer->srcadr, keyid,
360		    cookie, lifetime + mpoll);
361		lifetime -= mpoll;
362		if (auth_havekey(keyid) || keyid <= NTP_MAXKEY ||
363		    lifetime < 0 || tstamp == 0)
364			break;
365	}
366
367	/*
368	 * Save the last session key ID, sequence number and timestamp,
369	 * then sign these values for later retrieval by the clients. Be
370	 * careful not to use invalid key media. Use the public values
371	 * timestamp as filestamp.
372	 */
373	vp = &peer->sndval;
374	if (vp->ptr == NULL)
375		vp->ptr = emalloc(sizeof(struct autokey));
376	ap = (struct autokey *)vp->ptr;
377	ap->seq = htonl(peer->keynumber);
378	ap->key = htonl(keyid);
379	vp->tstamp = htonl(tstamp);
380	vp->fstamp = hostval.tstamp;
381	vp->vallen = htonl(sizeof(struct autokey));
382	vp->siglen = 0;
383	if (tstamp != 0) {
384		if (vp->sig == NULL)
385			vp->sig = emalloc(sign_siglen);
386		ctx = EVP_MD_CTX_new();
387		EVP_SignInit(ctx, sign_digest);
388		EVP_SignUpdate(ctx, (u_char *)vp, 12);
389		EVP_SignUpdate(ctx, vp->ptr, sizeof(struct autokey));
390		if (EVP_SignFinal(ctx, vp->sig, &len, sign_pkey)) {
391			INSIST(len <= sign_siglen);
392			vp->siglen = htonl(len);
393			peer->flags |= FLAG_ASSOC;
394		}
395		EVP_MD_CTX_free(ctx);
396	}
397	DPRINTF(1, ("make_keys: %d %08x %08x ts %u fs %u poll %d\n",
398		    peer->keynumber, keyid, cookie, ntohl(vp->tstamp),
399		    ntohl(vp->fstamp), peer->hpoll));
400	return (XEVNT_OK);
401}
402
403
404/*
405 * crypto_recv - parse extension fields
406 *
407 * This routine is called when the packet has been matched to an
408 * association and passed sanity, format and MAC checks. We believe the
409 * extension field values only if the field has proper format and
410 * length, the timestamp and filestamp are valid and the signature has
411 * valid length and is verified. There are a few cases where some values
412 * are believed even if the signature fails, but only if the proventic
413 * bit is not set.
414 *
415 * Returns
416 * XEVNT_OK	success
417 * XEVNT_ERR	protocol error
418 * XEVNT_LEN	bad field format or length
419 */
420int
421crypto_recv(
422	struct peer *peer,	/* peer structure pointer */
423	struct recvbuf *rbufp	/* packet buffer pointer */
424	)
425{
426	const EVP_MD *dp;	/* message digest algorithm */
427	u_int32	*pkt;		/* receive packet pointer */
428	struct autokey *ap, *bp; /* autokey pointer */
429	struct exten *ep, *fp;	/* extension pointers */
430	struct cert_info *xinfo; /* certificate info pointer */
431	int	macbytes;	/* length of MAC field, signed by intention */
432	int	authlen;	/* offset of MAC field */
433	associd_t associd;	/* association ID */
434	tstamp_t fstamp = 0;	/* filestamp */
435	u_int	len;		/* extension field length */
436	u_int	code;		/* extension field opcode */
437	u_int	vallen = 0;	/* value length */
438	X509	*cert;		/* X509 certificate */
439	char	statstr[NTP_MAXSTRLEN]; /* statistics for filegen */
440	keyid_t	cookie;		/* crumbles */
441	int	hismode;	/* packet mode */
442	int	rval = XEVNT_OK;
443	const u_char *puch;
444	u_int32 temp32;
445
446	/*
447	 * Initialize. Note that the packet has already been checked for
448	 * valid format and extension field lengths. First extract the
449	 * field length, command code and association ID in host byte
450	 * order. These are used with all commands and modes. Then check
451	 * the version number, which must be 2, and length, which must
452	 * be at least 8 for requests and VALUE_LEN (24) for responses.
453	 * Packets that fail either test sink without a trace. The
454	 * association ID is saved only if nonzero.
455	 */
456	authlen = LEN_PKT_NOMAC;
457	hismode = (int)PKT_MODE((&rbufp->recv_pkt)->li_vn_mode);
458	while ((macbytes = rbufp->recv_length - authlen) > (int)MAX_MAC_LEN) {
459		/* We can be reasonably sure that we can read at least
460		 * the opcode and the size field here. More stringent
461		 * checks follow up shortly.
462		 */
463		pkt = (u_int32 *)&rbufp->recv_pkt + authlen / 4;
464		ep = (struct exten *)pkt;
465		code = ntohl(ep->opcode) & 0xffff0000;
466		len = ntohl(ep->opcode) & 0x0000ffff;
467		// HMS: Why pkt[1] instead of ep->associd ?
468		associd = (associd_t)ntohl(pkt[1]);
469		rval = XEVNT_OK;
470		DPRINTF(1, ("crypto_recv: flags 0x%x ext offset %d len %u code 0x%x associd %d\n",
471			    peer->crypto, authlen, len, code >> 16,
472			    associd));
473
474		/*
475		 * Check version number and field length. If bad,
476		 * quietly ignore the packet.
477		 */
478		if (((code >> 24) & 0x3f) != CRYPTO_VN || len < 8) {
479			sys_badlength++;
480			code |= CRYPTO_ERROR;
481		}
482
483		/* Check if the declared size fits into the remaining
484		 * buffer. We *know* 'macbytes' > 0 here!
485		 */
486		if (len > (u_int)macbytes) {
487			DPRINTF(1, ("crypto_recv: possible attack detected, associd %d\n",
488				    associd));
489			return XEVNT_LEN;
490		}
491
492		/* Check if the paylod of the extension fits into the
493		 * declared frame.
494		 */
495		if (len >= VALUE_LEN) {
496			fstamp = ntohl(ep->fstamp);
497			vallen = ntohl(ep->vallen);
498			/*
499			 * Bug 2761: I hope this isn't too early...
500			 */
501			if (   vallen == 0
502			    || len - VALUE_LEN < vallen)
503				return XEVNT_LEN;
504		}
505		switch (code) {
506
507		/*
508		 * Install status word, host name, signature scheme and
509		 * association ID. In OpenSSL the signature algorithm is
510		 * bound to the digest algorithm, so the NID completely
511		 * defines the signature scheme. Note the request and
512		 * response are identical, but neither is validated by
513		 * signature. The request is processed here only in
514		 * symmetric modes. The server name field might be
515		 * useful to implement access controls in future.
516		 */
517		case CRYPTO_ASSOC:
518
519			/*
520			 * If our state machine is running when this
521			 * message arrives, the other fellow might have
522			 * restarted. However, this could be an
523			 * intruder, so just clamp the poll interval and
524			 * find out for ourselves. Otherwise, pass the
525			 * extension field to the transmit side.
526			 */
527			if (peer->crypto & CRYPTO_FLAG_CERT) {
528				rval = XEVNT_ERR;
529				break;
530			}
531			if (peer->cmmd) {
532				if (peer->assoc != associd) {
533					rval = XEVNT_ERR;
534					break;
535				}
536				free(peer->cmmd); /* will be set again! */
537			}
538			fp = emalloc(len);
539			memcpy(fp, ep, len);
540			fp->associd = htonl(peer->associd);
541			peer->cmmd = fp;
542			/* fall through */
543
544		case CRYPTO_ASSOC | CRYPTO_RESP:
545
546			/*
547			 * Discard the message if it has already been
548			 * stored or the message has been amputated.
549			 */
550			if (peer->crypto) {
551				if (peer->assoc != associd)
552					rval = XEVNT_ERR;
553				break;
554			}
555			INSIST(len >= VALUE_LEN);
556			if (vallen == 0 || vallen > MAXHOSTNAME ||
557			    len - VALUE_LEN < vallen) {
558				rval = XEVNT_LEN;
559				break;
560			}
561			DPRINTF(1, ("crypto_recv: ident host 0x%x %d server 0x%x %d\n",
562				    crypto_flags, peer->associd, fstamp,
563				    peer->assoc));
564			temp32 = crypto_flags & CRYPTO_FLAG_MASK;
565
566			/*
567			 * If the client scheme is PC, the server scheme
568			 * must be PC. The public key and identity are
569			 * presumed valid, so we skip the certificate
570			 * and identity exchanges and move immediately
571			 * to the cookie exchange which confirms the
572			 * server signature.
573			 */
574			if (crypto_flags & CRYPTO_FLAG_PRIV) {
575				if (!(fstamp & CRYPTO_FLAG_PRIV)) {
576					rval = XEVNT_KEY;
577					break;
578				}
579				fstamp |= CRYPTO_FLAG_CERT |
580				    CRYPTO_FLAG_VRFY | CRYPTO_FLAG_SIGN;
581
582			/*
583			 * It is an error if either peer supports
584			 * identity, but the other does not.
585			 */
586			} else if (hismode == MODE_ACTIVE || hismode ==
587			    MODE_PASSIVE) {
588				if ((temp32 && !(fstamp &
589				    CRYPTO_FLAG_MASK)) ||
590				    (!temp32 && (fstamp &
591				    CRYPTO_FLAG_MASK))) {
592					rval = XEVNT_KEY;
593					break;
594				}
595			}
596
597			/*
598			 * Discard the message if the signature digest
599			 * NID is not supported.
600			 */
601			temp32 = (fstamp >> 16) & 0xffff;
602			dp =
603			    (const EVP_MD *)EVP_get_digestbynid(temp32);
604			if (dp == NULL) {
605				rval = XEVNT_MD;
606				break;
607			}
608
609			/*
610			 * Save status word, host name and message
611			 * digest/signature type. If this is from a
612			 * broadcast and the association ID has changed,
613			 * request the autokey values.
614			 */
615			peer->assoc = associd;
616			if (hismode == MODE_SERVER)
617				fstamp |= CRYPTO_FLAG_AUTO;
618			if (!(fstamp & CRYPTO_FLAG_TAI))
619				fstamp |= CRYPTO_FLAG_LEAP;
620			RAND_bytes((u_char *)&peer->hcookie, 4);
621			peer->crypto = fstamp;
622			peer->digest = dp;
623			if (peer->subject != NULL)
624				free(peer->subject);
625			peer->subject = emalloc(vallen + 1);
626			memcpy(peer->subject, ep->pkt, vallen);
627			peer->subject[vallen] = '\0';
628			if (peer->issuer != NULL)
629				free(peer->issuer);
630			peer->issuer = estrdup(peer->subject);
631			snprintf(statstr, sizeof(statstr),
632			    "assoc %d %d host %s %s", peer->associd,
633			    peer->assoc, peer->subject,
634			    OBJ_nid2ln(temp32));
635			record_crypto_stats(&peer->srcadr, statstr);
636			DPRINTF(1, ("crypto_recv: %s\n", statstr));
637			break;
638
639		/*
640		 * Decode X509 certificate in ASN.1 format and extract
641		 * the data containing, among other things, subject
642		 * name and public key. In the default identification
643		 * scheme, the certificate trail is followed to a self
644		 * signed trusted certificate.
645		 */
646		case CRYPTO_CERT | CRYPTO_RESP:
647
648			/*
649			 * Discard the message if empty or invalid.
650			 */
651			if (len < VALUE_LEN)
652				break;
653
654			if ((rval = crypto_verify(ep, NULL, peer)) !=
655			    XEVNT_OK)
656				break;
657
658			/*
659			 * Scan the certificate list to delete old
660			 * versions and link the newest version first on
661			 * the list. Then, verify the signature. If the
662			 * certificate is bad or missing, just ignore
663			 * it.
664			 */
665			if ((xinfo = cert_install(ep, peer)) == NULL) {
666				rval = XEVNT_CRT;
667				break;
668			}
669			if ((rval = cert_hike(peer, xinfo)) != XEVNT_OK)
670				break;
671
672			/*
673			 * We plug in the public key and lifetime from
674			 * the first certificate received. However, note
675			 * that this certificate might not be signed by
676			 * the server, so we can't check the
677			 * signature/digest NID.
678			 */
679			if (peer->pkey == NULL) {
680				puch = xinfo->cert.ptr;
681				cert = d2i_X509(NULL, &puch,
682				    ntohl(xinfo->cert.vallen));
683				peer->pkey = X509_get_pubkey(cert);
684				X509_free(cert);
685			}
686			peer->flash &= ~TEST8;
687			temp32 = xinfo->nid;
688			snprintf(statstr, sizeof(statstr),
689			    "cert %s %s 0x%x %s (%u) fs %u",
690			    xinfo->subject, xinfo->issuer, xinfo->flags,
691			    OBJ_nid2ln(temp32), temp32,
692			    ntohl(ep->fstamp));
693			record_crypto_stats(&peer->srcadr, statstr);
694			DPRINTF(1, ("crypto_recv: %s\n", statstr));
695			break;
696
697		/*
698		 * Schnorr (IFF) identity scheme. This scheme is
699		 * designed for use with shared secret server group keys
700		 * and where the certificate may be generated by a third
701		 * party. The client sends a challenge to the server,
702		 * which performs a calculation and returns the result.
703		 * A positive result is possible only if both client and
704		 * server contain the same secret group key.
705		 */
706		case CRYPTO_IFF | CRYPTO_RESP:
707
708			/*
709			 * Discard the message if invalid.
710			 */
711			if ((rval = crypto_verify(ep, NULL, peer)) !=
712			    XEVNT_OK)
713				break;
714
715			/*
716			 * If the challenge matches the response, the
717			 * server public key, signature and identity are
718			 * all verified at the same time. The server is
719			 * declared trusted, so we skip further
720			 * certificate exchanges and move immediately to
721			 * the cookie exchange.
722			 */
723			if ((rval = crypto_iff(ep, peer)) != XEVNT_OK)
724				break;
725
726			peer->crypto |= CRYPTO_FLAG_VRFY;
727			peer->flash &= ~TEST8;
728			snprintf(statstr, sizeof(statstr), "iff %s fs %u",
729			    peer->issuer, ntohl(ep->fstamp));
730			record_crypto_stats(&peer->srcadr, statstr);
731			DPRINTF(1, ("crypto_recv: %s\n", statstr));
732			break;
733
734		/*
735		 * Guillou-Quisquater (GQ) identity scheme. This scheme
736		 * is designed for use with public certificates carrying
737		 * the GQ public key in an extension field. The client
738		 * sends a challenge to the server, which performs a
739		 * calculation and returns the result. A positive result
740		 * is possible only if both client and server contain
741		 * the same group key and the server has the matching GQ
742		 * private key.
743		 */
744		case CRYPTO_GQ | CRYPTO_RESP:
745
746			/*
747			 * Discard the message if invalid
748			 */
749			if ((rval = crypto_verify(ep, NULL, peer)) !=
750			    XEVNT_OK)
751				break;
752
753			/*
754			 * If the challenge matches the response, the
755			 * server public key, signature and identity are
756			 * all verified at the same time. The server is
757			 * declared trusted, so we skip further
758			 * certificate exchanges and move immediately to
759			 * the cookie exchange.
760			 */
761			if ((rval = crypto_gq(ep, peer)) != XEVNT_OK)
762				break;
763
764			peer->crypto |= CRYPTO_FLAG_VRFY;
765			peer->flash &= ~TEST8;
766			snprintf(statstr, sizeof(statstr), "gq %s fs %u",
767			    peer->issuer, ntohl(ep->fstamp));
768			record_crypto_stats(&peer->srcadr, statstr);
769			DPRINTF(1, ("crypto_recv: %s\n", statstr));
770			break;
771
772		/*
773		 * Mu-Varadharajan (MV) identity scheme. This scheme is
774		 * designed for use with three levels of trust, trusted
775		 * host, server and client. The trusted host key is
776		 * opaque to servers and clients; the server keys are
777		 * opaque to clients and each client key is different.
778		 * Client keys can be revoked without requiring new key
779		 * generations.
780		 */
781		case CRYPTO_MV | CRYPTO_RESP:
782
783			/*
784			 * Discard the message if invalid.
785			 */
786			if ((rval = crypto_verify(ep, NULL, peer)) !=
787			    XEVNT_OK)
788				break;
789
790			/*
791			 * If the challenge matches the response, the
792			 * server public key, signature and identity are
793			 * all verified at the same time. The server is
794			 * declared trusted, so we skip further
795			 * certificate exchanges and move immediately to
796			 * the cookie exchange.
797			 */
798			if ((rval = crypto_mv(ep, peer)) != XEVNT_OK)
799				break;
800
801			peer->crypto |= CRYPTO_FLAG_VRFY;
802			peer->flash &= ~TEST8;
803			snprintf(statstr, sizeof(statstr), "mv %s fs %u",
804			    peer->issuer, ntohl(ep->fstamp));
805			record_crypto_stats(&peer->srcadr, statstr);
806			DPRINTF(1, ("crypto_recv: %s\n", statstr));
807			break;
808
809
810		/*
811		 * Cookie response in client and symmetric modes. If the
812		 * cookie bit is set, the working cookie is the EXOR of
813		 * the current and new values.
814		 */
815		case CRYPTO_COOK | CRYPTO_RESP:
816
817			/*
818			 * Discard the message if invalid or signature
819			 * not verified with respect to the cookie
820			 * values.
821			 */
822			if ((rval = crypto_verify(ep, &peer->cookval,
823			    peer)) != XEVNT_OK)
824				break;
825
826			/*
827			 * Decrypt the cookie, hunting all the time for
828			 * errors.
829			 */
830			if (vallen == (u_int)EVP_PKEY_size(host_pkey)) {
831				RSA *rsa = EVP_PKEY_get0_RSA(host_pkey);
832				u_int32 *cookiebuf = malloc(RSA_size(rsa));
833				if (!cookiebuf) {
834					rval = XEVNT_CKY;
835					break;
836				}
837
838				if (RSA_private_decrypt(vallen,
839				    (u_char *)ep->pkt,
840				    (u_char *)cookiebuf,
841				    rsa,
842				    RSA_PKCS1_OAEP_PADDING) != 4) {
843					rval = XEVNT_CKY;
844					free(cookiebuf);
845					break;
846				} else {
847					cookie = ntohl(*cookiebuf);
848					free(cookiebuf);
849				}
850			} else {
851				rval = XEVNT_CKY;
852				break;
853			}
854
855			/*
856			 * Install cookie values and light the cookie
857			 * bit. If this is not broadcast client mode, we
858			 * are done here.
859			 */
860			key_expire(peer);
861			if (hismode == MODE_ACTIVE || hismode ==
862			    MODE_PASSIVE)
863				peer->pcookie = peer->hcookie ^ cookie;
864			else
865				peer->pcookie = cookie;
866			peer->crypto |= CRYPTO_FLAG_COOK;
867			peer->flash &= ~TEST8;
868			snprintf(statstr, sizeof(statstr),
869			    "cook %x ts %u fs %u", peer->pcookie,
870			    ntohl(ep->tstamp), ntohl(ep->fstamp));
871			record_crypto_stats(&peer->srcadr, statstr);
872			DPRINTF(1, ("crypto_recv: %s\n", statstr));
873			break;
874
875		/*
876		 * Install autokey values in broadcast client and
877		 * symmetric modes. We have to do this every time the
878		 * sever/peer cookie changes or a new keylist is
879		 * rolled. Ordinarily, this is automatic as this message
880		 * is piggybacked on the first NTP packet sent upon
881		 * either of these events. Note that a broadcast client
882		 * or symmetric peer can receive this response without a
883		 * matching request.
884		 */
885		case CRYPTO_AUTO | CRYPTO_RESP:
886
887			/*
888			 * Discard the message if invalid or signature
889			 * not verified with respect to the receive
890			 * autokey values.
891			 */
892			if ((rval = crypto_verify(ep, &peer->recval,
893			    peer)) != XEVNT_OK)
894				break;
895
896			/*
897			 * Discard the message if a broadcast client and
898			 * the association ID does not match. This might
899			 * happen if a broacast server restarts the
900			 * protocol. A protocol restart will occur at
901			 * the next ASSOC message.
902			 */
903			if ((peer->cast_flags & MDF_BCLNT) &&
904			    peer->assoc != associd)
905				break;
906
907			/*
908			 * Install autokey values and light the
909			 * autokey bit. This is not hard.
910			 */
911			if (ep->tstamp == 0)
912				break;
913
914			if (peer->recval.ptr == NULL)
915				peer->recval.ptr =
916				    emalloc(sizeof(struct autokey));
917			bp = (struct autokey *)peer->recval.ptr;
918			peer->recval.tstamp = ep->tstamp;
919			peer->recval.fstamp = ep->fstamp;
920			ap = (struct autokey *)ep->pkt;
921			bp->seq = ntohl(ap->seq);
922			bp->key = ntohl(ap->key);
923			peer->pkeyid = bp->key;
924			peer->crypto |= CRYPTO_FLAG_AUTO;
925			peer->flash &= ~TEST8;
926			snprintf(statstr, sizeof(statstr),
927			    "auto seq %d key %x ts %u fs %u", bp->seq,
928			    bp->key, ntohl(ep->tstamp),
929			    ntohl(ep->fstamp));
930			record_crypto_stats(&peer->srcadr, statstr);
931			DPRINTF(1, ("crypto_recv: %s\n", statstr));
932			break;
933
934		/*
935		 * X509 certificate sign response. Validate the
936		 * certificate signed by the server and install. Later
937		 * this can be provided to clients of this server in
938		 * lieu of the self signed certificate in order to
939		 * validate the public key.
940		 */
941		case CRYPTO_SIGN | CRYPTO_RESP:
942
943			/*
944			 * Discard the message if invalid.
945			 */
946			if ((rval = crypto_verify(ep, NULL, peer)) !=
947			    XEVNT_OK)
948				break;
949
950			/*
951			 * Scan the certificate list to delete old
952			 * versions and link the newest version first on
953			 * the list.
954			 */
955			if ((xinfo = cert_install(ep, peer)) == NULL) {
956				rval = XEVNT_CRT;
957				break;
958			}
959			peer->crypto |= CRYPTO_FLAG_SIGN;
960			peer->flash &= ~TEST8;
961			temp32 = xinfo->nid;
962			snprintf(statstr, sizeof(statstr),
963			    "sign %s %s 0x%x %s (%u) fs %u",
964			    xinfo->subject, xinfo->issuer, xinfo->flags,
965			    OBJ_nid2ln(temp32), temp32,
966			    ntohl(ep->fstamp));
967			record_crypto_stats(&peer->srcadr, statstr);
968			DPRINTF(1, ("crypto_recv: %s\n", statstr));
969			break;
970
971		/*
972		 * Install leapseconds values. While the leapsecond
973		 * values epoch, TAI offset and values expiration epoch
974		 * are retained, only the current TAI offset is provided
975		 * via the kernel to other applications.
976		 */
977		case CRYPTO_LEAP | CRYPTO_RESP:
978			/*
979			 * Discard the message if invalid. We can't
980			 * compare the value timestamps here, as they
981			 * can be updated by different servers.
982			 */
983			rval = crypto_verify(ep, NULL, peer);
984			if ((rval   != XEVNT_OK          ) ||
985			    (vallen != 3*sizeof(uint32_t))  )
986				break;
987
988			/* Check if we can update the basic TAI offset
989			 * for our current leap frame. This is a hack
990			 * and ignores the time stamps in the autokey
991			 * message.
992			 */
993			if (sys_leap != LEAP_NOTINSYNC)
994				leapsec_autokey_tai(ntohl(ep->pkt[0]),
995						    rbufp->recv_time.l_ui, NULL);
996			tai_leap.tstamp = ep->tstamp;
997			tai_leap.fstamp = ep->fstamp;
998			crypto_update();
999			mprintf_event(EVNT_TAI, peer,
1000				      "%d seconds", ntohl(ep->pkt[0]));
1001			peer->crypto |= CRYPTO_FLAG_LEAP;
1002			peer->flash &= ~TEST8;
1003			snprintf(statstr, sizeof(statstr),
1004				 "leap TAI offset %d at %u expire %u fs %u",
1005				 ntohl(ep->pkt[0]), ntohl(ep->pkt[1]),
1006				 ntohl(ep->pkt[2]), ntohl(ep->fstamp));
1007			record_crypto_stats(&peer->srcadr, statstr);
1008			DPRINTF(1, ("crypto_recv: %s\n", statstr));
1009			break;
1010
1011		/*
1012		 * We come here in symmetric modes for miscellaneous
1013		 * commands that have value fields but are processed on
1014		 * the transmit side. All we need do here is check for
1015		 * valid field length. Note that ASSOC is handled
1016		 * separately.
1017		 */
1018		case CRYPTO_CERT:
1019		case CRYPTO_IFF:
1020		case CRYPTO_GQ:
1021		case CRYPTO_MV:
1022		case CRYPTO_COOK:
1023		case CRYPTO_SIGN:
1024			if (len < VALUE_LEN) {
1025				rval = XEVNT_LEN;
1026				break;
1027			}
1028			/* fall through */
1029
1030		/*
1031		 * We come here in symmetric modes for requests
1032		 * requiring a response (above plus AUTO and LEAP) and
1033		 * for responses. If a request, save the extension field
1034		 * for later; invalid requests will be caught on the
1035		 * transmit side. If an error or invalid response,
1036		 * declare a protocol error.
1037		 */
1038		default:
1039			if (code & (CRYPTO_RESP | CRYPTO_ERROR)) {
1040				rval = XEVNT_ERR;
1041			} else if (peer->cmmd == NULL) {
1042				fp = emalloc(len);
1043				memcpy(fp, ep, len);
1044				peer->cmmd = fp;
1045			}
1046		}
1047
1048		/*
1049		 * The first error found terminates the extension field
1050		 * scan and we return the laundry to the caller.
1051		 */
1052		if (rval != XEVNT_OK) {
1053			snprintf(statstr, sizeof(statstr),
1054			    "%04x %d %02x %s", htonl(ep->opcode),
1055			    associd, rval, eventstr(rval));
1056			record_crypto_stats(&peer->srcadr, statstr);
1057			DPRINTF(1, ("crypto_recv: %s\n", statstr));
1058			return (rval);
1059		}
1060		authlen += (len + 3) / 4 * 4;
1061	}
1062	return (rval);
1063}
1064
1065
1066/*
1067 * crypto_xmit - construct extension fields
1068 *
1069 * This routine is called both when an association is configured and
1070 * when one is not. The only case where this matters is to retrieve the
1071 * autokey information, in which case the caller has to provide the
1072 * association ID to match the association.
1073 *
1074 * Side effect: update the packet offset.
1075 *
1076 * Errors
1077 * XEVNT_OK	success
1078 * XEVNT_CRT	bad or missing certificate
1079 * XEVNT_ERR	protocol error
1080 * XEVNT_LEN	bad field format or length
1081 * XEVNT_PER	host certificate expired
1082 */
1083int
1084crypto_xmit(
1085	struct peer *peer,	/* peer structure pointer */
1086	struct pkt *xpkt,	/* transmit packet pointer */
1087	struct recvbuf *rbufp,	/* receive buffer pointer */
1088	int	start,		/* offset to extension field */
1089	struct exten *ep,	/* extension pointer */
1090	keyid_t cookie		/* session cookie */
1091	)
1092{
1093	struct exten *fp;	/* extension pointers */
1094	struct cert_info *cp, *xp, *yp; /* cert info/value pointer */
1095	sockaddr_u *srcadr_sin; /* source address */
1096	u_int32	*pkt;		/* packet pointer */
1097	u_int	opcode;		/* extension field opcode */
1098	char	certname[MAXHOSTNAME + 1]; /* subject name buffer */
1099	char	statstr[NTP_MAXSTRLEN]; /* statistics for filegen */
1100	tstamp_t tstamp;
1101	struct calendar tscal;
1102	u_int	vallen;
1103	struct value vtemp;
1104	associd_t associd;
1105	int	rval;
1106	int	len;
1107	keyid_t tcookie;
1108
1109	/*
1110	 * Generate the requested extension field request code, length
1111	 * and association ID. If this is a response and the host is not
1112	 * synchronized, light the error bit and go home.
1113	 */
1114	pkt = (u_int32 *)xpkt + start / 4;
1115	fp = (struct exten *)pkt;
1116	opcode = ntohl(ep->opcode);
1117	if (peer != NULL) {
1118		srcadr_sin = &peer->srcadr;
1119		if (!(opcode & CRYPTO_RESP))
1120			peer->opcode = ep->opcode;
1121	} else {
1122		srcadr_sin = &rbufp->recv_srcadr;
1123	}
1124	associd = (associd_t) ntohl(ep->associd);
1125	len = 8;
1126	fp->opcode = htonl((opcode & 0xffff0000) | len);
1127	fp->associd = ep->associd;
1128	rval = XEVNT_OK;
1129	tstamp = crypto_time();
1130	switch (opcode & 0xffff0000) {
1131
1132	/*
1133	 * Send association request and response with status word and
1134	 * host name. Note, this message is not signed and the filestamp
1135	 * contains only the status word.
1136	 */
1137	case CRYPTO_ASSOC:
1138	case CRYPTO_ASSOC | CRYPTO_RESP:
1139		len = crypto_send(fp, &hostval, start);
1140		fp->fstamp = htonl(crypto_flags);
1141		break;
1142
1143	/*
1144	 * Send certificate request. Use the values from the extension
1145	 * field.
1146	 */
1147	case CRYPTO_CERT:
1148		memset(&vtemp, 0, sizeof(vtemp));
1149		vtemp.tstamp = ep->tstamp;
1150		vtemp.fstamp = ep->fstamp;
1151		vtemp.vallen = ep->vallen;
1152		vtemp.ptr = (u_char *)ep->pkt;
1153		len = crypto_send(fp, &vtemp, start);
1154		break;
1155
1156	/*
1157	 * Send sign request. Use the host certificate, which is self-
1158	 * signed and may or may not be trusted.
1159	 */
1160	case CRYPTO_SIGN:
1161		(void)ntpcal_ntp_to_date(&tscal, tstamp, NULL);
1162		if ((calcomp(&tscal, &(cert_host->first)) < 0)
1163		|| (calcomp(&tscal, &(cert_host->last)) > 0))
1164			rval = XEVNT_PER;
1165		else
1166			len = crypto_send(fp, &cert_host->cert, start);
1167		break;
1168
1169	/*
1170	 * Send certificate response. Use the name in the extension
1171	 * field to find the certificate in the cache. If the request
1172	 * contains no subject name, assume the name of this host. This
1173	 * is for backwards compatibility. Private certificates are
1174	 * never sent.
1175	 *
1176	 * There may be several certificates matching the request. First
1177	 * choice is a self-signed trusted certificate; second choice is
1178	 * any certificate signed by another host. There is no third
1179	 * choice.
1180	 */
1181	case CRYPTO_CERT | CRYPTO_RESP:
1182		vallen = exten_payload_size(ep); /* Must be <64k */
1183		if (vallen == 0 || vallen >= sizeof(certname) ) {
1184			rval = XEVNT_LEN;
1185			break;
1186		}
1187
1188		/*
1189		 * Find all public valid certificates with matching
1190		 * subject. If a self-signed, trusted certificate is
1191		 * found, use that certificate. If not, use the last non
1192		 * self-signed certificate.
1193		 */
1194		memcpy(certname, ep->pkt, vallen);
1195		certname[vallen] = '\0';
1196		xp = yp = NULL;
1197		for (cp = cinfo; cp != NULL; cp = cp->link) {
1198			if (cp->flags & (CERT_PRIV | CERT_ERROR))
1199				continue;
1200
1201			if (strcmp(certname, cp->subject) != 0)
1202				continue;
1203
1204			if (strcmp(certname, cp->issuer) != 0)
1205				yp = cp;
1206			else if (cp ->flags & CERT_TRUST)
1207				xp = cp;
1208			continue;
1209		}
1210
1211		/*
1212		 * Be careful who you trust. If the certificate is not
1213		 * found, return an empty response. Note that we dont
1214		 * enforce lifetimes here.
1215		 *
1216		 * The timestamp and filestamp are taken from the
1217		 * certificate value structure. For all certificates the
1218		 * timestamp is the latest signature update time. For
1219		 * host and imported certificates the filestamp is the
1220		 * creation epoch. For signed certificates the filestamp
1221		 * is the creation epoch of the trusted certificate at
1222		 * the root of the certificate trail. In principle, this
1223		 * allows strong checking for signature masquerade.
1224		 */
1225		if (xp == NULL)
1226			xp = yp;
1227		if (xp == NULL)
1228			break;
1229
1230		if (tstamp == 0)
1231			break;
1232
1233		len = crypto_send(fp, &xp->cert, start);
1234		break;
1235
1236	/*
1237	 * Send challenge in Schnorr (IFF) identity scheme.
1238	 */
1239	case CRYPTO_IFF:
1240		if (peer == NULL)
1241			break;		/* hack attack */
1242
1243		if ((rval = crypto_alice(peer, &vtemp)) == XEVNT_OK) {
1244			len = crypto_send(fp, &vtemp, start);
1245			value_free(&vtemp);
1246		}
1247		break;
1248
1249	/*
1250	 * Send response in Schnorr (IFF) identity scheme.
1251	 */
1252	case CRYPTO_IFF | CRYPTO_RESP:
1253		if ((rval = crypto_bob(ep, &vtemp)) == XEVNT_OK) {
1254			len = crypto_send(fp, &vtemp, start);
1255			value_free(&vtemp);
1256		}
1257		break;
1258
1259	/*
1260	 * Send challenge in Guillou-Quisquater (GQ) identity scheme.
1261	 */
1262	case CRYPTO_GQ:
1263		if (peer == NULL)
1264			break;		/* hack attack */
1265
1266		if ((rval = crypto_alice2(peer, &vtemp)) == XEVNT_OK) {
1267			len = crypto_send(fp, &vtemp, start);
1268			value_free(&vtemp);
1269		}
1270		break;
1271
1272	/*
1273	 * Send response in Guillou-Quisquater (GQ) identity scheme.
1274	 */
1275	case CRYPTO_GQ | CRYPTO_RESP:
1276		if ((rval = crypto_bob2(ep, &vtemp)) == XEVNT_OK) {
1277			len = crypto_send(fp, &vtemp, start);
1278			value_free(&vtemp);
1279		}
1280		break;
1281
1282	/*
1283	 * Send challenge in MV identity scheme.
1284	 */
1285	case CRYPTO_MV:
1286		if (peer == NULL)
1287			break;		/* hack attack */
1288
1289		if ((rval = crypto_alice3(peer, &vtemp)) == XEVNT_OK) {
1290			len = crypto_send(fp, &vtemp, start);
1291			value_free(&vtemp);
1292		}
1293		break;
1294
1295	/*
1296	 * Send response in MV identity scheme.
1297	 */
1298	case CRYPTO_MV | CRYPTO_RESP:
1299		if ((rval = crypto_bob3(ep, &vtemp)) == XEVNT_OK) {
1300			len = crypto_send(fp, &vtemp, start);
1301			value_free(&vtemp);
1302		}
1303		break;
1304
1305	/*
1306	 * Send certificate sign response. The integrity of the request
1307	 * certificate has already been verified on the receive side.
1308	 * Sign the response using the local server key. Use the
1309	 * filestamp from the request and use the timestamp as the
1310	 * current time. Light the error bit if the certificate is
1311	 * invalid or contains an unverified signature.
1312	 */
1313	case CRYPTO_SIGN | CRYPTO_RESP:
1314		if ((rval = cert_sign(ep, &vtemp)) == XEVNT_OK) {
1315			len = crypto_send(fp, &vtemp, start);
1316			value_free(&vtemp);
1317		}
1318		break;
1319
1320	/*
1321	 * Send public key and signature. Use the values from the public
1322	 * key.
1323	 */
1324	case CRYPTO_COOK:
1325		len = crypto_send(fp, &pubkey, start);
1326		break;
1327
1328	/*
1329	 * Encrypt and send cookie and signature. Light the error bit if
1330	 * anything goes wrong.
1331	 */
1332	case CRYPTO_COOK | CRYPTO_RESP:
1333		vallen = ntohl(ep->vallen);	/* Must be <64k */
1334		if (   vallen == 0
1335		    || (vallen >= MAX_VALLEN)
1336		    || (opcode & 0x0000ffff)  < VALUE_LEN + vallen) {
1337			rval = XEVNT_LEN;
1338			break;
1339		}
1340		if (peer == NULL)
1341			tcookie = cookie;
1342		else
1343			tcookie = peer->hcookie;
1344		if ((rval = crypto_encrypt((const u_char *)ep->pkt, vallen, &tcookie, &vtemp))
1345		    == XEVNT_OK) {
1346			len = crypto_send(fp, &vtemp, start);
1347			value_free(&vtemp);
1348		}
1349		break;
1350
1351	/*
1352	 * Find peer and send autokey data and signature in broadcast
1353	 * server and symmetric modes. Use the values in the autokey
1354	 * structure. If no association is found, either the server has
1355	 * restarted with new associations or some perp has replayed an
1356	 * old message, in which case light the error bit.
1357	 */
1358	case CRYPTO_AUTO | CRYPTO_RESP:
1359		if (peer == NULL) {
1360			if ((peer = findpeerbyassoc(associd)) == NULL) {
1361				rval = XEVNT_ERR;
1362				break;
1363			}
1364		}
1365		peer->flags &= ~FLAG_ASSOC;
1366		len = crypto_send(fp, &peer->sndval, start);
1367		break;
1368
1369	/*
1370	 * Send leapseconds values and signature. Use the values from
1371	 * the tai structure. If no table has been loaded, just send an
1372	 * empty request.
1373	 */
1374	case CRYPTO_LEAP | CRYPTO_RESP:
1375		len = crypto_send(fp, &tai_leap, start);
1376		break;
1377
1378	/*
1379	 * Default - Send a valid command for unknown requests; send
1380	 * an error response for unknown resonses.
1381	 */
1382	default:
1383		if (opcode & CRYPTO_RESP)
1384			rval = XEVNT_ERR;
1385	}
1386
1387	/*
1388	 * In case of error, flame the log. If a request, toss the
1389	 * puppy; if a response, return so the sender can flame, too.
1390	 */
1391	if (rval != XEVNT_OK) {
1392		u_int32	uint32;
1393
1394		uint32 = CRYPTO_ERROR;
1395		opcode |= uint32;
1396		fp->opcode |= htonl(uint32);
1397		snprintf(statstr, sizeof(statstr),
1398		    "%04x %d %02x %s", opcode, associd, rval,
1399		    eventstr(rval));
1400		record_crypto_stats(srcadr_sin, statstr);
1401		DPRINTF(1, ("crypto_xmit: %s\n", statstr));
1402		if (!(opcode & CRYPTO_RESP))
1403			return (0);
1404	}
1405	DPRINTF(1, ("crypto_xmit: flags 0x%x offset %d len %d code 0x%x associd %d\n",
1406		    crypto_flags, start, len, opcode >> 16, associd));
1407	return (len);
1408}
1409
1410
1411/*
1412 * crypto_verify - verify the extension field value and signature
1413 *
1414 * Returns
1415 * XEVNT_OK	success
1416 * XEVNT_ERR	protocol error
1417 * XEVNT_FSP	bad filestamp
1418 * XEVNT_LEN	bad field format or length
1419 * XEVNT_PUB	bad or missing public key
1420 * XEVNT_SGL	bad signature length
1421 * XEVNT_SIG	signature not verified
1422 * XEVNT_TSP	bad timestamp
1423 */
1424static int
1425crypto_verify(
1426	struct exten *ep,	/* extension pointer */
1427	struct value *vp,	/* value pointer */
1428	struct peer *peer	/* peer structure pointer */
1429	)
1430{
1431	EVP_PKEY *pkey;		/* server public key */
1432	EVP_MD_CTX *ctx;	/* signature context */
1433	tstamp_t tstamp, tstamp1 = 0; /* timestamp */
1434	tstamp_t fstamp, fstamp1 = 0; /* filestamp */
1435	u_int	vallen;		/* value length */
1436	u_int	siglen;		/* signature length */
1437	u_int	opcode, len;
1438	int	i;
1439
1440	/*
1441	 * We are extremely parannoyed. We require valid opcode, length,
1442	 * association ID, timestamp, filestamp, public key, digest,
1443	 * signature length and signature, where relevant. Note that
1444	 * preliminary length checks are done in the main loop.
1445	 */
1446	len = ntohl(ep->opcode) & 0x0000ffff;
1447	opcode = ntohl(ep->opcode) & 0xffff0000;
1448
1449	/*
1450	 * Check for valid value header, association ID and extension
1451	 * field length. Remember, it is not an error to receive an
1452	 * unsolicited response; however, the response ID must match
1453	 * the association ID.
1454	 */
1455	if (opcode & CRYPTO_ERROR)
1456		return (XEVNT_ERR);
1457
1458 	if (len < VALUE_LEN)
1459		return (XEVNT_LEN);
1460
1461	if (opcode == (CRYPTO_AUTO | CRYPTO_RESP) && (peer->pmode ==
1462	    MODE_BROADCAST || (peer->cast_flags & MDF_BCLNT))) {
1463		if (ntohl(ep->associd) != peer->assoc)
1464			return (XEVNT_ERR);
1465	} else {
1466		if (ntohl(ep->associd) != peer->associd)
1467			return (XEVNT_ERR);
1468	}
1469
1470	/*
1471	 * We have a valid value header. Check for valid value and
1472	 * signature field lengths. The extension field length must be
1473	 * long enough to contain the value header, value and signature.
1474	 * Note both the value and signature field lengths are rounded
1475	 * up to the next word (4 octets).
1476	 */
1477	vallen = ntohl(ep->vallen);
1478	if (   vallen == 0
1479	    || vallen > MAX_VALLEN)
1480		return (XEVNT_LEN);
1481
1482	i = (vallen + 3) / 4;
1483	siglen = ntohl(ep->pkt[i++]);
1484	if (   siglen > MAX_VALLEN
1485	    || len - VALUE_LEN < ((vallen + 3) / 4) * 4
1486	    || len - VALUE_LEN - ((vallen + 3) / 4) * 4
1487	      < ((siglen + 3) / 4) * 4)
1488		return (XEVNT_LEN);
1489
1490	/*
1491	 * Check for valid timestamp and filestamp. If the timestamp is
1492	 * zero, the sender is not synchronized and signatures are
1493	 * not possible. If nonzero the timestamp must not precede the
1494	 * filestamp. The timestamp and filestamp must not precede the
1495	 * corresponding values in the value structure, if present.
1496 	 */
1497	tstamp = ntohl(ep->tstamp);
1498	fstamp = ntohl(ep->fstamp);
1499	if (tstamp == 0)
1500		return (XEVNT_TSP);
1501
1502	if (tstamp < fstamp)
1503		return (XEVNT_TSP);
1504
1505	if (vp != NULL) {
1506		tstamp1 = ntohl(vp->tstamp);
1507		fstamp1 = ntohl(vp->fstamp);
1508		if (tstamp1 != 0 && fstamp1 != 0) {
1509			if (tstamp < tstamp1)
1510				return (XEVNT_TSP);
1511
1512			if ((tstamp < fstamp1 || fstamp < fstamp1))
1513				return (XEVNT_FSP);
1514		}
1515	}
1516
1517	/*
1518	 * At the time the certificate message is validated, the public
1519	 * key in the message is not available. Thus, don't try to
1520	 * verify the signature.
1521	 */
1522	if (opcode == (CRYPTO_CERT | CRYPTO_RESP))
1523		return (XEVNT_OK);
1524
1525	/*
1526	 * Check for valid signature length, public key and digest
1527	 * algorithm.
1528	 */
1529	if (crypto_flags & peer->crypto & CRYPTO_FLAG_PRIV)
1530		pkey = sign_pkey;
1531	else
1532		pkey = peer->pkey;
1533	if (siglen == 0 || pkey == NULL || peer->digest == NULL)
1534		return (XEVNT_ERR);
1535
1536	if (siglen != (u_int)EVP_PKEY_size(pkey))
1537		return (XEVNT_SGL);
1538
1539	/*
1540	 * Darn, I thought we would never get here. Verify the
1541	 * signature. If the identity exchange is verified, light the
1542	 * proventic bit. What a relief.
1543	 */
1544	ctx = EVP_MD_CTX_new();
1545	EVP_VerifyInit(ctx, peer->digest);
1546	/* XXX: the "+ 12" needs to be at least documented... */
1547	EVP_VerifyUpdate(ctx, (u_char *)&ep->tstamp, vallen + 12);
1548	if (EVP_VerifyFinal(ctx, (u_char *)&ep->pkt[i], siglen,
1549	    pkey) <= 0) {
1550		EVP_MD_CTX_free(ctx);
1551		return (XEVNT_SIG);
1552	}
1553	EVP_MD_CTX_free(ctx);
1554
1555	if (peer->crypto & CRYPTO_FLAG_VRFY)
1556		peer->crypto |= CRYPTO_FLAG_PROV;
1557	return (XEVNT_OK);
1558}
1559
1560
1561/*
1562 * crypto_encrypt - construct vp (encrypted cookie and signature) from
1563 * the public key and cookie.
1564 *
1565 * Returns:
1566 * XEVNT_OK	success
1567 * XEVNT_CKY	bad or missing cookie
1568 * XEVNT_PUB	bad or missing public key
1569 */
1570static int
1571crypto_encrypt(
1572	const u_char *ptr,	/* Public Key */
1573	u_int	vallen,		/* Length of Public Key */
1574	keyid_t	*cookie,	/* server cookie */
1575	struct value *vp	/* value pointer */
1576	)
1577{
1578	EVP_PKEY *pkey;		/* public key */
1579	EVP_MD_CTX *ctx;	/* signature context */
1580	tstamp_t tstamp;	/* NTP timestamp */
1581	u_int32	temp32;
1582	u_char *puch;
1583
1584	/*
1585	 * Extract the public key from the request.
1586	 */
1587	pkey = d2i_PublicKey(EVP_PKEY_RSA, NULL, &ptr, vallen);
1588	if (pkey == NULL) {
1589		msyslog(LOG_ERR, "crypto_encrypt: %s",
1590		    ERR_error_string(ERR_get_error(), NULL));
1591		return (XEVNT_PUB);
1592	}
1593
1594	/*
1595	 * Encrypt the cookie, encode in ASN.1 and sign.
1596	 */
1597	memset(vp, 0, sizeof(struct value));
1598	tstamp = crypto_time();
1599	vp->tstamp = htonl(tstamp);
1600	vp->fstamp = hostval.tstamp;
1601	vallen = EVP_PKEY_size(pkey);
1602	vp->vallen = htonl(vallen);
1603	vp->ptr = emalloc(vallen);
1604	puch = vp->ptr;
1605	temp32 = htonl(*cookie);
1606	if (RSA_public_encrypt(4, (u_char *)&temp32, puch,
1607	    EVP_PKEY_get0_RSA(pkey), RSA_PKCS1_OAEP_PADDING) <= 0) {
1608		msyslog(LOG_ERR, "crypto_encrypt: %s",
1609		    ERR_error_string(ERR_get_error(), NULL));
1610		free(vp->ptr);
1611		EVP_PKEY_free(pkey);
1612		return (XEVNT_CKY);
1613	}
1614	EVP_PKEY_free(pkey);
1615	if (tstamp == 0)
1616		return (XEVNT_OK);
1617
1618	vp->sig = emalloc(sign_siglen);
1619	ctx = EVP_MD_CTX_new();
1620	EVP_SignInit(ctx, sign_digest);
1621	EVP_SignUpdate(ctx, (u_char *)&vp->tstamp, 12);
1622	EVP_SignUpdate(ctx, vp->ptr, vallen);
1623	if (EVP_SignFinal(ctx, vp->sig, &vallen, sign_pkey)) {
1624		INSIST(vallen <= sign_siglen);
1625		vp->siglen = htonl(vallen);
1626	}
1627	EVP_MD_CTX_free(ctx);
1628	return (XEVNT_OK);
1629}
1630
1631
1632/*
1633 * crypto_ident - construct extension field for identity scheme
1634 *
1635 * This routine determines which identity scheme is in use and
1636 * constructs an extension field for that scheme.
1637 *
1638 * Returns
1639 * CRYTPO_IFF	IFF scheme
1640 * CRYPTO_GQ	GQ scheme
1641 * CRYPTO_MV	MV scheme
1642 * CRYPTO_NULL	no available scheme
1643 */
1644u_int
1645crypto_ident(
1646	struct peer *peer	/* peer structure pointer */
1647	)
1648{
1649	char		filename[MAXFILENAME];
1650	const char *	scheme_name;
1651	u_int		scheme_id;
1652
1653	/*
1654	 * We come here after the group trusted host has been found; its
1655	 * name defines the group name. Search the key cache for all
1656	 * keys matching the same group name in order IFF, GQ and MV.
1657	 * Use the first one available.
1658	 */
1659	scheme_name = NULL;
1660	if (peer->crypto & CRYPTO_FLAG_IFF) {
1661		scheme_name = "iff";
1662		scheme_id = CRYPTO_IFF;
1663	} else if (peer->crypto & CRYPTO_FLAG_GQ) {
1664		scheme_name = "gq";
1665		scheme_id = CRYPTO_GQ;
1666	} else if (peer->crypto & CRYPTO_FLAG_MV) {
1667		scheme_name = "mv";
1668		scheme_id = CRYPTO_MV;
1669	}
1670
1671	if (scheme_name != NULL) {
1672		snprintf(filename, sizeof(filename), "ntpkey_%spar_%s",
1673		    scheme_name, peer->ident);
1674		peer->ident_pkey = crypto_key(filename, NULL,
1675		    &peer->srcadr);
1676		if (peer->ident_pkey != NULL)
1677			return scheme_id;
1678	}
1679
1680	msyslog(LOG_NOTICE,
1681	    "crypto_ident: no identity parameters found for group %s",
1682	    peer->ident);
1683
1684	return CRYPTO_NULL;
1685}
1686
1687
1688/*
1689 * crypto_args - construct extension field from arguments
1690 *
1691 * This routine creates an extension field with current timestamps and
1692 * specified opcode, association ID and optional string. Note that the
1693 * extension field is created here, but freed after the crypto_xmit()
1694 * call in the protocol module.
1695 *
1696 * Returns extension field pointer (no errors)
1697 *
1698 * XXX: opcode and len should really be 32-bit quantities and
1699 * we should make sure that str is not too big.
1700 */
1701struct exten *
1702crypto_args(
1703	struct peer *peer,	/* peer structure pointer */
1704	u_int	opcode,		/* operation code */
1705	associd_t associd,	/* association ID */
1706	char	*str		/* argument string */
1707	)
1708{
1709	tstamp_t tstamp;	/* NTP timestamp */
1710	struct exten *ep;	/* extension field pointer */
1711	u_int	len;		/* extension field length */
1712	size_t	slen = 0;
1713
1714	tstamp = crypto_time();
1715	len = sizeof(struct exten);
1716	if (str != NULL) {
1717		slen = strlen(str);
1718		INSIST(slen < MAX_VALLEN);
1719		len += slen;
1720	}
1721	ep = emalloc_zero(len);
1722	if (opcode == 0)
1723		return (ep);
1724
1725	REQUIRE(0 == (len    & ~0x0000ffff));
1726	REQUIRE(0 == (opcode & ~0xffff0000));
1727
1728	ep->opcode = htonl(opcode + len);
1729	ep->associd = htonl(associd);
1730	ep->tstamp = htonl(tstamp);
1731	ep->fstamp = hostval.tstamp;
1732	ep->vallen = 0;
1733	if (str != NULL) {
1734		ep->vallen = htonl(slen);
1735		memcpy((char *)ep->pkt, str, slen);
1736	}
1737	return (ep);
1738}
1739
1740
1741/*
1742 * crypto_send - construct extension field from value components
1743 *
1744 * The value and signature fields are zero-padded to a word boundary.
1745 * Note: it is not polite to send a nonempty signature with zero
1746 * timestamp or a nonzero timestamp with an empty signature, but those
1747 * rules are not enforced here.
1748 *
1749 * XXX This code won't work on a box with 16-bit ints.
1750 */
1751int
1752crypto_send(
1753	struct exten *ep,	/* extension field pointer */
1754	struct value *vp,	/* value pointer */
1755	int	start		/* buffer offset */
1756	)
1757{
1758	u_int	len, vallen, siglen, opcode;
1759	u_int	i, j;
1760
1761	/*
1762	 * Calculate extension field length and check for buffer
1763	 * overflow. Leave room for the MAC.
1764	 */
1765	len = 16;				/* XXX Document! */
1766	vallen = ntohl(vp->vallen);
1767	INSIST(vallen <= MAX_VALLEN);
1768	len += ((vallen + 3) / 4 + 1) * 4;
1769	siglen = ntohl(vp->siglen);
1770	len += ((siglen + 3) / 4 + 1) * 4;
1771	if (start + len > sizeof(struct pkt) - MAX_MAC_LEN)
1772		return (0);
1773
1774	/*
1775	 * Copy timestamps.
1776	 */
1777	ep->tstamp = vp->tstamp;
1778	ep->fstamp = vp->fstamp;
1779	ep->vallen = vp->vallen;
1780
1781	/*
1782	 * Copy value. If the data field is empty or zero length,
1783	 * encode an empty value with length zero.
1784	 */
1785	i = 0;
1786	if (vallen > 0 && vp->ptr != NULL) {
1787		j = vallen / 4;
1788		if (j * 4 < vallen)
1789			ep->pkt[i + j++] = 0;
1790		memcpy(&ep->pkt[i], vp->ptr, vallen);
1791		i += j;
1792	}
1793
1794	/*
1795	 * Copy signature. If the signature field is empty or zero
1796	 * length, encode an empty signature with length zero.
1797	 */
1798	ep->pkt[i++] = vp->siglen;
1799	if (siglen > 0 && vp->sig != NULL) {
1800		j = siglen / 4;
1801		if (j * 4 < siglen)
1802			ep->pkt[i + j++] = 0;
1803		memcpy(&ep->pkt[i], vp->sig, siglen);
1804		/* i += j; */	/* We don't use i after this */
1805	}
1806	opcode = ntohl(ep->opcode);
1807	ep->opcode = htonl((opcode & 0xffff0000) | len);
1808	ENSURE(len <= MAX_VALLEN);
1809	return (len);
1810}
1811
1812
1813/*
1814 * crypto_update - compute new public value and sign extension fields
1815 *
1816 * This routine runs periodically, like once a day, and when something
1817 * changes. It updates the timestamps on three value structures and one
1818 * value structure list, then signs all the structures:
1819 *
1820 * hostval	host name (not signed)
1821 * pubkey	public key
1822 * cinfo	certificate info/value list
1823 * tai_leap	leap values
1824 *
1825 * Filestamps are proventic data, so this routine runs only when the
1826 * host is synchronized to a proventicated source. Thus, the timestamp
1827 * is proventic and can be used to deflect clogging attacks.
1828 *
1829 * Returns void (no errors)
1830 */
1831void
1832crypto_update(void)
1833{
1834	EVP_MD_CTX *ctx;	/* message digest context */
1835	struct cert_info *cp;	/* certificate info/value */
1836	char	statstr[NTP_MAXSTRLEN]; /* statistics for filegen */
1837	u_int32	*ptr;
1838	u_int	len;
1839	leap_result_t leap_data;
1840
1841	hostval.tstamp = htonl(crypto_time());
1842	if (hostval.tstamp == 0)
1843		return;
1844
1845	ctx = EVP_MD_CTX_new();
1846
1847	/*
1848	 * Sign public key and timestamps. The filestamp is derived from
1849	 * the host key file extension from wherever the file was
1850	 * generated.
1851	 */
1852	if (pubkey.vallen != 0) {
1853		pubkey.tstamp = hostval.tstamp;
1854		pubkey.siglen = 0;
1855		if (pubkey.sig == NULL)
1856			pubkey.sig = emalloc(sign_siglen);
1857		EVP_SignInit(ctx, sign_digest);
1858		EVP_SignUpdate(ctx, (u_char *)&pubkey, 12);
1859		EVP_SignUpdate(ctx, pubkey.ptr, ntohl(pubkey.vallen));
1860		if (EVP_SignFinal(ctx, pubkey.sig, &len, sign_pkey)) {
1861			INSIST(len <= sign_siglen);
1862			pubkey.siglen = htonl(len);
1863		}
1864	}
1865
1866	/*
1867	 * Sign certificates and timestamps. The filestamp is derived
1868	 * from the certificate file extension from wherever the file
1869	 * was generated. Note we do not throw expired certificates
1870	 * away; they may have signed younger ones.
1871	 */
1872	for (cp = cinfo; cp != NULL; cp = cp->link) {
1873		cp->cert.tstamp = hostval.tstamp;
1874		cp->cert.siglen = 0;
1875		if (cp->cert.sig == NULL)
1876			cp->cert.sig = emalloc(sign_siglen);
1877		EVP_SignInit(ctx, sign_digest);
1878		EVP_SignUpdate(ctx, (u_char *)&cp->cert, 12);
1879		EVP_SignUpdate(ctx, cp->cert.ptr,
1880		    ntohl(cp->cert.vallen));
1881		if (EVP_SignFinal(ctx, cp->cert.sig, &len, sign_pkey)) {
1882			INSIST(len <= sign_siglen);
1883			cp->cert.siglen = htonl(len);
1884		}
1885	}
1886
1887	/*
1888	 * Sign leapseconds values and timestamps. Note it is not an
1889	 * error to return null values.
1890	 */
1891	tai_leap.tstamp = hostval.tstamp;
1892	tai_leap.fstamp = hostval.fstamp;
1893
1894	/* Get the leap second era. We might need a full lookup early
1895	 * after start, when the cache is not yet loaded.
1896	 */
1897	leapsec_frame(&leap_data);
1898	if ( ! memcmp(&leap_data.ebase, &leap_data.ttime, sizeof(vint64))) {
1899		time_t   now    = time(NULL);
1900		uint32_t nowntp = (uint32_t)now + JAN_1970;
1901		leapsec_query(&leap_data, nowntp, &now);
1902	}
1903
1904	/* Create the data block. The protocol does not work without. */
1905	len = 3 * sizeof(u_int32);
1906	if (tai_leap.ptr == NULL || ntohl(tai_leap.vallen) != len) {
1907		free(tai_leap.ptr);
1908		tai_leap.ptr = emalloc(len);
1909		tai_leap.vallen = htonl(len);
1910	}
1911	ptr = (u_int32 *)tai_leap.ptr;
1912	if (leap_data.tai_offs > 10) {
1913		/* create a TAI / leap era block. The end time is a
1914		 * fake -- maybe we can do better.
1915		 */
1916		ptr[0] = htonl(leap_data.tai_offs);
1917		ptr[1] = htonl(leap_data.ebase.d_s.lo);
1918		if (leap_data.ttime.d_s.hi >= 0)
1919			ptr[2] = htonl(leap_data.ttime.D_s.lo +  7*86400);
1920		else
1921			ptr[2] = htonl(leap_data.ebase.D_s.lo + 25*86400);
1922	} else {
1923		/* no leap era available */
1924		memset(ptr, 0, len);
1925	}
1926	if (tai_leap.sig == NULL)
1927		tai_leap.sig = emalloc(sign_siglen);
1928	EVP_SignInit(ctx, sign_digest);
1929	EVP_SignUpdate(ctx, (u_char *)&tai_leap, 12);
1930	EVP_SignUpdate(ctx, tai_leap.ptr, len);
1931	if (EVP_SignFinal(ctx, tai_leap.sig, &len, sign_pkey)) {
1932		INSIST(len <= sign_siglen);
1933		tai_leap.siglen = htonl(len);
1934	}
1935	crypto_flags |= CRYPTO_FLAG_TAI;
1936
1937	snprintf(statstr, sizeof(statstr), "signature update ts %u",
1938	    ntohl(hostval.tstamp));
1939	record_crypto_stats(NULL, statstr);
1940	DPRINTF(1, ("crypto_update: %s\n", statstr));
1941	EVP_MD_CTX_free(ctx);
1942}
1943
1944/*
1945 * crypto_update_taichange - eventually trigger crypto_update
1946 *
1947 * This is called when a change in 'sys_tai' is detected. This will
1948 * happen shortly after a leap second is detected, but unhappily also
1949 * early after system start; also, the crypto stuff might be unused and
1950 * an unguarded call to crypto_update() causes a crash.
1951 *
1952 * This function makes sure that there already *is* a valid crypto block
1953 * for the use with autokey, and only calls 'crypto_update()' if it can
1954 * succeed.
1955 *
1956 * Returns void (no errors)
1957 */
1958void
1959crypto_update_taichange(void)
1960{
1961	static const u_int len = 3 * sizeof(u_int32);
1962
1963	/* check if the signing digest algo is available */
1964	if (sign_digest == NULL || sign_pkey == NULL)
1965		return;
1966
1967	/* check size of TAI extension block */
1968	if (tai_leap.ptr == NULL || ntohl(tai_leap.vallen) != len)
1969		return;
1970
1971	/* crypto_update should at least not crash here! */
1972	crypto_update();
1973}
1974
1975/*
1976 * value_free - free value structure components.
1977 *
1978 * Returns void (no errors)
1979 */
1980void
1981value_free(
1982	struct value *vp	/* value structure */
1983	)
1984{
1985	if (vp->ptr != NULL)
1986		free(vp->ptr);
1987	if (vp->sig != NULL)
1988		free(vp->sig);
1989	memset(vp, 0, sizeof(struct value));
1990}
1991
1992
1993/*
1994 * crypto_time - returns current NTP time.
1995 *
1996 * Returns NTP seconds if in synch, 0 otherwise
1997 */
1998tstamp_t
1999crypto_time()
2000{
2001	l_fp	tstamp;		/* NTP time */
2002
2003	L_CLR(&tstamp);
2004	if (sys_leap != LEAP_NOTINSYNC)
2005		get_systime(&tstamp);
2006	return (tstamp.l_ui);
2007}
2008
2009
2010/*
2011 * asn_to_calendar - convert ASN1_TIME time structure to struct calendar.
2012 *
2013 */
2014static
2015void
2016asn_to_calendar	(
2017	const ASN1_TIME *asn1time,	/* pointer to ASN1_TIME structure */
2018	struct calendar *pjd	/* pointer to result */
2019	)
2020{
2021	size_t	len;		/* length of ASN1_TIME string */
2022	char	v[24];		/* writable copy of ASN1_TIME string */
2023	unsigned long	temp;	/* result from strtoul */
2024
2025	/*
2026	 * Extract time string YYMMDDHHMMSSZ from ASN1 time structure.
2027	 * Or YYYYMMDDHHMMSSZ.
2028	 * Note that the YY, MM, DD fields start with one, the HH, MM,
2029	 * SS fields start with zero and the Z character is ignored.
2030	 * Also note that two-digit years less than 50 map to years greater than
2031	 * 100. Dontcha love ASN.1? Better than MIL-188.
2032	 */
2033	len = asn1time->length;
2034	REQUIRE(len < sizeof(v));
2035	(void)strncpy(v, (char *)(asn1time->data), len);
2036	REQUIRE(len >= 13);
2037	temp = strtoul(v+len-3, NULL, 10);
2038	pjd->second = temp;
2039	v[len-3] = '\0';
2040
2041	temp = strtoul(v+len-5, NULL, 10);
2042	pjd->minute = temp;
2043	v[len-5] = '\0';
2044
2045	temp = strtoul(v+len-7, NULL, 10);
2046	pjd->hour = temp;
2047	v[len-7] = '\0';
2048
2049	temp = strtoul(v+len-9, NULL, 10);
2050	pjd->monthday = temp;
2051	v[len-9] = '\0';
2052
2053	temp = strtoul(v+len-11, NULL, 10);
2054	pjd->month = temp;
2055	v[len-11] = '\0';
2056
2057	temp = strtoul(v, NULL, 10);
2058	/* handle two-digit years */
2059	if (temp < 50UL)
2060	    temp += 100UL;
2061	if (temp < 150UL)
2062	    temp += 1900UL;
2063	pjd->year = temp;
2064
2065	pjd->yearday = pjd->weekday = 0;
2066	return;
2067}
2068
2069
2070/*
2071 * bigdig() - compute a BIGNUM MD5 hash of a BIGNUM number.
2072 *
2073 * Returns void (no errors)
2074 */
2075static void
2076bighash(
2077	BIGNUM	*bn,		/* BIGNUM * from */
2078	BIGNUM	*bk		/* BIGNUM * to */
2079	)
2080{
2081	EVP_MD_CTX *ctx;	/* message digest context */
2082	u_char dgst[EVP_MAX_MD_SIZE]; /* message digest */
2083	u_char	*ptr;		/* a BIGNUM as binary string */
2084	u_int	len;
2085
2086	len = BN_num_bytes(bn);
2087	ptr = emalloc(len);
2088	BN_bn2bin(bn, ptr);
2089	ctx = EVP_MD_CTX_new();
2090	EVP_DigestInit(ctx, EVP_md5());
2091	EVP_DigestUpdate(ctx, ptr, len);
2092	EVP_DigestFinal(ctx, dgst, &len);
2093	EVP_MD_CTX_free(ctx);
2094	BN_bin2bn(dgst, len, bk);
2095	free(ptr);
2096}
2097
2098
2099/*
2100 ***********************************************************************
2101 *								       *
2102 * The following routines implement the Schnorr (IFF) identity scheme  *
2103 *								       *
2104 ***********************************************************************
2105 *
2106 * The Schnorr (IFF) identity scheme is intended for use when
2107 * certificates are generated by some other trusted certificate
2108 * authority and the certificate cannot be used to convey public
2109 * parameters. There are two kinds of files: encrypted server files that
2110 * contain private and public values and nonencrypted client files that
2111 * contain only public values. New generations of server files must be
2112 * securely transmitted to all servers of the group; client files can be
2113 * distributed by any means. The scheme is self contained and
2114 * independent of new generations of host keys, sign keys and
2115 * certificates.
2116 *
2117 * The IFF values hide in a DSA cuckoo structure which uses the same
2118 * parameters. The values are used by an identity scheme based on DSA
2119 * cryptography and described in Stimson p. 285. The p is a 512-bit
2120 * prime, g a generator of Zp* and q a 160-bit prime that divides p - 1
2121 * and is a qth root of 1 mod p; that is, g^q = 1 mod p. The TA rolls a
2122 * private random group key b (0 < b < q) and public key v = g^b, then
2123 * sends (p, q, g, b) to the servers and (p, q, g, v) to the clients.
2124 * Alice challenges Bob to confirm identity using the protocol described
2125 * below.
2126 *
2127 * How it works
2128 *
2129 * The scheme goes like this. Both Alice and Bob have the public primes
2130 * p, q and generator g. The TA gives private key b to Bob and public
2131 * key v to Alice.
2132 *
2133 * Alice rolls new random challenge r (o < r < q) and sends to Bob in
2134 * the IFF request message. Bob rolls new random k (0 < k < q), then
2135 * computes y = k + b r mod q and x = g^k mod p and sends (y, hash(x))
2136 * to Alice in the response message. Besides making the response
2137 * shorter, the hash makes it effectivey impossible for an intruder to
2138 * solve for b by observing a number of these messages.
2139 *
2140 * Alice receives the response and computes g^y v^r mod p. After a bit
2141 * of algebra, this simplifies to g^k. If the hash of this result
2142 * matches hash(x), Alice knows that Bob has the group key b. The signed
2143 * response binds this knowledge to Bob's private key and the public key
2144 * previously received in his certificate.
2145 *
2146 * crypto_alice - construct Alice's challenge in IFF scheme
2147 *
2148 * Returns
2149 * XEVNT_OK	success
2150 * XEVNT_ID	bad or missing group key
2151 * XEVNT_PUB	bad or missing public key
2152 */
2153static int
2154crypto_alice(
2155	struct peer *peer,	/* peer pointer */
2156	struct value *vp	/* value pointer */
2157	)
2158{
2159	DSA	*dsa;		/* IFF parameters */
2160	BN_CTX	*bctx;		/* BIGNUM context */
2161	EVP_MD_CTX *ctx;	/* signature context */
2162	tstamp_t tstamp;
2163	u_int	len;
2164	const BIGNUM *q;
2165
2166	/*
2167	 * The identity parameters must have correct format and content.
2168	 */
2169	if (peer->ident_pkey == NULL) {
2170		msyslog(LOG_NOTICE, "crypto_alice: scheme unavailable");
2171		return (XEVNT_ID);
2172	}
2173
2174	if ((dsa = EVP_PKEY_get0_DSA(peer->ident_pkey->pkey)) == NULL) {
2175		msyslog(LOG_NOTICE, "crypto_alice: defective key");
2176		return (XEVNT_PUB);
2177	}
2178
2179	/*
2180	 * Roll new random r (0 < r < q).
2181	 */
2182	if (peer->iffval != NULL)
2183		BN_free(peer->iffval);
2184	peer->iffval = BN_new();
2185	DSA_get0_pqg(dsa, NULL, &q, NULL);
2186	len = BN_num_bytes(q);
2187	BN_rand(peer->iffval, len * 8, -1, 1);	/* r mod q*/
2188	bctx = BN_CTX_new();
2189	BN_mod(peer->iffval, peer->iffval, q, bctx);
2190	BN_CTX_free(bctx);
2191
2192	/*
2193	 * Sign and send to Bob. The filestamp is from the local file.
2194	 */
2195	memset(vp, 0, sizeof(struct value));
2196	tstamp = crypto_time();
2197	vp->tstamp = htonl(tstamp);
2198	vp->fstamp = htonl(peer->ident_pkey->fstamp);
2199	vp->vallen = htonl(len);
2200	vp->ptr = emalloc(len);
2201	BN_bn2bin(peer->iffval, vp->ptr);
2202	if (tstamp == 0)
2203		return (XEVNT_OK);
2204
2205	vp->sig = emalloc(sign_siglen);
2206	ctx = EVP_MD_CTX_new();
2207	EVP_SignInit(ctx, sign_digest);
2208	EVP_SignUpdate(ctx, (u_char *)&vp->tstamp, 12);
2209	EVP_SignUpdate(ctx, vp->ptr, len);
2210	if (EVP_SignFinal(ctx, vp->sig, &len, sign_pkey)) {
2211		INSIST(len <= sign_siglen);
2212		vp->siglen = htonl(len);
2213	}
2214	EVP_MD_CTX_free(ctx);
2215	return (XEVNT_OK);
2216}
2217
2218
2219/*
2220 * crypto_bob - construct Bob's response to Alice's challenge
2221 *
2222 * Returns
2223 * XEVNT_OK	success
2224 * XEVNT_ERR	protocol error
2225 * XEVNT_ID	bad or missing group key
2226 */
2227static int
2228crypto_bob(
2229	struct exten *ep,	/* extension pointer */
2230	struct value *vp	/* value pointer */
2231	)
2232{
2233	DSA	*dsa;		/* IFF parameters */
2234	DSA_SIG	*sdsa;		/* DSA signature context fake */
2235	BN_CTX	*bctx;		/* BIGNUM context */
2236	EVP_MD_CTX *ctx;	/* signature context */
2237	tstamp_t tstamp;	/* NTP timestamp */
2238	BIGNUM	*bn, *bk, *r;
2239	u_char	*ptr;
2240	u_int	len;		/* extension field value length */
2241	const BIGNUM *p, *q, *g;
2242	const BIGNUM *priv_key;
2243
2244	/*
2245	 * If the IFF parameters are not valid, something awful
2246	 * happened or we are being tormented.
2247	 */
2248	if (iffkey_info == NULL) {
2249		msyslog(LOG_NOTICE, "crypto_bob: scheme unavailable");
2250		return (XEVNT_ID);
2251	}
2252	dsa = EVP_PKEY_get0_DSA(iffkey_info->pkey);
2253	DSA_get0_pqg(dsa, &p, &q, &g);
2254	DSA_get0_key(dsa, NULL, &priv_key);
2255
2256	/*
2257	 * Extract r from the challenge.
2258	 */
2259	len = exten_payload_size(ep);
2260	if (len == 0 || len > MAX_VALLEN)
2261		return (XEVNT_LEN);
2262	if ((r = BN_bin2bn((u_char *)ep->pkt, len, NULL)) == NULL) {
2263		msyslog(LOG_ERR, "crypto_bob: %s",
2264		    ERR_error_string(ERR_get_error(), NULL));
2265		return (XEVNT_ERR);
2266	}
2267
2268	/*
2269	 * Bob rolls random k (0 < k < q), computes y = k + b r mod q
2270	 * and x = g^k mod p, then sends (y, hash(x)) to Alice.
2271	 */
2272	bctx = BN_CTX_new(); bk = BN_new(); bn = BN_new();
2273	sdsa = DSA_SIG_new();
2274	BN_rand(bk, len * 8, -1, 1);		/* k */
2275	BN_mod_mul(bn, priv_key, r, q, bctx); /* b r mod q */
2276	BN_add(bn, bn, bk);
2277	BN_mod(bn, bn, q, bctx);		/* k + b r mod q */
2278	BN_mod_exp(bk, g, bk, p, bctx); /* g^k mod p */
2279	bighash(bk, bk);
2280	DSA_SIG_set0(sdsa, bn, bk);
2281	BN_CTX_free(bctx);
2282	BN_free(r);
2283#ifdef DEBUG
2284	if (debug > 1)
2285		DSA_print_fp(stdout, dsa, 0);
2286#endif
2287
2288	/*
2289	 * Encode the values in ASN.1 and sign. The filestamp is from
2290	 * the local file.
2291	 */
2292	len = i2d_DSA_SIG(sdsa, NULL);
2293	if (len == 0) {
2294		msyslog(LOG_ERR, "crypto_bob: %s",
2295		    ERR_error_string(ERR_get_error(), NULL));
2296		DSA_SIG_free(sdsa);
2297		return (XEVNT_ERR);
2298	}
2299	if (len > MAX_VALLEN) {
2300		msyslog(LOG_ERR, "crypto_bob: signature is too big: %u",
2301		    len);
2302		DSA_SIG_free(sdsa);
2303		return (XEVNT_LEN);
2304	}
2305	memset(vp, 0, sizeof(struct value));
2306	tstamp = crypto_time();
2307	vp->tstamp = htonl(tstamp);
2308	vp->fstamp = htonl(iffkey_info->fstamp);
2309	vp->vallen = htonl(len);
2310	ptr = emalloc(len);
2311	vp->ptr = ptr;
2312	i2d_DSA_SIG(sdsa, &ptr);
2313	DSA_SIG_free(sdsa);
2314	if (tstamp == 0)
2315		return (XEVNT_OK);
2316
2317	/* XXX: more validation to make sure the sign fits... */
2318	vp->sig = emalloc(sign_siglen);
2319	ctx = EVP_MD_CTX_new();
2320	EVP_SignInit(ctx, sign_digest);
2321	EVP_SignUpdate(ctx, (u_char *)&vp->tstamp, 12);
2322	EVP_SignUpdate(ctx, vp->ptr, len);
2323	if (EVP_SignFinal(ctx, vp->sig, &len, sign_pkey)) {
2324		INSIST(len <= sign_siglen);
2325		vp->siglen = htonl(len);
2326	}
2327	EVP_MD_CTX_free(ctx);
2328	return (XEVNT_OK);
2329}
2330
2331
2332/*
2333 * crypto_iff - verify Bob's response to Alice's challenge
2334 *
2335 * Returns
2336 * XEVNT_OK	success
2337 * XEVNT_FSP	bad filestamp
2338 * XEVNT_ID	bad or missing group key
2339 * XEVNT_PUB	bad or missing public key
2340 */
2341int
2342crypto_iff(
2343	struct exten *ep,	/* extension pointer */
2344	struct peer *peer	/* peer structure pointer */
2345	)
2346{
2347	DSA	*dsa;		/* IFF parameters */
2348	BN_CTX	*bctx;		/* BIGNUM context */
2349	DSA_SIG	*sdsa;		/* DSA parameters */
2350	BIGNUM	*bn, *bk;
2351	u_int	len;
2352	const u_char *ptr;
2353	int	temp;
2354	const BIGNUM *p, *g;
2355	const BIGNUM *r, *s;
2356	const BIGNUM *pub_key;
2357
2358	/*
2359	 * If the IFF parameters are not valid or no challenge was sent,
2360	 * something awful happened or we are being tormented.
2361	 */
2362	if (peer->ident_pkey == NULL) {
2363		msyslog(LOG_NOTICE, "crypto_iff: scheme unavailable");
2364		return (XEVNT_ID);
2365	}
2366	if (ntohl(ep->fstamp) != peer->ident_pkey->fstamp) {
2367		msyslog(LOG_NOTICE, "crypto_iff: invalid filestamp %u",
2368		    ntohl(ep->fstamp));
2369		return (XEVNT_FSP);
2370	}
2371	if ((dsa = EVP_PKEY_get0_DSA(peer->ident_pkey->pkey)) == NULL) {
2372		msyslog(LOG_NOTICE, "crypto_iff: defective key");
2373		return (XEVNT_PUB);
2374	}
2375	if (peer->iffval == NULL) {
2376		msyslog(LOG_NOTICE, "crypto_iff: missing challenge");
2377		return (XEVNT_ID);
2378	}
2379
2380	/*
2381	 * Extract the k + b r and g^k values from the response.
2382	 */
2383	bctx = BN_CTX_new(); bk = BN_new(); bn = BN_new();
2384	len = ntohl(ep->vallen);
2385	ptr = (u_char *)ep->pkt;
2386	if ((sdsa = d2i_DSA_SIG(NULL, &ptr, len)) == NULL) {
2387		BN_free(bn); BN_free(bk); BN_CTX_free(bctx);
2388		msyslog(LOG_ERR, "crypto_iff: %s",
2389		    ERR_error_string(ERR_get_error(), NULL));
2390		return (XEVNT_ERR);
2391	}
2392
2393	/*
2394	 * Compute g^(k + b r) g^(q - b)r mod p.
2395	 */
2396	DSA_get0_key(dsa, &pub_key, NULL);
2397	DSA_get0_pqg(dsa, &p, NULL, &g);
2398	DSA_SIG_get0(sdsa, &r, &s);
2399	BN_mod_exp(bn, pub_key, peer->iffval, p, bctx);
2400	BN_mod_exp(bk, g, r, p, bctx);
2401	BN_mod_mul(bn, bn, bk, p, bctx);
2402
2403	/*
2404	 * Verify the hash of the result matches hash(x).
2405	 */
2406	bighash(bn, bn);
2407	temp = BN_cmp(bn, s);
2408	BN_free(bn); BN_free(bk); BN_CTX_free(bctx);
2409	BN_free(peer->iffval);
2410	peer->iffval = NULL;
2411	DSA_SIG_free(sdsa);
2412	if (temp == 0)
2413		return (XEVNT_OK);
2414
2415	msyslog(LOG_NOTICE, "crypto_iff: identity not verified");
2416	return (XEVNT_ID);
2417}
2418
2419
2420/*
2421 ***********************************************************************
2422 *								       *
2423 * The following routines implement the Guillou-Quisquater (GQ)        *
2424 * identity scheme                                                     *
2425 *								       *
2426 ***********************************************************************
2427 *
2428 * The Guillou-Quisquater (GQ) identity scheme is intended for use when
2429 * the certificate can be used to convey public parameters. The scheme
2430 * uses a X509v3 certificate extension field do convey the public key of
2431 * a private key known only to servers. There are two kinds of files:
2432 * encrypted server files that contain private and public values and
2433 * nonencrypted client files that contain only public values. New
2434 * generations of server files must be securely transmitted to all
2435 * servers of the group; client files can be distributed by any means.
2436 * The scheme is self contained and independent of new generations of
2437 * host keys and sign keys. The scheme is self contained and independent
2438 * of new generations of host keys and sign keys.
2439 *
2440 * The GQ parameters hide in a RSA cuckoo structure which uses the same
2441 * parameters. The values are used by an identity scheme based on RSA
2442 * cryptography and described in Stimson p. 300 (with errors). The 512-
2443 * bit public modulus is n = p q, where p and q are secret large primes.
2444 * The TA rolls private random group key b as RSA exponent. These values
2445 * are known to all group members.
2446 *
2447 * When rolling new certificates, a server recomputes the private and
2448 * public keys. The private key u is a random roll, while the public key
2449 * is the inverse obscured by the group key v = (u^-1)^b. These values
2450 * replace the private and public keys normally generated by the RSA
2451 * scheme. Alice challenges Bob to confirm identity using the protocol
2452 * described below.
2453 *
2454 * How it works
2455 *
2456 * The scheme goes like this. Both Alice and Bob have the same modulus n
2457 * and some random b as the group key. These values are computed and
2458 * distributed in advance via secret means, although only the group key
2459 * b is truly secret. Each has a private random private key u and public
2460 * key (u^-1)^b, although not necessarily the same ones. Bob and Alice
2461 * can regenerate the key pair from time to time without affecting
2462 * operations. The public key is conveyed on the certificate in an
2463 * extension field; the private key is never revealed.
2464 *
2465 * Alice rolls new random challenge r and sends to Bob in the GQ
2466 * request message. Bob rolls new random k, then computes y = k u^r mod
2467 * n and x = k^b mod n and sends (y, hash(x)) to Alice in the response
2468 * message. Besides making the response shorter, the hash makes it
2469 * effectivey impossible for an intruder to solve for b by observing
2470 * a number of these messages.
2471 *
2472 * Alice receives the response and computes y^b v^r mod n. After a bit
2473 * of algebra, this simplifies to k^b. If the hash of this result
2474 * matches hash(x), Alice knows that Bob has the group key b. The signed
2475 * response binds this knowledge to Bob's private key and the public key
2476 * previously received in his certificate.
2477 *
2478 * crypto_alice2 - construct Alice's challenge in GQ scheme
2479 *
2480 * Returns
2481 * XEVNT_OK	success
2482 * XEVNT_ID	bad or missing group key
2483 * XEVNT_PUB	bad or missing public key
2484 */
2485static int
2486crypto_alice2(
2487	struct peer *peer,	/* peer pointer */
2488	struct value *vp	/* value pointer */
2489	)
2490{
2491	RSA	*rsa;		/* GQ parameters */
2492	BN_CTX	*bctx;		/* BIGNUM context */
2493	EVP_MD_CTX *ctx;	/* signature context */
2494	tstamp_t tstamp;
2495	u_int	len;
2496	const BIGNUM *n;
2497
2498	/*
2499	 * The identity parameters must have correct format and content.
2500	 */
2501	if (peer->ident_pkey == NULL)
2502		return (XEVNT_ID);
2503
2504	if ((rsa = EVP_PKEY_get0_RSA(peer->ident_pkey->pkey)) == NULL) {
2505		msyslog(LOG_NOTICE, "crypto_alice2: defective key");
2506		return (XEVNT_PUB);
2507	}
2508
2509	/*
2510	 * Roll new random r (0 < r < n).
2511	 */
2512	if (peer->iffval != NULL)
2513		BN_free(peer->iffval);
2514	peer->iffval = BN_new();
2515	RSA_get0_key(rsa, &n, NULL, NULL);
2516	len = BN_num_bytes(n);
2517	BN_rand(peer->iffval, len * 8, -1, 1);	/* r mod n */
2518	bctx = BN_CTX_new();
2519	BN_mod(peer->iffval, peer->iffval, n, bctx);
2520	BN_CTX_free(bctx);
2521
2522	/*
2523	 * Sign and send to Bob. The filestamp is from the local file.
2524	 */
2525	memset(vp, 0, sizeof(struct value));
2526	tstamp = crypto_time();
2527	vp->tstamp = htonl(tstamp);
2528	vp->fstamp = htonl(peer->ident_pkey->fstamp);
2529	vp->vallen = htonl(len);
2530	vp->ptr = emalloc(len);
2531	BN_bn2bin(peer->iffval, vp->ptr);
2532	if (tstamp == 0)
2533		return (XEVNT_OK);
2534
2535	vp->sig = emalloc(sign_siglen);
2536	ctx = EVP_MD_CTX_new();
2537	EVP_SignInit(ctx, sign_digest);
2538	EVP_SignUpdate(ctx, (u_char *)&vp->tstamp, 12);
2539	EVP_SignUpdate(ctx, vp->ptr, len);
2540	if (EVP_SignFinal(ctx, vp->sig, &len, sign_pkey)) {
2541		INSIST(len <= sign_siglen);
2542		vp->siglen = htonl(len);
2543	}
2544	EVP_MD_CTX_free(ctx);
2545	return (XEVNT_OK);
2546}
2547
2548
2549/*
2550 * crypto_bob2 - construct Bob's response to Alice's challenge
2551 *
2552 * Returns
2553 * XEVNT_OK	success
2554 * XEVNT_ERR	protocol error
2555 * XEVNT_ID	bad or missing group key
2556 */
2557static int
2558crypto_bob2(
2559	struct exten *ep,	/* extension pointer */
2560	struct value *vp	/* value pointer */
2561	)
2562{
2563	RSA	*rsa;		/* GQ parameters */
2564	DSA_SIG	*sdsa;		/* DSA parameters */
2565	BN_CTX	*bctx;		/* BIGNUM context */
2566	EVP_MD_CTX *ctx;	/* signature context */
2567	tstamp_t tstamp;	/* NTP timestamp */
2568	BIGNUM	*r, *k, *g, *y;
2569	u_char	*ptr;
2570	u_int	len;
2571	int	s_len;
2572	const BIGNUM *n, *p, *e;
2573
2574	/*
2575	 * If the GQ parameters are not valid, something awful
2576	 * happened or we are being tormented.
2577	 */
2578	if (gqkey_info == NULL) {
2579		msyslog(LOG_NOTICE, "crypto_bob2: scheme unavailable");
2580		return (XEVNT_ID);
2581	}
2582	rsa = EVP_PKEY_get0_RSA(gqkey_info->pkey);
2583	RSA_get0_key(rsa, &n, &p, &e);
2584
2585	/*
2586	 * Extract r from the challenge.
2587	 */
2588	len = exten_payload_size(ep);
2589	if (len == 0 || len > MAX_VALLEN)
2590		return (XEVNT_LEN);
2591	if ((r = BN_bin2bn((u_char *)ep->pkt, len, NULL)) == NULL) {
2592		msyslog(LOG_ERR, "crypto_bob2: %s",
2593		    ERR_error_string(ERR_get_error(), NULL));
2594		return (XEVNT_ERR);
2595	}
2596
2597	/*
2598	 * Bob rolls random k (0 < k < n), computes y = k u^r mod n and
2599	 * x = k^b mod n, then sends (y, hash(x)) to Alice.
2600	 */
2601	bctx = BN_CTX_new(); k = BN_new(); g = BN_new(); y = BN_new();
2602	sdsa = DSA_SIG_new();
2603	BN_rand(k, len * 8, -1, 1);		/* k */
2604	BN_mod(k, k, n, bctx);
2605	BN_mod_exp(y, p, r, n, bctx); /* u^r mod n */
2606	BN_mod_mul(y, k, y, n, bctx);	/* k u^r mod n */
2607	BN_mod_exp(g, k, e, n, bctx); /* k^b mod n */
2608	bighash(g, g);
2609	DSA_SIG_set0(sdsa, y, g);
2610	BN_CTX_free(bctx);
2611	BN_free(r); BN_free(k);
2612#ifdef DEBUG
2613	if (debug > 1)
2614		RSA_print_fp(stdout, rsa, 0);
2615#endif
2616
2617	/*
2618	 * Encode the values in ASN.1 and sign. The filestamp is from
2619	 * the local file.
2620	 */
2621	len = s_len = i2d_DSA_SIG(sdsa, NULL);
2622	if (s_len <= 0) {
2623		msyslog(LOG_ERR, "crypto_bob2: %s",
2624		    ERR_error_string(ERR_get_error(), NULL));
2625		DSA_SIG_free(sdsa);
2626		return (XEVNT_ERR);
2627	}
2628	memset(vp, 0, sizeof(struct value));
2629	tstamp = crypto_time();
2630	vp->tstamp = htonl(tstamp);
2631	vp->fstamp = htonl(gqkey_info->fstamp);
2632	vp->vallen = htonl(len);
2633	ptr = emalloc(len);
2634	vp->ptr = ptr;
2635	i2d_DSA_SIG(sdsa, &ptr);
2636	DSA_SIG_free(sdsa);
2637	if (tstamp == 0)
2638		return (XEVNT_OK);
2639
2640	vp->sig = emalloc(sign_siglen);
2641	ctx = EVP_MD_CTX_new();
2642	EVP_SignInit(ctx, sign_digest);
2643	EVP_SignUpdate(ctx, (u_char *)&vp->tstamp, 12);
2644	EVP_SignUpdate(ctx, vp->ptr, len);
2645	if (EVP_SignFinal(ctx, vp->sig, &len, sign_pkey)) {
2646		INSIST(len <= sign_siglen);
2647		vp->siglen = htonl(len);
2648	}
2649	EVP_MD_CTX_free(ctx);
2650	return (XEVNT_OK);
2651}
2652
2653
2654/*
2655 * crypto_gq - verify Bob's response to Alice's challenge
2656 *
2657 * Returns
2658 * XEVNT_OK	success
2659 * XEVNT_ERR	protocol error
2660 * XEVNT_FSP	bad filestamp
2661 * XEVNT_ID	bad or missing group keys
2662 * XEVNT_PUB	bad or missing public key
2663 */
2664int
2665crypto_gq(
2666	struct exten *ep,	/* extension pointer */
2667	struct peer *peer	/* peer structure pointer */
2668	)
2669{
2670	RSA	*rsa;		/* GQ parameters */
2671	BN_CTX	*bctx;		/* BIGNUM context */
2672	DSA_SIG	*sdsa;		/* RSA signature context fake */
2673	BIGNUM	*y, *v;
2674	const u_char *ptr;
2675	long	len;
2676	u_int	temp;
2677	const BIGNUM *n, *e;
2678	const BIGNUM *r, *s;
2679
2680	/*
2681	 * If the GQ parameters are not valid or no challenge was sent,
2682	 * something awful happened or we are being tormented. Note that
2683	 * the filestamp on the local key file can be greater than on
2684	 * the remote parameter file if the keys have been refreshed.
2685	 */
2686	if (peer->ident_pkey == NULL) {
2687		msyslog(LOG_NOTICE, "crypto_gq: scheme unavailable");
2688		return (XEVNT_ID);
2689	}
2690	if (ntohl(ep->fstamp) < peer->ident_pkey->fstamp) {
2691		msyslog(LOG_NOTICE, "crypto_gq: invalid filestamp %u",
2692		    ntohl(ep->fstamp));
2693		return (XEVNT_FSP);
2694	}
2695	if ((rsa = EVP_PKEY_get0_RSA(peer->ident_pkey->pkey)) == NULL) {
2696		msyslog(LOG_NOTICE, "crypto_gq: defective key");
2697		return (XEVNT_PUB);
2698	}
2699	RSA_get0_key(rsa, &n, NULL, &e);
2700	if (peer->iffval == NULL) {
2701		msyslog(LOG_NOTICE, "crypto_gq: missing challenge");
2702		return (XEVNT_ID);
2703	}
2704
2705	/*
2706	 * Extract the y = k u^r and hash(x = k^b) values from the
2707	 * response.
2708	 */
2709	bctx = BN_CTX_new(); y = BN_new(); v = BN_new();
2710	len = ntohl(ep->vallen);
2711	ptr = (u_char *)ep->pkt;
2712	if ((sdsa = d2i_DSA_SIG(NULL, &ptr, len)) == NULL) {
2713		BN_CTX_free(bctx); BN_free(y); BN_free(v);
2714		msyslog(LOG_ERR, "crypto_gq: %s",
2715		    ERR_error_string(ERR_get_error(), NULL));
2716		return (XEVNT_ERR);
2717	}
2718	DSA_SIG_get0(sdsa, &r, &s);
2719
2720	/*
2721	 * Compute v^r y^b mod n.
2722	 */
2723	if (peer->grpkey == NULL) {
2724		msyslog(LOG_NOTICE, "crypto_gq: missing group key");
2725		return (XEVNT_ID);
2726	}
2727	BN_mod_exp(v, peer->grpkey, peer->iffval, n, bctx);
2728						/* v^r mod n */
2729	BN_mod_exp(y, r, e, n, bctx); /* y^b mod n */
2730	BN_mod_mul(y, v, y, n, bctx);	/* v^r y^b mod n */
2731
2732	/*
2733	 * Verify the hash of the result matches hash(x).
2734	 */
2735	bighash(y, y);
2736	temp = BN_cmp(y, s);
2737	BN_CTX_free(bctx); BN_free(y); BN_free(v);
2738	BN_free(peer->iffval);
2739	peer->iffval = NULL;
2740	DSA_SIG_free(sdsa);
2741	if (temp == 0)
2742		return (XEVNT_OK);
2743
2744	msyslog(LOG_NOTICE, "crypto_gq: identity not verified");
2745	return (XEVNT_ID);
2746}
2747
2748
2749/*
2750 ***********************************************************************
2751 *								       *
2752 * The following routines implement the Mu-Varadharajan (MV) identity  *
2753 * scheme                                                              *
2754 *								       *
2755 ***********************************************************************
2756 *
2757 * The Mu-Varadharajan (MV) cryptosystem was originally intended when
2758 * servers broadcast messages to clients, but clients never send
2759 * messages to servers. There is one encryption key for the server and a
2760 * separate decryption key for each client. It operated something like a
2761 * pay-per-view satellite broadcasting system where the session key is
2762 * encrypted by the broadcaster and the decryption keys are held in a
2763 * tamperproof set-top box.
2764 *
2765 * The MV parameters and private encryption key hide in a DSA cuckoo
2766 * structure which uses the same parameters, but generated in a
2767 * different way. The values are used in an encryption scheme similar to
2768 * El Gamal cryptography and a polynomial formed from the expansion of
2769 * product terms (x - x[j]), as described in Mu, Y., and V.
2770 * Varadharajan: Robust and Secure Broadcasting, Proc. Indocrypt 2001,
2771 * 223-231. The paper has significant errors and serious omissions.
2772 *
2773 * Let q be the product of n distinct primes s1[j] (j = 1...n), where
2774 * each s1[j] has m significant bits. Let p be a prime p = 2 * q + 1, so
2775 * that q and each s1[j] divide p - 1 and p has M = n * m + 1
2776 * significant bits. Let g be a generator of Zp; that is, gcd(g, p - 1)
2777 * = 1 and g^q = 1 mod p. We do modular arithmetic over Zq and then
2778 * project into Zp* as exponents of g. Sometimes we have to compute an
2779 * inverse b^-1 of random b in Zq, but for that purpose we require
2780 * gcd(b, q) = 1. We expect M to be in the 500-bit range and n
2781 * relatively small, like 30. These are the parameters of the scheme and
2782 * they are expensive to compute.
2783 *
2784 * We set up an instance of the scheme as follows. A set of random
2785 * values x[j] mod q (j = 1...n), are generated as the zeros of a
2786 * polynomial of order n. The product terms (x - x[j]) are expanded to
2787 * form coefficients a[i] mod q (i = 0...n) in powers of x. These are
2788 * used as exponents of the generator g mod p to generate the private
2789 * encryption key A. The pair (gbar, ghat) of public server keys and the
2790 * pairs (xbar[j], xhat[j]) (j = 1...n) of private client keys are used
2791 * to construct the decryption keys. The devil is in the details.
2792 *
2793 * This routine generates a private server encryption file including the
2794 * private encryption key E and partial decryption keys gbar and ghat.
2795 * It then generates public client decryption files including the public
2796 * keys xbar[j] and xhat[j] for each client j. The partial decryption
2797 * files are used to compute the inverse of E. These values are suitably
2798 * blinded so secrets are not revealed.
2799 *
2800 * The distinguishing characteristic of this scheme is the capability to
2801 * revoke keys. Included in the calculation of E, gbar and ghat is the
2802 * product s = prod(s1[j]) (j = 1...n) above. If the factor s1[j] is
2803 * subsequently removed from the product and E, gbar and ghat
2804 * recomputed, the jth client will no longer be able to compute E^-1 and
2805 * thus unable to decrypt the messageblock.
2806 *
2807 * How it works
2808 *
2809 * The scheme goes like this. Bob has the server values (p, E, q, gbar,
2810 * ghat) and Alice has the client values (p, xbar, xhat).
2811 *
2812 * Alice rolls new random nonce r mod p and sends to Bob in the MV
2813 * request message. Bob rolls random nonce k mod q, encrypts y = r E^k
2814 * mod p and sends (y, gbar^k, ghat^k) to Alice.
2815 *
2816 * Alice receives the response and computes the inverse (E^k)^-1 from
2817 * the partial decryption keys gbar^k, ghat^k, xbar and xhat. She then
2818 * decrypts y and verifies it matches the original r. The signed
2819 * response binds this knowledge to Bob's private key and the public key
2820 * previously received in his certificate.
2821 *
2822 * crypto_alice3 - construct Alice's challenge in MV scheme
2823 *
2824 * Returns
2825 * XEVNT_OK	success
2826 * XEVNT_ID	bad or missing group key
2827 * XEVNT_PUB	bad or missing public key
2828 */
2829static int
2830crypto_alice3(
2831	struct peer *peer,	/* peer pointer */
2832	struct value *vp	/* value pointer */
2833	)
2834{
2835	DSA	*dsa;		/* MV parameters */
2836	BN_CTX	*bctx;		/* BIGNUM context */
2837	EVP_MD_CTX *ctx;	/* signature context */
2838	tstamp_t tstamp;
2839	u_int	len;
2840	const BIGNUM *p;
2841
2842	/*
2843	 * The identity parameters must have correct format and content.
2844	 */
2845	if (peer->ident_pkey == NULL)
2846		return (XEVNT_ID);
2847
2848	if ((dsa = EVP_PKEY_get0_DSA(peer->ident_pkey->pkey)) == NULL) {
2849		msyslog(LOG_NOTICE, "crypto_alice3: defective key");
2850		return (XEVNT_PUB);
2851	}
2852	DSA_get0_pqg(dsa, &p, NULL, NULL);
2853
2854	/*
2855	 * Roll new random r (0 < r < q).
2856	 */
2857	if (peer->iffval != NULL)
2858		BN_free(peer->iffval);
2859	peer->iffval = BN_new();
2860	len = BN_num_bytes(p);
2861	BN_rand(peer->iffval, len * 8, -1, 1);	/* r mod p */
2862	bctx = BN_CTX_new();
2863	BN_mod(peer->iffval, peer->iffval, p, bctx);
2864	BN_CTX_free(bctx);
2865
2866	/*
2867	 * Sign and send to Bob. The filestamp is from the local file.
2868	 */
2869	memset(vp, 0, sizeof(struct value));
2870	tstamp = crypto_time();
2871	vp->tstamp = htonl(tstamp);
2872	vp->fstamp = htonl(peer->ident_pkey->fstamp);
2873	vp->vallen = htonl(len);
2874	vp->ptr = emalloc(len);
2875	BN_bn2bin(peer->iffval, vp->ptr);
2876	if (tstamp == 0)
2877		return (XEVNT_OK);
2878
2879	vp->sig = emalloc(sign_siglen);
2880	ctx = EVP_MD_CTX_new();
2881	EVP_SignInit(ctx, sign_digest);
2882	EVP_SignUpdate(ctx, (u_char *)&vp->tstamp, 12);
2883	EVP_SignUpdate(ctx, vp->ptr, len);
2884	if (EVP_SignFinal(ctx, vp->sig, &len, sign_pkey)) {
2885		INSIST(len <= sign_siglen);
2886		vp->siglen = htonl(len);
2887	}
2888	EVP_MD_CTX_free(ctx);
2889	return (XEVNT_OK);
2890}
2891
2892
2893/*
2894 * crypto_bob3 - construct Bob's response to Alice's challenge
2895 *
2896 * Returns
2897 * XEVNT_OK	success
2898 * XEVNT_ERR	protocol error
2899 */
2900static int
2901crypto_bob3(
2902	struct exten *ep,	/* extension pointer */
2903	struct value *vp	/* value pointer */
2904	)
2905{
2906	DSA	*dsa;		/* MV parameters */
2907	DSA	*sdsa;		/* DSA signature context fake */
2908	BN_CTX	*bctx;		/* BIGNUM context */
2909	EVP_MD_CTX *ctx;	/* signature context */
2910	tstamp_t tstamp;	/* NTP timestamp */
2911	BIGNUM	*r, *k, *u;
2912	u_char	*ptr;
2913	u_int	len;
2914	const BIGNUM *p, *q, *g;
2915	const BIGNUM *pub_key, *priv_key;
2916	BIGNUM *sp, *sq, *sg;
2917
2918	/*
2919	 * If the MV parameters are not valid, something awful
2920	 * happened or we are being tormented.
2921	 */
2922	if (mvkey_info == NULL) {
2923		msyslog(LOG_NOTICE, "crypto_bob3: scheme unavailable");
2924		return (XEVNT_ID);
2925	}
2926	dsa = EVP_PKEY_get0_DSA(mvkey_info->pkey);
2927	DSA_get0_pqg(dsa, &p, &q, &g);
2928	DSA_get0_key(dsa, &pub_key, &priv_key);
2929
2930	/*
2931	 * Extract r from the challenge.
2932	 */
2933	len = exten_payload_size(ep);
2934	if (len == 0 || len > MAX_VALLEN)
2935		return (XEVNT_LEN);
2936	if ((r = BN_bin2bn((u_char *)ep->pkt, len, NULL)) == NULL) {
2937		msyslog(LOG_ERR, "crypto_bob3: %s",
2938		    ERR_error_string(ERR_get_error(), NULL));
2939		return (XEVNT_ERR);
2940	}
2941
2942	/*
2943	 * Bob rolls random k (0 < k < q), making sure it is not a
2944	 * factor of q. He then computes y = r A^k and sends (y, gbar^k,
2945	 * and ghat^k) to Alice.
2946	 */
2947	bctx = BN_CTX_new(); k = BN_new(); u = BN_new();
2948	sdsa = DSA_new();
2949	sp = BN_new(); sq = BN_new(); sg = BN_new();
2950	while (1) {
2951		BN_rand(k, BN_num_bits(q), 0, 0);
2952		BN_mod(k, k, q, bctx);
2953		BN_gcd(u, k, q, bctx);
2954		if (BN_is_one(u))
2955			break;
2956	}
2957	BN_mod_exp(u, g, k, p, bctx); /* A^k r */
2958	BN_mod_mul(sp, u, r, p, bctx);
2959	BN_mod_exp(sq, priv_key, k, p, bctx); /* gbar */
2960	BN_mod_exp(sg, pub_key, k, p, bctx); /* ghat */
2961	DSA_set0_key(sdsa, BN_dup(pub_key), NULL);
2962	DSA_set0_pqg(sdsa, sp, sq, sg);
2963	BN_CTX_free(bctx); BN_free(k); BN_free(r); BN_free(u);
2964#ifdef DEBUG
2965	if (debug > 1)
2966		DSA_print_fp(stdout, sdsa, 0);
2967#endif
2968
2969	/*
2970	 * Encode the values in ASN.1 and sign. The filestamp is from
2971	 * the local file.
2972	 */
2973	memset(vp, 0, sizeof(struct value));
2974	tstamp = crypto_time();
2975	vp->tstamp = htonl(tstamp);
2976	vp->fstamp = htonl(mvkey_info->fstamp);
2977	len = i2d_DSAparams(sdsa, NULL);
2978	if (len == 0) {
2979		msyslog(LOG_ERR, "crypto_bob3: %s",
2980		    ERR_error_string(ERR_get_error(), NULL));
2981		DSA_free(sdsa);
2982		return (XEVNT_ERR);
2983	}
2984	vp->vallen = htonl(len);
2985	ptr = emalloc(len);
2986	vp->ptr = ptr;
2987	i2d_DSAparams(sdsa, &ptr);
2988	DSA_free(sdsa);
2989	if (tstamp == 0)
2990		return (XEVNT_OK);
2991
2992	vp->sig = emalloc(sign_siglen);
2993	ctx = EVP_MD_CTX_new();
2994	EVP_SignInit(ctx, sign_digest);
2995	EVP_SignUpdate(ctx, (u_char *)&vp->tstamp, 12);
2996	EVP_SignUpdate(ctx, vp->ptr, len);
2997	if (EVP_SignFinal(ctx, vp->sig, &len, sign_pkey)) {
2998		INSIST(len <= sign_siglen);
2999		vp->siglen = htonl(len);
3000	}
3001	EVP_MD_CTX_free(ctx);
3002	return (XEVNT_OK);
3003}
3004
3005
3006/*
3007 * crypto_mv - verify Bob's response to Alice's challenge
3008 *
3009 * Returns
3010 * XEVNT_OK	success
3011 * XEVNT_ERR	protocol error
3012 * XEVNT_FSP	bad filestamp
3013 * XEVNT_ID	bad or missing group key
3014 * XEVNT_PUB	bad or missing public key
3015 */
3016int
3017crypto_mv(
3018	struct exten *ep,	/* extension pointer */
3019	struct peer *peer	/* peer structure pointer */
3020	)
3021{
3022	DSA	*dsa;		/* MV parameters */
3023	DSA	*sdsa;		/* DSA parameters */
3024	BN_CTX	*bctx;		/* BIGNUM context */
3025	BIGNUM	*k, *u, *v;
3026	u_int	len;
3027	const u_char *ptr;
3028	int	temp;
3029	const BIGNUM *p;
3030	const BIGNUM *pub_key, *priv_key;
3031	const BIGNUM *sp, *sq, *sg;
3032
3033	/*
3034	 * If the MV parameters are not valid or no challenge was sent,
3035	 * something awful happened or we are being tormented.
3036	 */
3037	if (peer->ident_pkey == NULL) {
3038		msyslog(LOG_NOTICE, "crypto_mv: scheme unavailable");
3039		return (XEVNT_ID);
3040	}
3041	if (ntohl(ep->fstamp) != peer->ident_pkey->fstamp) {
3042		msyslog(LOG_NOTICE, "crypto_mv: invalid filestamp %u",
3043		    ntohl(ep->fstamp));
3044		return (XEVNT_FSP);
3045	}
3046	if ((dsa = EVP_PKEY_get0_DSA(peer->ident_pkey->pkey)) == NULL) {
3047		msyslog(LOG_NOTICE, "crypto_mv: defective key");
3048		return (XEVNT_PUB);
3049	}
3050	DSA_get0_pqg(dsa, &p, NULL, NULL);
3051	DSA_get0_key(dsa, &pub_key, &priv_key);
3052	if (peer->iffval == NULL) {
3053		msyslog(LOG_NOTICE, "crypto_mv: missing challenge");
3054		return (XEVNT_ID);
3055	}
3056
3057	/*
3058	 * Extract the y, gbar and ghat values from the response.
3059	 */
3060	bctx = BN_CTX_new(); k = BN_new(); u = BN_new(); v = BN_new();
3061	len = ntohl(ep->vallen);
3062	ptr = (u_char *)ep->pkt;
3063	if ((sdsa = d2i_DSAparams(NULL, &ptr, len)) == NULL) {
3064		msyslog(LOG_ERR, "crypto_mv: %s",
3065		    ERR_error_string(ERR_get_error(), NULL));
3066		return (XEVNT_ERR);
3067	}
3068	DSA_get0_pqg(sdsa, &sp, &sq, &sg);
3069
3070	/*
3071	 * Compute (gbar^xhat ghat^xbar) mod p.
3072	 */
3073	BN_mod_exp(u, sq, pub_key, p, bctx);
3074	BN_mod_exp(v, sg, priv_key, p, bctx);
3075	BN_mod_mul(u, u, v, p, bctx);
3076	BN_mod_mul(u, u, sp, p, bctx);
3077
3078	/*
3079	 * The result should match r.
3080	 */
3081	temp = BN_cmp(u, peer->iffval);
3082	BN_CTX_free(bctx); BN_free(k); BN_free(u); BN_free(v);
3083	BN_free(peer->iffval);
3084	peer->iffval = NULL;
3085	DSA_free(sdsa);
3086	if (temp == 0)
3087		return (XEVNT_OK);
3088
3089	msyslog(LOG_NOTICE, "crypto_mv: identity not verified");
3090	return (XEVNT_ID);
3091}
3092
3093
3094/*
3095 ***********************************************************************
3096 *								       *
3097 * The following routines are used to manipulate certificates          *
3098 *								       *
3099 ***********************************************************************
3100 */
3101/*
3102 * cert_sign - sign x509 certificate equest and update value structure.
3103 *
3104 * The certificate request includes a copy of the host certificate,
3105 * which includes the version number, subject name and public key of the
3106 * host. The resulting certificate includes these values plus the
3107 * serial number, issuer name and valid interval of the server. The
3108 * valid interval extends from the current time to the same time one
3109 * year hence. This may extend the life of the signed certificate beyond
3110 * that of the signer certificate.
3111 *
3112 * It is convenient to use the NTP seconds of the current time as the
3113 * serial number. In the value structure the timestamp is the current
3114 * time and the filestamp is taken from the extension field. Note this
3115 * routine is called only when the client clock is synchronized to a
3116 * proventic source, so timestamp comparisons are valid.
3117 *
3118 * The host certificate is valid from the time it was generated for a
3119 * period of one year. A signed certificate is valid from the time of
3120 * signature for a period of one year, but only the host certificate (or
3121 * sign certificate if used) is actually used to encrypt and decrypt
3122 * signatures. The signature trail is built from the client via the
3123 * intermediate servers to the trusted server. Each signature on the
3124 * trail must be valid at the time of signature, but it could happen
3125 * that a signer certificate expire before the signed certificate, which
3126 * remains valid until its expiration.
3127 *
3128 * Returns
3129 * XEVNT_OK	success
3130 * XEVNT_CRT	bad or missing certificate
3131 * XEVNT_PER	host certificate expired
3132 * XEVNT_PUB	bad or missing public key
3133 * XEVNT_VFY	certificate not verified
3134 */
3135static int
3136cert_sign(
3137	struct exten *ep,	/* extension field pointer */
3138	struct value *vp	/* value pointer */
3139	)
3140{
3141	X509	*req;		/* X509 certificate request */
3142	X509	*cert;		/* X509 certificate */
3143	X509_EXTENSION *ext;	/* certificate extension */
3144	ASN1_INTEGER *serial;	/* serial number */
3145	X509_NAME *subj;	/* distinguished (common) name */
3146	EVP_PKEY *pkey;		/* public key */
3147	EVP_MD_CTX *ctx;	/* message digest context */
3148	tstamp_t tstamp;	/* NTP timestamp */
3149	struct calendar tscal;
3150	u_int	len;
3151	const u_char *cptr;
3152	u_char *ptr;
3153	int	i, temp;
3154
3155	/*
3156	 * Decode ASN.1 objects and construct certificate structure.
3157	 * Make sure the system clock is synchronized to a proventic
3158	 * source.
3159	 */
3160	tstamp = crypto_time();
3161	if (tstamp == 0)
3162		return (XEVNT_TSP);
3163
3164	len = exten_payload_size(ep);
3165	if (len == 0 || len > MAX_VALLEN)
3166		return (XEVNT_LEN);
3167	cptr = (void *)ep->pkt;
3168	if ((req = d2i_X509(NULL, &cptr, len)) == NULL) {
3169		msyslog(LOG_ERR, "cert_sign: %s",
3170		    ERR_error_string(ERR_get_error(), NULL));
3171		return (XEVNT_CRT);
3172	}
3173	/*
3174	 * Extract public key and check for errors.
3175	 */
3176	if ((pkey = X509_get_pubkey(req)) == NULL) {
3177		msyslog(LOG_ERR, "cert_sign: %s",
3178		    ERR_error_string(ERR_get_error(), NULL));
3179		X509_free(req);
3180		return (XEVNT_PUB);
3181	}
3182
3183	/*
3184	 * Generate X509 certificate signed by this server. If this is a
3185	 * trusted host, the issuer name is the group name; otherwise,
3186	 * it is the host name. Also copy any extensions that might be
3187	 * present.
3188	 */
3189	cert = X509_new();
3190	X509_set_version(cert, X509_get_version(req));
3191	serial = ASN1_INTEGER_new();
3192	ASN1_INTEGER_set(serial, tstamp);
3193	X509_set_serialNumber(cert, serial);
3194	X509_gmtime_adj(X509_getm_notBefore(cert), 0L);
3195	X509_gmtime_adj(X509_getm_notAfter(cert), YEAR);
3196	subj = X509_get_issuer_name(cert);
3197	X509_NAME_add_entry_by_txt(subj, "commonName", MBSTRING_ASC,
3198	    hostval.ptr, strlen((const char *)hostval.ptr), -1, 0);
3199	subj = X509_get_subject_name(req);
3200	X509_set_subject_name(cert, subj);
3201	X509_set_pubkey(cert, pkey);
3202	temp = X509_get_ext_count(req);
3203	for (i = 0; i < temp; i++) {
3204		ext = X509_get_ext(req, i);
3205		INSIST(X509_add_ext(cert, ext, -1));
3206	}
3207	X509_free(req);
3208
3209	/*
3210	 * Sign and verify the client certificate, but only if the host
3211	 * certificate has not expired.
3212	 */
3213	(void)ntpcal_ntp_to_date(&tscal, tstamp, NULL);
3214	if ((calcomp(&tscal, &(cert_host->first)) < 0)
3215	|| (calcomp(&tscal, &(cert_host->last)) > 0)) {
3216		X509_free(cert);
3217		return (XEVNT_PER);
3218	}
3219	X509_sign(cert, sign_pkey, sign_digest);
3220	if (X509_verify(cert, sign_pkey) <= 0) {
3221		msyslog(LOG_ERR, "cert_sign: %s",
3222		    ERR_error_string(ERR_get_error(), NULL));
3223		X509_free(cert);
3224		return (XEVNT_VFY);
3225	}
3226	len = i2d_X509(cert, NULL);
3227
3228	/*
3229	 * Build and sign the value structure. We have to sign it here,
3230	 * since the response has to be returned right away. This is a
3231	 * clogging hazard.
3232	 */
3233	memset(vp, 0, sizeof(struct value));
3234	vp->tstamp = htonl(tstamp);
3235	vp->fstamp = ep->fstamp;
3236	vp->vallen = htonl(len);
3237	vp->ptr = emalloc(len);
3238	ptr = vp->ptr;
3239	i2d_X509(cert, (unsigned char **)(intptr_t)&ptr);
3240	vp->siglen = 0;
3241	if (tstamp != 0) {
3242		vp->sig = emalloc(sign_siglen);
3243		ctx = EVP_MD_CTX_new();
3244		EVP_SignInit(ctx, sign_digest);
3245		EVP_SignUpdate(ctx, (u_char *)vp, 12);
3246		EVP_SignUpdate(ctx, vp->ptr, len);
3247		if (EVP_SignFinal(ctx, vp->sig, &len, sign_pkey)) {
3248			INSIST(len <= sign_siglen);
3249			vp->siglen = htonl(len);
3250		}
3251		EVP_MD_CTX_free(ctx);
3252	}
3253#ifdef DEBUG
3254	if (debug > 1)
3255		X509_print_fp(stdout, cert);
3256#endif
3257	X509_free(cert);
3258	return (XEVNT_OK);
3259}
3260
3261
3262/*
3263 * cert_install - install certificate in certificate cache
3264 *
3265 * This routine encodes an extension field into a certificate info/value
3266 * structure. It searches the certificate list for duplicates and
3267 * expunges whichever is older. Finally, it inserts this certificate
3268 * first on the list.
3269 *
3270 * Returns certificate info pointer if valid, NULL if not.
3271 */
3272struct cert_info *
3273cert_install(
3274	struct exten *ep,	/* cert info/value */
3275	struct peer *peer	/* peer structure */
3276	)
3277{
3278	struct cert_info *cp, *xp, **zp;
3279
3280	/*
3281	 * Parse and validate the signed certificate. If valid,
3282	 * construct the info/value structure; otherwise, scamper home
3283	 * empty handed.
3284	 */
3285	if ((cp = cert_parse((u_char *)ep->pkt, (long)ntohl(ep->vallen),
3286	    (tstamp_t)ntohl(ep->fstamp))) == NULL)
3287		return (NULL);
3288
3289	/*
3290	 * Scan certificate list looking for another certificate with
3291	 * the same subject and issuer. If another is found with the
3292	 * same or older filestamp, unlink it and return the goodies to
3293	 * the heap. If another is found with a later filestamp, discard
3294	 * the new one and leave the building with the old one.
3295	 *
3296	 * Make a note to study this issue again. An earlier certificate
3297	 * with a long lifetime might be overtaken by a later
3298	 * certificate with a short lifetime, thus invalidating the
3299	 * earlier signature. However, we gotta find a way to leak old
3300	 * stuff from the cache, so we do it anyway.
3301	 */
3302	zp = &cinfo;
3303	for (xp = cinfo; xp != NULL; xp = xp->link) {
3304		if (strcmp(cp->subject, xp->subject) == 0 &&
3305		    strcmp(cp->issuer, xp->issuer) == 0) {
3306			if (ntohl(cp->cert.fstamp) <=
3307			    ntohl(xp->cert.fstamp)) {
3308				cert_free(cp);
3309				cp = xp;
3310			} else {
3311				*zp = xp->link;
3312				cert_free(xp);
3313				xp = NULL;
3314			}
3315			break;
3316		}
3317		zp = &xp->link;
3318	}
3319	if (xp == NULL) {
3320		cp->link = cinfo;
3321		cinfo = cp;
3322	}
3323	cp->flags |= CERT_VALID;
3324	crypto_update();
3325	return (cp);
3326}
3327
3328
3329/*
3330 * cert_hike - verify the signature using the issuer public key
3331 *
3332 * Returns
3333 * XEVNT_OK	success
3334 * XEVNT_CRT	bad or missing certificate
3335 * XEVNT_PER	host certificate expired
3336 * XEVNT_VFY	certificate not verified
3337 */
3338int
3339cert_hike(
3340	struct peer *peer,	/* peer structure pointer */
3341	struct cert_info *yp	/* issuer certificate */
3342	)
3343{
3344	struct cert_info *xp;	/* subject certificate */
3345	X509	*cert;		/* X509 certificate */
3346	const u_char *ptr;
3347
3348	/*
3349	 * Save the issuer on the new certificate, but remember the old
3350	 * one.
3351	 */
3352	if (peer->issuer != NULL)
3353		free(peer->issuer);
3354	peer->issuer = estrdup(yp->issuer);
3355	xp = peer->xinfo;
3356	peer->xinfo = yp;
3357
3358	/*
3359	 * If subject Y matches issuer Y, then the certificate trail is
3360	 * complete. If Y is not trusted, the server certificate has yet
3361	 * been signed, so keep trying. Otherwise, save the group key
3362	 * and light the valid bit. If the host certificate is trusted,
3363	 * do not execute a sign exchange. If no identity scheme is in
3364	 * use, light the identity and proventic bits.
3365	 */
3366	if (strcmp(yp->subject, yp->issuer) == 0) {
3367		if (!(yp->flags & CERT_TRUST))
3368			return (XEVNT_OK);
3369
3370		/*
3371		 * If the server has an an identity scheme, fetch the
3372		 * identity credentials. If not, the identity is
3373		 * verified only by the trusted certificate. The next
3374		 * signature will set the server proventic.
3375		 */
3376		peer->crypto |= CRYPTO_FLAG_CERT;
3377		peer->grpkey = yp->grpkey;
3378		if (peer->ident == NULL || !(peer->crypto &
3379		    CRYPTO_FLAG_MASK))
3380			peer->crypto |= CRYPTO_FLAG_VRFY;
3381	}
3382
3383	/*
3384	 * If X exists, verify signature X using public key Y.
3385	 */
3386	if (xp == NULL)
3387		return (XEVNT_OK);
3388
3389	ptr = (u_char *)xp->cert.ptr;
3390	cert = d2i_X509(NULL, &ptr, ntohl(xp->cert.vallen));
3391	if (cert == NULL) {
3392		xp->flags |= CERT_ERROR;
3393		return (XEVNT_CRT);
3394	}
3395	if (X509_verify(cert, yp->pkey) <= 0) {
3396		X509_free(cert);
3397		xp->flags |= CERT_ERROR;
3398		return (XEVNT_VFY);
3399	}
3400	X509_free(cert);
3401
3402	/*
3403	 * Signature X is valid only if it begins during the
3404	 * lifetime of Y.
3405	 */
3406	if ((calcomp(&(xp->first), &(yp->first)) < 0)
3407	|| (calcomp(&(xp->first), &(yp->last)) > 0)) {
3408		xp->flags |= CERT_ERROR;
3409		return (XEVNT_PER);
3410	}
3411	xp->flags |= CERT_SIGN;
3412	return (XEVNT_OK);
3413}
3414
3415
3416/*
3417 * cert_parse - parse x509 certificate and create info/value structures.
3418 *
3419 * The server certificate includes the version number, issuer name,
3420 * subject name, public key and valid date interval. If the issuer name
3421 * is the same as the subject name, the certificate is self signed and
3422 * valid only if the server is configured as trustable. If the names are
3423 * different, another issuer has signed the server certificate and
3424 * vouched for it. In this case the server certificate is valid if
3425 * verified by the issuer public key.
3426 *
3427 * Returns certificate info/value pointer if valid, NULL if not.
3428 */
3429struct cert_info *		/* certificate information structure */
3430cert_parse(
3431	const u_char *asn1cert,	/* X509 certificate */
3432	long	len,		/* certificate length */
3433	tstamp_t fstamp		/* filestamp */
3434	)
3435{
3436	X509	*cert;		/* X509 certificate */
3437	struct cert_info *ret;	/* certificate info/value */
3438	BIO	*bp;
3439	char	pathbuf[MAXFILENAME];
3440	const u_char *ptr;
3441	char	*pch;
3442	int	cnt, i;
3443	struct calendar fscal;
3444
3445	/*
3446	 * Decode ASN.1 objects and construct certificate structure.
3447	 */
3448	ptr = asn1cert;
3449	if ((cert = d2i_X509(NULL, &ptr, len)) == NULL) {
3450		msyslog(LOG_ERR, "cert_parse: %s",
3451		    ERR_error_string(ERR_get_error(), NULL));
3452		return (NULL);
3453	}
3454#ifdef DEBUG
3455	if (debug > 1)
3456		X509_print_fp(stdout, cert);
3457#endif
3458
3459	/*
3460	 * Extract version, subject name and public key.
3461	 */
3462	ret = emalloc_zero(sizeof(*ret));
3463	if ((ret->pkey = X509_get_pubkey(cert)) == NULL) {
3464		msyslog(LOG_ERR, "cert_parse: %s",
3465		    ERR_error_string(ERR_get_error(), NULL));
3466		cert_free(ret);
3467		X509_free(cert);
3468		return (NULL);
3469	}
3470	ret->version = X509_get_version(cert);
3471	X509_NAME_oneline(X509_get_subject_name(cert), pathbuf,
3472	    sizeof(pathbuf));
3473	pch = strstr(pathbuf, "CN=");
3474	if (NULL == pch) {
3475		msyslog(LOG_NOTICE, "cert_parse: invalid subject %s",
3476		    pathbuf);
3477		cert_free(ret);
3478		X509_free(cert);
3479		return (NULL);
3480	}
3481	ret->subject = estrdup(pch + 3);
3482
3483	/*
3484	 * Extract remaining objects. Note that the NTP serial number is
3485	 * the NTP seconds at the time of signing, but this might not be
3486	 * the case for other authority. We don't bother to check the
3487	 * objects at this time, since the real crunch can happen only
3488	 * when the time is valid but not yet certificated.
3489	 */
3490	ret->nid = X509_get_signature_nid(cert);
3491	ret->digest = (const EVP_MD *)EVP_get_digestbynid(ret->nid);
3492	ret->serial =
3493	    (u_long)ASN1_INTEGER_get(X509_get_serialNumber(cert));
3494	X509_NAME_oneline(X509_get_issuer_name(cert), pathbuf,
3495	    sizeof(pathbuf));
3496	if ((pch = strstr(pathbuf, "CN=")) == NULL) {
3497		msyslog(LOG_NOTICE, "cert_parse: invalid issuer %s",
3498		    pathbuf);
3499		cert_free(ret);
3500		X509_free(cert);
3501		return (NULL);
3502	}
3503	ret->issuer = estrdup(pch + 3);
3504	asn_to_calendar(X509_get0_notBefore(cert), &(ret->first));
3505	asn_to_calendar(X509_get0_notAfter(cert), &(ret->last));
3506
3507	/*
3508	 * Extract extension fields. These are ad hoc ripoffs of
3509	 * currently assigned functions and will certainly be changed
3510	 * before prime time.
3511	 */
3512	cnt = X509_get_ext_count(cert);
3513	for (i = 0; i < cnt; i++) {
3514		X509_EXTENSION *ext;
3515		ASN1_OBJECT *obj;
3516		int nid;
3517		ASN1_OCTET_STRING *data;
3518
3519		ext = X509_get_ext(cert, i);
3520		obj = X509_EXTENSION_get_object(ext);
3521		nid = OBJ_obj2nid(obj);
3522
3523		switch (nid) {
3524
3525		/*
3526		 * If a key_usage field is present, we decode whether
3527		 * this is a trusted or private certificate. This is
3528		 * dorky; all we want is to compare NIDs, but OpenSSL
3529		 * insists on BIO text strings.
3530		 */
3531		case NID_ext_key_usage:
3532			bp = BIO_new(BIO_s_mem());
3533			X509V3_EXT_print(bp, ext, 0, 0);
3534			BIO_gets(bp, pathbuf, sizeof(pathbuf));
3535			BIO_free(bp);
3536			if (strcmp(pathbuf, "Trust Root") == 0)
3537				ret->flags |= CERT_TRUST;
3538			else if (strcmp(pathbuf, "Private") == 0)
3539				ret->flags |= CERT_PRIV;
3540			DPRINTF(1, ("cert_parse: %s: %s\n",
3541				    OBJ_nid2ln(nid), pathbuf));
3542			break;
3543
3544		/*
3545		 * If a NID_subject_key_identifier field is present, it
3546		 * contains the GQ public key.
3547		 */
3548		case NID_subject_key_identifier:
3549			data = X509_EXTENSION_get_data(ext);
3550			ret->grpkey = BN_bin2bn(&data->data[2],
3551			    data->length - 2, NULL);
3552			/* fall through */
3553		default:
3554			DPRINTF(1, ("cert_parse: %s\n",
3555				    OBJ_nid2ln(nid)));
3556			break;
3557		}
3558	}
3559	if (strcmp(ret->subject, ret->issuer) == 0) {
3560
3561		/*
3562		 * If certificate is self signed, verify signature.
3563		 */
3564		if (X509_verify(cert, ret->pkey) <= 0) {
3565			msyslog(LOG_NOTICE,
3566			    "cert_parse: signature not verified %s",
3567			    ret->subject);
3568			cert_free(ret);
3569			X509_free(cert);
3570			return (NULL);
3571		}
3572	} else {
3573
3574		/*
3575		 * Check for a certificate loop.
3576		 */
3577		if (strcmp((const char *)hostval.ptr, ret->issuer) == 0) {
3578			msyslog(LOG_NOTICE,
3579			    "cert_parse: certificate trail loop %s",
3580			    ret->subject);
3581			cert_free(ret);
3582			X509_free(cert);
3583			return (NULL);
3584		}
3585	}
3586
3587	/*
3588	 * Verify certificate valid times. Note that certificates cannot
3589	 * be retroactive.
3590	 */
3591	(void)ntpcal_ntp_to_date(&fscal, fstamp, NULL);
3592	if ((calcomp(&(ret->first), &(ret->last)) > 0)
3593	|| (calcomp(&(ret->first), &fscal) < 0)) {
3594		msyslog(LOG_NOTICE,
3595		    "cert_parse: invalid times %s first %u-%02u-%02uT%02u:%02u:%02u last %u-%02u-%02uT%02u:%02u:%02u fstamp %u-%02u-%02uT%02u:%02u:%02u",
3596		    ret->subject,
3597		    ret->first.year, ret->first.month, ret->first.monthday,
3598		    ret->first.hour, ret->first.minute, ret->first.second,
3599		    ret->last.year, ret->last.month, ret->last.monthday,
3600		    ret->last.hour, ret->last.minute, ret->last.second,
3601		    fscal.year, fscal.month, fscal.monthday,
3602		    fscal.hour, fscal.minute, fscal.second);
3603		cert_free(ret);
3604		X509_free(cert);
3605		return (NULL);
3606	}
3607
3608	/*
3609	 * Build the value structure to sign and send later.
3610	 */
3611	ret->cert.fstamp = htonl(fstamp);
3612	ret->cert.vallen = htonl(len);
3613	ret->cert.ptr = emalloc(len);
3614	memcpy(ret->cert.ptr, asn1cert, len);
3615	X509_free(cert);
3616	return (ret);
3617}
3618
3619
3620/*
3621 * cert_free - free certificate information structure
3622 */
3623void
3624cert_free(
3625	struct cert_info *cinf	/* certificate info/value structure */
3626	)
3627{
3628	if (cinf->pkey != NULL)
3629		EVP_PKEY_free(cinf->pkey);
3630	if (cinf->subject != NULL)
3631		free(cinf->subject);
3632	if (cinf->issuer != NULL)
3633		free(cinf->issuer);
3634	if (cinf->grpkey != NULL)
3635		BN_free(cinf->grpkey);
3636	value_free(&cinf->cert);
3637	free(cinf);
3638}
3639
3640
3641/*
3642 * crypto_key - load cryptographic parameters and keys
3643 *
3644 * This routine searches the key cache for matching name in the form
3645 * ntpkey_<key>_<name>, where <key> is one of host, sign, iff, gq, mv,
3646 * and <name> is the host/group name. If not found, it tries to load a
3647 * PEM-encoded file of the same name and extracts the filestamp from
3648 * the first line of the file name. It returns the key pointer if valid,
3649 * NULL if not.
3650 */
3651static struct pkey_info *
3652crypto_key(
3653	char	*cp,		/* file name */
3654	char	*passwd1,	/* password */
3655	sockaddr_u *addr 	/* IP address */
3656	)
3657{
3658	FILE	*str;		/* file handle */
3659	struct pkey_info *pkp;	/* generic key */
3660	EVP_PKEY *pkey = NULL;	/* public/private key */
3661	tstamp_t fstamp;
3662	char	filename[MAXFILENAME]; /* name of key file */
3663	char	linkname[MAXFILENAME]; /* filestamp buffer) */
3664	char	statstr[NTP_MAXSTRLEN]; /* statistics for filegen */
3665	char	*ptr;
3666
3667	/*
3668	 * Search the key cache for matching key and name.
3669	 */
3670	for (pkp = pkinfo; pkp != NULL; pkp = pkp->link) {
3671		if (strcmp(cp, pkp->name) == 0)
3672			return (pkp);
3673	}
3674
3675	/*
3676	 * Open the key file. If the first character of the file name is
3677	 * not '/', prepend the keys directory string. If something goes
3678	 * wrong, abandon ship.
3679	 */
3680	if (*cp == '/')
3681		strlcpy(filename, cp, sizeof(filename));
3682	else
3683		snprintf(filename, sizeof(filename), "%s/%s", keysdir,
3684		    cp);
3685	str = fopen(filename, "r");
3686	if (str == NULL)
3687		return (NULL);
3688
3689	/*
3690	 * Read the filestamp, which is contained in the first line.
3691	 */
3692	if ((ptr = fgets(linkname, sizeof(linkname), str)) == NULL) {
3693		msyslog(LOG_ERR, "crypto_key: empty file %s",
3694		    filename);
3695		fclose(str);
3696		return (NULL);
3697	}
3698	if ((ptr = strrchr(ptr, '.')) == NULL) {
3699		msyslog(LOG_ERR, "crypto_key: no filestamp %s",
3700		    filename);
3701		fclose(str);
3702		return (NULL);
3703	}
3704	if (sscanf(++ptr, "%u", &fstamp) != 1) {
3705		msyslog(LOG_ERR, "crypto_key: invalid filestamp %s",
3706		    filename);
3707		fclose(str);
3708		return (NULL);
3709	}
3710
3711	/*
3712	 * Read and decrypt PEM-encoded private key. If it fails to
3713	 * decrypt, game over.
3714	 */
3715	pkey = PEM_read_PrivateKey(str, NULL, NULL, passwd1);
3716	fclose(str);
3717	if (pkey == NULL) {
3718		msyslog(LOG_ERR, "crypto_key: %s",
3719		    ERR_error_string(ERR_get_error(), NULL));
3720		exit (-1);
3721	}
3722
3723	/*
3724	 * Make a new entry in the key cache.
3725	 */
3726	pkp = emalloc(sizeof(struct pkey_info));
3727	pkp->link = pkinfo;
3728	pkinfo = pkp;
3729	pkp->pkey = pkey;
3730	pkp->name = estrdup(cp);
3731	pkp->fstamp = fstamp;
3732
3733	/*
3734	 * Leave tracks in the cryptostats.
3735	 */
3736	if ((ptr = strrchr(linkname, '\n')) != NULL)
3737		*ptr = '\0';
3738	snprintf(statstr, sizeof(statstr), "%s mod %d", &linkname[2],
3739	    EVP_PKEY_size(pkey) * 8);
3740	record_crypto_stats(addr, statstr);
3741
3742	DPRINTF(1, ("crypto_key: %s\n", statstr));
3743#ifdef DEBUG
3744	if (debug > 1) {
3745		if (EVP_PKEY_base_id(pkey) == EVP_PKEY_DSA)
3746			DSA_print_fp(stdout, EVP_PKEY_get0_DSA(pkey), 0);
3747		else if (EVP_PKEY_base_id(pkey) == EVP_PKEY_RSA)
3748			RSA_print_fp(stdout, EVP_PKEY_get0_RSA(pkey), 0);
3749	}
3750#endif
3751	return (pkp);
3752}
3753
3754
3755/*
3756 ***********************************************************************
3757 *								       *
3758 * The following routines are used only at initialization time         *
3759 *								       *
3760 ***********************************************************************
3761 */
3762/*
3763 * crypto_cert - load certificate from file
3764 *
3765 * This routine loads an X.509 RSA or DSA certificate from a file and
3766 * constructs a info/cert value structure for this machine. The
3767 * structure includes a filestamp extracted from the file name. Later
3768 * the certificate can be sent to another machine on request.
3769 *
3770 * Returns certificate info/value pointer if valid, NULL if not.
3771 */
3772static struct cert_info *	/* certificate information */
3773crypto_cert(
3774	char	*cp		/* file name */
3775	)
3776{
3777	struct cert_info *ret; /* certificate information */
3778	FILE	*str;		/* file handle */
3779	char	filename[MAXFILENAME]; /* name of certificate file */
3780	char	linkname[MAXFILENAME]; /* filestamp buffer */
3781	char	statstr[NTP_MAXSTRLEN]; /* statistics for filegen */
3782	tstamp_t fstamp;	/* filestamp */
3783	long	len;
3784	char	*ptr;
3785	char	*name, *header;
3786	u_char	*data;
3787
3788	/*
3789	 * Open the certificate file. If the first character of the file
3790	 * name is not '/', prepend the keys directory string. If
3791	 * something goes wrong, abandon ship.
3792	 */
3793	if (*cp == '/')
3794		strlcpy(filename, cp, sizeof(filename));
3795	else
3796		snprintf(filename, sizeof(filename), "%s/%s", keysdir,
3797		    cp);
3798	str = fopen(filename, "r");
3799	if (str == NULL)
3800		return (NULL);
3801
3802	/*
3803	 * Read the filestamp, which is contained in the first line.
3804	 */
3805	if ((ptr = fgets(linkname, sizeof(linkname), str)) == NULL) {
3806		msyslog(LOG_ERR, "crypto_cert: empty file %s",
3807		    filename);
3808		fclose(str);
3809		return (NULL);
3810	}
3811	if ((ptr = strrchr(ptr, '.')) == NULL) {
3812		msyslog(LOG_ERR, "crypto_cert: no filestamp %s",
3813		    filename);
3814		fclose(str);
3815		return (NULL);
3816	}
3817	if (sscanf(++ptr, "%u", &fstamp) != 1) {
3818		msyslog(LOG_ERR, "crypto_cert: invalid filestamp %s",
3819		    filename);
3820		fclose(str);
3821		return (NULL);
3822	}
3823
3824	/*
3825	 * Read PEM-encoded certificate and install.
3826	 */
3827	if (!PEM_read(str, &name, &header, &data, &len)) {
3828		msyslog(LOG_ERR, "crypto_cert: %s",
3829		    ERR_error_string(ERR_get_error(), NULL));
3830		fclose(str);
3831		return (NULL);
3832	}
3833	fclose(str);
3834	free(header);
3835	if (strcmp(name, "CERTIFICATE") != 0) {
3836		msyslog(LOG_NOTICE, "crypto_cert: wrong PEM type %s",
3837		    name);
3838		free(name);
3839		free(data);
3840		return (NULL);
3841	}
3842	free(name);
3843
3844	/*
3845	 * Parse certificate and generate info/value structure. The
3846	 * pointer and copy nonsense is due something broken in Solaris.
3847	 */
3848	ret = cert_parse(data, len, fstamp);
3849	free(data);
3850	if (ret == NULL)
3851		return (NULL);
3852
3853	if ((ptr = strrchr(linkname, '\n')) != NULL)
3854		*ptr = '\0';
3855	snprintf(statstr, sizeof(statstr), "%s 0x%x len %lu",
3856	    &linkname[2], ret->flags, len);
3857	record_crypto_stats(NULL, statstr);
3858	DPRINTF(1, ("crypto_cert: %s\n", statstr));
3859	return (ret);
3860}
3861
3862
3863/*
3864 * crypto_setup - load keys, certificate and identity parameters
3865 *
3866 * This routine loads the public/private host key and certificate. If
3867 * available, it loads the public/private sign key, which defaults to
3868 * the host key. The host key must be RSA, but the sign key can be
3869 * either RSA or DSA. If a trusted certificate, it loads the identity
3870 * parameters. In either case, the public key on the certificate must
3871 * agree with the sign key.
3872 *
3873 * Required but missing files and inconsistent data and errors are
3874 * fatal. Allowing configuration to continue would be hazardous and
3875 * require really messy error checks.
3876 */
3877void
3878crypto_setup(void)
3879{
3880	struct pkey_info *pinfo; /* private/public key */
3881	char	filename[MAXFILENAME]; /* file name buffer */
3882	char	hostname[MAXFILENAME]; /* host name buffer */
3883	char	*randfile;
3884	char	statstr[NTP_MAXSTRLEN]; /* statistics for filegen */
3885	l_fp	seed;		/* crypto PRNG seed as NTP timestamp */
3886	u_int	len;
3887	int	bytes;
3888	u_char	*ptr;
3889
3890	/*
3891	 * Check for correct OpenSSL version and avoid initialization in
3892	 * the case of multiple crypto commands.
3893	 */
3894	if (crypto_flags & CRYPTO_FLAG_ENAB) {
3895		msyslog(LOG_NOTICE,
3896		    "crypto_setup: spurious crypto command");
3897		return;
3898	}
3899	ssl_check_version();
3900
3901	/*
3902	 * Load required random seed file and seed the random number
3903	 * generator. Be default, it is found as .rnd in the user home
3904	 * directory. The root home directory may be / or /root,
3905	 * depending on the system. Wiggle the contents a bit and write
3906	 * it back so the sequence does not repeat when we next restart.
3907	 */
3908	if (!RAND_status()) {
3909		if (rand_file == NULL) {
3910			RAND_file_name(filename, sizeof(filename));
3911			randfile = filename;
3912		} else if (*rand_file != '/') {
3913			snprintf(filename, sizeof(filename), "%s/%s",
3914			    keysdir, rand_file);
3915			randfile = filename;
3916		} else
3917			randfile = rand_file;
3918
3919		if ((bytes = RAND_load_file(randfile, -1)) == 0) {
3920			msyslog(LOG_ERR,
3921			    "crypto_setup: random seed file %s missing",
3922			    randfile);
3923			exit (-1);
3924		}
3925		arc4random_buf(&seed, sizeof(l_fp));
3926		RAND_seed(&seed, sizeof(l_fp));
3927		RAND_write_file(randfile);
3928		DPRINTF(1, ("crypto_setup: OpenSSL version %lx random seed file %s bytes read %d\n",
3929			    OpenSSL_version_num(), randfile, bytes));
3930
3931	}
3932
3933	/*
3934	 * Initialize structures.
3935	 */
3936	gethostname(hostname, sizeof(hostname));
3937	if (host_filename != NULL)
3938		strlcpy(hostname, host_filename, sizeof(hostname));
3939	if (passwd == NULL)
3940		passwd = estrdup(hostname);
3941	memset(&hostval, 0, sizeof(hostval));
3942	memset(&pubkey, 0, sizeof(pubkey));
3943	memset(&tai_leap, 0, sizeof(tai_leap));
3944
3945	/*
3946	 * Load required host key from file "ntpkey_host_<hostname>". If
3947	 * no host key file is not found or has invalid password, life
3948	 * as we know it ends. The host key also becomes the default
3949	 * sign key.
3950	 */
3951	snprintf(filename, sizeof(filename), "ntpkey_host_%s", hostname);
3952	pinfo = crypto_key(filename, passwd, NULL);
3953	if (pinfo == NULL) {
3954		msyslog(LOG_ERR,
3955		    "crypto_setup: host key file %s not found or corrupt",
3956		    filename);
3957		exit (-1);
3958	}
3959	if (EVP_PKEY_base_id(pinfo->pkey) != EVP_PKEY_RSA) {
3960		msyslog(LOG_ERR,
3961		    "crypto_setup: host key is not RSA key type");
3962		exit (-1);
3963	}
3964	host_pkey = pinfo->pkey;
3965	sign_pkey = host_pkey;
3966	hostval.fstamp = htonl(pinfo->fstamp);
3967
3968	/*
3969	 * Construct public key extension field for agreement scheme.
3970	 */
3971	len = i2d_PublicKey(host_pkey, NULL);
3972	ptr = emalloc(len);
3973	pubkey.ptr = ptr;
3974	i2d_PublicKey(host_pkey, &ptr);
3975	pubkey.fstamp = hostval.fstamp;
3976	pubkey.vallen = htonl(len);
3977
3978	/*
3979	 * Load optional sign key from file "ntpkey_sign_<hostname>". If
3980	 * available, it becomes the sign key.
3981	 */
3982	snprintf(filename, sizeof(filename), "ntpkey_sign_%s", hostname);
3983	pinfo = crypto_key(filename, passwd, NULL);
3984	if (pinfo != NULL)
3985		sign_pkey = pinfo->pkey;
3986
3987	/*
3988	 * Load required certificate from file "ntpkey_cert_<hostname>".
3989	 */
3990	snprintf(filename, sizeof(filename), "ntpkey_cert_%s", hostname);
3991	cinfo = crypto_cert(filename);
3992	if (cinfo == NULL) {
3993		msyslog(LOG_ERR,
3994		    "crypto_setup: certificate file %s not found or corrupt",
3995		    filename);
3996		exit (-1);
3997	}
3998	cert_host = cinfo;
3999	sign_digest = cinfo->digest;
4000	sign_siglen = EVP_PKEY_size(sign_pkey);
4001	if (cinfo->flags & CERT_PRIV)
4002		crypto_flags |= CRYPTO_FLAG_PRIV;
4003
4004	/*
4005	 * The certificate must be self-signed.
4006	 */
4007	if (strcmp(cinfo->subject, cinfo->issuer) != 0) {
4008		msyslog(LOG_ERR,
4009		    "crypto_setup: certificate %s is not self-signed",
4010		    filename);
4011		exit (-1);
4012	}
4013	hostval.ptr = estrdup(cinfo->subject);
4014	hostval.vallen = htonl(strlen(cinfo->subject));
4015	sys_hostname = hostval.ptr;
4016	ptr = (u_char *)strchr(sys_hostname, '@');
4017	if (ptr != NULL)
4018		sys_groupname = estrdup((char *)++ptr);
4019	if (ident_filename != NULL)
4020		strlcpy(hostname, ident_filename, sizeof(hostname));
4021
4022	/*
4023	 * Load optional IFF parameters from file
4024	 * "ntpkey_iffkey_<hostname>".
4025	 */
4026	snprintf(filename, sizeof(filename), "ntpkey_iffkey_%s",
4027	    hostname);
4028	iffkey_info = crypto_key(filename, passwd, NULL);
4029	if (iffkey_info != NULL)
4030		crypto_flags |= CRYPTO_FLAG_IFF;
4031
4032	/*
4033	 * Load optional GQ parameters from file
4034	 * "ntpkey_gqkey_<hostname>".
4035	 */
4036	snprintf(filename, sizeof(filename), "ntpkey_gqkey_%s",
4037	    hostname);
4038	gqkey_info = crypto_key(filename, passwd, NULL);
4039	if (gqkey_info != NULL)
4040		crypto_flags |= CRYPTO_FLAG_GQ;
4041
4042	/*
4043	 * Load optional MV parameters from file
4044	 * "ntpkey_mvkey_<hostname>".
4045	 */
4046	snprintf(filename, sizeof(filename), "ntpkey_mvkey_%s",
4047	    hostname);
4048	mvkey_info = crypto_key(filename, passwd, NULL);
4049	if (mvkey_info != NULL)
4050		crypto_flags |= CRYPTO_FLAG_MV;
4051
4052	/*
4053	 * We met the enemy and he is us. Now strike up the dance.
4054	 */
4055	crypto_flags |= CRYPTO_FLAG_ENAB | (cinfo->nid << 16);
4056	snprintf(statstr, sizeof(statstr), "setup 0x%x host %s %s",
4057	    crypto_flags, hostname, OBJ_nid2ln(cinfo->nid));
4058	record_crypto_stats(NULL, statstr);
4059	DPRINTF(1, ("crypto_setup: %s\n", statstr));
4060}
4061
4062
4063/*
4064 * crypto_config - configure data from the crypto command.
4065 */
4066void
4067crypto_config(
4068	int	item,		/* configuration item */
4069	char	*cp		/* item name */
4070	)
4071{
4072	int	nid;
4073
4074	DPRINTF(1, ("crypto_config: item %d %s\n", item, cp));
4075
4076	switch (item) {
4077
4078	/*
4079	 * Set host name (host).
4080	 */
4081	case CRYPTO_CONF_PRIV:
4082		if (NULL != host_filename)
4083			free(host_filename);
4084		host_filename = estrdup(cp);
4085		break;
4086
4087	/*
4088	 * Set group name (ident).
4089	 */
4090	case CRYPTO_CONF_IDENT:
4091		if (NULL != ident_filename)
4092			free(ident_filename);
4093		ident_filename = estrdup(cp);
4094		break;
4095
4096	/*
4097	 * Set private key password (pw).
4098	 */
4099	case CRYPTO_CONF_PW:
4100		if (NULL != passwd)
4101			free(passwd);
4102		passwd = estrdup(cp);
4103		break;
4104
4105	/*
4106	 * Set random seed file name (randfile).
4107	 */
4108	case CRYPTO_CONF_RAND:
4109		if (NULL != rand_file)
4110			free(rand_file);
4111		rand_file = estrdup(cp);
4112		break;
4113
4114	/*
4115	 * Set message digest NID.
4116	 */
4117	case CRYPTO_CONF_NID:
4118		nid = OBJ_sn2nid(cp);
4119		if (nid == 0)
4120			msyslog(LOG_ERR,
4121			    "crypto_config: invalid digest name %s", cp);
4122		else
4123			crypto_nid = nid;
4124		break;
4125	}
4126}
4127
4128/*
4129 * Get the  payload size (internal value length) of an extension packet.
4130 * If the inner value size does not match the outer packet size (that
4131 * is, the value would end behind the frame given by the opcode/size
4132 * field) the function will effectively return UINT_MAX. If the frame is
4133 * too short to hold a variable-sized value, the return value is zero.
4134 */
4135static u_int
4136exten_payload_size(
4137	const struct exten * ep)
4138{
4139	typedef const u_char *BPTR;
4140
4141	size_t extn_size;
4142	size_t data_size;
4143	size_t head_size;
4144
4145	data_size = 0;
4146	if (NULL != ep) {
4147		head_size = (BPTR)(&ep->vallen + 1) - (BPTR)ep;
4148		extn_size = (uint16_t)(ntohl(ep->opcode) & 0x0000ffff);
4149		if (extn_size >= head_size) {
4150			data_size = (uint32_t)ntohl(ep->vallen);
4151			if (data_size > extn_size - head_size)
4152				data_size = ~(size_t)0u;
4153		}
4154	}
4155	return (u_int)data_size;
4156}
4157# else	/* !AUTOKEY follows */
4158int ntp_crypto_bs_pubkey;
4159# endif	/* !AUTOKEY */
4160