ntp_crypto.c revision 309008
1/*
2 * ntp_crypto.c - NTP version 4 public key routines
3 */
4#ifdef HAVE_CONFIG_H
5#include <config.h>
6#endif
7
8#ifdef AUTOKEY
9#include <stdio.h>
10#include <stdlib.h>	/* strtoul */
11#include <sys/types.h>
12#include <sys/param.h>
13#include <unistd.h>
14#include <fcntl.h>
15
16#include "ntpd.h"
17#include "ntp_stdlib.h"
18#include "ntp_unixtime.h"
19#include "ntp_string.h"
20#include "ntp_random.h"
21#include "ntp_assert.h"
22#include "ntp_calendar.h"
23#include "ntp_leapsec.h"
24
25#include "openssl/bn.h"
26#include "openssl/err.h"
27#include "openssl/evp.h"
28#include "openssl/pem.h"
29#include "openssl/rand.h"
30#include "openssl/x509v3.h"
31#include "libssl_compat.h"
32
33#ifdef KERNEL_PLL
34#include "ntp_syscall.h"
35#endif /* KERNEL_PLL */
36
37/*
38 * calcomp - compare two calendar structures, ignoring yearday and weekday; like strcmp
39 * No, it's not a plotter.  If you don't understand that, you're too young.
40 */
41static int calcomp(struct calendar *pjd1, struct calendar *pjd2)
42{
43	int32_t diff;	/* large enough to hold the signed difference between two uint16_t values */
44
45	diff = pjd1->year - pjd2->year;
46	if (diff < 0) return -1; else if (diff > 0) return 1;
47	/* same year; compare months */
48	diff = pjd1->month - pjd2->month;
49	if (diff < 0) return -1; else if (diff > 0) return 1;
50	/* same year and month; compare monthday */
51	diff = pjd1->monthday - pjd2->monthday;
52	if (diff < 0) return -1; else if (diff > 0) return 1;
53	/* same year and month and monthday; compare time */
54	diff = pjd1->hour - pjd2->hour;
55	if (diff < 0) return -1; else if (diff > 0) return 1;
56	diff = pjd1->minute - pjd2->minute;
57	if (diff < 0) return -1; else if (diff > 0) return 1;
58	diff = pjd1->second - pjd2->second;
59	if (diff < 0) return -1; else if (diff > 0) return 1;
60	/* identical */
61	return 0;
62}
63
64/*
65 * Extension field message format
66 *
67 * These are always signed and saved before sending in network byte
68 * order. They must be converted to and from host byte order for
69 * processing.
70 *
71 * +-------+-------+
72 * |   op  |  len  | <- extension pointer
73 * +-------+-------+
74 * |    associd    |
75 * +---------------+
76 * |   timestamp   | <- value pointer
77 * +---------------+
78 * |   filestamp   |
79 * +---------------+
80 * |   value len   |
81 * +---------------+
82 * |               |
83 * =     value     =
84 * |               |
85 * +---------------+
86 * | signature len |
87 * +---------------+
88 * |               |
89 * =   signature   =
90 * |               |
91 * +---------------+
92 *
93 * The CRYPTO_RESP bit is set to 0 for requests, 1 for responses.
94 * Requests carry the association ID of the receiver; responses carry
95 * the association ID of the sender. Some messages include only the
96 * operation/length and association ID words and so have length 8
97 * octets. Ohers include the value structure and associated value and
98 * signature fields. These messages include the timestamp, filestamp,
99 * value and signature words and so have length at least 24 octets. The
100 * signature and/or value fields can be empty, in which case the
101 * respective length words are zero. An empty value with nonempty
102 * signature is syntactically valid, but semantically questionable.
103 *
104 * The filestamp represents the time when a cryptographic data file such
105 * as a public/private key pair is created. It follows every reference
106 * depending on that file and serves as a means to obsolete earlier data
107 * of the same type. The timestamp represents the time when the
108 * cryptographic data of the message were last signed. Creation of a
109 * cryptographic data file or signing a message can occur only when the
110 * creator or signor is synchronized to an authoritative source and
111 * proventicated to a trusted authority.
112 *
113 * Note there are several conditions required for server trust. First,
114 * the public key on the server certificate must be verified, which can
115 * involve a hike along the certificate trail to a trusted host. Next,
116 * the server trust must be confirmed by one of several identity
117 * schemes. Valid cryptographic values are signed with attached
118 * timestamp and filestamp. Individual packet trust is confirmed
119 * relative to these values by a message digest with keys generated by a
120 * reverse-order pseudorandom hash.
121 *
122 * State decomposition. These flags are lit in the order given. They are
123 * dim only when the association is demobilized.
124 *
125 * CRYPTO_FLAG_ENAB	Lit upon acceptance of a CRYPTO_ASSOC message
126 * CRYPTO_FLAG_CERT	Lit when a self-digned trusted certificate is
127 *			accepted.
128 * CRYPTO_FLAG_VRFY	Lit when identity is confirmed.
129 * CRYPTO_FLAG_PROV	Lit when the first signature is verified.
130 * CRYPTO_FLAG_COOK	Lit when a valid cookie is accepted.
131 * CRYPTO_FLAG_AUTO	Lit when valid autokey values are accepted.
132 * CRYPTO_FLAG_SIGN	Lit when the server signed certificate is
133 *			accepted.
134 * CRYPTO_FLAG_LEAP	Lit when the leapsecond values are accepted.
135 */
136/*
137 * Cryptodefines
138 */
139#define TAI_1972	10	/* initial TAI offset (s) */
140#define MAX_LEAP	100	/* max UTC leapseconds (s) */
141#define VALUE_LEN	(6 * 4) /* min response field length */
142#define MAX_VALLEN	(65535 - VALUE_LEN)
143#define YEAR		(60 * 60 * 24 * 365) /* seconds in year */
144
145/*
146 * Global cryptodata in host byte order
147 */
148u_int32	crypto_flags = 0x0;	/* status word */
149int	crypto_nid = KEY_TYPE_MD5; /* digest nid */
150char	*sys_hostname = NULL;
151char	*sys_groupname = NULL;
152static char *host_filename = NULL;	/* host file name */
153static char *ident_filename = NULL;	/* group file name */
154
155/*
156 * Global cryptodata in network byte order
157 */
158struct cert_info *cinfo = NULL;	/* certificate info/value cache */
159struct cert_info *cert_host = NULL; /* host certificate */
160struct pkey_info *pkinfo = NULL; /* key info/value cache */
161struct value hostval;		/* host value */
162struct value pubkey;		/* public key */
163struct value tai_leap;		/* leapseconds values */
164struct pkey_info *iffkey_info = NULL; /* IFF keys */
165struct pkey_info *gqkey_info = NULL; /* GQ keys */
166struct pkey_info *mvkey_info = NULL; /* MV keys */
167
168/*
169 * Private cryptodata in host byte order
170 */
171static char *passwd = NULL;	/* private key password */
172static EVP_PKEY *host_pkey = NULL; /* host key */
173static EVP_PKEY *sign_pkey = NULL; /* sign key */
174static const EVP_MD *sign_digest = NULL; /* sign digest */
175static u_int sign_siglen;	/* sign key length */
176static char *rand_file = NULL;	/* random seed file */
177
178/*
179 * Cryptotypes
180 */
181static	int	crypto_verify	(struct exten *, struct value *,
182				    struct peer *);
183static	int	crypto_encrypt	(const u_char *, u_int, keyid_t *,
184				    struct value *);
185static	int	crypto_alice	(struct peer *, struct value *);
186static	int	crypto_alice2	(struct peer *, struct value *);
187static	int	crypto_alice3	(struct peer *, struct value *);
188static	int	crypto_bob	(struct exten *, struct value *);
189static	int	crypto_bob2	(struct exten *, struct value *);
190static	int	crypto_bob3	(struct exten *, struct value *);
191static	int	crypto_iff	(struct exten *, struct peer *);
192static	int	crypto_gq	(struct exten *, struct peer *);
193static	int	crypto_mv	(struct exten *, struct peer *);
194static	int	crypto_send	(struct exten *, struct value *, int);
195static	tstamp_t crypto_time	(void);
196static	void	asn_to_calendar		(ASN1_TIME *, struct calendar*);
197static	struct cert_info *cert_parse (const u_char *, long, tstamp_t);
198static	int	cert_sign	(struct exten *, struct value *);
199static	struct cert_info *cert_install (struct exten *, struct peer *);
200static	int	cert_hike	(struct peer *, struct cert_info *);
201static	void	cert_free	(struct cert_info *);
202static	struct pkey_info *crypto_key (char *, char *, sockaddr_u *);
203static	void	bighash		(BIGNUM *, BIGNUM *);
204static	struct cert_info *crypto_cert (char *);
205static	u_int	exten_payload_size(const struct exten *);
206
207#ifdef SYS_WINNT
208int
209readlink(char * link, char * file, int len) {
210	return (-1);
211}
212#endif
213
214/*
215 * session_key - generate session key
216 *
217 * This routine generates a session key from the source address,
218 * destination address, key ID and private value. The value of the
219 * session key is the MD5 hash of these values, while the next key ID is
220 * the first four octets of the hash.
221 *
222 * Returns the next key ID or 0 if there is no destination address.
223 */
224keyid_t
225session_key(
226	sockaddr_u *srcadr, 	/* source address */
227	sockaddr_u *dstadr, 	/* destination address */
228	keyid_t	keyno,		/* key ID */
229	keyid_t	private,	/* private value */
230	u_long	lifetime 	/* key lifetime */
231	)
232{
233	EVP_MD_CTX *ctx;	/* message digest context */
234	u_char dgst[EVP_MAX_MD_SIZE]; /* message digest */
235	keyid_t	keyid;		/* key identifer */
236	u_int32	header[10];	/* data in network byte order */
237	u_int	hdlen, len;
238
239	if (!dstadr)
240		return 0;
241
242	/*
243	 * Generate the session key and key ID. If the lifetime is
244	 * greater than zero, install the key and call it trusted.
245	 */
246	hdlen = 0;
247	switch(AF(srcadr)) {
248	case AF_INET:
249		header[0] = NSRCADR(srcadr);
250		header[1] = NSRCADR(dstadr);
251		header[2] = htonl(keyno);
252		header[3] = htonl(private);
253		hdlen = 4 * sizeof(u_int32);
254		break;
255
256	case AF_INET6:
257		memcpy(&header[0], PSOCK_ADDR6(srcadr),
258		    sizeof(struct in6_addr));
259		memcpy(&header[4], PSOCK_ADDR6(dstadr),
260		    sizeof(struct in6_addr));
261		header[8] = htonl(keyno);
262		header[9] = htonl(private);
263		hdlen = 10 * sizeof(u_int32);
264		break;
265	}
266	ctx = EVP_MD_CTX_new();
267	EVP_DigestInit(ctx, EVP_get_digestbynid(crypto_nid));
268	EVP_DigestUpdate(ctx, (u_char *)header, hdlen);
269	EVP_DigestFinal(ctx, dgst, &len);
270	EVP_MD_CTX_free(ctx);
271	memcpy(&keyid, dgst, 4);
272	keyid = ntohl(keyid);
273	if (lifetime != 0) {
274		MD5auth_setkey(keyno, crypto_nid, dgst, len, NULL);
275		authtrust(keyno, lifetime);
276	}
277	DPRINTF(2, ("session_key: %s > %s %08x %08x hash %08x life %lu\n",
278		    stoa(srcadr), stoa(dstadr), keyno,
279		    private, keyid, lifetime));
280
281	return (keyid);
282}
283
284
285/*
286 * make_keylist - generate key list
287 *
288 * Returns
289 * XEVNT_OK	success
290 * XEVNT_ERR	protocol error
291 *
292 * This routine constructs a pseudo-random sequence by repeatedly
293 * hashing the session key starting from a given source address,
294 * destination address, private value and the next key ID of the
295 * preceeding session key. The last entry on the list is saved along
296 * with its sequence number and public signature.
297 */
298int
299make_keylist(
300	struct peer *peer,	/* peer structure pointer */
301	struct interface *dstadr /* interface */
302	)
303{
304	EVP_MD_CTX *ctx;	/* signature context */
305	tstamp_t tstamp;	/* NTP timestamp */
306	struct autokey *ap;	/* autokey pointer */
307	struct value *vp;	/* value pointer */
308	keyid_t	keyid = 0;	/* next key ID */
309	keyid_t	cookie;		/* private value */
310	long	lifetime;
311	u_int	len, mpoll;
312	int	i;
313
314	if (!dstadr)
315		return XEVNT_ERR;
316
317	/*
318	 * Allocate the key list if necessary.
319	 */
320	tstamp = crypto_time();
321	if (peer->keylist == NULL)
322		peer->keylist = eallocarray(NTP_MAXSESSION,
323					    sizeof(keyid_t));
324
325	/*
326	 * Generate an initial key ID which is unique and greater than
327	 * NTP_MAXKEY.
328	 */
329	while (1) {
330		keyid = ntp_random() & 0xffffffff;
331		if (keyid <= NTP_MAXKEY)
332			continue;
333
334		if (authhavekey(keyid))
335			continue;
336		break;
337	}
338
339	/*
340	 * Generate up to NTP_MAXSESSION session keys. Stop if the
341	 * next one would not be unique or not a session key ID or if
342	 * it would expire before the next poll. The private value
343	 * included in the hash is zero if broadcast mode, the peer
344	 * cookie if client mode or the host cookie if symmetric modes.
345	 */
346	mpoll = 1 << min(peer->ppoll, peer->hpoll);
347	lifetime = min(1U << sys_automax, NTP_MAXSESSION * mpoll);
348	if (peer->hmode == MODE_BROADCAST)
349		cookie = 0;
350	else
351		cookie = peer->pcookie;
352	for (i = 0; i < NTP_MAXSESSION; i++) {
353		peer->keylist[i] = keyid;
354		peer->keynumber = i;
355		keyid = session_key(&dstadr->sin, &peer->srcadr, keyid,
356		    cookie, lifetime + mpoll);
357		lifetime -= mpoll;
358		if (auth_havekey(keyid) || keyid <= NTP_MAXKEY ||
359		    lifetime < 0 || tstamp == 0)
360			break;
361	}
362
363	/*
364	 * Save the last session key ID, sequence number and timestamp,
365	 * then sign these values for later retrieval by the clients. Be
366	 * careful not to use invalid key media. Use the public values
367	 * timestamp as filestamp.
368	 */
369	vp = &peer->sndval;
370	if (vp->ptr == NULL)
371		vp->ptr = emalloc(sizeof(struct autokey));
372	ap = (struct autokey *)vp->ptr;
373	ap->seq = htonl(peer->keynumber);
374	ap->key = htonl(keyid);
375	vp->tstamp = htonl(tstamp);
376	vp->fstamp = hostval.tstamp;
377	vp->vallen = htonl(sizeof(struct autokey));
378	vp->siglen = 0;
379	if (tstamp != 0) {
380		if (vp->sig == NULL)
381			vp->sig = emalloc(sign_siglen);
382		ctx = EVP_MD_CTX_new();
383		EVP_SignInit(ctx, sign_digest);
384		EVP_SignUpdate(ctx, (u_char *)vp, 12);
385		EVP_SignUpdate(ctx, vp->ptr, sizeof(struct autokey));
386		if (EVP_SignFinal(ctx, vp->sig, &len, sign_pkey)) {
387			INSIST(len <= sign_siglen);
388			vp->siglen = htonl(len);
389			peer->flags |= FLAG_ASSOC;
390		}
391		EVP_MD_CTX_free(ctx);
392	}
393	DPRINTF(1, ("make_keys: %d %08x %08x ts %u fs %u poll %d\n",
394		    peer->keynumber, keyid, cookie, ntohl(vp->tstamp),
395		    ntohl(vp->fstamp), peer->hpoll));
396	return (XEVNT_OK);
397}
398
399
400/*
401 * crypto_recv - parse extension fields
402 *
403 * This routine is called when the packet has been matched to an
404 * association and passed sanity, format and MAC checks. We believe the
405 * extension field values only if the field has proper format and
406 * length, the timestamp and filestamp are valid and the signature has
407 * valid length and is verified. There are a few cases where some values
408 * are believed even if the signature fails, but only if the proventic
409 * bit is not set.
410 *
411 * Returns
412 * XEVNT_OK	success
413 * XEVNT_ERR	protocol error
414 * XEVNT_LEN	bad field format or length
415 */
416int
417crypto_recv(
418	struct peer *peer,	/* peer structure pointer */
419	struct recvbuf *rbufp	/* packet buffer pointer */
420	)
421{
422	const EVP_MD *dp;	/* message digest algorithm */
423	u_int32	*pkt;		/* receive packet pointer */
424	struct autokey *ap, *bp; /* autokey pointer */
425	struct exten *ep, *fp;	/* extension pointers */
426	struct cert_info *xinfo; /* certificate info pointer */
427	int	macbytes;	/* length of MAC field, signed by intention */
428	int	authlen;	/* offset of MAC field */
429	associd_t associd;	/* association ID */
430	tstamp_t fstamp = 0;	/* filestamp */
431	u_int	len;		/* extension field length */
432	u_int	code;		/* extension field opcode */
433	u_int	vallen = 0;	/* value length */
434	X509	*cert;		/* X509 certificate */
435	char	statstr[NTP_MAXSTRLEN]; /* statistics for filegen */
436	keyid_t	cookie;		/* crumbles */
437	int	hismode;	/* packet mode */
438	int	rval = XEVNT_OK;
439	const u_char *puch;
440	u_int32 temp32;
441
442	/*
443	 * Initialize. Note that the packet has already been checked for
444	 * valid format and extension field lengths. First extract the
445	 * field length, command code and association ID in host byte
446	 * order. These are used with all commands and modes. Then check
447	 * the version number, which must be 2, and length, which must
448	 * be at least 8 for requests and VALUE_LEN (24) for responses.
449	 * Packets that fail either test sink without a trace. The
450	 * association ID is saved only if nonzero.
451	 */
452	authlen = LEN_PKT_NOMAC;
453	hismode = (int)PKT_MODE((&rbufp->recv_pkt)->li_vn_mode);
454	while ((macbytes = rbufp->recv_length - authlen) > (int)MAX_MAC_LEN) {
455		/* We can be reasonably sure that we can read at least
456		 * the opcode and the size field here. More stringent
457		 * checks follow up shortly.
458		 */
459		pkt = (u_int32 *)&rbufp->recv_pkt + authlen / 4;
460		ep = (struct exten *)pkt;
461		code = ntohl(ep->opcode) & 0xffff0000;
462		len = ntohl(ep->opcode) & 0x0000ffff;
463		// HMS: Why pkt[1] instead of ep->associd ?
464		associd = (associd_t)ntohl(pkt[1]);
465		rval = XEVNT_OK;
466		DPRINTF(1, ("crypto_recv: flags 0x%x ext offset %d len %u code 0x%x associd %d\n",
467			    peer->crypto, authlen, len, code >> 16,
468			    associd));
469
470		/*
471		 * Check version number and field length. If bad,
472		 * quietly ignore the packet.
473		 */
474		if (((code >> 24) & 0x3f) != CRYPTO_VN || len < 8) {
475			sys_badlength++;
476			code |= CRYPTO_ERROR;
477		}
478
479		/* Check if the declared size fits into the remaining
480		 * buffer. We *know* 'macbytes' > 0 here!
481		 */
482		if (len > (u_int)macbytes) {
483			DPRINTF(1, ("crypto_recv: possible attack detected, associd %d\n",
484				    associd));
485			return XEVNT_LEN;
486		}
487
488		/* Check if the paylod of the extension fits into the
489		 * declared frame.
490		 */
491		if (len >= VALUE_LEN) {
492			fstamp = ntohl(ep->fstamp);
493			vallen = ntohl(ep->vallen);
494			/*
495			 * Bug 2761: I hope this isn't too early...
496			 */
497			if (   vallen == 0
498			    || len - VALUE_LEN < vallen)
499				return XEVNT_LEN;
500		}
501		switch (code) {
502
503		/*
504		 * Install status word, host name, signature scheme and
505		 * association ID. In OpenSSL the signature algorithm is
506		 * bound to the digest algorithm, so the NID completely
507		 * defines the signature scheme. Note the request and
508		 * response are identical, but neither is validated by
509		 * signature. The request is processed here only in
510		 * symmetric modes. The server name field might be
511		 * useful to implement access controls in future.
512		 */
513		case CRYPTO_ASSOC:
514
515			/*
516			 * If our state machine is running when this
517			 * message arrives, the other fellow might have
518			 * restarted. However, this could be an
519			 * intruder, so just clamp the poll interval and
520			 * find out for ourselves. Otherwise, pass the
521			 * extension field to the transmit side.
522			 */
523			if (peer->crypto & CRYPTO_FLAG_CERT) {
524				rval = XEVNT_ERR;
525				break;
526			}
527			if (peer->cmmd) {
528				if (peer->assoc != associd) {
529					rval = XEVNT_ERR;
530					break;
531				}
532				free(peer->cmmd); /* will be set again! */
533			}
534			fp = emalloc(len);
535			memcpy(fp, ep, len);
536			fp->associd = htonl(peer->associd);
537			peer->cmmd = fp;
538			/* fall through */
539
540		case CRYPTO_ASSOC | CRYPTO_RESP:
541
542			/*
543			 * Discard the message if it has already been
544			 * stored or the message has been amputated.
545			 */
546			if (peer->crypto) {
547				if (peer->assoc != associd)
548					rval = XEVNT_ERR;
549				break;
550			}
551			INSIST(len >= VALUE_LEN);
552			if (vallen == 0 || vallen > MAXHOSTNAME ||
553			    len - VALUE_LEN < vallen) {
554				rval = XEVNT_LEN;
555				break;
556			}
557			DPRINTF(1, ("crypto_recv: ident host 0x%x %d server 0x%x %d\n",
558				    crypto_flags, peer->associd, fstamp,
559				    peer->assoc));
560			temp32 = crypto_flags & CRYPTO_FLAG_MASK;
561
562			/*
563			 * If the client scheme is PC, the server scheme
564			 * must be PC. The public key and identity are
565			 * presumed valid, so we skip the certificate
566			 * and identity exchanges and move immediately
567			 * to the cookie exchange which confirms the
568			 * server signature.
569			 */
570			if (crypto_flags & CRYPTO_FLAG_PRIV) {
571				if (!(fstamp & CRYPTO_FLAG_PRIV)) {
572					rval = XEVNT_KEY;
573					break;
574				}
575				fstamp |= CRYPTO_FLAG_CERT |
576				    CRYPTO_FLAG_VRFY | CRYPTO_FLAG_SIGN;
577
578			/*
579			 * It is an error if either peer supports
580			 * identity, but the other does not.
581			 */
582			} else if (hismode == MODE_ACTIVE || hismode ==
583			    MODE_PASSIVE) {
584				if ((temp32 && !(fstamp &
585				    CRYPTO_FLAG_MASK)) ||
586				    (!temp32 && (fstamp &
587				    CRYPTO_FLAG_MASK))) {
588					rval = XEVNT_KEY;
589					break;
590				}
591			}
592
593			/*
594			 * Discard the message if the signature digest
595			 * NID is not supported.
596			 */
597			temp32 = (fstamp >> 16) & 0xffff;
598			dp =
599			    (const EVP_MD *)EVP_get_digestbynid(temp32);
600			if (dp == NULL) {
601				rval = XEVNT_MD;
602				break;
603			}
604
605			/*
606			 * Save status word, host name and message
607			 * digest/signature type. If this is from a
608			 * broadcast and the association ID has changed,
609			 * request the autokey values.
610			 */
611			peer->assoc = associd;
612			if (hismode == MODE_SERVER)
613				fstamp |= CRYPTO_FLAG_AUTO;
614			if (!(fstamp & CRYPTO_FLAG_TAI))
615				fstamp |= CRYPTO_FLAG_LEAP;
616			RAND_bytes((u_char *)&peer->hcookie, 4);
617			peer->crypto = fstamp;
618			peer->digest = dp;
619			if (peer->subject != NULL)
620				free(peer->subject);
621			peer->subject = emalloc(vallen + 1);
622			memcpy(peer->subject, ep->pkt, vallen);
623			peer->subject[vallen] = '\0';
624			if (peer->issuer != NULL)
625				free(peer->issuer);
626			peer->issuer = estrdup(peer->subject);
627			snprintf(statstr, sizeof(statstr),
628			    "assoc %d %d host %s %s", peer->associd,
629			    peer->assoc, peer->subject,
630			    OBJ_nid2ln(temp32));
631			record_crypto_stats(&peer->srcadr, statstr);
632			DPRINTF(1, ("crypto_recv: %s\n", statstr));
633			break;
634
635		/*
636		 * Decode X509 certificate in ASN.1 format and extract
637		 * the data containing, among other things, subject
638		 * name and public key. In the default identification
639		 * scheme, the certificate trail is followed to a self
640		 * signed trusted certificate.
641		 */
642		case CRYPTO_CERT | CRYPTO_RESP:
643
644			/*
645			 * Discard the message if empty or invalid.
646			 */
647			if (len < VALUE_LEN)
648				break;
649
650			if ((rval = crypto_verify(ep, NULL, peer)) !=
651			    XEVNT_OK)
652				break;
653
654			/*
655			 * Scan the certificate list to delete old
656			 * versions and link the newest version first on
657			 * the list. Then, verify the signature. If the
658			 * certificate is bad or missing, just ignore
659			 * it.
660			 */
661			if ((xinfo = cert_install(ep, peer)) == NULL) {
662				rval = XEVNT_CRT;
663				break;
664			}
665			if ((rval = cert_hike(peer, xinfo)) != XEVNT_OK)
666				break;
667
668			/*
669			 * We plug in the public key and lifetime from
670			 * the first certificate received. However, note
671			 * that this certificate might not be signed by
672			 * the server, so we can't check the
673			 * signature/digest NID.
674			 */
675			if (peer->pkey == NULL) {
676				puch = xinfo->cert.ptr;
677				cert = d2i_X509(NULL, &puch,
678				    ntohl(xinfo->cert.vallen));
679				peer->pkey = X509_get_pubkey(cert);
680				X509_free(cert);
681			}
682			peer->flash &= ~TEST8;
683			temp32 = xinfo->nid;
684			snprintf(statstr, sizeof(statstr),
685			    "cert %s %s 0x%x %s (%u) fs %u",
686			    xinfo->subject, xinfo->issuer, xinfo->flags,
687			    OBJ_nid2ln(temp32), temp32,
688			    ntohl(ep->fstamp));
689			record_crypto_stats(&peer->srcadr, statstr);
690			DPRINTF(1, ("crypto_recv: %s\n", statstr));
691			break;
692
693		/*
694		 * Schnorr (IFF) identity scheme. This scheme is
695		 * designed for use with shared secret server group keys
696		 * and where the certificate may be generated by a third
697		 * party. The client sends a challenge to the server,
698		 * which performs a calculation and returns the result.
699		 * A positive result is possible only if both client and
700		 * server contain the same secret group key.
701		 */
702		case CRYPTO_IFF | CRYPTO_RESP:
703
704			/*
705			 * Discard the message if invalid.
706			 */
707			if ((rval = crypto_verify(ep, NULL, peer)) !=
708			    XEVNT_OK)
709				break;
710
711			/*
712			 * If the challenge matches the response, the
713			 * server public key, signature and identity are
714			 * all verified at the same time. The server is
715			 * declared trusted, so we skip further
716			 * certificate exchanges and move immediately to
717			 * the cookie exchange.
718			 */
719			if ((rval = crypto_iff(ep, peer)) != XEVNT_OK)
720				break;
721
722			peer->crypto |= CRYPTO_FLAG_VRFY;
723			peer->flash &= ~TEST8;
724			snprintf(statstr, sizeof(statstr), "iff %s fs %u",
725			    peer->issuer, ntohl(ep->fstamp));
726			record_crypto_stats(&peer->srcadr, statstr);
727			DPRINTF(1, ("crypto_recv: %s\n", statstr));
728			break;
729
730		/*
731		 * Guillou-Quisquater (GQ) identity scheme. This scheme
732		 * is designed for use with public certificates carrying
733		 * the GQ public key in an extension field. The client
734		 * sends a challenge to the server, which performs a
735		 * calculation and returns the result. A positive result
736		 * is possible only if both client and server contain
737		 * the same group key and the server has the matching GQ
738		 * private key.
739		 */
740		case CRYPTO_GQ | CRYPTO_RESP:
741
742			/*
743			 * Discard the message if invalid
744			 */
745			if ((rval = crypto_verify(ep, NULL, peer)) !=
746			    XEVNT_OK)
747				break;
748
749			/*
750			 * If the challenge matches the response, the
751			 * server public key, signature and identity are
752			 * all verified at the same time. The server is
753			 * declared trusted, so we skip further
754			 * certificate exchanges and move immediately to
755			 * the cookie exchange.
756			 */
757			if ((rval = crypto_gq(ep, peer)) != XEVNT_OK)
758				break;
759
760			peer->crypto |= CRYPTO_FLAG_VRFY;
761			peer->flash &= ~TEST8;
762			snprintf(statstr, sizeof(statstr), "gq %s fs %u",
763			    peer->issuer, ntohl(ep->fstamp));
764			record_crypto_stats(&peer->srcadr, statstr);
765			DPRINTF(1, ("crypto_recv: %s\n", statstr));
766			break;
767
768		/*
769		 * Mu-Varadharajan (MV) identity scheme. This scheme is
770		 * designed for use with three levels of trust, trusted
771		 * host, server and client. The trusted host key is
772		 * opaque to servers and clients; the server keys are
773		 * opaque to clients and each client key is different.
774		 * Client keys can be revoked without requiring new key
775		 * generations.
776		 */
777		case CRYPTO_MV | CRYPTO_RESP:
778
779			/*
780			 * Discard the message if invalid.
781			 */
782			if ((rval = crypto_verify(ep, NULL, peer)) !=
783			    XEVNT_OK)
784				break;
785
786			/*
787			 * If the challenge matches the response, the
788			 * server public key, signature and identity are
789			 * all verified at the same time. The server is
790			 * declared trusted, so we skip further
791			 * certificate exchanges and move immediately to
792			 * the cookie exchange.
793			 */
794			if ((rval = crypto_mv(ep, peer)) != XEVNT_OK)
795				break;
796
797			peer->crypto |= CRYPTO_FLAG_VRFY;
798			peer->flash &= ~TEST8;
799			snprintf(statstr, sizeof(statstr), "mv %s fs %u",
800			    peer->issuer, ntohl(ep->fstamp));
801			record_crypto_stats(&peer->srcadr, statstr);
802			DPRINTF(1, ("crypto_recv: %s\n", statstr));
803			break;
804
805
806		/*
807		 * Cookie response in client and symmetric modes. If the
808		 * cookie bit is set, the working cookie is the EXOR of
809		 * the current and new values.
810		 */
811		case CRYPTO_COOK | CRYPTO_RESP:
812
813			/*
814			 * Discard the message if invalid or signature
815			 * not verified with respect to the cookie
816			 * values.
817			 */
818			if ((rval = crypto_verify(ep, &peer->cookval,
819			    peer)) != XEVNT_OK)
820				break;
821
822			/*
823			 * Decrypt the cookie, hunting all the time for
824			 * errors.
825			 */
826			if (vallen == (u_int)EVP_PKEY_size(host_pkey)) {
827				RSA *rsa = EVP_PKEY_get0_RSA(host_pkey);
828				u_int32 *cookiebuf = malloc(RSA_size(rsa));
829				if (!cookiebuf) {
830					rval = XEVNT_CKY;
831					break;
832				}
833
834				if (RSA_private_decrypt(vallen,
835				    (u_char *)ep->pkt,
836				    (u_char *)cookiebuf,
837				    rsa,
838				    RSA_PKCS1_OAEP_PADDING) != 4) {
839					rval = XEVNT_CKY;
840					free(cookiebuf);
841					break;
842				} else {
843					cookie = ntohl(*cookiebuf);
844					free(cookiebuf);
845				}
846			} else {
847				rval = XEVNT_CKY;
848				break;
849			}
850
851			/*
852			 * Install cookie values and light the cookie
853			 * bit. If this is not broadcast client mode, we
854			 * are done here.
855			 */
856			key_expire(peer);
857			if (hismode == MODE_ACTIVE || hismode ==
858			    MODE_PASSIVE)
859				peer->pcookie = peer->hcookie ^ cookie;
860			else
861				peer->pcookie = cookie;
862			peer->crypto |= CRYPTO_FLAG_COOK;
863			peer->flash &= ~TEST8;
864			snprintf(statstr, sizeof(statstr),
865			    "cook %x ts %u fs %u", peer->pcookie,
866			    ntohl(ep->tstamp), ntohl(ep->fstamp));
867			record_crypto_stats(&peer->srcadr, statstr);
868			DPRINTF(1, ("crypto_recv: %s\n", statstr));
869			break;
870
871		/*
872		 * Install autokey values in broadcast client and
873		 * symmetric modes. We have to do this every time the
874		 * sever/peer cookie changes or a new keylist is
875		 * rolled. Ordinarily, this is automatic as this message
876		 * is piggybacked on the first NTP packet sent upon
877		 * either of these events. Note that a broadcast client
878		 * or symmetric peer can receive this response without a
879		 * matching request.
880		 */
881		case CRYPTO_AUTO | CRYPTO_RESP:
882
883			/*
884			 * Discard the message if invalid or signature
885			 * not verified with respect to the receive
886			 * autokey values.
887			 */
888			if ((rval = crypto_verify(ep, &peer->recval,
889			    peer)) != XEVNT_OK)
890				break;
891
892			/*
893			 * Discard the message if a broadcast client and
894			 * the association ID does not match. This might
895			 * happen if a broacast server restarts the
896			 * protocol. A protocol restart will occur at
897			 * the next ASSOC message.
898			 */
899			if ((peer->cast_flags & MDF_BCLNT) &&
900			    peer->assoc != associd)
901				break;
902
903			/*
904			 * Install autokey values and light the
905			 * autokey bit. This is not hard.
906			 */
907			if (ep->tstamp == 0)
908				break;
909
910			if (peer->recval.ptr == NULL)
911				peer->recval.ptr =
912				    emalloc(sizeof(struct autokey));
913			bp = (struct autokey *)peer->recval.ptr;
914			peer->recval.tstamp = ep->tstamp;
915			peer->recval.fstamp = ep->fstamp;
916			ap = (struct autokey *)ep->pkt;
917			bp->seq = ntohl(ap->seq);
918			bp->key = ntohl(ap->key);
919			peer->pkeyid = bp->key;
920			peer->crypto |= CRYPTO_FLAG_AUTO;
921			peer->flash &= ~TEST8;
922			snprintf(statstr, sizeof(statstr),
923			    "auto seq %d key %x ts %u fs %u", bp->seq,
924			    bp->key, ntohl(ep->tstamp),
925			    ntohl(ep->fstamp));
926			record_crypto_stats(&peer->srcadr, statstr);
927			DPRINTF(1, ("crypto_recv: %s\n", statstr));
928			break;
929
930		/*
931		 * X509 certificate sign response. Validate the
932		 * certificate signed by the server and install. Later
933		 * this can be provided to clients of this server in
934		 * lieu of the self signed certificate in order to
935		 * validate the public key.
936		 */
937		case CRYPTO_SIGN | CRYPTO_RESP:
938
939			/*
940			 * Discard the message if invalid.
941			 */
942			if ((rval = crypto_verify(ep, NULL, peer)) !=
943			    XEVNT_OK)
944				break;
945
946			/*
947			 * Scan the certificate list to delete old
948			 * versions and link the newest version first on
949			 * the list.
950			 */
951			if ((xinfo = cert_install(ep, peer)) == NULL) {
952				rval = XEVNT_CRT;
953				break;
954			}
955			peer->crypto |= CRYPTO_FLAG_SIGN;
956			peer->flash &= ~TEST8;
957			temp32 = xinfo->nid;
958			snprintf(statstr, sizeof(statstr),
959			    "sign %s %s 0x%x %s (%u) fs %u",
960			    xinfo->subject, xinfo->issuer, xinfo->flags,
961			    OBJ_nid2ln(temp32), temp32,
962			    ntohl(ep->fstamp));
963			record_crypto_stats(&peer->srcadr, statstr);
964			DPRINTF(1, ("crypto_recv: %s\n", statstr));
965			break;
966
967		/*
968		 * Install leapseconds values. While the leapsecond
969		 * values epoch, TAI offset and values expiration epoch
970		 * are retained, only the current TAI offset is provided
971		 * via the kernel to other applications.
972		 */
973		case CRYPTO_LEAP | CRYPTO_RESP:
974			/*
975			 * Discard the message if invalid. We can't
976			 * compare the value timestamps here, as they
977			 * can be updated by different servers.
978			 */
979			rval = crypto_verify(ep, NULL, peer);
980			if ((rval   != XEVNT_OK          ) ||
981			    (vallen != 3*sizeof(uint32_t))  )
982				break;
983
984			/* Check if we can update the basic TAI offset
985			 * for our current leap frame. This is a hack
986			 * and ignores the time stamps in the autokey
987			 * message.
988			 */
989			if (sys_leap != LEAP_NOTINSYNC)
990				leapsec_autokey_tai(ntohl(ep->pkt[0]),
991						    rbufp->recv_time.l_ui, NULL);
992			tai_leap.tstamp = ep->tstamp;
993			tai_leap.fstamp = ep->fstamp;
994			crypto_update();
995			mprintf_event(EVNT_TAI, peer,
996				      "%d seconds", ntohl(ep->pkt[0]));
997			peer->crypto |= CRYPTO_FLAG_LEAP;
998			peer->flash &= ~TEST8;
999			snprintf(statstr, sizeof(statstr),
1000				 "leap TAI offset %d at %u expire %u fs %u",
1001				 ntohl(ep->pkt[0]), ntohl(ep->pkt[1]),
1002				 ntohl(ep->pkt[2]), ntohl(ep->fstamp));
1003			record_crypto_stats(&peer->srcadr, statstr);
1004			DPRINTF(1, ("crypto_recv: %s\n", statstr));
1005			break;
1006
1007		/*
1008		 * We come here in symmetric modes for miscellaneous
1009		 * commands that have value fields but are processed on
1010		 * the transmit side. All we need do here is check for
1011		 * valid field length. Note that ASSOC is handled
1012		 * separately.
1013		 */
1014		case CRYPTO_CERT:
1015		case CRYPTO_IFF:
1016		case CRYPTO_GQ:
1017		case CRYPTO_MV:
1018		case CRYPTO_COOK:
1019		case CRYPTO_SIGN:
1020			if (len < VALUE_LEN) {
1021				rval = XEVNT_LEN;
1022				break;
1023			}
1024			/* fall through */
1025
1026		/*
1027		 * We come here in symmetric modes for requests
1028		 * requiring a response (above plus AUTO and LEAP) and
1029		 * for responses. If a request, save the extension field
1030		 * for later; invalid requests will be caught on the
1031		 * transmit side. If an error or invalid response,
1032		 * declare a protocol error.
1033		 */
1034		default:
1035			if (code & (CRYPTO_RESP | CRYPTO_ERROR)) {
1036				rval = XEVNT_ERR;
1037			} else if (peer->cmmd == NULL) {
1038				fp = emalloc(len);
1039				memcpy(fp, ep, len);
1040				peer->cmmd = fp;
1041			}
1042		}
1043
1044		/*
1045		 * The first error found terminates the extension field
1046		 * scan and we return the laundry to the caller.
1047		 */
1048		if (rval != XEVNT_OK) {
1049			snprintf(statstr, sizeof(statstr),
1050			    "%04x %d %02x %s", htonl(ep->opcode),
1051			    associd, rval, eventstr(rval));
1052			record_crypto_stats(&peer->srcadr, statstr);
1053			DPRINTF(1, ("crypto_recv: %s\n", statstr));
1054			return (rval);
1055		}
1056		authlen += (len + 3) / 4 * 4;
1057	}
1058	return (rval);
1059}
1060
1061
1062/*
1063 * crypto_xmit - construct extension fields
1064 *
1065 * This routine is called both when an association is configured and
1066 * when one is not. The only case where this matters is to retrieve the
1067 * autokey information, in which case the caller has to provide the
1068 * association ID to match the association.
1069 *
1070 * Side effect: update the packet offset.
1071 *
1072 * Errors
1073 * XEVNT_OK	success
1074 * XEVNT_CRT	bad or missing certificate
1075 * XEVNT_ERR	protocol error
1076 * XEVNT_LEN	bad field format or length
1077 * XEVNT_PER	host certificate expired
1078 */
1079int
1080crypto_xmit(
1081	struct peer *peer,	/* peer structure pointer */
1082	struct pkt *xpkt,	/* transmit packet pointer */
1083	struct recvbuf *rbufp,	/* receive buffer pointer */
1084	int	start,		/* offset to extension field */
1085	struct exten *ep,	/* extension pointer */
1086	keyid_t cookie		/* session cookie */
1087	)
1088{
1089	struct exten *fp;	/* extension pointers */
1090	struct cert_info *cp, *xp, *yp; /* cert info/value pointer */
1091	sockaddr_u *srcadr_sin; /* source address */
1092	u_int32	*pkt;		/* packet pointer */
1093	u_int	opcode;		/* extension field opcode */
1094	char	certname[MAXHOSTNAME + 1]; /* subject name buffer */
1095	char	statstr[NTP_MAXSTRLEN]; /* statistics for filegen */
1096	tstamp_t tstamp;
1097	struct calendar tscal;
1098	u_int	vallen;
1099	struct value vtemp;
1100	associd_t associd;
1101	int	rval;
1102	int	len;
1103	keyid_t tcookie;
1104
1105	/*
1106	 * Generate the requested extension field request code, length
1107	 * and association ID. If this is a response and the host is not
1108	 * synchronized, light the error bit and go home.
1109	 */
1110	pkt = (u_int32 *)xpkt + start / 4;
1111	fp = (struct exten *)pkt;
1112	opcode = ntohl(ep->opcode);
1113	if (peer != NULL) {
1114		srcadr_sin = &peer->srcadr;
1115		if (!(opcode & CRYPTO_RESP))
1116			peer->opcode = ep->opcode;
1117	} else {
1118		srcadr_sin = &rbufp->recv_srcadr;
1119	}
1120	associd = (associd_t) ntohl(ep->associd);
1121	len = 8;
1122	fp->opcode = htonl((opcode & 0xffff0000) | len);
1123	fp->associd = ep->associd;
1124	rval = XEVNT_OK;
1125	tstamp = crypto_time();
1126	switch (opcode & 0xffff0000) {
1127
1128	/*
1129	 * Send association request and response with status word and
1130	 * host name. Note, this message is not signed and the filestamp
1131	 * contains only the status word.
1132	 */
1133	case CRYPTO_ASSOC:
1134	case CRYPTO_ASSOC | CRYPTO_RESP:
1135		len = crypto_send(fp, &hostval, start);
1136		fp->fstamp = htonl(crypto_flags);
1137		break;
1138
1139	/*
1140	 * Send certificate request. Use the values from the extension
1141	 * field.
1142	 */
1143	case CRYPTO_CERT:
1144		memset(&vtemp, 0, sizeof(vtemp));
1145		vtemp.tstamp = ep->tstamp;
1146		vtemp.fstamp = ep->fstamp;
1147		vtemp.vallen = ep->vallen;
1148		vtemp.ptr = (u_char *)ep->pkt;
1149		len = crypto_send(fp, &vtemp, start);
1150		break;
1151
1152	/*
1153	 * Send sign request. Use the host certificate, which is self-
1154	 * signed and may or may not be trusted.
1155	 */
1156	case CRYPTO_SIGN:
1157		(void)ntpcal_ntp_to_date(&tscal, tstamp, NULL);
1158		if ((calcomp(&tscal, &(cert_host->first)) < 0)
1159		|| (calcomp(&tscal, &(cert_host->last)) > 0))
1160			rval = XEVNT_PER;
1161		else
1162			len = crypto_send(fp, &cert_host->cert, start);
1163		break;
1164
1165	/*
1166	 * Send certificate response. Use the name in the extension
1167	 * field to find the certificate in the cache. If the request
1168	 * contains no subject name, assume the name of this host. This
1169	 * is for backwards compatibility. Private certificates are
1170	 * never sent.
1171	 *
1172	 * There may be several certificates matching the request. First
1173	 * choice is a self-signed trusted certificate; second choice is
1174	 * any certificate signed by another host. There is no third
1175	 * choice.
1176	 */
1177	case CRYPTO_CERT | CRYPTO_RESP:
1178		vallen = exten_payload_size(ep); /* Must be <64k */
1179		if (vallen == 0 || vallen >= sizeof(certname) ) {
1180			rval = XEVNT_LEN;
1181			break;
1182		}
1183
1184		/*
1185		 * Find all public valid certificates with matching
1186		 * subject. If a self-signed, trusted certificate is
1187		 * found, use that certificate. If not, use the last non
1188		 * self-signed certificate.
1189		 */
1190		memcpy(certname, ep->pkt, vallen);
1191		certname[vallen] = '\0';
1192		xp = yp = NULL;
1193		for (cp = cinfo; cp != NULL; cp = cp->link) {
1194			if (cp->flags & (CERT_PRIV | CERT_ERROR))
1195				continue;
1196
1197			if (strcmp(certname, cp->subject) != 0)
1198				continue;
1199
1200			if (strcmp(certname, cp->issuer) != 0)
1201				yp = cp;
1202			else if (cp ->flags & CERT_TRUST)
1203				xp = cp;
1204			continue;
1205		}
1206
1207		/*
1208		 * Be careful who you trust. If the certificate is not
1209		 * found, return an empty response. Note that we dont
1210		 * enforce lifetimes here.
1211		 *
1212		 * The timestamp and filestamp are taken from the
1213		 * certificate value structure. For all certificates the
1214		 * timestamp is the latest signature update time. For
1215		 * host and imported certificates the filestamp is the
1216		 * creation epoch. For signed certificates the filestamp
1217		 * is the creation epoch of the trusted certificate at
1218		 * the root of the certificate trail. In principle, this
1219		 * allows strong checking for signature masquerade.
1220		 */
1221		if (xp == NULL)
1222			xp = yp;
1223		if (xp == NULL)
1224			break;
1225
1226		if (tstamp == 0)
1227			break;
1228
1229		len = crypto_send(fp, &xp->cert, start);
1230		break;
1231
1232	/*
1233	 * Send challenge in Schnorr (IFF) identity scheme.
1234	 */
1235	case CRYPTO_IFF:
1236		if (peer == NULL)
1237			break;		/* hack attack */
1238
1239		if ((rval = crypto_alice(peer, &vtemp)) == XEVNT_OK) {
1240			len = crypto_send(fp, &vtemp, start);
1241			value_free(&vtemp);
1242		}
1243		break;
1244
1245	/*
1246	 * Send response in Schnorr (IFF) identity scheme.
1247	 */
1248	case CRYPTO_IFF | CRYPTO_RESP:
1249		if ((rval = crypto_bob(ep, &vtemp)) == XEVNT_OK) {
1250			len = crypto_send(fp, &vtemp, start);
1251			value_free(&vtemp);
1252		}
1253		break;
1254
1255	/*
1256	 * Send challenge in Guillou-Quisquater (GQ) identity scheme.
1257	 */
1258	case CRYPTO_GQ:
1259		if (peer == NULL)
1260			break;		/* hack attack */
1261
1262		if ((rval = crypto_alice2(peer, &vtemp)) == XEVNT_OK) {
1263			len = crypto_send(fp, &vtemp, start);
1264			value_free(&vtemp);
1265		}
1266		break;
1267
1268	/*
1269	 * Send response in Guillou-Quisquater (GQ) identity scheme.
1270	 */
1271	case CRYPTO_GQ | CRYPTO_RESP:
1272		if ((rval = crypto_bob2(ep, &vtemp)) == XEVNT_OK) {
1273			len = crypto_send(fp, &vtemp, start);
1274			value_free(&vtemp);
1275		}
1276		break;
1277
1278	/*
1279	 * Send challenge in MV identity scheme.
1280	 */
1281	case CRYPTO_MV:
1282		if (peer == NULL)
1283			break;		/* hack attack */
1284
1285		if ((rval = crypto_alice3(peer, &vtemp)) == XEVNT_OK) {
1286			len = crypto_send(fp, &vtemp, start);
1287			value_free(&vtemp);
1288		}
1289		break;
1290
1291	/*
1292	 * Send response in MV identity scheme.
1293	 */
1294	case CRYPTO_MV | CRYPTO_RESP:
1295		if ((rval = crypto_bob3(ep, &vtemp)) == XEVNT_OK) {
1296			len = crypto_send(fp, &vtemp, start);
1297			value_free(&vtemp);
1298		}
1299		break;
1300
1301	/*
1302	 * Send certificate sign response. The integrity of the request
1303	 * certificate has already been verified on the receive side.
1304	 * Sign the response using the local server key. Use the
1305	 * filestamp from the request and use the timestamp as the
1306	 * current time. Light the error bit if the certificate is
1307	 * invalid or contains an unverified signature.
1308	 */
1309	case CRYPTO_SIGN | CRYPTO_RESP:
1310		if ((rval = cert_sign(ep, &vtemp)) == XEVNT_OK) {
1311			len = crypto_send(fp, &vtemp, start);
1312			value_free(&vtemp);
1313		}
1314		break;
1315
1316	/*
1317	 * Send public key and signature. Use the values from the public
1318	 * key.
1319	 */
1320	case CRYPTO_COOK:
1321		len = crypto_send(fp, &pubkey, start);
1322		break;
1323
1324	/*
1325	 * Encrypt and send cookie and signature. Light the error bit if
1326	 * anything goes wrong.
1327	 */
1328	case CRYPTO_COOK | CRYPTO_RESP:
1329		vallen = ntohl(ep->vallen);	/* Must be <64k */
1330		if (   vallen == 0
1331		    || (vallen >= MAX_VALLEN)
1332		    || (opcode & 0x0000ffff)  < VALUE_LEN + vallen) {
1333			rval = XEVNT_LEN;
1334			break;
1335		}
1336		if (peer == NULL)
1337			tcookie = cookie;
1338		else
1339			tcookie = peer->hcookie;
1340		if ((rval = crypto_encrypt((const u_char *)ep->pkt, vallen, &tcookie, &vtemp))
1341		    == XEVNT_OK) {
1342			len = crypto_send(fp, &vtemp, start);
1343			value_free(&vtemp);
1344		}
1345		break;
1346
1347	/*
1348	 * Find peer and send autokey data and signature in broadcast
1349	 * server and symmetric modes. Use the values in the autokey
1350	 * structure. If no association is found, either the server has
1351	 * restarted with new associations or some perp has replayed an
1352	 * old message, in which case light the error bit.
1353	 */
1354	case CRYPTO_AUTO | CRYPTO_RESP:
1355		if (peer == NULL) {
1356			if ((peer = findpeerbyassoc(associd)) == NULL) {
1357				rval = XEVNT_ERR;
1358				break;
1359			}
1360		}
1361		peer->flags &= ~FLAG_ASSOC;
1362		len = crypto_send(fp, &peer->sndval, start);
1363		break;
1364
1365	/*
1366	 * Send leapseconds values and signature. Use the values from
1367	 * the tai structure. If no table has been loaded, just send an
1368	 * empty request.
1369	 */
1370	case CRYPTO_LEAP | CRYPTO_RESP:
1371		len = crypto_send(fp, &tai_leap, start);
1372		break;
1373
1374	/*
1375	 * Default - Send a valid command for unknown requests; send
1376	 * an error response for unknown resonses.
1377	 */
1378	default:
1379		if (opcode & CRYPTO_RESP)
1380			rval = XEVNT_ERR;
1381	}
1382
1383	/*
1384	 * In case of error, flame the log. If a request, toss the
1385	 * puppy; if a response, return so the sender can flame, too.
1386	 */
1387	if (rval != XEVNT_OK) {
1388		u_int32	uint32;
1389
1390		uint32 = CRYPTO_ERROR;
1391		opcode |= uint32;
1392		fp->opcode |= htonl(uint32);
1393		snprintf(statstr, sizeof(statstr),
1394		    "%04x %d %02x %s", opcode, associd, rval,
1395		    eventstr(rval));
1396		record_crypto_stats(srcadr_sin, statstr);
1397		DPRINTF(1, ("crypto_xmit: %s\n", statstr));
1398		if (!(opcode & CRYPTO_RESP))
1399			return (0);
1400	}
1401	DPRINTF(1, ("crypto_xmit: flags 0x%x offset %d len %d code 0x%x associd %d\n",
1402		    crypto_flags, start, len, opcode >> 16, associd));
1403	return (len);
1404}
1405
1406
1407/*
1408 * crypto_verify - verify the extension field value and signature
1409 *
1410 * Returns
1411 * XEVNT_OK	success
1412 * XEVNT_ERR	protocol error
1413 * XEVNT_FSP	bad filestamp
1414 * XEVNT_LEN	bad field format or length
1415 * XEVNT_PUB	bad or missing public key
1416 * XEVNT_SGL	bad signature length
1417 * XEVNT_SIG	signature not verified
1418 * XEVNT_TSP	bad timestamp
1419 */
1420static int
1421crypto_verify(
1422	struct exten *ep,	/* extension pointer */
1423	struct value *vp,	/* value pointer */
1424	struct peer *peer	/* peer structure pointer */
1425	)
1426{
1427	EVP_PKEY *pkey;		/* server public key */
1428	EVP_MD_CTX *ctx;	/* signature context */
1429	tstamp_t tstamp, tstamp1 = 0; /* timestamp */
1430	tstamp_t fstamp, fstamp1 = 0; /* filestamp */
1431	u_int	vallen;		/* value length */
1432	u_int	siglen;		/* signature length */
1433	u_int	opcode, len;
1434	int	i;
1435
1436	/*
1437	 * We are extremely parannoyed. We require valid opcode, length,
1438	 * association ID, timestamp, filestamp, public key, digest,
1439	 * signature length and signature, where relevant. Note that
1440	 * preliminary length checks are done in the main loop.
1441	 */
1442	len = ntohl(ep->opcode) & 0x0000ffff;
1443	opcode = ntohl(ep->opcode) & 0xffff0000;
1444
1445	/*
1446	 * Check for valid value header, association ID and extension
1447	 * field length. Remember, it is not an error to receive an
1448	 * unsolicited response; however, the response ID must match
1449	 * the association ID.
1450	 */
1451	if (opcode & CRYPTO_ERROR)
1452		return (XEVNT_ERR);
1453
1454 	if (len < VALUE_LEN)
1455		return (XEVNT_LEN);
1456
1457	if (opcode == (CRYPTO_AUTO | CRYPTO_RESP) && (peer->pmode ==
1458	    MODE_BROADCAST || (peer->cast_flags & MDF_BCLNT))) {
1459		if (ntohl(ep->associd) != peer->assoc)
1460			return (XEVNT_ERR);
1461	} else {
1462		if (ntohl(ep->associd) != peer->associd)
1463			return (XEVNT_ERR);
1464	}
1465
1466	/*
1467	 * We have a valid value header. Check for valid value and
1468	 * signature field lengths. The extension field length must be
1469	 * long enough to contain the value header, value and signature.
1470	 * Note both the value and signature field lengths are rounded
1471	 * up to the next word (4 octets).
1472	 */
1473	vallen = ntohl(ep->vallen);
1474	if (   vallen == 0
1475	    || vallen > MAX_VALLEN)
1476		return (XEVNT_LEN);
1477
1478	i = (vallen + 3) / 4;
1479	siglen = ntohl(ep->pkt[i++]);
1480	if (   siglen > MAX_VALLEN
1481	    || len - VALUE_LEN < ((vallen + 3) / 4) * 4
1482	    || len - VALUE_LEN - ((vallen + 3) / 4) * 4
1483	      < ((siglen + 3) / 4) * 4)
1484		return (XEVNT_LEN);
1485
1486	/*
1487	 * Check for valid timestamp and filestamp. If the timestamp is
1488	 * zero, the sender is not synchronized and signatures are
1489	 * not possible. If nonzero the timestamp must not precede the
1490	 * filestamp. The timestamp and filestamp must not precede the
1491	 * corresponding values in the value structure, if present.
1492 	 */
1493	tstamp = ntohl(ep->tstamp);
1494	fstamp = ntohl(ep->fstamp);
1495	if (tstamp == 0)
1496		return (XEVNT_TSP);
1497
1498	if (tstamp < fstamp)
1499		return (XEVNT_TSP);
1500
1501	if (vp != NULL) {
1502		tstamp1 = ntohl(vp->tstamp);
1503		fstamp1 = ntohl(vp->fstamp);
1504		if (tstamp1 != 0 && fstamp1 != 0) {
1505			if (tstamp < tstamp1)
1506				return (XEVNT_TSP);
1507
1508			if ((tstamp < fstamp1 || fstamp < fstamp1))
1509				return (XEVNT_FSP);
1510		}
1511	}
1512
1513	/*
1514	 * At the time the certificate message is validated, the public
1515	 * key in the message is not available. Thus, don't try to
1516	 * verify the signature.
1517	 */
1518	if (opcode == (CRYPTO_CERT | CRYPTO_RESP))
1519		return (XEVNT_OK);
1520
1521	/*
1522	 * Check for valid signature length, public key and digest
1523	 * algorithm.
1524	 */
1525	if (crypto_flags & peer->crypto & CRYPTO_FLAG_PRIV)
1526		pkey = sign_pkey;
1527	else
1528		pkey = peer->pkey;
1529	if (siglen == 0 || pkey == NULL || peer->digest == NULL)
1530		return (XEVNT_ERR);
1531
1532	if (siglen != (u_int)EVP_PKEY_size(pkey))
1533		return (XEVNT_SGL);
1534
1535	/*
1536	 * Darn, I thought we would never get here. Verify the
1537	 * signature. If the identity exchange is verified, light the
1538	 * proventic bit. What a relief.
1539	 */
1540	ctx = EVP_MD_CTX_new();
1541	EVP_VerifyInit(ctx, peer->digest);
1542	/* XXX: the "+ 12" needs to be at least documented... */
1543	EVP_VerifyUpdate(ctx, (u_char *)&ep->tstamp, vallen + 12);
1544	if (EVP_VerifyFinal(ctx, (u_char *)&ep->pkt[i], siglen,
1545	    pkey) <= 0) {
1546		EVP_MD_CTX_free(ctx);
1547		return (XEVNT_SIG);
1548	}
1549	EVP_MD_CTX_free(ctx);
1550
1551	if (peer->crypto & CRYPTO_FLAG_VRFY)
1552		peer->crypto |= CRYPTO_FLAG_PROV;
1553	return (XEVNT_OK);
1554}
1555
1556
1557/*
1558 * crypto_encrypt - construct vp (encrypted cookie and signature) from
1559 * the public key and cookie.
1560 *
1561 * Returns:
1562 * XEVNT_OK	success
1563 * XEVNT_CKY	bad or missing cookie
1564 * XEVNT_PUB	bad or missing public key
1565 */
1566static int
1567crypto_encrypt(
1568	const u_char *ptr,	/* Public Key */
1569	u_int	vallen,		/* Length of Public Key */
1570	keyid_t	*cookie,	/* server cookie */
1571	struct value *vp	/* value pointer */
1572	)
1573{
1574	EVP_PKEY *pkey;		/* public key */
1575	EVP_MD_CTX *ctx;	/* signature context */
1576	tstamp_t tstamp;	/* NTP timestamp */
1577	u_int32	temp32;
1578	u_char *puch;
1579
1580	/*
1581	 * Extract the public key from the request.
1582	 */
1583	pkey = d2i_PublicKey(EVP_PKEY_RSA, NULL, &ptr, vallen);
1584	if (pkey == NULL) {
1585		msyslog(LOG_ERR, "crypto_encrypt: %s",
1586		    ERR_error_string(ERR_get_error(), NULL));
1587		return (XEVNT_PUB);
1588	}
1589
1590	/*
1591	 * Encrypt the cookie, encode in ASN.1 and sign.
1592	 */
1593	memset(vp, 0, sizeof(struct value));
1594	tstamp = crypto_time();
1595	vp->tstamp = htonl(tstamp);
1596	vp->fstamp = hostval.tstamp;
1597	vallen = EVP_PKEY_size(pkey);
1598	vp->vallen = htonl(vallen);
1599	vp->ptr = emalloc(vallen);
1600	puch = vp->ptr;
1601	temp32 = htonl(*cookie);
1602	if (RSA_public_encrypt(4, (u_char *)&temp32, puch,
1603	    EVP_PKEY_get0_RSA(pkey), RSA_PKCS1_OAEP_PADDING) <= 0) {
1604		msyslog(LOG_ERR, "crypto_encrypt: %s",
1605		    ERR_error_string(ERR_get_error(), NULL));
1606		free(vp->ptr);
1607		EVP_PKEY_free(pkey);
1608		return (XEVNT_CKY);
1609	}
1610	EVP_PKEY_free(pkey);
1611	if (tstamp == 0)
1612		return (XEVNT_OK);
1613
1614	vp->sig = emalloc(sign_siglen);
1615	ctx = EVP_MD_CTX_new();
1616	EVP_SignInit(ctx, sign_digest);
1617	EVP_SignUpdate(ctx, (u_char *)&vp->tstamp, 12);
1618	EVP_SignUpdate(ctx, vp->ptr, vallen);
1619	if (EVP_SignFinal(ctx, vp->sig, &vallen, sign_pkey)) {
1620		INSIST(vallen <= sign_siglen);
1621		vp->siglen = htonl(vallen);
1622	}
1623	EVP_MD_CTX_free(ctx);
1624	return (XEVNT_OK);
1625}
1626
1627
1628/*
1629 * crypto_ident - construct extension field for identity scheme
1630 *
1631 * This routine determines which identity scheme is in use and
1632 * constructs an extension field for that scheme.
1633 *
1634 * Returns
1635 * CRYTPO_IFF	IFF scheme
1636 * CRYPTO_GQ	GQ scheme
1637 * CRYPTO_MV	MV scheme
1638 * CRYPTO_NULL	no available scheme
1639 */
1640u_int
1641crypto_ident(
1642	struct peer *peer	/* peer structure pointer */
1643	)
1644{
1645	char		filename[MAXFILENAME];
1646	const char *	scheme_name;
1647	u_int		scheme_id;
1648
1649	/*
1650	 * We come here after the group trusted host has been found; its
1651	 * name defines the group name. Search the key cache for all
1652	 * keys matching the same group name in order IFF, GQ and MV.
1653	 * Use the first one available.
1654	 */
1655	scheme_name = NULL;
1656	if (peer->crypto & CRYPTO_FLAG_IFF) {
1657		scheme_name = "iff";
1658		scheme_id = CRYPTO_IFF;
1659	} else if (peer->crypto & CRYPTO_FLAG_GQ) {
1660		scheme_name = "gq";
1661		scheme_id = CRYPTO_GQ;
1662	} else if (peer->crypto & CRYPTO_FLAG_MV) {
1663		scheme_name = "mv";
1664		scheme_id = CRYPTO_MV;
1665	}
1666
1667	if (scheme_name != NULL) {
1668		snprintf(filename, sizeof(filename), "ntpkey_%spar_%s",
1669		    scheme_name, peer->ident);
1670		peer->ident_pkey = crypto_key(filename, NULL,
1671		    &peer->srcadr);
1672		if (peer->ident_pkey != NULL)
1673			return scheme_id;
1674	}
1675
1676	msyslog(LOG_NOTICE,
1677	    "crypto_ident: no identity parameters found for group %s",
1678	    peer->ident);
1679
1680	return CRYPTO_NULL;
1681}
1682
1683
1684/*
1685 * crypto_args - construct extension field from arguments
1686 *
1687 * This routine creates an extension field with current timestamps and
1688 * specified opcode, association ID and optional string. Note that the
1689 * extension field is created here, but freed after the crypto_xmit()
1690 * call in the protocol module.
1691 *
1692 * Returns extension field pointer (no errors)
1693 *
1694 * XXX: opcode and len should really be 32-bit quantities and
1695 * we should make sure that str is not too big.
1696 */
1697struct exten *
1698crypto_args(
1699	struct peer *peer,	/* peer structure pointer */
1700	u_int	opcode,		/* operation code */
1701	associd_t associd,	/* association ID */
1702	char	*str		/* argument string */
1703	)
1704{
1705	tstamp_t tstamp;	/* NTP timestamp */
1706	struct exten *ep;	/* extension field pointer */
1707	u_int	len;		/* extension field length */
1708	size_t	slen = 0;
1709
1710	tstamp = crypto_time();
1711	len = sizeof(struct exten);
1712	if (str != NULL) {
1713		slen = strlen(str);
1714		INSIST(slen < MAX_VALLEN);
1715		len += slen;
1716	}
1717	ep = emalloc_zero(len);
1718	if (opcode == 0)
1719		return (ep);
1720
1721	REQUIRE(0 == (len    & ~0x0000ffff));
1722	REQUIRE(0 == (opcode & ~0xffff0000));
1723
1724	ep->opcode = htonl(opcode + len);
1725	ep->associd = htonl(associd);
1726	ep->tstamp = htonl(tstamp);
1727	ep->fstamp = hostval.tstamp;
1728	ep->vallen = 0;
1729	if (str != NULL) {
1730		ep->vallen = htonl(slen);
1731		memcpy((char *)ep->pkt, str, slen);
1732	}
1733	return (ep);
1734}
1735
1736
1737/*
1738 * crypto_send - construct extension field from value components
1739 *
1740 * The value and signature fields are zero-padded to a word boundary.
1741 * Note: it is not polite to send a nonempty signature with zero
1742 * timestamp or a nonzero timestamp with an empty signature, but those
1743 * rules are not enforced here.
1744 *
1745 * XXX This code won't work on a box with 16-bit ints.
1746 */
1747int
1748crypto_send(
1749	struct exten *ep,	/* extension field pointer */
1750	struct value *vp,	/* value pointer */
1751	int	start		/* buffer offset */
1752	)
1753{
1754	u_int	len, vallen, siglen, opcode;
1755	u_int	i, j;
1756
1757	/*
1758	 * Calculate extension field length and check for buffer
1759	 * overflow. Leave room for the MAC.
1760	 */
1761	len = 16;				/* XXX Document! */
1762	vallen = ntohl(vp->vallen);
1763	INSIST(vallen <= MAX_VALLEN);
1764	len += ((vallen + 3) / 4 + 1) * 4;
1765	siglen = ntohl(vp->siglen);
1766	len += ((siglen + 3) / 4 + 1) * 4;
1767	if (start + len > sizeof(struct pkt) - MAX_MAC_LEN)
1768		return (0);
1769
1770	/*
1771	 * Copy timestamps.
1772	 */
1773	ep->tstamp = vp->tstamp;
1774	ep->fstamp = vp->fstamp;
1775	ep->vallen = vp->vallen;
1776
1777	/*
1778	 * Copy value. If the data field is empty or zero length,
1779	 * encode an empty value with length zero.
1780	 */
1781	i = 0;
1782	if (vallen > 0 && vp->ptr != NULL) {
1783		j = vallen / 4;
1784		if (j * 4 < vallen)
1785			ep->pkt[i + j++] = 0;
1786		memcpy(&ep->pkt[i], vp->ptr, vallen);
1787		i += j;
1788	}
1789
1790	/*
1791	 * Copy signature. If the signature field is empty or zero
1792	 * length, encode an empty signature with length zero.
1793	 */
1794	ep->pkt[i++] = vp->siglen;
1795	if (siglen > 0 && vp->sig != NULL) {
1796		j = siglen / 4;
1797		if (j * 4 < siglen)
1798			ep->pkt[i + j++] = 0;
1799		memcpy(&ep->pkt[i], vp->sig, siglen);
1800		/* i += j; */	/* We don't use i after this */
1801	}
1802	opcode = ntohl(ep->opcode);
1803	ep->opcode = htonl((opcode & 0xffff0000) | len);
1804	ENSURE(len <= MAX_VALLEN);
1805	return (len);
1806}
1807
1808
1809/*
1810 * crypto_update - compute new public value and sign extension fields
1811 *
1812 * This routine runs periodically, like once a day, and when something
1813 * changes. It updates the timestamps on three value structures and one
1814 * value structure list, then signs all the structures:
1815 *
1816 * hostval	host name (not signed)
1817 * pubkey	public key
1818 * cinfo	certificate info/value list
1819 * tai_leap	leap values
1820 *
1821 * Filestamps are proventic data, so this routine runs only when the
1822 * host is synchronized to a proventicated source. Thus, the timestamp
1823 * is proventic and can be used to deflect clogging attacks.
1824 *
1825 * Returns void (no errors)
1826 */
1827void
1828crypto_update(void)
1829{
1830	EVP_MD_CTX *ctx;	/* message digest context */
1831	struct cert_info *cp;	/* certificate info/value */
1832	char	statstr[NTP_MAXSTRLEN]; /* statistics for filegen */
1833	u_int32	*ptr;
1834	u_int	len;
1835	leap_result_t leap_data;
1836
1837	hostval.tstamp = htonl(crypto_time());
1838	if (hostval.tstamp == 0)
1839		return;
1840
1841	ctx = EVP_MD_CTX_new();
1842
1843	/*
1844	 * Sign public key and timestamps. The filestamp is derived from
1845	 * the host key file extension from wherever the file was
1846	 * generated.
1847	 */
1848	if (pubkey.vallen != 0) {
1849		pubkey.tstamp = hostval.tstamp;
1850		pubkey.siglen = 0;
1851		if (pubkey.sig == NULL)
1852			pubkey.sig = emalloc(sign_siglen);
1853		EVP_SignInit(ctx, sign_digest);
1854		EVP_SignUpdate(ctx, (u_char *)&pubkey, 12);
1855		EVP_SignUpdate(ctx, pubkey.ptr, ntohl(pubkey.vallen));
1856		if (EVP_SignFinal(ctx, pubkey.sig, &len, sign_pkey)) {
1857			INSIST(len <= sign_siglen);
1858			pubkey.siglen = htonl(len);
1859		}
1860	}
1861
1862	/*
1863	 * Sign certificates and timestamps. The filestamp is derived
1864	 * from the certificate file extension from wherever the file
1865	 * was generated. Note we do not throw expired certificates
1866	 * away; they may have signed younger ones.
1867	 */
1868	for (cp = cinfo; cp != NULL; cp = cp->link) {
1869		cp->cert.tstamp = hostval.tstamp;
1870		cp->cert.siglen = 0;
1871		if (cp->cert.sig == NULL)
1872			cp->cert.sig = emalloc(sign_siglen);
1873		EVP_SignInit(ctx, sign_digest);
1874		EVP_SignUpdate(ctx, (u_char *)&cp->cert, 12);
1875		EVP_SignUpdate(ctx, cp->cert.ptr,
1876		    ntohl(cp->cert.vallen));
1877		if (EVP_SignFinal(ctx, cp->cert.sig, &len, sign_pkey)) {
1878			INSIST(len <= sign_siglen);
1879			cp->cert.siglen = htonl(len);
1880		}
1881	}
1882
1883	/*
1884	 * Sign leapseconds values and timestamps. Note it is not an
1885	 * error to return null values.
1886	 */
1887	tai_leap.tstamp = hostval.tstamp;
1888	tai_leap.fstamp = hostval.fstamp;
1889
1890	/* Get the leap second era. We might need a full lookup early
1891	 * after start, when the cache is not yet loaded.
1892	 */
1893	leapsec_frame(&leap_data);
1894	if ( ! memcmp(&leap_data.ebase, &leap_data.ttime, sizeof(vint64))) {
1895		time_t   now    = time(NULL);
1896		uint32_t nowntp = (uint32_t)now + JAN_1970;
1897		leapsec_query(&leap_data, nowntp, &now);
1898	}
1899
1900	/* Create the data block. The protocol does not work without. */
1901	len = 3 * sizeof(u_int32);
1902	if (tai_leap.ptr == NULL || ntohl(tai_leap.vallen) != len) {
1903		free(tai_leap.ptr);
1904		tai_leap.ptr = emalloc(len);
1905		tai_leap.vallen = htonl(len);
1906	}
1907	ptr = (u_int32 *)tai_leap.ptr;
1908	if (leap_data.tai_offs > 10) {
1909		/* create a TAI / leap era block. The end time is a
1910		 * fake -- maybe we can do better.
1911		 */
1912		ptr[0] = htonl(leap_data.tai_offs);
1913		ptr[1] = htonl(leap_data.ebase.d_s.lo);
1914		if (leap_data.ttime.d_s.hi >= 0)
1915			ptr[2] = htonl(leap_data.ttime.D_s.lo +  7*86400);
1916		else
1917			ptr[2] = htonl(leap_data.ebase.D_s.lo + 25*86400);
1918	} else {
1919		/* no leap era available */
1920		memset(ptr, 0, len);
1921	}
1922	if (tai_leap.sig == NULL)
1923		tai_leap.sig = emalloc(sign_siglen);
1924	EVP_SignInit(ctx, sign_digest);
1925	EVP_SignUpdate(ctx, (u_char *)&tai_leap, 12);
1926	EVP_SignUpdate(ctx, tai_leap.ptr, len);
1927	if (EVP_SignFinal(ctx, tai_leap.sig, &len, sign_pkey)) {
1928		INSIST(len <= sign_siglen);
1929		tai_leap.siglen = htonl(len);
1930	}
1931	crypto_flags |= CRYPTO_FLAG_TAI;
1932
1933	snprintf(statstr, sizeof(statstr), "signature update ts %u",
1934	    ntohl(hostval.tstamp));
1935	record_crypto_stats(NULL, statstr);
1936	DPRINTF(1, ("crypto_update: %s\n", statstr));
1937	EVP_MD_CTX_free(ctx);
1938}
1939
1940/*
1941 * crypto_update_taichange - eventually trigger crypto_update
1942 *
1943 * This is called when a change in 'sys_tai' is detected. This will
1944 * happen shortly after a leap second is detected, but unhappily also
1945 * early after system start; also, the crypto stuff might be unused and
1946 * an unguarded call to crypto_update() causes a crash.
1947 *
1948 * This function makes sure that there already *is* a valid crypto block
1949 * for the use with autokey, and only calls 'crypto_update()' if it can
1950 * succeed.
1951 *
1952 * Returns void (no errors)
1953 */
1954void
1955crypto_update_taichange(void)
1956{
1957	static const u_int len = 3 * sizeof(u_int32);
1958
1959	/* check if the signing digest algo is available */
1960	if (sign_digest == NULL || sign_pkey == NULL)
1961		return;
1962
1963	/* check size of TAI extension block */
1964	if (tai_leap.ptr == NULL || ntohl(tai_leap.vallen) != len)
1965		return;
1966
1967	/* crypto_update should at least not crash here! */
1968	crypto_update();
1969}
1970
1971/*
1972 * value_free - free value structure components.
1973 *
1974 * Returns void (no errors)
1975 */
1976void
1977value_free(
1978	struct value *vp	/* value structure */
1979	)
1980{
1981	if (vp->ptr != NULL)
1982		free(vp->ptr);
1983	if (vp->sig != NULL)
1984		free(vp->sig);
1985	memset(vp, 0, sizeof(struct value));
1986}
1987
1988
1989/*
1990 * crypto_time - returns current NTP time.
1991 *
1992 * Returns NTP seconds if in synch, 0 otherwise
1993 */
1994tstamp_t
1995crypto_time()
1996{
1997	l_fp	tstamp;		/* NTP time */
1998
1999	L_CLR(&tstamp);
2000	if (sys_leap != LEAP_NOTINSYNC)
2001		get_systime(&tstamp);
2002	return (tstamp.l_ui);
2003}
2004
2005
2006/*
2007 * asn_to_calendar - convert ASN1_TIME time structure to struct calendar.
2008 *
2009 */
2010static
2011void
2012asn_to_calendar	(
2013	ASN1_TIME *asn1time,	/* pointer to ASN1_TIME structure */
2014	struct calendar *pjd	/* pointer to result */
2015	)
2016{
2017	size_t	len;		/* length of ASN1_TIME string */
2018	char	v[24];		/* writable copy of ASN1_TIME string */
2019	unsigned long	temp;	/* result from strtoul */
2020
2021	/*
2022	 * Extract time string YYMMDDHHMMSSZ from ASN1 time structure.
2023	 * Or YYYYMMDDHHMMSSZ.
2024	 * Note that the YY, MM, DD fields start with one, the HH, MM,
2025	 * SS fields start with zero and the Z character is ignored.
2026	 * Also note that two-digit years less than 50 map to years greater than
2027	 * 100. Dontcha love ASN.1? Better than MIL-188.
2028	 */
2029	len = asn1time->length;
2030	REQUIRE(len < sizeof(v));
2031	(void)strncpy(v, (char *)(asn1time->data), len);
2032	REQUIRE(len >= 13);
2033	temp = strtoul(v+len-3, NULL, 10);
2034	pjd->second = temp;
2035	v[len-3] = '\0';
2036
2037	temp = strtoul(v+len-5, NULL, 10);
2038	pjd->minute = temp;
2039	v[len-5] = '\0';
2040
2041	temp = strtoul(v+len-7, NULL, 10);
2042	pjd->hour = temp;
2043	v[len-7] = '\0';
2044
2045	temp = strtoul(v+len-9, NULL, 10);
2046	pjd->monthday = temp;
2047	v[len-9] = '\0';
2048
2049	temp = strtoul(v+len-11, NULL, 10);
2050	pjd->month = temp;
2051	v[len-11] = '\0';
2052
2053	temp = strtoul(v, NULL, 10);
2054	/* handle two-digit years */
2055	if (temp < 50UL)
2056	    temp += 100UL;
2057	if (temp < 150UL)
2058	    temp += 1900UL;
2059	pjd->year = temp;
2060
2061	pjd->yearday = pjd->weekday = 0;
2062	return;
2063}
2064
2065
2066/*
2067 * bigdig() - compute a BIGNUM MD5 hash of a BIGNUM number.
2068 *
2069 * Returns void (no errors)
2070 */
2071static void
2072bighash(
2073	BIGNUM	*bn,		/* BIGNUM * from */
2074	BIGNUM	*bk		/* BIGNUM * to */
2075	)
2076{
2077	EVP_MD_CTX *ctx;	/* message digest context */
2078	u_char dgst[EVP_MAX_MD_SIZE]; /* message digest */
2079	u_char	*ptr;		/* a BIGNUM as binary string */
2080	u_int	len;
2081
2082	len = BN_num_bytes(bn);
2083	ptr = emalloc(len);
2084	BN_bn2bin(bn, ptr);
2085	ctx = EVP_MD_CTX_new();
2086	EVP_DigestInit(ctx, EVP_md5());
2087	EVP_DigestUpdate(ctx, ptr, len);
2088	EVP_DigestFinal(ctx, dgst, &len);
2089	EVP_MD_CTX_free(ctx);
2090	BN_bin2bn(dgst, len, bk);
2091	free(ptr);
2092}
2093
2094
2095/*
2096 ***********************************************************************
2097 *								       *
2098 * The following routines implement the Schnorr (IFF) identity scheme  *
2099 *								       *
2100 ***********************************************************************
2101 *
2102 * The Schnorr (IFF) identity scheme is intended for use when
2103 * certificates are generated by some other trusted certificate
2104 * authority and the certificate cannot be used to convey public
2105 * parameters. There are two kinds of files: encrypted server files that
2106 * contain private and public values and nonencrypted client files that
2107 * contain only public values. New generations of server files must be
2108 * securely transmitted to all servers of the group; client files can be
2109 * distributed by any means. The scheme is self contained and
2110 * independent of new generations of host keys, sign keys and
2111 * certificates.
2112 *
2113 * The IFF values hide in a DSA cuckoo structure which uses the same
2114 * parameters. The values are used by an identity scheme based on DSA
2115 * cryptography and described in Stimson p. 285. The p is a 512-bit
2116 * prime, g a generator of Zp* and q a 160-bit prime that divides p - 1
2117 * and is a qth root of 1 mod p; that is, g^q = 1 mod p. The TA rolls a
2118 * private random group key b (0 < b < q) and public key v = g^b, then
2119 * sends (p, q, g, b) to the servers and (p, q, g, v) to the clients.
2120 * Alice challenges Bob to confirm identity using the protocol described
2121 * below.
2122 *
2123 * How it works
2124 *
2125 * The scheme goes like this. Both Alice and Bob have the public primes
2126 * p, q and generator g. The TA gives private key b to Bob and public
2127 * key v to Alice.
2128 *
2129 * Alice rolls new random challenge r (o < r < q) and sends to Bob in
2130 * the IFF request message. Bob rolls new random k (0 < k < q), then
2131 * computes y = k + b r mod q and x = g^k mod p and sends (y, hash(x))
2132 * to Alice in the response message. Besides making the response
2133 * shorter, the hash makes it effectivey impossible for an intruder to
2134 * solve for b by observing a number of these messages.
2135 *
2136 * Alice receives the response and computes g^y v^r mod p. After a bit
2137 * of algebra, this simplifies to g^k. If the hash of this result
2138 * matches hash(x), Alice knows that Bob has the group key b. The signed
2139 * response binds this knowledge to Bob's private key and the public key
2140 * previously received in his certificate.
2141 *
2142 * crypto_alice - construct Alice's challenge in IFF scheme
2143 *
2144 * Returns
2145 * XEVNT_OK	success
2146 * XEVNT_ID	bad or missing group key
2147 * XEVNT_PUB	bad or missing public key
2148 */
2149static int
2150crypto_alice(
2151	struct peer *peer,	/* peer pointer */
2152	struct value *vp	/* value pointer */
2153	)
2154{
2155	DSA	*dsa;		/* IFF parameters */
2156	BN_CTX	*bctx;		/* BIGNUM context */
2157	EVP_MD_CTX *ctx;	/* signature context */
2158	tstamp_t tstamp;
2159	u_int	len;
2160	const BIGNUM *q;
2161
2162	/*
2163	 * The identity parameters must have correct format and content.
2164	 */
2165	if (peer->ident_pkey == NULL) {
2166		msyslog(LOG_NOTICE, "crypto_alice: scheme unavailable");
2167		return (XEVNT_ID);
2168	}
2169
2170	if ((dsa = EVP_PKEY_get0_DSA(peer->ident_pkey->pkey)) == NULL) {
2171		msyslog(LOG_NOTICE, "crypto_alice: defective key");
2172		return (XEVNT_PUB);
2173	}
2174
2175	/*
2176	 * Roll new random r (0 < r < q).
2177	 */
2178	if (peer->iffval != NULL)
2179		BN_free(peer->iffval);
2180	peer->iffval = BN_new();
2181	DSA_get0_pqg(dsa, NULL, &q, NULL);
2182	len = BN_num_bytes(q);
2183	BN_rand(peer->iffval, len * 8, -1, 1);	/* r mod q*/
2184	bctx = BN_CTX_new();
2185	BN_mod(peer->iffval, peer->iffval, q, bctx);
2186	BN_CTX_free(bctx);
2187
2188	/*
2189	 * Sign and send to Bob. The filestamp is from the local file.
2190	 */
2191	memset(vp, 0, sizeof(struct value));
2192	tstamp = crypto_time();
2193	vp->tstamp = htonl(tstamp);
2194	vp->fstamp = htonl(peer->ident_pkey->fstamp);
2195	vp->vallen = htonl(len);
2196	vp->ptr = emalloc(len);
2197	BN_bn2bin(peer->iffval, vp->ptr);
2198	if (tstamp == 0)
2199		return (XEVNT_OK);
2200
2201	vp->sig = emalloc(sign_siglen);
2202	ctx = EVP_MD_CTX_new();
2203	EVP_SignInit(ctx, sign_digest);
2204	EVP_SignUpdate(ctx, (u_char *)&vp->tstamp, 12);
2205	EVP_SignUpdate(ctx, vp->ptr, len);
2206	if (EVP_SignFinal(ctx, vp->sig, &len, sign_pkey)) {
2207		INSIST(len <= sign_siglen);
2208		vp->siglen = htonl(len);
2209	}
2210	EVP_MD_CTX_free(ctx);
2211	return (XEVNT_OK);
2212}
2213
2214
2215/*
2216 * crypto_bob - construct Bob's response to Alice's challenge
2217 *
2218 * Returns
2219 * XEVNT_OK	success
2220 * XEVNT_ERR	protocol error
2221 * XEVNT_ID	bad or missing group key
2222 */
2223static int
2224crypto_bob(
2225	struct exten *ep,	/* extension pointer */
2226	struct value *vp	/* value pointer */
2227	)
2228{
2229	DSA	*dsa;		/* IFF parameters */
2230	DSA_SIG	*sdsa;		/* DSA signature context fake */
2231	BN_CTX	*bctx;		/* BIGNUM context */
2232	EVP_MD_CTX *ctx;	/* signature context */
2233	tstamp_t tstamp;	/* NTP timestamp */
2234	BIGNUM	*bn, *bk, *r;
2235	u_char	*ptr;
2236	u_int	len;		/* extension field value length */
2237	const BIGNUM *p, *q, *g;
2238	const BIGNUM *priv_key;
2239
2240	/*
2241	 * If the IFF parameters are not valid, something awful
2242	 * happened or we are being tormented.
2243	 */
2244	if (iffkey_info == NULL) {
2245		msyslog(LOG_NOTICE, "crypto_bob: scheme unavailable");
2246		return (XEVNT_ID);
2247	}
2248	dsa = EVP_PKEY_get0_DSA(iffkey_info->pkey);
2249	DSA_get0_pqg(dsa, &p, &q, &g);
2250	DSA_get0_key(dsa, NULL, &priv_key);
2251
2252	/*
2253	 * Extract r from the challenge.
2254	 */
2255	len = exten_payload_size(ep);
2256	if (len == 0 || len > MAX_VALLEN)
2257		return (XEVNT_LEN);
2258	if ((r = BN_bin2bn((u_char *)ep->pkt, len, NULL)) == NULL) {
2259		msyslog(LOG_ERR, "crypto_bob: %s",
2260		    ERR_error_string(ERR_get_error(), NULL));
2261		return (XEVNT_ERR);
2262	}
2263
2264	/*
2265	 * Bob rolls random k (0 < k < q), computes y = k + b r mod q
2266	 * and x = g^k mod p, then sends (y, hash(x)) to Alice.
2267	 */
2268	bctx = BN_CTX_new(); bk = BN_new(); bn = BN_new();
2269	sdsa = DSA_SIG_new();
2270	BN_rand(bk, len * 8, -1, 1);		/* k */
2271	BN_mod_mul(bn, priv_key, r, q, bctx); /* b r mod q */
2272	BN_add(bn, bn, bk);
2273	BN_mod(bn, bn, q, bctx);		/* k + b r mod q */
2274	BN_mod_exp(bk, g, bk, p, bctx); /* g^k mod p */
2275	bighash(bk, bk);
2276	DSA_SIG_set0(sdsa, bn, bk);
2277	BN_CTX_free(bctx);
2278	BN_free(r);
2279#ifdef DEBUG
2280	if (debug > 1)
2281		DSA_print_fp(stdout, dsa, 0);
2282#endif
2283
2284	/*
2285	 * Encode the values in ASN.1 and sign. The filestamp is from
2286	 * the local file.
2287	 */
2288	len = i2d_DSA_SIG(sdsa, NULL);
2289	if (len == 0) {
2290		msyslog(LOG_ERR, "crypto_bob: %s",
2291		    ERR_error_string(ERR_get_error(), NULL));
2292		DSA_SIG_free(sdsa);
2293		return (XEVNT_ERR);
2294	}
2295	if (len > MAX_VALLEN) {
2296		msyslog(LOG_ERR, "crypto_bob: signature is too big: %u",
2297		    len);
2298		DSA_SIG_free(sdsa);
2299		return (XEVNT_LEN);
2300	}
2301	memset(vp, 0, sizeof(struct value));
2302	tstamp = crypto_time();
2303	vp->tstamp = htonl(tstamp);
2304	vp->fstamp = htonl(iffkey_info->fstamp);
2305	vp->vallen = htonl(len);
2306	ptr = emalloc(len);
2307	vp->ptr = ptr;
2308	i2d_DSA_SIG(sdsa, &ptr);
2309	DSA_SIG_free(sdsa);
2310	if (tstamp == 0)
2311		return (XEVNT_OK);
2312
2313	/* XXX: more validation to make sure the sign fits... */
2314	vp->sig = emalloc(sign_siglen);
2315	ctx = EVP_MD_CTX_new();
2316	EVP_SignInit(ctx, sign_digest);
2317	EVP_SignUpdate(ctx, (u_char *)&vp->tstamp, 12);
2318	EVP_SignUpdate(ctx, vp->ptr, len);
2319	if (EVP_SignFinal(ctx, vp->sig, &len, sign_pkey)) {
2320		INSIST(len <= sign_siglen);
2321		vp->siglen = htonl(len);
2322	}
2323	EVP_MD_CTX_free(ctx);
2324	return (XEVNT_OK);
2325}
2326
2327
2328/*
2329 * crypto_iff - verify Bob's response to Alice's challenge
2330 *
2331 * Returns
2332 * XEVNT_OK	success
2333 * XEVNT_FSP	bad filestamp
2334 * XEVNT_ID	bad or missing group key
2335 * XEVNT_PUB	bad or missing public key
2336 */
2337int
2338crypto_iff(
2339	struct exten *ep,	/* extension pointer */
2340	struct peer *peer	/* peer structure pointer */
2341	)
2342{
2343	DSA	*dsa;		/* IFF parameters */
2344	BN_CTX	*bctx;		/* BIGNUM context */
2345	DSA_SIG	*sdsa;		/* DSA parameters */
2346	BIGNUM	*bn, *bk;
2347	u_int	len;
2348	const u_char *ptr;
2349	int	temp;
2350	const BIGNUM *p, *g;
2351	const BIGNUM *r, *s;
2352	const BIGNUM *pub_key;
2353
2354	/*
2355	 * If the IFF parameters are not valid or no challenge was sent,
2356	 * something awful happened or we are being tormented.
2357	 */
2358	if (peer->ident_pkey == NULL) {
2359		msyslog(LOG_NOTICE, "crypto_iff: scheme unavailable");
2360		return (XEVNT_ID);
2361	}
2362	if (ntohl(ep->fstamp) != peer->ident_pkey->fstamp) {
2363		msyslog(LOG_NOTICE, "crypto_iff: invalid filestamp %u",
2364		    ntohl(ep->fstamp));
2365		return (XEVNT_FSP);
2366	}
2367	if ((dsa = EVP_PKEY_get0_DSA(peer->ident_pkey->pkey)) == NULL) {
2368		msyslog(LOG_NOTICE, "crypto_iff: defective key");
2369		return (XEVNT_PUB);
2370	}
2371	if (peer->iffval == NULL) {
2372		msyslog(LOG_NOTICE, "crypto_iff: missing challenge");
2373		return (XEVNT_ID);
2374	}
2375
2376	/*
2377	 * Extract the k + b r and g^k values from the response.
2378	 */
2379	bctx = BN_CTX_new(); bk = BN_new(); bn = BN_new();
2380	len = ntohl(ep->vallen);
2381	ptr = (u_char *)ep->pkt;
2382	if ((sdsa = d2i_DSA_SIG(NULL, &ptr, len)) == NULL) {
2383		BN_free(bn); BN_free(bk); BN_CTX_free(bctx);
2384		msyslog(LOG_ERR, "crypto_iff: %s",
2385		    ERR_error_string(ERR_get_error(), NULL));
2386		return (XEVNT_ERR);
2387	}
2388
2389	/*
2390	 * Compute g^(k + b r) g^(q - b)r mod p.
2391	 */
2392	DSA_get0_key(dsa, &pub_key, NULL);
2393	DSA_get0_pqg(dsa, &p, NULL, &g);
2394	DSA_SIG_get0(sdsa, &r, &s);
2395	BN_mod_exp(bn, pub_key, peer->iffval, p, bctx);
2396	BN_mod_exp(bk, g, r, p, bctx);
2397	BN_mod_mul(bn, bn, bk, p, bctx);
2398
2399	/*
2400	 * Verify the hash of the result matches hash(x).
2401	 */
2402	bighash(bn, bn);
2403	temp = BN_cmp(bn, s);
2404	BN_free(bn); BN_free(bk); BN_CTX_free(bctx);
2405	BN_free(peer->iffval);
2406	peer->iffval = NULL;
2407	DSA_SIG_free(sdsa);
2408	if (temp == 0)
2409		return (XEVNT_OK);
2410
2411	msyslog(LOG_NOTICE, "crypto_iff: identity not verified");
2412	return (XEVNT_ID);
2413}
2414
2415
2416/*
2417 ***********************************************************************
2418 *								       *
2419 * The following routines implement the Guillou-Quisquater (GQ)        *
2420 * identity scheme                                                     *
2421 *								       *
2422 ***********************************************************************
2423 *
2424 * The Guillou-Quisquater (GQ) identity scheme is intended for use when
2425 * the certificate can be used to convey public parameters. The scheme
2426 * uses a X509v3 certificate extension field do convey the public key of
2427 * a private key known only to servers. There are two kinds of files:
2428 * encrypted server files that contain private and public values and
2429 * nonencrypted client files that contain only public values. New
2430 * generations of server files must be securely transmitted to all
2431 * servers of the group; client files can be distributed by any means.
2432 * The scheme is self contained and independent of new generations of
2433 * host keys and sign keys. The scheme is self contained and independent
2434 * of new generations of host keys and sign keys.
2435 *
2436 * The GQ parameters hide in a RSA cuckoo structure which uses the same
2437 * parameters. The values are used by an identity scheme based on RSA
2438 * cryptography and described in Stimson p. 300 (with errors). The 512-
2439 * bit public modulus is n = p q, where p and q are secret large primes.
2440 * The TA rolls private random group key b as RSA exponent. These values
2441 * are known to all group members.
2442 *
2443 * When rolling new certificates, a server recomputes the private and
2444 * public keys. The private key u is a random roll, while the public key
2445 * is the inverse obscured by the group key v = (u^-1)^b. These values
2446 * replace the private and public keys normally generated by the RSA
2447 * scheme. Alice challenges Bob to confirm identity using the protocol
2448 * described below.
2449 *
2450 * How it works
2451 *
2452 * The scheme goes like this. Both Alice and Bob have the same modulus n
2453 * and some random b as the group key. These values are computed and
2454 * distributed in advance via secret means, although only the group key
2455 * b is truly secret. Each has a private random private key u and public
2456 * key (u^-1)^b, although not necessarily the same ones. Bob and Alice
2457 * can regenerate the key pair from time to time without affecting
2458 * operations. The public key is conveyed on the certificate in an
2459 * extension field; the private key is never revealed.
2460 *
2461 * Alice rolls new random challenge r and sends to Bob in the GQ
2462 * request message. Bob rolls new random k, then computes y = k u^r mod
2463 * n and x = k^b mod n and sends (y, hash(x)) to Alice in the response
2464 * message. Besides making the response shorter, the hash makes it
2465 * effectivey impossible for an intruder to solve for b by observing
2466 * a number of these messages.
2467 *
2468 * Alice receives the response and computes y^b v^r mod n. After a bit
2469 * of algebra, this simplifies to k^b. If the hash of this result
2470 * matches hash(x), Alice knows that Bob has the group key b. The signed
2471 * response binds this knowledge to Bob's private key and the public key
2472 * previously received in his certificate.
2473 *
2474 * crypto_alice2 - construct Alice's challenge in GQ scheme
2475 *
2476 * Returns
2477 * XEVNT_OK	success
2478 * XEVNT_ID	bad or missing group key
2479 * XEVNT_PUB	bad or missing public key
2480 */
2481static int
2482crypto_alice2(
2483	struct peer *peer,	/* peer pointer */
2484	struct value *vp	/* value pointer */
2485	)
2486{
2487	RSA	*rsa;		/* GQ parameters */
2488	BN_CTX	*bctx;		/* BIGNUM context */
2489	EVP_MD_CTX *ctx;	/* signature context */
2490	tstamp_t tstamp;
2491	u_int	len;
2492	const BIGNUM *n;
2493
2494	/*
2495	 * The identity parameters must have correct format and content.
2496	 */
2497	if (peer->ident_pkey == NULL)
2498		return (XEVNT_ID);
2499
2500	if ((rsa = EVP_PKEY_get0_RSA(peer->ident_pkey->pkey)) == NULL) {
2501		msyslog(LOG_NOTICE, "crypto_alice2: defective key");
2502		return (XEVNT_PUB);
2503	}
2504
2505	/*
2506	 * Roll new random r (0 < r < n).
2507	 */
2508	if (peer->iffval != NULL)
2509		BN_free(peer->iffval);
2510	peer->iffval = BN_new();
2511	RSA_get0_key(rsa, &n, NULL, NULL);
2512	len = BN_num_bytes(n);
2513	BN_rand(peer->iffval, len * 8, -1, 1);	/* r mod n */
2514	bctx = BN_CTX_new();
2515	BN_mod(peer->iffval, peer->iffval, n, bctx);
2516	BN_CTX_free(bctx);
2517
2518	/*
2519	 * Sign and send to Bob. The filestamp is from the local file.
2520	 */
2521	memset(vp, 0, sizeof(struct value));
2522	tstamp = crypto_time();
2523	vp->tstamp = htonl(tstamp);
2524	vp->fstamp = htonl(peer->ident_pkey->fstamp);
2525	vp->vallen = htonl(len);
2526	vp->ptr = emalloc(len);
2527	BN_bn2bin(peer->iffval, vp->ptr);
2528	if (tstamp == 0)
2529		return (XEVNT_OK);
2530
2531	vp->sig = emalloc(sign_siglen);
2532	ctx = EVP_MD_CTX_new();
2533	EVP_SignInit(ctx, sign_digest);
2534	EVP_SignUpdate(ctx, (u_char *)&vp->tstamp, 12);
2535	EVP_SignUpdate(ctx, vp->ptr, len);
2536	if (EVP_SignFinal(ctx, vp->sig, &len, sign_pkey)) {
2537		INSIST(len <= sign_siglen);
2538		vp->siglen = htonl(len);
2539	}
2540	EVP_MD_CTX_free(ctx);
2541	return (XEVNT_OK);
2542}
2543
2544
2545/*
2546 * crypto_bob2 - construct Bob's response to Alice's challenge
2547 *
2548 * Returns
2549 * XEVNT_OK	success
2550 * XEVNT_ERR	protocol error
2551 * XEVNT_ID	bad or missing group key
2552 */
2553static int
2554crypto_bob2(
2555	struct exten *ep,	/* extension pointer */
2556	struct value *vp	/* value pointer */
2557	)
2558{
2559	RSA	*rsa;		/* GQ parameters */
2560	DSA_SIG	*sdsa;		/* DSA parameters */
2561	BN_CTX	*bctx;		/* BIGNUM context */
2562	EVP_MD_CTX *ctx;	/* signature context */
2563	tstamp_t tstamp;	/* NTP timestamp */
2564	BIGNUM	*r, *k, *g, *y;
2565	u_char	*ptr;
2566	u_int	len;
2567	int	s_len;
2568	const BIGNUM *n, *p, *e;
2569
2570	/*
2571	 * If the GQ parameters are not valid, something awful
2572	 * happened or we are being tormented.
2573	 */
2574	if (gqkey_info == NULL) {
2575		msyslog(LOG_NOTICE, "crypto_bob2: scheme unavailable");
2576		return (XEVNT_ID);
2577	}
2578	rsa = EVP_PKEY_get0_RSA(gqkey_info->pkey);
2579	RSA_get0_key(rsa, &n, &p, &e);
2580
2581	/*
2582	 * Extract r from the challenge.
2583	 */
2584	len = exten_payload_size(ep);
2585	if (len == 0 || len > MAX_VALLEN)
2586		return (XEVNT_LEN);
2587	if ((r = BN_bin2bn((u_char *)ep->pkt, len, NULL)) == NULL) {
2588		msyslog(LOG_ERR, "crypto_bob2: %s",
2589		    ERR_error_string(ERR_get_error(), NULL));
2590		return (XEVNT_ERR);
2591	}
2592
2593	/*
2594	 * Bob rolls random k (0 < k < n), computes y = k u^r mod n and
2595	 * x = k^b mod n, then sends (y, hash(x)) to Alice.
2596	 */
2597	bctx = BN_CTX_new(); k = BN_new(); g = BN_new(); y = BN_new();
2598	sdsa = DSA_SIG_new();
2599	BN_rand(k, len * 8, -1, 1);		/* k */
2600	BN_mod(k, k, n, bctx);
2601	BN_mod_exp(y, p, r, n, bctx); /* u^r mod n */
2602	BN_mod_mul(y, k, y, n, bctx);	/* k u^r mod n */
2603	BN_mod_exp(g, k, e, n, bctx); /* k^b mod n */
2604	bighash(g, g);
2605	DSA_SIG_set0(sdsa, y, g);
2606	BN_CTX_free(bctx);
2607	BN_free(r); BN_free(k);
2608#ifdef DEBUG
2609	if (debug > 1)
2610		RSA_print_fp(stdout, rsa, 0);
2611#endif
2612
2613	/*
2614	 * Encode the values in ASN.1 and sign. The filestamp is from
2615	 * the local file.
2616	 */
2617	len = s_len = i2d_DSA_SIG(sdsa, NULL);
2618	if (s_len <= 0) {
2619		msyslog(LOG_ERR, "crypto_bob2: %s",
2620		    ERR_error_string(ERR_get_error(), NULL));
2621		DSA_SIG_free(sdsa);
2622		return (XEVNT_ERR);
2623	}
2624	memset(vp, 0, sizeof(struct value));
2625	tstamp = crypto_time();
2626	vp->tstamp = htonl(tstamp);
2627	vp->fstamp = htonl(gqkey_info->fstamp);
2628	vp->vallen = htonl(len);
2629	ptr = emalloc(len);
2630	vp->ptr = ptr;
2631	i2d_DSA_SIG(sdsa, &ptr);
2632	DSA_SIG_free(sdsa);
2633	if (tstamp == 0)
2634		return (XEVNT_OK);
2635
2636	vp->sig = emalloc(sign_siglen);
2637	ctx = EVP_MD_CTX_new();
2638	EVP_SignInit(ctx, sign_digest);
2639	EVP_SignUpdate(ctx, (u_char *)&vp->tstamp, 12);
2640	EVP_SignUpdate(ctx, vp->ptr, len);
2641	if (EVP_SignFinal(ctx, vp->sig, &len, sign_pkey)) {
2642		INSIST(len <= sign_siglen);
2643		vp->siglen = htonl(len);
2644	}
2645	EVP_MD_CTX_free(ctx);
2646	return (XEVNT_OK);
2647}
2648
2649
2650/*
2651 * crypto_gq - verify Bob's response to Alice's challenge
2652 *
2653 * Returns
2654 * XEVNT_OK	success
2655 * XEVNT_ERR	protocol error
2656 * XEVNT_FSP	bad filestamp
2657 * XEVNT_ID	bad or missing group keys
2658 * XEVNT_PUB	bad or missing public key
2659 */
2660int
2661crypto_gq(
2662	struct exten *ep,	/* extension pointer */
2663	struct peer *peer	/* peer structure pointer */
2664	)
2665{
2666	RSA	*rsa;		/* GQ parameters */
2667	BN_CTX	*bctx;		/* BIGNUM context */
2668	DSA_SIG	*sdsa;		/* RSA signature context fake */
2669	BIGNUM	*y, *v;
2670	const u_char *ptr;
2671	long	len;
2672	u_int	temp;
2673	const BIGNUM *n, *e;
2674	const BIGNUM *r, *s;
2675
2676	/*
2677	 * If the GQ parameters are not valid or no challenge was sent,
2678	 * something awful happened or we are being tormented. Note that
2679	 * the filestamp on the local key file can be greater than on
2680	 * the remote parameter file if the keys have been refreshed.
2681	 */
2682	if (peer->ident_pkey == NULL) {
2683		msyslog(LOG_NOTICE, "crypto_gq: scheme unavailable");
2684		return (XEVNT_ID);
2685	}
2686	if (ntohl(ep->fstamp) < peer->ident_pkey->fstamp) {
2687		msyslog(LOG_NOTICE, "crypto_gq: invalid filestamp %u",
2688		    ntohl(ep->fstamp));
2689		return (XEVNT_FSP);
2690	}
2691	if ((rsa = EVP_PKEY_get0_RSA(peer->ident_pkey->pkey)) == NULL) {
2692		msyslog(LOG_NOTICE, "crypto_gq: defective key");
2693		return (XEVNT_PUB);
2694	}
2695	RSA_get0_key(rsa, &n, NULL, &e);
2696	if (peer->iffval == NULL) {
2697		msyslog(LOG_NOTICE, "crypto_gq: missing challenge");
2698		return (XEVNT_ID);
2699	}
2700
2701	/*
2702	 * Extract the y = k u^r and hash(x = k^b) values from the
2703	 * response.
2704	 */
2705	bctx = BN_CTX_new(); y = BN_new(); v = BN_new();
2706	len = ntohl(ep->vallen);
2707	ptr = (u_char *)ep->pkt;
2708	if ((sdsa = d2i_DSA_SIG(NULL, &ptr, len)) == NULL) {
2709		BN_CTX_free(bctx); BN_free(y); BN_free(v);
2710		msyslog(LOG_ERR, "crypto_gq: %s",
2711		    ERR_error_string(ERR_get_error(), NULL));
2712		return (XEVNT_ERR);
2713	}
2714	DSA_SIG_get0(sdsa, &r, &s);
2715
2716	/*
2717	 * Compute v^r y^b mod n.
2718	 */
2719	if (peer->grpkey == NULL) {
2720		msyslog(LOG_NOTICE, "crypto_gq: missing group key");
2721		return (XEVNT_ID);
2722	}
2723	BN_mod_exp(v, peer->grpkey, peer->iffval, n, bctx);
2724						/* v^r mod n */
2725	BN_mod_exp(y, r, e, n, bctx); /* y^b mod n */
2726	BN_mod_mul(y, v, y, n, bctx);	/* v^r y^b mod n */
2727
2728	/*
2729	 * Verify the hash of the result matches hash(x).
2730	 */
2731	bighash(y, y);
2732	temp = BN_cmp(y, s);
2733	BN_CTX_free(bctx); BN_free(y); BN_free(v);
2734	BN_free(peer->iffval);
2735	peer->iffval = NULL;
2736	DSA_SIG_free(sdsa);
2737	if (temp == 0)
2738		return (XEVNT_OK);
2739
2740	msyslog(LOG_NOTICE, "crypto_gq: identity not verified");
2741	return (XEVNT_ID);
2742}
2743
2744
2745/*
2746 ***********************************************************************
2747 *								       *
2748 * The following routines implement the Mu-Varadharajan (MV) identity  *
2749 * scheme                                                              *
2750 *								       *
2751 ***********************************************************************
2752 *
2753 * The Mu-Varadharajan (MV) cryptosystem was originally intended when
2754 * servers broadcast messages to clients, but clients never send
2755 * messages to servers. There is one encryption key for the server and a
2756 * separate decryption key for each client. It operated something like a
2757 * pay-per-view satellite broadcasting system where the session key is
2758 * encrypted by the broadcaster and the decryption keys are held in a
2759 * tamperproof set-top box.
2760 *
2761 * The MV parameters and private encryption key hide in a DSA cuckoo
2762 * structure which uses the same parameters, but generated in a
2763 * different way. The values are used in an encryption scheme similar to
2764 * El Gamal cryptography and a polynomial formed from the expansion of
2765 * product terms (x - x[j]), as described in Mu, Y., and V.
2766 * Varadharajan: Robust and Secure Broadcasting, Proc. Indocrypt 2001,
2767 * 223-231. The paper has significant errors and serious omissions.
2768 *
2769 * Let q be the product of n distinct primes s1[j] (j = 1...n), where
2770 * each s1[j] has m significant bits. Let p be a prime p = 2 * q + 1, so
2771 * that q and each s1[j] divide p - 1 and p has M = n * m + 1
2772 * significant bits. Let g be a generator of Zp; that is, gcd(g, p - 1)
2773 * = 1 and g^q = 1 mod p. We do modular arithmetic over Zq and then
2774 * project into Zp* as exponents of g. Sometimes we have to compute an
2775 * inverse b^-1 of random b in Zq, but for that purpose we require
2776 * gcd(b, q) = 1. We expect M to be in the 500-bit range and n
2777 * relatively small, like 30. These are the parameters of the scheme and
2778 * they are expensive to compute.
2779 *
2780 * We set up an instance of the scheme as follows. A set of random
2781 * values x[j] mod q (j = 1...n), are generated as the zeros of a
2782 * polynomial of order n. The product terms (x - x[j]) are expanded to
2783 * form coefficients a[i] mod q (i = 0...n) in powers of x. These are
2784 * used as exponents of the generator g mod p to generate the private
2785 * encryption key A. The pair (gbar, ghat) of public server keys and the
2786 * pairs (xbar[j], xhat[j]) (j = 1...n) of private client keys are used
2787 * to construct the decryption keys. The devil is in the details.
2788 *
2789 * This routine generates a private server encryption file including the
2790 * private encryption key E and partial decryption keys gbar and ghat.
2791 * It then generates public client decryption files including the public
2792 * keys xbar[j] and xhat[j] for each client j. The partial decryption
2793 * files are used to compute the inverse of E. These values are suitably
2794 * blinded so secrets are not revealed.
2795 *
2796 * The distinguishing characteristic of this scheme is the capability to
2797 * revoke keys. Included in the calculation of E, gbar and ghat is the
2798 * product s = prod(s1[j]) (j = 1...n) above. If the factor s1[j] is
2799 * subsequently removed from the product and E, gbar and ghat
2800 * recomputed, the jth client will no longer be able to compute E^-1 and
2801 * thus unable to decrypt the messageblock.
2802 *
2803 * How it works
2804 *
2805 * The scheme goes like this. Bob has the server values (p, E, q, gbar,
2806 * ghat) and Alice has the client values (p, xbar, xhat).
2807 *
2808 * Alice rolls new random nonce r mod p and sends to Bob in the MV
2809 * request message. Bob rolls random nonce k mod q, encrypts y = r E^k
2810 * mod p and sends (y, gbar^k, ghat^k) to Alice.
2811 *
2812 * Alice receives the response and computes the inverse (E^k)^-1 from
2813 * the partial decryption keys gbar^k, ghat^k, xbar and xhat. She then
2814 * decrypts y and verifies it matches the original r. The signed
2815 * response binds this knowledge to Bob's private key and the public key
2816 * previously received in his certificate.
2817 *
2818 * crypto_alice3 - construct Alice's challenge in MV scheme
2819 *
2820 * Returns
2821 * XEVNT_OK	success
2822 * XEVNT_ID	bad or missing group key
2823 * XEVNT_PUB	bad or missing public key
2824 */
2825static int
2826crypto_alice3(
2827	struct peer *peer,	/* peer pointer */
2828	struct value *vp	/* value pointer */
2829	)
2830{
2831	DSA	*dsa;		/* MV parameters */
2832	BN_CTX	*bctx;		/* BIGNUM context */
2833	EVP_MD_CTX *ctx;	/* signature context */
2834	tstamp_t tstamp;
2835	u_int	len;
2836	const BIGNUM *p;
2837
2838	/*
2839	 * The identity parameters must have correct format and content.
2840	 */
2841	if (peer->ident_pkey == NULL)
2842		return (XEVNT_ID);
2843
2844	if ((dsa = EVP_PKEY_get0_DSA(peer->ident_pkey->pkey)) == NULL) {
2845		msyslog(LOG_NOTICE, "crypto_alice3: defective key");
2846		return (XEVNT_PUB);
2847	}
2848	DSA_get0_pqg(dsa, &p, NULL, NULL);
2849
2850	/*
2851	 * Roll new random r (0 < r < q).
2852	 */
2853	if (peer->iffval != NULL)
2854		BN_free(peer->iffval);
2855	peer->iffval = BN_new();
2856	len = BN_num_bytes(p);
2857	BN_rand(peer->iffval, len * 8, -1, 1);	/* r mod p */
2858	bctx = BN_CTX_new();
2859	BN_mod(peer->iffval, peer->iffval, p, bctx);
2860	BN_CTX_free(bctx);
2861
2862	/*
2863	 * Sign and send to Bob. The filestamp is from the local file.
2864	 */
2865	memset(vp, 0, sizeof(struct value));
2866	tstamp = crypto_time();
2867	vp->tstamp = htonl(tstamp);
2868	vp->fstamp = htonl(peer->ident_pkey->fstamp);
2869	vp->vallen = htonl(len);
2870	vp->ptr = emalloc(len);
2871	BN_bn2bin(peer->iffval, vp->ptr);
2872	if (tstamp == 0)
2873		return (XEVNT_OK);
2874
2875	vp->sig = emalloc(sign_siglen);
2876	ctx = EVP_MD_CTX_new();
2877	EVP_SignInit(ctx, sign_digest);
2878	EVP_SignUpdate(ctx, (u_char *)&vp->tstamp, 12);
2879	EVP_SignUpdate(ctx, vp->ptr, len);
2880	if (EVP_SignFinal(ctx, vp->sig, &len, sign_pkey)) {
2881		INSIST(len <= sign_siglen);
2882		vp->siglen = htonl(len);
2883	}
2884	EVP_MD_CTX_free(ctx);
2885	return (XEVNT_OK);
2886}
2887
2888
2889/*
2890 * crypto_bob3 - construct Bob's response to Alice's challenge
2891 *
2892 * Returns
2893 * XEVNT_OK	success
2894 * XEVNT_ERR	protocol error
2895 */
2896static int
2897crypto_bob3(
2898	struct exten *ep,	/* extension pointer */
2899	struct value *vp	/* value pointer */
2900	)
2901{
2902	DSA	*dsa;		/* MV parameters */
2903	DSA	*sdsa;		/* DSA signature context fake */
2904	BN_CTX	*bctx;		/* BIGNUM context */
2905	EVP_MD_CTX *ctx;	/* signature context */
2906	tstamp_t tstamp;	/* NTP timestamp */
2907	BIGNUM	*r, *k, *u;
2908	u_char	*ptr;
2909	u_int	len;
2910	const BIGNUM *p, *q, *g;
2911	const BIGNUM *pub_key, *priv_key;
2912	BIGNUM *sp, *sq, *sg;
2913
2914	/*
2915	 * If the MV parameters are not valid, something awful
2916	 * happened or we are being tormented.
2917	 */
2918	if (mvkey_info == NULL) {
2919		msyslog(LOG_NOTICE, "crypto_bob3: scheme unavailable");
2920		return (XEVNT_ID);
2921	}
2922	dsa = EVP_PKEY_get0_DSA(mvkey_info->pkey);
2923	DSA_get0_pqg(dsa, &p, &q, &g);
2924	DSA_get0_key(dsa, &pub_key, &priv_key);
2925
2926	/*
2927	 * Extract r from the challenge.
2928	 */
2929	len = exten_payload_size(ep);
2930	if (len == 0 || len > MAX_VALLEN)
2931		return (XEVNT_LEN);
2932	if ((r = BN_bin2bn((u_char *)ep->pkt, len, NULL)) == NULL) {
2933		msyslog(LOG_ERR, "crypto_bob3: %s",
2934		    ERR_error_string(ERR_get_error(), NULL));
2935		return (XEVNT_ERR);
2936	}
2937
2938	/*
2939	 * Bob rolls random k (0 < k < q), making sure it is not a
2940	 * factor of q. He then computes y = r A^k and sends (y, gbar^k,
2941	 * and ghat^k) to Alice.
2942	 */
2943	bctx = BN_CTX_new(); k = BN_new(); u = BN_new();
2944	sdsa = DSA_new();
2945	sp = BN_new(); sq = BN_new(); sg = BN_new();
2946	while (1) {
2947		BN_rand(k, BN_num_bits(q), 0, 0);
2948		BN_mod(k, k, q, bctx);
2949		BN_gcd(u, k, q, bctx);
2950		if (BN_is_one(u))
2951			break;
2952	}
2953	BN_mod_exp(u, g, k, p, bctx); /* A^k r */
2954	BN_mod_mul(sp, u, r, p, bctx);
2955	BN_mod_exp(sq, priv_key, k, p, bctx); /* gbar */
2956	BN_mod_exp(sg, pub_key, k, p, bctx); /* ghat */
2957	DSA_set0_key(sdsa, BN_dup(pub_key), NULL);
2958	DSA_set0_pqg(sdsa, sp, sq, sg);
2959	BN_CTX_free(bctx); BN_free(k); BN_free(r); BN_free(u);
2960#ifdef DEBUG
2961	if (debug > 1)
2962		DSA_print_fp(stdout, sdsa, 0);
2963#endif
2964
2965	/*
2966	 * Encode the values in ASN.1 and sign. The filestamp is from
2967	 * the local file.
2968	 */
2969	memset(vp, 0, sizeof(struct value));
2970	tstamp = crypto_time();
2971	vp->tstamp = htonl(tstamp);
2972	vp->fstamp = htonl(mvkey_info->fstamp);
2973	len = i2d_DSAparams(sdsa, NULL);
2974	if (len == 0) {
2975		msyslog(LOG_ERR, "crypto_bob3: %s",
2976		    ERR_error_string(ERR_get_error(), NULL));
2977		DSA_free(sdsa);
2978		return (XEVNT_ERR);
2979	}
2980	vp->vallen = htonl(len);
2981	ptr = emalloc(len);
2982	vp->ptr = ptr;
2983	i2d_DSAparams(sdsa, &ptr);
2984	DSA_free(sdsa);
2985	if (tstamp == 0)
2986		return (XEVNT_OK);
2987
2988	vp->sig = emalloc(sign_siglen);
2989	ctx = EVP_MD_CTX_new();
2990	EVP_SignInit(ctx, sign_digest);
2991	EVP_SignUpdate(ctx, (u_char *)&vp->tstamp, 12);
2992	EVP_SignUpdate(ctx, vp->ptr, len);
2993	if (EVP_SignFinal(ctx, vp->sig, &len, sign_pkey)) {
2994		INSIST(len <= sign_siglen);
2995		vp->siglen = htonl(len);
2996	}
2997	EVP_MD_CTX_free(ctx);
2998	return (XEVNT_OK);
2999}
3000
3001
3002/*
3003 * crypto_mv - verify Bob's response to Alice's challenge
3004 *
3005 * Returns
3006 * XEVNT_OK	success
3007 * XEVNT_ERR	protocol error
3008 * XEVNT_FSP	bad filestamp
3009 * XEVNT_ID	bad or missing group key
3010 * XEVNT_PUB	bad or missing public key
3011 */
3012int
3013crypto_mv(
3014	struct exten *ep,	/* extension pointer */
3015	struct peer *peer	/* peer structure pointer */
3016	)
3017{
3018	DSA	*dsa;		/* MV parameters */
3019	DSA	*sdsa;		/* DSA parameters */
3020	BN_CTX	*bctx;		/* BIGNUM context */
3021	BIGNUM	*k, *u, *v;
3022	u_int	len;
3023	const u_char *ptr;
3024	int	temp;
3025	const BIGNUM *p;
3026	const BIGNUM *pub_key, *priv_key;
3027	const BIGNUM *sp, *sq, *sg;
3028
3029	/*
3030	 * If the MV parameters are not valid or no challenge was sent,
3031	 * something awful happened or we are being tormented.
3032	 */
3033	if (peer->ident_pkey == NULL) {
3034		msyslog(LOG_NOTICE, "crypto_mv: scheme unavailable");
3035		return (XEVNT_ID);
3036	}
3037	if (ntohl(ep->fstamp) != peer->ident_pkey->fstamp) {
3038		msyslog(LOG_NOTICE, "crypto_mv: invalid filestamp %u",
3039		    ntohl(ep->fstamp));
3040		return (XEVNT_FSP);
3041	}
3042	if ((dsa = EVP_PKEY_get0_DSA(peer->ident_pkey->pkey)) == NULL) {
3043		msyslog(LOG_NOTICE, "crypto_mv: defective key");
3044		return (XEVNT_PUB);
3045	}
3046	DSA_get0_pqg(dsa, &p, NULL, NULL);
3047	DSA_get0_key(dsa, &pub_key, &priv_key);
3048	if (peer->iffval == NULL) {
3049		msyslog(LOG_NOTICE, "crypto_mv: missing challenge");
3050		return (XEVNT_ID);
3051	}
3052
3053	/*
3054	 * Extract the y, gbar and ghat values from the response.
3055	 */
3056	bctx = BN_CTX_new(); k = BN_new(); u = BN_new(); v = BN_new();
3057	len = ntohl(ep->vallen);
3058	ptr = (u_char *)ep->pkt;
3059	if ((sdsa = d2i_DSAparams(NULL, &ptr, len)) == NULL) {
3060		msyslog(LOG_ERR, "crypto_mv: %s",
3061		    ERR_error_string(ERR_get_error(), NULL));
3062		return (XEVNT_ERR);
3063	}
3064	DSA_get0_pqg(sdsa, &sp, &sq, &sg);
3065
3066	/*
3067	 * Compute (gbar^xhat ghat^xbar) mod p.
3068	 */
3069	BN_mod_exp(u, sq, pub_key, p, bctx);
3070	BN_mod_exp(v, sg, priv_key, p, bctx);
3071	BN_mod_mul(u, u, v, p, bctx);
3072	BN_mod_mul(u, u, sp, p, bctx);
3073
3074	/*
3075	 * The result should match r.
3076	 */
3077	temp = BN_cmp(u, peer->iffval);
3078	BN_CTX_free(bctx); BN_free(k); BN_free(u); BN_free(v);
3079	BN_free(peer->iffval);
3080	peer->iffval = NULL;
3081	DSA_free(sdsa);
3082	if (temp == 0)
3083		return (XEVNT_OK);
3084
3085	msyslog(LOG_NOTICE, "crypto_mv: identity not verified");
3086	return (XEVNT_ID);
3087}
3088
3089
3090/*
3091 ***********************************************************************
3092 *								       *
3093 * The following routines are used to manipulate certificates          *
3094 *								       *
3095 ***********************************************************************
3096 */
3097/*
3098 * cert_sign - sign x509 certificate equest and update value structure.
3099 *
3100 * The certificate request includes a copy of the host certificate,
3101 * which includes the version number, subject name and public key of the
3102 * host. The resulting certificate includes these values plus the
3103 * serial number, issuer name and valid interval of the server. The
3104 * valid interval extends from the current time to the same time one
3105 * year hence. This may extend the life of the signed certificate beyond
3106 * that of the signer certificate.
3107 *
3108 * It is convenient to use the NTP seconds of the current time as the
3109 * serial number. In the value structure the timestamp is the current
3110 * time and the filestamp is taken from the extension field. Note this
3111 * routine is called only when the client clock is synchronized to a
3112 * proventic source, so timestamp comparisons are valid.
3113 *
3114 * The host certificate is valid from the time it was generated for a
3115 * period of one year. A signed certificate is valid from the time of
3116 * signature for a period of one year, but only the host certificate (or
3117 * sign certificate if used) is actually used to encrypt and decrypt
3118 * signatures. The signature trail is built from the client via the
3119 * intermediate servers to the trusted server. Each signature on the
3120 * trail must be valid at the time of signature, but it could happen
3121 * that a signer certificate expire before the signed certificate, which
3122 * remains valid until its expiration.
3123 *
3124 * Returns
3125 * XEVNT_OK	success
3126 * XEVNT_CRT	bad or missing certificate
3127 * XEVNT_PER	host certificate expired
3128 * XEVNT_PUB	bad or missing public key
3129 * XEVNT_VFY	certificate not verified
3130 */
3131static int
3132cert_sign(
3133	struct exten *ep,	/* extension field pointer */
3134	struct value *vp	/* value pointer */
3135	)
3136{
3137	X509	*req;		/* X509 certificate request */
3138	X509	*cert;		/* X509 certificate */
3139	X509_EXTENSION *ext;	/* certificate extension */
3140	ASN1_INTEGER *serial;	/* serial number */
3141	X509_NAME *subj;	/* distinguished (common) name */
3142	EVP_PKEY *pkey;		/* public key */
3143	EVP_MD_CTX *ctx;	/* message digest context */
3144	tstamp_t tstamp;	/* NTP timestamp */
3145	struct calendar tscal;
3146	u_int	len;
3147	const u_char *cptr;
3148	u_char *ptr;
3149	int	i, temp;
3150
3151	/*
3152	 * Decode ASN.1 objects and construct certificate structure.
3153	 * Make sure the system clock is synchronized to a proventic
3154	 * source.
3155	 */
3156	tstamp = crypto_time();
3157	if (tstamp == 0)
3158		return (XEVNT_TSP);
3159
3160	len = exten_payload_size(ep);
3161	if (len == 0 || len > MAX_VALLEN)
3162		return (XEVNT_LEN);
3163	cptr = (void *)ep->pkt;
3164	if ((req = d2i_X509(NULL, &cptr, len)) == NULL) {
3165		msyslog(LOG_ERR, "cert_sign: %s",
3166		    ERR_error_string(ERR_get_error(), NULL));
3167		return (XEVNT_CRT);
3168	}
3169	/*
3170	 * Extract public key and check for errors.
3171	 */
3172	if ((pkey = X509_get_pubkey(req)) == NULL) {
3173		msyslog(LOG_ERR, "cert_sign: %s",
3174		    ERR_error_string(ERR_get_error(), NULL));
3175		X509_free(req);
3176		return (XEVNT_PUB);
3177	}
3178
3179	/*
3180	 * Generate X509 certificate signed by this server. If this is a
3181	 * trusted host, the issuer name is the group name; otherwise,
3182	 * it is the host name. Also copy any extensions that might be
3183	 * present.
3184	 */
3185	cert = X509_new();
3186	X509_set_version(cert, X509_get_version(req));
3187	serial = ASN1_INTEGER_new();
3188	ASN1_INTEGER_set(serial, tstamp);
3189	X509_set_serialNumber(cert, serial);
3190	X509_gmtime_adj(X509_get_notBefore(cert), 0L);
3191	X509_gmtime_adj(X509_get_notAfter(cert), YEAR);
3192	subj = X509_get_issuer_name(cert);
3193	X509_NAME_add_entry_by_txt(subj, "commonName", MBSTRING_ASC,
3194	    hostval.ptr, strlen((const char *)hostval.ptr), -1, 0);
3195	subj = X509_get_subject_name(req);
3196	X509_set_subject_name(cert, subj);
3197	X509_set_pubkey(cert, pkey);
3198	temp = X509_get_ext_count(req);
3199	for (i = 0; i < temp; i++) {
3200		ext = X509_get_ext(req, i);
3201		INSIST(X509_add_ext(cert, ext, -1));
3202	}
3203	X509_free(req);
3204
3205	/*
3206	 * Sign and verify the client certificate, but only if the host
3207	 * certificate has not expired.
3208	 */
3209	(void)ntpcal_ntp_to_date(&tscal, tstamp, NULL);
3210	if ((calcomp(&tscal, &(cert_host->first)) < 0)
3211	|| (calcomp(&tscal, &(cert_host->last)) > 0)) {
3212		X509_free(cert);
3213		return (XEVNT_PER);
3214	}
3215	X509_sign(cert, sign_pkey, sign_digest);
3216	if (X509_verify(cert, sign_pkey) <= 0) {
3217		msyslog(LOG_ERR, "cert_sign: %s",
3218		    ERR_error_string(ERR_get_error(), NULL));
3219		X509_free(cert);
3220		return (XEVNT_VFY);
3221	}
3222	len = i2d_X509(cert, NULL);
3223
3224	/*
3225	 * Build and sign the value structure. We have to sign it here,
3226	 * since the response has to be returned right away. This is a
3227	 * clogging hazard.
3228	 */
3229	memset(vp, 0, sizeof(struct value));
3230	vp->tstamp = htonl(tstamp);
3231	vp->fstamp = ep->fstamp;
3232	vp->vallen = htonl(len);
3233	vp->ptr = emalloc(len);
3234	ptr = vp->ptr;
3235	i2d_X509(cert, (unsigned char **)(intptr_t)&ptr);
3236	vp->siglen = 0;
3237	if (tstamp != 0) {
3238		vp->sig = emalloc(sign_siglen);
3239		ctx = EVP_MD_CTX_new();
3240		EVP_SignInit(ctx, sign_digest);
3241		EVP_SignUpdate(ctx, (u_char *)vp, 12);
3242		EVP_SignUpdate(ctx, vp->ptr, len);
3243		if (EVP_SignFinal(ctx, vp->sig, &len, sign_pkey)) {
3244			INSIST(len <= sign_siglen);
3245			vp->siglen = htonl(len);
3246		}
3247		EVP_MD_CTX_free(ctx);
3248	}
3249#ifdef DEBUG
3250	if (debug > 1)
3251		X509_print_fp(stdout, cert);
3252#endif
3253	X509_free(cert);
3254	return (XEVNT_OK);
3255}
3256
3257
3258/*
3259 * cert_install - install certificate in certificate cache
3260 *
3261 * This routine encodes an extension field into a certificate info/value
3262 * structure. It searches the certificate list for duplicates and
3263 * expunges whichever is older. Finally, it inserts this certificate
3264 * first on the list.
3265 *
3266 * Returns certificate info pointer if valid, NULL if not.
3267 */
3268struct cert_info *
3269cert_install(
3270	struct exten *ep,	/* cert info/value */
3271	struct peer *peer	/* peer structure */
3272	)
3273{
3274	struct cert_info *cp, *xp, **zp;
3275
3276	/*
3277	 * Parse and validate the signed certificate. If valid,
3278	 * construct the info/value structure; otherwise, scamper home
3279	 * empty handed.
3280	 */
3281	if ((cp = cert_parse((u_char *)ep->pkt, (long)ntohl(ep->vallen),
3282	    (tstamp_t)ntohl(ep->fstamp))) == NULL)
3283		return (NULL);
3284
3285	/*
3286	 * Scan certificate list looking for another certificate with
3287	 * the same subject and issuer. If another is found with the
3288	 * same or older filestamp, unlink it and return the goodies to
3289	 * the heap. If another is found with a later filestamp, discard
3290	 * the new one and leave the building with the old one.
3291	 *
3292	 * Make a note to study this issue again. An earlier certificate
3293	 * with a long lifetime might be overtaken by a later
3294	 * certificate with a short lifetime, thus invalidating the
3295	 * earlier signature. However, we gotta find a way to leak old
3296	 * stuff from the cache, so we do it anyway.
3297	 */
3298	zp = &cinfo;
3299	for (xp = cinfo; xp != NULL; xp = xp->link) {
3300		if (strcmp(cp->subject, xp->subject) == 0 &&
3301		    strcmp(cp->issuer, xp->issuer) == 0) {
3302			if (ntohl(cp->cert.fstamp) <=
3303			    ntohl(xp->cert.fstamp)) {
3304				cert_free(cp);
3305				cp = xp;
3306			} else {
3307				*zp = xp->link;
3308				cert_free(xp);
3309				xp = NULL;
3310			}
3311			break;
3312		}
3313		zp = &xp->link;
3314	}
3315	if (xp == NULL) {
3316		cp->link = cinfo;
3317		cinfo = cp;
3318	}
3319	cp->flags |= CERT_VALID;
3320	crypto_update();
3321	return (cp);
3322}
3323
3324
3325/*
3326 * cert_hike - verify the signature using the issuer public key
3327 *
3328 * Returns
3329 * XEVNT_OK	success
3330 * XEVNT_CRT	bad or missing certificate
3331 * XEVNT_PER	host certificate expired
3332 * XEVNT_VFY	certificate not verified
3333 */
3334int
3335cert_hike(
3336	struct peer *peer,	/* peer structure pointer */
3337	struct cert_info *yp	/* issuer certificate */
3338	)
3339{
3340	struct cert_info *xp;	/* subject certificate */
3341	X509	*cert;		/* X509 certificate */
3342	const u_char *ptr;
3343
3344	/*
3345	 * Save the issuer on the new certificate, but remember the old
3346	 * one.
3347	 */
3348	if (peer->issuer != NULL)
3349		free(peer->issuer);
3350	peer->issuer = estrdup(yp->issuer);
3351	xp = peer->xinfo;
3352	peer->xinfo = yp;
3353
3354	/*
3355	 * If subject Y matches issuer Y, then the certificate trail is
3356	 * complete. If Y is not trusted, the server certificate has yet
3357	 * been signed, so keep trying. Otherwise, save the group key
3358	 * and light the valid bit. If the host certificate is trusted,
3359	 * do not execute a sign exchange. If no identity scheme is in
3360	 * use, light the identity and proventic bits.
3361	 */
3362	if (strcmp(yp->subject, yp->issuer) == 0) {
3363		if (!(yp->flags & CERT_TRUST))
3364			return (XEVNT_OK);
3365
3366		/*
3367		 * If the server has an an identity scheme, fetch the
3368		 * identity credentials. If not, the identity is
3369		 * verified only by the trusted certificate. The next
3370		 * signature will set the server proventic.
3371		 */
3372		peer->crypto |= CRYPTO_FLAG_CERT;
3373		peer->grpkey = yp->grpkey;
3374		if (peer->ident == NULL || !(peer->crypto &
3375		    CRYPTO_FLAG_MASK))
3376			peer->crypto |= CRYPTO_FLAG_VRFY;
3377	}
3378
3379	/*
3380	 * If X exists, verify signature X using public key Y.
3381	 */
3382	if (xp == NULL)
3383		return (XEVNT_OK);
3384
3385	ptr = (u_char *)xp->cert.ptr;
3386	cert = d2i_X509(NULL, &ptr, ntohl(xp->cert.vallen));
3387	if (cert == NULL) {
3388		xp->flags |= CERT_ERROR;
3389		return (XEVNT_CRT);
3390	}
3391	if (X509_verify(cert, yp->pkey) <= 0) {
3392		X509_free(cert);
3393		xp->flags |= CERT_ERROR;
3394		return (XEVNT_VFY);
3395	}
3396	X509_free(cert);
3397
3398	/*
3399	 * Signature X is valid only if it begins during the
3400	 * lifetime of Y.
3401	 */
3402	if ((calcomp(&(xp->first), &(yp->first)) < 0)
3403	|| (calcomp(&(xp->first), &(yp->last)) > 0)) {
3404		xp->flags |= CERT_ERROR;
3405		return (XEVNT_PER);
3406	}
3407	xp->flags |= CERT_SIGN;
3408	return (XEVNT_OK);
3409}
3410
3411
3412/*
3413 * cert_parse - parse x509 certificate and create info/value structures.
3414 *
3415 * The server certificate includes the version number, issuer name,
3416 * subject name, public key and valid date interval. If the issuer name
3417 * is the same as the subject name, the certificate is self signed and
3418 * valid only if the server is configured as trustable. If the names are
3419 * different, another issuer has signed the server certificate and
3420 * vouched for it. In this case the server certificate is valid if
3421 * verified by the issuer public key.
3422 *
3423 * Returns certificate info/value pointer if valid, NULL if not.
3424 */
3425struct cert_info *		/* certificate information structure */
3426cert_parse(
3427	const u_char *asn1cert,	/* X509 certificate */
3428	long	len,		/* certificate length */
3429	tstamp_t fstamp		/* filestamp */
3430	)
3431{
3432	X509	*cert;		/* X509 certificate */
3433	struct cert_info *ret;	/* certificate info/value */
3434	BIO	*bp;
3435	char	pathbuf[MAXFILENAME];
3436	const u_char *ptr;
3437	char	*pch;
3438	int	cnt, i;
3439	struct calendar fscal;
3440
3441	/*
3442	 * Decode ASN.1 objects and construct certificate structure.
3443	 */
3444	ptr = asn1cert;
3445	if ((cert = d2i_X509(NULL, &ptr, len)) == NULL) {
3446		msyslog(LOG_ERR, "cert_parse: %s",
3447		    ERR_error_string(ERR_get_error(), NULL));
3448		return (NULL);
3449	}
3450#ifdef DEBUG
3451	if (debug > 1)
3452		X509_print_fp(stdout, cert);
3453#endif
3454
3455	/*
3456	 * Extract version, subject name and public key.
3457	 */
3458	ret = emalloc_zero(sizeof(*ret));
3459	if ((ret->pkey = X509_get_pubkey(cert)) == NULL) {
3460		msyslog(LOG_ERR, "cert_parse: %s",
3461		    ERR_error_string(ERR_get_error(), NULL));
3462		cert_free(ret);
3463		X509_free(cert);
3464		return (NULL);
3465	}
3466	ret->version = X509_get_version(cert);
3467	X509_NAME_oneline(X509_get_subject_name(cert), pathbuf,
3468	    sizeof(pathbuf));
3469	pch = strstr(pathbuf, "CN=");
3470	if (NULL == pch) {
3471		msyslog(LOG_NOTICE, "cert_parse: invalid subject %s",
3472		    pathbuf);
3473		cert_free(ret);
3474		X509_free(cert);
3475		return (NULL);
3476	}
3477	ret->subject = estrdup(pch + 3);
3478
3479	/*
3480	 * Extract remaining objects. Note that the NTP serial number is
3481	 * the NTP seconds at the time of signing, but this might not be
3482	 * the case for other authority. We don't bother to check the
3483	 * objects at this time, since the real crunch can happen only
3484	 * when the time is valid but not yet certificated.
3485	 */
3486	ret->nid = X509_get_signature_nid(cert);
3487	ret->digest = (const EVP_MD *)EVP_get_digestbynid(ret->nid);
3488	ret->serial =
3489	    (u_long)ASN1_INTEGER_get(X509_get_serialNumber(cert));
3490	X509_NAME_oneline(X509_get_issuer_name(cert), pathbuf,
3491	    sizeof(pathbuf));
3492	if ((pch = strstr(pathbuf, "CN=")) == NULL) {
3493		msyslog(LOG_NOTICE, "cert_parse: invalid issuer %s",
3494		    pathbuf);
3495		cert_free(ret);
3496		X509_free(cert);
3497		return (NULL);
3498	}
3499	ret->issuer = estrdup(pch + 3);
3500	asn_to_calendar(X509_get_notBefore(cert), &(ret->first));
3501	asn_to_calendar(X509_get_notAfter(cert), &(ret->last));
3502
3503	/*
3504	 * Extract extension fields. These are ad hoc ripoffs of
3505	 * currently assigned functions and will certainly be changed
3506	 * before prime time.
3507	 */
3508	cnt = X509_get_ext_count(cert);
3509	for (i = 0; i < cnt; i++) {
3510		X509_EXTENSION *ext;
3511		ASN1_OBJECT *obj;
3512		int nid;
3513		ASN1_OCTET_STRING *data;
3514
3515		ext = X509_get_ext(cert, i);
3516		obj = X509_EXTENSION_get_object(ext);
3517		nid = OBJ_obj2nid(obj);
3518
3519		switch (nid) {
3520
3521		/*
3522		 * If a key_usage field is present, we decode whether
3523		 * this is a trusted or private certificate. This is
3524		 * dorky; all we want is to compare NIDs, but OpenSSL
3525		 * insists on BIO text strings.
3526		 */
3527		case NID_ext_key_usage:
3528			bp = BIO_new(BIO_s_mem());
3529			X509V3_EXT_print(bp, ext, 0, 0);
3530			BIO_gets(bp, pathbuf, sizeof(pathbuf));
3531			BIO_free(bp);
3532			if (strcmp(pathbuf, "Trust Root") == 0)
3533				ret->flags |= CERT_TRUST;
3534			else if (strcmp(pathbuf, "Private") == 0)
3535				ret->flags |= CERT_PRIV;
3536			DPRINTF(1, ("cert_parse: %s: %s\n",
3537				    OBJ_nid2ln(nid), pathbuf));
3538			break;
3539
3540		/*
3541		 * If a NID_subject_key_identifier field is present, it
3542		 * contains the GQ public key.
3543		 */
3544		case NID_subject_key_identifier:
3545			data = X509_EXTENSION_get_data(ext);
3546			ret->grpkey = BN_bin2bn(&data->data[2],
3547			    data->length - 2, NULL);
3548			/* fall through */
3549		default:
3550			DPRINTF(1, ("cert_parse: %s\n",
3551				    OBJ_nid2ln(nid)));
3552			break;
3553		}
3554	}
3555	if (strcmp(ret->subject, ret->issuer) == 0) {
3556
3557		/*
3558		 * If certificate is self signed, verify signature.
3559		 */
3560		if (X509_verify(cert, ret->pkey) <= 0) {
3561			msyslog(LOG_NOTICE,
3562			    "cert_parse: signature not verified %s",
3563			    ret->subject);
3564			cert_free(ret);
3565			X509_free(cert);
3566			return (NULL);
3567		}
3568	} else {
3569
3570		/*
3571		 * Check for a certificate loop.
3572		 */
3573		if (strcmp((const char *)hostval.ptr, ret->issuer) == 0) {
3574			msyslog(LOG_NOTICE,
3575			    "cert_parse: certificate trail loop %s",
3576			    ret->subject);
3577			cert_free(ret);
3578			X509_free(cert);
3579			return (NULL);
3580		}
3581	}
3582
3583	/*
3584	 * Verify certificate valid times. Note that certificates cannot
3585	 * be retroactive.
3586	 */
3587	(void)ntpcal_ntp_to_date(&fscal, fstamp, NULL);
3588	if ((calcomp(&(ret->first), &(ret->last)) > 0)
3589	|| (calcomp(&(ret->first), &fscal) < 0)) {
3590		msyslog(LOG_NOTICE,
3591		    "cert_parse: invalid times %s first %u-%02u-%02uT%02u:%02u:%02u last %u-%02u-%02uT%02u:%02u:%02u fstamp %u-%02u-%02uT%02u:%02u:%02u",
3592		    ret->subject,
3593		    ret->first.year, ret->first.month, ret->first.monthday,
3594		    ret->first.hour, ret->first.minute, ret->first.second,
3595		    ret->last.year, ret->last.month, ret->last.monthday,
3596		    ret->last.hour, ret->last.minute, ret->last.second,
3597		    fscal.year, fscal.month, fscal.monthday,
3598		    fscal.hour, fscal.minute, fscal.second);
3599		cert_free(ret);
3600		X509_free(cert);
3601		return (NULL);
3602	}
3603
3604	/*
3605	 * Build the value structure to sign and send later.
3606	 */
3607	ret->cert.fstamp = htonl(fstamp);
3608	ret->cert.vallen = htonl(len);
3609	ret->cert.ptr = emalloc(len);
3610	memcpy(ret->cert.ptr, asn1cert, len);
3611	X509_free(cert);
3612	return (ret);
3613}
3614
3615
3616/*
3617 * cert_free - free certificate information structure
3618 */
3619void
3620cert_free(
3621	struct cert_info *cinf	/* certificate info/value structure */
3622	)
3623{
3624	if (cinf->pkey != NULL)
3625		EVP_PKEY_free(cinf->pkey);
3626	if (cinf->subject != NULL)
3627		free(cinf->subject);
3628	if (cinf->issuer != NULL)
3629		free(cinf->issuer);
3630	if (cinf->grpkey != NULL)
3631		BN_free(cinf->grpkey);
3632	value_free(&cinf->cert);
3633	free(cinf);
3634}
3635
3636
3637/*
3638 * crypto_key - load cryptographic parameters and keys
3639 *
3640 * This routine searches the key cache for matching name in the form
3641 * ntpkey_<key>_<name>, where <key> is one of host, sign, iff, gq, mv,
3642 * and <name> is the host/group name. If not found, it tries to load a
3643 * PEM-encoded file of the same name and extracts the filestamp from
3644 * the first line of the file name. It returns the key pointer if valid,
3645 * NULL if not.
3646 */
3647static struct pkey_info *
3648crypto_key(
3649	char	*cp,		/* file name */
3650	char	*passwd1,	/* password */
3651	sockaddr_u *addr 	/* IP address */
3652	)
3653{
3654	FILE	*str;		/* file handle */
3655	struct pkey_info *pkp;	/* generic key */
3656	EVP_PKEY *pkey = NULL;	/* public/private key */
3657	tstamp_t fstamp;
3658	char	filename[MAXFILENAME]; /* name of key file */
3659	char	linkname[MAXFILENAME]; /* filestamp buffer) */
3660	char	statstr[NTP_MAXSTRLEN]; /* statistics for filegen */
3661	char	*ptr;
3662
3663	/*
3664	 * Search the key cache for matching key and name.
3665	 */
3666	for (pkp = pkinfo; pkp != NULL; pkp = pkp->link) {
3667		if (strcmp(cp, pkp->name) == 0)
3668			return (pkp);
3669	}
3670
3671	/*
3672	 * Open the key file. If the first character of the file name is
3673	 * not '/', prepend the keys directory string. If something goes
3674	 * wrong, abandon ship.
3675	 */
3676	if (*cp == '/')
3677		strlcpy(filename, cp, sizeof(filename));
3678	else
3679		snprintf(filename, sizeof(filename), "%s/%s", keysdir,
3680		    cp);
3681	str = fopen(filename, "r");
3682	if (str == NULL)
3683		return (NULL);
3684
3685	/*
3686	 * Read the filestamp, which is contained in the first line.
3687	 */
3688	if ((ptr = fgets(linkname, sizeof(linkname), str)) == NULL) {
3689		msyslog(LOG_ERR, "crypto_key: empty file %s",
3690		    filename);
3691		fclose(str);
3692		return (NULL);
3693	}
3694	if ((ptr = strrchr(ptr, '.')) == NULL) {
3695		msyslog(LOG_ERR, "crypto_key: no filestamp %s",
3696		    filename);
3697		fclose(str);
3698		return (NULL);
3699	}
3700	if (sscanf(++ptr, "%u", &fstamp) != 1) {
3701		msyslog(LOG_ERR, "crypto_key: invalid filestamp %s",
3702		    filename);
3703		fclose(str);
3704		return (NULL);
3705	}
3706
3707	/*
3708	 * Read and decrypt PEM-encoded private key. If it fails to
3709	 * decrypt, game over.
3710	 */
3711	pkey = PEM_read_PrivateKey(str, NULL, NULL, passwd1);
3712	fclose(str);
3713	if (pkey == NULL) {
3714		msyslog(LOG_ERR, "crypto_key: %s",
3715		    ERR_error_string(ERR_get_error(), NULL));
3716		exit (-1);
3717	}
3718
3719	/*
3720	 * Make a new entry in the key cache.
3721	 */
3722	pkp = emalloc(sizeof(struct pkey_info));
3723	pkp->link = pkinfo;
3724	pkinfo = pkp;
3725	pkp->pkey = pkey;
3726	pkp->name = estrdup(cp);
3727	pkp->fstamp = fstamp;
3728
3729	/*
3730	 * Leave tracks in the cryptostats.
3731	 */
3732	if ((ptr = strrchr(linkname, '\n')) != NULL)
3733		*ptr = '\0';
3734	snprintf(statstr, sizeof(statstr), "%s mod %d", &linkname[2],
3735	    EVP_PKEY_size(pkey) * 8);
3736	record_crypto_stats(addr, statstr);
3737
3738	DPRINTF(1, ("crypto_key: %s\n", statstr));
3739#ifdef DEBUG
3740	if (debug > 1) {
3741		if (EVP_PKEY_base_id(pkey) == EVP_PKEY_DSA)
3742			DSA_print_fp(stdout, EVP_PKEY_get0_DSA(pkey), 0);
3743		else if (EVP_PKEY_base_id(pkey) == EVP_PKEY_RSA)
3744			RSA_print_fp(stdout, EVP_PKEY_get0_RSA(pkey), 0);
3745	}
3746#endif
3747	return (pkp);
3748}
3749
3750
3751/*
3752 ***********************************************************************
3753 *								       *
3754 * The following routines are used only at initialization time         *
3755 *								       *
3756 ***********************************************************************
3757 */
3758/*
3759 * crypto_cert - load certificate from file
3760 *
3761 * This routine loads an X.509 RSA or DSA certificate from a file and
3762 * constructs a info/cert value structure for this machine. The
3763 * structure includes a filestamp extracted from the file name. Later
3764 * the certificate can be sent to another machine on request.
3765 *
3766 * Returns certificate info/value pointer if valid, NULL if not.
3767 */
3768static struct cert_info *	/* certificate information */
3769crypto_cert(
3770	char	*cp		/* file name */
3771	)
3772{
3773	struct cert_info *ret; /* certificate information */
3774	FILE	*str;		/* file handle */
3775	char	filename[MAXFILENAME]; /* name of certificate file */
3776	char	linkname[MAXFILENAME]; /* filestamp buffer */
3777	char	statstr[NTP_MAXSTRLEN]; /* statistics for filegen */
3778	tstamp_t fstamp;	/* filestamp */
3779	long	len;
3780	char	*ptr;
3781	char	*name, *header;
3782	u_char	*data;
3783
3784	/*
3785	 * Open the certificate file. If the first character of the file
3786	 * name is not '/', prepend the keys directory string. If
3787	 * something goes wrong, abandon ship.
3788	 */
3789	if (*cp == '/')
3790		strlcpy(filename, cp, sizeof(filename));
3791	else
3792		snprintf(filename, sizeof(filename), "%s/%s", keysdir,
3793		    cp);
3794	str = fopen(filename, "r");
3795	if (str == NULL)
3796		return (NULL);
3797
3798	/*
3799	 * Read the filestamp, which is contained in the first line.
3800	 */
3801	if ((ptr = fgets(linkname, sizeof(linkname), str)) == NULL) {
3802		msyslog(LOG_ERR, "crypto_cert: empty file %s",
3803		    filename);
3804		fclose(str);
3805		return (NULL);
3806	}
3807	if ((ptr = strrchr(ptr, '.')) == NULL) {
3808		msyslog(LOG_ERR, "crypto_cert: no filestamp %s",
3809		    filename);
3810		fclose(str);
3811		return (NULL);
3812	}
3813	if (sscanf(++ptr, "%u", &fstamp) != 1) {
3814		msyslog(LOG_ERR, "crypto_cert: invalid filestamp %s",
3815		    filename);
3816		fclose(str);
3817		return (NULL);
3818	}
3819
3820	/*
3821	 * Read PEM-encoded certificate and install.
3822	 */
3823	if (!PEM_read(str, &name, &header, &data, &len)) {
3824		msyslog(LOG_ERR, "crypto_cert: %s",
3825		    ERR_error_string(ERR_get_error(), NULL));
3826		fclose(str);
3827		return (NULL);
3828	}
3829	fclose(str);
3830	free(header);
3831	if (strcmp(name, "CERTIFICATE") != 0) {
3832		msyslog(LOG_NOTICE, "crypto_cert: wrong PEM type %s",
3833		    name);
3834		free(name);
3835		free(data);
3836		return (NULL);
3837	}
3838	free(name);
3839
3840	/*
3841	 * Parse certificate and generate info/value structure. The
3842	 * pointer and copy nonsense is due something broken in Solaris.
3843	 */
3844	ret = cert_parse(data, len, fstamp);
3845	free(data);
3846	if (ret == NULL)
3847		return (NULL);
3848
3849	if ((ptr = strrchr(linkname, '\n')) != NULL)
3850		*ptr = '\0';
3851	snprintf(statstr, sizeof(statstr), "%s 0x%x len %lu",
3852	    &linkname[2], ret->flags, len);
3853	record_crypto_stats(NULL, statstr);
3854	DPRINTF(1, ("crypto_cert: %s\n", statstr));
3855	return (ret);
3856}
3857
3858
3859/*
3860 * crypto_setup - load keys, certificate and identity parameters
3861 *
3862 * This routine loads the public/private host key and certificate. If
3863 * available, it loads the public/private sign key, which defaults to
3864 * the host key. The host key must be RSA, but the sign key can be
3865 * either RSA or DSA. If a trusted certificate, it loads the identity
3866 * parameters. In either case, the public key on the certificate must
3867 * agree with the sign key.
3868 *
3869 * Required but missing files and inconsistent data and errors are
3870 * fatal. Allowing configuration to continue would be hazardous and
3871 * require really messy error checks.
3872 */
3873void
3874crypto_setup(void)
3875{
3876	struct pkey_info *pinfo; /* private/public key */
3877	char	filename[MAXFILENAME]; /* file name buffer */
3878	char	hostname[MAXFILENAME]; /* host name buffer */
3879	char	*randfile;
3880	char	statstr[NTP_MAXSTRLEN]; /* statistics for filegen */
3881	l_fp	seed;		/* crypto PRNG seed as NTP timestamp */
3882	u_int	len;
3883	int	bytes;
3884	u_char	*ptr;
3885
3886	/*
3887	 * Check for correct OpenSSL version and avoid initialization in
3888	 * the case of multiple crypto commands.
3889	 */
3890	if (crypto_flags & CRYPTO_FLAG_ENAB) {
3891		msyslog(LOG_NOTICE,
3892		    "crypto_setup: spurious crypto command");
3893		return;
3894	}
3895	ssl_check_version();
3896
3897	/*
3898	 * Load required random seed file and seed the random number
3899	 * generator. Be default, it is found as .rnd in the user home
3900	 * directory. The root home directory may be / or /root,
3901	 * depending on the system. Wiggle the contents a bit and write
3902	 * it back so the sequence does not repeat when we next restart.
3903	 */
3904	if (!RAND_status()) {
3905		if (rand_file == NULL) {
3906			RAND_file_name(filename, sizeof(filename));
3907			randfile = filename;
3908		} else if (*rand_file != '/') {
3909			snprintf(filename, sizeof(filename), "%s/%s",
3910			    keysdir, rand_file);
3911			randfile = filename;
3912		} else
3913			randfile = rand_file;
3914
3915		if ((bytes = RAND_load_file(randfile, -1)) == 0) {
3916			msyslog(LOG_ERR,
3917			    "crypto_setup: random seed file %s missing",
3918			    randfile);
3919			exit (-1);
3920		}
3921		arc4random_buf(&seed, sizeof(l_fp));
3922		RAND_seed(&seed, sizeof(l_fp));
3923		RAND_write_file(randfile);
3924		DPRINTF(1, ("crypto_setup: OpenSSL version %lx random seed file %s bytes read %d\n",
3925			    SSLeay(), randfile, bytes));
3926	}
3927
3928	/*
3929	 * Initialize structures.
3930	 */
3931	gethostname(hostname, sizeof(hostname));
3932	if (host_filename != NULL)
3933		strlcpy(hostname, host_filename, sizeof(hostname));
3934	if (passwd == NULL)
3935		passwd = estrdup(hostname);
3936	memset(&hostval, 0, sizeof(hostval));
3937	memset(&pubkey, 0, sizeof(pubkey));
3938	memset(&tai_leap, 0, sizeof(tai_leap));
3939
3940	/*
3941	 * Load required host key from file "ntpkey_host_<hostname>". If
3942	 * no host key file is not found or has invalid password, life
3943	 * as we know it ends. The host key also becomes the default
3944	 * sign key.
3945	 */
3946	snprintf(filename, sizeof(filename), "ntpkey_host_%s", hostname);
3947	pinfo = crypto_key(filename, passwd, NULL);
3948	if (pinfo == NULL) {
3949		msyslog(LOG_ERR,
3950		    "crypto_setup: host key file %s not found or corrupt",
3951		    filename);
3952		exit (-1);
3953	}
3954	if (EVP_PKEY_base_id(pinfo->pkey) != EVP_PKEY_RSA) {
3955		msyslog(LOG_ERR,
3956		    "crypto_setup: host key is not RSA key type");
3957		exit (-1);
3958	}
3959	host_pkey = pinfo->pkey;
3960	sign_pkey = host_pkey;
3961	hostval.fstamp = htonl(pinfo->fstamp);
3962
3963	/*
3964	 * Construct public key extension field for agreement scheme.
3965	 */
3966	len = i2d_PublicKey(host_pkey, NULL);
3967	ptr = emalloc(len);
3968	pubkey.ptr = ptr;
3969	i2d_PublicKey(host_pkey, &ptr);
3970	pubkey.fstamp = hostval.fstamp;
3971	pubkey.vallen = htonl(len);
3972
3973	/*
3974	 * Load optional sign key from file "ntpkey_sign_<hostname>". If
3975	 * available, it becomes the sign key.
3976	 */
3977	snprintf(filename, sizeof(filename), "ntpkey_sign_%s", hostname);
3978	pinfo = crypto_key(filename, passwd, NULL);
3979	if (pinfo != NULL)
3980		sign_pkey = pinfo->pkey;
3981
3982	/*
3983	 * Load required certificate from file "ntpkey_cert_<hostname>".
3984	 */
3985	snprintf(filename, sizeof(filename), "ntpkey_cert_%s", hostname);
3986	cinfo = crypto_cert(filename);
3987	if (cinfo == NULL) {
3988		msyslog(LOG_ERR,
3989		    "crypto_setup: certificate file %s not found or corrupt",
3990		    filename);
3991		exit (-1);
3992	}
3993	cert_host = cinfo;
3994	sign_digest = cinfo->digest;
3995	sign_siglen = EVP_PKEY_size(sign_pkey);
3996	if (cinfo->flags & CERT_PRIV)
3997		crypto_flags |= CRYPTO_FLAG_PRIV;
3998
3999	/*
4000	 * The certificate must be self-signed.
4001	 */
4002	if (strcmp(cinfo->subject, cinfo->issuer) != 0) {
4003		msyslog(LOG_ERR,
4004		    "crypto_setup: certificate %s is not self-signed",
4005		    filename);
4006		exit (-1);
4007	}
4008	hostval.ptr = estrdup(cinfo->subject);
4009	hostval.vallen = htonl(strlen(cinfo->subject));
4010	sys_hostname = hostval.ptr;
4011	ptr = (u_char *)strchr(sys_hostname, '@');
4012	if (ptr != NULL)
4013		sys_groupname = estrdup((char *)++ptr);
4014	if (ident_filename != NULL)
4015		strlcpy(hostname, ident_filename, sizeof(hostname));
4016
4017	/*
4018	 * Load optional IFF parameters from file
4019	 * "ntpkey_iffkey_<hostname>".
4020	 */
4021	snprintf(filename, sizeof(filename), "ntpkey_iffkey_%s",
4022	    hostname);
4023	iffkey_info = crypto_key(filename, passwd, NULL);
4024	if (iffkey_info != NULL)
4025		crypto_flags |= CRYPTO_FLAG_IFF;
4026
4027	/*
4028	 * Load optional GQ parameters from file
4029	 * "ntpkey_gqkey_<hostname>".
4030	 */
4031	snprintf(filename, sizeof(filename), "ntpkey_gqkey_%s",
4032	    hostname);
4033	gqkey_info = crypto_key(filename, passwd, NULL);
4034	if (gqkey_info != NULL)
4035		crypto_flags |= CRYPTO_FLAG_GQ;
4036
4037	/*
4038	 * Load optional MV parameters from file
4039	 * "ntpkey_mvkey_<hostname>".
4040	 */
4041	snprintf(filename, sizeof(filename), "ntpkey_mvkey_%s",
4042	    hostname);
4043	mvkey_info = crypto_key(filename, passwd, NULL);
4044	if (mvkey_info != NULL)
4045		crypto_flags |= CRYPTO_FLAG_MV;
4046
4047	/*
4048	 * We met the enemy and he is us. Now strike up the dance.
4049	 */
4050	crypto_flags |= CRYPTO_FLAG_ENAB | (cinfo->nid << 16);
4051	snprintf(statstr, sizeof(statstr), "setup 0x%x host %s %s",
4052	    crypto_flags, hostname, OBJ_nid2ln(cinfo->nid));
4053	record_crypto_stats(NULL, statstr);
4054	DPRINTF(1, ("crypto_setup: %s\n", statstr));
4055}
4056
4057
4058/*
4059 * crypto_config - configure data from the crypto command.
4060 */
4061void
4062crypto_config(
4063	int	item,		/* configuration item */
4064	char	*cp		/* item name */
4065	)
4066{
4067	int	nid;
4068
4069	DPRINTF(1, ("crypto_config: item %d %s\n", item, cp));
4070
4071	switch (item) {
4072
4073	/*
4074	 * Set host name (host).
4075	 */
4076	case CRYPTO_CONF_PRIV:
4077		if (NULL != host_filename)
4078			free(host_filename);
4079		host_filename = estrdup(cp);
4080		break;
4081
4082	/*
4083	 * Set group name (ident).
4084	 */
4085	case CRYPTO_CONF_IDENT:
4086		if (NULL != ident_filename)
4087			free(ident_filename);
4088		ident_filename = estrdup(cp);
4089		break;
4090
4091	/*
4092	 * Set private key password (pw).
4093	 */
4094	case CRYPTO_CONF_PW:
4095		if (NULL != passwd)
4096			free(passwd);
4097		passwd = estrdup(cp);
4098		break;
4099
4100	/*
4101	 * Set random seed file name (randfile).
4102	 */
4103	case CRYPTO_CONF_RAND:
4104		if (NULL != rand_file)
4105			free(rand_file);
4106		rand_file = estrdup(cp);
4107		break;
4108
4109	/*
4110	 * Set message digest NID.
4111	 */
4112	case CRYPTO_CONF_NID:
4113		nid = OBJ_sn2nid(cp);
4114		if (nid == 0)
4115			msyslog(LOG_ERR,
4116			    "crypto_config: invalid digest name %s", cp);
4117		else
4118			crypto_nid = nid;
4119		break;
4120	}
4121}
4122
4123/*
4124 * Get the  payload size (internal value length) of an extension packet.
4125 * If the inner value size does not match the outer packet size (that
4126 * is, the value would end behind the frame given by the opcode/size
4127 * field) the function will effectively return UINT_MAX. If the frame is
4128 * too short to hold a variable-sized value, the return value is zero.
4129 */
4130static u_int
4131exten_payload_size(
4132	const struct exten * ep)
4133{
4134	typedef const u_char *BPTR;
4135
4136	size_t extn_size;
4137	size_t data_size;
4138	size_t head_size;
4139
4140	data_size = 0;
4141	if (NULL != ep) {
4142		head_size = (BPTR)(&ep->vallen + 1) - (BPTR)ep;
4143		extn_size = (uint16_t)(ntohl(ep->opcode) & 0x0000ffff);
4144		if (extn_size >= head_size) {
4145			data_size = (uint32_t)ntohl(ep->vallen);
4146			if (data_size > extn_size - head_size)
4147				data_size = ~(size_t)0u;
4148		}
4149	}
4150	return (u_int)data_size;
4151}
4152# else	/* !AUTOKEY follows */
4153int ntp_crypto_bs_pubkey;
4154# endif	/* !AUTOKEY */
4155