ntp_control.c revision 285612
1/*
2 * ntp_control.c - respond to mode 6 control messages and send async
3 *		   traps.  Provides service to ntpq and others.
4 */
5
6/*
7 * $FreeBSD: stable/10/contrib/ntp/ntpd/ntp_control.c 276072 2014-12-22 19:07:16Z delphij $
8 */
9
10#ifdef HAVE_CONFIG_H
11# include <config.h>
12#endif
13
14#include <stdio.h>
15#include <ctype.h>
16#include <signal.h>
17#include <sys/stat.h>
18#ifdef HAVE_NETINET_IN_H
19# include <netinet/in.h>
20#endif
21#include <arpa/inet.h>
22
23#include "ntpd.h"
24#include "ntp_io.h"
25#include "ntp_refclock.h"
26#include "ntp_control.h"
27#include "ntp_unixtime.h"
28#include "ntp_stdlib.h"
29#include "ntp_config.h"
30#include "ntp_crypto.h"
31#include "ntp_assert.h"
32#include "ntp_leapsec.h"
33#include "ntp_md5.h"	/* provides OpenSSL digest API */
34#include "lib_strbuf.h"
35#ifdef KERNEL_PLL
36# include "ntp_syscall.h"
37#endif
38
39extern size_t remoteconfig_cmdlength( const char *src_buf, const char *src_end );
40
41#ifndef MIN
42#define MIN(a, b) (((a) <= (b)) ? (a) : (b))
43#endif
44
45/*
46 * Structure to hold request procedure information
47 */
48
49struct ctl_proc {
50	short control_code;		/* defined request code */
51#define NO_REQUEST	(-1)
52	u_short flags;			/* flags word */
53	/* Only one flag.  Authentication required or not. */
54#define NOAUTH	0
55#define AUTH	1
56	void (*handler) (struct recvbuf *, int); /* handle request */
57};
58
59
60/*
61 * Request processing routines
62 */
63static	void	ctl_error	(u_char);
64#ifdef REFCLOCK
65static	u_short ctlclkstatus	(struct refclockstat *);
66#endif
67static	void	ctl_flushpkt	(u_char);
68static	void	ctl_putdata	(const char *, unsigned int, int);
69static	void	ctl_putstr	(const char *, const char *, size_t);
70static	void	ctl_putdblf	(const char *, int, int, double);
71#define	ctl_putdbl(tag, d)	ctl_putdblf(tag, 1, 3, d)
72#define	ctl_putdbl6(tag, d)	ctl_putdblf(tag, 1, 6, d)
73#define	ctl_putsfp(tag, sfp)	ctl_putdblf(tag, 0, -1, \
74					    FPTOD(sfp))
75static	void	ctl_putuint	(const char *, u_long);
76static	void	ctl_puthex	(const char *, u_long);
77static	void	ctl_putint	(const char *, long);
78static	void	ctl_putts	(const char *, l_fp *);
79static	void	ctl_putadr	(const char *, u_int32,
80				 sockaddr_u *);
81static	void	ctl_putrefid	(const char *, u_int32);
82static	void	ctl_putarray	(const char *, double *, int);
83static	void	ctl_putsys	(int);
84static	void	ctl_putpeer	(int, struct peer *);
85static	void	ctl_putfs	(const char *, tstamp_t);
86#ifdef REFCLOCK
87static	void	ctl_putclock	(int, struct refclockstat *, int);
88#endif	/* REFCLOCK */
89static	const struct ctl_var *ctl_getitem(const struct ctl_var *,
90					  char **);
91static	u_short	count_var	(const struct ctl_var *);
92static	void	control_unspec	(struct recvbuf *, int);
93static	void	read_status	(struct recvbuf *, int);
94static	void	read_sysvars	(void);
95static	void	read_peervars	(void);
96static	void	read_variables	(struct recvbuf *, int);
97static	void	write_variables (struct recvbuf *, int);
98static	void	read_clockstatus(struct recvbuf *, int);
99static	void	write_clockstatus(struct recvbuf *, int);
100static	void	set_trap	(struct recvbuf *, int);
101static	void	save_config	(struct recvbuf *, int);
102static	void	configure	(struct recvbuf *, int);
103static	void	send_mru_entry	(mon_entry *, int);
104static	void	send_random_tag_value(int);
105static	void	read_mru_list	(struct recvbuf *, int);
106static	void	send_ifstats_entry(endpt *, u_int);
107static	void	read_ifstats	(struct recvbuf *);
108static	void	sockaddrs_from_restrict_u(sockaddr_u *,	sockaddr_u *,
109					  restrict_u *, int);
110static	void	send_restrict_entry(restrict_u *, int, u_int);
111static	void	send_restrict_list(restrict_u *, int, u_int *);
112static	void	read_addr_restrictions(struct recvbuf *);
113static	void	read_ordlist	(struct recvbuf *, int);
114static	u_int32	derive_nonce	(sockaddr_u *, u_int32, u_int32);
115static	void	generate_nonce	(struct recvbuf *, char *, size_t);
116static	int	validate_nonce	(const char *, struct recvbuf *);
117static	void	req_nonce	(struct recvbuf *, int);
118static	void	unset_trap	(struct recvbuf *, int);
119static	struct ctl_trap *ctlfindtrap(sockaddr_u *,
120				     struct interface *);
121
122static const struct ctl_proc control_codes[] = {
123	{ CTL_OP_UNSPEC,		NOAUTH,	control_unspec },
124	{ CTL_OP_READSTAT,		NOAUTH,	read_status },
125	{ CTL_OP_READVAR,		NOAUTH,	read_variables },
126	{ CTL_OP_WRITEVAR,		AUTH,	write_variables },
127	{ CTL_OP_READCLOCK,		NOAUTH,	read_clockstatus },
128	{ CTL_OP_WRITECLOCK,		NOAUTH,	write_clockstatus },
129	{ CTL_OP_SETTRAP,		NOAUTH,	set_trap },
130	{ CTL_OP_CONFIGURE,		AUTH,	configure },
131	{ CTL_OP_SAVECONFIG,		AUTH,	save_config },
132	{ CTL_OP_READ_MRU,		NOAUTH,	read_mru_list },
133	{ CTL_OP_READ_ORDLIST_A,	AUTH,	read_ordlist },
134	{ CTL_OP_REQ_NONCE,		NOAUTH,	req_nonce },
135	{ CTL_OP_UNSETTRAP,		NOAUTH,	unset_trap },
136	{ NO_REQUEST,			0,	NULL }
137};
138
139/*
140 * System variables we understand
141 */
142#define	CS_LEAP			1
143#define	CS_STRATUM		2
144#define	CS_PRECISION		3
145#define	CS_ROOTDELAY		4
146#define	CS_ROOTDISPERSION	5
147#define	CS_REFID		6
148#define	CS_REFTIME		7
149#define	CS_POLL			8
150#define	CS_PEERID		9
151#define	CS_OFFSET		10
152#define	CS_DRIFT		11
153#define	CS_JITTER		12
154#define	CS_ERROR		13
155#define	CS_CLOCK		14
156#define	CS_PROCESSOR		15
157#define	CS_SYSTEM		16
158#define	CS_VERSION		17
159#define	CS_STABIL		18
160#define	CS_VARLIST		19
161#define	CS_TAI			20
162#define	CS_LEAPTAB		21
163#define	CS_LEAPEND		22
164#define	CS_RATE			23
165#define	CS_MRU_ENABLED		24
166#define	CS_MRU_DEPTH		25
167#define	CS_MRU_DEEPEST		26
168#define	CS_MRU_MINDEPTH		27
169#define	CS_MRU_MAXAGE		28
170#define	CS_MRU_MAXDEPTH		29
171#define	CS_MRU_MEM		30
172#define	CS_MRU_MAXMEM		31
173#define	CS_SS_UPTIME		32
174#define	CS_SS_RESET		33
175#define	CS_SS_RECEIVED		34
176#define	CS_SS_THISVER		35
177#define	CS_SS_OLDVER		36
178#define	CS_SS_BADFORMAT		37
179#define	CS_SS_BADAUTH		38
180#define	CS_SS_DECLINED		39
181#define	CS_SS_RESTRICTED	40
182#define	CS_SS_LIMITED		41
183#define	CS_SS_KODSENT		42
184#define	CS_SS_PROCESSED		43
185#define	CS_PEERADR		44
186#define	CS_PEERMODE		45
187#define	CS_BCASTDELAY		46
188#define	CS_AUTHDELAY		47
189#define	CS_AUTHKEYS		48
190#define	CS_AUTHFREEK		49
191#define	CS_AUTHKLOOKUPS		50
192#define	CS_AUTHKNOTFOUND	51
193#define	CS_AUTHKUNCACHED	52
194#define	CS_AUTHKEXPIRED		53
195#define	CS_AUTHENCRYPTS		54
196#define	CS_AUTHDECRYPTS		55
197#define	CS_AUTHRESET		56
198#define	CS_K_OFFSET		57
199#define	CS_K_FREQ		58
200#define	CS_K_MAXERR		59
201#define	CS_K_ESTERR		60
202#define	CS_K_STFLAGS		61
203#define	CS_K_TIMECONST		62
204#define	CS_K_PRECISION		63
205#define	CS_K_FREQTOL		64
206#define	CS_K_PPS_FREQ		65
207#define	CS_K_PPS_STABIL		66
208#define	CS_K_PPS_JITTER		67
209#define	CS_K_PPS_CALIBDUR	68
210#define	CS_K_PPS_CALIBS		69
211#define	CS_K_PPS_CALIBERRS	70
212#define	CS_K_PPS_JITEXC		71
213#define	CS_K_PPS_STBEXC		72
214#define	CS_KERN_FIRST		CS_K_OFFSET
215#define	CS_KERN_LAST		CS_K_PPS_STBEXC
216#define	CS_IOSTATS_RESET	73
217#define	CS_TOTAL_RBUF		74
218#define	CS_FREE_RBUF		75
219#define	CS_USED_RBUF		76
220#define	CS_RBUF_LOWATER		77
221#define	CS_IO_DROPPED		78
222#define	CS_IO_IGNORED		79
223#define	CS_IO_RECEIVED		80
224#define	CS_IO_SENT		81
225#define	CS_IO_SENDFAILED	82
226#define	CS_IO_WAKEUPS		83
227#define	CS_IO_GOODWAKEUPS	84
228#define	CS_TIMERSTATS_RESET	85
229#define	CS_TIMER_OVERRUNS	86
230#define	CS_TIMER_XMTS		87
231#define	CS_FUZZ			88
232#define	CS_WANDER_THRESH	89
233#define	CS_LEAPSMEARINTV	90
234#define	CS_LEAPSMEAROFFS	91
235#define	CS_MAX_NOAUTOKEY	CS_LEAPSMEAROFFS
236#ifdef AUTOKEY
237#define	CS_FLAGS		(1 + CS_MAX_NOAUTOKEY)
238#define	CS_HOST			(2 + CS_MAX_NOAUTOKEY)
239#define	CS_PUBLIC		(3 + CS_MAX_NOAUTOKEY)
240#define	CS_CERTIF		(4 + CS_MAX_NOAUTOKEY)
241#define	CS_SIGNATURE		(5 + CS_MAX_NOAUTOKEY)
242#define	CS_REVTIME		(6 + CS_MAX_NOAUTOKEY)
243#define	CS_IDENT		(7 + CS_MAX_NOAUTOKEY)
244#define	CS_DIGEST		(8 + CS_MAX_NOAUTOKEY)
245#define	CS_MAXCODE		CS_DIGEST
246#else	/* !AUTOKEY follows */
247#define	CS_MAXCODE		CS_MAX_NOAUTOKEY
248#endif	/* !AUTOKEY */
249
250/*
251 * Peer variables we understand
252 */
253#define	CP_CONFIG		1
254#define	CP_AUTHENABLE		2
255#define	CP_AUTHENTIC		3
256#define	CP_SRCADR		4
257#define	CP_SRCPORT		5
258#define	CP_DSTADR		6
259#define	CP_DSTPORT		7
260#define	CP_LEAP			8
261#define	CP_HMODE		9
262#define	CP_STRATUM		10
263#define	CP_PPOLL		11
264#define	CP_HPOLL		12
265#define	CP_PRECISION		13
266#define	CP_ROOTDELAY		14
267#define	CP_ROOTDISPERSION	15
268#define	CP_REFID		16
269#define	CP_REFTIME		17
270#define	CP_ORG			18
271#define	CP_REC			19
272#define	CP_XMT			20
273#define	CP_REACH		21
274#define	CP_UNREACH		22
275#define	CP_TIMER		23
276#define	CP_DELAY		24
277#define	CP_OFFSET		25
278#define	CP_JITTER		26
279#define	CP_DISPERSION		27
280#define	CP_KEYID		28
281#define	CP_FILTDELAY		29
282#define	CP_FILTOFFSET		30
283#define	CP_PMODE		31
284#define	CP_RECEIVED		32
285#define	CP_SENT			33
286#define	CP_FILTERROR		34
287#define	CP_FLASH		35
288#define	CP_TTL			36
289#define	CP_VARLIST		37
290#define	CP_IN			38
291#define	CP_OUT			39
292#define	CP_RATE			40
293#define	CP_BIAS			41
294#define	CP_SRCHOST		42
295#define	CP_TIMEREC		43
296#define	CP_TIMEREACH		44
297#define	CP_BADAUTH		45
298#define	CP_BOGUSORG		46
299#define	CP_OLDPKT		47
300#define	CP_SELDISP		48
301#define	CP_SELBROKEN		49
302#define	CP_CANDIDATE		50
303#define	CP_MAX_NOAUTOKEY	CP_CANDIDATE
304#ifdef AUTOKEY
305#define	CP_FLAGS		(1 + CP_MAX_NOAUTOKEY)
306#define	CP_HOST			(2 + CP_MAX_NOAUTOKEY)
307#define	CP_VALID		(3 + CP_MAX_NOAUTOKEY)
308#define	CP_INITSEQ		(4 + CP_MAX_NOAUTOKEY)
309#define	CP_INITKEY		(5 + CP_MAX_NOAUTOKEY)
310#define	CP_INITTSP		(6 + CP_MAX_NOAUTOKEY)
311#define	CP_SIGNATURE		(7 + CP_MAX_NOAUTOKEY)
312#define	CP_IDENT		(8 + CP_MAX_NOAUTOKEY)
313#define	CP_MAXCODE		CP_IDENT
314#else	/* !AUTOKEY follows */
315#define	CP_MAXCODE		CP_MAX_NOAUTOKEY
316#endif	/* !AUTOKEY */
317
318/*
319 * Clock variables we understand
320 */
321#define	CC_TYPE		1
322#define	CC_TIMECODE	2
323#define	CC_POLL		3
324#define	CC_NOREPLY	4
325#define	CC_BADFORMAT	5
326#define	CC_BADDATA	6
327#define	CC_FUDGETIME1	7
328#define	CC_FUDGETIME2	8
329#define	CC_FUDGEVAL1	9
330#define	CC_FUDGEVAL2	10
331#define	CC_FLAGS	11
332#define	CC_DEVICE	12
333#define	CC_VARLIST	13
334#define	CC_MAXCODE	CC_VARLIST
335
336/*
337 * System variable values. The array can be indexed by the variable
338 * index to find the textual name.
339 */
340static const struct ctl_var sys_var[] = {
341	{ 0,		PADDING, "" },		/* 0 */
342	{ CS_LEAP,	RW, "leap" },		/* 1 */
343	{ CS_STRATUM,	RO, "stratum" },	/* 2 */
344	{ CS_PRECISION, RO, "precision" },	/* 3 */
345	{ CS_ROOTDELAY, RO, "rootdelay" },	/* 4 */
346	{ CS_ROOTDISPERSION, RO, "rootdisp" },	/* 5 */
347	{ CS_REFID,	RO, "refid" },		/* 6 */
348	{ CS_REFTIME,	RO, "reftime" },	/* 7 */
349	{ CS_POLL,	RO, "tc" },		/* 8 */
350	{ CS_PEERID,	RO, "peer" },		/* 9 */
351	{ CS_OFFSET,	RO, "offset" },		/* 10 */
352	{ CS_DRIFT,	RO, "frequency" },	/* 11 */
353	{ CS_JITTER,	RO, "sys_jitter" },	/* 12 */
354	{ CS_ERROR,	RO, "clk_jitter" },	/* 13 */
355	{ CS_CLOCK,	RO, "clock" },		/* 14 */
356	{ CS_PROCESSOR, RO, "processor" },	/* 15 */
357	{ CS_SYSTEM,	RO, "system" },		/* 16 */
358	{ CS_VERSION,	RO, "version" },	/* 17 */
359	{ CS_STABIL,	RO, "clk_wander" },	/* 18 */
360	{ CS_VARLIST,	RO, "sys_var_list" },	/* 19 */
361	{ CS_TAI,	RO, "tai" },		/* 20 */
362	{ CS_LEAPTAB,	RO, "leapsec" },	/* 21 */
363	{ CS_LEAPEND,	RO, "expire" },		/* 22 */
364	{ CS_RATE,	RO, "mintc" },		/* 23 */
365	{ CS_MRU_ENABLED,	RO, "mru_enabled" },	/* 24 */
366	{ CS_MRU_DEPTH,		RO, "mru_depth" },	/* 25 */
367	{ CS_MRU_DEEPEST,	RO, "mru_deepest" },	/* 26 */
368	{ CS_MRU_MINDEPTH,	RO, "mru_mindepth" },	/* 27 */
369	{ CS_MRU_MAXAGE,	RO, "mru_maxage" },	/* 28 */
370	{ CS_MRU_MAXDEPTH,	RO, "mru_maxdepth" },	/* 29 */
371	{ CS_MRU_MEM,		RO, "mru_mem" },	/* 30 */
372	{ CS_MRU_MAXMEM,	RO, "mru_maxmem" },	/* 31 */
373	{ CS_SS_UPTIME,		RO, "ss_uptime" },	/* 32 */
374	{ CS_SS_RESET,		RO, "ss_reset" },	/* 33 */
375	{ CS_SS_RECEIVED,	RO, "ss_received" },	/* 34 */
376	{ CS_SS_THISVER,	RO, "ss_thisver" },	/* 35 */
377	{ CS_SS_OLDVER,		RO, "ss_oldver" },	/* 36 */
378	{ CS_SS_BADFORMAT,	RO, "ss_badformat" },	/* 37 */
379	{ CS_SS_BADAUTH,	RO, "ss_badauth" },	/* 38 */
380	{ CS_SS_DECLINED,	RO, "ss_declined" },	/* 39 */
381	{ CS_SS_RESTRICTED,	RO, "ss_restricted" },	/* 40 */
382	{ CS_SS_LIMITED,	RO, "ss_limited" },	/* 41 */
383	{ CS_SS_KODSENT,	RO, "ss_kodsent" },	/* 42 */
384	{ CS_SS_PROCESSED,	RO, "ss_processed" },	/* 43 */
385	{ CS_PEERADR,		RO, "peeradr" },	/* 44 */
386	{ CS_PEERMODE,		RO, "peermode" },	/* 45 */
387	{ CS_BCASTDELAY,	RO, "bcastdelay" },	/* 46 */
388	{ CS_AUTHDELAY,		RO, "authdelay" },	/* 47 */
389	{ CS_AUTHKEYS,		RO, "authkeys" },	/* 48 */
390	{ CS_AUTHFREEK,		RO, "authfreek" },	/* 49 */
391	{ CS_AUTHKLOOKUPS,	RO, "authklookups" },	/* 50 */
392	{ CS_AUTHKNOTFOUND,	RO, "authknotfound" },	/* 51 */
393	{ CS_AUTHKUNCACHED,	RO, "authkuncached" },	/* 52 */
394	{ CS_AUTHKEXPIRED,	RO, "authkexpired" },	/* 53 */
395	{ CS_AUTHENCRYPTS,	RO, "authencrypts" },	/* 54 */
396	{ CS_AUTHDECRYPTS,	RO, "authdecrypts" },	/* 55 */
397	{ CS_AUTHRESET,		RO, "authreset" },	/* 56 */
398	{ CS_K_OFFSET,		RO, "koffset" },	/* 57 */
399	{ CS_K_FREQ,		RO, "kfreq" },		/* 58 */
400	{ CS_K_MAXERR,		RO, "kmaxerr" },	/* 59 */
401	{ CS_K_ESTERR,		RO, "kesterr" },	/* 60 */
402	{ CS_K_STFLAGS,		RO, "kstflags" },	/* 61 */
403	{ CS_K_TIMECONST,	RO, "ktimeconst" },	/* 62 */
404	{ CS_K_PRECISION,	RO, "kprecis" },	/* 63 */
405	{ CS_K_FREQTOL,		RO, "kfreqtol" },	/* 64 */
406	{ CS_K_PPS_FREQ,	RO, "kppsfreq" },	/* 65 */
407	{ CS_K_PPS_STABIL,	RO, "kppsstab" },	/* 66 */
408	{ CS_K_PPS_JITTER,	RO, "kppsjitter" },	/* 67 */
409	{ CS_K_PPS_CALIBDUR,	RO, "kppscalibdur" },	/* 68 */
410	{ CS_K_PPS_CALIBS,	RO, "kppscalibs" },	/* 69 */
411	{ CS_K_PPS_CALIBERRS,	RO, "kppscaliberrs" },	/* 70 */
412	{ CS_K_PPS_JITEXC,	RO, "kppsjitexc" },	/* 71 */
413	{ CS_K_PPS_STBEXC,	RO, "kppsstbexc" },	/* 72 */
414	{ CS_IOSTATS_RESET,	RO, "iostats_reset" },	/* 73 */
415	{ CS_TOTAL_RBUF,	RO, "total_rbuf" },	/* 74 */
416	{ CS_FREE_RBUF,		RO, "free_rbuf" },	/* 75 */
417	{ CS_USED_RBUF,		RO, "used_rbuf" },	/* 76 */
418	{ CS_RBUF_LOWATER,	RO, "rbuf_lowater" },	/* 77 */
419	{ CS_IO_DROPPED,	RO, "io_dropped" },	/* 78 */
420	{ CS_IO_IGNORED,	RO, "io_ignored" },	/* 79 */
421	{ CS_IO_RECEIVED,	RO, "io_received" },	/* 80 */
422	{ CS_IO_SENT,		RO, "io_sent" },	/* 81 */
423	{ CS_IO_SENDFAILED,	RO, "io_sendfailed" },	/* 82 */
424	{ CS_IO_WAKEUPS,	RO, "io_wakeups" },	/* 83 */
425	{ CS_IO_GOODWAKEUPS,	RO, "io_goodwakeups" },	/* 84 */
426	{ CS_TIMERSTATS_RESET,	RO, "timerstats_reset" },/* 85 */
427	{ CS_TIMER_OVERRUNS,	RO, "timer_overruns" },	/* 86 */
428	{ CS_TIMER_XMTS,	RO, "timer_xmts" },	/* 87 */
429	{ CS_FUZZ,		RO, "fuzz" },		/* 88 */
430	{ CS_WANDER_THRESH,	RO, "clk_wander_threshold" }, /* 89 */
431#ifdef LEAP_SMEAR
432	{ CS_LEAPSMEARINTV,	RO, "leapsmearinterval" },    /* 90 */
433	{ CS_LEAPSMEAROFFS,	RO, "leapsmearoffset" },      /* 91 */
434#endif	 /* LEAP_SMEAR */
435#ifdef AUTOKEY
436	{ CS_FLAGS,	RO, "flags" },		/* 1 + CS_MAX_NOAUTOKEY */
437	{ CS_HOST,	RO, "host" },		/* 2 + CS_MAX_NOAUTOKEY */
438	{ CS_PUBLIC,	RO, "update" },		/* 3 + CS_MAX_NOAUTOKEY */
439	{ CS_CERTIF,	RO, "cert" },		/* 4 + CS_MAX_NOAUTOKEY */
440	{ CS_SIGNATURE,	RO, "signature" },	/* 5 + CS_MAX_NOAUTOKEY */
441	{ CS_REVTIME,	RO, "until" },		/* 6 + CS_MAX_NOAUTOKEY */
442	{ CS_IDENT,	RO, "ident" },		/* 7 + CS_MAX_NOAUTOKEY */
443	{ CS_DIGEST,	RO, "digest" },		/* 8 + CS_MAX_NOAUTOKEY */
444#endif	/* AUTOKEY */
445	{ 0,		EOV, "" }		/* 87/95 */
446};
447
448static struct ctl_var *ext_sys_var = NULL;
449
450/*
451 * System variables we print by default (in fuzzball order,
452 * more-or-less)
453 */
454static const u_char def_sys_var[] = {
455	CS_VERSION,
456	CS_PROCESSOR,
457	CS_SYSTEM,
458	CS_LEAP,
459	CS_STRATUM,
460	CS_PRECISION,
461	CS_ROOTDELAY,
462	CS_ROOTDISPERSION,
463	CS_REFID,
464	CS_REFTIME,
465	CS_CLOCK,
466	CS_PEERID,
467	CS_POLL,
468	CS_RATE,
469	CS_OFFSET,
470	CS_DRIFT,
471	CS_JITTER,
472	CS_ERROR,
473	CS_STABIL,
474	CS_TAI,
475	CS_LEAPTAB,
476	CS_LEAPEND,
477	CS_LEAPSMEARINTV,
478	CS_LEAPSMEAROFFS,
479#ifdef AUTOKEY
480	CS_HOST,
481	CS_IDENT,
482	CS_FLAGS,
483	CS_DIGEST,
484	CS_SIGNATURE,
485	CS_PUBLIC,
486	CS_CERTIF,
487#endif	/* AUTOKEY */
488	0
489};
490
491
492/*
493 * Peer variable list
494 */
495static const struct ctl_var peer_var[] = {
496	{ 0,		PADDING, "" },		/* 0 */
497	{ CP_CONFIG,	RO, "config" },		/* 1 */
498	{ CP_AUTHENABLE, RO,	"authenable" },	/* 2 */
499	{ CP_AUTHENTIC, RO, "authentic" },	/* 3 */
500	{ CP_SRCADR,	RO, "srcadr" },		/* 4 */
501	{ CP_SRCPORT,	RO, "srcport" },	/* 5 */
502	{ CP_DSTADR,	RO, "dstadr" },		/* 6 */
503	{ CP_DSTPORT,	RO, "dstport" },	/* 7 */
504	{ CP_LEAP,	RO, "leap" },		/* 8 */
505	{ CP_HMODE,	RO, "hmode" },		/* 9 */
506	{ CP_STRATUM,	RO, "stratum" },	/* 10 */
507	{ CP_PPOLL,	RO, "ppoll" },		/* 11 */
508	{ CP_HPOLL,	RO, "hpoll" },		/* 12 */
509	{ CP_PRECISION,	RO, "precision" },	/* 13 */
510	{ CP_ROOTDELAY,	RO, "rootdelay" },	/* 14 */
511	{ CP_ROOTDISPERSION, RO, "rootdisp" },	/* 15 */
512	{ CP_REFID,	RO, "refid" },		/* 16 */
513	{ CP_REFTIME,	RO, "reftime" },	/* 17 */
514	{ CP_ORG,	RO, "org" },		/* 18 */
515	{ CP_REC,	RO, "rec" },		/* 19 */
516	{ CP_XMT,	RO, "xleave" },		/* 20 */
517	{ CP_REACH,	RO, "reach" },		/* 21 */
518	{ CP_UNREACH,	RO, "unreach" },	/* 22 */
519	{ CP_TIMER,	RO, "timer" },		/* 23 */
520	{ CP_DELAY,	RO, "delay" },		/* 24 */
521	{ CP_OFFSET,	RO, "offset" },		/* 25 */
522	{ CP_JITTER,	RO, "jitter" },		/* 26 */
523	{ CP_DISPERSION, RO, "dispersion" },	/* 27 */
524	{ CP_KEYID,	RO, "keyid" },		/* 28 */
525	{ CP_FILTDELAY,	RO, "filtdelay" },	/* 29 */
526	{ CP_FILTOFFSET, RO, "filtoffset" },	/* 30 */
527	{ CP_PMODE,	RO, "pmode" },		/* 31 */
528	{ CP_RECEIVED,	RO, "received"},	/* 32 */
529	{ CP_SENT,	RO, "sent" },		/* 33 */
530	{ CP_FILTERROR,	RO, "filtdisp" },	/* 34 */
531	{ CP_FLASH,	RO, "flash" },		/* 35 */
532	{ CP_TTL,	RO, "ttl" },		/* 36 */
533	{ CP_VARLIST,	RO, "peer_var_list" },	/* 37 */
534	{ CP_IN,	RO, "in" },		/* 38 */
535	{ CP_OUT,	RO, "out" },		/* 39 */
536	{ CP_RATE,	RO, "headway" },	/* 40 */
537	{ CP_BIAS,	RO, "bias" },		/* 41 */
538	{ CP_SRCHOST,	RO, "srchost" },	/* 42 */
539	{ CP_TIMEREC,	RO, "timerec" },	/* 43 */
540	{ CP_TIMEREACH,	RO, "timereach" },	/* 44 */
541	{ CP_BADAUTH,	RO, "badauth" },	/* 45 */
542	{ CP_BOGUSORG,	RO, "bogusorg" },	/* 46 */
543	{ CP_OLDPKT,	RO, "oldpkt" },		/* 47 */
544	{ CP_SELDISP,	RO, "seldisp" },	/* 48 */
545	{ CP_SELBROKEN,	RO, "selbroken" },	/* 49 */
546	{ CP_CANDIDATE, RO, "candidate" },	/* 50 */
547#ifdef AUTOKEY
548	{ CP_FLAGS,	RO, "flags" },		/* 1 + CP_MAX_NOAUTOKEY */
549	{ CP_HOST,	RO, "host" },		/* 2 + CP_MAX_NOAUTOKEY */
550	{ CP_VALID,	RO, "valid" },		/* 3 + CP_MAX_NOAUTOKEY */
551	{ CP_INITSEQ,	RO, "initsequence" },	/* 4 + CP_MAX_NOAUTOKEY */
552	{ CP_INITKEY,	RO, "initkey" },	/* 5 + CP_MAX_NOAUTOKEY */
553	{ CP_INITTSP,	RO, "timestamp" },	/* 6 + CP_MAX_NOAUTOKEY */
554	{ CP_SIGNATURE,	RO, "signature" },	/* 7 + CP_MAX_NOAUTOKEY */
555	{ CP_IDENT,	RO, "ident" },		/* 8 + CP_MAX_NOAUTOKEY */
556#endif	/* AUTOKEY */
557	{ 0,		EOV, "" }		/* 50/58 */
558};
559
560
561/*
562 * Peer variables we print by default
563 */
564static const u_char def_peer_var[] = {
565	CP_SRCADR,
566	CP_SRCPORT,
567	CP_SRCHOST,
568	CP_DSTADR,
569	CP_DSTPORT,
570	CP_OUT,
571	CP_IN,
572	CP_LEAP,
573	CP_STRATUM,
574	CP_PRECISION,
575	CP_ROOTDELAY,
576	CP_ROOTDISPERSION,
577	CP_REFID,
578	CP_REFTIME,
579	CP_REC,
580	CP_REACH,
581	CP_UNREACH,
582	CP_HMODE,
583	CP_PMODE,
584	CP_HPOLL,
585	CP_PPOLL,
586	CP_RATE,
587	CP_FLASH,
588	CP_KEYID,
589	CP_TTL,
590	CP_OFFSET,
591	CP_DELAY,
592	CP_DISPERSION,
593	CP_JITTER,
594	CP_XMT,
595	CP_BIAS,
596	CP_FILTDELAY,
597	CP_FILTOFFSET,
598	CP_FILTERROR,
599#ifdef AUTOKEY
600	CP_HOST,
601	CP_FLAGS,
602	CP_SIGNATURE,
603	CP_VALID,
604	CP_INITSEQ,
605	CP_IDENT,
606#endif	/* AUTOKEY */
607	0
608};
609
610
611#ifdef REFCLOCK
612/*
613 * Clock variable list
614 */
615static const struct ctl_var clock_var[] = {
616	{ 0,		PADDING, "" },		/* 0 */
617	{ CC_TYPE,	RO, "type" },		/* 1 */
618	{ CC_TIMECODE,	RO, "timecode" },	/* 2 */
619	{ CC_POLL,	RO, "poll" },		/* 3 */
620	{ CC_NOREPLY,	RO, "noreply" },	/* 4 */
621	{ CC_BADFORMAT, RO, "badformat" },	/* 5 */
622	{ CC_BADDATA,	RO, "baddata" },	/* 6 */
623	{ CC_FUDGETIME1, RO, "fudgetime1" },	/* 7 */
624	{ CC_FUDGETIME2, RO, "fudgetime2" },	/* 8 */
625	{ CC_FUDGEVAL1, RO, "stratum" },	/* 9 */
626	{ CC_FUDGEVAL2, RO, "refid" },		/* 10 */
627	{ CC_FLAGS,	RO, "flags" },		/* 11 */
628	{ CC_DEVICE,	RO, "device" },		/* 12 */
629	{ CC_VARLIST,	RO, "clock_var_list" },	/* 13 */
630	{ 0,		EOV, ""  }		/* 14 */
631};
632
633
634/*
635 * Clock variables printed by default
636 */
637static const u_char def_clock_var[] = {
638	CC_DEVICE,
639	CC_TYPE,	/* won't be output if device = known */
640	CC_TIMECODE,
641	CC_POLL,
642	CC_NOREPLY,
643	CC_BADFORMAT,
644	CC_BADDATA,
645	CC_FUDGETIME1,
646	CC_FUDGETIME2,
647	CC_FUDGEVAL1,
648	CC_FUDGEVAL2,
649	CC_FLAGS,
650	0
651};
652#endif
653
654/*
655 * MRU string constants shared by send_mru_entry() and read_mru_list().
656 */
657static const char addr_fmt[] =		"addr.%d";
658static const char last_fmt[] =		"last.%d";
659
660/*
661 * System and processor definitions.
662 */
663#ifndef HAVE_UNAME
664# ifndef STR_SYSTEM
665#  define		STR_SYSTEM	"UNIX"
666# endif
667# ifndef STR_PROCESSOR
668#  define		STR_PROCESSOR	"unknown"
669# endif
670
671static const char str_system[] = STR_SYSTEM;
672static const char str_processor[] = STR_PROCESSOR;
673#else
674# include <sys/utsname.h>
675static struct utsname utsnamebuf;
676#endif /* HAVE_UNAME */
677
678/*
679 * Trap structures. We only allow a few of these, and send a copy of
680 * each async message to each live one. Traps time out after an hour, it
681 * is up to the trap receipient to keep resetting it to avoid being
682 * timed out.
683 */
684/* ntp_request.c */
685struct ctl_trap ctl_traps[CTL_MAXTRAPS];
686int num_ctl_traps;
687
688/*
689 * Type bits, for ctlsettrap() call.
690 */
691#define TRAP_TYPE_CONFIG	0	/* used by configuration code */
692#define TRAP_TYPE_PRIO		1	/* priority trap */
693#define TRAP_TYPE_NONPRIO	2	/* nonpriority trap */
694
695
696/*
697 * List relating reference clock types to control message time sources.
698 * Index by the reference clock type. This list will only be used iff
699 * the reference clock driver doesn't set peer->sstclktype to something
700 * different than CTL_SST_TS_UNSPEC.
701 */
702#ifdef REFCLOCK
703static const u_char clocktypes[] = {
704	CTL_SST_TS_NTP,		/* REFCLK_NONE (0) */
705	CTL_SST_TS_LOCAL,	/* REFCLK_LOCALCLOCK (1) */
706	CTL_SST_TS_UHF,		/* deprecated REFCLK_GPS_TRAK (2) */
707	CTL_SST_TS_HF,		/* REFCLK_WWV_PST (3) */
708	CTL_SST_TS_LF,		/* REFCLK_WWVB_SPECTRACOM (4) */
709	CTL_SST_TS_UHF,		/* REFCLK_TRUETIME (5) */
710	CTL_SST_TS_UHF,		/* REFCLK_IRIG_AUDIO (6) */
711	CTL_SST_TS_HF,		/* REFCLK_CHU (7) */
712	CTL_SST_TS_LF,		/* REFCLOCK_PARSE (default) (8) */
713	CTL_SST_TS_LF,		/* REFCLK_GPS_MX4200 (9) */
714	CTL_SST_TS_UHF,		/* REFCLK_GPS_AS2201 (10) */
715	CTL_SST_TS_UHF,		/* REFCLK_GPS_ARBITER (11) */
716	CTL_SST_TS_UHF,		/* REFCLK_IRIG_TPRO (12) */
717	CTL_SST_TS_ATOM,	/* REFCLK_ATOM_LEITCH (13) */
718	CTL_SST_TS_LF,		/* deprecated REFCLK_MSF_EES (14) */
719	CTL_SST_TS_NTP,		/* not used (15) */
720	CTL_SST_TS_UHF,		/* REFCLK_IRIG_BANCOMM (16) */
721	CTL_SST_TS_UHF,		/* REFCLK_GPS_DATU (17) */
722	CTL_SST_TS_TELEPHONE,	/* REFCLK_NIST_ACTS (18) */
723	CTL_SST_TS_HF,		/* REFCLK_WWV_HEATH (19) */
724	CTL_SST_TS_UHF,		/* REFCLK_GPS_NMEA (20) */
725	CTL_SST_TS_UHF,		/* REFCLK_GPS_VME (21) */
726	CTL_SST_TS_ATOM,	/* REFCLK_ATOM_PPS (22) */
727	CTL_SST_TS_NTP,		/* not used (23) */
728	CTL_SST_TS_NTP,		/* not used (24) */
729	CTL_SST_TS_NTP,		/* not used (25) */
730	CTL_SST_TS_UHF,		/* REFCLK_GPS_HP (26) */
731	CTL_SST_TS_LF,		/* REFCLK_ARCRON_MSF (27) */
732	CTL_SST_TS_UHF,		/* REFCLK_SHM (28) */
733	CTL_SST_TS_UHF,		/* REFCLK_PALISADE (29) */
734	CTL_SST_TS_UHF,		/* REFCLK_ONCORE (30) */
735	CTL_SST_TS_UHF,		/* REFCLK_JUPITER (31) */
736	CTL_SST_TS_LF,		/* REFCLK_CHRONOLOG (32) */
737	CTL_SST_TS_LF,		/* REFCLK_DUMBCLOCK (33) */
738	CTL_SST_TS_LF,		/* REFCLK_ULINK (34) */
739	CTL_SST_TS_LF,		/* REFCLK_PCF (35) */
740	CTL_SST_TS_HF,		/* REFCLK_WWV (36) */
741	CTL_SST_TS_LF,		/* REFCLK_FG (37) */
742	CTL_SST_TS_UHF,		/* REFCLK_HOPF_SERIAL (38) */
743	CTL_SST_TS_UHF,		/* REFCLK_HOPF_PCI (39) */
744	CTL_SST_TS_LF,		/* REFCLK_JJY (40) */
745	CTL_SST_TS_UHF,		/* REFCLK_TT560 (41) */
746	CTL_SST_TS_UHF,		/* REFCLK_ZYFER (42) */
747	CTL_SST_TS_UHF,		/* REFCLK_RIPENCC (43) */
748	CTL_SST_TS_UHF,		/* REFCLK_NEOCLOCK4X (44) */
749	CTL_SST_TS_UHF,		/* REFCLK_TSYNCPCI (45) */
750	CTL_SST_TS_UHF		/* REFCLK_GPSDJSON (46) */
751};
752#endif  /* REFCLOCK */
753
754
755/*
756 * Keyid used for authenticating write requests.
757 */
758keyid_t ctl_auth_keyid;
759
760/*
761 * We keep track of the last error reported by the system internally
762 */
763static	u_char ctl_sys_last_event;
764static	u_char ctl_sys_num_events;
765
766
767/*
768 * Statistic counters to keep track of requests and responses.
769 */
770u_long ctltimereset;		/* time stats reset */
771u_long numctlreq;		/* number of requests we've received */
772u_long numctlbadpkts;		/* number of bad control packets */
773u_long numctlresponses;		/* number of resp packets sent with data */
774u_long numctlfrags;		/* number of fragments sent */
775u_long numctlerrors;		/* number of error responses sent */
776u_long numctltooshort;		/* number of too short input packets */
777u_long numctlinputresp;		/* number of responses on input */
778u_long numctlinputfrag;		/* number of fragments on input */
779u_long numctlinputerr;		/* number of input pkts with err bit set */
780u_long numctlbadoffset;		/* number of input pkts with nonzero offset */
781u_long numctlbadversion;	/* number of input pkts with unknown version */
782u_long numctldatatooshort;	/* data too short for count */
783u_long numctlbadop;		/* bad op code found in packet */
784u_long numasyncmsgs;		/* number of async messages we've sent */
785
786/*
787 * Response packet used by these routines. Also some state information
788 * so that we can handle packet formatting within a common set of
789 * subroutines.  Note we try to enter data in place whenever possible,
790 * but the need to set the more bit correctly means we occasionally
791 * use the extra buffer and copy.
792 */
793static struct ntp_control rpkt;
794static u_char	res_version;
795static u_char	res_opcode;
796static associd_t res_associd;
797static u_short	res_frags;	/* datagrams in this response */
798static int	res_offset;	/* offset of payload in response */
799static u_char * datapt;
800static u_char * dataend;
801static int	datalinelen;
802static int	datasent;	/* flag to avoid initial ", " */
803static int	datanotbinflag;
804static sockaddr_u *rmt_addr;
805static struct interface *lcl_inter;
806
807static u_char	res_authenticate;
808static u_char	res_authokay;
809static keyid_t	res_keyid;
810
811#define MAXDATALINELEN	(72)
812
813static u_char	res_async;	/* sending async trap response? */
814
815/*
816 * Pointers for saving state when decoding request packets
817 */
818static	char *reqpt;
819static	char *reqend;
820
821#ifndef MIN
822#define MIN(a, b) (((a) <= (b)) ? (a) : (b))
823#endif
824
825/*
826 * init_control - initialize request data
827 */
828void
829init_control(void)
830{
831	size_t i;
832
833#ifdef HAVE_UNAME
834	uname(&utsnamebuf);
835#endif /* HAVE_UNAME */
836
837	ctl_clr_stats();
838
839	ctl_auth_keyid = 0;
840	ctl_sys_last_event = EVNT_UNSPEC;
841	ctl_sys_num_events = 0;
842
843	num_ctl_traps = 0;
844	for (i = 0; i < COUNTOF(ctl_traps); i++)
845		ctl_traps[i].tr_flags = 0;
846}
847
848
849/*
850 * ctl_error - send an error response for the current request
851 */
852static void
853ctl_error(
854	u_char errcode
855	)
856{
857	int		maclen;
858
859	numctlerrors++;
860	DPRINTF(3, ("sending control error %u\n", errcode));
861
862	/*
863	 * Fill in the fields. We assume rpkt.sequence and rpkt.associd
864	 * have already been filled in.
865	 */
866	rpkt.r_m_e_op = (u_char)CTL_RESPONSE | CTL_ERROR |
867			(res_opcode & CTL_OP_MASK);
868	rpkt.status = htons((u_short)(errcode << 8) & 0xff00);
869	rpkt.count = 0;
870
871	/*
872	 * send packet and bump counters
873	 */
874	if (res_authenticate && sys_authenticate) {
875		maclen = authencrypt(res_keyid, (u_int32 *)&rpkt,
876				     CTL_HEADER_LEN);
877		sendpkt(rmt_addr, lcl_inter, -2, (void *)&rpkt,
878			CTL_HEADER_LEN + maclen);
879	} else
880		sendpkt(rmt_addr, lcl_inter, -3, (void *)&rpkt,
881			CTL_HEADER_LEN);
882}
883
884/*
885 * save_config - Implements ntpq -c "saveconfig <filename>"
886 *		 Writes current configuration including any runtime
887 *		 changes by ntpq's :config or config-from-file
888 */
889void
890save_config(
891	struct recvbuf *rbufp,
892	int restrict_mask
893	)
894{
895	char reply[128];
896#ifdef SAVECONFIG
897	char filespec[128];
898	char filename[128];
899	char fullpath[512];
900	const char savedconfig_eq[] = "savedconfig=";
901	char savedconfig[sizeof(savedconfig_eq) + sizeof(filename)];
902	time_t now;
903	int fd;
904	FILE *fptr;
905#endif
906
907	if (RES_NOMODIFY & restrict_mask) {
908		snprintf(reply, sizeof(reply),
909			 "saveconfig prohibited by restrict ... nomodify");
910		ctl_putdata(reply, strlen(reply), 0);
911		ctl_flushpkt(0);
912		NLOG(NLOG_SYSINFO)
913			msyslog(LOG_NOTICE,
914				"saveconfig from %s rejected due to nomodify restriction",
915				stoa(&rbufp->recv_srcadr));
916		sys_restricted++;
917		return;
918	}
919
920#ifdef SAVECONFIG
921	if (NULL == saveconfigdir) {
922		snprintf(reply, sizeof(reply),
923			 "saveconfig prohibited, no saveconfigdir configured");
924		ctl_putdata(reply, strlen(reply), 0);
925		ctl_flushpkt(0);
926		NLOG(NLOG_SYSINFO)
927			msyslog(LOG_NOTICE,
928				"saveconfig from %s rejected, no saveconfigdir",
929				stoa(&rbufp->recv_srcadr));
930		return;
931	}
932
933	if (0 == reqend - reqpt)
934		return;
935
936	strlcpy(filespec, reqpt, sizeof(filespec));
937	time(&now);
938
939	/*
940	 * allow timestamping of the saved config filename with
941	 * strftime() format such as:
942	 *   ntpq -c "saveconfig ntp-%Y%m%d-%H%M%S.conf"
943	 * XXX: Nice feature, but not too safe.
944	 */
945	if (0 == strftime(filename, sizeof(filename), filespec,
946			       localtime(&now)))
947		strlcpy(filename, filespec, sizeof(filename));
948
949	/*
950	 * Conceptually we should be searching for DIRSEP in filename,
951	 * however Windows actually recognizes both forward and
952	 * backslashes as equivalent directory separators at the API
953	 * level.  On POSIX systems we could allow '\\' but such
954	 * filenames are tricky to manipulate from a shell, so just
955	 * reject both types of slashes on all platforms.
956	 */
957	if (strchr(filename, '\\') || strchr(filename, '/')) {
958		snprintf(reply, sizeof(reply),
959			 "saveconfig does not allow directory in filename");
960		ctl_putdata(reply, strlen(reply), 0);
961		ctl_flushpkt(0);
962		msyslog(LOG_NOTICE,
963			"saveconfig with path from %s rejected",
964			stoa(&rbufp->recv_srcadr));
965		return;
966	}
967
968	snprintf(fullpath, sizeof(fullpath), "%s%s",
969		 saveconfigdir, filename);
970
971	fd = open(fullpath, O_CREAT | O_TRUNC | O_WRONLY,
972		  S_IRUSR | S_IWUSR);
973	if (-1 == fd)
974		fptr = NULL;
975	else
976		fptr = fdopen(fd, "w");
977
978	if (NULL == fptr || -1 == dump_all_config_trees(fptr, 1)) {
979		snprintf(reply, sizeof(reply),
980			 "Unable to save configuration to file %s",
981			 filename);
982		msyslog(LOG_ERR,
983			"saveconfig %s from %s failed", filename,
984			stoa(&rbufp->recv_srcadr));
985	} else {
986		snprintf(reply, sizeof(reply),
987			 "Configuration saved to %s", filename);
988		msyslog(LOG_NOTICE,
989			"Configuration saved to %s (requested by %s)",
990			fullpath, stoa(&rbufp->recv_srcadr));
991		/*
992		 * save the output filename in system variable
993		 * savedconfig, retrieved with:
994		 *   ntpq -c "rv 0 savedconfig"
995		 */
996		snprintf(savedconfig, sizeof(savedconfig), "%s%s",
997			 savedconfig_eq, filename);
998		set_sys_var(savedconfig, strlen(savedconfig) + 1, RO);
999	}
1000
1001	if (NULL != fptr)
1002		fclose(fptr);
1003#else	/* !SAVECONFIG follows */
1004	snprintf(reply, sizeof(reply),
1005		 "saveconfig unavailable, configured with --disable-saveconfig");
1006#endif
1007
1008	ctl_putdata(reply, strlen(reply), 0);
1009	ctl_flushpkt(0);
1010}
1011
1012
1013/*
1014 * process_control - process an incoming control message
1015 */
1016void
1017process_control(
1018	struct recvbuf *rbufp,
1019	int restrict_mask
1020	)
1021{
1022	struct ntp_control *pkt;
1023	int req_count;
1024	int req_data;
1025	const struct ctl_proc *cc;
1026	keyid_t *pkid;
1027	int properlen;
1028	size_t maclen;
1029
1030	DPRINTF(3, ("in process_control()\n"));
1031
1032	/*
1033	 * Save the addresses for error responses
1034	 */
1035	numctlreq++;
1036	rmt_addr = &rbufp->recv_srcadr;
1037	lcl_inter = rbufp->dstadr;
1038	pkt = (struct ntp_control *)&rbufp->recv_pkt;
1039
1040	/*
1041	 * If the length is less than required for the header, or
1042	 * it is a response or a fragment, ignore this.
1043	 */
1044	if (rbufp->recv_length < (int)CTL_HEADER_LEN
1045	    || (CTL_RESPONSE | CTL_MORE | CTL_ERROR) & pkt->r_m_e_op
1046	    || pkt->offset != 0) {
1047		DPRINTF(1, ("invalid format in control packet\n"));
1048		if (rbufp->recv_length < (int)CTL_HEADER_LEN)
1049			numctltooshort++;
1050		if (CTL_RESPONSE & pkt->r_m_e_op)
1051			numctlinputresp++;
1052		if (CTL_MORE & pkt->r_m_e_op)
1053			numctlinputfrag++;
1054		if (CTL_ERROR & pkt->r_m_e_op)
1055			numctlinputerr++;
1056		if (pkt->offset != 0)
1057			numctlbadoffset++;
1058		return;
1059	}
1060	res_version = PKT_VERSION(pkt->li_vn_mode);
1061	if (res_version > NTP_VERSION || res_version < NTP_OLDVERSION) {
1062		DPRINTF(1, ("unknown version %d in control packet\n",
1063			    res_version));
1064		numctlbadversion++;
1065		return;
1066	}
1067
1068	/*
1069	 * Pull enough data from the packet to make intelligent
1070	 * responses
1071	 */
1072	rpkt.li_vn_mode = PKT_LI_VN_MODE(sys_leap, res_version,
1073					 MODE_CONTROL);
1074	res_opcode = pkt->r_m_e_op;
1075	rpkt.sequence = pkt->sequence;
1076	rpkt.associd = pkt->associd;
1077	rpkt.status = 0;
1078	res_frags = 1;
1079	res_offset = 0;
1080	res_associd = htons(pkt->associd);
1081	res_async = FALSE;
1082	res_authenticate = FALSE;
1083	res_keyid = 0;
1084	res_authokay = FALSE;
1085	req_count = (int)ntohs(pkt->count);
1086	datanotbinflag = FALSE;
1087	datalinelen = 0;
1088	datasent = 0;
1089	datapt = rpkt.u.data;
1090	dataend = &rpkt.u.data[CTL_MAX_DATA_LEN];
1091
1092	if ((rbufp->recv_length & 0x3) != 0)
1093		DPRINTF(3, ("Control packet length %d unrounded\n",
1094			    rbufp->recv_length));
1095
1096	/*
1097	 * We're set up now. Make sure we've got at least enough
1098	 * incoming data space to match the count.
1099	 */
1100	req_data = rbufp->recv_length - CTL_HEADER_LEN;
1101	if (req_data < req_count || rbufp->recv_length & 0x3) {
1102		ctl_error(CERR_BADFMT);
1103		numctldatatooshort++;
1104		return;
1105	}
1106
1107	properlen = req_count + CTL_HEADER_LEN;
1108	/* round up proper len to a 8 octet boundary */
1109
1110	properlen = (properlen + 7) & ~7;
1111	maclen = rbufp->recv_length - properlen;
1112	if ((rbufp->recv_length & 3) == 0 &&
1113	    maclen >= MIN_MAC_LEN && maclen <= MAX_MAC_LEN &&
1114	    sys_authenticate) {
1115		res_authenticate = TRUE;
1116		pkid = (void *)((char *)pkt + properlen);
1117		res_keyid = ntohl(*pkid);
1118		DPRINTF(3, ("recv_len %d, properlen %d, wants auth with keyid %08x, MAC length=%zu\n",
1119			    rbufp->recv_length, properlen, res_keyid,
1120			    maclen));
1121
1122		if (!authistrusted(res_keyid))
1123			DPRINTF(3, ("invalid keyid %08x\n", res_keyid));
1124		else if (authdecrypt(res_keyid, (u_int32 *)pkt,
1125				     rbufp->recv_length - maclen,
1126				     maclen)) {
1127			res_authokay = TRUE;
1128			DPRINTF(3, ("authenticated okay\n"));
1129		} else {
1130			res_keyid = 0;
1131			DPRINTF(3, ("authentication failed\n"));
1132		}
1133	}
1134
1135	/*
1136	 * Set up translate pointers
1137	 */
1138	reqpt = (char *)pkt->u.data;
1139	reqend = reqpt + req_count;
1140
1141	/*
1142	 * Look for the opcode processor
1143	 */
1144	for (cc = control_codes; cc->control_code != NO_REQUEST; cc++) {
1145		if (cc->control_code == res_opcode) {
1146			DPRINTF(3, ("opcode %d, found command handler\n",
1147				    res_opcode));
1148			if (cc->flags == AUTH
1149			    && (!res_authokay
1150				|| res_keyid != ctl_auth_keyid)) {
1151				ctl_error(CERR_PERMISSION);
1152				return;
1153			}
1154			(cc->handler)(rbufp, restrict_mask);
1155			return;
1156		}
1157	}
1158
1159	/*
1160	 * Can't find this one, return an error.
1161	 */
1162	numctlbadop++;
1163	ctl_error(CERR_BADOP);
1164	return;
1165}
1166
1167
1168/*
1169 * ctlpeerstatus - return a status word for this peer
1170 */
1171u_short
1172ctlpeerstatus(
1173	register struct peer *p
1174	)
1175{
1176	u_short status;
1177
1178	status = p->status;
1179	if (FLAG_CONFIG & p->flags)
1180		status |= CTL_PST_CONFIG;
1181	if (p->keyid)
1182		status |= CTL_PST_AUTHENABLE;
1183	if (FLAG_AUTHENTIC & p->flags)
1184		status |= CTL_PST_AUTHENTIC;
1185	if (p->reach)
1186		status |= CTL_PST_REACH;
1187	if (MDF_TXONLY_MASK & p->cast_flags)
1188		status |= CTL_PST_BCAST;
1189
1190	return CTL_PEER_STATUS(status, p->num_events, p->last_event);
1191}
1192
1193
1194/*
1195 * ctlclkstatus - return a status word for this clock
1196 */
1197#ifdef REFCLOCK
1198static u_short
1199ctlclkstatus(
1200	struct refclockstat *pcs
1201	)
1202{
1203	return CTL_PEER_STATUS(0, pcs->lastevent, pcs->currentstatus);
1204}
1205#endif
1206
1207
1208/*
1209 * ctlsysstatus - return the system status word
1210 */
1211u_short
1212ctlsysstatus(void)
1213{
1214	register u_char this_clock;
1215
1216	this_clock = CTL_SST_TS_UNSPEC;
1217#ifdef REFCLOCK
1218	if (sys_peer != NULL) {
1219		if (CTL_SST_TS_UNSPEC != sys_peer->sstclktype)
1220			this_clock = sys_peer->sstclktype;
1221		else if (sys_peer->refclktype < COUNTOF(clocktypes))
1222			this_clock = clocktypes[sys_peer->refclktype];
1223	}
1224#else /* REFCLOCK */
1225	if (sys_peer != 0)
1226		this_clock = CTL_SST_TS_NTP;
1227#endif /* REFCLOCK */
1228	return CTL_SYS_STATUS(sys_leap, this_clock, ctl_sys_num_events,
1229			      ctl_sys_last_event);
1230}
1231
1232
1233/*
1234 * ctl_flushpkt - write out the current packet and prepare
1235 *		  another if necessary.
1236 */
1237static void
1238ctl_flushpkt(
1239	u_char more
1240	)
1241{
1242	size_t i;
1243	int dlen;
1244	int sendlen;
1245	int maclen;
1246	int totlen;
1247	keyid_t keyid;
1248
1249	dlen = datapt - rpkt.u.data;
1250	if (!more && datanotbinflag && dlen + 2 < CTL_MAX_DATA_LEN) {
1251		/*
1252		 * Big hack, output a trailing \r\n
1253		 */
1254		*datapt++ = '\r';
1255		*datapt++ = '\n';
1256		dlen += 2;
1257	}
1258	sendlen = dlen + CTL_HEADER_LEN;
1259
1260	/*
1261	 * Pad to a multiple of 32 bits
1262	 */
1263	while (sendlen & 0x3) {
1264		*datapt++ = '\0';
1265		sendlen++;
1266	}
1267
1268	/*
1269	 * Fill in the packet with the current info
1270	 */
1271	rpkt.r_m_e_op = CTL_RESPONSE | more |
1272			(res_opcode & CTL_OP_MASK);
1273	rpkt.count = htons((u_short)dlen);
1274	rpkt.offset = htons((u_short)res_offset);
1275	if (res_async) {
1276		for (i = 0; i < COUNTOF(ctl_traps); i++) {
1277			if (TRAP_INUSE & ctl_traps[i].tr_flags) {
1278				rpkt.li_vn_mode =
1279				    PKT_LI_VN_MODE(
1280					sys_leap,
1281					ctl_traps[i].tr_version,
1282					MODE_CONTROL);
1283				rpkt.sequence =
1284				    htons(ctl_traps[i].tr_sequence);
1285				sendpkt(&ctl_traps[i].tr_addr,
1286					ctl_traps[i].tr_localaddr, -4,
1287					(struct pkt *)&rpkt, sendlen);
1288				if (!more)
1289					ctl_traps[i].tr_sequence++;
1290				numasyncmsgs++;
1291			}
1292		}
1293	} else {
1294		if (res_authenticate && sys_authenticate) {
1295			totlen = sendlen;
1296			/*
1297			 * If we are going to authenticate, then there
1298			 * is an additional requirement that the MAC
1299			 * begin on a 64 bit boundary.
1300			 */
1301			while (totlen & 7) {
1302				*datapt++ = '\0';
1303				totlen++;
1304			}
1305			keyid = htonl(res_keyid);
1306			memcpy(datapt, &keyid, sizeof(keyid));
1307			maclen = authencrypt(res_keyid,
1308					     (u_int32 *)&rpkt, totlen);
1309			sendpkt(rmt_addr, lcl_inter, -5,
1310				(struct pkt *)&rpkt, totlen + maclen);
1311		} else {
1312			sendpkt(rmt_addr, lcl_inter, -6,
1313				(struct pkt *)&rpkt, sendlen);
1314		}
1315		if (more)
1316			numctlfrags++;
1317		else
1318			numctlresponses++;
1319	}
1320
1321	/*
1322	 * Set us up for another go around.
1323	 */
1324	res_frags++;
1325	res_offset += dlen;
1326	datapt = rpkt.u.data;
1327}
1328
1329
1330/*
1331 * ctl_putdata - write data into the packet, fragmenting and starting
1332 * another if this one is full.
1333 */
1334static void
1335ctl_putdata(
1336	const char *dp,
1337	unsigned int dlen,
1338	int bin			/* set to 1 when data is binary */
1339	)
1340{
1341	int overhead;
1342	unsigned int currentlen;
1343
1344	overhead = 0;
1345	if (!bin) {
1346		datanotbinflag = TRUE;
1347		overhead = 3;
1348		if (datasent) {
1349			*datapt++ = ',';
1350			datalinelen++;
1351			if ((dlen + datalinelen + 1) >= MAXDATALINELEN) {
1352				*datapt++ = '\r';
1353				*datapt++ = '\n';
1354				datalinelen = 0;
1355			} else {
1356				*datapt++ = ' ';
1357				datalinelen++;
1358			}
1359		}
1360	}
1361
1362	/*
1363	 * Save room for trailing junk
1364	 */
1365	while (dlen + overhead + datapt > dataend) {
1366		/*
1367		 * Not enough room in this one, flush it out.
1368		 */
1369		currentlen = MIN(dlen, (unsigned int)(dataend - datapt));
1370
1371		memcpy(datapt, dp, currentlen);
1372
1373		datapt += currentlen;
1374		dp += currentlen;
1375		dlen -= currentlen;
1376		datalinelen += currentlen;
1377
1378		ctl_flushpkt(CTL_MORE);
1379	}
1380
1381	memcpy(datapt, dp, dlen);
1382	datapt += dlen;
1383	datalinelen += dlen;
1384	datasent = TRUE;
1385}
1386
1387
1388/*
1389 * ctl_putstr - write a tagged string into the response packet
1390 *		in the form:
1391 *
1392 *		tag="data"
1393 *
1394 *		len is the data length excluding the NUL terminator,
1395 *		as in ctl_putstr("var", "value", strlen("value"));
1396 */
1397static void
1398ctl_putstr(
1399	const char *	tag,
1400	const char *	data,
1401	size_t		len
1402	)
1403{
1404	char buffer[512];
1405	char *cp;
1406	size_t tl;
1407
1408	tl = strlen(tag);
1409	memcpy(buffer, tag, tl);
1410	cp = buffer + tl;
1411	if (len > 0) {
1412		NTP_INSIST(tl + 3 + len <= sizeof(buffer));
1413		*cp++ = '=';
1414		*cp++ = '"';
1415		memcpy(cp, data, len);
1416		cp += len;
1417		*cp++ = '"';
1418	}
1419	ctl_putdata(buffer, (u_int)(cp - buffer), 0);
1420}
1421
1422
1423/*
1424 * ctl_putunqstr - write a tagged string into the response packet
1425 *		   in the form:
1426 *
1427 *		   tag=data
1428 *
1429 *	len is the data length excluding the NUL terminator.
1430 *	data must not contain a comma or whitespace.
1431 */
1432static void
1433ctl_putunqstr(
1434	const char *	tag,
1435	const char *	data,
1436	size_t		len
1437	)
1438{
1439	char buffer[512];
1440	char *cp;
1441	size_t tl;
1442
1443	tl = strlen(tag);
1444	memcpy(buffer, tag, tl);
1445	cp = buffer + tl;
1446	if (len > 0) {
1447		NTP_INSIST(tl + 1 + len <= sizeof(buffer));
1448		*cp++ = '=';
1449		memcpy(cp, data, len);
1450		cp += len;
1451	}
1452	ctl_putdata(buffer, (u_int)(cp - buffer), 0);
1453}
1454
1455
1456/*
1457 * ctl_putdblf - write a tagged, signed double into the response packet
1458 */
1459static void
1460ctl_putdblf(
1461	const char *	tag,
1462	int		use_f,
1463	int		precision,
1464	double		d
1465	)
1466{
1467	char *cp;
1468	const char *cq;
1469	char buffer[200];
1470
1471	cp = buffer;
1472	cq = tag;
1473	while (*cq != '\0')
1474		*cp++ = *cq++;
1475	*cp++ = '=';
1476	NTP_INSIST((size_t)(cp - buffer) < sizeof(buffer));
1477	snprintf(cp, sizeof(buffer) - (cp - buffer), use_f ? "%.*f" : "%.*g",
1478	    precision, d);
1479	cp += strlen(cp);
1480	ctl_putdata(buffer, (unsigned)(cp - buffer), 0);
1481}
1482
1483/*
1484 * ctl_putuint - write a tagged unsigned integer into the response
1485 */
1486static void
1487ctl_putuint(
1488	const char *tag,
1489	u_long uval
1490	)
1491{
1492	register char *cp;
1493	register const char *cq;
1494	char buffer[200];
1495
1496	cp = buffer;
1497	cq = tag;
1498	while (*cq != '\0')
1499		*cp++ = *cq++;
1500
1501	*cp++ = '=';
1502	NTP_INSIST((cp - buffer) < (int)sizeof(buffer));
1503	snprintf(cp, sizeof(buffer) - (cp - buffer), "%lu", uval);
1504	cp += strlen(cp);
1505	ctl_putdata(buffer, (unsigned)( cp - buffer ), 0);
1506}
1507
1508/*
1509 * ctl_putcal - write a decoded calendar data into the response
1510 */
1511static void
1512ctl_putcal(
1513	const char *tag,
1514	const struct calendar *pcal
1515	)
1516{
1517	char buffer[100];
1518	unsigned numch;
1519
1520	numch = snprintf(buffer, sizeof(buffer),
1521			"%s=%04d%02d%02d%02d%02d",
1522			tag,
1523			pcal->year,
1524			pcal->month,
1525			pcal->monthday,
1526			pcal->hour,
1527			pcal->minute
1528			);
1529	NTP_INSIST(numch < sizeof(buffer));
1530	ctl_putdata(buffer, numch, 0);
1531
1532	return;
1533}
1534
1535/*
1536 * ctl_putfs - write a decoded filestamp into the response
1537 */
1538static void
1539ctl_putfs(
1540	const char *tag,
1541	tstamp_t uval
1542	)
1543{
1544	register char *cp;
1545	register const char *cq;
1546	char buffer[200];
1547	struct tm *tm = NULL;
1548	time_t fstamp;
1549
1550	cp = buffer;
1551	cq = tag;
1552	while (*cq != '\0')
1553		*cp++ = *cq++;
1554
1555	*cp++ = '=';
1556	fstamp = uval - JAN_1970;
1557	tm = gmtime(&fstamp);
1558	if (NULL ==  tm)
1559		return;
1560	NTP_INSIST((cp - buffer) < (int)sizeof(buffer));
1561	snprintf(cp, sizeof(buffer) - (cp - buffer),
1562		 "%04d%02d%02d%02d%02d", tm->tm_year + 1900,
1563		 tm->tm_mon + 1, tm->tm_mday, tm->tm_hour, tm->tm_min);
1564	cp += strlen(cp);
1565	ctl_putdata(buffer, (unsigned)( cp - buffer ), 0);
1566}
1567
1568
1569/*
1570 * ctl_puthex - write a tagged unsigned integer, in hex, into the
1571 * response
1572 */
1573static void
1574ctl_puthex(
1575	const char *tag,
1576	u_long uval
1577	)
1578{
1579	register char *cp;
1580	register const char *cq;
1581	char buffer[200];
1582
1583	cp = buffer;
1584	cq = tag;
1585	while (*cq != '\0')
1586		*cp++ = *cq++;
1587
1588	*cp++ = '=';
1589	NTP_INSIST((cp - buffer) < (int)sizeof(buffer));
1590	snprintf(cp, sizeof(buffer) - (cp - buffer), "0x%lx", uval);
1591	cp += strlen(cp);
1592	ctl_putdata(buffer,(unsigned)( cp - buffer ), 0);
1593}
1594
1595
1596/*
1597 * ctl_putint - write a tagged signed integer into the response
1598 */
1599static void
1600ctl_putint(
1601	const char *tag,
1602	long ival
1603	)
1604{
1605	register char *cp;
1606	register const char *cq;
1607	char buffer[200];
1608
1609	cp = buffer;
1610	cq = tag;
1611	while (*cq != '\0')
1612		*cp++ = *cq++;
1613
1614	*cp++ = '=';
1615	NTP_INSIST((cp - buffer) < (int)sizeof(buffer));
1616	snprintf(cp, sizeof(buffer) - (cp - buffer), "%ld", ival);
1617	cp += strlen(cp);
1618	ctl_putdata(buffer, (unsigned)( cp - buffer ), 0);
1619}
1620
1621
1622/*
1623 * ctl_putts - write a tagged timestamp, in hex, into the response
1624 */
1625static void
1626ctl_putts(
1627	const char *tag,
1628	l_fp *ts
1629	)
1630{
1631	register char *cp;
1632	register const char *cq;
1633	char buffer[200];
1634
1635	cp = buffer;
1636	cq = tag;
1637	while (*cq != '\0')
1638		*cp++ = *cq++;
1639
1640	*cp++ = '=';
1641	NTP_INSIST((size_t)(cp - buffer) < sizeof(buffer));
1642	snprintf(cp, sizeof(buffer) - (cp - buffer), "0x%08x.%08x",
1643		 (u_int)ts->l_ui, (u_int)ts->l_uf);
1644	cp += strlen(cp);
1645	ctl_putdata(buffer, (unsigned)( cp - buffer ), 0);
1646}
1647
1648
1649/*
1650 * ctl_putadr - write an IP address into the response
1651 */
1652static void
1653ctl_putadr(
1654	const char *tag,
1655	u_int32 addr32,
1656	sockaddr_u *addr
1657	)
1658{
1659	register char *cp;
1660	register const char *cq;
1661	char buffer[200];
1662
1663	cp = buffer;
1664	cq = tag;
1665	while (*cq != '\0')
1666		*cp++ = *cq++;
1667
1668	*cp++ = '=';
1669	if (NULL == addr)
1670		cq = numtoa(addr32);
1671	else
1672		cq = stoa(addr);
1673	NTP_INSIST((cp - buffer) < (int)sizeof(buffer));
1674	snprintf(cp, sizeof(buffer) - (cp - buffer), "%s", cq);
1675	cp += strlen(cp);
1676	ctl_putdata(buffer, (unsigned)(cp - buffer), 0);
1677}
1678
1679
1680/*
1681 * ctl_putrefid - send a u_int32 refid as printable text
1682 */
1683static void
1684ctl_putrefid(
1685	const char *	tag,
1686	u_int32		refid
1687	)
1688{
1689	char	output[16];
1690	char *	optr;
1691	char *	oplim;
1692	char *	iptr;
1693	char *	iplim;
1694	char *	past_eq;
1695
1696	optr = output;
1697	oplim = output + sizeof(output);
1698	while (optr < oplim && '\0' != *tag)
1699		*optr++ = *tag++;
1700	if (optr < oplim) {
1701		*optr++ = '=';
1702		past_eq = optr;
1703	}
1704	if (!(optr < oplim))
1705		return;
1706	iptr = (char *)&refid;
1707	iplim = iptr + sizeof(refid);
1708	for ( ; optr < oplim && iptr < iplim && '\0' != *iptr;
1709	     iptr++, optr++)
1710		if (isprint((int)*iptr))
1711			*optr = *iptr;
1712		else
1713			*optr = '.';
1714	if (!(optr <= oplim))
1715		optr = past_eq;
1716	ctl_putdata(output, (u_int)(optr - output), FALSE);
1717}
1718
1719
1720/*
1721 * ctl_putarray - write a tagged eight element double array into the response
1722 */
1723static void
1724ctl_putarray(
1725	const char *tag,
1726	double *arr,
1727	int start
1728	)
1729{
1730	register char *cp;
1731	register const char *cq;
1732	char buffer[200];
1733	int i;
1734	cp = buffer;
1735	cq = tag;
1736	while (*cq != '\0')
1737		*cp++ = *cq++;
1738	*cp++ = '=';
1739	i = start;
1740	do {
1741		if (i == 0)
1742			i = NTP_SHIFT;
1743		i--;
1744		NTP_INSIST((cp - buffer) < (int)sizeof(buffer));
1745		snprintf(cp, sizeof(buffer) - (cp - buffer),
1746			 " %.2f", arr[i] * 1e3);
1747		cp += strlen(cp);
1748	} while (i != start);
1749	ctl_putdata(buffer, (unsigned)(cp - buffer), 0);
1750}
1751
1752
1753/*
1754 * ctl_putsys - output a system variable
1755 */
1756static void
1757ctl_putsys(
1758	int varid
1759	)
1760{
1761	l_fp tmp;
1762	char str[256];
1763	u_int u;
1764	double kb;
1765	double dtemp;
1766	const char *ss;
1767#ifdef AUTOKEY
1768	struct cert_info *cp;
1769#endif	/* AUTOKEY */
1770#ifdef KERNEL_PLL
1771	static struct timex ntx;
1772	static u_long ntp_adjtime_time;
1773
1774	static const double to_ms =
1775# ifdef STA_NANO
1776		1.0e-6; /* nsec to msec */
1777# else
1778		1.0e-3; /* usec to msec */
1779# endif
1780
1781	/*
1782	 * CS_K_* variables depend on up-to-date output of ntp_adjtime()
1783	 */
1784	if (CS_KERN_FIRST <= varid && varid <= CS_KERN_LAST &&
1785	    current_time != ntp_adjtime_time) {
1786		ZERO(ntx);
1787		if (ntp_adjtime(&ntx) < 0)
1788			msyslog(LOG_ERR, "ntp_adjtime() for mode 6 query failed: %m");
1789		else
1790			ntp_adjtime_time = current_time;
1791	}
1792#endif	/* KERNEL_PLL */
1793
1794	switch (varid) {
1795
1796	case CS_LEAP:
1797		ctl_putuint(sys_var[CS_LEAP].text, sys_leap);
1798		break;
1799
1800	case CS_STRATUM:
1801		ctl_putuint(sys_var[CS_STRATUM].text, sys_stratum);
1802		break;
1803
1804	case CS_PRECISION:
1805		ctl_putint(sys_var[CS_PRECISION].text, sys_precision);
1806		break;
1807
1808	case CS_ROOTDELAY:
1809		ctl_putdbl(sys_var[CS_ROOTDELAY].text, sys_rootdelay *
1810			   1e3);
1811		break;
1812
1813	case CS_ROOTDISPERSION:
1814		ctl_putdbl(sys_var[CS_ROOTDISPERSION].text,
1815			   sys_rootdisp * 1e3);
1816		break;
1817
1818	case CS_REFID:
1819		if (sys_stratum > 1 && sys_stratum < STRATUM_UNSPEC)
1820			ctl_putadr(sys_var[varid].text, sys_refid, NULL);
1821		else
1822			ctl_putrefid(sys_var[varid].text, sys_refid);
1823		break;
1824
1825	case CS_REFTIME:
1826		ctl_putts(sys_var[CS_REFTIME].text, &sys_reftime);
1827		break;
1828
1829	case CS_POLL:
1830		ctl_putuint(sys_var[CS_POLL].text, sys_poll);
1831		break;
1832
1833	case CS_PEERID:
1834		if (sys_peer == NULL)
1835			ctl_putuint(sys_var[CS_PEERID].text, 0);
1836		else
1837			ctl_putuint(sys_var[CS_PEERID].text,
1838				    sys_peer->associd);
1839		break;
1840
1841	case CS_PEERADR:
1842		if (sys_peer != NULL && sys_peer->dstadr != NULL)
1843			ss = sptoa(&sys_peer->srcadr);
1844		else
1845			ss = "0.0.0.0:0";
1846		ctl_putunqstr(sys_var[CS_PEERADR].text, ss, strlen(ss));
1847		break;
1848
1849	case CS_PEERMODE:
1850		u = (sys_peer != NULL)
1851			? sys_peer->hmode
1852			: MODE_UNSPEC;
1853		ctl_putuint(sys_var[CS_PEERMODE].text, u);
1854		break;
1855
1856	case CS_OFFSET:
1857		ctl_putdbl6(sys_var[CS_OFFSET].text, last_offset * 1e3);
1858		break;
1859
1860	case CS_DRIFT:
1861		ctl_putdbl(sys_var[CS_DRIFT].text, drift_comp * 1e6);
1862		break;
1863
1864	case CS_JITTER:
1865		ctl_putdbl6(sys_var[CS_JITTER].text, sys_jitter * 1e3);
1866		break;
1867
1868	case CS_ERROR:
1869		ctl_putdbl(sys_var[CS_ERROR].text, clock_jitter * 1e3);
1870		break;
1871
1872	case CS_CLOCK:
1873		get_systime(&tmp);
1874		ctl_putts(sys_var[CS_CLOCK].text, &tmp);
1875		break;
1876
1877	case CS_PROCESSOR:
1878#ifndef HAVE_UNAME
1879		ctl_putstr(sys_var[CS_PROCESSOR].text, str_processor,
1880			   sizeof(str_processor) - 1);
1881#else
1882		ctl_putstr(sys_var[CS_PROCESSOR].text,
1883			   utsnamebuf.machine, strlen(utsnamebuf.machine));
1884#endif /* HAVE_UNAME */
1885		break;
1886
1887	case CS_SYSTEM:
1888#ifndef HAVE_UNAME
1889		ctl_putstr(sys_var[CS_SYSTEM].text, str_system,
1890			   sizeof(str_system) - 1);
1891#else
1892		snprintf(str, sizeof(str), "%s/%s", utsnamebuf.sysname,
1893			 utsnamebuf.release);
1894		ctl_putstr(sys_var[CS_SYSTEM].text, str, strlen(str));
1895#endif /* HAVE_UNAME */
1896		break;
1897
1898	case CS_VERSION:
1899		ctl_putstr(sys_var[CS_VERSION].text, Version,
1900			   strlen(Version));
1901		break;
1902
1903	case CS_STABIL:
1904		ctl_putdbl(sys_var[CS_STABIL].text, clock_stability *
1905			   1e6);
1906		break;
1907
1908	case CS_VARLIST:
1909	{
1910		char buf[CTL_MAX_DATA_LEN];
1911		//buffPointer, firstElementPointer, buffEndPointer
1912		char *buffp, *buffend;
1913		int firstVarName;
1914		const char *ss1;
1915		int len;
1916		const struct ctl_var *k;
1917
1918		buffp = buf;
1919		buffend = buf + sizeof(buf);
1920		if (buffp + strlen(sys_var[CS_VARLIST].text) + 4 > buffend)
1921			break;	/* really long var name */
1922
1923		snprintf(buffp, sizeof(buf), "%s=\"",sys_var[CS_VARLIST].text);
1924		buffp += strlen(buffp);
1925		firstVarName = TRUE;
1926		for (k = sys_var; !(k->flags & EOV); k++) {
1927			if (k->flags & PADDING)
1928				continue;
1929			len = strlen(k->text);
1930			if (buffp + len + 1 >= buffend)
1931				break;
1932			if (!firstVarName)
1933				*buffp++ = ',';
1934			else
1935				firstVarName = FALSE;
1936			memcpy(buffp, k->text, len);
1937			buffp += len;
1938		}
1939
1940		for (k = ext_sys_var; k && !(k->flags & EOV); k++) {
1941			if (k->flags & PADDING)
1942				continue;
1943			if (NULL == k->text)
1944				continue;
1945			ss1 = strchr(k->text, '=');
1946			if (NULL == ss1)
1947				len = strlen(k->text);
1948			else
1949				len = ss1 - k->text;
1950			if (buffp + len + 1 >= buffend)
1951				break;
1952			if (firstVarName) {
1953				*buffp++ = ',';
1954				firstVarName = FALSE;
1955			}
1956			memcpy(buffp, k->text,(unsigned)len);
1957			buffp += len;
1958		}
1959		if (buffp + 2 >= buffend)
1960			break;
1961
1962		*buffp++ = '"';
1963		*buffp = '\0';
1964
1965		ctl_putdata(buf, (unsigned)( buffp - buf ), 0);
1966		break;
1967	}
1968
1969	case CS_TAI:
1970		if (sys_tai > 0)
1971			ctl_putuint(sys_var[CS_TAI].text, sys_tai);
1972		break;
1973
1974	case CS_LEAPTAB:
1975	{
1976		leap_signature_t lsig;
1977		leapsec_getsig(&lsig);
1978		if (lsig.ttime > 0)
1979			ctl_putfs(sys_var[CS_LEAPTAB].text, lsig.ttime);
1980		break;
1981	}
1982
1983	case CS_LEAPEND:
1984	{
1985		leap_signature_t lsig;
1986		leapsec_getsig(&lsig);
1987		if (lsig.etime > 0)
1988			ctl_putfs(sys_var[CS_LEAPEND].text, lsig.etime);
1989		break;
1990	}
1991
1992#ifdef LEAP_SMEAR
1993	case CS_LEAPSMEARINTV:
1994		if (leap_smear_intv > 0)
1995			ctl_putuint(sys_var[CS_LEAPSMEARINTV].text, leap_smear_intv);
1996		break;
1997
1998	case CS_LEAPSMEAROFFS:
1999		if (leap_smear_intv > 0)
2000			ctl_putdbl(sys_var[CS_LEAPSMEAROFFS].text,
2001				   leap_smear.doffset * 1e3);
2002		break;
2003#endif	/* LEAP_SMEAR */
2004
2005	case CS_RATE:
2006		ctl_putuint(sys_var[CS_RATE].text, ntp_minpoll);
2007		break;
2008
2009	case CS_MRU_ENABLED:
2010		ctl_puthex(sys_var[varid].text, mon_enabled);
2011		break;
2012
2013	case CS_MRU_DEPTH:
2014		ctl_putuint(sys_var[varid].text, mru_entries);
2015		break;
2016
2017	case CS_MRU_MEM:
2018		kb = mru_entries * (sizeof(mon_entry) / 1024.);
2019		u = (u_int)kb;
2020		if (kb - u >= 0.5)
2021			u++;
2022		ctl_putuint(sys_var[varid].text, u);
2023		break;
2024
2025	case CS_MRU_DEEPEST:
2026		ctl_putuint(sys_var[varid].text, mru_peakentries);
2027		break;
2028
2029	case CS_MRU_MINDEPTH:
2030		ctl_putuint(sys_var[varid].text, mru_mindepth);
2031		break;
2032
2033	case CS_MRU_MAXAGE:
2034		ctl_putint(sys_var[varid].text, mru_maxage);
2035		break;
2036
2037	case CS_MRU_MAXDEPTH:
2038		ctl_putuint(sys_var[varid].text, mru_maxdepth);
2039		break;
2040
2041	case CS_MRU_MAXMEM:
2042		kb = mru_maxdepth * (sizeof(mon_entry) / 1024.);
2043		u = (u_int)kb;
2044		if (kb - u >= 0.5)
2045			u++;
2046		ctl_putuint(sys_var[varid].text, u);
2047		break;
2048
2049	case CS_SS_UPTIME:
2050		ctl_putuint(sys_var[varid].text, current_time);
2051		break;
2052
2053	case CS_SS_RESET:
2054		ctl_putuint(sys_var[varid].text,
2055			    current_time - sys_stattime);
2056		break;
2057
2058	case CS_SS_RECEIVED:
2059		ctl_putuint(sys_var[varid].text, sys_received);
2060		break;
2061
2062	case CS_SS_THISVER:
2063		ctl_putuint(sys_var[varid].text, sys_newversion);
2064		break;
2065
2066	case CS_SS_OLDVER:
2067		ctl_putuint(sys_var[varid].text, sys_oldversion);
2068		break;
2069
2070	case CS_SS_BADFORMAT:
2071		ctl_putuint(sys_var[varid].text, sys_badlength);
2072		break;
2073
2074	case CS_SS_BADAUTH:
2075		ctl_putuint(sys_var[varid].text, sys_badauth);
2076		break;
2077
2078	case CS_SS_DECLINED:
2079		ctl_putuint(sys_var[varid].text, sys_declined);
2080		break;
2081
2082	case CS_SS_RESTRICTED:
2083		ctl_putuint(sys_var[varid].text, sys_restricted);
2084		break;
2085
2086	case CS_SS_LIMITED:
2087		ctl_putuint(sys_var[varid].text, sys_limitrejected);
2088		break;
2089
2090	case CS_SS_KODSENT:
2091		ctl_putuint(sys_var[varid].text, sys_kodsent);
2092		break;
2093
2094	case CS_SS_PROCESSED:
2095		ctl_putuint(sys_var[varid].text, sys_processed);
2096		break;
2097
2098	case CS_BCASTDELAY:
2099		ctl_putdbl(sys_var[varid].text, sys_bdelay * 1e3);
2100		break;
2101
2102	case CS_AUTHDELAY:
2103		LFPTOD(&sys_authdelay, dtemp);
2104		ctl_putdbl(sys_var[varid].text, dtemp * 1e3);
2105		break;
2106
2107	case CS_AUTHKEYS:
2108		ctl_putuint(sys_var[varid].text, authnumkeys);
2109		break;
2110
2111	case CS_AUTHFREEK:
2112		ctl_putuint(sys_var[varid].text, authnumfreekeys);
2113		break;
2114
2115	case CS_AUTHKLOOKUPS:
2116		ctl_putuint(sys_var[varid].text, authkeylookups);
2117		break;
2118
2119	case CS_AUTHKNOTFOUND:
2120		ctl_putuint(sys_var[varid].text, authkeynotfound);
2121		break;
2122
2123	case CS_AUTHKUNCACHED:
2124		ctl_putuint(sys_var[varid].text, authkeyuncached);
2125		break;
2126
2127	case CS_AUTHKEXPIRED:
2128		ctl_putuint(sys_var[varid].text, authkeyexpired);
2129		break;
2130
2131	case CS_AUTHENCRYPTS:
2132		ctl_putuint(sys_var[varid].text, authencryptions);
2133		break;
2134
2135	case CS_AUTHDECRYPTS:
2136		ctl_putuint(sys_var[varid].text, authdecryptions);
2137		break;
2138
2139	case CS_AUTHRESET:
2140		ctl_putuint(sys_var[varid].text,
2141			    current_time - auth_timereset);
2142		break;
2143
2144		/*
2145		 * CTL_IF_KERNLOOP() puts a zero if the kernel loop is
2146		 * unavailable, otherwise calls putfunc with args.
2147		 */
2148#ifndef KERNEL_PLL
2149# define	CTL_IF_KERNLOOP(putfunc, args)	\
2150		ctl_putint(sys_var[varid].text, 0)
2151#else
2152# define	CTL_IF_KERNLOOP(putfunc, args)	\
2153		putfunc args
2154#endif
2155
2156		/*
2157		 * CTL_IF_KERNPPS() puts a zero if either the kernel
2158		 * loop is unavailable, or kernel hard PPS is not
2159		 * active, otherwise calls putfunc with args.
2160		 */
2161#ifndef KERNEL_PLL
2162# define	CTL_IF_KERNPPS(putfunc, args)	\
2163		ctl_putint(sys_var[varid].text, 0)
2164#else
2165# define	CTL_IF_KERNPPS(putfunc, args)			\
2166		if (0 == ntx.shift)				\
2167			ctl_putint(sys_var[varid].text, 0);	\
2168		else						\
2169			putfunc args	/* no trailing ; */
2170#endif
2171
2172	case CS_K_OFFSET:
2173		CTL_IF_KERNLOOP(
2174			ctl_putdblf,
2175			(sys_var[varid].text, 0, -1, to_ms * ntx.offset)
2176		);
2177		break;
2178
2179	case CS_K_FREQ:
2180		CTL_IF_KERNLOOP(
2181			ctl_putsfp,
2182			(sys_var[varid].text, ntx.freq)
2183		);
2184		break;
2185
2186	case CS_K_MAXERR:
2187		CTL_IF_KERNLOOP(
2188			ctl_putdblf,
2189			(sys_var[varid].text, 0, 6,
2190			 to_ms * ntx.maxerror)
2191		);
2192		break;
2193
2194	case CS_K_ESTERR:
2195		CTL_IF_KERNLOOP(
2196			ctl_putdblf,
2197			(sys_var[varid].text, 0, 6,
2198			 to_ms * ntx.esterror)
2199		);
2200		break;
2201
2202	case CS_K_STFLAGS:
2203#ifndef KERNEL_PLL
2204		ss = "";
2205#else
2206		ss = k_st_flags(ntx.status);
2207#endif
2208		ctl_putstr(sys_var[varid].text, ss, strlen(ss));
2209		break;
2210
2211	case CS_K_TIMECONST:
2212		CTL_IF_KERNLOOP(
2213			ctl_putint,
2214			(sys_var[varid].text, ntx.constant)
2215		);
2216		break;
2217
2218	case CS_K_PRECISION:
2219		CTL_IF_KERNLOOP(
2220			ctl_putdblf,
2221			(sys_var[varid].text, 0, 6,
2222			    to_ms * ntx.precision)
2223		);
2224		break;
2225
2226	case CS_K_FREQTOL:
2227		CTL_IF_KERNLOOP(
2228			ctl_putsfp,
2229			(sys_var[varid].text, ntx.tolerance)
2230		);
2231		break;
2232
2233	case CS_K_PPS_FREQ:
2234		CTL_IF_KERNPPS(
2235			ctl_putsfp,
2236			(sys_var[varid].text, ntx.ppsfreq)
2237		);
2238		break;
2239
2240	case CS_K_PPS_STABIL:
2241		CTL_IF_KERNPPS(
2242			ctl_putsfp,
2243			(sys_var[varid].text, ntx.stabil)
2244		);
2245		break;
2246
2247	case CS_K_PPS_JITTER:
2248		CTL_IF_KERNPPS(
2249			ctl_putdbl,
2250			(sys_var[varid].text, to_ms * ntx.jitter)
2251		);
2252		break;
2253
2254	case CS_K_PPS_CALIBDUR:
2255		CTL_IF_KERNPPS(
2256			ctl_putint,
2257			(sys_var[varid].text, 1 << ntx.shift)
2258		);
2259		break;
2260
2261	case CS_K_PPS_CALIBS:
2262		CTL_IF_KERNPPS(
2263			ctl_putint,
2264			(sys_var[varid].text, ntx.calcnt)
2265		);
2266		break;
2267
2268	case CS_K_PPS_CALIBERRS:
2269		CTL_IF_KERNPPS(
2270			ctl_putint,
2271			(sys_var[varid].text, ntx.errcnt)
2272		);
2273		break;
2274
2275	case CS_K_PPS_JITEXC:
2276		CTL_IF_KERNPPS(
2277			ctl_putint,
2278			(sys_var[varid].text, ntx.jitcnt)
2279		);
2280		break;
2281
2282	case CS_K_PPS_STBEXC:
2283		CTL_IF_KERNPPS(
2284			ctl_putint,
2285			(sys_var[varid].text, ntx.stbcnt)
2286		);
2287		break;
2288
2289	case CS_IOSTATS_RESET:
2290		ctl_putuint(sys_var[varid].text,
2291			    current_time - io_timereset);
2292		break;
2293
2294	case CS_TOTAL_RBUF:
2295		ctl_putuint(sys_var[varid].text, total_recvbuffs());
2296		break;
2297
2298	case CS_FREE_RBUF:
2299		ctl_putuint(sys_var[varid].text, free_recvbuffs());
2300		break;
2301
2302	case CS_USED_RBUF:
2303		ctl_putuint(sys_var[varid].text, full_recvbuffs());
2304		break;
2305
2306	case CS_RBUF_LOWATER:
2307		ctl_putuint(sys_var[varid].text, lowater_additions());
2308		break;
2309
2310	case CS_IO_DROPPED:
2311		ctl_putuint(sys_var[varid].text, packets_dropped);
2312		break;
2313
2314	case CS_IO_IGNORED:
2315		ctl_putuint(sys_var[varid].text, packets_ignored);
2316		break;
2317
2318	case CS_IO_RECEIVED:
2319		ctl_putuint(sys_var[varid].text, packets_received);
2320		break;
2321
2322	case CS_IO_SENT:
2323		ctl_putuint(sys_var[varid].text, packets_sent);
2324		break;
2325
2326	case CS_IO_SENDFAILED:
2327		ctl_putuint(sys_var[varid].text, packets_notsent);
2328		break;
2329
2330	case CS_IO_WAKEUPS:
2331		ctl_putuint(sys_var[varid].text, handler_calls);
2332		break;
2333
2334	case CS_IO_GOODWAKEUPS:
2335		ctl_putuint(sys_var[varid].text, handler_pkts);
2336		break;
2337
2338	case CS_TIMERSTATS_RESET:
2339		ctl_putuint(sys_var[varid].text,
2340			    current_time - timer_timereset);
2341		break;
2342
2343	case CS_TIMER_OVERRUNS:
2344		ctl_putuint(sys_var[varid].text, alarm_overflow);
2345		break;
2346
2347	case CS_TIMER_XMTS:
2348		ctl_putuint(sys_var[varid].text, timer_xmtcalls);
2349		break;
2350
2351	case CS_FUZZ:
2352		ctl_putdbl(sys_var[varid].text, sys_fuzz * 1e3);
2353		break;
2354	case CS_WANDER_THRESH:
2355		ctl_putdbl(sys_var[varid].text, wander_threshold * 1e6);
2356		break;
2357#ifdef AUTOKEY
2358	case CS_FLAGS:
2359		if (crypto_flags)
2360			ctl_puthex(sys_var[CS_FLAGS].text,
2361			    crypto_flags);
2362		break;
2363
2364	case CS_DIGEST:
2365		if (crypto_flags) {
2366			strlcpy(str, OBJ_nid2ln(crypto_nid),
2367			    COUNTOF(str));
2368			ctl_putstr(sys_var[CS_DIGEST].text, str,
2369			    strlen(str));
2370		}
2371		break;
2372
2373	case CS_SIGNATURE:
2374		if (crypto_flags) {
2375			const EVP_MD *dp;
2376
2377			dp = EVP_get_digestbynid(crypto_flags >> 16);
2378			strlcpy(str, OBJ_nid2ln(EVP_MD_pkey_type(dp)),
2379			    COUNTOF(str));
2380			ctl_putstr(sys_var[CS_SIGNATURE].text, str,
2381			    strlen(str));
2382		}
2383		break;
2384
2385	case CS_HOST:
2386		if (hostval.ptr != NULL)
2387			ctl_putstr(sys_var[CS_HOST].text, hostval.ptr,
2388			    strlen(hostval.ptr));
2389		break;
2390
2391	case CS_IDENT:
2392		if (sys_ident != NULL)
2393			ctl_putstr(sys_var[CS_IDENT].text, sys_ident,
2394			    strlen(sys_ident));
2395		break;
2396
2397	case CS_CERTIF:
2398		for (cp = cinfo; cp != NULL; cp = cp->link) {
2399			snprintf(str, sizeof(str), "%s %s 0x%x",
2400			    cp->subject, cp->issuer, cp->flags);
2401			ctl_putstr(sys_var[CS_CERTIF].text, str,
2402			    strlen(str));
2403			ctl_putcal(sys_var[CS_REVTIME].text, &(cp->last));
2404		}
2405		break;
2406
2407	case CS_PUBLIC:
2408		if (hostval.tstamp != 0)
2409			ctl_putfs(sys_var[CS_PUBLIC].text,
2410			    ntohl(hostval.tstamp));
2411		break;
2412#endif	/* AUTOKEY */
2413	}
2414}
2415
2416
2417/*
2418 * ctl_putpeer - output a peer variable
2419 */
2420static void
2421ctl_putpeer(
2422	int id,
2423	struct peer *p
2424	)
2425{
2426	char buf[CTL_MAX_DATA_LEN];
2427	char *s;
2428	char *t;
2429	char *be;
2430	int i;
2431	const struct ctl_var *k;
2432#ifdef AUTOKEY
2433	struct autokey *ap;
2434	const EVP_MD *dp;
2435	const char *str;
2436#endif	/* AUTOKEY */
2437
2438	switch (id) {
2439
2440	case CP_CONFIG:
2441		ctl_putuint(peer_var[id].text,
2442			    !(FLAG_PREEMPT & p->flags));
2443		break;
2444
2445	case CP_AUTHENABLE:
2446		ctl_putuint(peer_var[id].text, !(p->keyid));
2447		break;
2448
2449	case CP_AUTHENTIC:
2450		ctl_putuint(peer_var[id].text,
2451			    !!(FLAG_AUTHENTIC & p->flags));
2452		break;
2453
2454	case CP_SRCADR:
2455		ctl_putadr(peer_var[id].text, 0, &p->srcadr);
2456		break;
2457
2458	case CP_SRCPORT:
2459		ctl_putuint(peer_var[id].text, SRCPORT(&p->srcadr));
2460		break;
2461
2462	case CP_SRCHOST:
2463		if (p->hostname != NULL)
2464			ctl_putstr(peer_var[id].text, p->hostname,
2465				   strlen(p->hostname));
2466		break;
2467
2468	case CP_DSTADR:
2469		ctl_putadr(peer_var[id].text, 0,
2470			   (p->dstadr != NULL)
2471				? &p->dstadr->sin
2472				: NULL);
2473		break;
2474
2475	case CP_DSTPORT:
2476		ctl_putuint(peer_var[id].text,
2477			    (p->dstadr != NULL)
2478				? SRCPORT(&p->dstadr->sin)
2479				: 0);
2480		break;
2481
2482	case CP_IN:
2483		if (p->r21 > 0.)
2484			ctl_putdbl(peer_var[id].text, p->r21 / 1e3);
2485		break;
2486
2487	case CP_OUT:
2488		if (p->r34 > 0.)
2489			ctl_putdbl(peer_var[id].text, p->r34 / 1e3);
2490		break;
2491
2492	case CP_RATE:
2493		ctl_putuint(peer_var[id].text, p->throttle);
2494		break;
2495
2496	case CP_LEAP:
2497		ctl_putuint(peer_var[id].text, p->leap);
2498		break;
2499
2500	case CP_HMODE:
2501		ctl_putuint(peer_var[id].text, p->hmode);
2502		break;
2503
2504	case CP_STRATUM:
2505		ctl_putuint(peer_var[id].text, p->stratum);
2506		break;
2507
2508	case CP_PPOLL:
2509		ctl_putuint(peer_var[id].text, p->ppoll);
2510		break;
2511
2512	case CP_HPOLL:
2513		ctl_putuint(peer_var[id].text, p->hpoll);
2514		break;
2515
2516	case CP_PRECISION:
2517		ctl_putint(peer_var[id].text, p->precision);
2518		break;
2519
2520	case CP_ROOTDELAY:
2521		ctl_putdbl(peer_var[id].text, p->rootdelay * 1e3);
2522		break;
2523
2524	case CP_ROOTDISPERSION:
2525		ctl_putdbl(peer_var[id].text, p->rootdisp * 1e3);
2526		break;
2527
2528	case CP_REFID:
2529#ifdef REFCLOCK
2530		if (p->flags & FLAG_REFCLOCK) {
2531			ctl_putrefid(peer_var[id].text, p->refid);
2532			break;
2533		}
2534#endif
2535		if (p->stratum > 1 && p->stratum < STRATUM_UNSPEC)
2536			ctl_putadr(peer_var[id].text, p->refid,
2537				   NULL);
2538		else
2539			ctl_putrefid(peer_var[id].text, p->refid);
2540		break;
2541
2542	case CP_REFTIME:
2543		ctl_putts(peer_var[id].text, &p->reftime);
2544		break;
2545
2546	case CP_ORG:
2547		ctl_putts(peer_var[id].text, &p->aorg);
2548		break;
2549
2550	case CP_REC:
2551		ctl_putts(peer_var[id].text, &p->dst);
2552		break;
2553
2554	case CP_XMT:
2555		if (p->xleave)
2556			ctl_putdbl(peer_var[id].text, p->xleave * 1e3);
2557		break;
2558
2559	case CP_BIAS:
2560		if (p->bias != 0.)
2561			ctl_putdbl(peer_var[id].text, p->bias * 1e3);
2562		break;
2563
2564	case CP_REACH:
2565		ctl_puthex(peer_var[id].text, p->reach);
2566		break;
2567
2568	case CP_FLASH:
2569		ctl_puthex(peer_var[id].text, p->flash);
2570		break;
2571
2572	case CP_TTL:
2573#ifdef REFCLOCK
2574		if (p->flags & FLAG_REFCLOCK) {
2575			ctl_putuint(peer_var[id].text, p->ttl);
2576			break;
2577		}
2578#endif
2579		if (p->ttl > 0 && p->ttl < COUNTOF(sys_ttl))
2580			ctl_putint(peer_var[id].text,
2581				   sys_ttl[p->ttl]);
2582		break;
2583
2584	case CP_UNREACH:
2585		ctl_putuint(peer_var[id].text, p->unreach);
2586		break;
2587
2588	case CP_TIMER:
2589		ctl_putuint(peer_var[id].text,
2590			    p->nextdate - current_time);
2591		break;
2592
2593	case CP_DELAY:
2594		ctl_putdbl(peer_var[id].text, p->delay * 1e3);
2595		break;
2596
2597	case CP_OFFSET:
2598		ctl_putdbl(peer_var[id].text, p->offset * 1e3);
2599		break;
2600
2601	case CP_JITTER:
2602		ctl_putdbl(peer_var[id].text, p->jitter * 1e3);
2603		break;
2604
2605	case CP_DISPERSION:
2606		ctl_putdbl(peer_var[id].text, p->disp * 1e3);
2607		break;
2608
2609	case CP_KEYID:
2610		if (p->keyid > NTP_MAXKEY)
2611			ctl_puthex(peer_var[id].text, p->keyid);
2612		else
2613			ctl_putuint(peer_var[id].text, p->keyid);
2614		break;
2615
2616	case CP_FILTDELAY:
2617		ctl_putarray(peer_var[id].text, p->filter_delay,
2618			     p->filter_nextpt);
2619		break;
2620
2621	case CP_FILTOFFSET:
2622		ctl_putarray(peer_var[id].text, p->filter_offset,
2623			     p->filter_nextpt);
2624		break;
2625
2626	case CP_FILTERROR:
2627		ctl_putarray(peer_var[id].text, p->filter_disp,
2628			     p->filter_nextpt);
2629		break;
2630
2631	case CP_PMODE:
2632		ctl_putuint(peer_var[id].text, p->pmode);
2633		break;
2634
2635	case CP_RECEIVED:
2636		ctl_putuint(peer_var[id].text, p->received);
2637		break;
2638
2639	case CP_SENT:
2640		ctl_putuint(peer_var[id].text, p->sent);
2641		break;
2642
2643	case CP_VARLIST:
2644		s = buf;
2645		be = buf + sizeof(buf);
2646		if (strlen(peer_var[id].text) + 4 > sizeof(buf))
2647			break;	/* really long var name */
2648
2649		snprintf(s, sizeof(buf), "%s=\"", peer_var[id].text);
2650		s += strlen(s);
2651		t = s;
2652		for (k = peer_var; !(EOV & k->flags); k++) {
2653			if (PADDING & k->flags)
2654				continue;
2655			i = strlen(k->text);
2656			if (s + i + 1 >= be)
2657				break;
2658			if (s != t)
2659				*s++ = ',';
2660			memcpy(s, k->text, i);
2661			s += i;
2662		}
2663		if (s + 2 < be) {
2664			*s++ = '"';
2665			*s = '\0';
2666			ctl_putdata(buf, (u_int)(s - buf), 0);
2667		}
2668		break;
2669
2670	case CP_TIMEREC:
2671		ctl_putuint(peer_var[id].text,
2672			    current_time - p->timereceived);
2673		break;
2674
2675	case CP_TIMEREACH:
2676		ctl_putuint(peer_var[id].text,
2677			    current_time - p->timereachable);
2678		break;
2679
2680	case CP_BADAUTH:
2681		ctl_putuint(peer_var[id].text, p->badauth);
2682		break;
2683
2684	case CP_BOGUSORG:
2685		ctl_putuint(peer_var[id].text, p->bogusorg);
2686		break;
2687
2688	case CP_OLDPKT:
2689		ctl_putuint(peer_var[id].text, p->oldpkt);
2690		break;
2691
2692	case CP_SELDISP:
2693		ctl_putuint(peer_var[id].text, p->seldisptoolarge);
2694		break;
2695
2696	case CP_SELBROKEN:
2697		ctl_putuint(peer_var[id].text, p->selbroken);
2698		break;
2699
2700	case CP_CANDIDATE:
2701		ctl_putuint(peer_var[id].text, p->status);
2702		break;
2703#ifdef AUTOKEY
2704	case CP_FLAGS:
2705		if (p->crypto)
2706			ctl_puthex(peer_var[id].text, p->crypto);
2707		break;
2708
2709	case CP_SIGNATURE:
2710		if (p->crypto) {
2711			dp = EVP_get_digestbynid(p->crypto >> 16);
2712			str = OBJ_nid2ln(EVP_MD_pkey_type(dp));
2713			ctl_putstr(peer_var[id].text, str, strlen(str));
2714		}
2715		break;
2716
2717	case CP_HOST:
2718		if (p->subject != NULL)
2719			ctl_putstr(peer_var[id].text, p->subject,
2720			    strlen(p->subject));
2721		break;
2722
2723	case CP_VALID:		/* not used */
2724		break;
2725
2726	case CP_INITSEQ:
2727		if (NULL == (ap = p->recval.ptr))
2728			break;
2729
2730		ctl_putint(peer_var[CP_INITSEQ].text, ap->seq);
2731		ctl_puthex(peer_var[CP_INITKEY].text, ap->key);
2732		ctl_putfs(peer_var[CP_INITTSP].text,
2733			  ntohl(p->recval.tstamp));
2734		break;
2735
2736	case CP_IDENT:
2737		if (p->ident != NULL)
2738			ctl_putstr(peer_var[id].text, p->ident,
2739			    strlen(p->ident));
2740		break;
2741
2742
2743#endif	/* AUTOKEY */
2744	}
2745}
2746
2747
2748#ifdef REFCLOCK
2749/*
2750 * ctl_putclock - output clock variables
2751 */
2752static void
2753ctl_putclock(
2754	int id,
2755	struct refclockstat *pcs,
2756	int mustput
2757	)
2758{
2759	char buf[CTL_MAX_DATA_LEN];
2760	char *s, *t, *be;
2761	const char *ss;
2762	int i;
2763	const struct ctl_var *k;
2764
2765	switch (id) {
2766
2767	case CC_TYPE:
2768		if (mustput || pcs->clockdesc == NULL
2769		    || *(pcs->clockdesc) == '\0') {
2770			ctl_putuint(clock_var[id].text, pcs->type);
2771		}
2772		break;
2773	case CC_TIMECODE:
2774		ctl_putstr(clock_var[id].text,
2775			   pcs->p_lastcode,
2776			   (unsigned)pcs->lencode);
2777		break;
2778
2779	case CC_POLL:
2780		ctl_putuint(clock_var[id].text, pcs->polls);
2781		break;
2782
2783	case CC_NOREPLY:
2784		ctl_putuint(clock_var[id].text,
2785			    pcs->noresponse);
2786		break;
2787
2788	case CC_BADFORMAT:
2789		ctl_putuint(clock_var[id].text,
2790			    pcs->badformat);
2791		break;
2792
2793	case CC_BADDATA:
2794		ctl_putuint(clock_var[id].text,
2795			    pcs->baddata);
2796		break;
2797
2798	case CC_FUDGETIME1:
2799		if (mustput || (pcs->haveflags & CLK_HAVETIME1))
2800			ctl_putdbl(clock_var[id].text,
2801				   pcs->fudgetime1 * 1e3);
2802		break;
2803
2804	case CC_FUDGETIME2:
2805		if (mustput || (pcs->haveflags & CLK_HAVETIME2))
2806			ctl_putdbl(clock_var[id].text,
2807				   pcs->fudgetime2 * 1e3);
2808		break;
2809
2810	case CC_FUDGEVAL1:
2811		if (mustput || (pcs->haveflags & CLK_HAVEVAL1))
2812			ctl_putint(clock_var[id].text,
2813				   pcs->fudgeval1);
2814		break;
2815
2816	case CC_FUDGEVAL2:
2817		if (mustput || (pcs->haveflags & CLK_HAVEVAL2)) {
2818			if (pcs->fudgeval1 > 1)
2819				ctl_putadr(clock_var[id].text,
2820					   pcs->fudgeval2, NULL);
2821			else
2822				ctl_putrefid(clock_var[id].text,
2823					     pcs->fudgeval2);
2824		}
2825		break;
2826
2827	case CC_FLAGS:
2828		ctl_putuint(clock_var[id].text, pcs->flags);
2829		break;
2830
2831	case CC_DEVICE:
2832		if (pcs->clockdesc == NULL ||
2833		    *(pcs->clockdesc) == '\0') {
2834			if (mustput)
2835				ctl_putstr(clock_var[id].text,
2836					   "", 0);
2837		} else {
2838			ctl_putstr(clock_var[id].text,
2839				   pcs->clockdesc,
2840				   strlen(pcs->clockdesc));
2841		}
2842		break;
2843
2844	case CC_VARLIST:
2845		s = buf;
2846		be = buf + sizeof(buf);
2847		if (strlen(clock_var[CC_VARLIST].text) + 4 >
2848		    sizeof(buf))
2849			break;	/* really long var name */
2850
2851		snprintf(s, sizeof(buf), "%s=\"",
2852			 clock_var[CC_VARLIST].text);
2853		s += strlen(s);
2854		t = s;
2855
2856		for (k = clock_var; !(EOV & k->flags); k++) {
2857			if (PADDING & k->flags)
2858				continue;
2859
2860			i = strlen(k->text);
2861			if (s + i + 1 >= be)
2862				break;
2863
2864			if (s != t)
2865				*s++ = ',';
2866			memcpy(s, k->text, i);
2867			s += i;
2868		}
2869
2870		for (k = pcs->kv_list; k && !(EOV & k->flags); k++) {
2871			if (PADDING & k->flags)
2872				continue;
2873
2874			ss = k->text;
2875			if (NULL == ss)
2876				continue;
2877
2878			while (*ss && *ss != '=')
2879				ss++;
2880			i = ss - k->text;
2881			if (s + i + 1 >= be)
2882				break;
2883
2884			if (s != t)
2885				*s++ = ',';
2886			memcpy(s, k->text, (unsigned)i);
2887			s += i;
2888			*s = '\0';
2889		}
2890		if (s + 2 >= be)
2891			break;
2892
2893		*s++ = '"';
2894		*s = '\0';
2895		ctl_putdata(buf, (unsigned)(s - buf), 0);
2896		break;
2897	}
2898}
2899#endif
2900
2901
2902
2903/*
2904 * ctl_getitem - get the next data item from the incoming packet
2905 */
2906static const struct ctl_var *
2907ctl_getitem(
2908	const struct ctl_var *var_list,
2909	char **data
2910	)
2911{
2912	static const struct ctl_var eol = { 0, EOV, NULL };
2913	static char buf[128];
2914	static u_long quiet_until;
2915	const struct ctl_var *v;
2916	const char *pch;
2917	char *cp;
2918	char *tp;
2919
2920	/*
2921	 * Delete leading commas and white space
2922	 */
2923	while (reqpt < reqend && (*reqpt == ',' ||
2924				  isspace((unsigned char)*reqpt)))
2925		reqpt++;
2926	if (reqpt >= reqend)
2927		return NULL;
2928
2929	if (NULL == var_list)
2930		return &eol;
2931
2932	/*
2933	 * Look for a first character match on the tag.  If we find
2934	 * one, see if it is a full match.
2935	 */
2936	v = var_list;
2937	cp = reqpt;
2938	for (v = var_list; !(EOV & v->flags); v++) {
2939		if (!(PADDING & v->flags) && *cp == *(v->text)) {
2940			pch = v->text;
2941			while ('\0' != *pch && '=' != *pch && cp < reqend
2942			       && *cp == *pch) {
2943				cp++;
2944				pch++;
2945			}
2946			if ('\0' == *pch || '=' == *pch) {
2947				while (cp < reqend && isspace((u_char)*cp))
2948					cp++;
2949				if (cp == reqend || ',' == *cp) {
2950					buf[0] = '\0';
2951					*data = buf;
2952					if (cp < reqend)
2953						cp++;
2954					reqpt = cp;
2955					return v;
2956				}
2957				if ('=' == *cp) {
2958					cp++;
2959					tp = buf;
2960					while (cp < reqend && isspace((u_char)*cp))
2961						cp++;
2962					while (cp < reqend && *cp != ',') {
2963						*tp++ = *cp++;
2964						if ((size_t)(tp - buf) >= sizeof(buf)) {
2965							ctl_error(CERR_BADFMT);
2966							numctlbadpkts++;
2967							NLOG(NLOG_SYSEVENT)
2968								if (quiet_until <= current_time) {
2969									quiet_until = current_time + 300;
2970									msyslog(LOG_WARNING,
2971"Possible 'ntpdx' exploit from %s#%u (possibly spoofed)", stoa(rmt_addr), SRCPORT(rmt_addr));
2972								}
2973							return NULL;
2974						}
2975					}
2976					if (cp < reqend)
2977						cp++;
2978					*tp-- = '\0';
2979					while (tp >= buf && isspace((u_char)*tp))
2980						*tp-- = '\0';
2981					reqpt = cp;
2982					*data = buf;
2983					return v;
2984				}
2985			}
2986			cp = reqpt;
2987		}
2988	}
2989	return v;
2990}
2991
2992
2993/*
2994 * control_unspec - response to an unspecified op-code
2995 */
2996/*ARGSUSED*/
2997static void
2998control_unspec(
2999	struct recvbuf *rbufp,
3000	int restrict_mask
3001	)
3002{
3003	struct peer *peer;
3004
3005	/*
3006	 * What is an appropriate response to an unspecified op-code?
3007	 * I return no errors and no data, unless a specified assocation
3008	 * doesn't exist.
3009	 */
3010	if (res_associd) {
3011		peer = findpeerbyassoc(res_associd);
3012		if (NULL == peer) {
3013			ctl_error(CERR_BADASSOC);
3014			return;
3015		}
3016		rpkt.status = htons(ctlpeerstatus(peer));
3017	} else
3018		rpkt.status = htons(ctlsysstatus());
3019	ctl_flushpkt(0);
3020}
3021
3022
3023/*
3024 * read_status - return either a list of associd's, or a particular
3025 * peer's status.
3026 */
3027/*ARGSUSED*/
3028static void
3029read_status(
3030	struct recvbuf *rbufp,
3031	int restrict_mask
3032	)
3033{
3034	struct peer *peer;
3035	const u_char *cp;
3036	size_t n;
3037	/* a_st holds association ID, status pairs alternating */
3038	u_short a_st[CTL_MAX_DATA_LEN / sizeof(u_short)];
3039
3040#ifdef DEBUG
3041	if (debug > 2)
3042		printf("read_status: ID %d\n", res_associd);
3043#endif
3044	/*
3045	 * Two choices here. If the specified association ID is
3046	 * zero we return all known assocation ID's.  Otherwise
3047	 * we return a bunch of stuff about the particular peer.
3048	 */
3049	if (res_associd) {
3050		peer = findpeerbyassoc(res_associd);
3051		if (NULL == peer) {
3052			ctl_error(CERR_BADASSOC);
3053			return;
3054		}
3055		rpkt.status = htons(ctlpeerstatus(peer));
3056		if (res_authokay)
3057			peer->num_events = 0;
3058		/*
3059		 * For now, output everything we know about the
3060		 * peer. May be more selective later.
3061		 */
3062		for (cp = def_peer_var; *cp != 0; cp++)
3063			ctl_putpeer((int)*cp, peer);
3064		ctl_flushpkt(0);
3065		return;
3066	}
3067	n = 0;
3068	rpkt.status = htons(ctlsysstatus());
3069	for (peer = peer_list; peer != NULL; peer = peer->p_link) {
3070		a_st[n++] = htons(peer->associd);
3071		a_st[n++] = htons(ctlpeerstatus(peer));
3072		/* two entries each loop iteration, so n + 1 */
3073		if (n + 1 >= COUNTOF(a_st)) {
3074			ctl_putdata((void *)a_st, n * sizeof(a_st[0]),
3075				    1);
3076			n = 0;
3077		}
3078	}
3079	if (n)
3080		ctl_putdata((void *)a_st, n * sizeof(a_st[0]), 1);
3081	ctl_flushpkt(0);
3082}
3083
3084
3085/*
3086 * read_peervars - half of read_variables() implementation
3087 */
3088static void
3089read_peervars(void)
3090{
3091	const struct ctl_var *v;
3092	struct peer *peer;
3093	const u_char *cp;
3094	size_t i;
3095	char *	valuep;
3096	u_char	wants[CP_MAXCODE + 1];
3097	u_int	gotvar;
3098
3099	/*
3100	 * Wants info for a particular peer. See if we know
3101	 * the guy.
3102	 */
3103	peer = findpeerbyassoc(res_associd);
3104	if (NULL == peer) {
3105		ctl_error(CERR_BADASSOC);
3106		return;
3107	}
3108	rpkt.status = htons(ctlpeerstatus(peer));
3109	if (res_authokay)
3110		peer->num_events = 0;
3111	ZERO(wants);
3112	gotvar = 0;
3113	while (NULL != (v = ctl_getitem(peer_var, &valuep))) {
3114		if (v->flags & EOV) {
3115			ctl_error(CERR_UNKNOWNVAR);
3116			return;
3117		}
3118		NTP_INSIST(v->code < COUNTOF(wants));
3119		wants[v->code] = 1;
3120		gotvar = 1;
3121	}
3122	if (gotvar) {
3123		for (i = 1; i < COUNTOF(wants); i++)
3124			if (wants[i])
3125				ctl_putpeer(i, peer);
3126	} else
3127		for (cp = def_peer_var; *cp != 0; cp++)
3128			ctl_putpeer((int)*cp, peer);
3129	ctl_flushpkt(0);
3130}
3131
3132
3133/*
3134 * read_sysvars - half of read_variables() implementation
3135 */
3136static void
3137read_sysvars(void)
3138{
3139	const struct ctl_var *v;
3140	struct ctl_var *kv;
3141	u_int	n;
3142	u_int	gotvar;
3143	const u_char *cs;
3144	char *	valuep;
3145	const char * pch;
3146	u_char *wants;
3147	size_t	wants_count;
3148
3149	/*
3150	 * Wants system variables. Figure out which he wants
3151	 * and give them to him.
3152	 */
3153	rpkt.status = htons(ctlsysstatus());
3154	if (res_authokay)
3155		ctl_sys_num_events = 0;
3156	wants_count = CS_MAXCODE + 1 + count_var(ext_sys_var);
3157	wants = emalloc_zero(wants_count);
3158	gotvar = 0;
3159	while (NULL != (v = ctl_getitem(sys_var, &valuep))) {
3160		if (!(EOV & v->flags)) {
3161			NTP_INSIST(v->code < wants_count);
3162			wants[v->code] = 1;
3163			gotvar = 1;
3164		} else {
3165			v = ctl_getitem(ext_sys_var, &valuep);
3166			NTP_INSIST(v != NULL);
3167			if (EOV & v->flags) {
3168				ctl_error(CERR_UNKNOWNVAR);
3169				free(wants);
3170				return;
3171			}
3172			n = v->code + CS_MAXCODE + 1;
3173			NTP_INSIST(n < wants_count);
3174			wants[n] = 1;
3175			gotvar = 1;
3176		}
3177	}
3178	if (gotvar) {
3179		for (n = 1; n <= CS_MAXCODE; n++)
3180			if (wants[n])
3181				ctl_putsys(n);
3182		for (n = 0; n + CS_MAXCODE + 1 < wants_count; n++)
3183			if (wants[n + CS_MAXCODE + 1]) {
3184				pch = ext_sys_var[n].text;
3185				ctl_putdata(pch, strlen(pch), 0);
3186			}
3187	} else {
3188		for (cs = def_sys_var; *cs != 0; cs++)
3189			ctl_putsys((int)*cs);
3190		for (kv = ext_sys_var; kv && !(EOV & kv->flags); kv++)
3191			if (DEF & kv->flags)
3192				ctl_putdata(kv->text, strlen(kv->text),
3193					    0);
3194	}
3195	free(wants);
3196	ctl_flushpkt(0);
3197}
3198
3199
3200/*
3201 * read_variables - return the variables the caller asks for
3202 */
3203/*ARGSUSED*/
3204static void
3205read_variables(
3206	struct recvbuf *rbufp,
3207	int restrict_mask
3208	)
3209{
3210	if (res_associd)
3211		read_peervars();
3212	else
3213		read_sysvars();
3214}
3215
3216
3217/*
3218 * write_variables - write into variables. We only allow leap bit
3219 * writing this way.
3220 */
3221/*ARGSUSED*/
3222static void
3223write_variables(
3224	struct recvbuf *rbufp,
3225	int restrict_mask
3226	)
3227{
3228	const struct ctl_var *v;
3229	int ext_var;
3230	char *valuep;
3231	long val;
3232	size_t octets;
3233	char *vareqv;
3234	const char *t;
3235	char *tt;
3236
3237	val = 0;
3238	/*
3239	 * If he's trying to write into a peer tell him no way
3240	 */
3241	if (res_associd != 0) {
3242		ctl_error(CERR_PERMISSION);
3243		return;
3244	}
3245
3246	/*
3247	 * Set status
3248	 */
3249	rpkt.status = htons(ctlsysstatus());
3250
3251	/*
3252	 * Look through the variables. Dump out at the first sign of
3253	 * trouble.
3254	 */
3255	while ((v = ctl_getitem(sys_var, &valuep)) != 0) {
3256		ext_var = 0;
3257		if (v->flags & EOV) {
3258			if ((v = ctl_getitem(ext_sys_var, &valuep)) !=
3259			    0) {
3260				if (v->flags & EOV) {
3261					ctl_error(CERR_UNKNOWNVAR);
3262					return;
3263				}
3264				ext_var = 1;
3265			} else {
3266				break;
3267			}
3268		}
3269		if (!(v->flags & CAN_WRITE)) {
3270			ctl_error(CERR_PERMISSION);
3271			return;
3272		}
3273		if (!ext_var && (*valuep == '\0' || !atoint(valuep,
3274							    &val))) {
3275			ctl_error(CERR_BADFMT);
3276			return;
3277		}
3278		if (!ext_var && (val & ~LEAP_NOTINSYNC) != 0) {
3279			ctl_error(CERR_BADVALUE);
3280			return;
3281		}
3282
3283		if (ext_var) {
3284			octets = strlen(v->text) + strlen(valuep) + 2;
3285			vareqv = emalloc(octets);
3286			tt = vareqv;
3287			t = v->text;
3288			while (*t && *t != '=')
3289				*tt++ = *t++;
3290			*tt++ = '=';
3291			memcpy(tt, valuep, 1 + strlen(valuep));
3292			set_sys_var(vareqv, 1 + strlen(vareqv), v->flags);
3293			free(vareqv);
3294		} else {
3295			ctl_error(CERR_UNSPEC); /* really */
3296			return;
3297		}
3298	}
3299
3300	/*
3301	 * If we got anything, do it. xxx nothing to do ***
3302	 */
3303	/*
3304	  if (leapind != ~0 || leapwarn != ~0) {
3305	  if (!leap_setleap((int)leapind, (int)leapwarn)) {
3306	  ctl_error(CERR_PERMISSION);
3307	  return;
3308	  }
3309	  }
3310	*/
3311	ctl_flushpkt(0);
3312}
3313
3314
3315/*
3316 * configure() processes ntpq :config/config-from-file, allowing
3317 *		generic runtime reconfiguration.
3318 */
3319static void configure(
3320	struct recvbuf *rbufp,
3321	int restrict_mask
3322	)
3323{
3324	size_t data_count;
3325	int retval;
3326
3327	/* I haven't yet implemented changes to an existing association.
3328	 * Hence check if the association id is 0
3329	 */
3330	if (res_associd != 0) {
3331		ctl_error(CERR_BADVALUE);
3332		return;
3333	}
3334
3335	if (RES_NOMODIFY & restrict_mask) {
3336		snprintf(remote_config.err_msg,
3337			 sizeof(remote_config.err_msg),
3338			 "runtime configuration prohibited by restrict ... nomodify");
3339		ctl_putdata(remote_config.err_msg,
3340			    strlen(remote_config.err_msg), 0);
3341		ctl_flushpkt(0);
3342		NLOG(NLOG_SYSINFO)
3343			msyslog(LOG_NOTICE,
3344				"runtime config from %s rejected due to nomodify restriction",
3345				stoa(&rbufp->recv_srcadr));
3346		sys_restricted++;
3347		return;
3348	}
3349
3350	/* Initialize the remote config buffer */
3351	data_count = remoteconfig_cmdlength(reqpt, reqend);
3352
3353	if (data_count > sizeof(remote_config.buffer) - 2) {
3354		snprintf(remote_config.err_msg,
3355			 sizeof(remote_config.err_msg),
3356			 "runtime configuration failed: request too long");
3357		ctl_putdata(remote_config.err_msg,
3358			    strlen(remote_config.err_msg), 0);
3359		ctl_flushpkt(0);
3360		msyslog(LOG_NOTICE,
3361			"runtime config from %s rejected: request too long",
3362			stoa(&rbufp->recv_srcadr));
3363		return;
3364	}
3365	/* Bug 2853 -- check if all characters were acceptable */
3366	if (data_count != (size_t)(reqend - reqpt)) {
3367		snprintf(remote_config.err_msg,
3368			 sizeof(remote_config.err_msg),
3369			 "runtime configuration failed: request contains an unprintable character");
3370		ctl_putdata(remote_config.err_msg,
3371			    strlen(remote_config.err_msg), 0);
3372		ctl_flushpkt(0);
3373		msyslog(LOG_NOTICE,
3374			"runtime config from %s rejected: request contains an unprintable character: %0x",
3375			stoa(&rbufp->recv_srcadr),
3376			reqpt[data_count]);
3377		return;
3378	}
3379
3380	memcpy(remote_config.buffer, reqpt, data_count);
3381	/* The buffer has no trailing linefeed or NUL right now. For
3382	 * logging, we do not want a newline, so we do that first after
3383	 * adding the necessary NUL byte.
3384	 */
3385	remote_config.buffer[data_count] = '\0';
3386	DPRINTF(1, ("Got Remote Configuration Command: %s\n",
3387		remote_config.buffer));
3388	msyslog(LOG_NOTICE, "%s config: %s",
3389		stoa(&rbufp->recv_srcadr),
3390		remote_config.buffer);
3391
3392	/* Now we have to make sure there is a NL/NUL sequence at the
3393	 * end of the buffer before we parse it.
3394	 */
3395	remote_config.buffer[data_count++] = '\n';
3396	remote_config.buffer[data_count] = '\0';
3397	remote_config.pos = 0;
3398	remote_config.err_pos = 0;
3399	remote_config.no_errors = 0;
3400	config_remotely(&rbufp->recv_srcadr);
3401
3402	/*
3403	 * Check if errors were reported. If not, output 'Config
3404	 * Succeeded'.  Else output the error count.  It would be nice
3405	 * to output any parser error messages.
3406	 */
3407	if (0 == remote_config.no_errors) {
3408		retval = snprintf(remote_config.err_msg,
3409				  sizeof(remote_config.err_msg),
3410				  "Config Succeeded");
3411		if (retval > 0)
3412			remote_config.err_pos += retval;
3413	}
3414
3415	ctl_putdata(remote_config.err_msg, remote_config.err_pos, 0);
3416	ctl_flushpkt(0);
3417
3418	DPRINTF(1, ("Reply: %s\n", remote_config.err_msg));
3419
3420	if (remote_config.no_errors > 0)
3421		msyslog(LOG_NOTICE, "%d error in %s config",
3422			remote_config.no_errors,
3423			stoa(&rbufp->recv_srcadr));
3424}
3425
3426
3427/*
3428 * derive_nonce - generate client-address-specific nonce value
3429 *		  associated with a given timestamp.
3430 */
3431static u_int32 derive_nonce(
3432	sockaddr_u *	addr,
3433	u_int32		ts_i,
3434	u_int32		ts_f
3435	)
3436{
3437	static u_int32	salt[4];
3438	static u_long	last_salt_update;
3439	union d_tag {
3440		u_char	digest[EVP_MAX_MD_SIZE];
3441		u_int32 extract;
3442	}		d;
3443	EVP_MD_CTX	ctx;
3444	u_int		len;
3445
3446	while (!salt[0] || current_time - last_salt_update >= 3600) {
3447		salt[0] = ntp_random();
3448		salt[1] = ntp_random();
3449		salt[2] = ntp_random();
3450		salt[3] = ntp_random();
3451		last_salt_update = current_time;
3452	}
3453
3454	EVP_DigestInit(&ctx, EVP_get_digestbynid(NID_md5));
3455	EVP_DigestUpdate(&ctx, salt, sizeof(salt));
3456	EVP_DigestUpdate(&ctx, &ts_i, sizeof(ts_i));
3457	EVP_DigestUpdate(&ctx, &ts_f, sizeof(ts_f));
3458	if (IS_IPV4(addr))
3459		EVP_DigestUpdate(&ctx, &SOCK_ADDR4(addr),
3460			         sizeof(SOCK_ADDR4(addr)));
3461	else
3462		EVP_DigestUpdate(&ctx, &SOCK_ADDR6(addr),
3463			         sizeof(SOCK_ADDR6(addr)));
3464	EVP_DigestUpdate(&ctx, &NSRCPORT(addr), sizeof(NSRCPORT(addr)));
3465	EVP_DigestUpdate(&ctx, salt, sizeof(salt));
3466	EVP_DigestFinal(&ctx, d.digest, &len);
3467
3468	return d.extract;
3469}
3470
3471
3472/*
3473 * generate_nonce - generate client-address-specific nonce string.
3474 */
3475static void generate_nonce(
3476	struct recvbuf *	rbufp,
3477	char *			nonce,
3478	size_t			nonce_octets
3479	)
3480{
3481	u_int32 derived;
3482
3483	derived = derive_nonce(&rbufp->recv_srcadr,
3484			       rbufp->recv_time.l_ui,
3485			       rbufp->recv_time.l_uf);
3486	snprintf(nonce, nonce_octets, "%08x%08x%08x",
3487		 rbufp->recv_time.l_ui, rbufp->recv_time.l_uf, derived);
3488}
3489
3490
3491/*
3492 * validate_nonce - validate client-address-specific nonce string.
3493 *
3494 * Returns TRUE if the local calculation of the nonce matches the
3495 * client-provided value and the timestamp is recent enough.
3496 */
3497static int validate_nonce(
3498	const char *		pnonce,
3499	struct recvbuf *	rbufp
3500	)
3501{
3502	u_int	ts_i;
3503	u_int	ts_f;
3504	l_fp	ts;
3505	l_fp	now_delta;
3506	u_int	supposed;
3507	u_int	derived;
3508
3509	if (3 != sscanf(pnonce, "%08x%08x%08x", &ts_i, &ts_f, &supposed))
3510		return FALSE;
3511
3512	ts.l_ui = (u_int32)ts_i;
3513	ts.l_uf = (u_int32)ts_f;
3514	derived = derive_nonce(&rbufp->recv_srcadr, ts.l_ui, ts.l_uf);
3515	get_systime(&now_delta);
3516	L_SUB(&now_delta, &ts);
3517
3518	return (supposed == derived && now_delta.l_ui < 16);
3519}
3520
3521
3522/*
3523 * send_random_tag_value - send a randomly-generated three character
3524 *			   tag prefix, a '.', an index, a '=' and a
3525 *			   random integer value.
3526 *
3527 * To try to force clients to ignore unrecognized tags in mrulist,
3528 * reslist, and ifstats responses, the first and last rows are spiced
3529 * with randomly-generated tag names with correct .# index.  Make it
3530 * three characters knowing that none of the currently-used subscripted
3531 * tags have that length, avoiding the need to test for
3532 * tag collision.
3533 */
3534static void
3535send_random_tag_value(
3536	int	indx
3537	)
3538{
3539	int	noise;
3540	char	buf[32];
3541
3542	noise = rand() ^ (rand() << 16);
3543	buf[0] = 'a' + noise % 26;
3544	noise >>= 5;
3545	buf[1] = 'a' + noise % 26;
3546	noise >>= 5;
3547	buf[2] = 'a' + noise % 26;
3548	noise >>= 5;
3549	buf[3] = '.';
3550	snprintf(&buf[4], sizeof(buf) - 4, "%d", indx);
3551	ctl_putuint(buf, noise);
3552}
3553
3554
3555/*
3556 * Send a MRU list entry in response to a "ntpq -c mrulist" operation.
3557 *
3558 * To keep clients honest about not depending on the order of values,
3559 * and thereby avoid being locked into ugly workarounds to maintain
3560 * backward compatibility later as new fields are added to the response,
3561 * the order is random.
3562 */
3563static void
3564send_mru_entry(
3565	mon_entry *	mon,
3566	int		count
3567	)
3568{
3569	const char first_fmt[] =	"first.%d";
3570	const char ct_fmt[] =		"ct.%d";
3571	const char mv_fmt[] =		"mv.%d";
3572	const char rs_fmt[] =		"rs.%d";
3573	char	tag[32];
3574	u_char	sent[6]; /* 6 tag=value pairs */
3575	u_int32 noise;
3576	u_int	which;
3577	u_int	remaining;
3578	const char * pch;
3579
3580	remaining = COUNTOF(sent);
3581	ZERO(sent);
3582	noise = (u_int32)(rand() ^ (rand() << 16));
3583	while (remaining > 0) {
3584		which = (noise & 7) % COUNTOF(sent);
3585		noise >>= 3;
3586		while (sent[which])
3587			which = (which + 1) % COUNTOF(sent);
3588
3589		switch (which) {
3590
3591		case 0:
3592			snprintf(tag, sizeof(tag), addr_fmt, count);
3593			pch = sptoa(&mon->rmtadr);
3594			ctl_putunqstr(tag, pch, strlen(pch));
3595			break;
3596
3597		case 1:
3598			snprintf(tag, sizeof(tag), last_fmt, count);
3599			ctl_putts(tag, &mon->last);
3600			break;
3601
3602		case 2:
3603			snprintf(tag, sizeof(tag), first_fmt, count);
3604			ctl_putts(tag, &mon->first);
3605			break;
3606
3607		case 3:
3608			snprintf(tag, sizeof(tag), ct_fmt, count);
3609			ctl_putint(tag, mon->count);
3610			break;
3611
3612		case 4:
3613			snprintf(tag, sizeof(tag), mv_fmt, count);
3614			ctl_putuint(tag, mon->vn_mode);
3615			break;
3616
3617		case 5:
3618			snprintf(tag, sizeof(tag), rs_fmt, count);
3619			ctl_puthex(tag, mon->flags);
3620			break;
3621		}
3622		sent[which] = TRUE;
3623		remaining--;
3624	}
3625}
3626
3627
3628/*
3629 * read_mru_list - supports ntpq's mrulist command.
3630 *
3631 * The challenge here is to match ntpdc's monlist functionality without
3632 * being limited to hundreds of entries returned total, and without
3633 * requiring state on the server.  If state were required, ntpq's
3634 * mrulist command would require authentication.
3635 *
3636 * The approach was suggested by Ry Jones.  A finite and variable number
3637 * of entries are retrieved per request, to avoid having responses with
3638 * such large numbers of packets that socket buffers are overflowed and
3639 * packets lost.  The entries are retrieved oldest-first, taking into
3640 * account that the MRU list will be changing between each request.  We
3641 * can expect to see duplicate entries for addresses updated in the MRU
3642 * list during the fetch operation.  In the end, the client can assemble
3643 * a close approximation of the MRU list at the point in time the last
3644 * response was sent by ntpd.  The only difference is it may be longer,
3645 * containing some number of oldest entries which have since been
3646 * reclaimed.  If necessary, the protocol could be extended to zap those
3647 * from the client snapshot at the end, but so far that doesn't seem
3648 * useful.
3649 *
3650 * To accomodate the changing MRU list, the starting point for requests
3651 * after the first request is supplied as a series of last seen
3652 * timestamps and associated addresses, the newest ones the client has
3653 * received.  As long as at least one of those entries hasn't been
3654 * bumped to the head of the MRU list, ntpd can pick up at that point.
3655 * Otherwise, the request is failed and it is up to ntpq to back up and
3656 * provide the next newest entry's timestamps and addresses, conceivably
3657 * backing up all the way to the starting point.
3658 *
3659 * input parameters:
3660 *	nonce=		Regurgitated nonce retrieved by the client
3661 *			previously using CTL_OP_REQ_NONCE, demonstrating
3662 *			ability to receive traffic sent to its address.
3663 *	frags=		Limit on datagrams (fragments) in response.  Used
3664 *			by newer ntpq versions instead of limit= when
3665 *			retrieving multiple entries.
3666 *	limit=		Limit on MRU entries returned.  One of frags= or
3667 *			limit= must be provided.
3668 *			limit=1 is a special case:  Instead of fetching
3669 *			beginning with the supplied starting point's
3670 *			newer neighbor, fetch the supplied entry, and
3671 *			in that case the #.last timestamp can be zero.
3672 *			This enables fetching a single entry by IP
3673 *			address.  When limit is not one and frags= is
3674 *			provided, the fragment limit controls.
3675 *	mincount=	(decimal) Return entries with count >= mincount.
3676 *	laddr=		Return entries associated with the server's IP
3677 *			address given.  No port specification is needed,
3678 *			and any supplied is ignored.
3679 *	resall=		0x-prefixed hex restrict bits which must all be
3680 *			lit for an MRU entry to be included.
3681 *			Has precedence over any resany=.
3682 *	resany=		0x-prefixed hex restrict bits, at least one of
3683 *			which must be list for an MRU entry to be
3684 *			included.
3685 *	last.0=		0x-prefixed hex l_fp timestamp of newest entry
3686 *			which client previously received.
3687 *	addr.0=		text of newest entry's IP address and port,
3688 *			IPv6 addresses in bracketed form: [::]:123
3689 *	last.1=		timestamp of 2nd newest entry client has.
3690 *	addr.1=		address of 2nd newest entry.
3691 *	[...]
3692 *
3693 * ntpq provides as many last/addr pairs as will fit in a single request
3694 * packet, except for the first request in a MRU fetch operation.
3695 *
3696 * The response begins with a new nonce value to be used for any
3697 * followup request.  Following the nonce is the next newer entry than
3698 * referred to by last.0 and addr.0, if the "0" entry has not been
3699 * bumped to the front.  If it has, the first entry returned will be the
3700 * next entry newer than referred to by last.1 and addr.1, and so on.
3701 * If none of the referenced entries remain unchanged, the request fails
3702 * and ntpq backs up to the next earlier set of entries to resync.
3703 *
3704 * Except for the first response, the response begins with confirmation
3705 * of the entry that precedes the first additional entry provided:
3706 *
3707 *	last.older=	hex l_fp timestamp matching one of the input
3708 *			.last timestamps, which entry now precedes the
3709 *			response 0. entry in the MRU list.
3710 *	addr.older=	text of address corresponding to older.last.
3711 *
3712 * And in any case, a successful response contains sets of values
3713 * comprising entries, with the oldest numbered 0 and incrementing from
3714 * there:
3715 *
3716 *	addr.#		text of IPv4 or IPv6 address and port
3717 *	last.#		hex l_fp timestamp of last receipt
3718 *	first.#		hex l_fp timestamp of first receipt
3719 *	ct.#		count of packets received
3720 *	mv.#		mode and version
3721 *	rs.#		restriction mask (RES_* bits)
3722 *
3723 * Note the code currently assumes there are no valid three letter
3724 * tags sent with each row, and needs to be adjusted if that changes.
3725 *
3726 * The client should accept the values in any order, and ignore .#
3727 * values which it does not understand, to allow a smooth path to
3728 * future changes without requiring a new opcode.  Clients can rely
3729 * on all *.0 values preceding any *.1 values, that is all values for
3730 * a given index number are together in the response.
3731 *
3732 * The end of the response list is noted with one or two tag=value
3733 * pairs.  Unconditionally:
3734 *
3735 *	now=		0x-prefixed l_fp timestamp at the server marking
3736 *			the end of the operation.
3737 *
3738 * If any entries were returned, now= is followed by:
3739 *
3740 *	last.newest=	hex l_fp identical to last.# of the prior
3741 *			entry.
3742 */
3743static void read_mru_list(
3744	struct recvbuf *rbufp,
3745	int restrict_mask
3746	)
3747{
3748	const char		nonce_text[] =		"nonce";
3749	const char		frags_text[] =		"frags";
3750	const char		limit_text[] =		"limit";
3751	const char		mincount_text[] =	"mincount";
3752	const char		resall_text[] =		"resall";
3753	const char		resany_text[] =		"resany";
3754	const char		maxlstint_text[] =	"maxlstint";
3755	const char		laddr_text[] =		"laddr";
3756	const char		resaxx_fmt[] =		"0x%hx";
3757	u_int			limit;
3758	u_short			frags;
3759	u_short			resall;
3760	u_short			resany;
3761	int			mincount;
3762	u_int			maxlstint;
3763	sockaddr_u		laddr;
3764	struct interface *	lcladr;
3765	u_int			count;
3766	u_int			ui;
3767	u_int			uf;
3768	l_fp			last[16];
3769	sockaddr_u		addr[COUNTOF(last)];
3770	char			buf[128];
3771	struct ctl_var *	in_parms;
3772	const struct ctl_var *	v;
3773	char *			val;
3774	const char *		pch;
3775	char *			pnonce;
3776	int			nonce_valid;
3777	size_t			i;
3778	int			priors;
3779	u_short			hash;
3780	mon_entry *		mon;
3781	mon_entry *		prior_mon;
3782	l_fp			now;
3783
3784	if (RES_NOMRULIST & restrict_mask) {
3785		ctl_error(CERR_PERMISSION);
3786		NLOG(NLOG_SYSINFO)
3787			msyslog(LOG_NOTICE,
3788				"mrulist from %s rejected due to nomrulist restriction",
3789				stoa(&rbufp->recv_srcadr));
3790		sys_restricted++;
3791		return;
3792	}
3793	/*
3794	 * fill in_parms var list with all possible input parameters.
3795	 */
3796	in_parms = NULL;
3797	set_var(&in_parms, nonce_text, sizeof(nonce_text), 0);
3798	set_var(&in_parms, frags_text, sizeof(frags_text), 0);
3799	set_var(&in_parms, limit_text, sizeof(limit_text), 0);
3800	set_var(&in_parms, mincount_text, sizeof(mincount_text), 0);
3801	set_var(&in_parms, resall_text, sizeof(resall_text), 0);
3802	set_var(&in_parms, resany_text, sizeof(resany_text), 0);
3803	set_var(&in_parms, maxlstint_text, sizeof(maxlstint_text), 0);
3804	set_var(&in_parms, laddr_text, sizeof(laddr_text), 0);
3805	for (i = 0; i < COUNTOF(last); i++) {
3806		snprintf(buf, sizeof(buf), last_fmt, (int)i);
3807		set_var(&in_parms, buf, strlen(buf) + 1, 0);
3808		snprintf(buf, sizeof(buf), addr_fmt, (int)i);
3809		set_var(&in_parms, buf, strlen(buf) + 1, 0);
3810	}
3811
3812	/* decode input parms */
3813	pnonce = NULL;
3814	frags = 0;
3815	limit = 0;
3816	mincount = 0;
3817	resall = 0;
3818	resany = 0;
3819	maxlstint = 0;
3820	lcladr = NULL;
3821	priors = 0;
3822	ZERO(last);
3823	ZERO(addr);
3824
3825	while (NULL != (v = ctl_getitem(in_parms, &val)) &&
3826	       !(EOV & v->flags)) {
3827		int si;
3828
3829		if (!strcmp(nonce_text, v->text)) {
3830			if (NULL != pnonce)
3831				free(pnonce);
3832			pnonce = estrdup(val);
3833		} else if (!strcmp(frags_text, v->text)) {
3834			sscanf(val, "%hu", &frags);
3835		} else if (!strcmp(limit_text, v->text)) {
3836			sscanf(val, "%u", &limit);
3837		} else if (!strcmp(mincount_text, v->text)) {
3838			if (1 != sscanf(val, "%d", &mincount) ||
3839			    mincount < 0)
3840				mincount = 0;
3841		} else if (!strcmp(resall_text, v->text)) {
3842			sscanf(val, resaxx_fmt, &resall);
3843		} else if (!strcmp(resany_text, v->text)) {
3844			sscanf(val, resaxx_fmt, &resany);
3845		} else if (!strcmp(maxlstint_text, v->text)) {
3846			sscanf(val, "%u", &maxlstint);
3847		} else if (!strcmp(laddr_text, v->text)) {
3848			if (decodenetnum(val, &laddr))
3849				lcladr = getinterface(&laddr, 0);
3850		} else if (1 == sscanf(v->text, last_fmt, &si) &&
3851			   (size_t)si < COUNTOF(last)) {
3852			if (2 == sscanf(val, "0x%08x.%08x", &ui, &uf)) {
3853				last[si].l_ui = ui;
3854				last[si].l_uf = uf;
3855				if (!SOCK_UNSPEC(&addr[si]) &&
3856				    si == priors)
3857					priors++;
3858			}
3859		} else if (1 == sscanf(v->text, addr_fmt, &si) &&
3860			   (size_t)si < COUNTOF(addr)) {
3861			if (decodenetnum(val, &addr[si])
3862			    && last[si].l_ui && last[si].l_uf &&
3863			    si == priors)
3864				priors++;
3865		}
3866	}
3867	free_varlist(in_parms);
3868	in_parms = NULL;
3869
3870	/* return no responses until the nonce is validated */
3871	if (NULL == pnonce)
3872		return;
3873
3874	nonce_valid = validate_nonce(pnonce, rbufp);
3875	free(pnonce);
3876	if (!nonce_valid)
3877		return;
3878
3879	if ((0 == frags && !(0 < limit && limit <= MRU_ROW_LIMIT)) ||
3880	    frags > MRU_FRAGS_LIMIT) {
3881		ctl_error(CERR_BADVALUE);
3882		return;
3883	}
3884
3885	/*
3886	 * If either frags or limit is not given, use the max.
3887	 */
3888	if (0 != frags && 0 == limit)
3889		limit = UINT_MAX;
3890	else if (0 != limit && 0 == frags)
3891		frags = MRU_FRAGS_LIMIT;
3892
3893	/*
3894	 * Find the starting point if one was provided.
3895	 */
3896	mon = NULL;
3897	for (i = 0; i < (size_t)priors; i++) {
3898		hash = MON_HASH(&addr[i]);
3899		for (mon = mon_hash[hash];
3900		     mon != NULL;
3901		     mon = mon->hash_next)
3902			if (ADDR_PORT_EQ(&mon->rmtadr, &addr[i]))
3903				break;
3904		if (mon != NULL) {
3905			if (L_ISEQU(&mon->last, &last[i]))
3906				break;
3907			mon = NULL;
3908		}
3909	}
3910
3911	/* If a starting point was provided... */
3912	if (priors) {
3913		/* and none could be found unmodified... */
3914		if (NULL == mon) {
3915			/* tell ntpq to try again with older entries */
3916			ctl_error(CERR_UNKNOWNVAR);
3917			return;
3918		}
3919		/* confirm the prior entry used as starting point */
3920		ctl_putts("last.older", &mon->last);
3921		pch = sptoa(&mon->rmtadr);
3922		ctl_putunqstr("addr.older", pch, strlen(pch));
3923
3924		/*
3925		 * Move on to the first entry the client doesn't have,
3926		 * except in the special case of a limit of one.  In
3927		 * that case return the starting point entry.
3928		 */
3929		if (limit > 1)
3930			mon = PREV_DLIST(mon_mru_list, mon, mru);
3931	} else {	/* start with the oldest */
3932		mon = TAIL_DLIST(mon_mru_list, mru);
3933	}
3934
3935	/*
3936	 * send up to limit= entries in up to frags= datagrams
3937	 */
3938	get_systime(&now);
3939	generate_nonce(rbufp, buf, sizeof(buf));
3940	ctl_putunqstr("nonce", buf, strlen(buf));
3941	prior_mon = NULL;
3942	for (count = 0;
3943	     mon != NULL && res_frags < frags && count < limit;
3944	     mon = PREV_DLIST(mon_mru_list, mon, mru)) {
3945
3946		if (mon->count < mincount)
3947			continue;
3948		if (resall && resall != (resall & mon->flags))
3949			continue;
3950		if (resany && !(resany & mon->flags))
3951			continue;
3952		if (maxlstint > 0 && now.l_ui - mon->last.l_ui >
3953		    maxlstint)
3954			continue;
3955		if (lcladr != NULL && mon->lcladr != lcladr)
3956			continue;
3957
3958		send_mru_entry(mon, count);
3959		if (!count)
3960			send_random_tag_value(0);
3961		count++;
3962		prior_mon = mon;
3963	}
3964
3965	/*
3966	 * If this batch completes the MRU list, say so explicitly with
3967	 * a now= l_fp timestamp.
3968	 */
3969	if (NULL == mon) {
3970		if (count > 1)
3971			send_random_tag_value(count - 1);
3972		ctl_putts("now", &now);
3973		/* if any entries were returned confirm the last */
3974		if (prior_mon != NULL)
3975			ctl_putts("last.newest", &prior_mon->last);
3976	}
3977	ctl_flushpkt(0);
3978}
3979
3980
3981/*
3982 * Send a ifstats entry in response to a "ntpq -c ifstats" request.
3983 *
3984 * To keep clients honest about not depending on the order of values,
3985 * and thereby avoid being locked into ugly workarounds to maintain
3986 * backward compatibility later as new fields are added to the response,
3987 * the order is random.
3988 */
3989static void
3990send_ifstats_entry(
3991	endpt *	la,
3992	u_int	ifnum
3993	)
3994{
3995	const char addr_fmtu[] =	"addr.%u";
3996	const char bcast_fmt[] =	"bcast.%u";
3997	const char en_fmt[] =		"en.%u";	/* enabled */
3998	const char name_fmt[] =		"name.%u";
3999	const char flags_fmt[] =	"flags.%u";
4000	const char tl_fmt[] =		"tl.%u";	/* ttl */
4001	const char mc_fmt[] =		"mc.%u";	/* mcast count */
4002	const char rx_fmt[] =		"rx.%u";
4003	const char tx_fmt[] =		"tx.%u";
4004	const char txerr_fmt[] =	"txerr.%u";
4005	const char pc_fmt[] =		"pc.%u";	/* peer count */
4006	const char up_fmt[] =		"up.%u";	/* uptime */
4007	char	tag[32];
4008	u_char	sent[IFSTATS_FIELDS]; /* 12 tag=value pairs */
4009	int	noisebits;
4010	u_int32 noise;
4011	u_int	which;
4012	u_int	remaining;
4013	const char *pch;
4014
4015	remaining = COUNTOF(sent);
4016	ZERO(sent);
4017	noise = 0;
4018	noisebits = 0;
4019	while (remaining > 0) {
4020		if (noisebits < 4) {
4021			noise = rand() ^ (rand() << 16);
4022			noisebits = 31;
4023		}
4024		which = (noise & 0xf) % COUNTOF(sent);
4025		noise >>= 4;
4026		noisebits -= 4;
4027
4028		while (sent[which])
4029			which = (which + 1) % COUNTOF(sent);
4030
4031		switch (which) {
4032
4033		case 0:
4034			snprintf(tag, sizeof(tag), addr_fmtu, ifnum);
4035			pch = sptoa(&la->sin);
4036			ctl_putunqstr(tag, pch, strlen(pch));
4037			break;
4038
4039		case 1:
4040			snprintf(tag, sizeof(tag), bcast_fmt, ifnum);
4041			if (INT_BCASTOPEN & la->flags)
4042				pch = sptoa(&la->bcast);
4043			else
4044				pch = "";
4045			ctl_putunqstr(tag, pch, strlen(pch));
4046			break;
4047
4048		case 2:
4049			snprintf(tag, sizeof(tag), en_fmt, ifnum);
4050			ctl_putint(tag, !la->ignore_packets);
4051			break;
4052
4053		case 3:
4054			snprintf(tag, sizeof(tag), name_fmt, ifnum);
4055			ctl_putstr(tag, la->name, strlen(la->name));
4056			break;
4057
4058		case 4:
4059			snprintf(tag, sizeof(tag), flags_fmt, ifnum);
4060			ctl_puthex(tag, (u_int)la->flags);
4061			break;
4062
4063		case 5:
4064			snprintf(tag, sizeof(tag), tl_fmt, ifnum);
4065			ctl_putint(tag, la->last_ttl);
4066			break;
4067
4068		case 6:
4069			snprintf(tag, sizeof(tag), mc_fmt, ifnum);
4070			ctl_putint(tag, la->num_mcast);
4071			break;
4072
4073		case 7:
4074			snprintf(tag, sizeof(tag), rx_fmt, ifnum);
4075			ctl_putint(tag, la->received);
4076			break;
4077
4078		case 8:
4079			snprintf(tag, sizeof(tag), tx_fmt, ifnum);
4080			ctl_putint(tag, la->sent);
4081			break;
4082
4083		case 9:
4084			snprintf(tag, sizeof(tag), txerr_fmt, ifnum);
4085			ctl_putint(tag, la->notsent);
4086			break;
4087
4088		case 10:
4089			snprintf(tag, sizeof(tag), pc_fmt, ifnum);
4090			ctl_putuint(tag, la->peercnt);
4091			break;
4092
4093		case 11:
4094			snprintf(tag, sizeof(tag), up_fmt, ifnum);
4095			ctl_putuint(tag, current_time - la->starttime);
4096			break;
4097		}
4098		sent[which] = TRUE;
4099		remaining--;
4100	}
4101	send_random_tag_value((int)ifnum);
4102}
4103
4104
4105/*
4106 * read_ifstats - send statistics for each local address, exposed by
4107 *		  ntpq -c ifstats
4108 */
4109static void
4110read_ifstats(
4111	struct recvbuf *	rbufp
4112	)
4113{
4114	u_int	ifidx;
4115	endpt *	la;
4116
4117	/*
4118	 * loop over [0..sys_ifnum] searching ep_list for each
4119	 * ifnum in turn.
4120	 */
4121	for (ifidx = 0; ifidx < sys_ifnum; ifidx++) {
4122		for (la = ep_list; la != NULL; la = la->elink)
4123			if (ifidx == la->ifnum)
4124				break;
4125		if (NULL == la)
4126			continue;
4127		/* return stats for one local address */
4128		send_ifstats_entry(la, ifidx);
4129	}
4130	ctl_flushpkt(0);
4131}
4132
4133static void
4134sockaddrs_from_restrict_u(
4135	sockaddr_u *	psaA,
4136	sockaddr_u *	psaM,
4137	restrict_u *	pres,
4138	int		ipv6
4139	)
4140{
4141	ZERO(*psaA);
4142	ZERO(*psaM);
4143	if (!ipv6) {
4144		psaA->sa.sa_family = AF_INET;
4145		psaA->sa4.sin_addr.s_addr = htonl(pres->u.v4.addr);
4146		psaM->sa.sa_family = AF_INET;
4147		psaM->sa4.sin_addr.s_addr = htonl(pres->u.v4.mask);
4148	} else {
4149		psaA->sa.sa_family = AF_INET6;
4150		memcpy(&psaA->sa6.sin6_addr, &pres->u.v6.addr,
4151		       sizeof(psaA->sa6.sin6_addr));
4152		psaM->sa.sa_family = AF_INET6;
4153		memcpy(&psaM->sa6.sin6_addr, &pres->u.v6.mask,
4154		       sizeof(psaA->sa6.sin6_addr));
4155	}
4156}
4157
4158
4159/*
4160 * Send a restrict entry in response to a "ntpq -c reslist" request.
4161 *
4162 * To keep clients honest about not depending on the order of values,
4163 * and thereby avoid being locked into ugly workarounds to maintain
4164 * backward compatibility later as new fields are added to the response,
4165 * the order is random.
4166 */
4167static void
4168send_restrict_entry(
4169	restrict_u *	pres,
4170	int		ipv6,
4171	u_int		idx
4172	)
4173{
4174	const char addr_fmtu[] =	"addr.%u";
4175	const char mask_fmtu[] =	"mask.%u";
4176	const char hits_fmt[] =		"hits.%u";
4177	const char flags_fmt[] =	"flags.%u";
4178	char		tag[32];
4179	u_char		sent[RESLIST_FIELDS]; /* 4 tag=value pairs */
4180	int		noisebits;
4181	u_int32		noise;
4182	u_int		which;
4183	u_int		remaining;
4184	sockaddr_u	addr;
4185	sockaddr_u	mask;
4186	const char *	pch;
4187	char *		buf;
4188	const char *	match_str;
4189	const char *	access_str;
4190
4191	sockaddrs_from_restrict_u(&addr, &mask, pres, ipv6);
4192	remaining = COUNTOF(sent);
4193	ZERO(sent);
4194	noise = 0;
4195	noisebits = 0;
4196	while (remaining > 0) {
4197		if (noisebits < 2) {
4198			noise = rand() ^ (rand() << 16);
4199			noisebits = 31;
4200		}
4201		which = (noise & 0x3) % COUNTOF(sent);
4202		noise >>= 2;
4203		noisebits -= 2;
4204
4205		while (sent[which])
4206			which = (which + 1) % COUNTOF(sent);
4207
4208		switch (which) {
4209
4210		case 0:
4211			snprintf(tag, sizeof(tag), addr_fmtu, idx);
4212			pch = stoa(&addr);
4213			ctl_putunqstr(tag, pch, strlen(pch));
4214			break;
4215
4216		case 1:
4217			snprintf(tag, sizeof(tag), mask_fmtu, idx);
4218			pch = stoa(&mask);
4219			ctl_putunqstr(tag, pch, strlen(pch));
4220			break;
4221
4222		case 2:
4223			snprintf(tag, sizeof(tag), hits_fmt, idx);
4224			ctl_putuint(tag, pres->count);
4225			break;
4226
4227		case 3:
4228			snprintf(tag, sizeof(tag), flags_fmt, idx);
4229			match_str = res_match_flags(pres->mflags);
4230			access_str = res_access_flags(pres->flags);
4231			if ('\0' == match_str[0]) {
4232				pch = access_str;
4233			} else {
4234				LIB_GETBUF(buf);
4235				snprintf(buf, LIB_BUFLENGTH, "%s %s",
4236					 match_str, access_str);
4237				pch = buf;
4238			}
4239			ctl_putunqstr(tag, pch, strlen(pch));
4240			break;
4241		}
4242		sent[which] = TRUE;
4243		remaining--;
4244	}
4245	send_random_tag_value((int)idx);
4246}
4247
4248
4249static void
4250send_restrict_list(
4251	restrict_u *	pres,
4252	int		ipv6,
4253	u_int *		pidx
4254	)
4255{
4256	for ( ; pres != NULL; pres = pres->link) {
4257		send_restrict_entry(pres, ipv6, *pidx);
4258		(*pidx)++;
4259	}
4260}
4261
4262
4263/*
4264 * read_addr_restrictions - returns IPv4 and IPv6 access control lists
4265 */
4266static void
4267read_addr_restrictions(
4268	struct recvbuf *	rbufp
4269)
4270{
4271	u_int idx;
4272
4273	idx = 0;
4274	send_restrict_list(restrictlist4, FALSE, &idx);
4275	send_restrict_list(restrictlist6, TRUE, &idx);
4276	ctl_flushpkt(0);
4277}
4278
4279
4280/*
4281 * read_ordlist - CTL_OP_READ_ORDLIST_A for ntpq -c ifstats & reslist
4282 */
4283static void
4284read_ordlist(
4285	struct recvbuf *	rbufp,
4286	int			restrict_mask
4287	)
4288{
4289	const char ifstats_s[] = "ifstats";
4290	const size_t ifstats_chars = COUNTOF(ifstats_s) - 1;
4291	const char addr_rst_s[] = "addr_restrictions";
4292	const size_t a_r_chars = COUNTOF(addr_rst_s) - 1;
4293	struct ntp_control *	cpkt;
4294	u_short			qdata_octets;
4295
4296	/*
4297	 * CTL_OP_READ_ORDLIST_A was first named CTL_OP_READ_IFSTATS and
4298	 * used only for ntpq -c ifstats.  With the addition of reslist
4299	 * the same opcode was generalized to retrieve ordered lists
4300	 * which require authentication.  The request data is empty or
4301	 * contains "ifstats" (not null terminated) to retrieve local
4302	 * addresses and associated stats.  It is "addr_restrictions"
4303	 * to retrieve the IPv4 then IPv6 remote address restrictions,
4304	 * which are access control lists.  Other request data return
4305	 * CERR_UNKNOWNVAR.
4306	 */
4307	cpkt = (struct ntp_control *)&rbufp->recv_pkt;
4308	qdata_octets = ntohs(cpkt->count);
4309	if (0 == qdata_octets || (ifstats_chars == qdata_octets &&
4310	    !memcmp(ifstats_s, cpkt->u.data, ifstats_chars))) {
4311		read_ifstats(rbufp);
4312		return;
4313	}
4314	if (a_r_chars == qdata_octets &&
4315	    !memcmp(addr_rst_s, cpkt->u.data, a_r_chars)) {
4316		read_addr_restrictions(rbufp);
4317		return;
4318	}
4319	ctl_error(CERR_UNKNOWNVAR);
4320}
4321
4322
4323/*
4324 * req_nonce - CTL_OP_REQ_NONCE for ntpq -c mrulist prerequisite.
4325 */
4326static void req_nonce(
4327	struct recvbuf *	rbufp,
4328	int			restrict_mask
4329	)
4330{
4331	char	buf[64];
4332
4333	generate_nonce(rbufp, buf, sizeof(buf));
4334	ctl_putunqstr("nonce", buf, strlen(buf));
4335	ctl_flushpkt(0);
4336}
4337
4338
4339/*
4340 * read_clockstatus - return clock radio status
4341 */
4342/*ARGSUSED*/
4343static void
4344read_clockstatus(
4345	struct recvbuf *rbufp,
4346	int restrict_mask
4347	)
4348{
4349#ifndef REFCLOCK
4350	/*
4351	 * If no refclock support, no data to return
4352	 */
4353	ctl_error(CERR_BADASSOC);
4354#else
4355	const struct ctl_var *	v;
4356	int			i;
4357	struct peer *		peer;
4358	char *			valuep;
4359	u_char *		wants;
4360	size_t			wants_alloc;
4361	int			gotvar;
4362	const u_char *		cc;
4363	struct ctl_var *	kv;
4364	struct refclockstat	cs;
4365
4366	if (res_associd != 0) {
4367		peer = findpeerbyassoc(res_associd);
4368	} else {
4369		/*
4370		 * Find a clock for this jerk.	If the system peer
4371		 * is a clock use it, else search peer_list for one.
4372		 */
4373		if (sys_peer != NULL && (FLAG_REFCLOCK &
4374		    sys_peer->flags))
4375			peer = sys_peer;
4376		else
4377			for (peer = peer_list;
4378			     peer != NULL;
4379			     peer = peer->p_link)
4380				if (FLAG_REFCLOCK & peer->flags)
4381					break;
4382	}
4383	if (NULL == peer || !(FLAG_REFCLOCK & peer->flags)) {
4384		ctl_error(CERR_BADASSOC);
4385		return;
4386	}
4387	/*
4388	 * If we got here we have a peer which is a clock. Get his
4389	 * status.
4390	 */
4391	cs.kv_list = NULL;
4392	refclock_control(&peer->srcadr, NULL, &cs);
4393	kv = cs.kv_list;
4394	/*
4395	 * Look for variables in the packet.
4396	 */
4397	rpkt.status = htons(ctlclkstatus(&cs));
4398	wants_alloc = CC_MAXCODE + 1 + count_var(kv);
4399	wants = emalloc_zero(wants_alloc);
4400	gotvar = FALSE;
4401	while (NULL != (v = ctl_getitem(clock_var, &valuep))) {
4402		if (!(EOV & v->flags)) {
4403			wants[v->code] = TRUE;
4404			gotvar = TRUE;
4405		} else {
4406			v = ctl_getitem(kv, &valuep);
4407			NTP_INSIST(NULL != v);
4408			if (EOV & v->flags) {
4409				ctl_error(CERR_UNKNOWNVAR);
4410				free(wants);
4411				free_varlist(cs.kv_list);
4412				return;
4413			}
4414			wants[CC_MAXCODE + 1 + v->code] = TRUE;
4415			gotvar = TRUE;
4416		}
4417	}
4418
4419	if (gotvar) {
4420		for (i = 1; i <= CC_MAXCODE; i++)
4421			if (wants[i])
4422				ctl_putclock(i, &cs, TRUE);
4423		if (kv != NULL)
4424			for (i = 0; !(EOV & kv[i].flags); i++)
4425				if (wants[i + CC_MAXCODE + 1])
4426					ctl_putdata(kv[i].text,
4427						    strlen(kv[i].text),
4428						    FALSE);
4429	} else {
4430		for (cc = def_clock_var; *cc != 0; cc++)
4431			ctl_putclock((int)*cc, &cs, FALSE);
4432		for ( ; kv != NULL && !(EOV & kv->flags); kv++)
4433			if (DEF & kv->flags)
4434				ctl_putdata(kv->text, strlen(kv->text),
4435					    FALSE);
4436	}
4437
4438	free(wants);
4439	free_varlist(cs.kv_list);
4440
4441	ctl_flushpkt(0);
4442#endif
4443}
4444
4445
4446/*
4447 * write_clockstatus - we don't do this
4448 */
4449/*ARGSUSED*/
4450static void
4451write_clockstatus(
4452	struct recvbuf *rbufp,
4453	int restrict_mask
4454	)
4455{
4456	ctl_error(CERR_PERMISSION);
4457}
4458
4459/*
4460 * Trap support from here on down. We send async trap messages when the
4461 * upper levels report trouble. Traps can by set either by control
4462 * messages or by configuration.
4463 */
4464/*
4465 * set_trap - set a trap in response to a control message
4466 */
4467static void
4468set_trap(
4469	struct recvbuf *rbufp,
4470	int restrict_mask
4471	)
4472{
4473	int traptype;
4474
4475	/*
4476	 * See if this guy is allowed
4477	 */
4478	if (restrict_mask & RES_NOTRAP) {
4479		ctl_error(CERR_PERMISSION);
4480		return;
4481	}
4482
4483	/*
4484	 * Determine his allowed trap type.
4485	 */
4486	traptype = TRAP_TYPE_PRIO;
4487	if (restrict_mask & RES_LPTRAP)
4488		traptype = TRAP_TYPE_NONPRIO;
4489
4490	/*
4491	 * Call ctlsettrap() to do the work.  Return
4492	 * an error if it can't assign the trap.
4493	 */
4494	if (!ctlsettrap(&rbufp->recv_srcadr, rbufp->dstadr, traptype,
4495			(int)res_version))
4496		ctl_error(CERR_NORESOURCE);
4497	ctl_flushpkt(0);
4498}
4499
4500
4501/*
4502 * unset_trap - unset a trap in response to a control message
4503 */
4504static void
4505unset_trap(
4506	struct recvbuf *rbufp,
4507	int restrict_mask
4508	)
4509{
4510	int traptype;
4511
4512	/*
4513	 * We don't prevent anyone from removing his own trap unless the
4514	 * trap is configured. Note we also must be aware of the
4515	 * possibility that restriction flags were changed since this
4516	 * guy last set his trap. Set the trap type based on this.
4517	 */
4518	traptype = TRAP_TYPE_PRIO;
4519	if (restrict_mask & RES_LPTRAP)
4520		traptype = TRAP_TYPE_NONPRIO;
4521
4522	/*
4523	 * Call ctlclrtrap() to clear this out.
4524	 */
4525	if (!ctlclrtrap(&rbufp->recv_srcadr, rbufp->dstadr, traptype))
4526		ctl_error(CERR_BADASSOC);
4527	ctl_flushpkt(0);
4528}
4529
4530
4531/*
4532 * ctlsettrap - called to set a trap
4533 */
4534int
4535ctlsettrap(
4536	sockaddr_u *raddr,
4537	struct interface *linter,
4538	int traptype,
4539	int version
4540	)
4541{
4542	size_t n;
4543	struct ctl_trap *tp;
4544	struct ctl_trap *tptouse;
4545
4546	/*
4547	 * See if we can find this trap.  If so, we only need update
4548	 * the flags and the time.
4549	 */
4550	if ((tp = ctlfindtrap(raddr, linter)) != NULL) {
4551		switch (traptype) {
4552
4553		case TRAP_TYPE_CONFIG:
4554			tp->tr_flags = TRAP_INUSE|TRAP_CONFIGURED;
4555			break;
4556
4557		case TRAP_TYPE_PRIO:
4558			if (tp->tr_flags & TRAP_CONFIGURED)
4559				return (1); /* don't change anything */
4560			tp->tr_flags = TRAP_INUSE;
4561			break;
4562
4563		case TRAP_TYPE_NONPRIO:
4564			if (tp->tr_flags & TRAP_CONFIGURED)
4565				return (1); /* don't change anything */
4566			tp->tr_flags = TRAP_INUSE|TRAP_NONPRIO;
4567			break;
4568		}
4569		tp->tr_settime = current_time;
4570		tp->tr_resets++;
4571		return (1);
4572	}
4573
4574	/*
4575	 * First we heard of this guy.	Try to find a trap structure
4576	 * for him to use, clearing out lesser priority guys if we
4577	 * have to. Clear out anyone who's expired while we're at it.
4578	 */
4579	tptouse = NULL;
4580	for (n = 0; n < COUNTOF(ctl_traps); n++) {
4581		tp = &ctl_traps[n];
4582		if ((TRAP_INUSE & tp->tr_flags) &&
4583		    !(TRAP_CONFIGURED & tp->tr_flags) &&
4584		    ((tp->tr_settime + CTL_TRAPTIME) > current_time)) {
4585			tp->tr_flags = 0;
4586			num_ctl_traps--;
4587		}
4588		if (!(TRAP_INUSE & tp->tr_flags)) {
4589			tptouse = tp;
4590		} else if (!(TRAP_CONFIGURED & tp->tr_flags)) {
4591			switch (traptype) {
4592
4593			case TRAP_TYPE_CONFIG:
4594				if (tptouse == NULL) {
4595					tptouse = tp;
4596					break;
4597				}
4598				if ((TRAP_NONPRIO & tptouse->tr_flags) &&
4599				    !(TRAP_NONPRIO & tp->tr_flags))
4600					break;
4601
4602				if (!(TRAP_NONPRIO & tptouse->tr_flags)
4603				    && (TRAP_NONPRIO & tp->tr_flags)) {
4604					tptouse = tp;
4605					break;
4606				}
4607				if (tptouse->tr_origtime <
4608				    tp->tr_origtime)
4609					tptouse = tp;
4610				break;
4611
4612			case TRAP_TYPE_PRIO:
4613				if ( TRAP_NONPRIO & tp->tr_flags) {
4614					if (tptouse == NULL ||
4615					    ((TRAP_INUSE &
4616					      tptouse->tr_flags) &&
4617					     tptouse->tr_origtime <
4618					     tp->tr_origtime))
4619						tptouse = tp;
4620				}
4621				break;
4622
4623			case TRAP_TYPE_NONPRIO:
4624				break;
4625			}
4626		}
4627	}
4628
4629	/*
4630	 * If we don't have room for him return an error.
4631	 */
4632	if (tptouse == NULL)
4633		return (0);
4634
4635	/*
4636	 * Set up this structure for him.
4637	 */
4638	tptouse->tr_settime = tptouse->tr_origtime = current_time;
4639	tptouse->tr_count = tptouse->tr_resets = 0;
4640	tptouse->tr_sequence = 1;
4641	tptouse->tr_addr = *raddr;
4642	tptouse->tr_localaddr = linter;
4643	tptouse->tr_version = (u_char) version;
4644	tptouse->tr_flags = TRAP_INUSE;
4645	if (traptype == TRAP_TYPE_CONFIG)
4646		tptouse->tr_flags |= TRAP_CONFIGURED;
4647	else if (traptype == TRAP_TYPE_NONPRIO)
4648		tptouse->tr_flags |= TRAP_NONPRIO;
4649	num_ctl_traps++;
4650	return (1);
4651}
4652
4653
4654/*
4655 * ctlclrtrap - called to clear a trap
4656 */
4657int
4658ctlclrtrap(
4659	sockaddr_u *raddr,
4660	struct interface *linter,
4661	int traptype
4662	)
4663{
4664	register struct ctl_trap *tp;
4665
4666	if ((tp = ctlfindtrap(raddr, linter)) == NULL)
4667		return (0);
4668
4669	if (tp->tr_flags & TRAP_CONFIGURED
4670	    && traptype != TRAP_TYPE_CONFIG)
4671		return (0);
4672
4673	tp->tr_flags = 0;
4674	num_ctl_traps--;
4675	return (1);
4676}
4677
4678
4679/*
4680 * ctlfindtrap - find a trap given the remote and local addresses
4681 */
4682static struct ctl_trap *
4683ctlfindtrap(
4684	sockaddr_u *raddr,
4685	struct interface *linter
4686	)
4687{
4688	size_t	n;
4689
4690	for (n = 0; n < COUNTOF(ctl_traps); n++)
4691		if ((ctl_traps[n].tr_flags & TRAP_INUSE)
4692		    && ADDR_PORT_EQ(raddr, &ctl_traps[n].tr_addr)
4693		    && (linter == ctl_traps[n].tr_localaddr))
4694			return &ctl_traps[n];
4695
4696	return NULL;
4697}
4698
4699
4700/*
4701 * report_event - report an event to the trappers
4702 */
4703void
4704report_event(
4705	int	err,		/* error code */
4706	struct peer *peer,	/* peer structure pointer */
4707	const char *str		/* protostats string */
4708	)
4709{
4710	char	statstr[NTP_MAXSTRLEN];
4711	int	i;
4712	size_t	len;
4713
4714	/*
4715	 * Report the error to the protostats file, system log and
4716	 * trappers.
4717	 */
4718	if (peer == NULL) {
4719
4720		/*
4721		 * Discard a system report if the number of reports of
4722		 * the same type exceeds the maximum.
4723		 */
4724		if (ctl_sys_last_event != (u_char)err)
4725			ctl_sys_num_events= 0;
4726		if (ctl_sys_num_events >= CTL_SYS_MAXEVENTS)
4727			return;
4728
4729		ctl_sys_last_event = (u_char)err;
4730		ctl_sys_num_events++;
4731		snprintf(statstr, sizeof(statstr),
4732		    "0.0.0.0 %04x %02x %s",
4733		    ctlsysstatus(), err, eventstr(err));
4734		if (str != NULL) {
4735			len = strlen(statstr);
4736			snprintf(statstr + len, sizeof(statstr) - len,
4737			    " %s", str);
4738		}
4739		NLOG(NLOG_SYSEVENT)
4740			msyslog(LOG_INFO, "%s", statstr);
4741	} else {
4742
4743		/*
4744		 * Discard a peer report if the number of reports of
4745		 * the same type exceeds the maximum for that peer.
4746		 */
4747		const char *	src;
4748		u_char		errlast;
4749
4750		errlast = (u_char)err & ~PEER_EVENT;
4751		if (peer->last_event == errlast)
4752			peer->num_events = 0;
4753		if (peer->num_events >= CTL_PEER_MAXEVENTS)
4754			return;
4755
4756		peer->last_event = errlast;
4757		peer->num_events++;
4758		if (ISREFCLOCKADR(&peer->srcadr))
4759			src = refnumtoa(&peer->srcadr);
4760		else
4761			src = stoa(&peer->srcadr);
4762
4763		snprintf(statstr, sizeof(statstr),
4764		    "%s %04x %02x %s", src,
4765		    ctlpeerstatus(peer), err, eventstr(err));
4766		if (str != NULL) {
4767			len = strlen(statstr);
4768			snprintf(statstr + len, sizeof(statstr) - len,
4769			    " %s", str);
4770		}
4771		NLOG(NLOG_PEEREVENT)
4772			msyslog(LOG_INFO, "%s", statstr);
4773	}
4774	record_proto_stats(statstr);
4775#if DEBUG
4776	if (debug)
4777		printf("event at %lu %s\n", current_time, statstr);
4778#endif
4779
4780	/*
4781	 * If no trappers, return.
4782	 */
4783	if (num_ctl_traps <= 0)
4784		return;
4785
4786	/*
4787	 * Set up the outgoing packet variables
4788	 */
4789	res_opcode = CTL_OP_ASYNCMSG;
4790	res_offset = 0;
4791	res_async = TRUE;
4792	res_authenticate = FALSE;
4793	datapt = rpkt.u.data;
4794	dataend = &rpkt.u.data[CTL_MAX_DATA_LEN];
4795	if (!(err & PEER_EVENT)) {
4796		rpkt.associd = 0;
4797		rpkt.status = htons(ctlsysstatus());
4798
4799		/* Include the core system variables and the list. */
4800		for (i = 1; i <= CS_VARLIST; i++)
4801			ctl_putsys(i);
4802	} else {
4803		NTP_INSIST(peer != NULL);
4804		rpkt.associd = htons(peer->associd);
4805		rpkt.status = htons(ctlpeerstatus(peer));
4806
4807		/* Dump it all. Later, maybe less. */
4808		for (i = 1; i <= CP_MAX_NOAUTOKEY; i++)
4809			ctl_putpeer(i, peer);
4810#ifdef REFCLOCK
4811		/*
4812		 * for clock exception events: add clock variables to
4813		 * reflect info on exception
4814		 */
4815		if (err == PEVNT_CLOCK) {
4816			struct refclockstat cs;
4817			struct ctl_var *kv;
4818
4819			cs.kv_list = NULL;
4820			refclock_control(&peer->srcadr, NULL, &cs);
4821
4822			ctl_puthex("refclockstatus",
4823				   ctlclkstatus(&cs));
4824
4825			for (i = 1; i <= CC_MAXCODE; i++)
4826				ctl_putclock(i, &cs, FALSE);
4827			for (kv = cs.kv_list;
4828			     kv != NULL && !(EOV & kv->flags);
4829			     kv++)
4830				if (DEF & kv->flags)
4831					ctl_putdata(kv->text,
4832						    strlen(kv->text),
4833						    FALSE);
4834			free_varlist(cs.kv_list);
4835		}
4836#endif /* REFCLOCK */
4837	}
4838
4839	/*
4840	 * We're done, return.
4841	 */
4842	ctl_flushpkt(0);
4843}
4844
4845
4846/*
4847 * mprintf_event - printf-style varargs variant of report_event()
4848 */
4849int
4850mprintf_event(
4851	int		evcode,		/* event code */
4852	struct peer *	p,		/* may be NULL */
4853	const char *	fmt,		/* msnprintf format */
4854	...
4855	)
4856{
4857	va_list	ap;
4858	int	rc;
4859	char	msg[512];
4860
4861	va_start(ap, fmt);
4862	rc = mvsnprintf(msg, sizeof(msg), fmt, ap);
4863	va_end(ap);
4864	report_event(evcode, p, msg);
4865
4866	return rc;
4867}
4868
4869
4870/*
4871 * ctl_clr_stats - clear stat counters
4872 */
4873void
4874ctl_clr_stats(void)
4875{
4876	ctltimereset = current_time;
4877	numctlreq = 0;
4878	numctlbadpkts = 0;
4879	numctlresponses = 0;
4880	numctlfrags = 0;
4881	numctlerrors = 0;
4882	numctlfrags = 0;
4883	numctltooshort = 0;
4884	numctlinputresp = 0;
4885	numctlinputfrag = 0;
4886	numctlinputerr = 0;
4887	numctlbadoffset = 0;
4888	numctlbadversion = 0;
4889	numctldatatooshort = 0;
4890	numctlbadop = 0;
4891	numasyncmsgs = 0;
4892}
4893
4894static u_short
4895count_var(
4896	const struct ctl_var *k
4897	)
4898{
4899	u_int c;
4900
4901	if (NULL == k)
4902		return 0;
4903
4904	c = 0;
4905	while (!(EOV & (k++)->flags))
4906		c++;
4907
4908	NTP_ENSURE(c <= USHRT_MAX);
4909	return (u_short)c;
4910}
4911
4912
4913char *
4914add_var(
4915	struct ctl_var **kv,
4916	u_long size,
4917	u_short def
4918	)
4919{
4920	u_short		c;
4921	struct ctl_var *k;
4922	char *		buf;
4923
4924	c = count_var(*kv);
4925	*kv  = erealloc(*kv, (c + 2) * sizeof(**kv));
4926	k = *kv;
4927	buf = emalloc(size);
4928	k[c].code  = c;
4929	k[c].text  = buf;
4930	k[c].flags = def;
4931	k[c + 1].code  = 0;
4932	k[c + 1].text  = NULL;
4933	k[c + 1].flags = EOV;
4934
4935	return buf;
4936}
4937
4938
4939void
4940set_var(
4941	struct ctl_var **kv,
4942	const char *data,
4943	u_long size,
4944	u_short def
4945	)
4946{
4947	struct ctl_var *k;
4948	const char *s;
4949	const char *t;
4950	char *td;
4951
4952	if (NULL == data || !size)
4953		return;
4954
4955	k = *kv;
4956	if (k != NULL) {
4957		while (!(EOV & k->flags)) {
4958			if (NULL == k->text)	{
4959				td = emalloc(size);
4960				memcpy(td, data, size);
4961				k->text = td;
4962				k->flags = def;
4963				return;
4964			} else {
4965				s = data;
4966				t = k->text;
4967				while (*t != '=' && *s == *t) {
4968					s++;
4969					t++;
4970				}
4971				if (*s == *t && ((*t == '=') || !*t)) {
4972					td = erealloc((void *)(intptr_t)k->text, size);
4973					memcpy(td, data, size);
4974					k->text = td;
4975					k->flags = def;
4976					return;
4977				}
4978			}
4979			k++;
4980		}
4981	}
4982	td = add_var(kv, size, def);
4983	memcpy(td, data, size);
4984}
4985
4986
4987void
4988set_sys_var(
4989	const char *data,
4990	u_long size,
4991	u_short def
4992	)
4993{
4994	set_var(&ext_sys_var, data, size, def);
4995}
4996
4997
4998/*
4999 * get_ext_sys_var() retrieves the value of a user-defined variable or
5000 * NULL if the variable has not been setvar'd.
5001 */
5002const char *
5003get_ext_sys_var(const char *tag)
5004{
5005	struct ctl_var *	v;
5006	size_t			c;
5007	const char *		val;
5008
5009	val = NULL;
5010	c = strlen(tag);
5011	for (v = ext_sys_var; !(EOV & v->flags); v++) {
5012		if (NULL != v->text && !memcmp(tag, v->text, c)) {
5013			if ('=' == v->text[c]) {
5014				val = v->text + c + 1;
5015				break;
5016			} else if ('\0' == v->text[c]) {
5017				val = "";
5018				break;
5019			}
5020		}
5021	}
5022
5023	return val;
5024}
5025
5026
5027void
5028free_varlist(
5029	struct ctl_var *kv
5030	)
5031{
5032	struct ctl_var *k;
5033	if (kv) {
5034		for (k = kv; !(k->flags & EOV); k++)
5035			free((void *)(intptr_t)k->text);
5036		free((void *)kv);
5037	}
5038}
5039