CodeGenRegisters.cpp revision 263508
1//===- CodeGenRegisters.cpp - Register and RegisterClass Info -------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines structures to encapsulate information gleaned from the
11// target register and register class definitions.
12//
13//===----------------------------------------------------------------------===//
14
15#define DEBUG_TYPE "regalloc-emitter"
16
17#include "CodeGenRegisters.h"
18#include "CodeGenTarget.h"
19#include "llvm/ADT/IntEqClasses.h"
20#include "llvm/ADT/STLExtras.h"
21#include "llvm/ADT/SmallVector.h"
22#include "llvm/ADT/StringExtras.h"
23#include "llvm/ADT/Twine.h"
24#include "llvm/Support/Debug.h"
25#include "llvm/TableGen/Error.h"
26
27using namespace llvm;
28
29//===----------------------------------------------------------------------===//
30//                             CodeGenSubRegIndex
31//===----------------------------------------------------------------------===//
32
33CodeGenSubRegIndex::CodeGenSubRegIndex(Record *R, unsigned Enum)
34  : TheDef(R), EnumValue(Enum), LaneMask(0), AllSuperRegsCovered(true) {
35  Name = R->getName();
36  if (R->getValue("Namespace"))
37    Namespace = R->getValueAsString("Namespace");
38  Size = R->getValueAsInt("Size");
39  Offset = R->getValueAsInt("Offset");
40}
41
42CodeGenSubRegIndex::CodeGenSubRegIndex(StringRef N, StringRef Nspace,
43                                       unsigned Enum)
44  : TheDef(0), Name(N), Namespace(Nspace), Size(-1), Offset(-1),
45    EnumValue(Enum), LaneMask(0), AllSuperRegsCovered(true) {
46}
47
48std::string CodeGenSubRegIndex::getQualifiedName() const {
49  std::string N = getNamespace();
50  if (!N.empty())
51    N += "::";
52  N += getName();
53  return N;
54}
55
56void CodeGenSubRegIndex::updateComponents(CodeGenRegBank &RegBank) {
57  if (!TheDef)
58    return;
59
60  std::vector<Record*> Comps = TheDef->getValueAsListOfDefs("ComposedOf");
61  if (!Comps.empty()) {
62    if (Comps.size() != 2)
63      PrintFatalError(TheDef->getLoc(),
64                      "ComposedOf must have exactly two entries");
65    CodeGenSubRegIndex *A = RegBank.getSubRegIdx(Comps[0]);
66    CodeGenSubRegIndex *B = RegBank.getSubRegIdx(Comps[1]);
67    CodeGenSubRegIndex *X = A->addComposite(B, this);
68    if (X)
69      PrintFatalError(TheDef->getLoc(), "Ambiguous ComposedOf entries");
70  }
71
72  std::vector<Record*> Parts =
73    TheDef->getValueAsListOfDefs("CoveringSubRegIndices");
74  if (!Parts.empty()) {
75    if (Parts.size() < 2)
76      PrintFatalError(TheDef->getLoc(),
77                      "CoveredBySubRegs must have two or more entries");
78    SmallVector<CodeGenSubRegIndex*, 8> IdxParts;
79    for (unsigned i = 0, e = Parts.size(); i != e; ++i)
80      IdxParts.push_back(RegBank.getSubRegIdx(Parts[i]));
81    RegBank.addConcatSubRegIndex(IdxParts, this);
82  }
83}
84
85unsigned CodeGenSubRegIndex::computeLaneMask() {
86  // Already computed?
87  if (LaneMask)
88    return LaneMask;
89
90  // Recursion guard, shouldn't be required.
91  LaneMask = ~0u;
92
93  // The lane mask is simply the union of all sub-indices.
94  unsigned M = 0;
95  for (CompMap::iterator I = Composed.begin(), E = Composed.end(); I != E; ++I)
96    M |= I->second->computeLaneMask();
97  assert(M && "Missing lane mask, sub-register cycle?");
98  LaneMask = M;
99  return LaneMask;
100}
101
102//===----------------------------------------------------------------------===//
103//                              CodeGenRegister
104//===----------------------------------------------------------------------===//
105
106CodeGenRegister::CodeGenRegister(Record *R, unsigned Enum)
107  : TheDef(R),
108    EnumValue(Enum),
109    CostPerUse(R->getValueAsInt("CostPerUse")),
110    CoveredBySubRegs(R->getValueAsBit("CoveredBySubRegs")),
111    NumNativeRegUnits(0),
112    SubRegsComplete(false),
113    SuperRegsComplete(false),
114    TopoSig(~0u)
115{}
116
117void CodeGenRegister::buildObjectGraph(CodeGenRegBank &RegBank) {
118  std::vector<Record*> SRIs = TheDef->getValueAsListOfDefs("SubRegIndices");
119  std::vector<Record*> SRs = TheDef->getValueAsListOfDefs("SubRegs");
120
121  if (SRIs.size() != SRs.size())
122    PrintFatalError(TheDef->getLoc(),
123                    "SubRegs and SubRegIndices must have the same size");
124
125  for (unsigned i = 0, e = SRIs.size(); i != e; ++i) {
126    ExplicitSubRegIndices.push_back(RegBank.getSubRegIdx(SRIs[i]));
127    ExplicitSubRegs.push_back(RegBank.getReg(SRs[i]));
128  }
129
130  // Also compute leading super-registers. Each register has a list of
131  // covered-by-subregs super-registers where it appears as the first explicit
132  // sub-register.
133  //
134  // This is used by computeSecondarySubRegs() to find candidates.
135  if (CoveredBySubRegs && !ExplicitSubRegs.empty())
136    ExplicitSubRegs.front()->LeadingSuperRegs.push_back(this);
137
138  // Add ad hoc alias links. This is a symmetric relationship between two
139  // registers, so build a symmetric graph by adding links in both ends.
140  std::vector<Record*> Aliases = TheDef->getValueAsListOfDefs("Aliases");
141  for (unsigned i = 0, e = Aliases.size(); i != e; ++i) {
142    CodeGenRegister *Reg = RegBank.getReg(Aliases[i]);
143    ExplicitAliases.push_back(Reg);
144    Reg->ExplicitAliases.push_back(this);
145  }
146}
147
148const std::string &CodeGenRegister::getName() const {
149  return TheDef->getName();
150}
151
152namespace {
153// Iterate over all register units in a set of registers.
154class RegUnitIterator {
155  CodeGenRegister::Set::const_iterator RegI, RegE;
156  CodeGenRegister::RegUnitList::const_iterator UnitI, UnitE;
157
158public:
159  RegUnitIterator(const CodeGenRegister::Set &Regs):
160    RegI(Regs.begin()), RegE(Regs.end()), UnitI(), UnitE() {
161
162    if (RegI != RegE) {
163      UnitI = (*RegI)->getRegUnits().begin();
164      UnitE = (*RegI)->getRegUnits().end();
165      advance();
166    }
167  }
168
169  bool isValid() const { return UnitI != UnitE; }
170
171  unsigned operator* () const { assert(isValid()); return *UnitI; }
172
173  const CodeGenRegister *getReg() const { assert(isValid()); return *RegI; }
174
175  /// Preincrement.  Move to the next unit.
176  void operator++() {
177    assert(isValid() && "Cannot advance beyond the last operand");
178    ++UnitI;
179    advance();
180  }
181
182protected:
183  void advance() {
184    while (UnitI == UnitE) {
185      if (++RegI == RegE)
186        break;
187      UnitI = (*RegI)->getRegUnits().begin();
188      UnitE = (*RegI)->getRegUnits().end();
189    }
190  }
191};
192} // namespace
193
194// Merge two RegUnitLists maintaining the order and removing duplicates.
195// Overwrites MergedRU in the process.
196static void mergeRegUnits(CodeGenRegister::RegUnitList &MergedRU,
197                          const CodeGenRegister::RegUnitList &RRU) {
198  CodeGenRegister::RegUnitList LRU = MergedRU;
199  MergedRU.clear();
200  std::set_union(LRU.begin(), LRU.end(), RRU.begin(), RRU.end(),
201                 std::back_inserter(MergedRU));
202}
203
204// Return true of this unit appears in RegUnits.
205static bool hasRegUnit(CodeGenRegister::RegUnitList &RegUnits, unsigned Unit) {
206  return std::count(RegUnits.begin(), RegUnits.end(), Unit);
207}
208
209// Inherit register units from subregisters.
210// Return true if the RegUnits changed.
211bool CodeGenRegister::inheritRegUnits(CodeGenRegBank &RegBank) {
212  unsigned OldNumUnits = RegUnits.size();
213  for (SubRegMap::const_iterator I = SubRegs.begin(), E = SubRegs.end();
214       I != E; ++I) {
215    CodeGenRegister *SR = I->second;
216    // Merge the subregister's units into this register's RegUnits.
217    mergeRegUnits(RegUnits, SR->RegUnits);
218  }
219  return OldNumUnits != RegUnits.size();
220}
221
222const CodeGenRegister::SubRegMap &
223CodeGenRegister::computeSubRegs(CodeGenRegBank &RegBank) {
224  // Only compute this map once.
225  if (SubRegsComplete)
226    return SubRegs;
227  SubRegsComplete = true;
228
229  // First insert the explicit subregs and make sure they are fully indexed.
230  for (unsigned i = 0, e = ExplicitSubRegs.size(); i != e; ++i) {
231    CodeGenRegister *SR = ExplicitSubRegs[i];
232    CodeGenSubRegIndex *Idx = ExplicitSubRegIndices[i];
233    if (!SubRegs.insert(std::make_pair(Idx, SR)).second)
234      PrintFatalError(TheDef->getLoc(), "SubRegIndex " + Idx->getName() +
235                      " appears twice in Register " + getName());
236    // Map explicit sub-registers first, so the names take precedence.
237    // The inherited sub-registers are mapped below.
238    SubReg2Idx.insert(std::make_pair(SR, Idx));
239  }
240
241  // Keep track of inherited subregs and how they can be reached.
242  SmallPtrSet<CodeGenRegister*, 8> Orphans;
243
244  // Clone inherited subregs and place duplicate entries in Orphans.
245  // Here the order is important - earlier subregs take precedence.
246  for (unsigned i = 0, e = ExplicitSubRegs.size(); i != e; ++i) {
247    CodeGenRegister *SR = ExplicitSubRegs[i];
248    const SubRegMap &Map = SR->computeSubRegs(RegBank);
249
250    for (SubRegMap::const_iterator SI = Map.begin(), SE = Map.end(); SI != SE;
251         ++SI) {
252      if (!SubRegs.insert(*SI).second)
253        Orphans.insert(SI->second);
254    }
255  }
256
257  // Expand any composed subreg indices.
258  // If dsub_2 has ComposedOf = [qsub_1, dsub_0], and this register has a
259  // qsub_1 subreg, add a dsub_2 subreg.  Keep growing Indices and process
260  // expanded subreg indices recursively.
261  SmallVector<CodeGenSubRegIndex*, 8> Indices = ExplicitSubRegIndices;
262  for (unsigned i = 0; i != Indices.size(); ++i) {
263    CodeGenSubRegIndex *Idx = Indices[i];
264    const CodeGenSubRegIndex::CompMap &Comps = Idx->getComposites();
265    CodeGenRegister *SR = SubRegs[Idx];
266    const SubRegMap &Map = SR->computeSubRegs(RegBank);
267
268    // Look at the possible compositions of Idx.
269    // They may not all be supported by SR.
270    for (CodeGenSubRegIndex::CompMap::const_iterator I = Comps.begin(),
271           E = Comps.end(); I != E; ++I) {
272      SubRegMap::const_iterator SRI = Map.find(I->first);
273      if (SRI == Map.end())
274        continue; // Idx + I->first doesn't exist in SR.
275      // Add I->second as a name for the subreg SRI->second, assuming it is
276      // orphaned, and the name isn't already used for something else.
277      if (SubRegs.count(I->second) || !Orphans.erase(SRI->second))
278        continue;
279      // We found a new name for the orphaned sub-register.
280      SubRegs.insert(std::make_pair(I->second, SRI->second));
281      Indices.push_back(I->second);
282    }
283  }
284
285  // Now Orphans contains the inherited subregisters without a direct index.
286  // Create inferred indexes for all missing entries.
287  // Work backwards in the Indices vector in order to compose subregs bottom-up.
288  // Consider this subreg sequence:
289  //
290  //   qsub_1 -> dsub_0 -> ssub_0
291  //
292  // The qsub_1 -> dsub_0 composition becomes dsub_2, so the ssub_0 register
293  // can be reached in two different ways:
294  //
295  //   qsub_1 -> ssub_0
296  //   dsub_2 -> ssub_0
297  //
298  // We pick the latter composition because another register may have [dsub_0,
299  // dsub_1, dsub_2] subregs without necessarily having a qsub_1 subreg.  The
300  // dsub_2 -> ssub_0 composition can be shared.
301  while (!Indices.empty() && !Orphans.empty()) {
302    CodeGenSubRegIndex *Idx = Indices.pop_back_val();
303    CodeGenRegister *SR = SubRegs[Idx];
304    const SubRegMap &Map = SR->computeSubRegs(RegBank);
305    for (SubRegMap::const_iterator SI = Map.begin(), SE = Map.end(); SI != SE;
306         ++SI)
307      if (Orphans.erase(SI->second))
308        SubRegs[RegBank.getCompositeSubRegIndex(Idx, SI->first)] = SI->second;
309  }
310
311  // Compute the inverse SubReg -> Idx map.
312  for (SubRegMap::const_iterator SI = SubRegs.begin(), SE = SubRegs.end();
313       SI != SE; ++SI) {
314    if (SI->second == this) {
315      ArrayRef<SMLoc> Loc;
316      if (TheDef)
317        Loc = TheDef->getLoc();
318      PrintFatalError(Loc, "Register " + getName() +
319                      " has itself as a sub-register");
320    }
321
322    // Compute AllSuperRegsCovered.
323    if (!CoveredBySubRegs)
324      SI->first->AllSuperRegsCovered = false;
325
326    // Ensure that every sub-register has a unique name.
327    DenseMap<const CodeGenRegister*, CodeGenSubRegIndex*>::iterator Ins =
328      SubReg2Idx.insert(std::make_pair(SI->second, SI->first)).first;
329    if (Ins->second == SI->first)
330      continue;
331    // Trouble: Two different names for SI->second.
332    ArrayRef<SMLoc> Loc;
333    if (TheDef)
334      Loc = TheDef->getLoc();
335    PrintFatalError(Loc, "Sub-register can't have two names: " +
336                  SI->second->getName() + " available as " +
337                  SI->first->getName() + " and " + Ins->second->getName());
338  }
339
340  // Derive possible names for sub-register concatenations from any explicit
341  // sub-registers. By doing this before computeSecondarySubRegs(), we ensure
342  // that getConcatSubRegIndex() won't invent any concatenated indices that the
343  // user already specified.
344  for (unsigned i = 0, e = ExplicitSubRegs.size(); i != e; ++i) {
345    CodeGenRegister *SR = ExplicitSubRegs[i];
346    if (!SR->CoveredBySubRegs || SR->ExplicitSubRegs.size() <= 1)
347      continue;
348
349    // SR is composed of multiple sub-regs. Find their names in this register.
350    SmallVector<CodeGenSubRegIndex*, 8> Parts;
351    for (unsigned j = 0, e = SR->ExplicitSubRegs.size(); j != e; ++j)
352      Parts.push_back(getSubRegIndex(SR->ExplicitSubRegs[j]));
353
354    // Offer this as an existing spelling for the concatenation of Parts.
355    RegBank.addConcatSubRegIndex(Parts, ExplicitSubRegIndices[i]);
356  }
357
358  // Initialize RegUnitList. Because getSubRegs is called recursively, this
359  // processes the register hierarchy in postorder.
360  //
361  // Inherit all sub-register units. It is good enough to look at the explicit
362  // sub-registers, the other registers won't contribute any more units.
363  for (unsigned i = 0, e = ExplicitSubRegs.size(); i != e; ++i) {
364    CodeGenRegister *SR = ExplicitSubRegs[i];
365    // Explicit sub-registers are usually disjoint, so this is a good way of
366    // computing the union. We may pick up a few duplicates that will be
367    // eliminated below.
368    unsigned N = RegUnits.size();
369    RegUnits.append(SR->RegUnits.begin(), SR->RegUnits.end());
370    std::inplace_merge(RegUnits.begin(), RegUnits.begin() + N, RegUnits.end());
371  }
372  RegUnits.erase(std::unique(RegUnits.begin(), RegUnits.end()), RegUnits.end());
373
374  // Absent any ad hoc aliasing, we create one register unit per leaf register.
375  // These units correspond to the maximal cliques in the register overlap
376  // graph which is optimal.
377  //
378  // When there is ad hoc aliasing, we simply create one unit per edge in the
379  // undirected ad hoc aliasing graph. Technically, we could do better by
380  // identifying maximal cliques in the ad hoc graph, but cliques larger than 2
381  // are extremely rare anyway (I've never seen one), so we don't bother with
382  // the added complexity.
383  for (unsigned i = 0, e = ExplicitAliases.size(); i != e; ++i) {
384    CodeGenRegister *AR = ExplicitAliases[i];
385    // Only visit each edge once.
386    if (AR->SubRegsComplete)
387      continue;
388    // Create a RegUnit representing this alias edge, and add it to both
389    // registers.
390    unsigned Unit = RegBank.newRegUnit(this, AR);
391    RegUnits.push_back(Unit);
392    AR->RegUnits.push_back(Unit);
393  }
394
395  // Finally, create units for leaf registers without ad hoc aliases. Note that
396  // a leaf register with ad hoc aliases doesn't get its own unit - it isn't
397  // necessary. This means the aliasing leaf registers can share a single unit.
398  if (RegUnits.empty())
399    RegUnits.push_back(RegBank.newRegUnit(this));
400
401  // We have now computed the native register units. More may be adopted later
402  // for balancing purposes.
403  NumNativeRegUnits = RegUnits.size();
404
405  return SubRegs;
406}
407
408// In a register that is covered by its sub-registers, try to find redundant
409// sub-registers. For example:
410//
411//   QQ0 = {Q0, Q1}
412//   Q0 = {D0, D1}
413//   Q1 = {D2, D3}
414//
415// We can infer that D1_D2 is also a sub-register, even if it wasn't named in
416// the register definition.
417//
418// The explicitly specified registers form a tree. This function discovers
419// sub-register relationships that would force a DAG.
420//
421void CodeGenRegister::computeSecondarySubRegs(CodeGenRegBank &RegBank) {
422  // Collect new sub-registers first, add them later.
423  SmallVector<SubRegMap::value_type, 8> NewSubRegs;
424
425  // Look at the leading super-registers of each sub-register. Those are the
426  // candidates for new sub-registers, assuming they are fully contained in
427  // this register.
428  for (SubRegMap::iterator I = SubRegs.begin(), E = SubRegs.end(); I != E; ++I){
429    const CodeGenRegister *SubReg = I->second;
430    const CodeGenRegister::SuperRegList &Leads = SubReg->LeadingSuperRegs;
431    for (unsigned i = 0, e = Leads.size(); i != e; ++i) {
432      CodeGenRegister *Cand = const_cast<CodeGenRegister*>(Leads[i]);
433      // Already got this sub-register?
434      if (Cand == this || getSubRegIndex(Cand))
435        continue;
436      // Check if each component of Cand is already a sub-register.
437      // We know that the first component is I->second, and is present with the
438      // name I->first.
439      SmallVector<CodeGenSubRegIndex*, 8> Parts(1, I->first);
440      assert(!Cand->ExplicitSubRegs.empty() &&
441             "Super-register has no sub-registers");
442      for (unsigned j = 1, e = Cand->ExplicitSubRegs.size(); j != e; ++j) {
443        if (CodeGenSubRegIndex *Idx = getSubRegIndex(Cand->ExplicitSubRegs[j]))
444          Parts.push_back(Idx);
445        else {
446          // Sub-register doesn't exist.
447          Parts.clear();
448          break;
449        }
450      }
451      // If some Cand sub-register is not part of this register, or if Cand only
452      // has one sub-register, there is nothing to do.
453      if (Parts.size() <= 1)
454        continue;
455
456      // Each part of Cand is a sub-register of this. Make the full Cand also
457      // a sub-register with a concatenated sub-register index.
458      CodeGenSubRegIndex *Concat= RegBank.getConcatSubRegIndex(Parts);
459      NewSubRegs.push_back(std::make_pair(Concat, Cand));
460    }
461  }
462
463  // Now add all the new sub-registers.
464  for (unsigned i = 0, e = NewSubRegs.size(); i != e; ++i) {
465    // Don't add Cand if another sub-register is already using the index.
466    if (!SubRegs.insert(NewSubRegs[i]).second)
467      continue;
468
469    CodeGenSubRegIndex *NewIdx = NewSubRegs[i].first;
470    CodeGenRegister *NewSubReg = NewSubRegs[i].second;
471    SubReg2Idx.insert(std::make_pair(NewSubReg, NewIdx));
472  }
473
474  // Create sub-register index composition maps for the synthesized indices.
475  for (unsigned i = 0, e = NewSubRegs.size(); i != e; ++i) {
476    CodeGenSubRegIndex *NewIdx = NewSubRegs[i].first;
477    CodeGenRegister *NewSubReg = NewSubRegs[i].second;
478    for (SubRegMap::const_iterator SI = NewSubReg->SubRegs.begin(),
479           SE = NewSubReg->SubRegs.end(); SI != SE; ++SI) {
480      CodeGenSubRegIndex *SubIdx = getSubRegIndex(SI->second);
481      if (!SubIdx)
482        PrintFatalError(TheDef->getLoc(), "No SubRegIndex for " +
483                        SI->second->getName() + " in " + getName());
484      NewIdx->addComposite(SI->first, SubIdx);
485    }
486  }
487}
488
489void CodeGenRegister::computeSuperRegs(CodeGenRegBank &RegBank) {
490  // Only visit each register once.
491  if (SuperRegsComplete)
492    return;
493  SuperRegsComplete = true;
494
495  // Make sure all sub-registers have been visited first, so the super-reg
496  // lists will be topologically ordered.
497  for (SubRegMap::const_iterator I = SubRegs.begin(), E = SubRegs.end();
498       I != E; ++I)
499    I->second->computeSuperRegs(RegBank);
500
501  // Now add this as a super-register on all sub-registers.
502  // Also compute the TopoSigId in post-order.
503  TopoSigId Id;
504  for (SubRegMap::const_iterator I = SubRegs.begin(), E = SubRegs.end();
505       I != E; ++I) {
506    // Topological signature computed from SubIdx, TopoId(SubReg).
507    // Loops and idempotent indices have TopoSig = ~0u.
508    Id.push_back(I->first->EnumValue);
509    Id.push_back(I->second->TopoSig);
510
511    // Don't add duplicate entries.
512    if (!I->second->SuperRegs.empty() && I->second->SuperRegs.back() == this)
513      continue;
514    I->second->SuperRegs.push_back(this);
515  }
516  TopoSig = RegBank.getTopoSig(Id);
517}
518
519void
520CodeGenRegister::addSubRegsPreOrder(SetVector<const CodeGenRegister*> &OSet,
521                                    CodeGenRegBank &RegBank) const {
522  assert(SubRegsComplete && "Must precompute sub-registers");
523  for (unsigned i = 0, e = ExplicitSubRegs.size(); i != e; ++i) {
524    CodeGenRegister *SR = ExplicitSubRegs[i];
525    if (OSet.insert(SR))
526      SR->addSubRegsPreOrder(OSet, RegBank);
527  }
528  // Add any secondary sub-registers that weren't part of the explicit tree.
529  for (SubRegMap::const_iterator I = SubRegs.begin(), E = SubRegs.end();
530       I != E; ++I)
531    OSet.insert(I->second);
532}
533
534// Get the sum of this register's unit weights.
535unsigned CodeGenRegister::getWeight(const CodeGenRegBank &RegBank) const {
536  unsigned Weight = 0;
537  for (RegUnitList::const_iterator I = RegUnits.begin(), E = RegUnits.end();
538       I != E; ++I) {
539    Weight += RegBank.getRegUnit(*I).Weight;
540  }
541  return Weight;
542}
543
544//===----------------------------------------------------------------------===//
545//                               RegisterTuples
546//===----------------------------------------------------------------------===//
547
548// A RegisterTuples def is used to generate pseudo-registers from lists of
549// sub-registers. We provide a SetTheory expander class that returns the new
550// registers.
551namespace {
552struct TupleExpander : SetTheory::Expander {
553  void expand(SetTheory &ST, Record *Def, SetTheory::RecSet &Elts) {
554    std::vector<Record*> Indices = Def->getValueAsListOfDefs("SubRegIndices");
555    unsigned Dim = Indices.size();
556    ListInit *SubRegs = Def->getValueAsListInit("SubRegs");
557    if (Dim != SubRegs->getSize())
558      PrintFatalError(Def->getLoc(), "SubRegIndices and SubRegs size mismatch");
559    if (Dim < 2)
560      PrintFatalError(Def->getLoc(),
561                      "Tuples must have at least 2 sub-registers");
562
563    // Evaluate the sub-register lists to be zipped.
564    unsigned Length = ~0u;
565    SmallVector<SetTheory::RecSet, 4> Lists(Dim);
566    for (unsigned i = 0; i != Dim; ++i) {
567      ST.evaluate(SubRegs->getElement(i), Lists[i], Def->getLoc());
568      Length = std::min(Length, unsigned(Lists[i].size()));
569    }
570
571    if (Length == 0)
572      return;
573
574    // Precompute some types.
575    Record *RegisterCl = Def->getRecords().getClass("Register");
576    RecTy *RegisterRecTy = RecordRecTy::get(RegisterCl);
577    StringInit *BlankName = StringInit::get("");
578
579    // Zip them up.
580    for (unsigned n = 0; n != Length; ++n) {
581      std::string Name;
582      Record *Proto = Lists[0][n];
583      std::vector<Init*> Tuple;
584      unsigned CostPerUse = 0;
585      for (unsigned i = 0; i != Dim; ++i) {
586        Record *Reg = Lists[i][n];
587        if (i) Name += '_';
588        Name += Reg->getName();
589        Tuple.push_back(DefInit::get(Reg));
590        CostPerUse = std::max(CostPerUse,
591                              unsigned(Reg->getValueAsInt("CostPerUse")));
592      }
593
594      // Create a new Record representing the synthesized register. This record
595      // is only for consumption by CodeGenRegister, it is not added to the
596      // RecordKeeper.
597      Record *NewReg = new Record(Name, Def->getLoc(), Def->getRecords());
598      Elts.insert(NewReg);
599
600      // Copy Proto super-classes.
601      ArrayRef<Record *> Supers = Proto->getSuperClasses();
602      ArrayRef<SMRange> Ranges = Proto->getSuperClassRanges();
603      for (unsigned i = 0, e = Supers.size(); i != e; ++i)
604        NewReg->addSuperClass(Supers[i], Ranges[i]);
605
606      // Copy Proto fields.
607      for (unsigned i = 0, e = Proto->getValues().size(); i != e; ++i) {
608        RecordVal RV = Proto->getValues()[i];
609
610        // Skip existing fields, like NAME.
611        if (NewReg->getValue(RV.getNameInit()))
612          continue;
613
614        StringRef Field = RV.getName();
615
616        // Replace the sub-register list with Tuple.
617        if (Field == "SubRegs")
618          RV.setValue(ListInit::get(Tuple, RegisterRecTy));
619
620        // Provide a blank AsmName. MC hacks are required anyway.
621        if (Field == "AsmName")
622          RV.setValue(BlankName);
623
624        // CostPerUse is aggregated from all Tuple members.
625        if (Field == "CostPerUse")
626          RV.setValue(IntInit::get(CostPerUse));
627
628        // Composite registers are always covered by sub-registers.
629        if (Field == "CoveredBySubRegs")
630          RV.setValue(BitInit::get(true));
631
632        // Copy fields from the RegisterTuples def.
633        if (Field == "SubRegIndices" ||
634            Field == "CompositeIndices") {
635          NewReg->addValue(*Def->getValue(Field));
636          continue;
637        }
638
639        // Some fields get their default uninitialized value.
640        if (Field == "DwarfNumbers" ||
641            Field == "DwarfAlias" ||
642            Field == "Aliases") {
643          if (const RecordVal *DefRV = RegisterCl->getValue(Field))
644            NewReg->addValue(*DefRV);
645          continue;
646        }
647
648        // Everything else is copied from Proto.
649        NewReg->addValue(RV);
650      }
651    }
652  }
653};
654}
655
656//===----------------------------------------------------------------------===//
657//                            CodeGenRegisterClass
658//===----------------------------------------------------------------------===//
659
660CodeGenRegisterClass::CodeGenRegisterClass(CodeGenRegBank &RegBank, Record *R)
661  : TheDef(R),
662    Name(R->getName()),
663    TopoSigs(RegBank.getNumTopoSigs()),
664    EnumValue(-1) {
665  // Rename anonymous register classes.
666  if (R->getName().size() > 9 && R->getName()[9] == '.') {
667    static unsigned AnonCounter = 0;
668    R->setName("AnonRegClass_" + utostr(AnonCounter));
669    // MSVC2012 ICEs if AnonCounter++ is directly passed to utostr.
670    ++AnonCounter;
671  }
672
673  std::vector<Record*> TypeList = R->getValueAsListOfDefs("RegTypes");
674  for (unsigned i = 0, e = TypeList.size(); i != e; ++i) {
675    Record *Type = TypeList[i];
676    if (!Type->isSubClassOf("ValueType"))
677      PrintFatalError("RegTypes list member '" + Type->getName() +
678        "' does not derive from the ValueType class!");
679    VTs.push_back(getValueType(Type));
680  }
681  assert(!VTs.empty() && "RegisterClass must contain at least one ValueType!");
682
683  // Allocation order 0 is the full set. AltOrders provides others.
684  const SetTheory::RecVec *Elements = RegBank.getSets().expand(R);
685  ListInit *AltOrders = R->getValueAsListInit("AltOrders");
686  Orders.resize(1 + AltOrders->size());
687
688  // Default allocation order always contains all registers.
689  for (unsigned i = 0, e = Elements->size(); i != e; ++i) {
690    Orders[0].push_back((*Elements)[i]);
691    const CodeGenRegister *Reg = RegBank.getReg((*Elements)[i]);
692    Members.insert(Reg);
693    TopoSigs.set(Reg->getTopoSig());
694  }
695
696  // Alternative allocation orders may be subsets.
697  SetTheory::RecSet Order;
698  for (unsigned i = 0, e = AltOrders->size(); i != e; ++i) {
699    RegBank.getSets().evaluate(AltOrders->getElement(i), Order, R->getLoc());
700    Orders[1 + i].append(Order.begin(), Order.end());
701    // Verify that all altorder members are regclass members.
702    while (!Order.empty()) {
703      CodeGenRegister *Reg = RegBank.getReg(Order.back());
704      Order.pop_back();
705      if (!contains(Reg))
706        PrintFatalError(R->getLoc(), " AltOrder register " + Reg->getName() +
707                      " is not a class member");
708    }
709  }
710
711  // Allow targets to override the size in bits of the RegisterClass.
712  unsigned Size = R->getValueAsInt("Size");
713
714  Namespace = R->getValueAsString("Namespace");
715  SpillSize = Size ? Size : EVT(VTs[0]).getSizeInBits();
716  SpillAlignment = R->getValueAsInt("Alignment");
717  CopyCost = R->getValueAsInt("CopyCost");
718  Allocatable = R->getValueAsBit("isAllocatable");
719  AltOrderSelect = R->getValueAsString("AltOrderSelect");
720}
721
722// Create an inferred register class that was missing from the .td files.
723// Most properties will be inherited from the closest super-class after the
724// class structure has been computed.
725CodeGenRegisterClass::CodeGenRegisterClass(CodeGenRegBank &RegBank,
726                                           StringRef Name, Key Props)
727  : Members(*Props.Members),
728    TheDef(0),
729    Name(Name),
730    TopoSigs(RegBank.getNumTopoSigs()),
731    EnumValue(-1),
732    SpillSize(Props.SpillSize),
733    SpillAlignment(Props.SpillAlignment),
734    CopyCost(0),
735    Allocatable(true) {
736  for (CodeGenRegister::Set::iterator I = Members.begin(), E = Members.end();
737       I != E; ++I)
738    TopoSigs.set((*I)->getTopoSig());
739}
740
741// Compute inherited propertied for a synthesized register class.
742void CodeGenRegisterClass::inheritProperties(CodeGenRegBank &RegBank) {
743  assert(!getDef() && "Only synthesized classes can inherit properties");
744  assert(!SuperClasses.empty() && "Synthesized class without super class");
745
746  // The last super-class is the smallest one.
747  CodeGenRegisterClass &Super = *SuperClasses.back();
748
749  // Most properties are copied directly.
750  // Exceptions are members, size, and alignment
751  Namespace = Super.Namespace;
752  VTs = Super.VTs;
753  CopyCost = Super.CopyCost;
754  Allocatable = Super.Allocatable;
755  AltOrderSelect = Super.AltOrderSelect;
756
757  // Copy all allocation orders, filter out foreign registers from the larger
758  // super-class.
759  Orders.resize(Super.Orders.size());
760  for (unsigned i = 0, ie = Super.Orders.size(); i != ie; ++i)
761    for (unsigned j = 0, je = Super.Orders[i].size(); j != je; ++j)
762      if (contains(RegBank.getReg(Super.Orders[i][j])))
763        Orders[i].push_back(Super.Orders[i][j]);
764}
765
766bool CodeGenRegisterClass::contains(const CodeGenRegister *Reg) const {
767  return Members.count(Reg);
768}
769
770namespace llvm {
771  raw_ostream &operator<<(raw_ostream &OS, const CodeGenRegisterClass::Key &K) {
772    OS << "{ S=" << K.SpillSize << ", A=" << K.SpillAlignment;
773    for (CodeGenRegister::Set::const_iterator I = K.Members->begin(),
774         E = K.Members->end(); I != E; ++I)
775      OS << ", " << (*I)->getName();
776    return OS << " }";
777  }
778}
779
780// This is a simple lexicographical order that can be used to search for sets.
781// It is not the same as the topological order provided by TopoOrderRC.
782bool CodeGenRegisterClass::Key::
783operator<(const CodeGenRegisterClass::Key &B) const {
784  assert(Members && B.Members);
785  if (*Members != *B.Members)
786    return *Members < *B.Members;
787  if (SpillSize != B.SpillSize)
788    return SpillSize < B.SpillSize;
789  return SpillAlignment < B.SpillAlignment;
790}
791
792// Returns true if RC is a strict subclass.
793// RC is a sub-class of this class if it is a valid replacement for any
794// instruction operand where a register of this classis required. It must
795// satisfy these conditions:
796//
797// 1. All RC registers are also in this.
798// 2. The RC spill size must not be smaller than our spill size.
799// 3. RC spill alignment must be compatible with ours.
800//
801static bool testSubClass(const CodeGenRegisterClass *A,
802                         const CodeGenRegisterClass *B) {
803  return A->SpillAlignment && B->SpillAlignment % A->SpillAlignment == 0 &&
804    A->SpillSize <= B->SpillSize &&
805    std::includes(A->getMembers().begin(), A->getMembers().end(),
806                  B->getMembers().begin(), B->getMembers().end(),
807                  CodeGenRegister::Less());
808}
809
810/// Sorting predicate for register classes.  This provides a topological
811/// ordering that arranges all register classes before their sub-classes.
812///
813/// Register classes with the same registers, spill size, and alignment form a
814/// clique.  They will be ordered alphabetically.
815///
816static int TopoOrderRC(CodeGenRegisterClass *const *PA,
817                       CodeGenRegisterClass *const *PB) {
818  const CodeGenRegisterClass *A = *PA;
819  const CodeGenRegisterClass *B = *PB;
820  if (A == B)
821    return 0;
822
823  // Order by ascending spill size.
824  if (A->SpillSize < B->SpillSize)
825    return -1;
826  if (A->SpillSize > B->SpillSize)
827    return 1;
828
829  // Order by ascending spill alignment.
830  if (A->SpillAlignment < B->SpillAlignment)
831    return -1;
832  if (A->SpillAlignment > B->SpillAlignment)
833    return 1;
834
835  // Order by descending set size.  Note that the classes' allocation order may
836  // not have been computed yet.  The Members set is always vaild.
837  if (A->getMembers().size() > B->getMembers().size())
838    return -1;
839  if (A->getMembers().size() < B->getMembers().size())
840    return 1;
841
842  // Finally order by name as a tie breaker.
843  return StringRef(A->getName()).compare(B->getName());
844}
845
846std::string CodeGenRegisterClass::getQualifiedName() const {
847  if (Namespace.empty())
848    return getName();
849  else
850    return Namespace + "::" + getName();
851}
852
853// Compute sub-classes of all register classes.
854// Assume the classes are ordered topologically.
855void CodeGenRegisterClass::computeSubClasses(CodeGenRegBank &RegBank) {
856  ArrayRef<CodeGenRegisterClass*> RegClasses = RegBank.getRegClasses();
857
858  // Visit backwards so sub-classes are seen first.
859  for (unsigned rci = RegClasses.size(); rci; --rci) {
860    CodeGenRegisterClass &RC = *RegClasses[rci - 1];
861    RC.SubClasses.resize(RegClasses.size());
862    RC.SubClasses.set(RC.EnumValue);
863
864    // Normally, all subclasses have IDs >= rci, unless RC is part of a clique.
865    for (unsigned s = rci; s != RegClasses.size(); ++s) {
866      if (RC.SubClasses.test(s))
867        continue;
868      CodeGenRegisterClass *SubRC = RegClasses[s];
869      if (!testSubClass(&RC, SubRC))
870        continue;
871      // SubRC is a sub-class. Grap all its sub-classes so we won't have to
872      // check them again.
873      RC.SubClasses |= SubRC->SubClasses;
874    }
875
876    // Sweep up missed clique members.  They will be immediately preceding RC.
877    for (unsigned s = rci - 1; s && testSubClass(&RC, RegClasses[s - 1]); --s)
878      RC.SubClasses.set(s - 1);
879  }
880
881  // Compute the SuperClasses lists from the SubClasses vectors.
882  for (unsigned rci = 0; rci != RegClasses.size(); ++rci) {
883    const BitVector &SC = RegClasses[rci]->getSubClasses();
884    for (int s = SC.find_first(); s >= 0; s = SC.find_next(s)) {
885      if (unsigned(s) == rci)
886        continue;
887      RegClasses[s]->SuperClasses.push_back(RegClasses[rci]);
888    }
889  }
890
891  // With the class hierarchy in place, let synthesized register classes inherit
892  // properties from their closest super-class. The iteration order here can
893  // propagate properties down multiple levels.
894  for (unsigned rci = 0; rci != RegClasses.size(); ++rci)
895    if (!RegClasses[rci]->getDef())
896      RegClasses[rci]->inheritProperties(RegBank);
897}
898
899void
900CodeGenRegisterClass::getSuperRegClasses(CodeGenSubRegIndex *SubIdx,
901                                         BitVector &Out) const {
902  DenseMap<CodeGenSubRegIndex*,
903           SmallPtrSet<CodeGenRegisterClass*, 8> >::const_iterator
904    FindI = SuperRegClasses.find(SubIdx);
905  if (FindI == SuperRegClasses.end())
906    return;
907  for (SmallPtrSet<CodeGenRegisterClass*, 8>::const_iterator I =
908       FindI->second.begin(), E = FindI->second.end(); I != E; ++I)
909    Out.set((*I)->EnumValue);
910}
911
912// Populate a unique sorted list of units from a register set.
913void CodeGenRegisterClass::buildRegUnitSet(
914  std::vector<unsigned> &RegUnits) const {
915  std::vector<unsigned> TmpUnits;
916  for (RegUnitIterator UnitI(Members); UnitI.isValid(); ++UnitI)
917    TmpUnits.push_back(*UnitI);
918  std::sort(TmpUnits.begin(), TmpUnits.end());
919  std::unique_copy(TmpUnits.begin(), TmpUnits.end(),
920                   std::back_inserter(RegUnits));
921}
922
923//===----------------------------------------------------------------------===//
924//                               CodeGenRegBank
925//===----------------------------------------------------------------------===//
926
927CodeGenRegBank::CodeGenRegBank(RecordKeeper &Records) {
928  // Configure register Sets to understand register classes and tuples.
929  Sets.addFieldExpander("RegisterClass", "MemberList");
930  Sets.addFieldExpander("CalleeSavedRegs", "SaveList");
931  Sets.addExpander("RegisterTuples", new TupleExpander());
932
933  // Read in the user-defined (named) sub-register indices.
934  // More indices will be synthesized later.
935  std::vector<Record*> SRIs = Records.getAllDerivedDefinitions("SubRegIndex");
936  std::sort(SRIs.begin(), SRIs.end(), LessRecord());
937  for (unsigned i = 0, e = SRIs.size(); i != e; ++i)
938    getSubRegIdx(SRIs[i]);
939  // Build composite maps from ComposedOf fields.
940  for (unsigned i = 0, e = SubRegIndices.size(); i != e; ++i)
941    SubRegIndices[i]->updateComponents(*this);
942
943  // Read in the register definitions.
944  std::vector<Record*> Regs = Records.getAllDerivedDefinitions("Register");
945  std::sort(Regs.begin(), Regs.end(), LessRecordRegister());
946  Registers.reserve(Regs.size());
947  // Assign the enumeration values.
948  for (unsigned i = 0, e = Regs.size(); i != e; ++i)
949    getReg(Regs[i]);
950
951  // Expand tuples and number the new registers.
952  std::vector<Record*> Tups =
953    Records.getAllDerivedDefinitions("RegisterTuples");
954
955  std::vector<Record*> TupRegsCopy;
956  for (unsigned i = 0, e = Tups.size(); i != e; ++i) {
957    const std::vector<Record*> *TupRegs = Sets.expand(Tups[i]);
958    TupRegsCopy.reserve(TupRegs->size());
959    TupRegsCopy.assign(TupRegs->begin(), TupRegs->end());
960    std::sort(TupRegsCopy.begin(), TupRegsCopy.end(), LessRecordRegister());
961    for (unsigned j = 0, je = TupRegsCopy.size(); j != je; ++j)
962      getReg((TupRegsCopy)[j]);
963    TupRegsCopy.clear();
964  }
965
966  // Now all the registers are known. Build the object graph of explicit
967  // register-register references.
968  for (unsigned i = 0, e = Registers.size(); i != e; ++i)
969    Registers[i]->buildObjectGraph(*this);
970
971  // Compute register name map.
972  for (unsigned i = 0, e = Registers.size(); i != e; ++i)
973    RegistersByName.GetOrCreateValue(
974                       Registers[i]->TheDef->getValueAsString("AsmName"),
975                       Registers[i]);
976
977  // Precompute all sub-register maps.
978  // This will create Composite entries for all inferred sub-register indices.
979  for (unsigned i = 0, e = Registers.size(); i != e; ++i)
980    Registers[i]->computeSubRegs(*this);
981
982  // Infer even more sub-registers by combining leading super-registers.
983  for (unsigned i = 0, e = Registers.size(); i != e; ++i)
984    if (Registers[i]->CoveredBySubRegs)
985      Registers[i]->computeSecondarySubRegs(*this);
986
987  // After the sub-register graph is complete, compute the topologically
988  // ordered SuperRegs list.
989  for (unsigned i = 0, e = Registers.size(); i != e; ++i)
990    Registers[i]->computeSuperRegs(*this);
991
992  // Native register units are associated with a leaf register. They've all been
993  // discovered now.
994  NumNativeRegUnits = RegUnits.size();
995
996  // Read in register class definitions.
997  std::vector<Record*> RCs = Records.getAllDerivedDefinitions("RegisterClass");
998  if (RCs.empty())
999    PrintFatalError(std::string("No 'RegisterClass' subclasses defined!"));
1000
1001  // Allocate user-defined register classes.
1002  RegClasses.reserve(RCs.size());
1003  for (unsigned i = 0, e = RCs.size(); i != e; ++i)
1004    addToMaps(new CodeGenRegisterClass(*this, RCs[i]));
1005
1006  // Infer missing classes to create a full algebra.
1007  computeInferredRegisterClasses();
1008
1009  // Order register classes topologically and assign enum values.
1010  array_pod_sort(RegClasses.begin(), RegClasses.end(), TopoOrderRC);
1011  for (unsigned i = 0, e = RegClasses.size(); i != e; ++i)
1012    RegClasses[i]->EnumValue = i;
1013  CodeGenRegisterClass::computeSubClasses(*this);
1014}
1015
1016// Create a synthetic CodeGenSubRegIndex without a corresponding Record.
1017CodeGenSubRegIndex*
1018CodeGenRegBank::createSubRegIndex(StringRef Name, StringRef Namespace) {
1019  CodeGenSubRegIndex *Idx = new CodeGenSubRegIndex(Name, Namespace,
1020                                                   SubRegIndices.size() + 1);
1021  SubRegIndices.push_back(Idx);
1022  return Idx;
1023}
1024
1025CodeGenSubRegIndex *CodeGenRegBank::getSubRegIdx(Record *Def) {
1026  CodeGenSubRegIndex *&Idx = Def2SubRegIdx[Def];
1027  if (Idx)
1028    return Idx;
1029  Idx = new CodeGenSubRegIndex(Def, SubRegIndices.size() + 1);
1030  SubRegIndices.push_back(Idx);
1031  return Idx;
1032}
1033
1034CodeGenRegister *CodeGenRegBank::getReg(Record *Def) {
1035  CodeGenRegister *&Reg = Def2Reg[Def];
1036  if (Reg)
1037    return Reg;
1038  Reg = new CodeGenRegister(Def, Registers.size() + 1);
1039  Registers.push_back(Reg);
1040  return Reg;
1041}
1042
1043void CodeGenRegBank::addToMaps(CodeGenRegisterClass *RC) {
1044  RegClasses.push_back(RC);
1045
1046  if (Record *Def = RC->getDef())
1047    Def2RC.insert(std::make_pair(Def, RC));
1048
1049  // Duplicate classes are rejected by insert().
1050  // That's OK, we only care about the properties handled by CGRC::Key.
1051  CodeGenRegisterClass::Key K(*RC);
1052  Key2RC.insert(std::make_pair(K, RC));
1053}
1054
1055// Create a synthetic sub-class if it is missing.
1056CodeGenRegisterClass*
1057CodeGenRegBank::getOrCreateSubClass(const CodeGenRegisterClass *RC,
1058                                    const CodeGenRegister::Set *Members,
1059                                    StringRef Name) {
1060  // Synthetic sub-class has the same size and alignment as RC.
1061  CodeGenRegisterClass::Key K(Members, RC->SpillSize, RC->SpillAlignment);
1062  RCKeyMap::const_iterator FoundI = Key2RC.find(K);
1063  if (FoundI != Key2RC.end())
1064    return FoundI->second;
1065
1066  // Sub-class doesn't exist, create a new one.
1067  CodeGenRegisterClass *NewRC = new CodeGenRegisterClass(*this, Name, K);
1068  addToMaps(NewRC);
1069  return NewRC;
1070}
1071
1072CodeGenRegisterClass *CodeGenRegBank::getRegClass(Record *Def) {
1073  if (CodeGenRegisterClass *RC = Def2RC[Def])
1074    return RC;
1075
1076  PrintFatalError(Def->getLoc(), "Not a known RegisterClass!");
1077}
1078
1079CodeGenSubRegIndex*
1080CodeGenRegBank::getCompositeSubRegIndex(CodeGenSubRegIndex *A,
1081                                        CodeGenSubRegIndex *B) {
1082  // Look for an existing entry.
1083  CodeGenSubRegIndex *Comp = A->compose(B);
1084  if (Comp)
1085    return Comp;
1086
1087  // None exists, synthesize one.
1088  std::string Name = A->getName() + "_then_" + B->getName();
1089  Comp = createSubRegIndex(Name, A->getNamespace());
1090  A->addComposite(B, Comp);
1091  return Comp;
1092}
1093
1094CodeGenSubRegIndex *CodeGenRegBank::
1095getConcatSubRegIndex(const SmallVector<CodeGenSubRegIndex *, 8> &Parts) {
1096  assert(Parts.size() > 1 && "Need two parts to concatenate");
1097
1098  // Look for an existing entry.
1099  CodeGenSubRegIndex *&Idx = ConcatIdx[Parts];
1100  if (Idx)
1101    return Idx;
1102
1103  // None exists, synthesize one.
1104  std::string Name = Parts.front()->getName();
1105  // Determine whether all parts are contiguous.
1106  bool isContinuous = true;
1107  unsigned Size = Parts.front()->Size;
1108  unsigned LastOffset = Parts.front()->Offset;
1109  unsigned LastSize = Parts.front()->Size;
1110  for (unsigned i = 1, e = Parts.size(); i != e; ++i) {
1111    Name += '_';
1112    Name += Parts[i]->getName();
1113    Size += Parts[i]->Size;
1114    if (Parts[i]->Offset != (LastOffset + LastSize))
1115      isContinuous = false;
1116    LastOffset = Parts[i]->Offset;
1117    LastSize = Parts[i]->Size;
1118  }
1119  Idx = createSubRegIndex(Name, Parts.front()->getNamespace());
1120  Idx->Size = Size;
1121  Idx->Offset = isContinuous ? Parts.front()->Offset : -1;
1122  return Idx;
1123}
1124
1125void CodeGenRegBank::computeComposites() {
1126  // Keep track of TopoSigs visited. We only need to visit each TopoSig once,
1127  // and many registers will share TopoSigs on regular architectures.
1128  BitVector TopoSigs(getNumTopoSigs());
1129
1130  for (unsigned i = 0, e = Registers.size(); i != e; ++i) {
1131    CodeGenRegister *Reg1 = Registers[i];
1132
1133    // Skip identical subreg structures already processed.
1134    if (TopoSigs.test(Reg1->getTopoSig()))
1135      continue;
1136    TopoSigs.set(Reg1->getTopoSig());
1137
1138    const CodeGenRegister::SubRegMap &SRM1 = Reg1->getSubRegs();
1139    for (CodeGenRegister::SubRegMap::const_iterator i1 = SRM1.begin(),
1140         e1 = SRM1.end(); i1 != e1; ++i1) {
1141      CodeGenSubRegIndex *Idx1 = i1->first;
1142      CodeGenRegister *Reg2 = i1->second;
1143      // Ignore identity compositions.
1144      if (Reg1 == Reg2)
1145        continue;
1146      const CodeGenRegister::SubRegMap &SRM2 = Reg2->getSubRegs();
1147      // Try composing Idx1 with another SubRegIndex.
1148      for (CodeGenRegister::SubRegMap::const_iterator i2 = SRM2.begin(),
1149           e2 = SRM2.end(); i2 != e2; ++i2) {
1150        CodeGenSubRegIndex *Idx2 = i2->first;
1151        CodeGenRegister *Reg3 = i2->second;
1152        // Ignore identity compositions.
1153        if (Reg2 == Reg3)
1154          continue;
1155        // OK Reg1:IdxPair == Reg3. Find the index with Reg:Idx == Reg3.
1156        CodeGenSubRegIndex *Idx3 = Reg1->getSubRegIndex(Reg3);
1157        assert(Idx3 && "Sub-register doesn't have an index");
1158
1159        // Conflicting composition? Emit a warning but allow it.
1160        if (CodeGenSubRegIndex *Prev = Idx1->addComposite(Idx2, Idx3))
1161          PrintWarning(Twine("SubRegIndex ") + Idx1->getQualifiedName() +
1162                       " and " + Idx2->getQualifiedName() +
1163                       " compose ambiguously as " + Prev->getQualifiedName() +
1164                       " or " + Idx3->getQualifiedName());
1165      }
1166    }
1167  }
1168}
1169
1170// Compute lane masks. This is similar to register units, but at the
1171// sub-register index level. Each bit in the lane mask is like a register unit
1172// class, and two lane masks will have a bit in common if two sub-register
1173// indices overlap in some register.
1174//
1175// Conservatively share a lane mask bit if two sub-register indices overlap in
1176// some registers, but not in others. That shouldn't happen a lot.
1177void CodeGenRegBank::computeSubRegIndexLaneMasks() {
1178  // First assign individual bits to all the leaf indices.
1179  unsigned Bit = 0;
1180  // Determine mask of lanes that cover their registers.
1181  CoveringLanes = ~0u;
1182  for (unsigned i = 0, e = SubRegIndices.size(); i != e; ++i) {
1183    CodeGenSubRegIndex *Idx = SubRegIndices[i];
1184    if (Idx->getComposites().empty()) {
1185      Idx->LaneMask = 1u << Bit;
1186      // Share bit 31 in the unlikely case there are more than 32 leafs.
1187      //
1188      // Sharing bits is harmless; it allows graceful degradation in targets
1189      // with more than 32 vector lanes. They simply get a limited resolution
1190      // view of lanes beyond the 32nd.
1191      //
1192      // See also the comment for getSubRegIndexLaneMask().
1193      if (Bit < 31)
1194        ++Bit;
1195      else
1196        // Once bit 31 is shared among multiple leafs, the 'lane' it represents
1197        // is no longer covering its registers.
1198        CoveringLanes &= ~(1u << Bit);
1199    } else {
1200      Idx->LaneMask = 0;
1201    }
1202  }
1203
1204  // FIXME: What if ad-hoc aliasing introduces overlaps that aren't represented
1205  // by the sub-register graph? This doesn't occur in any known targets.
1206
1207  // Inherit lanes from composites.
1208  for (unsigned i = 0, e = SubRegIndices.size(); i != e; ++i) {
1209    unsigned Mask = SubRegIndices[i]->computeLaneMask();
1210    // If some super-registers without CoveredBySubRegs use this index, we can
1211    // no longer assume that the lanes are covering their registers.
1212    if (!SubRegIndices[i]->AllSuperRegsCovered)
1213      CoveringLanes &= ~Mask;
1214  }
1215}
1216
1217namespace {
1218// UberRegSet is a helper class for computeRegUnitWeights. Each UberRegSet is
1219// the transitive closure of the union of overlapping register
1220// classes. Together, the UberRegSets form a partition of the registers. If we
1221// consider overlapping register classes to be connected, then each UberRegSet
1222// is a set of connected components.
1223//
1224// An UberRegSet will likely be a horizontal slice of register names of
1225// the same width. Nontrivial subregisters should then be in a separate
1226// UberRegSet. But this property isn't required for valid computation of
1227// register unit weights.
1228//
1229// A Weight field caches the max per-register unit weight in each UberRegSet.
1230//
1231// A set of SingularDeterminants flags single units of some register in this set
1232// for which the unit weight equals the set weight. These units should not have
1233// their weight increased.
1234struct UberRegSet {
1235  CodeGenRegister::Set Regs;
1236  unsigned Weight;
1237  CodeGenRegister::RegUnitList SingularDeterminants;
1238
1239  UberRegSet(): Weight(0) {}
1240};
1241} // namespace
1242
1243// Partition registers into UberRegSets, where each set is the transitive
1244// closure of the union of overlapping register classes.
1245//
1246// UberRegSets[0] is a special non-allocatable set.
1247static void computeUberSets(std::vector<UberRegSet> &UberSets,
1248                            std::vector<UberRegSet*> &RegSets,
1249                            CodeGenRegBank &RegBank) {
1250
1251  const std::vector<CodeGenRegister*> &Registers = RegBank.getRegisters();
1252
1253  // The Register EnumValue is one greater than its index into Registers.
1254  assert(Registers.size() == Registers[Registers.size()-1]->EnumValue &&
1255         "register enum value mismatch");
1256
1257  // For simplicitly make the SetID the same as EnumValue.
1258  IntEqClasses UberSetIDs(Registers.size()+1);
1259  std::set<unsigned> AllocatableRegs;
1260  for (unsigned i = 0, e = RegBank.getRegClasses().size(); i != e; ++i) {
1261
1262    CodeGenRegisterClass *RegClass = RegBank.getRegClasses()[i];
1263    if (!RegClass->Allocatable)
1264      continue;
1265
1266    const CodeGenRegister::Set &Regs = RegClass->getMembers();
1267    if (Regs.empty())
1268      continue;
1269
1270    unsigned USetID = UberSetIDs.findLeader((*Regs.begin())->EnumValue);
1271    assert(USetID && "register number 0 is invalid");
1272
1273    AllocatableRegs.insert((*Regs.begin())->EnumValue);
1274    for (CodeGenRegister::Set::const_iterator I = llvm::next(Regs.begin()),
1275           E = Regs.end(); I != E; ++I) {
1276      AllocatableRegs.insert((*I)->EnumValue);
1277      UberSetIDs.join(USetID, (*I)->EnumValue);
1278    }
1279  }
1280  // Combine non-allocatable regs.
1281  for (unsigned i = 0, e = Registers.size(); i != e; ++i) {
1282    unsigned RegNum = Registers[i]->EnumValue;
1283    if (AllocatableRegs.count(RegNum))
1284      continue;
1285
1286    UberSetIDs.join(0, RegNum);
1287  }
1288  UberSetIDs.compress();
1289
1290  // Make the first UberSet a special unallocatable set.
1291  unsigned ZeroID = UberSetIDs[0];
1292
1293  // Insert Registers into the UberSets formed by union-find.
1294  // Do not resize after this.
1295  UberSets.resize(UberSetIDs.getNumClasses());
1296  for (unsigned i = 0, e = Registers.size(); i != e; ++i) {
1297    const CodeGenRegister *Reg = Registers[i];
1298    unsigned USetID = UberSetIDs[Reg->EnumValue];
1299    if (!USetID)
1300      USetID = ZeroID;
1301    else if (USetID == ZeroID)
1302      USetID = 0;
1303
1304    UberRegSet *USet = &UberSets[USetID];
1305    USet->Regs.insert(Reg);
1306    RegSets[i] = USet;
1307  }
1308}
1309
1310// Recompute each UberSet weight after changing unit weights.
1311static void computeUberWeights(std::vector<UberRegSet> &UberSets,
1312                               CodeGenRegBank &RegBank) {
1313  // Skip the first unallocatable set.
1314  for (std::vector<UberRegSet>::iterator I = llvm::next(UberSets.begin()),
1315         E = UberSets.end(); I != E; ++I) {
1316
1317    // Initialize all unit weights in this set, and remember the max units/reg.
1318    const CodeGenRegister *Reg = 0;
1319    unsigned MaxWeight = 0, Weight = 0;
1320    for (RegUnitIterator UnitI(I->Regs); UnitI.isValid(); ++UnitI) {
1321      if (Reg != UnitI.getReg()) {
1322        if (Weight > MaxWeight)
1323          MaxWeight = Weight;
1324        Reg = UnitI.getReg();
1325        Weight = 0;
1326      }
1327      unsigned UWeight = RegBank.getRegUnit(*UnitI).Weight;
1328      if (!UWeight) {
1329        UWeight = 1;
1330        RegBank.increaseRegUnitWeight(*UnitI, UWeight);
1331      }
1332      Weight += UWeight;
1333    }
1334    if (Weight > MaxWeight)
1335      MaxWeight = Weight;
1336    if (I->Weight != MaxWeight) {
1337      DEBUG(
1338        dbgs() << "UberSet " << I - UberSets.begin() << " Weight " << MaxWeight;
1339        for (CodeGenRegister::Set::iterator
1340               UnitI = I->Regs.begin(), UnitE = I->Regs.end();
1341             UnitI != UnitE; ++UnitI) {
1342          dbgs() << " " << (*UnitI)->getName();
1343        }
1344        dbgs() << "\n");
1345      // Update the set weight.
1346      I->Weight = MaxWeight;
1347    }
1348
1349    // Find singular determinants.
1350    for (CodeGenRegister::Set::iterator RegI = I->Regs.begin(),
1351           RegE = I->Regs.end(); RegI != RegE; ++RegI) {
1352      if ((*RegI)->getRegUnits().size() == 1
1353          && (*RegI)->getWeight(RegBank) == I->Weight)
1354        mergeRegUnits(I->SingularDeterminants, (*RegI)->getRegUnits());
1355    }
1356  }
1357}
1358
1359// normalizeWeight is a computeRegUnitWeights helper that adjusts the weight of
1360// a register and its subregisters so that they have the same weight as their
1361// UberSet. Self-recursion processes the subregister tree in postorder so
1362// subregisters are normalized first.
1363//
1364// Side effects:
1365// - creates new adopted register units
1366// - causes superregisters to inherit adopted units
1367// - increases the weight of "singular" units
1368// - induces recomputation of UberWeights.
1369static bool normalizeWeight(CodeGenRegister *Reg,
1370                            std::vector<UberRegSet> &UberSets,
1371                            std::vector<UberRegSet*> &RegSets,
1372                            std::set<unsigned> &NormalRegs,
1373                            CodeGenRegister::RegUnitList &NormalUnits,
1374                            CodeGenRegBank &RegBank) {
1375  bool Changed = false;
1376  if (!NormalRegs.insert(Reg->EnumValue).second)
1377    return Changed;
1378
1379  const CodeGenRegister::SubRegMap &SRM = Reg->getSubRegs();
1380  for (CodeGenRegister::SubRegMap::const_iterator SRI = SRM.begin(),
1381         SRE = SRM.end(); SRI != SRE; ++SRI) {
1382    if (SRI->second == Reg)
1383      continue; // self-cycles happen
1384
1385    Changed |= normalizeWeight(SRI->second, UberSets, RegSets,
1386                               NormalRegs, NormalUnits, RegBank);
1387  }
1388  // Postorder register normalization.
1389
1390  // Inherit register units newly adopted by subregisters.
1391  if (Reg->inheritRegUnits(RegBank))
1392    computeUberWeights(UberSets, RegBank);
1393
1394  // Check if this register is too skinny for its UberRegSet.
1395  UberRegSet *UberSet = RegSets[RegBank.getRegIndex(Reg)];
1396
1397  unsigned RegWeight = Reg->getWeight(RegBank);
1398  if (UberSet->Weight > RegWeight) {
1399    // A register unit's weight can be adjusted only if it is the singular unit
1400    // for this register, has not been used to normalize a subregister's set,
1401    // and has not already been used to singularly determine this UberRegSet.
1402    unsigned AdjustUnit = Reg->getRegUnits().front();
1403    if (Reg->getRegUnits().size() != 1
1404        || hasRegUnit(NormalUnits, AdjustUnit)
1405        || hasRegUnit(UberSet->SingularDeterminants, AdjustUnit)) {
1406      // We don't have an adjustable unit, so adopt a new one.
1407      AdjustUnit = RegBank.newRegUnit(UberSet->Weight - RegWeight);
1408      Reg->adoptRegUnit(AdjustUnit);
1409      // Adopting a unit does not immediately require recomputing set weights.
1410    }
1411    else {
1412      // Adjust the existing single unit.
1413      RegBank.increaseRegUnitWeight(AdjustUnit, UberSet->Weight - RegWeight);
1414      // The unit may be shared among sets and registers within this set.
1415      computeUberWeights(UberSets, RegBank);
1416    }
1417    Changed = true;
1418  }
1419
1420  // Mark these units normalized so superregisters can't change their weights.
1421  mergeRegUnits(NormalUnits, Reg->getRegUnits());
1422
1423  return Changed;
1424}
1425
1426// Compute a weight for each register unit created during getSubRegs.
1427//
1428// The goal is that two registers in the same class will have the same weight,
1429// where each register's weight is defined as sum of its units' weights.
1430void CodeGenRegBank::computeRegUnitWeights() {
1431  std::vector<UberRegSet> UberSets;
1432  std::vector<UberRegSet*> RegSets(Registers.size());
1433  computeUberSets(UberSets, RegSets, *this);
1434  // UberSets and RegSets are now immutable.
1435
1436  computeUberWeights(UberSets, *this);
1437
1438  // Iterate over each Register, normalizing the unit weights until reaching
1439  // a fix point.
1440  unsigned NumIters = 0;
1441  for (bool Changed = true; Changed; ++NumIters) {
1442    assert(NumIters <= NumNativeRegUnits && "Runaway register unit weights");
1443    Changed = false;
1444    for (unsigned i = 0, e = Registers.size(); i != e; ++i) {
1445      CodeGenRegister::RegUnitList NormalUnits;
1446      std::set<unsigned> NormalRegs;
1447      Changed |= normalizeWeight(Registers[i], UberSets, RegSets,
1448                                 NormalRegs, NormalUnits, *this);
1449    }
1450  }
1451}
1452
1453// Find a set in UniqueSets with the same elements as Set.
1454// Return an iterator into UniqueSets.
1455static std::vector<RegUnitSet>::const_iterator
1456findRegUnitSet(const std::vector<RegUnitSet> &UniqueSets,
1457               const RegUnitSet &Set) {
1458  std::vector<RegUnitSet>::const_iterator
1459    I = UniqueSets.begin(), E = UniqueSets.end();
1460  for(;I != E; ++I) {
1461    if (I->Units == Set.Units)
1462      break;
1463  }
1464  return I;
1465}
1466
1467// Return true if the RUSubSet is a subset of RUSuperSet.
1468static bool isRegUnitSubSet(const std::vector<unsigned> &RUSubSet,
1469                            const std::vector<unsigned> &RUSuperSet) {
1470  return std::includes(RUSuperSet.begin(), RUSuperSet.end(),
1471                       RUSubSet.begin(), RUSubSet.end());
1472}
1473
1474/// Iteratively prune unit sets. Prune subsets that are close to the superset,
1475/// but with one or two registers removed. We occasionally have registers like
1476/// APSR and PC thrown in with the general registers. We also see many
1477/// special-purpose register subsets, such as tail-call and Thumb
1478/// encodings. Generating all possible overlapping sets is combinatorial and
1479/// overkill for modeling pressure. Ideally we could fix this statically in
1480/// tablegen by (1) having the target define register classes that only include
1481/// the allocatable registers and marking other classes as non-allocatable and
1482/// (2) having a way to mark special purpose classes as "don't-care" classes for
1483/// the purpose of pressure.  However, we make an attempt to handle targets that
1484/// are not nicely defined by merging nearly identical register unit sets
1485/// statically. This generates smaller tables. Then, dynamically, we adjust the
1486/// set limit by filtering the reserved registers.
1487///
1488/// Merge sets only if the units have the same weight. For example, on ARM,
1489/// Q-tuples with ssub index 0 include all S regs but also include D16+. We
1490/// should not expand the S set to include D regs.
1491void CodeGenRegBank::pruneUnitSets() {
1492  assert(RegClassUnitSets.empty() && "this invalidates RegClassUnitSets");
1493
1494  // Form an equivalence class of UnitSets with no significant difference.
1495  std::vector<unsigned> SuperSetIDs;
1496  for (unsigned SubIdx = 0, EndIdx = RegUnitSets.size();
1497       SubIdx != EndIdx; ++SubIdx) {
1498    const RegUnitSet &SubSet = RegUnitSets[SubIdx];
1499    unsigned SuperIdx = 0;
1500    for (; SuperIdx != EndIdx; ++SuperIdx) {
1501      if (SuperIdx == SubIdx)
1502        continue;
1503
1504      unsigned UnitWeight = RegUnits[SubSet.Units[0]].Weight;
1505      const RegUnitSet &SuperSet = RegUnitSets[SuperIdx];
1506      if (isRegUnitSubSet(SubSet.Units, SuperSet.Units)
1507          && (SubSet.Units.size() + 3 > SuperSet.Units.size())
1508          && UnitWeight == RegUnits[SuperSet.Units[0]].Weight
1509          && UnitWeight == RegUnits[SuperSet.Units.back()].Weight) {
1510        DEBUG(dbgs() << "UnitSet " << SubIdx << " subsumed by " << SuperIdx
1511              << "\n");
1512        break;
1513      }
1514    }
1515    if (SuperIdx == EndIdx)
1516      SuperSetIDs.push_back(SubIdx);
1517  }
1518  // Populate PrunedUnitSets with each equivalence class's superset.
1519  std::vector<RegUnitSet> PrunedUnitSets(SuperSetIDs.size());
1520  for (unsigned i = 0, e = SuperSetIDs.size(); i != e; ++i) {
1521    unsigned SuperIdx = SuperSetIDs[i];
1522    PrunedUnitSets[i].Name = RegUnitSets[SuperIdx].Name;
1523    PrunedUnitSets[i].Units.swap(RegUnitSets[SuperIdx].Units);
1524  }
1525  RegUnitSets.swap(PrunedUnitSets);
1526}
1527
1528// Create a RegUnitSet for each RegClass that contains all units in the class
1529// including adopted units that are necessary to model register pressure. Then
1530// iteratively compute RegUnitSets such that the union of any two overlapping
1531// RegUnitSets is repreresented.
1532//
1533// RegisterInfoEmitter will map each RegClass to its RegUnitClass and any
1534// RegUnitSet that is a superset of that RegUnitClass.
1535void CodeGenRegBank::computeRegUnitSets() {
1536  assert(RegUnitSets.empty() && "dirty RegUnitSets");
1537
1538  // Compute a unique RegUnitSet for each RegClass.
1539  const ArrayRef<CodeGenRegisterClass*> &RegClasses = getRegClasses();
1540  unsigned NumRegClasses = RegClasses.size();
1541  for (unsigned RCIdx = 0, RCEnd = NumRegClasses; RCIdx != RCEnd; ++RCIdx) {
1542    if (!RegClasses[RCIdx]->Allocatable)
1543      continue;
1544
1545    // Speculatively grow the RegUnitSets to hold the new set.
1546    RegUnitSets.resize(RegUnitSets.size() + 1);
1547    RegUnitSets.back().Name = RegClasses[RCIdx]->getName();
1548
1549    // Compute a sorted list of units in this class.
1550    RegClasses[RCIdx]->buildRegUnitSet(RegUnitSets.back().Units);
1551
1552    // Find an existing RegUnitSet.
1553    std::vector<RegUnitSet>::const_iterator SetI =
1554      findRegUnitSet(RegUnitSets, RegUnitSets.back());
1555    if (SetI != llvm::prior(RegUnitSets.end()))
1556      RegUnitSets.pop_back();
1557  }
1558
1559  DEBUG(dbgs() << "\nBefore pruning:\n";
1560        for (unsigned USIdx = 0, USEnd = RegUnitSets.size();
1561             USIdx < USEnd; ++USIdx) {
1562          dbgs() << "UnitSet " << USIdx << " " << RegUnitSets[USIdx].Name
1563                 << ":";
1564          ArrayRef<unsigned> Units = RegUnitSets[USIdx].Units;
1565          for (unsigned i = 0, e = Units.size(); i < e; ++i)
1566            dbgs() << " " << RegUnits[Units[i]].Roots[0]->getName();
1567          dbgs() << "\n";
1568        });
1569
1570  // Iteratively prune unit sets.
1571  pruneUnitSets();
1572
1573  DEBUG(dbgs() << "\nBefore union:\n";
1574        for (unsigned USIdx = 0, USEnd = RegUnitSets.size();
1575             USIdx < USEnd; ++USIdx) {
1576          dbgs() << "UnitSet " << USIdx << " " << RegUnitSets[USIdx].Name
1577                 << ":";
1578          ArrayRef<unsigned> Units = RegUnitSets[USIdx].Units;
1579          for (unsigned i = 0, e = Units.size(); i < e; ++i)
1580            dbgs() << " " << RegUnits[Units[i]].Roots[0]->getName();
1581          dbgs() << "\n";
1582        }
1583        dbgs() << "\nUnion sets:\n");
1584
1585  // Iterate over all unit sets, including new ones added by this loop.
1586  unsigned NumRegUnitSubSets = RegUnitSets.size();
1587  for (unsigned Idx = 0, EndIdx = RegUnitSets.size(); Idx != EndIdx; ++Idx) {
1588    // In theory, this is combinatorial. In practice, it needs to be bounded
1589    // by a small number of sets for regpressure to be efficient.
1590    // If the assert is hit, we need to implement pruning.
1591    assert(Idx < (2*NumRegUnitSubSets) && "runaway unit set inference");
1592
1593    // Compare new sets with all original classes.
1594    for (unsigned SearchIdx = (Idx >= NumRegUnitSubSets) ? 0 : Idx+1;
1595         SearchIdx != EndIdx; ++SearchIdx) {
1596      std::set<unsigned> Intersection;
1597      std::set_intersection(RegUnitSets[Idx].Units.begin(),
1598                            RegUnitSets[Idx].Units.end(),
1599                            RegUnitSets[SearchIdx].Units.begin(),
1600                            RegUnitSets[SearchIdx].Units.end(),
1601                            std::inserter(Intersection, Intersection.begin()));
1602      if (Intersection.empty())
1603        continue;
1604
1605      // Speculatively grow the RegUnitSets to hold the new set.
1606      RegUnitSets.resize(RegUnitSets.size() + 1);
1607      RegUnitSets.back().Name =
1608        RegUnitSets[Idx].Name + "+" + RegUnitSets[SearchIdx].Name;
1609
1610      std::set_union(RegUnitSets[Idx].Units.begin(),
1611                     RegUnitSets[Idx].Units.end(),
1612                     RegUnitSets[SearchIdx].Units.begin(),
1613                     RegUnitSets[SearchIdx].Units.end(),
1614                     std::inserter(RegUnitSets.back().Units,
1615                                   RegUnitSets.back().Units.begin()));
1616
1617      // Find an existing RegUnitSet, or add the union to the unique sets.
1618      std::vector<RegUnitSet>::const_iterator SetI =
1619        findRegUnitSet(RegUnitSets, RegUnitSets.back());
1620      if (SetI != llvm::prior(RegUnitSets.end()))
1621        RegUnitSets.pop_back();
1622      else {
1623        DEBUG(dbgs() << "UnitSet " << RegUnitSets.size()-1
1624              << " " << RegUnitSets.back().Name << ":";
1625              ArrayRef<unsigned> Units = RegUnitSets.back().Units;
1626              for (unsigned i = 0, e = Units.size(); i < e; ++i)
1627                dbgs() << " " << RegUnits[Units[i]].Roots[0]->getName();
1628              dbgs() << "\n";);
1629      }
1630    }
1631  }
1632
1633  // Iteratively prune unit sets after inferring supersets.
1634  pruneUnitSets();
1635
1636  DEBUG(dbgs() << "\n";
1637        for (unsigned USIdx = 0, USEnd = RegUnitSets.size();
1638             USIdx < USEnd; ++USIdx) {
1639          dbgs() << "UnitSet " << USIdx << " " << RegUnitSets[USIdx].Name
1640                 << ":";
1641          ArrayRef<unsigned> Units = RegUnitSets[USIdx].Units;
1642          for (unsigned i = 0, e = Units.size(); i < e; ++i)
1643            dbgs() << " " << RegUnits[Units[i]].Roots[0]->getName();
1644          dbgs() << "\n";
1645        });
1646
1647  // For each register class, list the UnitSets that are supersets.
1648  RegClassUnitSets.resize(NumRegClasses);
1649  for (unsigned RCIdx = 0, RCEnd = NumRegClasses; RCIdx != RCEnd; ++RCIdx) {
1650    if (!RegClasses[RCIdx]->Allocatable)
1651      continue;
1652
1653    // Recompute the sorted list of units in this class.
1654    std::vector<unsigned> RCRegUnits;
1655    RegClasses[RCIdx]->buildRegUnitSet(RCRegUnits);
1656
1657    // Don't increase pressure for unallocatable regclasses.
1658    if (RCRegUnits.empty())
1659      continue;
1660
1661    DEBUG(dbgs() << "RC " << RegClasses[RCIdx]->getName() << " Units: \n";
1662          for (unsigned i = 0, e = RCRegUnits.size(); i < e; ++i)
1663            dbgs() << RegUnits[RCRegUnits[i]].getRoots()[0]->getName() << " ";
1664          dbgs() << "\n  UnitSetIDs:");
1665
1666    // Find all supersets.
1667    for (unsigned USIdx = 0, USEnd = RegUnitSets.size();
1668         USIdx != USEnd; ++USIdx) {
1669      if (isRegUnitSubSet(RCRegUnits, RegUnitSets[USIdx].Units)) {
1670        DEBUG(dbgs() << " " << USIdx);
1671        RegClassUnitSets[RCIdx].push_back(USIdx);
1672      }
1673    }
1674    DEBUG(dbgs() << "\n");
1675    assert(!RegClassUnitSets[RCIdx].empty() && "missing unit set for regclass");
1676  }
1677
1678  // For each register unit, ensure that we have the list of UnitSets that
1679  // contain the unit. Normally, this matches an existing list of UnitSets for a
1680  // register class. If not, we create a new entry in RegClassUnitSets as a
1681  // "fake" register class.
1682  for (unsigned UnitIdx = 0, UnitEnd = NumNativeRegUnits;
1683       UnitIdx < UnitEnd; ++UnitIdx) {
1684    std::vector<unsigned> RUSets;
1685    for (unsigned i = 0, e = RegUnitSets.size(); i != e; ++i) {
1686      RegUnitSet &RUSet = RegUnitSets[i];
1687      if (std::find(RUSet.Units.begin(), RUSet.Units.end(), UnitIdx)
1688          == RUSet.Units.end())
1689        continue;
1690      RUSets.push_back(i);
1691    }
1692    unsigned RCUnitSetsIdx = 0;
1693    for (unsigned e = RegClassUnitSets.size();
1694         RCUnitSetsIdx != e; ++RCUnitSetsIdx) {
1695      if (RegClassUnitSets[RCUnitSetsIdx] == RUSets) {
1696        break;
1697      }
1698    }
1699    RegUnits[UnitIdx].RegClassUnitSetsIdx = RCUnitSetsIdx;
1700    if (RCUnitSetsIdx == RegClassUnitSets.size()) {
1701      // Create a new list of UnitSets as a "fake" register class.
1702      RegClassUnitSets.resize(RCUnitSetsIdx + 1);
1703      RegClassUnitSets[RCUnitSetsIdx].swap(RUSets);
1704    }
1705  }
1706}
1707
1708struct LessUnits {
1709  const CodeGenRegBank &RegBank;
1710  LessUnits(const CodeGenRegBank &RB): RegBank(RB) {}
1711
1712  bool operator()(unsigned ID1, unsigned ID2) {
1713    return RegBank.getRegPressureSet(ID1).Units.size()
1714      < RegBank.getRegPressureSet(ID2).Units.size();
1715  }
1716};
1717
1718void CodeGenRegBank::computeDerivedInfo() {
1719  computeComposites();
1720  computeSubRegIndexLaneMasks();
1721
1722  // Compute a weight for each register unit created during getSubRegs.
1723  // This may create adopted register units (with unit # >= NumNativeRegUnits).
1724  computeRegUnitWeights();
1725
1726  // Compute a unique set of RegUnitSets. One for each RegClass and inferred
1727  // supersets for the union of overlapping sets.
1728  computeRegUnitSets();
1729
1730  // Get the weight of each set.
1731  for (unsigned Idx = 0, EndIdx = RegUnitSets.size(); Idx != EndIdx; ++Idx)
1732    RegUnitSets[Idx].Weight = getRegUnitSetWeight(RegUnitSets[Idx].Units);
1733
1734  // Find the order of each set.
1735  RegUnitSetOrder.reserve(RegUnitSets.size());
1736  for (unsigned Idx = 0, EndIdx = RegUnitSets.size(); Idx != EndIdx; ++Idx)
1737    RegUnitSetOrder.push_back(Idx);
1738
1739  std::stable_sort(RegUnitSetOrder.begin(), RegUnitSetOrder.end(),
1740                   LessUnits(*this));
1741  for (unsigned Idx = 0, EndIdx = RegUnitSets.size(); Idx != EndIdx; ++Idx) {
1742    RegUnitSets[RegUnitSetOrder[Idx]].Order = Idx;
1743  }
1744}
1745
1746//
1747// Synthesize missing register class intersections.
1748//
1749// Make sure that sub-classes of RC exists such that getCommonSubClass(RC, X)
1750// returns a maximal register class for all X.
1751//
1752void CodeGenRegBank::inferCommonSubClass(CodeGenRegisterClass *RC) {
1753  for (unsigned rci = 0, rce = RegClasses.size(); rci != rce; ++rci) {
1754    CodeGenRegisterClass *RC1 = RC;
1755    CodeGenRegisterClass *RC2 = RegClasses[rci];
1756    if (RC1 == RC2)
1757      continue;
1758
1759    // Compute the set intersection of RC1 and RC2.
1760    const CodeGenRegister::Set &Memb1 = RC1->getMembers();
1761    const CodeGenRegister::Set &Memb2 = RC2->getMembers();
1762    CodeGenRegister::Set Intersection;
1763    std::set_intersection(Memb1.begin(), Memb1.end(),
1764                          Memb2.begin(), Memb2.end(),
1765                          std::inserter(Intersection, Intersection.begin()),
1766                          CodeGenRegister::Less());
1767
1768    // Skip disjoint class pairs.
1769    if (Intersection.empty())
1770      continue;
1771
1772    // If RC1 and RC2 have different spill sizes or alignments, use the
1773    // larger size for sub-classing.  If they are equal, prefer RC1.
1774    if (RC2->SpillSize > RC1->SpillSize ||
1775        (RC2->SpillSize == RC1->SpillSize &&
1776         RC2->SpillAlignment > RC1->SpillAlignment))
1777      std::swap(RC1, RC2);
1778
1779    getOrCreateSubClass(RC1, &Intersection,
1780                        RC1->getName() + "_and_" + RC2->getName());
1781  }
1782}
1783
1784//
1785// Synthesize missing sub-classes for getSubClassWithSubReg().
1786//
1787// Make sure that the set of registers in RC with a given SubIdx sub-register
1788// form a register class.  Update RC->SubClassWithSubReg.
1789//
1790void CodeGenRegBank::inferSubClassWithSubReg(CodeGenRegisterClass *RC) {
1791  // Map SubRegIndex to set of registers in RC supporting that SubRegIndex.
1792  typedef std::map<CodeGenSubRegIndex*, CodeGenRegister::Set,
1793                   CodeGenSubRegIndex::Less> SubReg2SetMap;
1794
1795  // Compute the set of registers supporting each SubRegIndex.
1796  SubReg2SetMap SRSets;
1797  for (CodeGenRegister::Set::const_iterator RI = RC->getMembers().begin(),
1798       RE = RC->getMembers().end(); RI != RE; ++RI) {
1799    const CodeGenRegister::SubRegMap &SRM = (*RI)->getSubRegs();
1800    for (CodeGenRegister::SubRegMap::const_iterator I = SRM.begin(),
1801         E = SRM.end(); I != E; ++I)
1802      SRSets[I->first].insert(*RI);
1803  }
1804
1805  // Find matching classes for all SRSets entries.  Iterate in SubRegIndex
1806  // numerical order to visit synthetic indices last.
1807  for (unsigned sri = 0, sre = SubRegIndices.size(); sri != sre; ++sri) {
1808    CodeGenSubRegIndex *SubIdx = SubRegIndices[sri];
1809    SubReg2SetMap::const_iterator I = SRSets.find(SubIdx);
1810    // Unsupported SubRegIndex. Skip it.
1811    if (I == SRSets.end())
1812      continue;
1813    // In most cases, all RC registers support the SubRegIndex.
1814    if (I->second.size() == RC->getMembers().size()) {
1815      RC->setSubClassWithSubReg(SubIdx, RC);
1816      continue;
1817    }
1818    // This is a real subset.  See if we have a matching class.
1819    CodeGenRegisterClass *SubRC =
1820      getOrCreateSubClass(RC, &I->second,
1821                          RC->getName() + "_with_" + I->first->getName());
1822    RC->setSubClassWithSubReg(SubIdx, SubRC);
1823  }
1824}
1825
1826//
1827// Synthesize missing sub-classes of RC for getMatchingSuperRegClass().
1828//
1829// Create sub-classes of RC such that getMatchingSuperRegClass(RC, SubIdx, X)
1830// has a maximal result for any SubIdx and any X >= FirstSubRegRC.
1831//
1832
1833void CodeGenRegBank::inferMatchingSuperRegClass(CodeGenRegisterClass *RC,
1834                                                unsigned FirstSubRegRC) {
1835  SmallVector<std::pair<const CodeGenRegister*,
1836                        const CodeGenRegister*>, 16> SSPairs;
1837  BitVector TopoSigs(getNumTopoSigs());
1838
1839  // Iterate in SubRegIndex numerical order to visit synthetic indices last.
1840  for (unsigned sri = 0, sre = SubRegIndices.size(); sri != sre; ++sri) {
1841    CodeGenSubRegIndex *SubIdx = SubRegIndices[sri];
1842    // Skip indexes that aren't fully supported by RC's registers. This was
1843    // computed by inferSubClassWithSubReg() above which should have been
1844    // called first.
1845    if (RC->getSubClassWithSubReg(SubIdx) != RC)
1846      continue;
1847
1848    // Build list of (Super, Sub) pairs for this SubIdx.
1849    SSPairs.clear();
1850    TopoSigs.reset();
1851    for (CodeGenRegister::Set::const_iterator RI = RC->getMembers().begin(),
1852         RE = RC->getMembers().end(); RI != RE; ++RI) {
1853      const CodeGenRegister *Super = *RI;
1854      const CodeGenRegister *Sub = Super->getSubRegs().find(SubIdx)->second;
1855      assert(Sub && "Missing sub-register");
1856      SSPairs.push_back(std::make_pair(Super, Sub));
1857      TopoSigs.set(Sub->getTopoSig());
1858    }
1859
1860    // Iterate over sub-register class candidates.  Ignore classes created by
1861    // this loop. They will never be useful.
1862    for (unsigned rci = FirstSubRegRC, rce = RegClasses.size(); rci != rce;
1863         ++rci) {
1864      CodeGenRegisterClass *SubRC = RegClasses[rci];
1865      // Topological shortcut: SubRC members have the wrong shape.
1866      if (!TopoSigs.anyCommon(SubRC->getTopoSigs()))
1867        continue;
1868      // Compute the subset of RC that maps into SubRC.
1869      CodeGenRegister::Set SubSet;
1870      for (unsigned i = 0, e = SSPairs.size(); i != e; ++i)
1871        if (SubRC->contains(SSPairs[i].second))
1872          SubSet.insert(SSPairs[i].first);
1873      if (SubSet.empty())
1874        continue;
1875      // RC injects completely into SubRC.
1876      if (SubSet.size() == SSPairs.size()) {
1877        SubRC->addSuperRegClass(SubIdx, RC);
1878        continue;
1879      }
1880      // Only a subset of RC maps into SubRC. Make sure it is represented by a
1881      // class.
1882      getOrCreateSubClass(RC, &SubSet, RC->getName() +
1883                          "_with_" + SubIdx->getName() +
1884                          "_in_" + SubRC->getName());
1885    }
1886  }
1887}
1888
1889
1890//
1891// Infer missing register classes.
1892//
1893void CodeGenRegBank::computeInferredRegisterClasses() {
1894  // When this function is called, the register classes have not been sorted
1895  // and assigned EnumValues yet.  That means getSubClasses(),
1896  // getSuperClasses(), and hasSubClass() functions are defunct.
1897  unsigned FirstNewRC = RegClasses.size();
1898
1899  // Visit all register classes, including the ones being added by the loop.
1900  for (unsigned rci = 0; rci != RegClasses.size(); ++rci) {
1901    CodeGenRegisterClass *RC = RegClasses[rci];
1902
1903    // Synthesize answers for getSubClassWithSubReg().
1904    inferSubClassWithSubReg(RC);
1905
1906    // Synthesize answers for getCommonSubClass().
1907    inferCommonSubClass(RC);
1908
1909    // Synthesize answers for getMatchingSuperRegClass().
1910    inferMatchingSuperRegClass(RC);
1911
1912    // New register classes are created while this loop is running, and we need
1913    // to visit all of them.  I  particular, inferMatchingSuperRegClass needs
1914    // to match old super-register classes with sub-register classes created
1915    // after inferMatchingSuperRegClass was called.  At this point,
1916    // inferMatchingSuperRegClass has checked SuperRC = [0..rci] with SubRC =
1917    // [0..FirstNewRC).  We need to cover SubRC = [FirstNewRC..rci].
1918    if (rci + 1 == FirstNewRC) {
1919      unsigned NextNewRC = RegClasses.size();
1920      for (unsigned rci2 = 0; rci2 != FirstNewRC; ++rci2)
1921        inferMatchingSuperRegClass(RegClasses[rci2], FirstNewRC);
1922      FirstNewRC = NextNewRC;
1923    }
1924  }
1925}
1926
1927/// getRegisterClassForRegister - Find the register class that contains the
1928/// specified physical register.  If the register is not in a register class,
1929/// return null. If the register is in multiple classes, and the classes have a
1930/// superset-subset relationship and the same set of types, return the
1931/// superclass.  Otherwise return null.
1932const CodeGenRegisterClass*
1933CodeGenRegBank::getRegClassForRegister(Record *R) {
1934  const CodeGenRegister *Reg = getReg(R);
1935  ArrayRef<CodeGenRegisterClass*> RCs = getRegClasses();
1936  const CodeGenRegisterClass *FoundRC = 0;
1937  for (unsigned i = 0, e = RCs.size(); i != e; ++i) {
1938    const CodeGenRegisterClass &RC = *RCs[i];
1939    if (!RC.contains(Reg))
1940      continue;
1941
1942    // If this is the first class that contains the register,
1943    // make a note of it and go on to the next class.
1944    if (!FoundRC) {
1945      FoundRC = &RC;
1946      continue;
1947    }
1948
1949    // If a register's classes have different types, return null.
1950    if (RC.getValueTypes() != FoundRC->getValueTypes())
1951      return 0;
1952
1953    // Check to see if the previously found class that contains
1954    // the register is a subclass of the current class. If so,
1955    // prefer the superclass.
1956    if (RC.hasSubClass(FoundRC)) {
1957      FoundRC = &RC;
1958      continue;
1959    }
1960
1961    // Check to see if the previously found class that contains
1962    // the register is a superclass of the current class. If so,
1963    // prefer the superclass.
1964    if (FoundRC->hasSubClass(&RC))
1965      continue;
1966
1967    // Multiple classes, and neither is a superclass of the other.
1968    // Return null.
1969    return 0;
1970  }
1971  return FoundRC;
1972}
1973
1974BitVector CodeGenRegBank::computeCoveredRegisters(ArrayRef<Record*> Regs) {
1975  SetVector<const CodeGenRegister*> Set;
1976
1977  // First add Regs with all sub-registers.
1978  for (unsigned i = 0, e = Regs.size(); i != e; ++i) {
1979    CodeGenRegister *Reg = getReg(Regs[i]);
1980    if (Set.insert(Reg))
1981      // Reg is new, add all sub-registers.
1982      // The pre-ordering is not important here.
1983      Reg->addSubRegsPreOrder(Set, *this);
1984  }
1985
1986  // Second, find all super-registers that are completely covered by the set.
1987  for (unsigned i = 0; i != Set.size(); ++i) {
1988    const CodeGenRegister::SuperRegList &SR = Set[i]->getSuperRegs();
1989    for (unsigned j = 0, e = SR.size(); j != e; ++j) {
1990      const CodeGenRegister *Super = SR[j];
1991      if (!Super->CoveredBySubRegs || Set.count(Super))
1992        continue;
1993      // This new super-register is covered by its sub-registers.
1994      bool AllSubsInSet = true;
1995      const CodeGenRegister::SubRegMap &SRM = Super->getSubRegs();
1996      for (CodeGenRegister::SubRegMap::const_iterator I = SRM.begin(),
1997             E = SRM.end(); I != E; ++I)
1998        if (!Set.count(I->second)) {
1999          AllSubsInSet = false;
2000          break;
2001        }
2002      // All sub-registers in Set, add Super as well.
2003      // We will visit Super later to recheck its super-registers.
2004      if (AllSubsInSet)
2005        Set.insert(Super);
2006    }
2007  }
2008
2009  // Convert to BitVector.
2010  BitVector BV(Registers.size() + 1);
2011  for (unsigned i = 0, e = Set.size(); i != e; ++i)
2012    BV.set(Set[i]->EnumValue);
2013  return BV;
2014}
2015