CodeGenDAGPatterns.cpp revision 263508
1//===- CodeGenDAGPatterns.cpp - Read DAG patterns from .td file -----------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the CodeGenDAGPatterns class, which is used to read and
11// represent the patterns present in a .td file for instructions.
12//
13//===----------------------------------------------------------------------===//
14
15#include "CodeGenDAGPatterns.h"
16#include "llvm/ADT/STLExtras.h"
17#include "llvm/ADT/StringExtras.h"
18#include "llvm/ADT/Twine.h"
19#include "llvm/Support/Debug.h"
20#include "llvm/Support/ErrorHandling.h"
21#include "llvm/TableGen/Error.h"
22#include "llvm/TableGen/Record.h"
23#include <algorithm>
24#include <cstdio>
25#include <set>
26using namespace llvm;
27
28//===----------------------------------------------------------------------===//
29//  EEVT::TypeSet Implementation
30//===----------------------------------------------------------------------===//
31
32static inline bool isInteger(MVT::SimpleValueType VT) {
33  return MVT(VT).isInteger();
34}
35static inline bool isFloatingPoint(MVT::SimpleValueType VT) {
36  return MVT(VT).isFloatingPoint();
37}
38static inline bool isVector(MVT::SimpleValueType VT) {
39  return MVT(VT).isVector();
40}
41static inline bool isScalar(MVT::SimpleValueType VT) {
42  return !MVT(VT).isVector();
43}
44
45EEVT::TypeSet::TypeSet(MVT::SimpleValueType VT, TreePattern &TP) {
46  if (VT == MVT::iAny)
47    EnforceInteger(TP);
48  else if (VT == MVT::fAny)
49    EnforceFloatingPoint(TP);
50  else if (VT == MVT::vAny)
51    EnforceVector(TP);
52  else {
53    assert((VT < MVT::LAST_VALUETYPE || VT == MVT::iPTR ||
54            VT == MVT::iPTRAny) && "Not a concrete type!");
55    TypeVec.push_back(VT);
56  }
57}
58
59
60EEVT::TypeSet::TypeSet(ArrayRef<MVT::SimpleValueType> VTList) {
61  assert(!VTList.empty() && "empty list?");
62  TypeVec.append(VTList.begin(), VTList.end());
63
64  if (!VTList.empty())
65    assert(VTList[0] != MVT::iAny && VTList[0] != MVT::vAny &&
66           VTList[0] != MVT::fAny);
67
68  // Verify no duplicates.
69  array_pod_sort(TypeVec.begin(), TypeVec.end());
70  assert(std::unique(TypeVec.begin(), TypeVec.end()) == TypeVec.end());
71}
72
73/// FillWithPossibleTypes - Set to all legal types and return true, only valid
74/// on completely unknown type sets.
75bool EEVT::TypeSet::FillWithPossibleTypes(TreePattern &TP,
76                                          bool (*Pred)(MVT::SimpleValueType),
77                                          const char *PredicateName) {
78  assert(isCompletelyUnknown());
79  ArrayRef<MVT::SimpleValueType> LegalTypes =
80    TP.getDAGPatterns().getTargetInfo().getLegalValueTypes();
81
82  if (TP.hasError())
83    return false;
84
85  for (unsigned i = 0, e = LegalTypes.size(); i != e; ++i)
86    if (Pred == 0 || Pred(LegalTypes[i]))
87      TypeVec.push_back(LegalTypes[i]);
88
89  // If we have nothing that matches the predicate, bail out.
90  if (TypeVec.empty()) {
91    TP.error("Type inference contradiction found, no " +
92             std::string(PredicateName) + " types found");
93    return false;
94  }
95  // No need to sort with one element.
96  if (TypeVec.size() == 1) return true;
97
98  // Remove duplicates.
99  array_pod_sort(TypeVec.begin(), TypeVec.end());
100  TypeVec.erase(std::unique(TypeVec.begin(), TypeVec.end()), TypeVec.end());
101
102  return true;
103}
104
105/// hasIntegerTypes - Return true if this TypeSet contains iAny or an
106/// integer value type.
107bool EEVT::TypeSet::hasIntegerTypes() const {
108  for (unsigned i = 0, e = TypeVec.size(); i != e; ++i)
109    if (isInteger(TypeVec[i]))
110      return true;
111  return false;
112}
113
114/// hasFloatingPointTypes - Return true if this TypeSet contains an fAny or
115/// a floating point value type.
116bool EEVT::TypeSet::hasFloatingPointTypes() const {
117  for (unsigned i = 0, e = TypeVec.size(); i != e; ++i)
118    if (isFloatingPoint(TypeVec[i]))
119      return true;
120  return false;
121}
122
123/// hasVectorTypes - Return true if this TypeSet contains a vAny or a vector
124/// value type.
125bool EEVT::TypeSet::hasVectorTypes() const {
126  for (unsigned i = 0, e = TypeVec.size(); i != e; ++i)
127    if (isVector(TypeVec[i]))
128      return true;
129  return false;
130}
131
132
133std::string EEVT::TypeSet::getName() const {
134  if (TypeVec.empty()) return "<empty>";
135
136  std::string Result;
137
138  for (unsigned i = 0, e = TypeVec.size(); i != e; ++i) {
139    std::string VTName = llvm::getEnumName(TypeVec[i]);
140    // Strip off MVT:: prefix if present.
141    if (VTName.substr(0,5) == "MVT::")
142      VTName = VTName.substr(5);
143    if (i) Result += ':';
144    Result += VTName;
145  }
146
147  if (TypeVec.size() == 1)
148    return Result;
149  return "{" + Result + "}";
150}
151
152/// MergeInTypeInfo - This merges in type information from the specified
153/// argument.  If 'this' changes, it returns true.  If the two types are
154/// contradictory (e.g. merge f32 into i32) then this flags an error.
155bool EEVT::TypeSet::MergeInTypeInfo(const EEVT::TypeSet &InVT, TreePattern &TP){
156  if (InVT.isCompletelyUnknown() || *this == InVT || TP.hasError())
157    return false;
158
159  if (isCompletelyUnknown()) {
160    *this = InVT;
161    return true;
162  }
163
164  assert(TypeVec.size() >= 1 && InVT.TypeVec.size() >= 1 && "No unknowns");
165
166  // Handle the abstract cases, seeing if we can resolve them better.
167  switch (TypeVec[0]) {
168  default: break;
169  case MVT::iPTR:
170  case MVT::iPTRAny:
171    if (InVT.hasIntegerTypes()) {
172      EEVT::TypeSet InCopy(InVT);
173      InCopy.EnforceInteger(TP);
174      InCopy.EnforceScalar(TP);
175
176      if (InCopy.isConcrete()) {
177        // If the RHS has one integer type, upgrade iPTR to i32.
178        TypeVec[0] = InVT.TypeVec[0];
179        return true;
180      }
181
182      // If the input has multiple scalar integers, this doesn't add any info.
183      if (!InCopy.isCompletelyUnknown())
184        return false;
185    }
186    break;
187  }
188
189  // If the input constraint is iAny/iPTR and this is an integer type list,
190  // remove non-integer types from the list.
191  if ((InVT.TypeVec[0] == MVT::iPTR || InVT.TypeVec[0] == MVT::iPTRAny) &&
192      hasIntegerTypes()) {
193    bool MadeChange = EnforceInteger(TP);
194
195    // If we're merging in iPTR/iPTRAny and the node currently has a list of
196    // multiple different integer types, replace them with a single iPTR.
197    if ((InVT.TypeVec[0] == MVT::iPTR || InVT.TypeVec[0] == MVT::iPTRAny) &&
198        TypeVec.size() != 1) {
199      TypeVec.resize(1);
200      TypeVec[0] = InVT.TypeVec[0];
201      MadeChange = true;
202    }
203
204    return MadeChange;
205  }
206
207  // If this is a type list and the RHS is a typelist as well, eliminate entries
208  // from this list that aren't in the other one.
209  bool MadeChange = false;
210  TypeSet InputSet(*this);
211
212  for (unsigned i = 0; i != TypeVec.size(); ++i) {
213    bool InInVT = false;
214    for (unsigned j = 0, e = InVT.TypeVec.size(); j != e; ++j)
215      if (TypeVec[i] == InVT.TypeVec[j]) {
216        InInVT = true;
217        break;
218      }
219
220    if (InInVT) continue;
221    TypeVec.erase(TypeVec.begin()+i--);
222    MadeChange = true;
223  }
224
225  // If we removed all of our types, we have a type contradiction.
226  if (!TypeVec.empty())
227    return MadeChange;
228
229  // FIXME: Really want an SMLoc here!
230  TP.error("Type inference contradiction found, merging '" +
231           InVT.getName() + "' into '" + InputSet.getName() + "'");
232  return false;
233}
234
235/// EnforceInteger - Remove all non-integer types from this set.
236bool EEVT::TypeSet::EnforceInteger(TreePattern &TP) {
237  if (TP.hasError())
238    return false;
239  // If we know nothing, then get the full set.
240  if (TypeVec.empty())
241    return FillWithPossibleTypes(TP, isInteger, "integer");
242  if (!hasFloatingPointTypes())
243    return false;
244
245  TypeSet InputSet(*this);
246
247  // Filter out all the fp types.
248  for (unsigned i = 0; i != TypeVec.size(); ++i)
249    if (!isInteger(TypeVec[i]))
250      TypeVec.erase(TypeVec.begin()+i--);
251
252  if (TypeVec.empty()) {
253    TP.error("Type inference contradiction found, '" +
254             InputSet.getName() + "' needs to be integer");
255    return false;
256  }
257  return true;
258}
259
260/// EnforceFloatingPoint - Remove all integer types from this set.
261bool EEVT::TypeSet::EnforceFloatingPoint(TreePattern &TP) {
262  if (TP.hasError())
263    return false;
264  // If we know nothing, then get the full set.
265  if (TypeVec.empty())
266    return FillWithPossibleTypes(TP, isFloatingPoint, "floating point");
267
268  if (!hasIntegerTypes())
269    return false;
270
271  TypeSet InputSet(*this);
272
273  // Filter out all the fp types.
274  for (unsigned i = 0; i != TypeVec.size(); ++i)
275    if (!isFloatingPoint(TypeVec[i]))
276      TypeVec.erase(TypeVec.begin()+i--);
277
278  if (TypeVec.empty()) {
279    TP.error("Type inference contradiction found, '" +
280             InputSet.getName() + "' needs to be floating point");
281    return false;
282  }
283  return true;
284}
285
286/// EnforceScalar - Remove all vector types from this.
287bool EEVT::TypeSet::EnforceScalar(TreePattern &TP) {
288  if (TP.hasError())
289    return false;
290
291  // If we know nothing, then get the full set.
292  if (TypeVec.empty())
293    return FillWithPossibleTypes(TP, isScalar, "scalar");
294
295  if (!hasVectorTypes())
296    return false;
297
298  TypeSet InputSet(*this);
299
300  // Filter out all the vector types.
301  for (unsigned i = 0; i != TypeVec.size(); ++i)
302    if (!isScalar(TypeVec[i]))
303      TypeVec.erase(TypeVec.begin()+i--);
304
305  if (TypeVec.empty()) {
306    TP.error("Type inference contradiction found, '" +
307             InputSet.getName() + "' needs to be scalar");
308    return false;
309  }
310  return true;
311}
312
313/// EnforceVector - Remove all vector types from this.
314bool EEVT::TypeSet::EnforceVector(TreePattern &TP) {
315  if (TP.hasError())
316    return false;
317
318  // If we know nothing, then get the full set.
319  if (TypeVec.empty())
320    return FillWithPossibleTypes(TP, isVector, "vector");
321
322  TypeSet InputSet(*this);
323  bool MadeChange = false;
324
325  // Filter out all the scalar types.
326  for (unsigned i = 0; i != TypeVec.size(); ++i)
327    if (!isVector(TypeVec[i])) {
328      TypeVec.erase(TypeVec.begin()+i--);
329      MadeChange = true;
330    }
331
332  if (TypeVec.empty()) {
333    TP.error("Type inference contradiction found, '" +
334             InputSet.getName() + "' needs to be a vector");
335    return false;
336  }
337  return MadeChange;
338}
339
340
341
342/// EnforceSmallerThan - 'this' must be a smaller VT than Other.  Update
343/// this an other based on this information.
344bool EEVT::TypeSet::EnforceSmallerThan(EEVT::TypeSet &Other, TreePattern &TP) {
345  if (TP.hasError())
346    return false;
347
348  // Both operands must be integer or FP, but we don't care which.
349  bool MadeChange = false;
350
351  if (isCompletelyUnknown())
352    MadeChange = FillWithPossibleTypes(TP);
353
354  if (Other.isCompletelyUnknown())
355    MadeChange = Other.FillWithPossibleTypes(TP);
356
357  // If one side is known to be integer or known to be FP but the other side has
358  // no information, get at least the type integrality info in there.
359  if (!hasFloatingPointTypes())
360    MadeChange |= Other.EnforceInteger(TP);
361  else if (!hasIntegerTypes())
362    MadeChange |= Other.EnforceFloatingPoint(TP);
363  if (!Other.hasFloatingPointTypes())
364    MadeChange |= EnforceInteger(TP);
365  else if (!Other.hasIntegerTypes())
366    MadeChange |= EnforceFloatingPoint(TP);
367
368  assert(!isCompletelyUnknown() && !Other.isCompletelyUnknown() &&
369         "Should have a type list now");
370
371  // If one contains vectors but the other doesn't pull vectors out.
372  if (!hasVectorTypes())
373    MadeChange |= Other.EnforceScalar(TP);
374  if (!hasVectorTypes())
375    MadeChange |= EnforceScalar(TP);
376
377  if (TypeVec.size() == 1 && Other.TypeVec.size() == 1) {
378    // If we are down to concrete types, this code does not currently
379    // handle nodes which have multiple types, where some types are
380    // integer, and some are fp.  Assert that this is not the case.
381    assert(!(hasIntegerTypes() && hasFloatingPointTypes()) &&
382           !(Other.hasIntegerTypes() && Other.hasFloatingPointTypes()) &&
383           "SDTCisOpSmallerThanOp does not handle mixed int/fp types!");
384
385    // Otherwise, if these are both vector types, either this vector
386    // must have a larger bitsize than the other, or this element type
387    // must be larger than the other.
388    MVT Type(TypeVec[0]);
389    MVT OtherType(Other.TypeVec[0]);
390
391    if (hasVectorTypes() && Other.hasVectorTypes()) {
392      if (Type.getSizeInBits() >= OtherType.getSizeInBits())
393        if (Type.getVectorElementType().getSizeInBits()
394            >= OtherType.getVectorElementType().getSizeInBits()) {
395          TP.error("Type inference contradiction found, '" +
396                   getName() + "' element type not smaller than '" +
397                   Other.getName() +"'!");
398          return false;
399        }
400    } else
401      // For scalar types, the bitsize of this type must be larger
402      // than that of the other.
403      if (Type.getSizeInBits() >= OtherType.getSizeInBits()) {
404        TP.error("Type inference contradiction found, '" +
405                 getName() + "' is not smaller than '" +
406                 Other.getName() +"'!");
407        return false;
408      }
409  }
410
411
412  // Handle int and fp as disjoint sets.  This won't work for patterns
413  // that have mixed fp/int types but those are likely rare and would
414  // not have been accepted by this code previously.
415
416  // Okay, find the smallest type from the current set and remove it from the
417  // largest set.
418  MVT::SimpleValueType SmallestInt = MVT::LAST_VALUETYPE;
419  for (unsigned i = 0, e = TypeVec.size(); i != e; ++i)
420    if (isInteger(TypeVec[i])) {
421      SmallestInt = TypeVec[i];
422      break;
423    }
424  for (unsigned i = 1, e = TypeVec.size(); i != e; ++i)
425    if (isInteger(TypeVec[i]) && TypeVec[i] < SmallestInt)
426      SmallestInt = TypeVec[i];
427
428  MVT::SimpleValueType SmallestFP = MVT::LAST_VALUETYPE;
429  for (unsigned i = 0, e = TypeVec.size(); i != e; ++i)
430    if (isFloatingPoint(TypeVec[i])) {
431      SmallestFP = TypeVec[i];
432      break;
433    }
434  for (unsigned i = 1, e = TypeVec.size(); i != e; ++i)
435    if (isFloatingPoint(TypeVec[i]) && TypeVec[i] < SmallestFP)
436      SmallestFP = TypeVec[i];
437
438  int OtherIntSize = 0;
439  int OtherFPSize = 0;
440  for (SmallVectorImpl<MVT::SimpleValueType>::iterator TVI =
441         Other.TypeVec.begin();
442       TVI != Other.TypeVec.end();
443       /* NULL */) {
444    if (isInteger(*TVI)) {
445      ++OtherIntSize;
446      if (*TVI == SmallestInt) {
447        TVI = Other.TypeVec.erase(TVI);
448        --OtherIntSize;
449        MadeChange = true;
450        continue;
451      }
452    } else if (isFloatingPoint(*TVI)) {
453      ++OtherFPSize;
454      if (*TVI == SmallestFP) {
455        TVI = Other.TypeVec.erase(TVI);
456        --OtherFPSize;
457        MadeChange = true;
458        continue;
459      }
460    }
461    ++TVI;
462  }
463
464  // If this is the only type in the large set, the constraint can never be
465  // satisfied.
466  if ((Other.hasIntegerTypes() && OtherIntSize == 0) ||
467      (Other.hasFloatingPointTypes() && OtherFPSize == 0)) {
468    TP.error("Type inference contradiction found, '" +
469             Other.getName() + "' has nothing larger than '" + getName() +"'!");
470    return false;
471  }
472
473  // Okay, find the largest type in the Other set and remove it from the
474  // current set.
475  MVT::SimpleValueType LargestInt = MVT::Other;
476  for (unsigned i = 0, e = Other.TypeVec.size(); i != e; ++i)
477    if (isInteger(Other.TypeVec[i])) {
478      LargestInt = Other.TypeVec[i];
479      break;
480    }
481  for (unsigned i = 1, e = Other.TypeVec.size(); i != e; ++i)
482    if (isInteger(Other.TypeVec[i]) && Other.TypeVec[i] > LargestInt)
483      LargestInt = Other.TypeVec[i];
484
485  MVT::SimpleValueType LargestFP = MVT::Other;
486  for (unsigned i = 0, e = Other.TypeVec.size(); i != e; ++i)
487    if (isFloatingPoint(Other.TypeVec[i])) {
488      LargestFP = Other.TypeVec[i];
489      break;
490    }
491  for (unsigned i = 1, e = Other.TypeVec.size(); i != e; ++i)
492    if (isFloatingPoint(Other.TypeVec[i]) && Other.TypeVec[i] > LargestFP)
493      LargestFP = Other.TypeVec[i];
494
495  int IntSize = 0;
496  int FPSize = 0;
497  for (SmallVectorImpl<MVT::SimpleValueType>::iterator TVI =
498         TypeVec.begin();
499       TVI != TypeVec.end();
500       /* NULL */) {
501    if (isInteger(*TVI)) {
502      ++IntSize;
503      if (*TVI == LargestInt) {
504        TVI = TypeVec.erase(TVI);
505        --IntSize;
506        MadeChange = true;
507        continue;
508      }
509    } else if (isFloatingPoint(*TVI)) {
510      ++FPSize;
511      if (*TVI == LargestFP) {
512        TVI = TypeVec.erase(TVI);
513        --FPSize;
514        MadeChange = true;
515        continue;
516      }
517    }
518    ++TVI;
519  }
520
521  // If this is the only type in the small set, the constraint can never be
522  // satisfied.
523  if ((hasIntegerTypes() && IntSize == 0) ||
524      (hasFloatingPointTypes() && FPSize == 0)) {
525    TP.error("Type inference contradiction found, '" +
526             getName() + "' has nothing smaller than '" + Other.getName()+"'!");
527    return false;
528  }
529
530  return MadeChange;
531}
532
533/// EnforceVectorEltTypeIs - 'this' is now constrainted to be a vector type
534/// whose element is specified by VTOperand.
535bool EEVT::TypeSet::EnforceVectorEltTypeIs(EEVT::TypeSet &VTOperand,
536                                           TreePattern &TP) {
537  if (TP.hasError())
538    return false;
539
540  // "This" must be a vector and "VTOperand" must be a scalar.
541  bool MadeChange = false;
542  MadeChange |= EnforceVector(TP);
543  MadeChange |= VTOperand.EnforceScalar(TP);
544
545  // If we know the vector type, it forces the scalar to agree.
546  if (isConcrete()) {
547    MVT IVT = getConcrete();
548    IVT = IVT.getVectorElementType();
549    return MadeChange |
550      VTOperand.MergeInTypeInfo(IVT.SimpleTy, TP);
551  }
552
553  // If the scalar type is known, filter out vector types whose element types
554  // disagree.
555  if (!VTOperand.isConcrete())
556    return MadeChange;
557
558  MVT::SimpleValueType VT = VTOperand.getConcrete();
559
560  TypeSet InputSet(*this);
561
562  // Filter out all the types which don't have the right element type.
563  for (unsigned i = 0; i != TypeVec.size(); ++i) {
564    assert(isVector(TypeVec[i]) && "EnforceVector didn't work");
565    if (MVT(TypeVec[i]).getVectorElementType().SimpleTy != VT) {
566      TypeVec.erase(TypeVec.begin()+i--);
567      MadeChange = true;
568    }
569  }
570
571  if (TypeVec.empty()) {  // FIXME: Really want an SMLoc here!
572    TP.error("Type inference contradiction found, forcing '" +
573             InputSet.getName() + "' to have a vector element");
574    return false;
575  }
576  return MadeChange;
577}
578
579/// EnforceVectorSubVectorTypeIs - 'this' is now constrainted to be a
580/// vector type specified by VTOperand.
581bool EEVT::TypeSet::EnforceVectorSubVectorTypeIs(EEVT::TypeSet &VTOperand,
582                                                 TreePattern &TP) {
583  // "This" must be a vector and "VTOperand" must be a vector.
584  bool MadeChange = false;
585  MadeChange |= EnforceVector(TP);
586  MadeChange |= VTOperand.EnforceVector(TP);
587
588  // "This" must be larger than "VTOperand."
589  MadeChange |= VTOperand.EnforceSmallerThan(*this, TP);
590
591  // If we know the vector type, it forces the scalar types to agree.
592  if (isConcrete()) {
593    MVT IVT = getConcrete();
594    IVT = IVT.getVectorElementType();
595
596    EEVT::TypeSet EltTypeSet(IVT.SimpleTy, TP);
597    MadeChange |= VTOperand.EnforceVectorEltTypeIs(EltTypeSet, TP);
598  } else if (VTOperand.isConcrete()) {
599    MVT IVT = VTOperand.getConcrete();
600    IVT = IVT.getVectorElementType();
601
602    EEVT::TypeSet EltTypeSet(IVT.SimpleTy, TP);
603    MadeChange |= EnforceVectorEltTypeIs(EltTypeSet, TP);
604  }
605
606  return MadeChange;
607}
608
609//===----------------------------------------------------------------------===//
610// Helpers for working with extended types.
611
612/// Dependent variable map for CodeGenDAGPattern variant generation
613typedef std::map<std::string, int> DepVarMap;
614
615/// Const iterator shorthand for DepVarMap
616typedef DepVarMap::const_iterator DepVarMap_citer;
617
618static void FindDepVarsOf(TreePatternNode *N, DepVarMap &DepMap) {
619  if (N->isLeaf()) {
620    if (isa<DefInit>(N->getLeafValue()))
621      DepMap[N->getName()]++;
622  } else {
623    for (size_t i = 0, e = N->getNumChildren(); i != e; ++i)
624      FindDepVarsOf(N->getChild(i), DepMap);
625  }
626}
627
628/// Find dependent variables within child patterns
629static void FindDepVars(TreePatternNode *N, MultipleUseVarSet &DepVars) {
630  DepVarMap depcounts;
631  FindDepVarsOf(N, depcounts);
632  for (DepVarMap_citer i = depcounts.begin(); i != depcounts.end(); ++i) {
633    if (i->second > 1)            // std::pair<std::string, int>
634      DepVars.insert(i->first);
635  }
636}
637
638#ifndef NDEBUG
639/// Dump the dependent variable set:
640static void DumpDepVars(MultipleUseVarSet &DepVars) {
641  if (DepVars.empty()) {
642    DEBUG(errs() << "<empty set>");
643  } else {
644    DEBUG(errs() << "[ ");
645    for (MultipleUseVarSet::const_iterator i = DepVars.begin(),
646         e = DepVars.end(); i != e; ++i) {
647      DEBUG(errs() << (*i) << " ");
648    }
649    DEBUG(errs() << "]");
650  }
651}
652#endif
653
654
655//===----------------------------------------------------------------------===//
656// TreePredicateFn Implementation
657//===----------------------------------------------------------------------===//
658
659/// TreePredicateFn constructor.  Here 'N' is a subclass of PatFrag.
660TreePredicateFn::TreePredicateFn(TreePattern *N) : PatFragRec(N) {
661  assert((getPredCode().empty() || getImmCode().empty()) &&
662        ".td file corrupt: can't have a node predicate *and* an imm predicate");
663}
664
665std::string TreePredicateFn::getPredCode() const {
666  return PatFragRec->getRecord()->getValueAsString("PredicateCode");
667}
668
669std::string TreePredicateFn::getImmCode() const {
670  return PatFragRec->getRecord()->getValueAsString("ImmediateCode");
671}
672
673
674/// isAlwaysTrue - Return true if this is a noop predicate.
675bool TreePredicateFn::isAlwaysTrue() const {
676  return getPredCode().empty() && getImmCode().empty();
677}
678
679/// Return the name to use in the generated code to reference this, this is
680/// "Predicate_foo" if from a pattern fragment "foo".
681std::string TreePredicateFn::getFnName() const {
682  return "Predicate_" + PatFragRec->getRecord()->getName();
683}
684
685/// getCodeToRunOnSDNode - Return the code for the function body that
686/// evaluates this predicate.  The argument is expected to be in "Node",
687/// not N.  This handles casting and conversion to a concrete node type as
688/// appropriate.
689std::string TreePredicateFn::getCodeToRunOnSDNode() const {
690  // Handle immediate predicates first.
691  std::string ImmCode = getImmCode();
692  if (!ImmCode.empty()) {
693    std::string Result =
694      "    int64_t Imm = cast<ConstantSDNode>(Node)->getSExtValue();\n";
695    return Result + ImmCode;
696  }
697
698  // Handle arbitrary node predicates.
699  assert(!getPredCode().empty() && "Don't have any predicate code!");
700  std::string ClassName;
701  if (PatFragRec->getOnlyTree()->isLeaf())
702    ClassName = "SDNode";
703  else {
704    Record *Op = PatFragRec->getOnlyTree()->getOperator();
705    ClassName = PatFragRec->getDAGPatterns().getSDNodeInfo(Op).getSDClassName();
706  }
707  std::string Result;
708  if (ClassName == "SDNode")
709    Result = "    SDNode *N = Node;\n";
710  else
711    Result = "    " + ClassName + "*N = cast<" + ClassName + ">(Node);\n";
712
713  return Result + getPredCode();
714}
715
716//===----------------------------------------------------------------------===//
717// PatternToMatch implementation
718//
719
720
721/// getPatternSize - Return the 'size' of this pattern.  We want to match large
722/// patterns before small ones.  This is used to determine the size of a
723/// pattern.
724static unsigned getPatternSize(const TreePatternNode *P,
725                               const CodeGenDAGPatterns &CGP) {
726  unsigned Size = 3;  // The node itself.
727  // If the root node is a ConstantSDNode, increases its size.
728  // e.g. (set R32:$dst, 0).
729  if (P->isLeaf() && isa<IntInit>(P->getLeafValue()))
730    Size += 2;
731
732  // FIXME: This is a hack to statically increase the priority of patterns
733  // which maps a sub-dag to a complex pattern. e.g. favors LEA over ADD.
734  // Later we can allow complexity / cost for each pattern to be (optionally)
735  // specified. To get best possible pattern match we'll need to dynamically
736  // calculate the complexity of all patterns a dag can potentially map to.
737  const ComplexPattern *AM = P->getComplexPatternInfo(CGP);
738  if (AM)
739    Size += AM->getNumOperands() * 3;
740
741  // If this node has some predicate function that must match, it adds to the
742  // complexity of this node.
743  if (!P->getPredicateFns().empty())
744    ++Size;
745
746  // Count children in the count if they are also nodes.
747  for (unsigned i = 0, e = P->getNumChildren(); i != e; ++i) {
748    TreePatternNode *Child = P->getChild(i);
749    if (!Child->isLeaf() && Child->getNumTypes() &&
750        Child->getType(0) != MVT::Other)
751      Size += getPatternSize(Child, CGP);
752    else if (Child->isLeaf()) {
753      if (isa<IntInit>(Child->getLeafValue()))
754        Size += 5;  // Matches a ConstantSDNode (+3) and a specific value (+2).
755      else if (Child->getComplexPatternInfo(CGP))
756        Size += getPatternSize(Child, CGP);
757      else if (!Child->getPredicateFns().empty())
758        ++Size;
759    }
760  }
761
762  return Size;
763}
764
765/// Compute the complexity metric for the input pattern.  This roughly
766/// corresponds to the number of nodes that are covered.
767unsigned PatternToMatch::
768getPatternComplexity(const CodeGenDAGPatterns &CGP) const {
769  return getPatternSize(getSrcPattern(), CGP) + getAddedComplexity();
770}
771
772
773/// getPredicateCheck - Return a single string containing all of this
774/// pattern's predicates concatenated with "&&" operators.
775///
776std::string PatternToMatch::getPredicateCheck() const {
777  std::string PredicateCheck;
778  for (unsigned i = 0, e = Predicates->getSize(); i != e; ++i) {
779    if (DefInit *Pred = dyn_cast<DefInit>(Predicates->getElement(i))) {
780      Record *Def = Pred->getDef();
781      if (!Def->isSubClassOf("Predicate")) {
782#ifndef NDEBUG
783        Def->dump();
784#endif
785        llvm_unreachable("Unknown predicate type!");
786      }
787      if (!PredicateCheck.empty())
788        PredicateCheck += " && ";
789      PredicateCheck += "(" + Def->getValueAsString("CondString") + ")";
790    }
791  }
792
793  return PredicateCheck;
794}
795
796//===----------------------------------------------------------------------===//
797// SDTypeConstraint implementation
798//
799
800SDTypeConstraint::SDTypeConstraint(Record *R) {
801  OperandNo = R->getValueAsInt("OperandNum");
802
803  if (R->isSubClassOf("SDTCisVT")) {
804    ConstraintType = SDTCisVT;
805    x.SDTCisVT_Info.VT = getValueType(R->getValueAsDef("VT"));
806    if (x.SDTCisVT_Info.VT == MVT::isVoid)
807      PrintFatalError(R->getLoc(), "Cannot use 'Void' as type to SDTCisVT");
808
809  } else if (R->isSubClassOf("SDTCisPtrTy")) {
810    ConstraintType = SDTCisPtrTy;
811  } else if (R->isSubClassOf("SDTCisInt")) {
812    ConstraintType = SDTCisInt;
813  } else if (R->isSubClassOf("SDTCisFP")) {
814    ConstraintType = SDTCisFP;
815  } else if (R->isSubClassOf("SDTCisVec")) {
816    ConstraintType = SDTCisVec;
817  } else if (R->isSubClassOf("SDTCisSameAs")) {
818    ConstraintType = SDTCisSameAs;
819    x.SDTCisSameAs_Info.OtherOperandNum = R->getValueAsInt("OtherOperandNum");
820  } else if (R->isSubClassOf("SDTCisVTSmallerThanOp")) {
821    ConstraintType = SDTCisVTSmallerThanOp;
822    x.SDTCisVTSmallerThanOp_Info.OtherOperandNum =
823      R->getValueAsInt("OtherOperandNum");
824  } else if (R->isSubClassOf("SDTCisOpSmallerThanOp")) {
825    ConstraintType = SDTCisOpSmallerThanOp;
826    x.SDTCisOpSmallerThanOp_Info.BigOperandNum =
827      R->getValueAsInt("BigOperandNum");
828  } else if (R->isSubClassOf("SDTCisEltOfVec")) {
829    ConstraintType = SDTCisEltOfVec;
830    x.SDTCisEltOfVec_Info.OtherOperandNum = R->getValueAsInt("OtherOpNum");
831  } else if (R->isSubClassOf("SDTCisSubVecOfVec")) {
832    ConstraintType = SDTCisSubVecOfVec;
833    x.SDTCisSubVecOfVec_Info.OtherOperandNum =
834      R->getValueAsInt("OtherOpNum");
835  } else {
836    errs() << "Unrecognized SDTypeConstraint '" << R->getName() << "'!\n";
837    exit(1);
838  }
839}
840
841/// getOperandNum - Return the node corresponding to operand #OpNo in tree
842/// N, and the result number in ResNo.
843static TreePatternNode *getOperandNum(unsigned OpNo, TreePatternNode *N,
844                                      const SDNodeInfo &NodeInfo,
845                                      unsigned &ResNo) {
846  unsigned NumResults = NodeInfo.getNumResults();
847  if (OpNo < NumResults) {
848    ResNo = OpNo;
849    return N;
850  }
851
852  OpNo -= NumResults;
853
854  if (OpNo >= N->getNumChildren()) {
855    errs() << "Invalid operand number in type constraint "
856           << (OpNo+NumResults) << " ";
857    N->dump();
858    errs() << '\n';
859    exit(1);
860  }
861
862  return N->getChild(OpNo);
863}
864
865/// ApplyTypeConstraint - Given a node in a pattern, apply this type
866/// constraint to the nodes operands.  This returns true if it makes a
867/// change, false otherwise.  If a type contradiction is found, flag an error.
868bool SDTypeConstraint::ApplyTypeConstraint(TreePatternNode *N,
869                                           const SDNodeInfo &NodeInfo,
870                                           TreePattern &TP) const {
871  if (TP.hasError())
872    return false;
873
874  unsigned ResNo = 0; // The result number being referenced.
875  TreePatternNode *NodeToApply = getOperandNum(OperandNo, N, NodeInfo, ResNo);
876
877  switch (ConstraintType) {
878  case SDTCisVT:
879    // Operand must be a particular type.
880    return NodeToApply->UpdateNodeType(ResNo, x.SDTCisVT_Info.VT, TP);
881  case SDTCisPtrTy:
882    // Operand must be same as target pointer type.
883    return NodeToApply->UpdateNodeType(ResNo, MVT::iPTR, TP);
884  case SDTCisInt:
885    // Require it to be one of the legal integer VTs.
886    return NodeToApply->getExtType(ResNo).EnforceInteger(TP);
887  case SDTCisFP:
888    // Require it to be one of the legal fp VTs.
889    return NodeToApply->getExtType(ResNo).EnforceFloatingPoint(TP);
890  case SDTCisVec:
891    // Require it to be one of the legal vector VTs.
892    return NodeToApply->getExtType(ResNo).EnforceVector(TP);
893  case SDTCisSameAs: {
894    unsigned OResNo = 0;
895    TreePatternNode *OtherNode =
896      getOperandNum(x.SDTCisSameAs_Info.OtherOperandNum, N, NodeInfo, OResNo);
897    return NodeToApply->UpdateNodeType(OResNo, OtherNode->getExtType(ResNo),TP)|
898           OtherNode->UpdateNodeType(ResNo,NodeToApply->getExtType(OResNo),TP);
899  }
900  case SDTCisVTSmallerThanOp: {
901    // The NodeToApply must be a leaf node that is a VT.  OtherOperandNum must
902    // have an integer type that is smaller than the VT.
903    if (!NodeToApply->isLeaf() ||
904        !isa<DefInit>(NodeToApply->getLeafValue()) ||
905        !static_cast<DefInit*>(NodeToApply->getLeafValue())->getDef()
906               ->isSubClassOf("ValueType")) {
907      TP.error(N->getOperator()->getName() + " expects a VT operand!");
908      return false;
909    }
910    MVT::SimpleValueType VT =
911     getValueType(static_cast<DefInit*>(NodeToApply->getLeafValue())->getDef());
912
913    EEVT::TypeSet TypeListTmp(VT, TP);
914
915    unsigned OResNo = 0;
916    TreePatternNode *OtherNode =
917      getOperandNum(x.SDTCisVTSmallerThanOp_Info.OtherOperandNum, N, NodeInfo,
918                    OResNo);
919
920    return TypeListTmp.EnforceSmallerThan(OtherNode->getExtType(OResNo), TP);
921  }
922  case SDTCisOpSmallerThanOp: {
923    unsigned BResNo = 0;
924    TreePatternNode *BigOperand =
925      getOperandNum(x.SDTCisOpSmallerThanOp_Info.BigOperandNum, N, NodeInfo,
926                    BResNo);
927    return NodeToApply->getExtType(ResNo).
928                  EnforceSmallerThan(BigOperand->getExtType(BResNo), TP);
929  }
930  case SDTCisEltOfVec: {
931    unsigned VResNo = 0;
932    TreePatternNode *VecOperand =
933      getOperandNum(x.SDTCisEltOfVec_Info.OtherOperandNum, N, NodeInfo,
934                    VResNo);
935
936    // Filter vector types out of VecOperand that don't have the right element
937    // type.
938    return VecOperand->getExtType(VResNo).
939      EnforceVectorEltTypeIs(NodeToApply->getExtType(ResNo), TP);
940  }
941  case SDTCisSubVecOfVec: {
942    unsigned VResNo = 0;
943    TreePatternNode *BigVecOperand =
944      getOperandNum(x.SDTCisSubVecOfVec_Info.OtherOperandNum, N, NodeInfo,
945                    VResNo);
946
947    // Filter vector types out of BigVecOperand that don't have the
948    // right subvector type.
949    return BigVecOperand->getExtType(VResNo).
950      EnforceVectorSubVectorTypeIs(NodeToApply->getExtType(ResNo), TP);
951  }
952  }
953  llvm_unreachable("Invalid ConstraintType!");
954}
955
956// Update the node type to match an instruction operand or result as specified
957// in the ins or outs lists on the instruction definition. Return true if the
958// type was actually changed.
959bool TreePatternNode::UpdateNodeTypeFromInst(unsigned ResNo,
960                                             Record *Operand,
961                                             TreePattern &TP) {
962  // The 'unknown' operand indicates that types should be inferred from the
963  // context.
964  if (Operand->isSubClassOf("unknown_class"))
965    return false;
966
967  // The Operand class specifies a type directly.
968  if (Operand->isSubClassOf("Operand"))
969    return UpdateNodeType(ResNo, getValueType(Operand->getValueAsDef("Type")),
970                          TP);
971
972  // PointerLikeRegClass has a type that is determined at runtime.
973  if (Operand->isSubClassOf("PointerLikeRegClass"))
974    return UpdateNodeType(ResNo, MVT::iPTR, TP);
975
976  // Both RegisterClass and RegisterOperand operands derive their types from a
977  // register class def.
978  Record *RC = 0;
979  if (Operand->isSubClassOf("RegisterClass"))
980    RC = Operand;
981  else if (Operand->isSubClassOf("RegisterOperand"))
982    RC = Operand->getValueAsDef("RegClass");
983
984  assert(RC && "Unknown operand type");
985  CodeGenTarget &Tgt = TP.getDAGPatterns().getTargetInfo();
986  return UpdateNodeType(ResNo, Tgt.getRegisterClass(RC).getValueTypes(), TP);
987}
988
989
990//===----------------------------------------------------------------------===//
991// SDNodeInfo implementation
992//
993SDNodeInfo::SDNodeInfo(Record *R) : Def(R) {
994  EnumName    = R->getValueAsString("Opcode");
995  SDClassName = R->getValueAsString("SDClass");
996  Record *TypeProfile = R->getValueAsDef("TypeProfile");
997  NumResults = TypeProfile->getValueAsInt("NumResults");
998  NumOperands = TypeProfile->getValueAsInt("NumOperands");
999
1000  // Parse the properties.
1001  Properties = 0;
1002  std::vector<Record*> PropList = R->getValueAsListOfDefs("Properties");
1003  for (unsigned i = 0, e = PropList.size(); i != e; ++i) {
1004    if (PropList[i]->getName() == "SDNPCommutative") {
1005      Properties |= 1 << SDNPCommutative;
1006    } else if (PropList[i]->getName() == "SDNPAssociative") {
1007      Properties |= 1 << SDNPAssociative;
1008    } else if (PropList[i]->getName() == "SDNPHasChain") {
1009      Properties |= 1 << SDNPHasChain;
1010    } else if (PropList[i]->getName() == "SDNPOutGlue") {
1011      Properties |= 1 << SDNPOutGlue;
1012    } else if (PropList[i]->getName() == "SDNPInGlue") {
1013      Properties |= 1 << SDNPInGlue;
1014    } else if (PropList[i]->getName() == "SDNPOptInGlue") {
1015      Properties |= 1 << SDNPOptInGlue;
1016    } else if (PropList[i]->getName() == "SDNPMayStore") {
1017      Properties |= 1 << SDNPMayStore;
1018    } else if (PropList[i]->getName() == "SDNPMayLoad") {
1019      Properties |= 1 << SDNPMayLoad;
1020    } else if (PropList[i]->getName() == "SDNPSideEffect") {
1021      Properties |= 1 << SDNPSideEffect;
1022    } else if (PropList[i]->getName() == "SDNPMemOperand") {
1023      Properties |= 1 << SDNPMemOperand;
1024    } else if (PropList[i]->getName() == "SDNPVariadic") {
1025      Properties |= 1 << SDNPVariadic;
1026    } else {
1027      errs() << "Unknown SD Node property '" << PropList[i]->getName()
1028             << "' on node '" << R->getName() << "'!\n";
1029      exit(1);
1030    }
1031  }
1032
1033
1034  // Parse the type constraints.
1035  std::vector<Record*> ConstraintList =
1036    TypeProfile->getValueAsListOfDefs("Constraints");
1037  TypeConstraints.assign(ConstraintList.begin(), ConstraintList.end());
1038}
1039
1040/// getKnownType - If the type constraints on this node imply a fixed type
1041/// (e.g. all stores return void, etc), then return it as an
1042/// MVT::SimpleValueType.  Otherwise, return EEVT::Other.
1043MVT::SimpleValueType SDNodeInfo::getKnownType(unsigned ResNo) const {
1044  unsigned NumResults = getNumResults();
1045  assert(NumResults <= 1 &&
1046         "We only work with nodes with zero or one result so far!");
1047  assert(ResNo == 0 && "Only handles single result nodes so far");
1048
1049  for (unsigned i = 0, e = TypeConstraints.size(); i != e; ++i) {
1050    // Make sure that this applies to the correct node result.
1051    if (TypeConstraints[i].OperandNo >= NumResults)  // FIXME: need value #
1052      continue;
1053
1054    switch (TypeConstraints[i].ConstraintType) {
1055    default: break;
1056    case SDTypeConstraint::SDTCisVT:
1057      return TypeConstraints[i].x.SDTCisVT_Info.VT;
1058    case SDTypeConstraint::SDTCisPtrTy:
1059      return MVT::iPTR;
1060    }
1061  }
1062  return MVT::Other;
1063}
1064
1065//===----------------------------------------------------------------------===//
1066// TreePatternNode implementation
1067//
1068
1069TreePatternNode::~TreePatternNode() {
1070#if 0 // FIXME: implement refcounted tree nodes!
1071  for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
1072    delete getChild(i);
1073#endif
1074}
1075
1076static unsigned GetNumNodeResults(Record *Operator, CodeGenDAGPatterns &CDP) {
1077  if (Operator->getName() == "set" ||
1078      Operator->getName() == "implicit")
1079    return 0;  // All return nothing.
1080
1081  if (Operator->isSubClassOf("Intrinsic"))
1082    return CDP.getIntrinsic(Operator).IS.RetVTs.size();
1083
1084  if (Operator->isSubClassOf("SDNode"))
1085    return CDP.getSDNodeInfo(Operator).getNumResults();
1086
1087  if (Operator->isSubClassOf("PatFrag")) {
1088    // If we've already parsed this pattern fragment, get it.  Otherwise, handle
1089    // the forward reference case where one pattern fragment references another
1090    // before it is processed.
1091    if (TreePattern *PFRec = CDP.getPatternFragmentIfRead(Operator))
1092      return PFRec->getOnlyTree()->getNumTypes();
1093
1094    // Get the result tree.
1095    DagInit *Tree = Operator->getValueAsDag("Fragment");
1096    Record *Op = 0;
1097    if (Tree)
1098      if (DefInit *DI = dyn_cast<DefInit>(Tree->getOperator()))
1099        Op = DI->getDef();
1100    assert(Op && "Invalid Fragment");
1101    return GetNumNodeResults(Op, CDP);
1102  }
1103
1104  if (Operator->isSubClassOf("Instruction")) {
1105    CodeGenInstruction &InstInfo = CDP.getTargetInfo().getInstruction(Operator);
1106
1107    // FIXME: Should allow access to all the results here.
1108    unsigned NumDefsToAdd = InstInfo.Operands.NumDefs ? 1 : 0;
1109
1110    // Add on one implicit def if it has a resolvable type.
1111    if (InstInfo.HasOneImplicitDefWithKnownVT(CDP.getTargetInfo()) !=MVT::Other)
1112      ++NumDefsToAdd;
1113    return NumDefsToAdd;
1114  }
1115
1116  if (Operator->isSubClassOf("SDNodeXForm"))
1117    return 1;  // FIXME: Generalize SDNodeXForm
1118
1119  Operator->dump();
1120  errs() << "Unhandled node in GetNumNodeResults\n";
1121  exit(1);
1122}
1123
1124void TreePatternNode::print(raw_ostream &OS) const {
1125  if (isLeaf())
1126    OS << *getLeafValue();
1127  else
1128    OS << '(' << getOperator()->getName();
1129
1130  for (unsigned i = 0, e = Types.size(); i != e; ++i)
1131    OS << ':' << getExtType(i).getName();
1132
1133  if (!isLeaf()) {
1134    if (getNumChildren() != 0) {
1135      OS << " ";
1136      getChild(0)->print(OS);
1137      for (unsigned i = 1, e = getNumChildren(); i != e; ++i) {
1138        OS << ", ";
1139        getChild(i)->print(OS);
1140      }
1141    }
1142    OS << ")";
1143  }
1144
1145  for (unsigned i = 0, e = PredicateFns.size(); i != e; ++i)
1146    OS << "<<P:" << PredicateFns[i].getFnName() << ">>";
1147  if (TransformFn)
1148    OS << "<<X:" << TransformFn->getName() << ">>";
1149  if (!getName().empty())
1150    OS << ":$" << getName();
1151
1152}
1153void TreePatternNode::dump() const {
1154  print(errs());
1155}
1156
1157/// isIsomorphicTo - Return true if this node is recursively
1158/// isomorphic to the specified node.  For this comparison, the node's
1159/// entire state is considered. The assigned name is ignored, since
1160/// nodes with differing names are considered isomorphic. However, if
1161/// the assigned name is present in the dependent variable set, then
1162/// the assigned name is considered significant and the node is
1163/// isomorphic if the names match.
1164bool TreePatternNode::isIsomorphicTo(const TreePatternNode *N,
1165                                     const MultipleUseVarSet &DepVars) const {
1166  if (N == this) return true;
1167  if (N->isLeaf() != isLeaf() || getExtTypes() != N->getExtTypes() ||
1168      getPredicateFns() != N->getPredicateFns() ||
1169      getTransformFn() != N->getTransformFn())
1170    return false;
1171
1172  if (isLeaf()) {
1173    if (DefInit *DI = dyn_cast<DefInit>(getLeafValue())) {
1174      if (DefInit *NDI = dyn_cast<DefInit>(N->getLeafValue())) {
1175        return ((DI->getDef() == NDI->getDef())
1176                && (DepVars.find(getName()) == DepVars.end()
1177                    || getName() == N->getName()));
1178      }
1179    }
1180    return getLeafValue() == N->getLeafValue();
1181  }
1182
1183  if (N->getOperator() != getOperator() ||
1184      N->getNumChildren() != getNumChildren()) return false;
1185  for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
1186    if (!getChild(i)->isIsomorphicTo(N->getChild(i), DepVars))
1187      return false;
1188  return true;
1189}
1190
1191/// clone - Make a copy of this tree and all of its children.
1192///
1193TreePatternNode *TreePatternNode::clone() const {
1194  TreePatternNode *New;
1195  if (isLeaf()) {
1196    New = new TreePatternNode(getLeafValue(), getNumTypes());
1197  } else {
1198    std::vector<TreePatternNode*> CChildren;
1199    CChildren.reserve(Children.size());
1200    for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
1201      CChildren.push_back(getChild(i)->clone());
1202    New = new TreePatternNode(getOperator(), CChildren, getNumTypes());
1203  }
1204  New->setName(getName());
1205  New->Types = Types;
1206  New->setPredicateFns(getPredicateFns());
1207  New->setTransformFn(getTransformFn());
1208  return New;
1209}
1210
1211/// RemoveAllTypes - Recursively strip all the types of this tree.
1212void TreePatternNode::RemoveAllTypes() {
1213  for (unsigned i = 0, e = Types.size(); i != e; ++i)
1214    Types[i] = EEVT::TypeSet();  // Reset to unknown type.
1215  if (isLeaf()) return;
1216  for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
1217    getChild(i)->RemoveAllTypes();
1218}
1219
1220
1221/// SubstituteFormalArguments - Replace the formal arguments in this tree
1222/// with actual values specified by ArgMap.
1223void TreePatternNode::
1224SubstituteFormalArguments(std::map<std::string, TreePatternNode*> &ArgMap) {
1225  if (isLeaf()) return;
1226
1227  for (unsigned i = 0, e = getNumChildren(); i != e; ++i) {
1228    TreePatternNode *Child = getChild(i);
1229    if (Child->isLeaf()) {
1230      Init *Val = Child->getLeafValue();
1231      if (isa<DefInit>(Val) &&
1232          cast<DefInit>(Val)->getDef()->getName() == "node") {
1233        // We found a use of a formal argument, replace it with its value.
1234        TreePatternNode *NewChild = ArgMap[Child->getName()];
1235        assert(NewChild && "Couldn't find formal argument!");
1236        assert((Child->getPredicateFns().empty() ||
1237                NewChild->getPredicateFns() == Child->getPredicateFns()) &&
1238               "Non-empty child predicate clobbered!");
1239        setChild(i, NewChild);
1240      }
1241    } else {
1242      getChild(i)->SubstituteFormalArguments(ArgMap);
1243    }
1244  }
1245}
1246
1247
1248/// InlinePatternFragments - If this pattern refers to any pattern
1249/// fragments, inline them into place, giving us a pattern without any
1250/// PatFrag references.
1251TreePatternNode *TreePatternNode::InlinePatternFragments(TreePattern &TP) {
1252  if (TP.hasError())
1253    return 0;
1254
1255  if (isLeaf())
1256     return this;  // nothing to do.
1257  Record *Op = getOperator();
1258
1259  if (!Op->isSubClassOf("PatFrag")) {
1260    // Just recursively inline children nodes.
1261    for (unsigned i = 0, e = getNumChildren(); i != e; ++i) {
1262      TreePatternNode *Child = getChild(i);
1263      TreePatternNode *NewChild = Child->InlinePatternFragments(TP);
1264
1265      assert((Child->getPredicateFns().empty() ||
1266              NewChild->getPredicateFns() == Child->getPredicateFns()) &&
1267             "Non-empty child predicate clobbered!");
1268
1269      setChild(i, NewChild);
1270    }
1271    return this;
1272  }
1273
1274  // Otherwise, we found a reference to a fragment.  First, look up its
1275  // TreePattern record.
1276  TreePattern *Frag = TP.getDAGPatterns().getPatternFragment(Op);
1277
1278  // Verify that we are passing the right number of operands.
1279  if (Frag->getNumArgs() != Children.size()) {
1280    TP.error("'" + Op->getName() + "' fragment requires " +
1281             utostr(Frag->getNumArgs()) + " operands!");
1282    return 0;
1283  }
1284
1285  TreePatternNode *FragTree = Frag->getOnlyTree()->clone();
1286
1287  TreePredicateFn PredFn(Frag);
1288  if (!PredFn.isAlwaysTrue())
1289    FragTree->addPredicateFn(PredFn);
1290
1291  // Resolve formal arguments to their actual value.
1292  if (Frag->getNumArgs()) {
1293    // Compute the map of formal to actual arguments.
1294    std::map<std::string, TreePatternNode*> ArgMap;
1295    for (unsigned i = 0, e = Frag->getNumArgs(); i != e; ++i)
1296      ArgMap[Frag->getArgName(i)] = getChild(i)->InlinePatternFragments(TP);
1297
1298    FragTree->SubstituteFormalArguments(ArgMap);
1299  }
1300
1301  FragTree->setName(getName());
1302  for (unsigned i = 0, e = Types.size(); i != e; ++i)
1303    FragTree->UpdateNodeType(i, getExtType(i), TP);
1304
1305  // Transfer in the old predicates.
1306  for (unsigned i = 0, e = getPredicateFns().size(); i != e; ++i)
1307    FragTree->addPredicateFn(getPredicateFns()[i]);
1308
1309  // Get a new copy of this fragment to stitch into here.
1310  //delete this;    // FIXME: implement refcounting!
1311
1312  // The fragment we inlined could have recursive inlining that is needed.  See
1313  // if there are any pattern fragments in it and inline them as needed.
1314  return FragTree->InlinePatternFragments(TP);
1315}
1316
1317/// getImplicitType - Check to see if the specified record has an implicit
1318/// type which should be applied to it.  This will infer the type of register
1319/// references from the register file information, for example.
1320///
1321/// When Unnamed is set, return the type of a DAG operand with no name, such as
1322/// the F8RC register class argument in:
1323///
1324///   (COPY_TO_REGCLASS GPR:$src, F8RC)
1325///
1326/// When Unnamed is false, return the type of a named DAG operand such as the
1327/// GPR:$src operand above.
1328///
1329static EEVT::TypeSet getImplicitType(Record *R, unsigned ResNo,
1330                                     bool NotRegisters,
1331                                     bool Unnamed,
1332                                     TreePattern &TP) {
1333  // Check to see if this is a register operand.
1334  if (R->isSubClassOf("RegisterOperand")) {
1335    assert(ResNo == 0 && "Regoperand ref only has one result!");
1336    if (NotRegisters)
1337      return EEVT::TypeSet(); // Unknown.
1338    Record *RegClass = R->getValueAsDef("RegClass");
1339    const CodeGenTarget &T = TP.getDAGPatterns().getTargetInfo();
1340    return EEVT::TypeSet(T.getRegisterClass(RegClass).getValueTypes());
1341  }
1342
1343  // Check to see if this is a register or a register class.
1344  if (R->isSubClassOf("RegisterClass")) {
1345    assert(ResNo == 0 && "Regclass ref only has one result!");
1346    // An unnamed register class represents itself as an i32 immediate, for
1347    // example on a COPY_TO_REGCLASS instruction.
1348    if (Unnamed)
1349      return EEVT::TypeSet(MVT::i32, TP);
1350
1351    // In a named operand, the register class provides the possible set of
1352    // types.
1353    if (NotRegisters)
1354      return EEVT::TypeSet(); // Unknown.
1355    const CodeGenTarget &T = TP.getDAGPatterns().getTargetInfo();
1356    return EEVT::TypeSet(T.getRegisterClass(R).getValueTypes());
1357  }
1358
1359  if (R->isSubClassOf("PatFrag")) {
1360    assert(ResNo == 0 && "FIXME: PatFrag with multiple results?");
1361    // Pattern fragment types will be resolved when they are inlined.
1362    return EEVT::TypeSet(); // Unknown.
1363  }
1364
1365  if (R->isSubClassOf("Register")) {
1366    assert(ResNo == 0 && "Registers only produce one result!");
1367    if (NotRegisters)
1368      return EEVT::TypeSet(); // Unknown.
1369    const CodeGenTarget &T = TP.getDAGPatterns().getTargetInfo();
1370    return EEVT::TypeSet(T.getRegisterVTs(R));
1371  }
1372
1373  if (R->isSubClassOf("SubRegIndex")) {
1374    assert(ResNo == 0 && "SubRegisterIndices only produce one result!");
1375    return EEVT::TypeSet();
1376  }
1377
1378  if (R->isSubClassOf("ValueType")) {
1379    assert(ResNo == 0 && "This node only has one result!");
1380    // An unnamed VTSDNode represents itself as an MVT::Other immediate.
1381    //
1382    //   (sext_inreg GPR:$src, i16)
1383    //                         ~~~
1384    if (Unnamed)
1385      return EEVT::TypeSet(MVT::Other, TP);
1386    // With a name, the ValueType simply provides the type of the named
1387    // variable.
1388    //
1389    //   (sext_inreg i32:$src, i16)
1390    //               ~~~~~~~~
1391    if (NotRegisters)
1392      return EEVT::TypeSet(); // Unknown.
1393    return EEVT::TypeSet(getValueType(R), TP);
1394  }
1395
1396  if (R->isSubClassOf("CondCode")) {
1397    assert(ResNo == 0 && "This node only has one result!");
1398    // Using a CondCodeSDNode.
1399    return EEVT::TypeSet(MVT::Other, TP);
1400  }
1401
1402  if (R->isSubClassOf("ComplexPattern")) {
1403    assert(ResNo == 0 && "FIXME: ComplexPattern with multiple results?");
1404    if (NotRegisters)
1405      return EEVT::TypeSet(); // Unknown.
1406   return EEVT::TypeSet(TP.getDAGPatterns().getComplexPattern(R).getValueType(),
1407                         TP);
1408  }
1409  if (R->isSubClassOf("PointerLikeRegClass")) {
1410    assert(ResNo == 0 && "Regclass can only have one result!");
1411    return EEVT::TypeSet(MVT::iPTR, TP);
1412  }
1413
1414  if (R->getName() == "node" || R->getName() == "srcvalue" ||
1415      R->getName() == "zero_reg") {
1416    // Placeholder.
1417    return EEVT::TypeSet(); // Unknown.
1418  }
1419
1420  TP.error("Unknown node flavor used in pattern: " + R->getName());
1421  return EEVT::TypeSet(MVT::Other, TP);
1422}
1423
1424
1425/// getIntrinsicInfo - If this node corresponds to an intrinsic, return the
1426/// CodeGenIntrinsic information for it, otherwise return a null pointer.
1427const CodeGenIntrinsic *TreePatternNode::
1428getIntrinsicInfo(const CodeGenDAGPatterns &CDP) const {
1429  if (getOperator() != CDP.get_intrinsic_void_sdnode() &&
1430      getOperator() != CDP.get_intrinsic_w_chain_sdnode() &&
1431      getOperator() != CDP.get_intrinsic_wo_chain_sdnode())
1432    return 0;
1433
1434  unsigned IID = cast<IntInit>(getChild(0)->getLeafValue())->getValue();
1435  return &CDP.getIntrinsicInfo(IID);
1436}
1437
1438/// getComplexPatternInfo - If this node corresponds to a ComplexPattern,
1439/// return the ComplexPattern information, otherwise return null.
1440const ComplexPattern *
1441TreePatternNode::getComplexPatternInfo(const CodeGenDAGPatterns &CGP) const {
1442  if (!isLeaf()) return 0;
1443
1444  DefInit *DI = dyn_cast<DefInit>(getLeafValue());
1445  if (DI && DI->getDef()->isSubClassOf("ComplexPattern"))
1446    return &CGP.getComplexPattern(DI->getDef());
1447  return 0;
1448}
1449
1450/// NodeHasProperty - Return true if this node has the specified property.
1451bool TreePatternNode::NodeHasProperty(SDNP Property,
1452                                      const CodeGenDAGPatterns &CGP) const {
1453  if (isLeaf()) {
1454    if (const ComplexPattern *CP = getComplexPatternInfo(CGP))
1455      return CP->hasProperty(Property);
1456    return false;
1457  }
1458
1459  Record *Operator = getOperator();
1460  if (!Operator->isSubClassOf("SDNode")) return false;
1461
1462  return CGP.getSDNodeInfo(Operator).hasProperty(Property);
1463}
1464
1465
1466
1467
1468/// TreeHasProperty - Return true if any node in this tree has the specified
1469/// property.
1470bool TreePatternNode::TreeHasProperty(SDNP Property,
1471                                      const CodeGenDAGPatterns &CGP) const {
1472  if (NodeHasProperty(Property, CGP))
1473    return true;
1474  for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
1475    if (getChild(i)->TreeHasProperty(Property, CGP))
1476      return true;
1477  return false;
1478}
1479
1480/// isCommutativeIntrinsic - Return true if the node corresponds to a
1481/// commutative intrinsic.
1482bool
1483TreePatternNode::isCommutativeIntrinsic(const CodeGenDAGPatterns &CDP) const {
1484  if (const CodeGenIntrinsic *Int = getIntrinsicInfo(CDP))
1485    return Int->isCommutative;
1486  return false;
1487}
1488
1489
1490/// ApplyTypeConstraints - Apply all of the type constraints relevant to
1491/// this node and its children in the tree.  This returns true if it makes a
1492/// change, false otherwise.  If a type contradiction is found, flag an error.
1493bool TreePatternNode::ApplyTypeConstraints(TreePattern &TP, bool NotRegisters) {
1494  if (TP.hasError())
1495    return false;
1496
1497  CodeGenDAGPatterns &CDP = TP.getDAGPatterns();
1498  if (isLeaf()) {
1499    if (DefInit *DI = dyn_cast<DefInit>(getLeafValue())) {
1500      // If it's a regclass or something else known, include the type.
1501      bool MadeChange = false;
1502      for (unsigned i = 0, e = Types.size(); i != e; ++i)
1503        MadeChange |= UpdateNodeType(i, getImplicitType(DI->getDef(), i,
1504                                                        NotRegisters,
1505                                                        !hasName(), TP), TP);
1506      return MadeChange;
1507    }
1508
1509    if (IntInit *II = dyn_cast<IntInit>(getLeafValue())) {
1510      assert(Types.size() == 1 && "Invalid IntInit");
1511
1512      // Int inits are always integers. :)
1513      bool MadeChange = Types[0].EnforceInteger(TP);
1514
1515      if (!Types[0].isConcrete())
1516        return MadeChange;
1517
1518      MVT::SimpleValueType VT = getType(0);
1519      if (VT == MVT::iPTR || VT == MVT::iPTRAny)
1520        return MadeChange;
1521
1522      unsigned Size = MVT(VT).getSizeInBits();
1523      // Make sure that the value is representable for this type.
1524      if (Size >= 32) return MadeChange;
1525
1526      // Check that the value doesn't use more bits than we have. It must either
1527      // be a sign- or zero-extended equivalent of the original.
1528      int64_t SignBitAndAbove = II->getValue() >> (Size - 1);
1529      if (SignBitAndAbove == -1 || SignBitAndAbove == 0 || SignBitAndAbove == 1)
1530        return MadeChange;
1531
1532      TP.error("Integer value '" + itostr(II->getValue()) +
1533               "' is out of range for type '" + getEnumName(getType(0)) + "'!");
1534      return false;
1535    }
1536    return false;
1537  }
1538
1539  // special handling for set, which isn't really an SDNode.
1540  if (getOperator()->getName() == "set") {
1541    assert(getNumTypes() == 0 && "Set doesn't produce a value");
1542    assert(getNumChildren() >= 2 && "Missing RHS of a set?");
1543    unsigned NC = getNumChildren();
1544
1545    TreePatternNode *SetVal = getChild(NC-1);
1546    bool MadeChange = SetVal->ApplyTypeConstraints(TP, NotRegisters);
1547
1548    for (unsigned i = 0; i < NC-1; ++i) {
1549      TreePatternNode *Child = getChild(i);
1550      MadeChange |= Child->ApplyTypeConstraints(TP, NotRegisters);
1551
1552      // Types of operands must match.
1553      MadeChange |= Child->UpdateNodeType(0, SetVal->getExtType(i), TP);
1554      MadeChange |= SetVal->UpdateNodeType(i, Child->getExtType(0), TP);
1555    }
1556    return MadeChange;
1557  }
1558
1559  if (getOperator()->getName() == "implicit") {
1560    assert(getNumTypes() == 0 && "Node doesn't produce a value");
1561
1562    bool MadeChange = false;
1563    for (unsigned i = 0; i < getNumChildren(); ++i)
1564      MadeChange = getChild(i)->ApplyTypeConstraints(TP, NotRegisters);
1565    return MadeChange;
1566  }
1567
1568  if (const CodeGenIntrinsic *Int = getIntrinsicInfo(CDP)) {
1569    bool MadeChange = false;
1570
1571    // Apply the result type to the node.
1572    unsigned NumRetVTs = Int->IS.RetVTs.size();
1573    unsigned NumParamVTs = Int->IS.ParamVTs.size();
1574
1575    for (unsigned i = 0, e = NumRetVTs; i != e; ++i)
1576      MadeChange |= UpdateNodeType(i, Int->IS.RetVTs[i], TP);
1577
1578    if (getNumChildren() != NumParamVTs + 1) {
1579      TP.error("Intrinsic '" + Int->Name + "' expects " +
1580               utostr(NumParamVTs) + " operands, not " +
1581               utostr(getNumChildren() - 1) + " operands!");
1582      return false;
1583    }
1584
1585    // Apply type info to the intrinsic ID.
1586    MadeChange |= getChild(0)->UpdateNodeType(0, MVT::iPTR, TP);
1587
1588    for (unsigned i = 0, e = getNumChildren()-1; i != e; ++i) {
1589      MadeChange |= getChild(i+1)->ApplyTypeConstraints(TP, NotRegisters);
1590
1591      MVT::SimpleValueType OpVT = Int->IS.ParamVTs[i];
1592      assert(getChild(i+1)->getNumTypes() == 1 && "Unhandled case");
1593      MadeChange |= getChild(i+1)->UpdateNodeType(0, OpVT, TP);
1594    }
1595    return MadeChange;
1596  }
1597
1598  if (getOperator()->isSubClassOf("SDNode")) {
1599    const SDNodeInfo &NI = CDP.getSDNodeInfo(getOperator());
1600
1601    // Check that the number of operands is sane.  Negative operands -> varargs.
1602    if (NI.getNumOperands() >= 0 &&
1603        getNumChildren() != (unsigned)NI.getNumOperands()) {
1604      TP.error(getOperator()->getName() + " node requires exactly " +
1605               itostr(NI.getNumOperands()) + " operands!");
1606      return false;
1607    }
1608
1609    bool MadeChange = NI.ApplyTypeConstraints(this, TP);
1610    for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
1611      MadeChange |= getChild(i)->ApplyTypeConstraints(TP, NotRegisters);
1612    return MadeChange;
1613  }
1614
1615  if (getOperator()->isSubClassOf("Instruction")) {
1616    const DAGInstruction &Inst = CDP.getInstruction(getOperator());
1617    CodeGenInstruction &InstInfo =
1618      CDP.getTargetInfo().getInstruction(getOperator());
1619
1620    bool MadeChange = false;
1621
1622    // Apply the result types to the node, these come from the things in the
1623    // (outs) list of the instruction.
1624    // FIXME: Cap at one result so far.
1625    unsigned NumResultsToAdd = InstInfo.Operands.NumDefs ? 1 : 0;
1626    for (unsigned ResNo = 0; ResNo != NumResultsToAdd; ++ResNo)
1627      MadeChange |= UpdateNodeTypeFromInst(ResNo, Inst.getResult(ResNo), TP);
1628
1629    // If the instruction has implicit defs, we apply the first one as a result.
1630    // FIXME: This sucks, it should apply all implicit defs.
1631    if (!InstInfo.ImplicitDefs.empty()) {
1632      unsigned ResNo = NumResultsToAdd;
1633
1634      // FIXME: Generalize to multiple possible types and multiple possible
1635      // ImplicitDefs.
1636      MVT::SimpleValueType VT =
1637        InstInfo.HasOneImplicitDefWithKnownVT(CDP.getTargetInfo());
1638
1639      if (VT != MVT::Other)
1640        MadeChange |= UpdateNodeType(ResNo, VT, TP);
1641    }
1642
1643    // If this is an INSERT_SUBREG, constrain the source and destination VTs to
1644    // be the same.
1645    if (getOperator()->getName() == "INSERT_SUBREG") {
1646      assert(getChild(0)->getNumTypes() == 1 && "FIXME: Unhandled");
1647      MadeChange |= UpdateNodeType(0, getChild(0)->getExtType(0), TP);
1648      MadeChange |= getChild(0)->UpdateNodeType(0, getExtType(0), TP);
1649    }
1650
1651    unsigned ChildNo = 0;
1652    for (unsigned i = 0, e = Inst.getNumOperands(); i != e; ++i) {
1653      Record *OperandNode = Inst.getOperand(i);
1654
1655      // If the instruction expects a predicate or optional def operand, we
1656      // codegen this by setting the operand to it's default value if it has a
1657      // non-empty DefaultOps field.
1658      if (OperandNode->isSubClassOf("OperandWithDefaultOps") &&
1659          !CDP.getDefaultOperand(OperandNode).DefaultOps.empty())
1660        continue;
1661
1662      // Verify that we didn't run out of provided operands.
1663      if (ChildNo >= getNumChildren()) {
1664        TP.error("Instruction '" + getOperator()->getName() +
1665                 "' expects more operands than were provided.");
1666        return false;
1667      }
1668
1669      TreePatternNode *Child = getChild(ChildNo++);
1670      unsigned ChildResNo = 0;  // Instructions always use res #0 of their op.
1671
1672      // If the operand has sub-operands, they may be provided by distinct
1673      // child patterns, so attempt to match each sub-operand separately.
1674      if (OperandNode->isSubClassOf("Operand")) {
1675        DagInit *MIOpInfo = OperandNode->getValueAsDag("MIOperandInfo");
1676        if (unsigned NumArgs = MIOpInfo->getNumArgs()) {
1677          // But don't do that if the whole operand is being provided by
1678          // a single ComplexPattern.
1679          const ComplexPattern *AM = Child->getComplexPatternInfo(CDP);
1680          if (!AM || AM->getNumOperands() < NumArgs) {
1681            // Match first sub-operand against the child we already have.
1682            Record *SubRec = cast<DefInit>(MIOpInfo->getArg(0))->getDef();
1683            MadeChange |=
1684              Child->UpdateNodeTypeFromInst(ChildResNo, SubRec, TP);
1685
1686            // And the remaining sub-operands against subsequent children.
1687            for (unsigned Arg = 1; Arg < NumArgs; ++Arg) {
1688              if (ChildNo >= getNumChildren()) {
1689                TP.error("Instruction '" + getOperator()->getName() +
1690                         "' expects more operands than were provided.");
1691                return false;
1692              }
1693              Child = getChild(ChildNo++);
1694
1695              SubRec = cast<DefInit>(MIOpInfo->getArg(Arg))->getDef();
1696              MadeChange |=
1697                Child->UpdateNodeTypeFromInst(ChildResNo, SubRec, TP);
1698            }
1699            continue;
1700          }
1701        }
1702      }
1703
1704      // If we didn't match by pieces above, attempt to match the whole
1705      // operand now.
1706      MadeChange |= Child->UpdateNodeTypeFromInst(ChildResNo, OperandNode, TP);
1707    }
1708
1709    if (ChildNo != getNumChildren()) {
1710      TP.error("Instruction '" + getOperator()->getName() +
1711               "' was provided too many operands!");
1712      return false;
1713    }
1714
1715    for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
1716      MadeChange |= getChild(i)->ApplyTypeConstraints(TP, NotRegisters);
1717    return MadeChange;
1718  }
1719
1720  assert(getOperator()->isSubClassOf("SDNodeXForm") && "Unknown node type!");
1721
1722  // Node transforms always take one operand.
1723  if (getNumChildren() != 1) {
1724    TP.error("Node transform '" + getOperator()->getName() +
1725             "' requires one operand!");
1726    return false;
1727  }
1728
1729  bool MadeChange = getChild(0)->ApplyTypeConstraints(TP, NotRegisters);
1730
1731
1732  // If either the output or input of the xform does not have exact
1733  // type info. We assume they must be the same. Otherwise, it is perfectly
1734  // legal to transform from one type to a completely different type.
1735#if 0
1736  if (!hasTypeSet() || !getChild(0)->hasTypeSet()) {
1737    bool MadeChange = UpdateNodeType(getChild(0)->getExtType(), TP);
1738    MadeChange |= getChild(0)->UpdateNodeType(getExtType(), TP);
1739    return MadeChange;
1740  }
1741#endif
1742  return MadeChange;
1743}
1744
1745/// OnlyOnRHSOfCommutative - Return true if this value is only allowed on the
1746/// RHS of a commutative operation, not the on LHS.
1747static bool OnlyOnRHSOfCommutative(TreePatternNode *N) {
1748  if (!N->isLeaf() && N->getOperator()->getName() == "imm")
1749    return true;
1750  if (N->isLeaf() && isa<IntInit>(N->getLeafValue()))
1751    return true;
1752  return false;
1753}
1754
1755
1756/// canPatternMatch - If it is impossible for this pattern to match on this
1757/// target, fill in Reason and return false.  Otherwise, return true.  This is
1758/// used as a sanity check for .td files (to prevent people from writing stuff
1759/// that can never possibly work), and to prevent the pattern permuter from
1760/// generating stuff that is useless.
1761bool TreePatternNode::canPatternMatch(std::string &Reason,
1762                                      const CodeGenDAGPatterns &CDP) {
1763  if (isLeaf()) return true;
1764
1765  for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
1766    if (!getChild(i)->canPatternMatch(Reason, CDP))
1767      return false;
1768
1769  // If this is an intrinsic, handle cases that would make it not match.  For
1770  // example, if an operand is required to be an immediate.
1771  if (getOperator()->isSubClassOf("Intrinsic")) {
1772    // TODO:
1773    return true;
1774  }
1775
1776  // If this node is a commutative operator, check that the LHS isn't an
1777  // immediate.
1778  const SDNodeInfo &NodeInfo = CDP.getSDNodeInfo(getOperator());
1779  bool isCommIntrinsic = isCommutativeIntrinsic(CDP);
1780  if (NodeInfo.hasProperty(SDNPCommutative) || isCommIntrinsic) {
1781    // Scan all of the operands of the node and make sure that only the last one
1782    // is a constant node, unless the RHS also is.
1783    if (!OnlyOnRHSOfCommutative(getChild(getNumChildren()-1))) {
1784      bool Skip = isCommIntrinsic ? 1 : 0; // First operand is intrinsic id.
1785      for (unsigned i = Skip, e = getNumChildren()-1; i != e; ++i)
1786        if (OnlyOnRHSOfCommutative(getChild(i))) {
1787          Reason="Immediate value must be on the RHS of commutative operators!";
1788          return false;
1789        }
1790    }
1791  }
1792
1793  return true;
1794}
1795
1796//===----------------------------------------------------------------------===//
1797// TreePattern implementation
1798//
1799
1800TreePattern::TreePattern(Record *TheRec, ListInit *RawPat, bool isInput,
1801                         CodeGenDAGPatterns &cdp) : TheRecord(TheRec), CDP(cdp),
1802                         isInputPattern(isInput), HasError(false) {
1803  for (unsigned i = 0, e = RawPat->getSize(); i != e; ++i)
1804    Trees.push_back(ParseTreePattern(RawPat->getElement(i), ""));
1805}
1806
1807TreePattern::TreePattern(Record *TheRec, DagInit *Pat, bool isInput,
1808                         CodeGenDAGPatterns &cdp) : TheRecord(TheRec), CDP(cdp),
1809                         isInputPattern(isInput), HasError(false) {
1810  Trees.push_back(ParseTreePattern(Pat, ""));
1811}
1812
1813TreePattern::TreePattern(Record *TheRec, TreePatternNode *Pat, bool isInput,
1814                         CodeGenDAGPatterns &cdp) : TheRecord(TheRec), CDP(cdp),
1815                         isInputPattern(isInput), HasError(false) {
1816  Trees.push_back(Pat);
1817}
1818
1819void TreePattern::error(const std::string &Msg) {
1820  if (HasError)
1821    return;
1822  dump();
1823  PrintError(TheRecord->getLoc(), "In " + TheRecord->getName() + ": " + Msg);
1824  HasError = true;
1825}
1826
1827void TreePattern::ComputeNamedNodes() {
1828  for (unsigned i = 0, e = Trees.size(); i != e; ++i)
1829    ComputeNamedNodes(Trees[i]);
1830}
1831
1832void TreePattern::ComputeNamedNodes(TreePatternNode *N) {
1833  if (!N->getName().empty())
1834    NamedNodes[N->getName()].push_back(N);
1835
1836  for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i)
1837    ComputeNamedNodes(N->getChild(i));
1838}
1839
1840
1841TreePatternNode *TreePattern::ParseTreePattern(Init *TheInit, StringRef OpName){
1842  if (DefInit *DI = dyn_cast<DefInit>(TheInit)) {
1843    Record *R = DI->getDef();
1844
1845    // Direct reference to a leaf DagNode or PatFrag?  Turn it into a
1846    // TreePatternNode of its own.  For example:
1847    ///   (foo GPR, imm) -> (foo GPR, (imm))
1848    if (R->isSubClassOf("SDNode") || R->isSubClassOf("PatFrag"))
1849      return ParseTreePattern(
1850        DagInit::get(DI, "",
1851                     std::vector<std::pair<Init*, std::string> >()),
1852        OpName);
1853
1854    // Input argument?
1855    TreePatternNode *Res = new TreePatternNode(DI, 1);
1856    if (R->getName() == "node" && !OpName.empty()) {
1857      if (OpName.empty())
1858        error("'node' argument requires a name to match with operand list");
1859      Args.push_back(OpName);
1860    }
1861
1862    Res->setName(OpName);
1863    return Res;
1864  }
1865
1866  // ?:$name or just $name.
1867  if (TheInit == UnsetInit::get()) {
1868    if (OpName.empty())
1869      error("'?' argument requires a name to match with operand list");
1870    TreePatternNode *Res = new TreePatternNode(TheInit, 1);
1871    Args.push_back(OpName);
1872    Res->setName(OpName);
1873    return Res;
1874  }
1875
1876  if (IntInit *II = dyn_cast<IntInit>(TheInit)) {
1877    if (!OpName.empty())
1878      error("Constant int argument should not have a name!");
1879    return new TreePatternNode(II, 1);
1880  }
1881
1882  if (BitsInit *BI = dyn_cast<BitsInit>(TheInit)) {
1883    // Turn this into an IntInit.
1884    Init *II = BI->convertInitializerTo(IntRecTy::get());
1885    if (II == 0 || !isa<IntInit>(II))
1886      error("Bits value must be constants!");
1887    return ParseTreePattern(II, OpName);
1888  }
1889
1890  DagInit *Dag = dyn_cast<DagInit>(TheInit);
1891  if (!Dag) {
1892    TheInit->dump();
1893    error("Pattern has unexpected init kind!");
1894  }
1895  DefInit *OpDef = dyn_cast<DefInit>(Dag->getOperator());
1896  if (!OpDef) error("Pattern has unexpected operator type!");
1897  Record *Operator = OpDef->getDef();
1898
1899  if (Operator->isSubClassOf("ValueType")) {
1900    // If the operator is a ValueType, then this must be "type cast" of a leaf
1901    // node.
1902    if (Dag->getNumArgs() != 1)
1903      error("Type cast only takes one operand!");
1904
1905    TreePatternNode *New = ParseTreePattern(Dag->getArg(0), Dag->getArgName(0));
1906
1907    // Apply the type cast.
1908    assert(New->getNumTypes() == 1 && "FIXME: Unhandled");
1909    New->UpdateNodeType(0, getValueType(Operator), *this);
1910
1911    if (!OpName.empty())
1912      error("ValueType cast should not have a name!");
1913    return New;
1914  }
1915
1916  // Verify that this is something that makes sense for an operator.
1917  if (!Operator->isSubClassOf("PatFrag") &&
1918      !Operator->isSubClassOf("SDNode") &&
1919      !Operator->isSubClassOf("Instruction") &&
1920      !Operator->isSubClassOf("SDNodeXForm") &&
1921      !Operator->isSubClassOf("Intrinsic") &&
1922      Operator->getName() != "set" &&
1923      Operator->getName() != "implicit")
1924    error("Unrecognized node '" + Operator->getName() + "'!");
1925
1926  //  Check to see if this is something that is illegal in an input pattern.
1927  if (isInputPattern) {
1928    if (Operator->isSubClassOf("Instruction") ||
1929        Operator->isSubClassOf("SDNodeXForm"))
1930      error("Cannot use '" + Operator->getName() + "' in an input pattern!");
1931  } else {
1932    if (Operator->isSubClassOf("Intrinsic"))
1933      error("Cannot use '" + Operator->getName() + "' in an output pattern!");
1934
1935    if (Operator->isSubClassOf("SDNode") &&
1936        Operator->getName() != "imm" &&
1937        Operator->getName() != "fpimm" &&
1938        Operator->getName() != "tglobaltlsaddr" &&
1939        Operator->getName() != "tconstpool" &&
1940        Operator->getName() != "tjumptable" &&
1941        Operator->getName() != "tframeindex" &&
1942        Operator->getName() != "texternalsym" &&
1943        Operator->getName() != "tblockaddress" &&
1944        Operator->getName() != "tglobaladdr" &&
1945        Operator->getName() != "bb" &&
1946        Operator->getName() != "vt")
1947      error("Cannot use '" + Operator->getName() + "' in an output pattern!");
1948  }
1949
1950  std::vector<TreePatternNode*> Children;
1951
1952  // Parse all the operands.
1953  for (unsigned i = 0, e = Dag->getNumArgs(); i != e; ++i)
1954    Children.push_back(ParseTreePattern(Dag->getArg(i), Dag->getArgName(i)));
1955
1956  // If the operator is an intrinsic, then this is just syntactic sugar for for
1957  // (intrinsic_* <number>, ..children..).  Pick the right intrinsic node, and
1958  // convert the intrinsic name to a number.
1959  if (Operator->isSubClassOf("Intrinsic")) {
1960    const CodeGenIntrinsic &Int = getDAGPatterns().getIntrinsic(Operator);
1961    unsigned IID = getDAGPatterns().getIntrinsicID(Operator)+1;
1962
1963    // If this intrinsic returns void, it must have side-effects and thus a
1964    // chain.
1965    if (Int.IS.RetVTs.empty())
1966      Operator = getDAGPatterns().get_intrinsic_void_sdnode();
1967    else if (Int.ModRef != CodeGenIntrinsic::NoMem)
1968      // Has side-effects, requires chain.
1969      Operator = getDAGPatterns().get_intrinsic_w_chain_sdnode();
1970    else // Otherwise, no chain.
1971      Operator = getDAGPatterns().get_intrinsic_wo_chain_sdnode();
1972
1973    TreePatternNode *IIDNode = new TreePatternNode(IntInit::get(IID), 1);
1974    Children.insert(Children.begin(), IIDNode);
1975  }
1976
1977  unsigned NumResults = GetNumNodeResults(Operator, CDP);
1978  TreePatternNode *Result = new TreePatternNode(Operator, Children, NumResults);
1979  Result->setName(OpName);
1980
1981  if (!Dag->getName().empty()) {
1982    assert(Result->getName().empty());
1983    Result->setName(Dag->getName());
1984  }
1985  return Result;
1986}
1987
1988/// SimplifyTree - See if we can simplify this tree to eliminate something that
1989/// will never match in favor of something obvious that will.  This is here
1990/// strictly as a convenience to target authors because it allows them to write
1991/// more type generic things and have useless type casts fold away.
1992///
1993/// This returns true if any change is made.
1994static bool SimplifyTree(TreePatternNode *&N) {
1995  if (N->isLeaf())
1996    return false;
1997
1998  // If we have a bitconvert with a resolved type and if the source and
1999  // destination types are the same, then the bitconvert is useless, remove it.
2000  if (N->getOperator()->getName() == "bitconvert" &&
2001      N->getExtType(0).isConcrete() &&
2002      N->getExtType(0) == N->getChild(0)->getExtType(0) &&
2003      N->getName().empty()) {
2004    N = N->getChild(0);
2005    SimplifyTree(N);
2006    return true;
2007  }
2008
2009  // Walk all children.
2010  bool MadeChange = false;
2011  for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i) {
2012    TreePatternNode *Child = N->getChild(i);
2013    MadeChange |= SimplifyTree(Child);
2014    N->setChild(i, Child);
2015  }
2016  return MadeChange;
2017}
2018
2019
2020
2021/// InferAllTypes - Infer/propagate as many types throughout the expression
2022/// patterns as possible.  Return true if all types are inferred, false
2023/// otherwise.  Flags an error if a type contradiction is found.
2024bool TreePattern::
2025InferAllTypes(const StringMap<SmallVector<TreePatternNode*,1> > *InNamedTypes) {
2026  if (NamedNodes.empty())
2027    ComputeNamedNodes();
2028
2029  bool MadeChange = true;
2030  while (MadeChange) {
2031    MadeChange = false;
2032    for (unsigned i = 0, e = Trees.size(); i != e; ++i) {
2033      MadeChange |= Trees[i]->ApplyTypeConstraints(*this, false);
2034      MadeChange |= SimplifyTree(Trees[i]);
2035    }
2036
2037    // If there are constraints on our named nodes, apply them.
2038    for (StringMap<SmallVector<TreePatternNode*,1> >::iterator
2039         I = NamedNodes.begin(), E = NamedNodes.end(); I != E; ++I) {
2040      SmallVectorImpl<TreePatternNode*> &Nodes = I->second;
2041
2042      // If we have input named node types, propagate their types to the named
2043      // values here.
2044      if (InNamedTypes) {
2045        // FIXME: Should be error?
2046        assert(InNamedTypes->count(I->getKey()) &&
2047               "Named node in output pattern but not input pattern?");
2048
2049        const SmallVectorImpl<TreePatternNode*> &InNodes =
2050          InNamedTypes->find(I->getKey())->second;
2051
2052        // The input types should be fully resolved by now.
2053        for (unsigned i = 0, e = Nodes.size(); i != e; ++i) {
2054          // If this node is a register class, and it is the root of the pattern
2055          // then we're mapping something onto an input register.  We allow
2056          // changing the type of the input register in this case.  This allows
2057          // us to match things like:
2058          //  def : Pat<(v1i64 (bitconvert(v2i32 DPR:$src))), (v1i64 DPR:$src)>;
2059          if (Nodes[i] == Trees[0] && Nodes[i]->isLeaf()) {
2060            DefInit *DI = dyn_cast<DefInit>(Nodes[i]->getLeafValue());
2061            if (DI && (DI->getDef()->isSubClassOf("RegisterClass") ||
2062                       DI->getDef()->isSubClassOf("RegisterOperand")))
2063              continue;
2064          }
2065
2066          assert(Nodes[i]->getNumTypes() == 1 &&
2067                 InNodes[0]->getNumTypes() == 1 &&
2068                 "FIXME: cannot name multiple result nodes yet");
2069          MadeChange |= Nodes[i]->UpdateNodeType(0, InNodes[0]->getExtType(0),
2070                                                 *this);
2071        }
2072      }
2073
2074      // If there are multiple nodes with the same name, they must all have the
2075      // same type.
2076      if (I->second.size() > 1) {
2077        for (unsigned i = 0, e = Nodes.size()-1; i != e; ++i) {
2078          TreePatternNode *N1 = Nodes[i], *N2 = Nodes[i+1];
2079          assert(N1->getNumTypes() == 1 && N2->getNumTypes() == 1 &&
2080                 "FIXME: cannot name multiple result nodes yet");
2081
2082          MadeChange |= N1->UpdateNodeType(0, N2->getExtType(0), *this);
2083          MadeChange |= N2->UpdateNodeType(0, N1->getExtType(0), *this);
2084        }
2085      }
2086    }
2087  }
2088
2089  bool HasUnresolvedTypes = false;
2090  for (unsigned i = 0, e = Trees.size(); i != e; ++i)
2091    HasUnresolvedTypes |= Trees[i]->ContainsUnresolvedType();
2092  return !HasUnresolvedTypes;
2093}
2094
2095void TreePattern::print(raw_ostream &OS) const {
2096  OS << getRecord()->getName();
2097  if (!Args.empty()) {
2098    OS << "(" << Args[0];
2099    for (unsigned i = 1, e = Args.size(); i != e; ++i)
2100      OS << ", " << Args[i];
2101    OS << ")";
2102  }
2103  OS << ": ";
2104
2105  if (Trees.size() > 1)
2106    OS << "[\n";
2107  for (unsigned i = 0, e = Trees.size(); i != e; ++i) {
2108    OS << "\t";
2109    Trees[i]->print(OS);
2110    OS << "\n";
2111  }
2112
2113  if (Trees.size() > 1)
2114    OS << "]\n";
2115}
2116
2117void TreePattern::dump() const { print(errs()); }
2118
2119//===----------------------------------------------------------------------===//
2120// CodeGenDAGPatterns implementation
2121//
2122
2123CodeGenDAGPatterns::CodeGenDAGPatterns(RecordKeeper &R) :
2124  Records(R), Target(R) {
2125
2126  Intrinsics = LoadIntrinsics(Records, false);
2127  TgtIntrinsics = LoadIntrinsics(Records, true);
2128  ParseNodeInfo();
2129  ParseNodeTransforms();
2130  ParseComplexPatterns();
2131  ParsePatternFragments();
2132  ParseDefaultOperands();
2133  ParseInstructions();
2134  ParsePatterns();
2135
2136  // Generate variants.  For example, commutative patterns can match
2137  // multiple ways.  Add them to PatternsToMatch as well.
2138  GenerateVariants();
2139
2140  // Infer instruction flags.  For example, we can detect loads,
2141  // stores, and side effects in many cases by examining an
2142  // instruction's pattern.
2143  InferInstructionFlags();
2144
2145  // Verify that instruction flags match the patterns.
2146  VerifyInstructionFlags();
2147}
2148
2149CodeGenDAGPatterns::~CodeGenDAGPatterns() {
2150  for (pf_iterator I = PatternFragments.begin(),
2151       E = PatternFragments.end(); I != E; ++I)
2152    delete I->second;
2153}
2154
2155
2156Record *CodeGenDAGPatterns::getSDNodeNamed(const std::string &Name) const {
2157  Record *N = Records.getDef(Name);
2158  if (!N || !N->isSubClassOf("SDNode")) {
2159    errs() << "Error getting SDNode '" << Name << "'!\n";
2160    exit(1);
2161  }
2162  return N;
2163}
2164
2165// Parse all of the SDNode definitions for the target, populating SDNodes.
2166void CodeGenDAGPatterns::ParseNodeInfo() {
2167  std::vector<Record*> Nodes = Records.getAllDerivedDefinitions("SDNode");
2168  while (!Nodes.empty()) {
2169    SDNodes.insert(std::make_pair(Nodes.back(), Nodes.back()));
2170    Nodes.pop_back();
2171  }
2172
2173  // Get the builtin intrinsic nodes.
2174  intrinsic_void_sdnode     = getSDNodeNamed("intrinsic_void");
2175  intrinsic_w_chain_sdnode  = getSDNodeNamed("intrinsic_w_chain");
2176  intrinsic_wo_chain_sdnode = getSDNodeNamed("intrinsic_wo_chain");
2177}
2178
2179/// ParseNodeTransforms - Parse all SDNodeXForm instances into the SDNodeXForms
2180/// map, and emit them to the file as functions.
2181void CodeGenDAGPatterns::ParseNodeTransforms() {
2182  std::vector<Record*> Xforms = Records.getAllDerivedDefinitions("SDNodeXForm");
2183  while (!Xforms.empty()) {
2184    Record *XFormNode = Xforms.back();
2185    Record *SDNode = XFormNode->getValueAsDef("Opcode");
2186    std::string Code = XFormNode->getValueAsString("XFormFunction");
2187    SDNodeXForms.insert(std::make_pair(XFormNode, NodeXForm(SDNode, Code)));
2188
2189    Xforms.pop_back();
2190  }
2191}
2192
2193void CodeGenDAGPatterns::ParseComplexPatterns() {
2194  std::vector<Record*> AMs = Records.getAllDerivedDefinitions("ComplexPattern");
2195  while (!AMs.empty()) {
2196    ComplexPatterns.insert(std::make_pair(AMs.back(), AMs.back()));
2197    AMs.pop_back();
2198  }
2199}
2200
2201
2202/// ParsePatternFragments - Parse all of the PatFrag definitions in the .td
2203/// file, building up the PatternFragments map.  After we've collected them all,
2204/// inline fragments together as necessary, so that there are no references left
2205/// inside a pattern fragment to a pattern fragment.
2206///
2207void CodeGenDAGPatterns::ParsePatternFragments() {
2208  std::vector<Record*> Fragments = Records.getAllDerivedDefinitions("PatFrag");
2209
2210  // First step, parse all of the fragments.
2211  for (unsigned i = 0, e = Fragments.size(); i != e; ++i) {
2212    DagInit *Tree = Fragments[i]->getValueAsDag("Fragment");
2213    TreePattern *P = new TreePattern(Fragments[i], Tree, true, *this);
2214    PatternFragments[Fragments[i]] = P;
2215
2216    // Validate the argument list, converting it to set, to discard duplicates.
2217    std::vector<std::string> &Args = P->getArgList();
2218    std::set<std::string> OperandsSet(Args.begin(), Args.end());
2219
2220    if (OperandsSet.count(""))
2221      P->error("Cannot have unnamed 'node' values in pattern fragment!");
2222
2223    // Parse the operands list.
2224    DagInit *OpsList = Fragments[i]->getValueAsDag("Operands");
2225    DefInit *OpsOp = dyn_cast<DefInit>(OpsList->getOperator());
2226    // Special cases: ops == outs == ins. Different names are used to
2227    // improve readability.
2228    if (!OpsOp ||
2229        (OpsOp->getDef()->getName() != "ops" &&
2230         OpsOp->getDef()->getName() != "outs" &&
2231         OpsOp->getDef()->getName() != "ins"))
2232      P->error("Operands list should start with '(ops ... '!");
2233
2234    // Copy over the arguments.
2235    Args.clear();
2236    for (unsigned j = 0, e = OpsList->getNumArgs(); j != e; ++j) {
2237      if (!isa<DefInit>(OpsList->getArg(j)) ||
2238          cast<DefInit>(OpsList->getArg(j))->getDef()->getName() != "node")
2239        P->error("Operands list should all be 'node' values.");
2240      if (OpsList->getArgName(j).empty())
2241        P->error("Operands list should have names for each operand!");
2242      if (!OperandsSet.count(OpsList->getArgName(j)))
2243        P->error("'" + OpsList->getArgName(j) +
2244                 "' does not occur in pattern or was multiply specified!");
2245      OperandsSet.erase(OpsList->getArgName(j));
2246      Args.push_back(OpsList->getArgName(j));
2247    }
2248
2249    if (!OperandsSet.empty())
2250      P->error("Operands list does not contain an entry for operand '" +
2251               *OperandsSet.begin() + "'!");
2252
2253    // If there is a code init for this fragment, keep track of the fact that
2254    // this fragment uses it.
2255    TreePredicateFn PredFn(P);
2256    if (!PredFn.isAlwaysTrue())
2257      P->getOnlyTree()->addPredicateFn(PredFn);
2258
2259    // If there is a node transformation corresponding to this, keep track of
2260    // it.
2261    Record *Transform = Fragments[i]->getValueAsDef("OperandTransform");
2262    if (!getSDNodeTransform(Transform).second.empty())    // not noop xform?
2263      P->getOnlyTree()->setTransformFn(Transform);
2264  }
2265
2266  // Now that we've parsed all of the tree fragments, do a closure on them so
2267  // that there are not references to PatFrags left inside of them.
2268  for (unsigned i = 0, e = Fragments.size(); i != e; ++i) {
2269    TreePattern *ThePat = PatternFragments[Fragments[i]];
2270    ThePat->InlinePatternFragments();
2271
2272    // Infer as many types as possible.  Don't worry about it if we don't infer
2273    // all of them, some may depend on the inputs of the pattern.
2274    ThePat->InferAllTypes();
2275    ThePat->resetError();
2276
2277    // If debugging, print out the pattern fragment result.
2278    DEBUG(ThePat->dump());
2279  }
2280}
2281
2282void CodeGenDAGPatterns::ParseDefaultOperands() {
2283  std::vector<Record*> DefaultOps;
2284  DefaultOps = Records.getAllDerivedDefinitions("OperandWithDefaultOps");
2285
2286  // Find some SDNode.
2287  assert(!SDNodes.empty() && "No SDNodes parsed?");
2288  Init *SomeSDNode = DefInit::get(SDNodes.begin()->first);
2289
2290  for (unsigned i = 0, e = DefaultOps.size(); i != e; ++i) {
2291    DagInit *DefaultInfo = DefaultOps[i]->getValueAsDag("DefaultOps");
2292
2293    // Clone the DefaultInfo dag node, changing the operator from 'ops' to
2294    // SomeSDnode so that we can parse this.
2295    std::vector<std::pair<Init*, std::string> > Ops;
2296    for (unsigned op = 0, e = DefaultInfo->getNumArgs(); op != e; ++op)
2297      Ops.push_back(std::make_pair(DefaultInfo->getArg(op),
2298                                   DefaultInfo->getArgName(op)));
2299    DagInit *DI = DagInit::get(SomeSDNode, "", Ops);
2300
2301    // Create a TreePattern to parse this.
2302    TreePattern P(DefaultOps[i], DI, false, *this);
2303    assert(P.getNumTrees() == 1 && "This ctor can only produce one tree!");
2304
2305    // Copy the operands over into a DAGDefaultOperand.
2306    DAGDefaultOperand DefaultOpInfo;
2307
2308    TreePatternNode *T = P.getTree(0);
2309    for (unsigned op = 0, e = T->getNumChildren(); op != e; ++op) {
2310      TreePatternNode *TPN = T->getChild(op);
2311      while (TPN->ApplyTypeConstraints(P, false))
2312        /* Resolve all types */;
2313
2314      if (TPN->ContainsUnresolvedType()) {
2315        PrintFatalError("Value #" + utostr(i) + " of OperandWithDefaultOps '" +
2316          DefaultOps[i]->getName() +"' doesn't have a concrete type!");
2317      }
2318      DefaultOpInfo.DefaultOps.push_back(TPN);
2319    }
2320
2321    // Insert it into the DefaultOperands map so we can find it later.
2322    DefaultOperands[DefaultOps[i]] = DefaultOpInfo;
2323  }
2324}
2325
2326/// HandleUse - Given "Pat" a leaf in the pattern, check to see if it is an
2327/// instruction input.  Return true if this is a real use.
2328static bool HandleUse(TreePattern *I, TreePatternNode *Pat,
2329                      std::map<std::string, TreePatternNode*> &InstInputs) {
2330  // No name -> not interesting.
2331  if (Pat->getName().empty()) {
2332    if (Pat->isLeaf()) {
2333      DefInit *DI = dyn_cast<DefInit>(Pat->getLeafValue());
2334      if (DI && (DI->getDef()->isSubClassOf("RegisterClass") ||
2335                 DI->getDef()->isSubClassOf("RegisterOperand")))
2336        I->error("Input " + DI->getDef()->getName() + " must be named!");
2337    }
2338    return false;
2339  }
2340
2341  Record *Rec;
2342  if (Pat->isLeaf()) {
2343    DefInit *DI = dyn_cast<DefInit>(Pat->getLeafValue());
2344    if (!DI) I->error("Input $" + Pat->getName() + " must be an identifier!");
2345    Rec = DI->getDef();
2346  } else {
2347    Rec = Pat->getOperator();
2348  }
2349
2350  // SRCVALUE nodes are ignored.
2351  if (Rec->getName() == "srcvalue")
2352    return false;
2353
2354  TreePatternNode *&Slot = InstInputs[Pat->getName()];
2355  if (!Slot) {
2356    Slot = Pat;
2357    return true;
2358  }
2359  Record *SlotRec;
2360  if (Slot->isLeaf()) {
2361    SlotRec = cast<DefInit>(Slot->getLeafValue())->getDef();
2362  } else {
2363    assert(Slot->getNumChildren() == 0 && "can't be a use with children!");
2364    SlotRec = Slot->getOperator();
2365  }
2366
2367  // Ensure that the inputs agree if we've already seen this input.
2368  if (Rec != SlotRec)
2369    I->error("All $" + Pat->getName() + " inputs must agree with each other");
2370  if (Slot->getExtTypes() != Pat->getExtTypes())
2371    I->error("All $" + Pat->getName() + " inputs must agree with each other");
2372  return true;
2373}
2374
2375/// FindPatternInputsAndOutputs - Scan the specified TreePatternNode (which is
2376/// part of "I", the instruction), computing the set of inputs and outputs of
2377/// the pattern.  Report errors if we see anything naughty.
2378void CodeGenDAGPatterns::
2379FindPatternInputsAndOutputs(TreePattern *I, TreePatternNode *Pat,
2380                            std::map<std::string, TreePatternNode*> &InstInputs,
2381                            std::map<std::string, TreePatternNode*>&InstResults,
2382                            std::vector<Record*> &InstImpResults) {
2383  if (Pat->isLeaf()) {
2384    bool isUse = HandleUse(I, Pat, InstInputs);
2385    if (!isUse && Pat->getTransformFn())
2386      I->error("Cannot specify a transform function for a non-input value!");
2387    return;
2388  }
2389
2390  if (Pat->getOperator()->getName() == "implicit") {
2391    for (unsigned i = 0, e = Pat->getNumChildren(); i != e; ++i) {
2392      TreePatternNode *Dest = Pat->getChild(i);
2393      if (!Dest->isLeaf())
2394        I->error("implicitly defined value should be a register!");
2395
2396      DefInit *Val = dyn_cast<DefInit>(Dest->getLeafValue());
2397      if (!Val || !Val->getDef()->isSubClassOf("Register"))
2398        I->error("implicitly defined value should be a register!");
2399      InstImpResults.push_back(Val->getDef());
2400    }
2401    return;
2402  }
2403
2404  if (Pat->getOperator()->getName() != "set") {
2405    // If this is not a set, verify that the children nodes are not void typed,
2406    // and recurse.
2407    for (unsigned i = 0, e = Pat->getNumChildren(); i != e; ++i) {
2408      if (Pat->getChild(i)->getNumTypes() == 0)
2409        I->error("Cannot have void nodes inside of patterns!");
2410      FindPatternInputsAndOutputs(I, Pat->getChild(i), InstInputs, InstResults,
2411                                  InstImpResults);
2412    }
2413
2414    // If this is a non-leaf node with no children, treat it basically as if
2415    // it were a leaf.  This handles nodes like (imm).
2416    bool isUse = HandleUse(I, Pat, InstInputs);
2417
2418    if (!isUse && Pat->getTransformFn())
2419      I->error("Cannot specify a transform function for a non-input value!");
2420    return;
2421  }
2422
2423  // Otherwise, this is a set, validate and collect instruction results.
2424  if (Pat->getNumChildren() == 0)
2425    I->error("set requires operands!");
2426
2427  if (Pat->getTransformFn())
2428    I->error("Cannot specify a transform function on a set node!");
2429
2430  // Check the set destinations.
2431  unsigned NumDests = Pat->getNumChildren()-1;
2432  for (unsigned i = 0; i != NumDests; ++i) {
2433    TreePatternNode *Dest = Pat->getChild(i);
2434    if (!Dest->isLeaf())
2435      I->error("set destination should be a register!");
2436
2437    DefInit *Val = dyn_cast<DefInit>(Dest->getLeafValue());
2438    if (!Val)
2439      I->error("set destination should be a register!");
2440
2441    if (Val->getDef()->isSubClassOf("RegisterClass") ||
2442        Val->getDef()->isSubClassOf("ValueType") ||
2443        Val->getDef()->isSubClassOf("RegisterOperand") ||
2444        Val->getDef()->isSubClassOf("PointerLikeRegClass")) {
2445      if (Dest->getName().empty())
2446        I->error("set destination must have a name!");
2447      if (InstResults.count(Dest->getName()))
2448        I->error("cannot set '" + Dest->getName() +"' multiple times");
2449      InstResults[Dest->getName()] = Dest;
2450    } else if (Val->getDef()->isSubClassOf("Register")) {
2451      InstImpResults.push_back(Val->getDef());
2452    } else {
2453      I->error("set destination should be a register!");
2454    }
2455  }
2456
2457  // Verify and collect info from the computation.
2458  FindPatternInputsAndOutputs(I, Pat->getChild(NumDests),
2459                              InstInputs, InstResults, InstImpResults);
2460}
2461
2462//===----------------------------------------------------------------------===//
2463// Instruction Analysis
2464//===----------------------------------------------------------------------===//
2465
2466class InstAnalyzer {
2467  const CodeGenDAGPatterns &CDP;
2468public:
2469  bool hasSideEffects;
2470  bool mayStore;
2471  bool mayLoad;
2472  bool isBitcast;
2473  bool isVariadic;
2474
2475  InstAnalyzer(const CodeGenDAGPatterns &cdp)
2476    : CDP(cdp), hasSideEffects(false), mayStore(false), mayLoad(false),
2477      isBitcast(false), isVariadic(false) {}
2478
2479  void Analyze(const TreePattern *Pat) {
2480    // Assume only the first tree is the pattern. The others are clobber nodes.
2481    AnalyzeNode(Pat->getTree(0));
2482  }
2483
2484  void Analyze(const PatternToMatch *Pat) {
2485    AnalyzeNode(Pat->getSrcPattern());
2486  }
2487
2488private:
2489  bool IsNodeBitcast(const TreePatternNode *N) const {
2490    if (hasSideEffects || mayLoad || mayStore || isVariadic)
2491      return false;
2492
2493    if (N->getNumChildren() != 2)
2494      return false;
2495
2496    const TreePatternNode *N0 = N->getChild(0);
2497    if (!N0->isLeaf() || !isa<DefInit>(N0->getLeafValue()))
2498      return false;
2499
2500    const TreePatternNode *N1 = N->getChild(1);
2501    if (N1->isLeaf())
2502      return false;
2503    if (N1->getNumChildren() != 1 || !N1->getChild(0)->isLeaf())
2504      return false;
2505
2506    const SDNodeInfo &OpInfo = CDP.getSDNodeInfo(N1->getOperator());
2507    if (OpInfo.getNumResults() != 1 || OpInfo.getNumOperands() != 1)
2508      return false;
2509    return OpInfo.getEnumName() == "ISD::BITCAST";
2510  }
2511
2512public:
2513  void AnalyzeNode(const TreePatternNode *N) {
2514    if (N->isLeaf()) {
2515      if (DefInit *DI = dyn_cast<DefInit>(N->getLeafValue())) {
2516        Record *LeafRec = DI->getDef();
2517        // Handle ComplexPattern leaves.
2518        if (LeafRec->isSubClassOf("ComplexPattern")) {
2519          const ComplexPattern &CP = CDP.getComplexPattern(LeafRec);
2520          if (CP.hasProperty(SDNPMayStore)) mayStore = true;
2521          if (CP.hasProperty(SDNPMayLoad)) mayLoad = true;
2522          if (CP.hasProperty(SDNPSideEffect)) hasSideEffects = true;
2523        }
2524      }
2525      return;
2526    }
2527
2528    // Analyze children.
2529    for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i)
2530      AnalyzeNode(N->getChild(i));
2531
2532    // Ignore set nodes, which are not SDNodes.
2533    if (N->getOperator()->getName() == "set") {
2534      isBitcast = IsNodeBitcast(N);
2535      return;
2536    }
2537
2538    // Get information about the SDNode for the operator.
2539    const SDNodeInfo &OpInfo = CDP.getSDNodeInfo(N->getOperator());
2540
2541    // Notice properties of the node.
2542    if (OpInfo.hasProperty(SDNPMayStore)) mayStore = true;
2543    if (OpInfo.hasProperty(SDNPMayLoad)) mayLoad = true;
2544    if (OpInfo.hasProperty(SDNPSideEffect)) hasSideEffects = true;
2545    if (OpInfo.hasProperty(SDNPVariadic)) isVariadic = true;
2546
2547    if (const CodeGenIntrinsic *IntInfo = N->getIntrinsicInfo(CDP)) {
2548      // If this is an intrinsic, analyze it.
2549      if (IntInfo->ModRef >= CodeGenIntrinsic::ReadArgMem)
2550        mayLoad = true;// These may load memory.
2551
2552      if (IntInfo->ModRef >= CodeGenIntrinsic::ReadWriteArgMem)
2553        mayStore = true;// Intrinsics that can write to memory are 'mayStore'.
2554
2555      if (IntInfo->ModRef >= CodeGenIntrinsic::ReadWriteMem)
2556        // WriteMem intrinsics can have other strange effects.
2557        hasSideEffects = true;
2558    }
2559  }
2560
2561};
2562
2563static bool InferFromPattern(CodeGenInstruction &InstInfo,
2564                             const InstAnalyzer &PatInfo,
2565                             Record *PatDef) {
2566  bool Error = false;
2567
2568  // Remember where InstInfo got its flags.
2569  if (InstInfo.hasUndefFlags())
2570      InstInfo.InferredFrom = PatDef;
2571
2572  // Check explicitly set flags for consistency.
2573  if (InstInfo.hasSideEffects != PatInfo.hasSideEffects &&
2574      !InstInfo.hasSideEffects_Unset) {
2575    // Allow explicitly setting hasSideEffects = 1 on instructions, even when
2576    // the pattern has no side effects. That could be useful for div/rem
2577    // instructions that may trap.
2578    if (!InstInfo.hasSideEffects) {
2579      Error = true;
2580      PrintError(PatDef->getLoc(), "Pattern doesn't match hasSideEffects = " +
2581                 Twine(InstInfo.hasSideEffects));
2582    }
2583  }
2584
2585  if (InstInfo.mayStore != PatInfo.mayStore && !InstInfo.mayStore_Unset) {
2586    Error = true;
2587    PrintError(PatDef->getLoc(), "Pattern doesn't match mayStore = " +
2588               Twine(InstInfo.mayStore));
2589  }
2590
2591  if (InstInfo.mayLoad != PatInfo.mayLoad && !InstInfo.mayLoad_Unset) {
2592    // Allow explicitly setting mayLoad = 1, even when the pattern has no loads.
2593    // Some targets translate imediates to loads.
2594    if (!InstInfo.mayLoad) {
2595      Error = true;
2596      PrintError(PatDef->getLoc(), "Pattern doesn't match mayLoad = " +
2597                 Twine(InstInfo.mayLoad));
2598    }
2599  }
2600
2601  // Transfer inferred flags.
2602  InstInfo.hasSideEffects |= PatInfo.hasSideEffects;
2603  InstInfo.mayStore |= PatInfo.mayStore;
2604  InstInfo.mayLoad |= PatInfo.mayLoad;
2605
2606  // These flags are silently added without any verification.
2607  InstInfo.isBitcast |= PatInfo.isBitcast;
2608
2609  // Don't infer isVariadic. This flag means something different on SDNodes and
2610  // instructions. For example, a CALL SDNode is variadic because it has the
2611  // call arguments as operands, but a CALL instruction is not variadic - it
2612  // has argument registers as implicit, not explicit uses.
2613
2614  return Error;
2615}
2616
2617/// hasNullFragReference - Return true if the DAG has any reference to the
2618/// null_frag operator.
2619static bool hasNullFragReference(DagInit *DI) {
2620  DefInit *OpDef = dyn_cast<DefInit>(DI->getOperator());
2621  if (!OpDef) return false;
2622  Record *Operator = OpDef->getDef();
2623
2624  // If this is the null fragment, return true.
2625  if (Operator->getName() == "null_frag") return true;
2626  // If any of the arguments reference the null fragment, return true.
2627  for (unsigned i = 0, e = DI->getNumArgs(); i != e; ++i) {
2628    DagInit *Arg = dyn_cast<DagInit>(DI->getArg(i));
2629    if (Arg && hasNullFragReference(Arg))
2630      return true;
2631  }
2632
2633  return false;
2634}
2635
2636/// hasNullFragReference - Return true if any DAG in the list references
2637/// the null_frag operator.
2638static bool hasNullFragReference(ListInit *LI) {
2639  for (unsigned i = 0, e = LI->getSize(); i != e; ++i) {
2640    DagInit *DI = dyn_cast<DagInit>(LI->getElement(i));
2641    assert(DI && "non-dag in an instruction Pattern list?!");
2642    if (hasNullFragReference(DI))
2643      return true;
2644  }
2645  return false;
2646}
2647
2648/// Get all the instructions in a tree.
2649static void
2650getInstructionsInTree(TreePatternNode *Tree, SmallVectorImpl<Record*> &Instrs) {
2651  if (Tree->isLeaf())
2652    return;
2653  if (Tree->getOperator()->isSubClassOf("Instruction"))
2654    Instrs.push_back(Tree->getOperator());
2655  for (unsigned i = 0, e = Tree->getNumChildren(); i != e; ++i)
2656    getInstructionsInTree(Tree->getChild(i), Instrs);
2657}
2658
2659/// Check the class of a pattern leaf node against the instruction operand it
2660/// represents.
2661static bool checkOperandClass(CGIOperandList::OperandInfo &OI,
2662                              Record *Leaf) {
2663  if (OI.Rec == Leaf)
2664    return true;
2665
2666  // Allow direct value types to be used in instruction set patterns.
2667  // The type will be checked later.
2668  if (Leaf->isSubClassOf("ValueType"))
2669    return true;
2670
2671  // Patterns can also be ComplexPattern instances.
2672  if (Leaf->isSubClassOf("ComplexPattern"))
2673    return true;
2674
2675  return false;
2676}
2677
2678const DAGInstruction &CodeGenDAGPatterns::parseInstructionPattern(
2679    CodeGenInstruction &CGI, ListInit *Pat, DAGInstMap &DAGInsts) {
2680
2681    assert(!DAGInsts.count(CGI.TheDef) && "Instruction already parsed!");
2682
2683    // Parse the instruction.
2684    TreePattern *I = new TreePattern(CGI.TheDef, Pat, true, *this);
2685    // Inline pattern fragments into it.
2686    I->InlinePatternFragments();
2687
2688    // Infer as many types as possible.  If we cannot infer all of them, we can
2689    // never do anything with this instruction pattern: report it to the user.
2690    if (!I->InferAllTypes())
2691      I->error("Could not infer all types in pattern!");
2692
2693    // InstInputs - Keep track of all of the inputs of the instruction, along
2694    // with the record they are declared as.
2695    std::map<std::string, TreePatternNode*> InstInputs;
2696
2697    // InstResults - Keep track of all the virtual registers that are 'set'
2698    // in the instruction, including what reg class they are.
2699    std::map<std::string, TreePatternNode*> InstResults;
2700
2701    std::vector<Record*> InstImpResults;
2702
2703    // Verify that the top-level forms in the instruction are of void type, and
2704    // fill in the InstResults map.
2705    for (unsigned j = 0, e = I->getNumTrees(); j != e; ++j) {
2706      TreePatternNode *Pat = I->getTree(j);
2707      if (Pat->getNumTypes() != 0)
2708        I->error("Top-level forms in instruction pattern should have"
2709                 " void types");
2710
2711      // Find inputs and outputs, and verify the structure of the uses/defs.
2712      FindPatternInputsAndOutputs(I, Pat, InstInputs, InstResults,
2713                                  InstImpResults);
2714    }
2715
2716    // Now that we have inputs and outputs of the pattern, inspect the operands
2717    // list for the instruction.  This determines the order that operands are
2718    // added to the machine instruction the node corresponds to.
2719    unsigned NumResults = InstResults.size();
2720
2721    // Parse the operands list from the (ops) list, validating it.
2722    assert(I->getArgList().empty() && "Args list should still be empty here!");
2723
2724    // Check that all of the results occur first in the list.
2725    std::vector<Record*> Results;
2726    TreePatternNode *Res0Node = 0;
2727    for (unsigned i = 0; i != NumResults; ++i) {
2728      if (i == CGI.Operands.size())
2729        I->error("'" + InstResults.begin()->first +
2730                 "' set but does not appear in operand list!");
2731      const std::string &OpName = CGI.Operands[i].Name;
2732
2733      // Check that it exists in InstResults.
2734      TreePatternNode *RNode = InstResults[OpName];
2735      if (RNode == 0)
2736        I->error("Operand $" + OpName + " does not exist in operand list!");
2737
2738      if (i == 0)
2739        Res0Node = RNode;
2740      Record *R = cast<DefInit>(RNode->getLeafValue())->getDef();
2741      if (R == 0)
2742        I->error("Operand $" + OpName + " should be a set destination: all "
2743                 "outputs must occur before inputs in operand list!");
2744
2745      if (!checkOperandClass(CGI.Operands[i], R))
2746        I->error("Operand $" + OpName + " class mismatch!");
2747
2748      // Remember the return type.
2749      Results.push_back(CGI.Operands[i].Rec);
2750
2751      // Okay, this one checks out.
2752      InstResults.erase(OpName);
2753    }
2754
2755    // Loop over the inputs next.  Make a copy of InstInputs so we can destroy
2756    // the copy while we're checking the inputs.
2757    std::map<std::string, TreePatternNode*> InstInputsCheck(InstInputs);
2758
2759    std::vector<TreePatternNode*> ResultNodeOperands;
2760    std::vector<Record*> Operands;
2761    for (unsigned i = NumResults, e = CGI.Operands.size(); i != e; ++i) {
2762      CGIOperandList::OperandInfo &Op = CGI.Operands[i];
2763      const std::string &OpName = Op.Name;
2764      if (OpName.empty())
2765        I->error("Operand #" + utostr(i) + " in operands list has no name!");
2766
2767      if (!InstInputsCheck.count(OpName)) {
2768        // If this is an operand with a DefaultOps set filled in, we can ignore
2769        // this.  When we codegen it, we will do so as always executed.
2770        if (Op.Rec->isSubClassOf("OperandWithDefaultOps")) {
2771          // Does it have a non-empty DefaultOps field?  If so, ignore this
2772          // operand.
2773          if (!getDefaultOperand(Op.Rec).DefaultOps.empty())
2774            continue;
2775        }
2776        I->error("Operand $" + OpName +
2777                 " does not appear in the instruction pattern");
2778      }
2779      TreePatternNode *InVal = InstInputsCheck[OpName];
2780      InstInputsCheck.erase(OpName);   // It occurred, remove from map.
2781
2782      if (InVal->isLeaf() && isa<DefInit>(InVal->getLeafValue())) {
2783        Record *InRec = static_cast<DefInit*>(InVal->getLeafValue())->getDef();
2784        if (!checkOperandClass(Op, InRec))
2785          I->error("Operand $" + OpName + "'s register class disagrees"
2786                   " between the operand and pattern");
2787      }
2788      Operands.push_back(Op.Rec);
2789
2790      // Construct the result for the dest-pattern operand list.
2791      TreePatternNode *OpNode = InVal->clone();
2792
2793      // No predicate is useful on the result.
2794      OpNode->clearPredicateFns();
2795
2796      // Promote the xform function to be an explicit node if set.
2797      if (Record *Xform = OpNode->getTransformFn()) {
2798        OpNode->setTransformFn(0);
2799        std::vector<TreePatternNode*> Children;
2800        Children.push_back(OpNode);
2801        OpNode = new TreePatternNode(Xform, Children, OpNode->getNumTypes());
2802      }
2803
2804      ResultNodeOperands.push_back(OpNode);
2805    }
2806
2807    if (!InstInputsCheck.empty())
2808      I->error("Input operand $" + InstInputsCheck.begin()->first +
2809               " occurs in pattern but not in operands list!");
2810
2811    TreePatternNode *ResultPattern =
2812      new TreePatternNode(I->getRecord(), ResultNodeOperands,
2813                          GetNumNodeResults(I->getRecord(), *this));
2814    // Copy fully inferred output node type to instruction result pattern.
2815    for (unsigned i = 0; i != NumResults; ++i)
2816      ResultPattern->setType(i, Res0Node->getExtType(i));
2817
2818    // Create and insert the instruction.
2819    // FIXME: InstImpResults should not be part of DAGInstruction.
2820    DAGInstruction TheInst(I, Results, Operands, InstImpResults);
2821    DAGInsts.insert(std::make_pair(I->getRecord(), TheInst));
2822
2823    // Use a temporary tree pattern to infer all types and make sure that the
2824    // constructed result is correct.  This depends on the instruction already
2825    // being inserted into the DAGInsts map.
2826    TreePattern Temp(I->getRecord(), ResultPattern, false, *this);
2827    Temp.InferAllTypes(&I->getNamedNodesMap());
2828
2829    DAGInstruction &TheInsertedInst = DAGInsts.find(I->getRecord())->second;
2830    TheInsertedInst.setResultPattern(Temp.getOnlyTree());
2831
2832    return TheInsertedInst;
2833  }
2834
2835/// ParseInstructions - Parse all of the instructions, inlining and resolving
2836/// any fragments involved.  This populates the Instructions list with fully
2837/// resolved instructions.
2838void CodeGenDAGPatterns::ParseInstructions() {
2839  std::vector<Record*> Instrs = Records.getAllDerivedDefinitions("Instruction");
2840
2841  for (unsigned i = 0, e = Instrs.size(); i != e; ++i) {
2842    ListInit *LI = 0;
2843
2844    if (isa<ListInit>(Instrs[i]->getValueInit("Pattern")))
2845      LI = Instrs[i]->getValueAsListInit("Pattern");
2846
2847    // If there is no pattern, only collect minimal information about the
2848    // instruction for its operand list.  We have to assume that there is one
2849    // result, as we have no detailed info. A pattern which references the
2850    // null_frag operator is as-if no pattern were specified. Normally this
2851    // is from a multiclass expansion w/ a SDPatternOperator passed in as
2852    // null_frag.
2853    if (!LI || LI->getSize() == 0 || hasNullFragReference(LI)) {
2854      std::vector<Record*> Results;
2855      std::vector<Record*> Operands;
2856
2857      CodeGenInstruction &InstInfo = Target.getInstruction(Instrs[i]);
2858
2859      if (InstInfo.Operands.size() != 0) {
2860        if (InstInfo.Operands.NumDefs == 0) {
2861          // These produce no results
2862          for (unsigned j = 0, e = InstInfo.Operands.size(); j < e; ++j)
2863            Operands.push_back(InstInfo.Operands[j].Rec);
2864        } else {
2865          // Assume the first operand is the result.
2866          Results.push_back(InstInfo.Operands[0].Rec);
2867
2868          // The rest are inputs.
2869          for (unsigned j = 1, e = InstInfo.Operands.size(); j < e; ++j)
2870            Operands.push_back(InstInfo.Operands[j].Rec);
2871        }
2872      }
2873
2874      // Create and insert the instruction.
2875      std::vector<Record*> ImpResults;
2876      Instructions.insert(std::make_pair(Instrs[i],
2877                          DAGInstruction(0, Results, Operands, ImpResults)));
2878      continue;  // no pattern.
2879    }
2880
2881    CodeGenInstruction &CGI = Target.getInstruction(Instrs[i]);
2882    const DAGInstruction &DI = parseInstructionPattern(CGI, LI, Instructions);
2883
2884    (void)DI;
2885    DEBUG(DI.getPattern()->dump());
2886  }
2887
2888  // If we can, convert the instructions to be patterns that are matched!
2889  for (std::map<Record*, DAGInstruction, LessRecordByID>::iterator II =
2890        Instructions.begin(),
2891       E = Instructions.end(); II != E; ++II) {
2892    DAGInstruction &TheInst = II->second;
2893    TreePattern *I = TheInst.getPattern();
2894    if (I == 0) continue;  // No pattern.
2895
2896    // FIXME: Assume only the first tree is the pattern. The others are clobber
2897    // nodes.
2898    TreePatternNode *Pattern = I->getTree(0);
2899    TreePatternNode *SrcPattern;
2900    if (Pattern->getOperator()->getName() == "set") {
2901      SrcPattern = Pattern->getChild(Pattern->getNumChildren()-1)->clone();
2902    } else{
2903      // Not a set (store or something?)
2904      SrcPattern = Pattern;
2905    }
2906
2907    Record *Instr = II->first;
2908    AddPatternToMatch(I,
2909                      PatternToMatch(Instr,
2910                                     Instr->getValueAsListInit("Predicates"),
2911                                     SrcPattern,
2912                                     TheInst.getResultPattern(),
2913                                     TheInst.getImpResults(),
2914                                     Instr->getValueAsInt("AddedComplexity"),
2915                                     Instr->getID()));
2916  }
2917}
2918
2919
2920typedef std::pair<const TreePatternNode*, unsigned> NameRecord;
2921
2922static void FindNames(const TreePatternNode *P,
2923                      std::map<std::string, NameRecord> &Names,
2924                      TreePattern *PatternTop) {
2925  if (!P->getName().empty()) {
2926    NameRecord &Rec = Names[P->getName()];
2927    // If this is the first instance of the name, remember the node.
2928    if (Rec.second++ == 0)
2929      Rec.first = P;
2930    else if (Rec.first->getExtTypes() != P->getExtTypes())
2931      PatternTop->error("repetition of value: $" + P->getName() +
2932                        " where different uses have different types!");
2933  }
2934
2935  if (!P->isLeaf()) {
2936    for (unsigned i = 0, e = P->getNumChildren(); i != e; ++i)
2937      FindNames(P->getChild(i), Names, PatternTop);
2938  }
2939}
2940
2941void CodeGenDAGPatterns::AddPatternToMatch(TreePattern *Pattern,
2942                                           const PatternToMatch &PTM) {
2943  // Do some sanity checking on the pattern we're about to match.
2944  std::string Reason;
2945  if (!PTM.getSrcPattern()->canPatternMatch(Reason, *this)) {
2946    PrintWarning(Pattern->getRecord()->getLoc(),
2947      Twine("Pattern can never match: ") + Reason);
2948    return;
2949  }
2950
2951  // If the source pattern's root is a complex pattern, that complex pattern
2952  // must specify the nodes it can potentially match.
2953  if (const ComplexPattern *CP =
2954        PTM.getSrcPattern()->getComplexPatternInfo(*this))
2955    if (CP->getRootNodes().empty())
2956      Pattern->error("ComplexPattern at root must specify list of opcodes it"
2957                     " could match");
2958
2959
2960  // Find all of the named values in the input and output, ensure they have the
2961  // same type.
2962  std::map<std::string, NameRecord> SrcNames, DstNames;
2963  FindNames(PTM.getSrcPattern(), SrcNames, Pattern);
2964  FindNames(PTM.getDstPattern(), DstNames, Pattern);
2965
2966  // Scan all of the named values in the destination pattern, rejecting them if
2967  // they don't exist in the input pattern.
2968  for (std::map<std::string, NameRecord>::iterator
2969       I = DstNames.begin(), E = DstNames.end(); I != E; ++I) {
2970    if (SrcNames[I->first].first == 0)
2971      Pattern->error("Pattern has input without matching name in output: $" +
2972                     I->first);
2973  }
2974
2975  // Scan all of the named values in the source pattern, rejecting them if the
2976  // name isn't used in the dest, and isn't used to tie two values together.
2977  for (std::map<std::string, NameRecord>::iterator
2978       I = SrcNames.begin(), E = SrcNames.end(); I != E; ++I)
2979    if (DstNames[I->first].first == 0 && SrcNames[I->first].second == 1)
2980      Pattern->error("Pattern has dead named input: $" + I->first);
2981
2982  PatternsToMatch.push_back(PTM);
2983}
2984
2985
2986
2987void CodeGenDAGPatterns::InferInstructionFlags() {
2988  const std::vector<const CodeGenInstruction*> &Instructions =
2989    Target.getInstructionsByEnumValue();
2990
2991  // First try to infer flags from the primary instruction pattern, if any.
2992  SmallVector<CodeGenInstruction*, 8> Revisit;
2993  unsigned Errors = 0;
2994  for (unsigned i = 0, e = Instructions.size(); i != e; ++i) {
2995    CodeGenInstruction &InstInfo =
2996      const_cast<CodeGenInstruction &>(*Instructions[i]);
2997
2998    // Treat neverHasSideEffects = 1 as the equivalent of hasSideEffects = 0.
2999    // This flag is obsolete and will be removed.
3000    if (InstInfo.neverHasSideEffects) {
3001      assert(!InstInfo.hasSideEffects);
3002      InstInfo.hasSideEffects_Unset = false;
3003    }
3004
3005    // Get the primary instruction pattern.
3006    const TreePattern *Pattern = getInstruction(InstInfo.TheDef).getPattern();
3007    if (!Pattern) {
3008      if (InstInfo.hasUndefFlags())
3009        Revisit.push_back(&InstInfo);
3010      continue;
3011    }
3012    InstAnalyzer PatInfo(*this);
3013    PatInfo.Analyze(Pattern);
3014    Errors += InferFromPattern(InstInfo, PatInfo, InstInfo.TheDef);
3015  }
3016
3017  // Second, look for single-instruction patterns defined outside the
3018  // instruction.
3019  for (ptm_iterator I = ptm_begin(), E = ptm_end(); I != E; ++I) {
3020    const PatternToMatch &PTM = *I;
3021
3022    // We can only infer from single-instruction patterns, otherwise we won't
3023    // know which instruction should get the flags.
3024    SmallVector<Record*, 8> PatInstrs;
3025    getInstructionsInTree(PTM.getDstPattern(), PatInstrs);
3026    if (PatInstrs.size() != 1)
3027      continue;
3028
3029    // Get the single instruction.
3030    CodeGenInstruction &InstInfo = Target.getInstruction(PatInstrs.front());
3031
3032    // Only infer properties from the first pattern. We'll verify the others.
3033    if (InstInfo.InferredFrom)
3034      continue;
3035
3036    InstAnalyzer PatInfo(*this);
3037    PatInfo.Analyze(&PTM);
3038    Errors += InferFromPattern(InstInfo, PatInfo, PTM.getSrcRecord());
3039  }
3040
3041  if (Errors)
3042    PrintFatalError("pattern conflicts");
3043
3044  // Revisit instructions with undefined flags and no pattern.
3045  if (Target.guessInstructionProperties()) {
3046    for (unsigned i = 0, e = Revisit.size(); i != e; ++i) {
3047      CodeGenInstruction &InstInfo = *Revisit[i];
3048      if (InstInfo.InferredFrom)
3049        continue;
3050      // The mayLoad and mayStore flags default to false.
3051      // Conservatively assume hasSideEffects if it wasn't explicit.
3052      if (InstInfo.hasSideEffects_Unset)
3053        InstInfo.hasSideEffects = true;
3054    }
3055    return;
3056  }
3057
3058  // Complain about any flags that are still undefined.
3059  for (unsigned i = 0, e = Revisit.size(); i != e; ++i) {
3060    CodeGenInstruction &InstInfo = *Revisit[i];
3061    if (InstInfo.InferredFrom)
3062      continue;
3063    if (InstInfo.hasSideEffects_Unset)
3064      PrintError(InstInfo.TheDef->getLoc(),
3065                 "Can't infer hasSideEffects from patterns");
3066    if (InstInfo.mayStore_Unset)
3067      PrintError(InstInfo.TheDef->getLoc(),
3068                 "Can't infer mayStore from patterns");
3069    if (InstInfo.mayLoad_Unset)
3070      PrintError(InstInfo.TheDef->getLoc(),
3071                 "Can't infer mayLoad from patterns");
3072  }
3073}
3074
3075
3076/// Verify instruction flags against pattern node properties.
3077void CodeGenDAGPatterns::VerifyInstructionFlags() {
3078  unsigned Errors = 0;
3079  for (ptm_iterator I = ptm_begin(), E = ptm_end(); I != E; ++I) {
3080    const PatternToMatch &PTM = *I;
3081    SmallVector<Record*, 8> Instrs;
3082    getInstructionsInTree(PTM.getDstPattern(), Instrs);
3083    if (Instrs.empty())
3084      continue;
3085
3086    // Count the number of instructions with each flag set.
3087    unsigned NumSideEffects = 0;
3088    unsigned NumStores = 0;
3089    unsigned NumLoads = 0;
3090    for (unsigned i = 0, e = Instrs.size(); i != e; ++i) {
3091      const CodeGenInstruction &InstInfo = Target.getInstruction(Instrs[i]);
3092      NumSideEffects += InstInfo.hasSideEffects;
3093      NumStores += InstInfo.mayStore;
3094      NumLoads += InstInfo.mayLoad;
3095    }
3096
3097    // Analyze the source pattern.
3098    InstAnalyzer PatInfo(*this);
3099    PatInfo.Analyze(&PTM);
3100
3101    // Collect error messages.
3102    SmallVector<std::string, 4> Msgs;
3103
3104    // Check for missing flags in the output.
3105    // Permit extra flags for now at least.
3106    if (PatInfo.hasSideEffects && !NumSideEffects)
3107      Msgs.push_back("pattern has side effects, but hasSideEffects isn't set");
3108
3109    // Don't verify store flags on instructions with side effects. At least for
3110    // intrinsics, side effects implies mayStore.
3111    if (!PatInfo.hasSideEffects && PatInfo.mayStore && !NumStores)
3112      Msgs.push_back("pattern may store, but mayStore isn't set");
3113
3114    // Similarly, mayStore implies mayLoad on intrinsics.
3115    if (!PatInfo.mayStore && PatInfo.mayLoad && !NumLoads)
3116      Msgs.push_back("pattern may load, but mayLoad isn't set");
3117
3118    // Print error messages.
3119    if (Msgs.empty())
3120      continue;
3121    ++Errors;
3122
3123    for (unsigned i = 0, e = Msgs.size(); i != e; ++i)
3124      PrintError(PTM.getSrcRecord()->getLoc(), Twine(Msgs[i]) + " on the " +
3125                 (Instrs.size() == 1 ?
3126                  "instruction" : "output instructions"));
3127    // Provide the location of the relevant instruction definitions.
3128    for (unsigned i = 0, e = Instrs.size(); i != e; ++i) {
3129      if (Instrs[i] != PTM.getSrcRecord())
3130        PrintError(Instrs[i]->getLoc(), "defined here");
3131      const CodeGenInstruction &InstInfo = Target.getInstruction(Instrs[i]);
3132      if (InstInfo.InferredFrom &&
3133          InstInfo.InferredFrom != InstInfo.TheDef &&
3134          InstInfo.InferredFrom != PTM.getSrcRecord())
3135        PrintError(InstInfo.InferredFrom->getLoc(), "inferred from patttern");
3136    }
3137  }
3138  if (Errors)
3139    PrintFatalError("Errors in DAG patterns");
3140}
3141
3142/// Given a pattern result with an unresolved type, see if we can find one
3143/// instruction with an unresolved result type.  Force this result type to an
3144/// arbitrary element if it's possible types to converge results.
3145static bool ForceArbitraryInstResultType(TreePatternNode *N, TreePattern &TP) {
3146  if (N->isLeaf())
3147    return false;
3148
3149  // Analyze children.
3150  for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i)
3151    if (ForceArbitraryInstResultType(N->getChild(i), TP))
3152      return true;
3153
3154  if (!N->getOperator()->isSubClassOf("Instruction"))
3155    return false;
3156
3157  // If this type is already concrete or completely unknown we can't do
3158  // anything.
3159  for (unsigned i = 0, e = N->getNumTypes(); i != e; ++i) {
3160    if (N->getExtType(i).isCompletelyUnknown() || N->getExtType(i).isConcrete())
3161      continue;
3162
3163    // Otherwise, force its type to the first possibility (an arbitrary choice).
3164    if (N->getExtType(i).MergeInTypeInfo(N->getExtType(i).getTypeList()[0], TP))
3165      return true;
3166  }
3167
3168  return false;
3169}
3170
3171void CodeGenDAGPatterns::ParsePatterns() {
3172  std::vector<Record*> Patterns = Records.getAllDerivedDefinitions("Pattern");
3173
3174  for (unsigned i = 0, e = Patterns.size(); i != e; ++i) {
3175    Record *CurPattern = Patterns[i];
3176    DagInit *Tree = CurPattern->getValueAsDag("PatternToMatch");
3177
3178    // If the pattern references the null_frag, there's nothing to do.
3179    if (hasNullFragReference(Tree))
3180      continue;
3181
3182    TreePattern *Pattern = new TreePattern(CurPattern, Tree, true, *this);
3183
3184    // Inline pattern fragments into it.
3185    Pattern->InlinePatternFragments();
3186
3187    ListInit *LI = CurPattern->getValueAsListInit("ResultInstrs");
3188    if (LI->getSize() == 0) continue;  // no pattern.
3189
3190    // Parse the instruction.
3191    TreePattern *Result = new TreePattern(CurPattern, LI, false, *this);
3192
3193    // Inline pattern fragments into it.
3194    Result->InlinePatternFragments();
3195
3196    if (Result->getNumTrees() != 1)
3197      Result->error("Cannot handle instructions producing instructions "
3198                    "with temporaries yet!");
3199
3200    bool IterateInference;
3201    bool InferredAllPatternTypes, InferredAllResultTypes;
3202    do {
3203      // Infer as many types as possible.  If we cannot infer all of them, we
3204      // can never do anything with this pattern: report it to the user.
3205      InferredAllPatternTypes =
3206        Pattern->InferAllTypes(&Pattern->getNamedNodesMap());
3207
3208      // Infer as many types as possible.  If we cannot infer all of them, we
3209      // can never do anything with this pattern: report it to the user.
3210      InferredAllResultTypes =
3211        Result->InferAllTypes(&Pattern->getNamedNodesMap());
3212
3213      IterateInference = false;
3214
3215      // Apply the type of the result to the source pattern.  This helps us
3216      // resolve cases where the input type is known to be a pointer type (which
3217      // is considered resolved), but the result knows it needs to be 32- or
3218      // 64-bits.  Infer the other way for good measure.
3219      for (unsigned i = 0, e = std::min(Result->getTree(0)->getNumTypes(),
3220                                        Pattern->getTree(0)->getNumTypes());
3221           i != e; ++i) {
3222        IterateInference = Pattern->getTree(0)->
3223          UpdateNodeType(i, Result->getTree(0)->getExtType(i), *Result);
3224        IterateInference |= Result->getTree(0)->
3225          UpdateNodeType(i, Pattern->getTree(0)->getExtType(i), *Result);
3226      }
3227
3228      // If our iteration has converged and the input pattern's types are fully
3229      // resolved but the result pattern is not fully resolved, we may have a
3230      // situation where we have two instructions in the result pattern and
3231      // the instructions require a common register class, but don't care about
3232      // what actual MVT is used.  This is actually a bug in our modelling:
3233      // output patterns should have register classes, not MVTs.
3234      //
3235      // In any case, to handle this, we just go through and disambiguate some
3236      // arbitrary types to the result pattern's nodes.
3237      if (!IterateInference && InferredAllPatternTypes &&
3238          !InferredAllResultTypes)
3239        IterateInference = ForceArbitraryInstResultType(Result->getTree(0),
3240                                                        *Result);
3241    } while (IterateInference);
3242
3243    // Verify that we inferred enough types that we can do something with the
3244    // pattern and result.  If these fire the user has to add type casts.
3245    if (!InferredAllPatternTypes)
3246      Pattern->error("Could not infer all types in pattern!");
3247    if (!InferredAllResultTypes) {
3248      Pattern->dump();
3249      Result->error("Could not infer all types in pattern result!");
3250    }
3251
3252    // Validate that the input pattern is correct.
3253    std::map<std::string, TreePatternNode*> InstInputs;
3254    std::map<std::string, TreePatternNode*> InstResults;
3255    std::vector<Record*> InstImpResults;
3256    for (unsigned j = 0, ee = Pattern->getNumTrees(); j != ee; ++j)
3257      FindPatternInputsAndOutputs(Pattern, Pattern->getTree(j),
3258                                  InstInputs, InstResults,
3259                                  InstImpResults);
3260
3261    // Promote the xform function to be an explicit node if set.
3262    TreePatternNode *DstPattern = Result->getOnlyTree();
3263    std::vector<TreePatternNode*> ResultNodeOperands;
3264    for (unsigned ii = 0, ee = DstPattern->getNumChildren(); ii != ee; ++ii) {
3265      TreePatternNode *OpNode = DstPattern->getChild(ii);
3266      if (Record *Xform = OpNode->getTransformFn()) {
3267        OpNode->setTransformFn(0);
3268        std::vector<TreePatternNode*> Children;
3269        Children.push_back(OpNode);
3270        OpNode = new TreePatternNode(Xform, Children, OpNode->getNumTypes());
3271      }
3272      ResultNodeOperands.push_back(OpNode);
3273    }
3274    DstPattern = Result->getOnlyTree();
3275    if (!DstPattern->isLeaf())
3276      DstPattern = new TreePatternNode(DstPattern->getOperator(),
3277                                       ResultNodeOperands,
3278                                       DstPattern->getNumTypes());
3279
3280    for (unsigned i = 0, e = Result->getOnlyTree()->getNumTypes(); i != e; ++i)
3281      DstPattern->setType(i, Result->getOnlyTree()->getExtType(i));
3282
3283    TreePattern Temp(Result->getRecord(), DstPattern, false, *this);
3284    Temp.InferAllTypes();
3285
3286
3287    AddPatternToMatch(Pattern,
3288                    PatternToMatch(CurPattern,
3289                                   CurPattern->getValueAsListInit("Predicates"),
3290                                   Pattern->getTree(0),
3291                                   Temp.getOnlyTree(), InstImpResults,
3292                                   CurPattern->getValueAsInt("AddedComplexity"),
3293                                   CurPattern->getID()));
3294  }
3295}
3296
3297/// CombineChildVariants - Given a bunch of permutations of each child of the
3298/// 'operator' node, put them together in all possible ways.
3299static void CombineChildVariants(TreePatternNode *Orig,
3300               const std::vector<std::vector<TreePatternNode*> > &ChildVariants,
3301                                 std::vector<TreePatternNode*> &OutVariants,
3302                                 CodeGenDAGPatterns &CDP,
3303                                 const MultipleUseVarSet &DepVars) {
3304  // Make sure that each operand has at least one variant to choose from.
3305  for (unsigned i = 0, e = ChildVariants.size(); i != e; ++i)
3306    if (ChildVariants[i].empty())
3307      return;
3308
3309  // The end result is an all-pairs construction of the resultant pattern.
3310  std::vector<unsigned> Idxs;
3311  Idxs.resize(ChildVariants.size());
3312  bool NotDone;
3313  do {
3314#ifndef NDEBUG
3315    DEBUG(if (!Idxs.empty()) {
3316            errs() << Orig->getOperator()->getName() << ": Idxs = [ ";
3317              for (unsigned i = 0; i < Idxs.size(); ++i) {
3318                errs() << Idxs[i] << " ";
3319            }
3320            errs() << "]\n";
3321          });
3322#endif
3323    // Create the variant and add it to the output list.
3324    std::vector<TreePatternNode*> NewChildren;
3325    for (unsigned i = 0, e = ChildVariants.size(); i != e; ++i)
3326      NewChildren.push_back(ChildVariants[i][Idxs[i]]);
3327    TreePatternNode *R = new TreePatternNode(Orig->getOperator(), NewChildren,
3328                                             Orig->getNumTypes());
3329
3330    // Copy over properties.
3331    R->setName(Orig->getName());
3332    R->setPredicateFns(Orig->getPredicateFns());
3333    R->setTransformFn(Orig->getTransformFn());
3334    for (unsigned i = 0, e = Orig->getNumTypes(); i != e; ++i)
3335      R->setType(i, Orig->getExtType(i));
3336
3337    // If this pattern cannot match, do not include it as a variant.
3338    std::string ErrString;
3339    if (!R->canPatternMatch(ErrString, CDP)) {
3340      delete R;
3341    } else {
3342      bool AlreadyExists = false;
3343
3344      // Scan to see if this pattern has already been emitted.  We can get
3345      // duplication due to things like commuting:
3346      //   (and GPRC:$a, GPRC:$b) -> (and GPRC:$b, GPRC:$a)
3347      // which are the same pattern.  Ignore the dups.
3348      for (unsigned i = 0, e = OutVariants.size(); i != e; ++i)
3349        if (R->isIsomorphicTo(OutVariants[i], DepVars)) {
3350          AlreadyExists = true;
3351          break;
3352        }
3353
3354      if (AlreadyExists)
3355        delete R;
3356      else
3357        OutVariants.push_back(R);
3358    }
3359
3360    // Increment indices to the next permutation by incrementing the
3361    // indicies from last index backward, e.g., generate the sequence
3362    // [0, 0], [0, 1], [1, 0], [1, 1].
3363    int IdxsIdx;
3364    for (IdxsIdx = Idxs.size() - 1; IdxsIdx >= 0; --IdxsIdx) {
3365      if (++Idxs[IdxsIdx] == ChildVariants[IdxsIdx].size())
3366        Idxs[IdxsIdx] = 0;
3367      else
3368        break;
3369    }
3370    NotDone = (IdxsIdx >= 0);
3371  } while (NotDone);
3372}
3373
3374/// CombineChildVariants - A helper function for binary operators.
3375///
3376static void CombineChildVariants(TreePatternNode *Orig,
3377                                 const std::vector<TreePatternNode*> &LHS,
3378                                 const std::vector<TreePatternNode*> &RHS,
3379                                 std::vector<TreePatternNode*> &OutVariants,
3380                                 CodeGenDAGPatterns &CDP,
3381                                 const MultipleUseVarSet &DepVars) {
3382  std::vector<std::vector<TreePatternNode*> > ChildVariants;
3383  ChildVariants.push_back(LHS);
3384  ChildVariants.push_back(RHS);
3385  CombineChildVariants(Orig, ChildVariants, OutVariants, CDP, DepVars);
3386}
3387
3388
3389static void GatherChildrenOfAssociativeOpcode(TreePatternNode *N,
3390                                     std::vector<TreePatternNode *> &Children) {
3391  assert(N->getNumChildren()==2 &&"Associative but doesn't have 2 children!");
3392  Record *Operator = N->getOperator();
3393
3394  // Only permit raw nodes.
3395  if (!N->getName().empty() || !N->getPredicateFns().empty() ||
3396      N->getTransformFn()) {
3397    Children.push_back(N);
3398    return;
3399  }
3400
3401  if (N->getChild(0)->isLeaf() || N->getChild(0)->getOperator() != Operator)
3402    Children.push_back(N->getChild(0));
3403  else
3404    GatherChildrenOfAssociativeOpcode(N->getChild(0), Children);
3405
3406  if (N->getChild(1)->isLeaf() || N->getChild(1)->getOperator() != Operator)
3407    Children.push_back(N->getChild(1));
3408  else
3409    GatherChildrenOfAssociativeOpcode(N->getChild(1), Children);
3410}
3411
3412/// GenerateVariantsOf - Given a pattern N, generate all permutations we can of
3413/// the (potentially recursive) pattern by using algebraic laws.
3414///
3415static void GenerateVariantsOf(TreePatternNode *N,
3416                               std::vector<TreePatternNode*> &OutVariants,
3417                               CodeGenDAGPatterns &CDP,
3418                               const MultipleUseVarSet &DepVars) {
3419  // We cannot permute leaves.
3420  if (N->isLeaf()) {
3421    OutVariants.push_back(N);
3422    return;
3423  }
3424
3425  // Look up interesting info about the node.
3426  const SDNodeInfo &NodeInfo = CDP.getSDNodeInfo(N->getOperator());
3427
3428  // If this node is associative, re-associate.
3429  if (NodeInfo.hasProperty(SDNPAssociative)) {
3430    // Re-associate by pulling together all of the linked operators
3431    std::vector<TreePatternNode*> MaximalChildren;
3432    GatherChildrenOfAssociativeOpcode(N, MaximalChildren);
3433
3434    // Only handle child sizes of 3.  Otherwise we'll end up trying too many
3435    // permutations.
3436    if (MaximalChildren.size() == 3) {
3437      // Find the variants of all of our maximal children.
3438      std::vector<TreePatternNode*> AVariants, BVariants, CVariants;
3439      GenerateVariantsOf(MaximalChildren[0], AVariants, CDP, DepVars);
3440      GenerateVariantsOf(MaximalChildren[1], BVariants, CDP, DepVars);
3441      GenerateVariantsOf(MaximalChildren[2], CVariants, CDP, DepVars);
3442
3443      // There are only two ways we can permute the tree:
3444      //   (A op B) op C    and    A op (B op C)
3445      // Within these forms, we can also permute A/B/C.
3446
3447      // Generate legal pair permutations of A/B/C.
3448      std::vector<TreePatternNode*> ABVariants;
3449      std::vector<TreePatternNode*> BAVariants;
3450      std::vector<TreePatternNode*> ACVariants;
3451      std::vector<TreePatternNode*> CAVariants;
3452      std::vector<TreePatternNode*> BCVariants;
3453      std::vector<TreePatternNode*> CBVariants;
3454      CombineChildVariants(N, AVariants, BVariants, ABVariants, CDP, DepVars);
3455      CombineChildVariants(N, BVariants, AVariants, BAVariants, CDP, DepVars);
3456      CombineChildVariants(N, AVariants, CVariants, ACVariants, CDP, DepVars);
3457      CombineChildVariants(N, CVariants, AVariants, CAVariants, CDP, DepVars);
3458      CombineChildVariants(N, BVariants, CVariants, BCVariants, CDP, DepVars);
3459      CombineChildVariants(N, CVariants, BVariants, CBVariants, CDP, DepVars);
3460
3461      // Combine those into the result: (x op x) op x
3462      CombineChildVariants(N, ABVariants, CVariants, OutVariants, CDP, DepVars);
3463      CombineChildVariants(N, BAVariants, CVariants, OutVariants, CDP, DepVars);
3464      CombineChildVariants(N, ACVariants, BVariants, OutVariants, CDP, DepVars);
3465      CombineChildVariants(N, CAVariants, BVariants, OutVariants, CDP, DepVars);
3466      CombineChildVariants(N, BCVariants, AVariants, OutVariants, CDP, DepVars);
3467      CombineChildVariants(N, CBVariants, AVariants, OutVariants, CDP, DepVars);
3468
3469      // Combine those into the result: x op (x op x)
3470      CombineChildVariants(N, CVariants, ABVariants, OutVariants, CDP, DepVars);
3471      CombineChildVariants(N, CVariants, BAVariants, OutVariants, CDP, DepVars);
3472      CombineChildVariants(N, BVariants, ACVariants, OutVariants, CDP, DepVars);
3473      CombineChildVariants(N, BVariants, CAVariants, OutVariants, CDP, DepVars);
3474      CombineChildVariants(N, AVariants, BCVariants, OutVariants, CDP, DepVars);
3475      CombineChildVariants(N, AVariants, CBVariants, OutVariants, CDP, DepVars);
3476      return;
3477    }
3478  }
3479
3480  // Compute permutations of all children.
3481  std::vector<std::vector<TreePatternNode*> > ChildVariants;
3482  ChildVariants.resize(N->getNumChildren());
3483  for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i)
3484    GenerateVariantsOf(N->getChild(i), ChildVariants[i], CDP, DepVars);
3485
3486  // Build all permutations based on how the children were formed.
3487  CombineChildVariants(N, ChildVariants, OutVariants, CDP, DepVars);
3488
3489  // If this node is commutative, consider the commuted order.
3490  bool isCommIntrinsic = N->isCommutativeIntrinsic(CDP);
3491  if (NodeInfo.hasProperty(SDNPCommutative) || isCommIntrinsic) {
3492    assert((N->getNumChildren()==2 || isCommIntrinsic) &&
3493           "Commutative but doesn't have 2 children!");
3494    // Don't count children which are actually register references.
3495    unsigned NC = 0;
3496    for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i) {
3497      TreePatternNode *Child = N->getChild(i);
3498      if (Child->isLeaf())
3499        if (DefInit *DI = dyn_cast<DefInit>(Child->getLeafValue())) {
3500          Record *RR = DI->getDef();
3501          if (RR->isSubClassOf("Register"))
3502            continue;
3503        }
3504      NC++;
3505    }
3506    // Consider the commuted order.
3507    if (isCommIntrinsic) {
3508      // Commutative intrinsic. First operand is the intrinsic id, 2nd and 3rd
3509      // operands are the commutative operands, and there might be more operands
3510      // after those.
3511      assert(NC >= 3 &&
3512             "Commutative intrinsic should have at least 3 childrean!");
3513      std::vector<std::vector<TreePatternNode*> > Variants;
3514      Variants.push_back(ChildVariants[0]); // Intrinsic id.
3515      Variants.push_back(ChildVariants[2]);
3516      Variants.push_back(ChildVariants[1]);
3517      for (unsigned i = 3; i != NC; ++i)
3518        Variants.push_back(ChildVariants[i]);
3519      CombineChildVariants(N, Variants, OutVariants, CDP, DepVars);
3520    } else if (NC == 2)
3521      CombineChildVariants(N, ChildVariants[1], ChildVariants[0],
3522                           OutVariants, CDP, DepVars);
3523  }
3524}
3525
3526
3527// GenerateVariants - Generate variants.  For example, commutative patterns can
3528// match multiple ways.  Add them to PatternsToMatch as well.
3529void CodeGenDAGPatterns::GenerateVariants() {
3530  DEBUG(errs() << "Generating instruction variants.\n");
3531
3532  // Loop over all of the patterns we've collected, checking to see if we can
3533  // generate variants of the instruction, through the exploitation of
3534  // identities.  This permits the target to provide aggressive matching without
3535  // the .td file having to contain tons of variants of instructions.
3536  //
3537  // Note that this loop adds new patterns to the PatternsToMatch list, but we
3538  // intentionally do not reconsider these.  Any variants of added patterns have
3539  // already been added.
3540  //
3541  for (unsigned i = 0, e = PatternsToMatch.size(); i != e; ++i) {
3542    MultipleUseVarSet             DepVars;
3543    std::vector<TreePatternNode*> Variants;
3544    FindDepVars(PatternsToMatch[i].getSrcPattern(), DepVars);
3545    DEBUG(errs() << "Dependent/multiply used variables: ");
3546    DEBUG(DumpDepVars(DepVars));
3547    DEBUG(errs() << "\n");
3548    GenerateVariantsOf(PatternsToMatch[i].getSrcPattern(), Variants, *this,
3549                       DepVars);
3550
3551    assert(!Variants.empty() && "Must create at least original variant!");
3552    Variants.erase(Variants.begin());  // Remove the original pattern.
3553
3554    if (Variants.empty())  // No variants for this pattern.
3555      continue;
3556
3557    DEBUG(errs() << "FOUND VARIANTS OF: ";
3558          PatternsToMatch[i].getSrcPattern()->dump();
3559          errs() << "\n");
3560
3561    for (unsigned v = 0, e = Variants.size(); v != e; ++v) {
3562      TreePatternNode *Variant = Variants[v];
3563
3564      DEBUG(errs() << "  VAR#" << v <<  ": ";
3565            Variant->dump();
3566            errs() << "\n");
3567
3568      // Scan to see if an instruction or explicit pattern already matches this.
3569      bool AlreadyExists = false;
3570      for (unsigned p = 0, e = PatternsToMatch.size(); p != e; ++p) {
3571        // Skip if the top level predicates do not match.
3572        if (PatternsToMatch[i].getPredicates() !=
3573            PatternsToMatch[p].getPredicates())
3574          continue;
3575        // Check to see if this variant already exists.
3576        if (Variant->isIsomorphicTo(PatternsToMatch[p].getSrcPattern(),
3577                                    DepVars)) {
3578          DEBUG(errs() << "  *** ALREADY EXISTS, ignoring variant.\n");
3579          AlreadyExists = true;
3580          break;
3581        }
3582      }
3583      // If we already have it, ignore the variant.
3584      if (AlreadyExists) continue;
3585
3586      // Otherwise, add it to the list of patterns we have.
3587      PatternsToMatch.
3588        push_back(PatternToMatch(PatternsToMatch[i].getSrcRecord(),
3589                                 PatternsToMatch[i].getPredicates(),
3590                                 Variant, PatternsToMatch[i].getDstPattern(),
3591                                 PatternsToMatch[i].getDstRegs(),
3592                                 PatternsToMatch[i].getAddedComplexity(),
3593                                 Record::getNewUID()));
3594    }
3595
3596    DEBUG(errs() << "\n");
3597  }
3598}
3599