GDBRemoteRegisterContext.cpp revision 263363
1//===-- GDBRemoteRegisterContext.cpp ----------------------------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9
10#include "GDBRemoteRegisterContext.h"
11
12// C Includes
13// C++ Includes
14// Other libraries and framework includes
15#include "lldb/Core/DataBufferHeap.h"
16#include "lldb/Core/DataExtractor.h"
17#include "lldb/Core/RegisterValue.h"
18#include "lldb/Core/Scalar.h"
19#include "lldb/Core/StreamString.h"
20#ifndef LLDB_DISABLE_PYTHON
21#include "lldb/Interpreter/PythonDataObjects.h"
22#endif
23#include "lldb/Target/ExecutionContext.h"
24#include "lldb/Utility/Utils.h"
25// Project includes
26#include "Utility/StringExtractorGDBRemote.h"
27#include "ProcessGDBRemote.h"
28#include "ProcessGDBRemoteLog.h"
29#include "ThreadGDBRemote.h"
30#include "Utility/ARM_GCC_Registers.h"
31#include "Utility/ARM_DWARF_Registers.h"
32
33using namespace lldb;
34using namespace lldb_private;
35
36//----------------------------------------------------------------------
37// GDBRemoteRegisterContext constructor
38//----------------------------------------------------------------------
39GDBRemoteRegisterContext::GDBRemoteRegisterContext
40(
41    ThreadGDBRemote &thread,
42    uint32_t concrete_frame_idx,
43    GDBRemoteDynamicRegisterInfo &reg_info,
44    bool read_all_at_once
45) :
46    RegisterContext (thread, concrete_frame_idx),
47    m_reg_info (reg_info),
48    m_reg_valid (),
49    m_reg_data (),
50    m_read_all_at_once (read_all_at_once)
51{
52    // Resize our vector of bools to contain one bool for every register.
53    // We will use these boolean values to know when a register value
54    // is valid in m_reg_data.
55    m_reg_valid.resize (reg_info.GetNumRegisters());
56
57    // Make a heap based buffer that is big enough to store all registers
58    DataBufferSP reg_data_sp(new DataBufferHeap (reg_info.GetRegisterDataByteSize(), 0));
59    m_reg_data.SetData (reg_data_sp);
60    m_reg_data.SetByteOrder(thread.GetProcess()->GetByteOrder());
61}
62
63//----------------------------------------------------------------------
64// Destructor
65//----------------------------------------------------------------------
66GDBRemoteRegisterContext::~GDBRemoteRegisterContext()
67{
68}
69
70void
71GDBRemoteRegisterContext::InvalidateAllRegisters ()
72{
73    SetAllRegisterValid (false);
74}
75
76void
77GDBRemoteRegisterContext::SetAllRegisterValid (bool b)
78{
79    std::vector<bool>::iterator pos, end = m_reg_valid.end();
80    for (pos = m_reg_valid.begin(); pos != end; ++pos)
81        *pos = b;
82}
83
84size_t
85GDBRemoteRegisterContext::GetRegisterCount ()
86{
87    return m_reg_info.GetNumRegisters ();
88}
89
90const RegisterInfo *
91GDBRemoteRegisterContext::GetRegisterInfoAtIndex (size_t reg)
92{
93    return m_reg_info.GetRegisterInfoAtIndex (reg);
94}
95
96size_t
97GDBRemoteRegisterContext::GetRegisterSetCount ()
98{
99    return m_reg_info.GetNumRegisterSets ();
100}
101
102
103
104const RegisterSet *
105GDBRemoteRegisterContext::GetRegisterSet (size_t reg_set)
106{
107    return m_reg_info.GetRegisterSet (reg_set);
108}
109
110
111
112bool
113GDBRemoteRegisterContext::ReadRegister (const RegisterInfo *reg_info, RegisterValue &value)
114{
115    // Read the register
116    if (ReadRegisterBytes (reg_info, m_reg_data))
117    {
118        const bool partial_data_ok = false;
119        Error error (value.SetValueFromData(reg_info, m_reg_data, reg_info->byte_offset, partial_data_ok));
120        return error.Success();
121    }
122    return false;
123}
124
125bool
126GDBRemoteRegisterContext::PrivateSetRegisterValue (uint32_t reg, StringExtractor &response)
127{
128    const RegisterInfo *reg_info = GetRegisterInfoAtIndex (reg);
129    if (reg_info == NULL)
130        return false;
131
132    // Invalidate if needed
133    InvalidateIfNeeded(false);
134
135    const uint32_t reg_byte_size = reg_info->byte_size;
136    const size_t bytes_copied = response.GetHexBytes (const_cast<uint8_t*>(m_reg_data.PeekData(reg_info->byte_offset, reg_byte_size)), reg_byte_size, '\xcc');
137    bool success = bytes_copied == reg_byte_size;
138    if (success)
139    {
140        SetRegisterIsValid(reg, true);
141    }
142    else if (bytes_copied > 0)
143    {
144        // Only set register is valid to false if we copied some bytes, else
145        // leave it as it was.
146        SetRegisterIsValid(reg, false);
147    }
148    return success;
149}
150
151// Helper function for GDBRemoteRegisterContext::ReadRegisterBytes().
152bool
153GDBRemoteRegisterContext::GetPrimordialRegister(const lldb_private::RegisterInfo *reg_info,
154                                                GDBRemoteCommunicationClient &gdb_comm)
155{
156    char packet[64];
157    StringExtractorGDBRemote response;
158    int packet_len = 0;
159    const uint32_t reg = reg_info->kinds[eRegisterKindLLDB];
160    if (gdb_comm.GetThreadSuffixSupported())
161        packet_len = ::snprintf (packet, sizeof(packet), "p%x;thread:%4.4" PRIx64 ";", reg, m_thread.GetProtocolID());
162    else
163        packet_len = ::snprintf (packet, sizeof(packet), "p%x", reg);
164    assert (packet_len < ((int)sizeof(packet) - 1));
165    if (gdb_comm.SendPacketAndWaitForResponse(packet, response, false))
166        return PrivateSetRegisterValue (reg, response);
167
168    return false;
169}
170bool
171GDBRemoteRegisterContext::ReadRegisterBytes (const RegisterInfo *reg_info, DataExtractor &data)
172{
173    ExecutionContext exe_ctx (CalculateThread());
174
175    Process *process = exe_ctx.GetProcessPtr();
176    Thread *thread = exe_ctx.GetThreadPtr();
177    if (process == NULL || thread == NULL)
178        return false;
179
180    GDBRemoteCommunicationClient &gdb_comm (((ProcessGDBRemote *)process)->GetGDBRemote());
181
182    InvalidateIfNeeded(false);
183
184    const uint32_t reg = reg_info->kinds[eRegisterKindLLDB];
185
186    if (!GetRegisterIsValid(reg))
187    {
188        Mutex::Locker locker;
189        if (gdb_comm.GetSequenceMutex (locker, "Didn't get sequence mutex for read register."))
190        {
191            const bool thread_suffix_supported = gdb_comm.GetThreadSuffixSupported();
192            ProcessSP process_sp (m_thread.GetProcess());
193            if (thread_suffix_supported || static_cast<ProcessGDBRemote *>(process_sp.get())->GetGDBRemote().SetCurrentThread(m_thread.GetProtocolID()))
194            {
195                char packet[64];
196                StringExtractorGDBRemote response;
197                int packet_len = 0;
198                if (m_read_all_at_once)
199                {
200                    // Get all registers in one packet
201                    if (thread_suffix_supported)
202                        packet_len = ::snprintf (packet, sizeof(packet), "g;thread:%4.4" PRIx64 ";", m_thread.GetProtocolID());
203                    else
204                        packet_len = ::snprintf (packet, sizeof(packet), "g");
205                    assert (packet_len < ((int)sizeof(packet) - 1));
206                    if (gdb_comm.SendPacketAndWaitForResponse(packet, response, false))
207                    {
208                        if (response.IsNormalResponse())
209                            if (response.GetHexBytes ((void *)m_reg_data.GetDataStart(), m_reg_data.GetByteSize(), '\xcc') == m_reg_data.GetByteSize())
210                                SetAllRegisterValid (true);
211                    }
212                }
213                else if (reg_info->value_regs)
214                {
215                    // Process this composite register request by delegating to the constituent
216                    // primordial registers.
217
218                    // Index of the primordial register.
219                    bool success = true;
220                    for (uint32_t idx = 0; success; ++idx)
221                    {
222                        const uint32_t prim_reg = reg_info->value_regs[idx];
223                        if (prim_reg == LLDB_INVALID_REGNUM)
224                            break;
225                        // We have a valid primordial regsiter as our constituent.
226                        // Grab the corresponding register info.
227                        const RegisterInfo *prim_reg_info = GetRegisterInfoAtIndex(prim_reg);
228                        if (prim_reg_info == NULL)
229                            success = false;
230                        else
231                        {
232                            // Read the containing register if it hasn't already been read
233                            if (!GetRegisterIsValid(prim_reg))
234                                success = GetPrimordialRegister(prim_reg_info, gdb_comm);
235                        }
236                    }
237
238                    if (success)
239                    {
240                        // If we reach this point, all primordial register requests have succeeded.
241                        // Validate this composite register.
242                        SetRegisterIsValid (reg_info, true);
243                    }
244                }
245                else
246                {
247                    // Get each register individually
248                    GetPrimordialRegister(reg_info, gdb_comm);
249                }
250            }
251        }
252        else
253        {
254#if LLDB_CONFIGURATION_DEBUG
255            StreamString strm;
256            gdb_comm.DumpHistory(strm);
257            Host::SetCrashDescription (strm.GetData());
258            assert (!"Didn't get sequence mutex for read register.");
259#else
260            Log *log (ProcessGDBRemoteLog::GetLogIfAnyCategoryIsSet (GDBR_LOG_THREAD | GDBR_LOG_PACKETS));
261            if (log)
262            {
263                if (log->GetVerbose())
264                {
265                    StreamString strm;
266                    gdb_comm.DumpHistory(strm);
267                    log->Printf("error: failed to get packet sequence mutex, not sending read register for \"%s\":\n%s", reg_info->name, strm.GetData());
268                }
269                else
270                {
271                    log->Printf("error: failed to get packet sequence mutex, not sending read register for \"%s\"", reg_info->name);
272                }
273            }
274#endif
275        }
276
277        // Make sure we got a valid register value after reading it
278        if (!GetRegisterIsValid(reg))
279            return false;
280    }
281
282    if (&data != &m_reg_data)
283    {
284        // If we aren't extracting into our own buffer (which
285        // only happens when this function is called from
286        // ReadRegisterValue(uint32_t, Scalar&)) then
287        // we transfer bytes from our buffer into the data
288        // buffer that was passed in
289        data.SetByteOrder (m_reg_data.GetByteOrder());
290        data.SetData (m_reg_data, reg_info->byte_offset, reg_info->byte_size);
291    }
292    return true;
293}
294
295bool
296GDBRemoteRegisterContext::WriteRegister (const RegisterInfo *reg_info,
297                                         const RegisterValue &value)
298{
299    DataExtractor data;
300    if (value.GetData (data))
301        return WriteRegisterBytes (reg_info, data, 0);
302    return false;
303}
304
305// Helper function for GDBRemoteRegisterContext::WriteRegisterBytes().
306bool
307GDBRemoteRegisterContext::SetPrimordialRegister(const lldb_private::RegisterInfo *reg_info,
308                                                GDBRemoteCommunicationClient &gdb_comm)
309{
310    StreamString packet;
311    StringExtractorGDBRemote response;
312    const uint32_t reg = reg_info->kinds[eRegisterKindLLDB];
313    packet.Printf ("P%x=", reg);
314    packet.PutBytesAsRawHex8 (m_reg_data.PeekData(reg_info->byte_offset, reg_info->byte_size),
315                              reg_info->byte_size,
316                              lldb::endian::InlHostByteOrder(),
317                              lldb::endian::InlHostByteOrder());
318
319    if (gdb_comm.GetThreadSuffixSupported())
320        packet.Printf (";thread:%4.4" PRIx64 ";", m_thread.GetProtocolID());
321
322    // Invalidate just this register
323    SetRegisterIsValid(reg, false);
324    if (gdb_comm.SendPacketAndWaitForResponse(packet.GetString().c_str(),
325                                              packet.GetString().size(),
326                                              response,
327                                              false))
328    {
329        if (response.IsOKResponse())
330            return true;
331    }
332    return false;
333}
334
335void
336GDBRemoteRegisterContext::SyncThreadState(Process *process)
337{
338    // NB.  We assume our caller has locked the sequence mutex.
339
340    GDBRemoteCommunicationClient &gdb_comm (((ProcessGDBRemote *) process)->GetGDBRemote());
341    if (!gdb_comm.GetSyncThreadStateSupported())
342        return;
343
344    StreamString packet;
345    StringExtractorGDBRemote response;
346    packet.Printf ("QSyncThreadState:%4.4" PRIx64 ";", m_thread.GetProtocolID());
347    if (gdb_comm.SendPacketAndWaitForResponse(packet.GetString().c_str(),
348                                              packet.GetString().size(),
349                                              response,
350                                              false))
351    {
352        if (response.IsOKResponse())
353            InvalidateAllRegisters();
354    }
355}
356
357bool
358GDBRemoteRegisterContext::WriteRegisterBytes (const lldb_private::RegisterInfo *reg_info, DataExtractor &data, uint32_t data_offset)
359{
360    ExecutionContext exe_ctx (CalculateThread());
361
362    Process *process = exe_ctx.GetProcessPtr();
363    Thread *thread = exe_ctx.GetThreadPtr();
364    if (process == NULL || thread == NULL)
365        return false;
366
367    GDBRemoteCommunicationClient &gdb_comm (((ProcessGDBRemote *)process)->GetGDBRemote());
368// FIXME: This check isn't right because IsRunning checks the Public state, but this
369// is work you need to do - for instance in ShouldStop & friends - before the public
370// state has been changed.
371//    if (gdb_comm.IsRunning())
372//        return false;
373
374    // Grab a pointer to where we are going to put this register
375    uint8_t *dst = const_cast<uint8_t*>(m_reg_data.PeekData(reg_info->byte_offset, reg_info->byte_size));
376
377    if (dst == NULL)
378        return false;
379
380
381    if (data.CopyByteOrderedData (data_offset,                  // src offset
382                                  reg_info->byte_size,          // src length
383                                  dst,                          // dst
384                                  reg_info->byte_size,          // dst length
385                                  m_reg_data.GetByteOrder()))   // dst byte order
386    {
387        Mutex::Locker locker;
388        if (gdb_comm.GetSequenceMutex (locker, "Didn't get sequence mutex for write register."))
389        {
390            const bool thread_suffix_supported = gdb_comm.GetThreadSuffixSupported();
391            ProcessSP process_sp (m_thread.GetProcess());
392            if (thread_suffix_supported || static_cast<ProcessGDBRemote *>(process_sp.get())->GetGDBRemote().SetCurrentThread(m_thread.GetProtocolID()))
393            {
394                StreamString packet;
395                StringExtractorGDBRemote response;
396
397                if (m_read_all_at_once)
398                {
399                    // Set all registers in one packet
400                    packet.PutChar ('G');
401                    packet.PutBytesAsRawHex8 (m_reg_data.GetDataStart(),
402                                              m_reg_data.GetByteSize(),
403                                              lldb::endian::InlHostByteOrder(),
404                                              lldb::endian::InlHostByteOrder());
405
406                    if (thread_suffix_supported)
407                        packet.Printf (";thread:%4.4" PRIx64 ";", m_thread.GetProtocolID());
408
409                    // Invalidate all register values
410                    InvalidateIfNeeded (true);
411
412                    if (gdb_comm.SendPacketAndWaitForResponse(packet.GetString().c_str(),
413                                                              packet.GetString().size(),
414                                                              response,
415                                                              false))
416                    {
417                        SetAllRegisterValid (false);
418                        if (response.IsOKResponse())
419                        {
420                            return true;
421                        }
422                    }
423                }
424                else
425                {
426                    bool success = true;
427
428                    if (reg_info->value_regs)
429                    {
430                        // This register is part of another register. In this case we read the actual
431                        // register data for any "value_regs", and once all that data is read, we will
432                        // have enough data in our register context bytes for the value of this register
433
434                        // Invalidate this composite register first.
435
436                        for (uint32_t idx = 0; success; ++idx)
437                        {
438                            const uint32_t reg = reg_info->value_regs[idx];
439                            if (reg == LLDB_INVALID_REGNUM)
440                                break;
441                            // We have a valid primordial regsiter as our constituent.
442                            // Grab the corresponding register info.
443                            const RegisterInfo *value_reg_info = GetRegisterInfoAtIndex(reg);
444                            if (value_reg_info == NULL)
445                                success = false;
446                            else
447                                success = SetPrimordialRegister(value_reg_info, gdb_comm);
448                        }
449                    }
450                    else
451                    {
452                        // This is an actual register, write it
453                        success = SetPrimordialRegister(reg_info, gdb_comm);
454                    }
455
456                    // Check if writing this register will invalidate any other register values?
457                    // If so, invalidate them
458                    if (reg_info->invalidate_regs)
459                    {
460                        for (uint32_t idx = 0, reg = reg_info->invalidate_regs[0];
461                             reg != LLDB_INVALID_REGNUM;
462                             reg = reg_info->invalidate_regs[++idx])
463                        {
464                            SetRegisterIsValid(reg, false);
465                        }
466                    }
467
468                    return success;
469                }
470            }
471        }
472        else
473        {
474            Log *log (ProcessGDBRemoteLog::GetLogIfAnyCategoryIsSet (GDBR_LOG_THREAD | GDBR_LOG_PACKETS));
475            if (log)
476            {
477                if (log->GetVerbose())
478                {
479                    StreamString strm;
480                    gdb_comm.DumpHistory(strm);
481                    log->Printf("error: failed to get packet sequence mutex, not sending write register for \"%s\":\n%s", reg_info->name, strm.GetData());
482                }
483                else
484                    log->Printf("error: failed to get packet sequence mutex, not sending write register for \"%s\"", reg_info->name);
485            }
486        }
487    }
488    return false;
489}
490
491
492bool
493GDBRemoteRegisterContext::ReadAllRegisterValues (lldb::DataBufferSP &data_sp)
494{
495    ExecutionContext exe_ctx (CalculateThread());
496
497    Process *process = exe_ctx.GetProcessPtr();
498    Thread *thread = exe_ctx.GetThreadPtr();
499    if (process == NULL || thread == NULL)
500        return false;
501
502    GDBRemoteCommunicationClient &gdb_comm (((ProcessGDBRemote *)process)->GetGDBRemote());
503
504    StringExtractorGDBRemote response;
505
506    Mutex::Locker locker;
507    if (gdb_comm.GetSequenceMutex (locker, "Didn't get sequence mutex for read all registers."))
508    {
509        SyncThreadState(process);
510
511        char packet[32];
512        const bool thread_suffix_supported = gdb_comm.GetThreadSuffixSupported();
513        ProcessSP process_sp (m_thread.GetProcess());
514        if (thread_suffix_supported || static_cast<ProcessGDBRemote *>(process_sp.get())->GetGDBRemote().SetCurrentThread(m_thread.GetProtocolID()))
515        {
516            int packet_len = 0;
517            if (thread_suffix_supported)
518                packet_len = ::snprintf (packet, sizeof(packet), "g;thread:%4.4" PRIx64, m_thread.GetProtocolID());
519            else
520                packet_len = ::snprintf (packet, sizeof(packet), "g");
521            assert (packet_len < ((int)sizeof(packet) - 1));
522
523            if (gdb_comm.SendPacketAndWaitForResponse(packet, packet_len, response, false))
524            {
525                if (response.IsErrorResponse())
526                    return false;
527
528                std::string &response_str = response.GetStringRef();
529                if (isxdigit(response_str[0]))
530                {
531                    response_str.insert(0, 1, 'G');
532                    if (thread_suffix_supported)
533                    {
534                        char thread_id_cstr[64];
535                        ::snprintf (thread_id_cstr, sizeof(thread_id_cstr), ";thread:%4.4" PRIx64 ";", m_thread.GetProtocolID());
536                        response_str.append (thread_id_cstr);
537                    }
538                    data_sp.reset (new DataBufferHeap (response_str.c_str(), response_str.size()));
539                    return true;
540                }
541            }
542        }
543    }
544    else
545    {
546        Log *log (ProcessGDBRemoteLog::GetLogIfAnyCategoryIsSet (GDBR_LOG_THREAD | GDBR_LOG_PACKETS));
547        if (log)
548        {
549            if (log->GetVerbose())
550            {
551                StreamString strm;
552                gdb_comm.DumpHistory(strm);
553                log->Printf("error: failed to get packet sequence mutex, not sending read all registers:\n%s", strm.GetData());
554            }
555            else
556                log->Printf("error: failed to get packet sequence mutex, not sending read all registers");
557        }
558    }
559
560    data_sp.reset();
561    return false;
562}
563
564bool
565GDBRemoteRegisterContext::WriteAllRegisterValues (const lldb::DataBufferSP &data_sp)
566{
567    if (!data_sp || data_sp->GetBytes() == NULL || data_sp->GetByteSize() == 0)
568        return false;
569
570    ExecutionContext exe_ctx (CalculateThread());
571
572    Process *process = exe_ctx.GetProcessPtr();
573    Thread *thread = exe_ctx.GetThreadPtr();
574    if (process == NULL || thread == NULL)
575        return false;
576
577    GDBRemoteCommunicationClient &gdb_comm (((ProcessGDBRemote *)process)->GetGDBRemote());
578
579    StringExtractorGDBRemote response;
580    Mutex::Locker locker;
581    if (gdb_comm.GetSequenceMutex (locker, "Didn't get sequence mutex for write all registers."))
582    {
583        const bool thread_suffix_supported = gdb_comm.GetThreadSuffixSupported();
584        ProcessSP process_sp (m_thread.GetProcess());
585        if (thread_suffix_supported || static_cast<ProcessGDBRemote *>(process_sp.get())->GetGDBRemote().SetCurrentThread(m_thread.GetProtocolID()))
586        {
587            // The data_sp contains the entire G response packet including the
588            // G, and if the thread suffix is supported, it has the thread suffix
589            // as well.
590            const char *G_packet = (const char *)data_sp->GetBytes();
591            size_t G_packet_len = data_sp->GetByteSize();
592            if (gdb_comm.SendPacketAndWaitForResponse (G_packet,
593                                                       G_packet_len,
594                                                       response,
595                                                       false))
596            {
597                if (response.IsOKResponse())
598                    return true;
599                else if (response.IsErrorResponse())
600                {
601                    uint32_t num_restored = 0;
602                    // We need to manually go through all of the registers and
603                    // restore them manually
604
605                    response.GetStringRef().assign (G_packet, G_packet_len);
606                    response.SetFilePos(1); // Skip the leading 'G'
607                    DataBufferHeap buffer (m_reg_data.GetByteSize(), 0);
608                    DataExtractor restore_data (buffer.GetBytes(),
609                                                buffer.GetByteSize(),
610                                                m_reg_data.GetByteOrder(),
611                                                m_reg_data.GetAddressByteSize());
612
613                    const uint32_t bytes_extracted = response.GetHexBytes ((void *)restore_data.GetDataStart(),
614                                                                           restore_data.GetByteSize(),
615                                                                           '\xcc');
616
617                    if (bytes_extracted < restore_data.GetByteSize())
618                        restore_data.SetData(restore_data.GetDataStart(), bytes_extracted, m_reg_data.GetByteOrder());
619
620                    //ReadRegisterBytes (const RegisterInfo *reg_info, RegisterValue &value, DataExtractor &data)
621                    const RegisterInfo *reg_info;
622                    // We have to march the offset of each register along in the
623                    // buffer to make sure we get the right offset.
624                    uint32_t reg_byte_offset = 0;
625                    for (uint32_t reg_idx=0; (reg_info = GetRegisterInfoAtIndex (reg_idx)) != NULL; ++reg_idx, reg_byte_offset += reg_info->byte_size)
626                    {
627                        const uint32_t reg = reg_info->kinds[eRegisterKindLLDB];
628
629                        // Skip composite registers.
630                        if (reg_info->value_regs)
631                            continue;
632
633                        // Only write down the registers that need to be written
634                        // if we are going to be doing registers individually.
635                        bool write_reg = true;
636                        const uint32_t reg_byte_size = reg_info->byte_size;
637
638                        const char *restore_src = (const char *)restore_data.PeekData(reg_byte_offset, reg_byte_size);
639                        if (restore_src)
640                        {
641                            if (GetRegisterIsValid(reg))
642                            {
643                                const char *current_src = (const char *)m_reg_data.PeekData(reg_byte_offset, reg_byte_size);
644                                if (current_src)
645                                    write_reg = memcmp (current_src, restore_src, reg_byte_size) != 0;
646                            }
647
648                            if (write_reg)
649                            {
650                                StreamString packet;
651                                packet.Printf ("P%x=", reg);
652                                packet.PutBytesAsRawHex8 (restore_src,
653                                                          reg_byte_size,
654                                                          lldb::endian::InlHostByteOrder(),
655                                                          lldb::endian::InlHostByteOrder());
656
657                                if (thread_suffix_supported)
658                                    packet.Printf (";thread:%4.4" PRIx64 ";", m_thread.GetProtocolID());
659
660                                SetRegisterIsValid(reg, false);
661                                if (gdb_comm.SendPacketAndWaitForResponse(packet.GetString().c_str(),
662                                                                          packet.GetString().size(),
663                                                                          response,
664                                                                          false))
665                                {
666                                    if (response.IsOKResponse())
667                                        ++num_restored;
668                                }
669                            }
670                        }
671                    }
672                    return num_restored > 0;
673                }
674            }
675        }
676    }
677    else
678    {
679        Log *log (ProcessGDBRemoteLog::GetLogIfAnyCategoryIsSet (GDBR_LOG_THREAD | GDBR_LOG_PACKETS));
680        if (log)
681        {
682            if (log->GetVerbose())
683            {
684                StreamString strm;
685                gdb_comm.DumpHistory(strm);
686                log->Printf("error: failed to get packet sequence mutex, not sending write all registers:\n%s", strm.GetData());
687            }
688            else
689                log->Printf("error: failed to get packet sequence mutex, not sending write all registers");
690        }
691    }
692    return false;
693}
694
695
696uint32_t
697GDBRemoteRegisterContext::ConvertRegisterKindToRegisterNumber (uint32_t kind, uint32_t num)
698{
699    return m_reg_info.ConvertRegisterKindToRegisterNumber (kind, num);
700}
701
702
703void
704GDBRemoteDynamicRegisterInfo::HardcodeARMRegisters(bool from_scratch)
705{
706    // For Advanced SIMD and VFP register mapping.
707    static uint32_t g_d0_regs[] =  { 26, 27, LLDB_INVALID_REGNUM }; // (s0, s1)
708    static uint32_t g_d1_regs[] =  { 28, 29, LLDB_INVALID_REGNUM }; // (s2, s3)
709    static uint32_t g_d2_regs[] =  { 30, 31, LLDB_INVALID_REGNUM }; // (s4, s5)
710    static uint32_t g_d3_regs[] =  { 32, 33, LLDB_INVALID_REGNUM }; // (s6, s7)
711    static uint32_t g_d4_regs[] =  { 34, 35, LLDB_INVALID_REGNUM }; // (s8, s9)
712    static uint32_t g_d5_regs[] =  { 36, 37, LLDB_INVALID_REGNUM }; // (s10, s11)
713    static uint32_t g_d6_regs[] =  { 38, 39, LLDB_INVALID_REGNUM }; // (s12, s13)
714    static uint32_t g_d7_regs[] =  { 40, 41, LLDB_INVALID_REGNUM }; // (s14, s15)
715    static uint32_t g_d8_regs[] =  { 42, 43, LLDB_INVALID_REGNUM }; // (s16, s17)
716    static uint32_t g_d9_regs[] =  { 44, 45, LLDB_INVALID_REGNUM }; // (s18, s19)
717    static uint32_t g_d10_regs[] = { 46, 47, LLDB_INVALID_REGNUM }; // (s20, s21)
718    static uint32_t g_d11_regs[] = { 48, 49, LLDB_INVALID_REGNUM }; // (s22, s23)
719    static uint32_t g_d12_regs[] = { 50, 51, LLDB_INVALID_REGNUM }; // (s24, s25)
720    static uint32_t g_d13_regs[] = { 52, 53, LLDB_INVALID_REGNUM }; // (s26, s27)
721    static uint32_t g_d14_regs[] = { 54, 55, LLDB_INVALID_REGNUM }; // (s28, s29)
722    static uint32_t g_d15_regs[] = { 56, 57, LLDB_INVALID_REGNUM }; // (s30, s31)
723    static uint32_t g_q0_regs[] =  { 26, 27, 28, 29, LLDB_INVALID_REGNUM }; // (d0, d1) -> (s0, s1, s2, s3)
724    static uint32_t g_q1_regs[] =  { 30, 31, 32, 33, LLDB_INVALID_REGNUM }; // (d2, d3) -> (s4, s5, s6, s7)
725    static uint32_t g_q2_regs[] =  { 34, 35, 36, 37, LLDB_INVALID_REGNUM }; // (d4, d5) -> (s8, s9, s10, s11)
726    static uint32_t g_q3_regs[] =  { 38, 39, 40, 41, LLDB_INVALID_REGNUM }; // (d6, d7) -> (s12, s13, s14, s15)
727    static uint32_t g_q4_regs[] =  { 42, 43, 44, 45, LLDB_INVALID_REGNUM }; // (d8, d9) -> (s16, s17, s18, s19)
728    static uint32_t g_q5_regs[] =  { 46, 47, 48, 49, LLDB_INVALID_REGNUM }; // (d10, d11) -> (s20, s21, s22, s23)
729    static uint32_t g_q6_regs[] =  { 50, 51, 52, 53, LLDB_INVALID_REGNUM }; // (d12, d13) -> (s24, s25, s26, s27)
730    static uint32_t g_q7_regs[] =  { 54, 55, 56, 57, LLDB_INVALID_REGNUM }; // (d14, d15) -> (s28, s29, s30, s31)
731    static uint32_t g_q8_regs[] =  { 59, 60, LLDB_INVALID_REGNUM }; // (d16, d17)
732    static uint32_t g_q9_regs[] =  { 61, 62, LLDB_INVALID_REGNUM }; // (d18, d19)
733    static uint32_t g_q10_regs[] = { 63, 64, LLDB_INVALID_REGNUM }; // (d20, d21)
734    static uint32_t g_q11_regs[] = { 65, 66, LLDB_INVALID_REGNUM }; // (d22, d23)
735    static uint32_t g_q12_regs[] = { 67, 68, LLDB_INVALID_REGNUM }; // (d24, d25)
736    static uint32_t g_q13_regs[] = { 69, 70, LLDB_INVALID_REGNUM }; // (d26, d27)
737    static uint32_t g_q14_regs[] = { 71, 72, LLDB_INVALID_REGNUM }; // (d28, d29)
738    static uint32_t g_q15_regs[] = { 73, 74, LLDB_INVALID_REGNUM }; // (d30, d31)
739
740    // This is our array of composite registers, with each element coming from the above register mappings.
741    static uint32_t *g_composites[] = {
742        g_d0_regs, g_d1_regs,  g_d2_regs,  g_d3_regs,  g_d4_regs,  g_d5_regs,  g_d6_regs,  g_d7_regs,
743        g_d8_regs, g_d9_regs, g_d10_regs, g_d11_regs, g_d12_regs, g_d13_regs, g_d14_regs, g_d15_regs,
744        g_q0_regs, g_q1_regs,  g_q2_regs,  g_q3_regs,  g_q4_regs,  g_q5_regs,  g_q6_regs,  g_q7_regs,
745        g_q8_regs, g_q9_regs, g_q10_regs, g_q11_regs, g_q12_regs, g_q13_regs, g_q14_regs, g_q15_regs
746    };
747
748    static RegisterInfo g_register_infos[] = {
749//   NAME    ALT    SZ  OFF  ENCODING          FORMAT          COMPILER             DWARF                GENERIC                 GDB    LLDB      VALUE REGS    INVALIDATE REGS
750//   ======  ====== === ===  =============     ============    ===================  ===================  ======================  ===    ====      ==========    ===============
751    { "r0", "arg1",   4,   0, eEncodingUint,    eFormatHex,   { gcc_r0,              dwarf_r0,            LLDB_REGNUM_GENERIC_ARG1,0,      0 },        NULL,              NULL},
752    { "r1", "arg2",   4,   0, eEncodingUint,    eFormatHex,   { gcc_r1,              dwarf_r1,            LLDB_REGNUM_GENERIC_ARG2,1,      1 },        NULL,              NULL},
753    { "r2", "arg3",   4,   0, eEncodingUint,    eFormatHex,   { gcc_r2,              dwarf_r2,            LLDB_REGNUM_GENERIC_ARG3,2,      2 },        NULL,              NULL},
754    { "r3", "arg4",   4,   0, eEncodingUint,    eFormatHex,   { gcc_r3,              dwarf_r3,            LLDB_REGNUM_GENERIC_ARG4,3,      3 },        NULL,              NULL},
755    { "r4",   NULL,   4,   0, eEncodingUint,    eFormatHex,   { gcc_r4,              dwarf_r4,            LLDB_INVALID_REGNUM,     4,      4 },        NULL,              NULL},
756    { "r5",   NULL,   4,   0, eEncodingUint,    eFormatHex,   { gcc_r5,              dwarf_r5,            LLDB_INVALID_REGNUM,     5,      5 },        NULL,              NULL},
757    { "r6",   NULL,   4,   0, eEncodingUint,    eFormatHex,   { gcc_r6,              dwarf_r6,            LLDB_INVALID_REGNUM,     6,      6 },        NULL,              NULL},
758    { "r7",   "fp",   4,   0, eEncodingUint,    eFormatHex,   { gcc_r7,              dwarf_r7,            LLDB_REGNUM_GENERIC_FP,  7,      7 },        NULL,              NULL},
759    { "r8",   NULL,   4,   0, eEncodingUint,    eFormatHex,   { gcc_r8,              dwarf_r8,            LLDB_INVALID_REGNUM,     8,      8 },        NULL,              NULL},
760    { "r9",   NULL,   4,   0, eEncodingUint,    eFormatHex,   { gcc_r9,              dwarf_r9,            LLDB_INVALID_REGNUM,     9,      9 },        NULL,              NULL},
761    { "r10",  NULL,   4,   0, eEncodingUint,    eFormatHex,   { gcc_r10,             dwarf_r10,           LLDB_INVALID_REGNUM,    10,     10 },        NULL,              NULL},
762    { "r11",  NULL,   4,   0, eEncodingUint,    eFormatHex,   { gcc_r11,             dwarf_r11,           LLDB_INVALID_REGNUM,    11,     11 },        NULL,              NULL},
763    { "r12",  NULL,   4,   0, eEncodingUint,    eFormatHex,   { gcc_r12,             dwarf_r12,           LLDB_INVALID_REGNUM,    12,     12 },        NULL,              NULL},
764    { "sp",   "r13",  4,   0, eEncodingUint,    eFormatHex,   { gcc_sp,              dwarf_sp,            LLDB_REGNUM_GENERIC_SP, 13,     13 },        NULL,              NULL},
765    { "lr",   "r14",  4,   0, eEncodingUint,    eFormatHex,   { gcc_lr,              dwarf_lr,            LLDB_REGNUM_GENERIC_RA, 14,     14 },        NULL,              NULL},
766    { "pc",   "r15",  4,   0, eEncodingUint,    eFormatHex,   { gcc_pc,              dwarf_pc,            LLDB_REGNUM_GENERIC_PC, 15,     15 },        NULL,              NULL},
767    { "f0",   NULL,  12,   0, eEncodingUint,    eFormatHex,   { LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM,    16,     16 },        NULL,              NULL},
768    { "f1",   NULL,  12,   0, eEncodingUint,    eFormatHex,   { LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM,    17,     17 },        NULL,              NULL},
769    { "f2",   NULL,  12,   0, eEncodingUint,    eFormatHex,   { LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM,    18,     18 },        NULL,              NULL},
770    { "f3",   NULL,  12,   0, eEncodingUint,    eFormatHex,   { LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM,    19,     19 },        NULL,              NULL},
771    { "f4",   NULL,  12,   0, eEncodingUint,    eFormatHex,   { LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM,    20,     20 },        NULL,              NULL},
772    { "f5",   NULL,  12,   0, eEncodingUint,    eFormatHex,   { LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM,    21,     21 },        NULL,              NULL},
773    { "f6",   NULL,  12,   0, eEncodingUint,    eFormatHex,   { LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM,    22,     22 },        NULL,              NULL},
774    { "f7",   NULL,  12,   0, eEncodingUint,    eFormatHex,   { LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM,    23,     23 },        NULL,              NULL},
775    { "fps",  NULL,   4,   0, eEncodingUint,    eFormatHex,   { LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM,    24,     24 },        NULL,              NULL},
776    { "cpsr","flags", 4,   0, eEncodingUint,    eFormatHex,   { gcc_cpsr,            dwarf_cpsr,          LLDB_INVALID_REGNUM,    25,     25 },        NULL,              NULL},
777    { "s0",   NULL,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s0,            LLDB_INVALID_REGNUM,    26,     26 },        NULL,              NULL},
778    { "s1",   NULL,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s1,            LLDB_INVALID_REGNUM,    27,     27 },        NULL,              NULL},
779    { "s2",   NULL,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s2,            LLDB_INVALID_REGNUM,    28,     28 },        NULL,              NULL},
780    { "s3",   NULL,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s3,            LLDB_INVALID_REGNUM,    29,     29 },        NULL,              NULL},
781    { "s4",   NULL,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s4,            LLDB_INVALID_REGNUM,    30,     30 },        NULL,              NULL},
782    { "s5",   NULL,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s5,            LLDB_INVALID_REGNUM,    31,     31 },        NULL,              NULL},
783    { "s6",   NULL,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s6,            LLDB_INVALID_REGNUM,    32,     32 },        NULL,              NULL},
784    { "s7",   NULL,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s7,            LLDB_INVALID_REGNUM,    33,     33 },        NULL,              NULL},
785    { "s8",   NULL,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s8,            LLDB_INVALID_REGNUM,    34,     34 },        NULL,              NULL},
786    { "s9",   NULL,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s9,            LLDB_INVALID_REGNUM,    35,     35 },        NULL,              NULL},
787    { "s10",  NULL,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s10,           LLDB_INVALID_REGNUM,    36,     36 },        NULL,              NULL},
788    { "s11",  NULL,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s11,           LLDB_INVALID_REGNUM,    37,     37 },        NULL,              NULL},
789    { "s12",  NULL,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s12,           LLDB_INVALID_REGNUM,    38,     38 },        NULL,              NULL},
790    { "s13",  NULL,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s13,           LLDB_INVALID_REGNUM,    39,     39 },        NULL,              NULL},
791    { "s14",  NULL,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s14,           LLDB_INVALID_REGNUM,    40,     40 },        NULL,              NULL},
792    { "s15",  NULL,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s15,           LLDB_INVALID_REGNUM,    41,     41 },        NULL,              NULL},
793    { "s16",  NULL,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s16,           LLDB_INVALID_REGNUM,    42,     42 },        NULL,              NULL},
794    { "s17",  NULL,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s17,           LLDB_INVALID_REGNUM,    43,     43 },        NULL,              NULL},
795    { "s18",  NULL,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s18,           LLDB_INVALID_REGNUM,    44,     44 },        NULL,              NULL},
796    { "s19",  NULL,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s19,           LLDB_INVALID_REGNUM,    45,     45 },        NULL,              NULL},
797    { "s20",  NULL,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s20,           LLDB_INVALID_REGNUM,    46,     46 },        NULL,              NULL},
798    { "s21",  NULL,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s21,           LLDB_INVALID_REGNUM,    47,     47 },        NULL,              NULL},
799    { "s22",  NULL,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s22,           LLDB_INVALID_REGNUM,    48,     48 },        NULL,              NULL},
800    { "s23",  NULL,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s23,           LLDB_INVALID_REGNUM,    49,     49 },        NULL,              NULL},
801    { "s24",  NULL,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s24,           LLDB_INVALID_REGNUM,    50,     50 },        NULL,              NULL},
802    { "s25",  NULL,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s25,           LLDB_INVALID_REGNUM,    51,     51 },        NULL,              NULL},
803    { "s26",  NULL,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s26,           LLDB_INVALID_REGNUM,    52,     52 },        NULL,              NULL},
804    { "s27",  NULL,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s27,           LLDB_INVALID_REGNUM,    53,     53 },        NULL,              NULL},
805    { "s28",  NULL,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s28,           LLDB_INVALID_REGNUM,    54,     54 },        NULL,              NULL},
806    { "s29",  NULL,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s29,           LLDB_INVALID_REGNUM,    55,     55 },        NULL,              NULL},
807    { "s30",  NULL,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s30,           LLDB_INVALID_REGNUM,    56,     56 },        NULL,              NULL},
808    { "s31",  NULL,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s31,           LLDB_INVALID_REGNUM,    57,     57 },        NULL,              NULL},
809    { "fpscr",NULL,   4,   0, eEncodingUint,    eFormatHex,   { LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM,    58,     58 },        NULL,              NULL},
810    { "d16",  NULL,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d16,           LLDB_INVALID_REGNUM,    59,     59 },        NULL,              NULL},
811    { "d17",  NULL,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d17,           LLDB_INVALID_REGNUM,    60,     60 },        NULL,              NULL},
812    { "d18",  NULL,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d18,           LLDB_INVALID_REGNUM,    61,     61 },        NULL,              NULL},
813    { "d19",  NULL,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d19,           LLDB_INVALID_REGNUM,    62,     62 },        NULL,              NULL},
814    { "d20",  NULL,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d20,           LLDB_INVALID_REGNUM,    63,     63 },        NULL,              NULL},
815    { "d21",  NULL,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d21,           LLDB_INVALID_REGNUM,    64,     64 },        NULL,              NULL},
816    { "d22",  NULL,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d22,           LLDB_INVALID_REGNUM,    65,     65 },        NULL,              NULL},
817    { "d23",  NULL,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d23,           LLDB_INVALID_REGNUM,    66,     66 },        NULL,              NULL},
818    { "d24",  NULL,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d24,           LLDB_INVALID_REGNUM,    67,     67 },        NULL,              NULL},
819    { "d25",  NULL,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d25,           LLDB_INVALID_REGNUM,    68,     68 },        NULL,              NULL},
820    { "d26",  NULL,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d26,           LLDB_INVALID_REGNUM,    69,     69 },        NULL,              NULL},
821    { "d27",  NULL,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d27,           LLDB_INVALID_REGNUM,    70,     70 },        NULL,              NULL},
822    { "d28",  NULL,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d28,           LLDB_INVALID_REGNUM,    71,     71 },        NULL,              NULL},
823    { "d29",  NULL,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d29,           LLDB_INVALID_REGNUM,    72,     72 },        NULL,              NULL},
824    { "d30",  NULL,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d30,           LLDB_INVALID_REGNUM,    73,     73 },        NULL,              NULL},
825    { "d31",  NULL,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d31,           LLDB_INVALID_REGNUM,    74,     74 },        NULL,              NULL},
826    { "d0",   NULL,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d0,            LLDB_INVALID_REGNUM,    75,     75 },   g_d0_regs,              NULL},
827    { "d1",   NULL,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d1,            LLDB_INVALID_REGNUM,    76,     76 },   g_d1_regs,              NULL},
828    { "d2",   NULL,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d2,            LLDB_INVALID_REGNUM,    77,     77 },   g_d2_regs,              NULL},
829    { "d3",   NULL,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d3,            LLDB_INVALID_REGNUM,    78,     78 },   g_d3_regs,              NULL},
830    { "d4",   NULL,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d4,            LLDB_INVALID_REGNUM,    79,     79 },   g_d4_regs,              NULL},
831    { "d5",   NULL,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d5,            LLDB_INVALID_REGNUM,    80,     80 },   g_d5_regs,              NULL},
832    { "d6",   NULL,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d6,            LLDB_INVALID_REGNUM,    81,     81 },   g_d6_regs,              NULL},
833    { "d7",   NULL,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d7,            LLDB_INVALID_REGNUM,    82,     82 },   g_d7_regs,              NULL},
834    { "d8",   NULL,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d8,            LLDB_INVALID_REGNUM,    83,     83 },   g_d8_regs,              NULL},
835    { "d9",   NULL,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d9,            LLDB_INVALID_REGNUM,    84,     84 },   g_d9_regs,              NULL},
836    { "d10",  NULL,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d10,           LLDB_INVALID_REGNUM,    85,     85 },  g_d10_regs,              NULL},
837    { "d11",  NULL,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d11,           LLDB_INVALID_REGNUM,    86,     86 },  g_d11_regs,              NULL},
838    { "d12",  NULL,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d12,           LLDB_INVALID_REGNUM,    87,     87 },  g_d12_regs,              NULL},
839    { "d13",  NULL,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d13,           LLDB_INVALID_REGNUM,    88,     88 },  g_d13_regs,              NULL},
840    { "d14",  NULL,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d14,           LLDB_INVALID_REGNUM,    89,     89 },  g_d14_regs,              NULL},
841    { "d15",  NULL,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d15,           LLDB_INVALID_REGNUM,    90,     90 },  g_d15_regs,              NULL},
842    { "q0",   NULL,   16,  0, eEncodingVector,  eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q0,    LLDB_INVALID_REGNUM,    91,     91 },   g_q0_regs,              NULL},
843    { "q1",   NULL,   16,  0, eEncodingVector,  eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q1,    LLDB_INVALID_REGNUM,    92,     92 },   g_q1_regs,              NULL},
844    { "q2",   NULL,   16,  0, eEncodingVector,  eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q2,    LLDB_INVALID_REGNUM,    93,     93 },   g_q2_regs,              NULL},
845    { "q3",   NULL,   16,  0, eEncodingVector,  eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q3,    LLDB_INVALID_REGNUM,    94,     94 },   g_q3_regs,              NULL},
846    { "q4",   NULL,   16,  0, eEncodingVector,  eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q4,    LLDB_INVALID_REGNUM,    95,     95 },   g_q4_regs,              NULL},
847    { "q5",   NULL,   16,  0, eEncodingVector,  eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q5,    LLDB_INVALID_REGNUM,    96,     96 },   g_q5_regs,              NULL},
848    { "q6",   NULL,   16,  0, eEncodingVector,  eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q6,    LLDB_INVALID_REGNUM,    97,     97 },   g_q6_regs,              NULL},
849    { "q7",   NULL,   16,  0, eEncodingVector,  eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q7,    LLDB_INVALID_REGNUM,    98,     98 },   g_q7_regs,              NULL},
850    { "q8",   NULL,   16,  0, eEncodingVector,  eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q8,    LLDB_INVALID_REGNUM,    99,     99 },   g_q8_regs,              NULL},
851    { "q9",   NULL,   16,  0, eEncodingVector,  eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q9,    LLDB_INVALID_REGNUM,   100,    100 },   g_q9_regs,              NULL},
852    { "q10",  NULL,   16,  0, eEncodingVector,  eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q10,   LLDB_INVALID_REGNUM,   101,    101 },  g_q10_regs,              NULL},
853    { "q11",  NULL,   16,  0, eEncodingVector,  eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q11,   LLDB_INVALID_REGNUM,   102,    102 },  g_q11_regs,              NULL},
854    { "q12",  NULL,   16,  0, eEncodingVector,  eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q12,   LLDB_INVALID_REGNUM,   103,    103 },  g_q12_regs,              NULL},
855    { "q13",  NULL,   16,  0, eEncodingVector,  eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q13,   LLDB_INVALID_REGNUM,   104,    104 },  g_q13_regs,              NULL},
856    { "q14",  NULL,   16,  0, eEncodingVector,  eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q14,   LLDB_INVALID_REGNUM,   105,    105 },  g_q14_regs,              NULL},
857    { "q15",  NULL,   16,  0, eEncodingVector,  eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q15,   LLDB_INVALID_REGNUM,   106,    106 },  g_q15_regs,              NULL}
858    };
859
860    static const uint32_t num_registers = llvm::array_lengthof(g_register_infos);
861    static ConstString gpr_reg_set ("General Purpose Registers");
862    static ConstString sfp_reg_set ("Software Floating Point Registers");
863    static ConstString vfp_reg_set ("Floating Point Registers");
864    size_t i;
865    if (from_scratch)
866    {
867        // Calculate the offsets of the registers
868        // Note that the layout of the "composite" registers (d0-d15 and q0-q15) which comes after the
869        // "primordial" registers is important.  This enables us to calculate the offset of the composite
870        // register by using the offset of its first primordial register.  For example, to calculate the
871        // offset of q0, use s0's offset.
872        if (g_register_infos[2].byte_offset == 0)
873        {
874            uint32_t byte_offset = 0;
875            for (i=0; i<num_registers; ++i)
876            {
877                // For primordial registers, increment the byte_offset by the byte_size to arrive at the
878                // byte_offset for the next register.  Otherwise, we have a composite register whose
879                // offset can be calculated by consulting the offset of its first primordial register.
880                if (!g_register_infos[i].value_regs)
881                {
882                    g_register_infos[i].byte_offset = byte_offset;
883                    byte_offset += g_register_infos[i].byte_size;
884                }
885                else
886                {
887                    const uint32_t first_primordial_reg = g_register_infos[i].value_regs[0];
888                    g_register_infos[i].byte_offset = g_register_infos[first_primordial_reg].byte_offset;
889                }
890            }
891        }
892        for (i=0; i<num_registers; ++i)
893        {
894            ConstString name;
895            ConstString alt_name;
896            if (g_register_infos[i].name && g_register_infos[i].name[0])
897                name.SetCString(g_register_infos[i].name);
898            if (g_register_infos[i].alt_name && g_register_infos[i].alt_name[0])
899                alt_name.SetCString(g_register_infos[i].alt_name);
900
901            if (i <= 15 || i == 25)
902                AddRegister (g_register_infos[i], name, alt_name, gpr_reg_set);
903            else if (i <= 24)
904                AddRegister (g_register_infos[i], name, alt_name, sfp_reg_set);
905            else
906                AddRegister (g_register_infos[i], name, alt_name, vfp_reg_set);
907        }
908    }
909    else
910    {
911        // Add composite registers to our primordial registers, then.
912        const size_t num_composites = llvm::array_lengthof(g_composites);
913        const size_t num_dynamic_regs = GetNumRegisters();
914        const size_t num_common_regs = num_registers - num_composites;
915        RegisterInfo *g_comp_register_infos = g_register_infos + num_common_regs;
916
917        // First we need to validate that all registers that we already have match the non composite regs.
918        // If so, then we can add the registers, else we need to bail
919        bool match = true;
920        if (num_dynamic_regs == num_common_regs)
921        {
922            for (i=0; match && i<num_dynamic_regs; ++i)
923            {
924                // Make sure all register names match
925                if (m_regs[i].name && g_register_infos[i].name)
926                {
927                    if (strcmp(m_regs[i].name, g_register_infos[i].name))
928                    {
929                        match = false;
930                        break;
931                    }
932                }
933
934                // Make sure all register byte sizes match
935                if (m_regs[i].byte_size != g_register_infos[i].byte_size)
936                {
937                    match = false;
938                    break;
939                }
940            }
941        }
942        else
943        {
944            // Wrong number of registers.
945            match = false;
946        }
947        // If "match" is true, then we can add extra registers.
948        if (match)
949        {
950            for (i=0; i<num_composites; ++i)
951            {
952                ConstString name;
953                ConstString alt_name;
954                const uint32_t first_primordial_reg = g_comp_register_infos[i].value_regs[0];
955                const char *reg_name = g_register_infos[first_primordial_reg].name;
956                if (reg_name && reg_name[0])
957                {
958                    for (uint32_t j = 0; j < num_dynamic_regs; ++j)
959                    {
960                        const RegisterInfo *reg_info = GetRegisterInfoAtIndex(j);
961                        // Find a matching primordial register info entry.
962                        if (reg_info && reg_info->name && ::strcasecmp(reg_info->name, reg_name) == 0)
963                        {
964                            // The name matches the existing primordial entry.
965                            // Find and assign the offset, and then add this composite register entry.
966                            g_comp_register_infos[i].byte_offset = reg_info->byte_offset;
967                            name.SetCString(g_comp_register_infos[i].name);
968                            AddRegister(g_comp_register_infos[i], name, alt_name, vfp_reg_set);
969                        }
970                    }
971                }
972            }
973        }
974    }
975}
976