ABIMacOSX_i386.cpp revision 263363
1//===-- ABIMacOSX_i386.cpp --------------------------------------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9
10#include "ABIMacOSX_i386.h"
11
12#include "lldb/Core/ConstString.h"
13#include "lldb/Core/Error.h"
14#include "lldb/Core/Module.h"
15#include "lldb/Core/PluginManager.h"
16#include "lldb/Core/RegisterValue.h"
17#include "lldb/Core/Scalar.h"
18#include "lldb/Core/ValueObjectConstResult.h"
19#include "lldb/Symbol/ClangASTContext.h"
20#include "lldb/Symbol/UnwindPlan.h"
21#include "lldb/Target/Process.h"
22#include "lldb/Target/RegisterContext.h"
23#include "lldb/Target/Target.h"
24#include "lldb/Target/Thread.h"
25
26#include "llvm/ADT/Triple.h"
27
28#include <vector>
29
30using namespace lldb;
31using namespace lldb_private;
32
33enum
34{
35    gcc_eax = 0,
36    gcc_ecx,
37    gcc_edx,
38    gcc_ebx,
39    gcc_ebp,
40    gcc_esp,
41    gcc_esi,
42    gcc_edi,
43    gcc_eip,
44    gcc_eflags
45};
46
47enum
48{
49    dwarf_eax = 0,
50    dwarf_ecx,
51    dwarf_edx,
52    dwarf_ebx,
53    dwarf_esp,
54    dwarf_ebp,
55    dwarf_esi,
56    dwarf_edi,
57    dwarf_eip,
58    dwarf_eflags,
59    dwarf_stmm0 = 11,
60    dwarf_stmm1,
61    dwarf_stmm2,
62    dwarf_stmm3,
63    dwarf_stmm4,
64    dwarf_stmm5,
65    dwarf_stmm6,
66    dwarf_stmm7,
67    dwarf_xmm0 = 21,
68    dwarf_xmm1,
69    dwarf_xmm2,
70    dwarf_xmm3,
71    dwarf_xmm4,
72    dwarf_xmm5,
73    dwarf_xmm6,
74    dwarf_xmm7,
75    dwarf_ymm0 = dwarf_xmm0,
76    dwarf_ymm1 = dwarf_xmm1,
77    dwarf_ymm2 = dwarf_xmm2,
78    dwarf_ymm3 = dwarf_xmm3,
79    dwarf_ymm4 = dwarf_xmm4,
80    dwarf_ymm5 = dwarf_xmm5,
81    dwarf_ymm6 = dwarf_xmm6,
82    dwarf_ymm7 = dwarf_xmm7
83};
84
85enum
86{
87    gdb_eax        =  0,
88    gdb_ecx        =  1,
89    gdb_edx        =  2,
90    gdb_ebx        =  3,
91    gdb_esp        =  4,
92    gdb_ebp        =  5,
93    gdb_esi        =  6,
94    gdb_edi        =  7,
95    gdb_eip        =  8,
96    gdb_eflags     =  9,
97    gdb_cs         = 10,
98    gdb_ss         = 11,
99    gdb_ds         = 12,
100    gdb_es         = 13,
101    gdb_fs         = 14,
102    gdb_gs         = 15,
103    gdb_stmm0      = 16,
104    gdb_stmm1      = 17,
105    gdb_stmm2      = 18,
106    gdb_stmm3      = 19,
107    gdb_stmm4      = 20,
108    gdb_stmm5      = 21,
109    gdb_stmm6      = 22,
110    gdb_stmm7      = 23,
111    gdb_fctrl      = 24,    gdb_fcw     = gdb_fctrl,
112    gdb_fstat      = 25,    gdb_fsw     = gdb_fstat,
113    gdb_ftag       = 26,    gdb_ftw     = gdb_ftag,
114    gdb_fiseg      = 27,    gdb_fpu_cs  = gdb_fiseg,
115    gdb_fioff      = 28,    gdb_ip      = gdb_fioff,
116    gdb_foseg      = 29,    gdb_fpu_ds  = gdb_foseg,
117    gdb_fooff      = 30,    gdb_dp      = gdb_fooff,
118    gdb_fop        = 31,
119    gdb_xmm0       = 32,
120    gdb_xmm1       = 33,
121    gdb_xmm2       = 34,
122    gdb_xmm3       = 35,
123    gdb_xmm4       = 36,
124    gdb_xmm5       = 37,
125    gdb_xmm6       = 38,
126    gdb_xmm7       = 39,
127    gdb_mxcsr      = 40,
128    gdb_mm0        = 41,
129    gdb_mm1        = 42,
130    gdb_mm2        = 43,
131    gdb_mm3        = 44,
132    gdb_mm4        = 45,
133    gdb_mm5        = 46,
134    gdb_mm6        = 47,
135    gdb_mm7        = 48,
136    gdb_ymm0       = gdb_xmm0,
137    gdb_ymm1       = gdb_xmm1,
138    gdb_ymm2       = gdb_xmm2,
139    gdb_ymm3       = gdb_xmm3,
140    gdb_ymm4       = gdb_xmm4,
141    gdb_ymm5       = gdb_xmm5,
142    gdb_ymm6       = gdb_xmm6,
143    gdb_ymm7       = gdb_xmm7
144};
145
146
147static RegisterInfo g_register_infos[] =
148{
149  //  NAME      ALT      SZ OFF ENCODING         FORMAT                COMPILER              DWARF                 GENERIC                      GDB                   LLDB NATIVE            VALUE REGS    INVALIDATE REGS
150  //  ======    =======  == === =============    ============          ===================== ===================== ============================ ====================  ====================== ==========    ===============
151    { "eax",    NULL,    4,  0, eEncodingUint  , eFormatHex          , { gcc_eax             , dwarf_eax           , LLDB_INVALID_REGNUM       , gdb_eax            , LLDB_INVALID_REGNUM },      NULL,              NULL},
152    { "ebx"   , NULL,    4,  0, eEncodingUint  , eFormatHex          , { gcc_ebx             , dwarf_ebx           , LLDB_INVALID_REGNUM       , gdb_ebx            , LLDB_INVALID_REGNUM },      NULL,              NULL},
153    { "ecx"   , NULL,    4,  0, eEncodingUint  , eFormatHex          , { gcc_ecx             , dwarf_ecx           , LLDB_REGNUM_GENERIC_ARG4  , gdb_ecx            , LLDB_INVALID_REGNUM },      NULL,              NULL},
154    { "edx"   , NULL,    4,  0, eEncodingUint  , eFormatHex          , { gcc_edx             , dwarf_edx           , LLDB_REGNUM_GENERIC_ARG3  , gdb_edx            , LLDB_INVALID_REGNUM },      NULL,              NULL},
155    { "esi"   , NULL,    4,  0, eEncodingUint  , eFormatHex          , { gcc_esi             , dwarf_esi           , LLDB_REGNUM_GENERIC_ARG2  , gdb_esi            , LLDB_INVALID_REGNUM },      NULL,              NULL},
156    { "edi"   , NULL,    4,  0, eEncodingUint  , eFormatHex          , { gcc_edi             , dwarf_edi           , LLDB_REGNUM_GENERIC_ARG1  , gdb_edi            , LLDB_INVALID_REGNUM },      NULL,              NULL},
157    { "ebp"   , "fp",    4,  0, eEncodingUint  , eFormatHex          , { gcc_ebp             , dwarf_ebp           , LLDB_REGNUM_GENERIC_FP    , gdb_ebp            , LLDB_INVALID_REGNUM },      NULL,              NULL},
158    { "esp"   , "sp",    4,  0, eEncodingUint  , eFormatHex          , { gcc_esp             , dwarf_esp           , LLDB_REGNUM_GENERIC_SP    , gdb_esp            , LLDB_INVALID_REGNUM },      NULL,              NULL},
159    { "eip"   , "pc",    4,  0, eEncodingUint  , eFormatHex          , { gcc_eip             , dwarf_eip           , LLDB_REGNUM_GENERIC_PC    , gdb_eip            , LLDB_INVALID_REGNUM },      NULL,              NULL},
160    { "eflags", NULL,    4,  0, eEncodingUint  , eFormatHex          , { LLDB_INVALID_REGNUM , LLDB_INVALID_REGNUM , LLDB_REGNUM_GENERIC_FLAGS , gdb_eflags         , LLDB_INVALID_REGNUM },      NULL,              NULL},
161    { "cs"    , NULL,    4,  0, eEncodingUint  , eFormatHex          , { LLDB_INVALID_REGNUM , LLDB_INVALID_REGNUM , LLDB_INVALID_REGNUM       , gdb_cs             , LLDB_INVALID_REGNUM },      NULL,              NULL},
162    { "ss"    , NULL,    4,  0, eEncodingUint  , eFormatHex          , { LLDB_INVALID_REGNUM , LLDB_INVALID_REGNUM , LLDB_INVALID_REGNUM       , gdb_ss             , LLDB_INVALID_REGNUM },      NULL,              NULL},
163    { "ds"    , NULL,    4,  0, eEncodingUint  , eFormatHex          , { LLDB_INVALID_REGNUM , LLDB_INVALID_REGNUM , LLDB_INVALID_REGNUM       , gdb_ds             , LLDB_INVALID_REGNUM },      NULL,              NULL},
164    { "es"    , NULL,    4,  0, eEncodingUint  , eFormatHex          , { LLDB_INVALID_REGNUM , LLDB_INVALID_REGNUM , LLDB_INVALID_REGNUM       , gdb_es             , LLDB_INVALID_REGNUM },      NULL,              NULL},
165    { "fs"    , NULL,    4,  0, eEncodingUint  , eFormatHex          , { LLDB_INVALID_REGNUM , LLDB_INVALID_REGNUM , LLDB_INVALID_REGNUM       , gdb_fs             , LLDB_INVALID_REGNUM },      NULL,              NULL},
166    { "gs"    , NULL,    4,  0, eEncodingUint  , eFormatHex          , { LLDB_INVALID_REGNUM , LLDB_INVALID_REGNUM , LLDB_INVALID_REGNUM       , gdb_gs             , LLDB_INVALID_REGNUM },      NULL,              NULL},
167    { "stmm0" , NULL,   10,  0, eEncodingVector, eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM , dwarf_stmm0         , LLDB_INVALID_REGNUM       , gdb_stmm0          , LLDB_INVALID_REGNUM },      NULL,              NULL},
168    { "stmm1" , NULL,   10,  0, eEncodingVector, eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM , dwarf_stmm1         , LLDB_INVALID_REGNUM       , gdb_stmm1          , LLDB_INVALID_REGNUM },      NULL,              NULL},
169    { "stmm2" , NULL,   10,  0, eEncodingVector, eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM , dwarf_stmm2         , LLDB_INVALID_REGNUM       , gdb_stmm2          , LLDB_INVALID_REGNUM },      NULL,              NULL},
170    { "stmm3" , NULL,   10,  0, eEncodingVector, eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM , dwarf_stmm3         , LLDB_INVALID_REGNUM       , gdb_stmm3          , LLDB_INVALID_REGNUM },      NULL,              NULL},
171    { "stmm4" , NULL,   10,  0, eEncodingVector, eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM , dwarf_stmm4         , LLDB_INVALID_REGNUM       , gdb_stmm4          , LLDB_INVALID_REGNUM },      NULL,              NULL},
172    { "stmm5" , NULL,   10,  0, eEncodingVector, eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM , dwarf_stmm5         , LLDB_INVALID_REGNUM       , gdb_stmm5          , LLDB_INVALID_REGNUM },      NULL,              NULL},
173    { "stmm6" , NULL,   10,  0, eEncodingVector, eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM , dwarf_stmm6         , LLDB_INVALID_REGNUM       , gdb_stmm6          , LLDB_INVALID_REGNUM },      NULL,              NULL},
174    { "stmm7" , NULL,   10,  0, eEncodingVector, eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM , dwarf_stmm7         , LLDB_INVALID_REGNUM       , gdb_stmm7          , LLDB_INVALID_REGNUM },      NULL,              NULL},
175    { "fctrl" , NULL,    4,  0, eEncodingUint  , eFormatHex          , { LLDB_INVALID_REGNUM , LLDB_INVALID_REGNUM , LLDB_INVALID_REGNUM       , gdb_fctrl          , LLDB_INVALID_REGNUM },      NULL,              NULL},
176    { "fstat" , NULL,    4,  0, eEncodingUint  , eFormatHex          , { LLDB_INVALID_REGNUM , LLDB_INVALID_REGNUM , LLDB_INVALID_REGNUM       , gdb_fstat          , LLDB_INVALID_REGNUM },      NULL,              NULL},
177    { "ftag"  , NULL,    4,  0, eEncodingUint  , eFormatHex          , { LLDB_INVALID_REGNUM , LLDB_INVALID_REGNUM , LLDB_INVALID_REGNUM       , gdb_ftag           , LLDB_INVALID_REGNUM },      NULL,              NULL},
178    { "fiseg" , NULL,    4,  0, eEncodingUint  , eFormatHex          , { LLDB_INVALID_REGNUM , LLDB_INVALID_REGNUM , LLDB_INVALID_REGNUM       , gdb_fiseg          , LLDB_INVALID_REGNUM },      NULL,              NULL},
179    { "fioff" , NULL,    4,  0, eEncodingUint  , eFormatHex          , { LLDB_INVALID_REGNUM , LLDB_INVALID_REGNUM , LLDB_INVALID_REGNUM       , gdb_fioff          , LLDB_INVALID_REGNUM },      NULL,              NULL},
180    { "foseg" , NULL,    4,  0, eEncodingUint  , eFormatHex          , { LLDB_INVALID_REGNUM , LLDB_INVALID_REGNUM , LLDB_INVALID_REGNUM       , gdb_foseg          , LLDB_INVALID_REGNUM },      NULL,              NULL},
181    { "fooff" , NULL,    4,  0, eEncodingUint  , eFormatHex          , { LLDB_INVALID_REGNUM , LLDB_INVALID_REGNUM , LLDB_INVALID_REGNUM       , gdb_fooff          , LLDB_INVALID_REGNUM },      NULL,              NULL},
182    { "fop"   , NULL,    4,  0, eEncodingUint  , eFormatHex          , { LLDB_INVALID_REGNUM , LLDB_INVALID_REGNUM , LLDB_INVALID_REGNUM       , gdb_fop            , LLDB_INVALID_REGNUM },      NULL,              NULL},
183    { "xmm0"  , NULL,   16,  0, eEncodingVector, eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM , dwarf_xmm0          , LLDB_INVALID_REGNUM       , gdb_xmm0           , LLDB_INVALID_REGNUM },      NULL,              NULL},
184    { "xmm1"  , NULL,   16,  0, eEncodingVector, eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM , dwarf_xmm1          , LLDB_INVALID_REGNUM       , gdb_xmm1           , LLDB_INVALID_REGNUM },      NULL,              NULL},
185    { "xmm2"  , NULL,   16,  0, eEncodingVector, eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM , dwarf_xmm2          , LLDB_INVALID_REGNUM       , gdb_xmm2           , LLDB_INVALID_REGNUM },      NULL,              NULL},
186    { "xmm3"  , NULL,   16,  0, eEncodingVector, eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM , dwarf_xmm3          , LLDB_INVALID_REGNUM       , gdb_xmm3           , LLDB_INVALID_REGNUM },      NULL,              NULL},
187    { "xmm4"  , NULL,   16,  0, eEncodingVector, eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM , dwarf_xmm4          , LLDB_INVALID_REGNUM       , gdb_xmm4           , LLDB_INVALID_REGNUM },      NULL,              NULL},
188    { "xmm5"  , NULL,   16,  0, eEncodingVector, eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM , dwarf_xmm5          , LLDB_INVALID_REGNUM       , gdb_xmm5           , LLDB_INVALID_REGNUM },      NULL,              NULL},
189    { "xmm6"  , NULL,   16,  0, eEncodingVector, eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM , dwarf_xmm6          , LLDB_INVALID_REGNUM       , gdb_xmm6           , LLDB_INVALID_REGNUM },      NULL,              NULL},
190    { "xmm7"  , NULL,   16,  0, eEncodingVector, eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM , dwarf_xmm7          , LLDB_INVALID_REGNUM       , gdb_xmm7           , LLDB_INVALID_REGNUM },      NULL,              NULL},
191    { "mxcsr" , NULL,    4,  0, eEncodingUint  , eFormatHex          , { LLDB_INVALID_REGNUM , LLDB_INVALID_REGNUM , LLDB_INVALID_REGNUM       , gdb_mxcsr          , LLDB_INVALID_REGNUM },      NULL,              NULL},
192    { "ymm0"  , NULL,   32,  0, eEncodingVector, eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM , dwarf_ymm0          , LLDB_INVALID_REGNUM       , gdb_ymm0           , LLDB_INVALID_REGNUM },      NULL,              NULL},
193    { "ymm1"  , NULL,   32,  0, eEncodingVector, eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM , dwarf_ymm1          , LLDB_INVALID_REGNUM       , gdb_ymm1           , LLDB_INVALID_REGNUM },      NULL,              NULL},
194    { "ymm2"  , NULL,   32,  0, eEncodingVector, eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM , dwarf_ymm2          , LLDB_INVALID_REGNUM       , gdb_ymm2           , LLDB_INVALID_REGNUM },      NULL,              NULL},
195    { "ymm3"  , NULL,   32,  0, eEncodingVector, eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM , dwarf_ymm3          , LLDB_INVALID_REGNUM       , gdb_ymm3           , LLDB_INVALID_REGNUM },      NULL,              NULL},
196    { "ymm4"  , NULL,   32,  0, eEncodingVector, eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM , dwarf_ymm4          , LLDB_INVALID_REGNUM       , gdb_ymm4           , LLDB_INVALID_REGNUM },      NULL,              NULL},
197    { "ymm5"  , NULL,   32,  0, eEncodingVector, eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM , dwarf_ymm5          , LLDB_INVALID_REGNUM       , gdb_ymm5           , LLDB_INVALID_REGNUM },      NULL,              NULL},
198    { "ymm6"  , NULL,   32,  0, eEncodingVector, eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM , dwarf_ymm6          , LLDB_INVALID_REGNUM       , gdb_ymm6           , LLDB_INVALID_REGNUM },      NULL,              NULL},
199    { "ymm7"  , NULL,   32,  0, eEncodingVector, eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM , dwarf_ymm7          , LLDB_INVALID_REGNUM       , gdb_ymm7           , LLDB_INVALID_REGNUM },      NULL,              NULL}
200};
201
202static const uint32_t k_num_register_infos = sizeof(g_register_infos)/sizeof(RegisterInfo);
203static bool g_register_info_names_constified = false;
204
205const lldb_private::RegisterInfo *
206ABIMacOSX_i386::GetRegisterInfoArray (uint32_t &count)
207{
208    // Make the C-string names and alt_names for the register infos into const
209    // C-string values by having the ConstString unique the names in the global
210    // constant C-string pool.
211    if (!g_register_info_names_constified)
212    {
213        g_register_info_names_constified = true;
214        for (uint32_t i=0; i<k_num_register_infos; ++i)
215        {
216            if (g_register_infos[i].name)
217                g_register_infos[i].name = ConstString(g_register_infos[i].name).GetCString();
218            if (g_register_infos[i].alt_name)
219                g_register_infos[i].alt_name = ConstString(g_register_infos[i].alt_name).GetCString();
220        }
221    }
222    count = k_num_register_infos;
223    return g_register_infos;
224}
225
226size_t
227ABIMacOSX_i386::GetRedZoneSize () const
228{
229    return 0;
230}
231
232//------------------------------------------------------------------
233// Static Functions
234//------------------------------------------------------------------
235ABISP
236ABIMacOSX_i386::CreateInstance (const ArchSpec &arch)
237{
238    static ABISP g_abi_mac_sp;
239    static ABISP g_abi_other_sp;
240    if (arch.GetTriple().getArch() == llvm::Triple::x86)
241    {
242        if (arch.GetTriple().isOSDarwin())
243        {
244            if (!g_abi_mac_sp)
245                g_abi_mac_sp.reset (new ABIMacOSX_i386(true));
246            return g_abi_mac_sp;
247        }
248        else
249        {
250            if (!g_abi_other_sp)
251                g_abi_other_sp.reset (new ABIMacOSX_i386(false));
252            return g_abi_other_sp;
253        }
254    }
255    return ABISP();
256}
257
258bool
259ABIMacOSX_i386::PrepareTrivialCall (Thread &thread,
260                                    addr_t sp,
261                                    addr_t func_addr,
262                                    addr_t return_addr,
263                                    addr_t *arg1_ptr,
264                                    addr_t *arg2_ptr,
265                                    addr_t *arg3_ptr,
266                                    addr_t *arg4_ptr,
267                                    addr_t *arg5_ptr,
268                                    addr_t *arg6_ptr) const
269{
270    RegisterContext *reg_ctx = thread.GetRegisterContext().get();
271    if (!reg_ctx)
272        return false;
273    uint32_t pc_reg_num = reg_ctx->ConvertRegisterKindToRegisterNumber (eRegisterKindGeneric, LLDB_REGNUM_GENERIC_PC);
274    uint32_t sp_reg_num = reg_ctx->ConvertRegisterKindToRegisterNumber (eRegisterKindGeneric, LLDB_REGNUM_GENERIC_SP);
275
276    // When writing a register value down to memory, the register info used
277    // to write memory just needs to have the correct size of a 32 bit register,
278    // the actual register it pertains to is not important, just the size needs
279    // to be correct. Here we use "eax"...
280    const RegisterInfo *reg_info_32 = reg_ctx->GetRegisterInfoByName("eax");
281    if (!reg_info_32)
282        return false; // TODO this should actually never happen
283
284    // Make room for the argument(s) on the stack
285
286    Error error;
287    RegisterValue reg_value;
288
289    // Write any arguments onto the stack
290    if (arg1_ptr)
291    {
292        sp -= 4;
293        if (arg2_ptr)
294        {
295            sp -= 4;
296            if (arg3_ptr)
297            {
298                sp -= 4;
299                if (arg4_ptr)
300                {
301                    sp -= 4;
302                    if (arg5_ptr)
303                    {
304                        sp -= 4;
305                        if (arg6_ptr)
306                        {
307                            sp -= 4;
308                        }
309                    }
310                }
311            }
312        }
313    }
314
315    // Align the SP
316    sp &= ~(16ull-1ull); // 16-byte alignment
317
318    if (arg1_ptr)
319    {
320        reg_value.SetUInt32(*arg1_ptr);
321        error = reg_ctx->WriteRegisterValueToMemory (reg_info_32,
322                                                     sp,
323                                                     reg_info_32->byte_size,
324                                                     reg_value);
325        if (error.Fail())
326            return false;
327
328        if (arg2_ptr)
329        {
330            reg_value.SetUInt32(*arg2_ptr);
331            // The register info used to write memory just needs to have the correct
332            // size of a 32 bit register, the actual register it pertains to is not
333            // important, just the size needs to be correct. Here we use "eax"...
334            error = reg_ctx->WriteRegisterValueToMemory (reg_info_32,
335                                                         sp + 4,
336                                                         reg_info_32->byte_size,
337                                                         reg_value);
338            if (error.Fail())
339                return false;
340
341            if (arg3_ptr)
342            {
343                reg_value.SetUInt32(*arg3_ptr);
344                // The register info used to write memory just needs to have the correct
345                // size of a 32 bit register, the actual register it pertains to is not
346                // important, just the size needs to be correct. Here we use "eax"...
347                error = reg_ctx->WriteRegisterValueToMemory (reg_info_32,
348                                                             sp + 8,
349                                                             reg_info_32->byte_size,
350                                                             reg_value);
351                if (error.Fail())
352                    return false;
353
354                if (arg4_ptr)
355                {
356                    reg_value.SetUInt32(*arg4_ptr);
357                    // The register info used to write memory just needs to have the correct
358                    // size of a 32 bit register, the actual register it pertains to is not
359                    // important, just the size needs to be correct. Here we use "eax"...
360                    error = reg_ctx->WriteRegisterValueToMemory (reg_info_32,
361                                                                 sp + 12,
362                                                                 reg_info_32->byte_size,
363                                                                 reg_value);
364                    if (error.Fail())
365                        return false;
366                    if (arg5_ptr)
367                    {
368                        reg_value.SetUInt32(*arg5_ptr);
369                        // The register info used to write memory just needs to have the correct
370                        // size of a 32 bit register, the actual register it pertains to is not
371                        // important, just the size needs to be correct. Here we use "eax"...
372                        error = reg_ctx->WriteRegisterValueToMemory (reg_info_32,
373                                                                     sp + 16,
374                                                                     reg_info_32->byte_size,
375                                                                     reg_value);
376                        if (error.Fail())
377                            return false;
378                        if (arg6_ptr)
379                        {
380                            reg_value.SetUInt32(*arg6_ptr);
381                            // The register info used to write memory just needs to have the correct
382                            // size of a 32 bit register, the actual register it pertains to is not
383                            // important, just the size needs to be correct. Here we use "eax"...
384                            error = reg_ctx->WriteRegisterValueToMemory (reg_info_32,
385                                                                         sp + 20,
386                                                                         reg_info_32->byte_size,
387                                                                         reg_value);
388                            if (error.Fail())
389                                return false;
390                        }
391                    }
392                }
393            }
394        }
395    }
396
397
398    // The return address is pushed onto the stack (yes after we just set the
399    // alignment above!).
400    sp -= 4;
401    reg_value.SetUInt32(return_addr);
402    error = reg_ctx->WriteRegisterValueToMemory (reg_info_32,
403                                                 sp,
404                                                 reg_info_32->byte_size,
405                                                 reg_value);
406    if (error.Fail())
407        return false;
408
409    // %esp is set to the actual stack value.
410
411    if (!reg_ctx->WriteRegisterFromUnsigned (sp_reg_num, sp))
412        return false;
413
414    // %eip is set to the address of the called function.
415
416    if (!reg_ctx->WriteRegisterFromUnsigned (pc_reg_num, func_addr))
417        return false;
418
419    return true;
420}
421
422bool
423ABIMacOSX_i386::PrepareNormalCall (Thread &thread,
424                                   addr_t sp,
425                                   addr_t func_addr,
426                                   addr_t return_addr,
427                                   ValueList &args) const
428{
429    ExecutionContext exe_ctx (thread.shared_from_this());
430    RegisterContext *reg_ctx = thread.GetRegisterContext().get();
431    if (!reg_ctx)
432        return false;
433
434    Process *process = exe_ctx.GetProcessPtr();
435    Error error;
436    uint32_t fp_reg_num = reg_ctx->ConvertRegisterKindToRegisterNumber (eRegisterKindGeneric, LLDB_REGNUM_GENERIC_FP);
437    uint32_t pc_reg_num = reg_ctx->ConvertRegisterKindToRegisterNumber (eRegisterKindGeneric, LLDB_REGNUM_GENERIC_PC);
438    uint32_t sp_reg_num = reg_ctx->ConvertRegisterKindToRegisterNumber (eRegisterKindGeneric, LLDB_REGNUM_GENERIC_SP);
439
440    // Do the argument layout
441
442    std::vector <uint32_t> argLayout;   // 4-byte chunks, as discussed in the ABI Function Call Guide
443
444    size_t numArgs = args.GetSize();
445    size_t index;
446
447    for (index = 0; index < numArgs; ++index)
448    {
449        Value *val = args.GetValueAtIndex(index);
450
451        if (!val)
452            return false;
453
454        switch (val->GetValueType())
455        {
456        case Value::eValueTypeScalar:
457            {
458                Scalar &scalar = val->GetScalar();
459                switch (scalar.GetType())
460                {
461                case Scalar::e_void:
462                    return false;
463                case Scalar::e_sint:
464                case Scalar::e_uint:
465                case Scalar::e_slong:
466                case Scalar::e_ulong:
467                case Scalar::e_slonglong:
468                case Scalar::e_ulonglong:
469                    {
470                        uint64_t data = scalar.ULongLong();
471
472                        switch (scalar.GetByteSize())
473                        {
474                        default:
475                            return false;
476                        case 1:
477                            argLayout.push_back((uint32_t)(data & 0xffull));
478                            break;
479                        case 2:
480                            argLayout.push_back((uint32_t)(data & 0xffffull));
481                            break;
482                        case 4:
483                            argLayout.push_back((uint32_t)(data & 0xffffffffull));
484                            break;
485                        case 8:
486                            argLayout.push_back((uint32_t)(data & 0xffffffffull));
487                            argLayout.push_back((uint32_t)(data >> 32));
488                            break;
489                        }
490                    }
491                    break;
492                case Scalar::e_float:
493                    {
494                        float data = scalar.Float();
495                        uint32_t dataRaw = *((uint32_t*)(&data));
496                        argLayout.push_back(dataRaw);
497                    }
498                    break;
499                case Scalar::e_double:
500                    {
501                        double data = scalar.Double();
502                        uint32_t *dataRaw = ((uint32_t*)(&data));
503                        argLayout.push_back(dataRaw[0]);
504                        argLayout.push_back(dataRaw[1]);
505                    }
506                    break;
507                case Scalar::e_long_double:
508                    {
509                        long double data = scalar.Double();
510                        uint32_t *dataRaw = ((uint32_t*)(&data));
511                        while ((argLayout.size() * 4) & 0xf)
512                            argLayout.push_back(0);
513                        argLayout.push_back(dataRaw[0]);
514                        argLayout.push_back(dataRaw[1]);
515                        argLayout.push_back(dataRaw[2]);
516                        argLayout.push_back(dataRaw[3]);
517                    }
518                    break;
519                }
520            }
521            break;
522        case Value::eValueTypeHostAddress:
523            {
524                ClangASTType clang_type (val->GetClangType());
525                if (clang_type)
526                {
527                    uint32_t cstr_length = 0;
528                    if (clang_type.IsCStringType (cstr_length))
529                    {
530                        const char *cstr = (const char*)val->GetScalar().ULongLong();
531                        cstr_length = strlen(cstr);
532
533                        // Push the string onto the stack immediately.
534
535                        sp -= (cstr_length + 1);
536
537                        if (process->WriteMemory(sp, cstr, cstr_length + 1, error) != (cstr_length + 1))
538                            return false;
539
540                        // Put the address of the string into the argument array.
541
542                        argLayout.push_back((uint32_t)(sp & 0xffffffff));
543                    }
544                    else
545                    {
546                        return false;
547                    }
548                }
549                break;
550            }
551            break;
552        case Value::eValueTypeFileAddress:
553        case Value::eValueTypeLoadAddress:
554        default:
555            return false;
556        }
557    }
558
559    // Make room for the arguments on the stack
560
561    sp -= 4 * argLayout.size();
562
563    // Align the SP
564
565    sp &= ~(16ull-1ull); // 16-byte alignment
566
567    // Write the arguments on the stack
568
569    size_t numChunks = argLayout.size();
570
571    for (index = 0; index < numChunks; ++index)
572        if (process->WriteMemory(sp + (index * 4), &argLayout[index], sizeof(uint32_t), error) != sizeof(uint32_t))
573            return false;
574
575    // The return address is pushed onto the stack.
576
577    sp -= 4;
578    uint32_t returnAddressU32 = return_addr;
579    if (process->WriteMemory (sp, &returnAddressU32, sizeof(returnAddressU32), error) != sizeof(returnAddressU32))
580        return false;
581
582    // %esp is set to the actual stack value.
583
584    if (!reg_ctx->WriteRegisterFromUnsigned(sp_reg_num, sp))
585        return false;
586
587    // %ebp is set to a fake value, in our case 0x0x00000000
588
589    if (!reg_ctx->WriteRegisterFromUnsigned(fp_reg_num, 0x00000000))
590        return false;
591
592    // %eip is set to the address of the called function.
593
594    if (!reg_ctx->WriteRegisterFromUnsigned(pc_reg_num, func_addr))
595        return false;
596
597    return true;
598}
599
600static bool
601ReadIntegerArgument (Scalar           &scalar,
602                     unsigned int     bit_width,
603                     bool             is_signed,
604                     Process          *process,
605                     addr_t           &current_stack_argument)
606{
607
608    uint32_t byte_size = (bit_width + (8-1))/8;
609    Error error;
610    if (process->ReadScalarIntegerFromMemory(current_stack_argument, byte_size, is_signed, scalar, error))
611    {
612        current_stack_argument += byte_size;
613        return true;
614    }
615    return false;
616}
617
618bool
619ABIMacOSX_i386::GetArgumentValues (Thread &thread,
620                                   ValueList &values) const
621{
622    unsigned int num_values = values.GetSize();
623    unsigned int value_index;
624
625    // Get the pointer to the first stack argument so we have a place to start
626    // when reading data
627
628    RegisterContext *reg_ctx = thread.GetRegisterContext().get();
629
630    if (!reg_ctx)
631        return false;
632
633    addr_t sp = reg_ctx->GetSP(0);
634
635    if (!sp)
636        return false;
637
638    addr_t current_stack_argument = sp + 4; // jump over return address
639
640    for (value_index = 0;
641         value_index < num_values;
642         ++value_index)
643    {
644        Value *value = values.GetValueAtIndex(value_index);
645
646        if (!value)
647            return false;
648
649        // We currently only support extracting values with Clang QualTypes.
650        // Do we care about others?
651        ClangASTType clang_type (value->GetClangType());
652        if (clang_type)
653        {
654            bool is_signed;
655
656            if (clang_type.IsIntegerType (is_signed))
657            {
658                ReadIntegerArgument(value->GetScalar(),
659                                    clang_type.GetBitSize(),
660                                    is_signed,
661                                    thread.GetProcess().get(),
662                                    current_stack_argument);
663            }
664            else if (clang_type.IsPointerType())
665            {
666                ReadIntegerArgument(value->GetScalar(),
667                                    clang_type.GetBitSize(),
668                                    false,
669                                    thread.GetProcess().get(),
670                                    current_stack_argument);
671            }
672        }
673    }
674
675    return true;
676}
677
678Error
679ABIMacOSX_i386::SetReturnValueObject(lldb::StackFrameSP &frame_sp, lldb::ValueObjectSP &new_value_sp)
680{
681    Error error;
682    if (!new_value_sp)
683    {
684        error.SetErrorString("Empty value object for return value.");
685        return error;
686    }
687
688    ClangASTType clang_type = new_value_sp->GetClangType();
689    if (!clang_type)
690    {
691        error.SetErrorString ("Null clang type for return value.");
692        return error;
693    }
694
695    Thread *thread = frame_sp->GetThread().get();
696
697    bool is_signed;
698    uint32_t count;
699    bool is_complex;
700
701    RegisterContext *reg_ctx = thread->GetRegisterContext().get();
702
703    bool set_it_simple = false;
704    if (clang_type.IsIntegerType (is_signed) || clang_type.IsPointerType())
705    {
706        DataExtractor data;
707        size_t num_bytes = new_value_sp->GetData(data);
708        lldb::offset_t offset = 0;
709        if (num_bytes <= 8)
710        {
711            const RegisterInfo *eax_info = reg_ctx->GetRegisterInfoByName("eax", 0);
712            if (num_bytes <= 4)
713            {
714                uint32_t raw_value = data.GetMaxU32(&offset, num_bytes);
715
716                if (reg_ctx->WriteRegisterFromUnsigned (eax_info, raw_value))
717                    set_it_simple = true;
718            }
719            else
720            {
721                uint32_t raw_value = data.GetMaxU32(&offset, 4);
722
723                if (reg_ctx->WriteRegisterFromUnsigned (eax_info, raw_value))
724                {
725                    const RegisterInfo *edx_info = reg_ctx->GetRegisterInfoByName("edx", 0);
726                    uint32_t raw_value = data.GetMaxU32(&offset, num_bytes - offset);
727
728                    if (reg_ctx->WriteRegisterFromUnsigned (edx_info, raw_value))
729                        set_it_simple = true;
730                }
731            }
732        }
733        else
734        {
735            error.SetErrorString("We don't support returning longer than 64 bit integer values at present.");
736        }
737    }
738    else if (clang_type.IsFloatingPointType (count, is_complex))
739    {
740        if (is_complex)
741            error.SetErrorString ("We don't support returning complex values at present");
742        else
743            error.SetErrorString ("We don't support returning float values at present");
744    }
745
746    if (!set_it_simple)
747        error.SetErrorString ("We only support setting simple integer return types at present.");
748
749    return error;
750}
751
752ValueObjectSP
753ABIMacOSX_i386::GetReturnValueObjectImpl (Thread &thread,
754                                          ClangASTType &clang_type) const
755{
756    Value value;
757    ValueObjectSP return_valobj_sp;
758
759    if (!clang_type)
760        return return_valobj_sp;
761
762    //value.SetContext (Value::eContextTypeClangType, clang_type.GetOpaqueQualType());
763    value.SetClangType (clang_type);
764
765    RegisterContext *reg_ctx = thread.GetRegisterContext().get();
766        if (!reg_ctx)
767        return return_valobj_sp;
768
769    bool is_signed;
770
771    if (clang_type.IsIntegerType (is_signed))
772    {
773        size_t bit_width = clang_type.GetBitSize();
774
775        unsigned eax_id = reg_ctx->GetRegisterInfoByName("eax", 0)->kinds[eRegisterKindLLDB];
776        unsigned edx_id = reg_ctx->GetRegisterInfoByName("edx", 0)->kinds[eRegisterKindLLDB];
777
778        switch (bit_width)
779        {
780            default:
781            case 128:
782                // Scalar can't hold 128-bit literals, so we don't handle this
783                return return_valobj_sp;
784            case 64:
785                uint64_t raw_value;
786                raw_value = thread.GetRegisterContext()->ReadRegisterAsUnsigned(eax_id, 0) & 0xffffffff;
787                raw_value |= (thread.GetRegisterContext()->ReadRegisterAsUnsigned(edx_id, 0) & 0xffffffff) << 32;
788                if (is_signed)
789                    value.GetScalar() = (int64_t)raw_value;
790                else
791                    value.GetScalar() = (uint64_t)raw_value;
792                break;
793            case 32:
794                if (is_signed)
795                    value.GetScalar() = (int32_t)(thread.GetRegisterContext()->ReadRegisterAsUnsigned(eax_id, 0) & 0xffffffff);
796                else
797                    value.GetScalar() = (uint32_t)(thread.GetRegisterContext()->ReadRegisterAsUnsigned(eax_id, 0) & 0xffffffff);
798                break;
799            case 16:
800                if (is_signed)
801                    value.GetScalar() = (int16_t)(thread.GetRegisterContext()->ReadRegisterAsUnsigned(eax_id, 0) & 0xffff);
802                else
803                    value.GetScalar() = (uint16_t)(thread.GetRegisterContext()->ReadRegisterAsUnsigned(eax_id, 0) & 0xffff);
804                break;
805            case 8:
806                if (is_signed)
807                    value.GetScalar() = (int8_t)(thread.GetRegisterContext()->ReadRegisterAsUnsigned(eax_id, 0) & 0xff);
808                else
809                    value.GetScalar() = (uint8_t)(thread.GetRegisterContext()->ReadRegisterAsUnsigned(eax_id, 0) & 0xff);
810                break;
811        }
812    }
813    else if (clang_type.IsPointerType ())
814    {
815        unsigned eax_id = reg_ctx->GetRegisterInfoByName("eax", 0)->kinds[eRegisterKindLLDB];
816        uint32_t ptr = thread.GetRegisterContext()->ReadRegisterAsUnsigned(eax_id, 0) & 0xffffffff;
817        value.GetScalar() = ptr;
818    }
819    else
820    {
821        // not handled yet
822        return return_valobj_sp;
823    }
824
825    // If we get here, we have a valid Value, so make our ValueObject out of it:
826
827    return_valobj_sp = ValueObjectConstResult::Create(thread.GetStackFrameAtIndex(0).get(),
828                                                      value,
829                                                      ConstString(""));
830    return return_valobj_sp;
831}
832
833bool
834ABIMacOSX_i386::CreateFunctionEntryUnwindPlan (UnwindPlan &unwind_plan)
835{
836    unwind_plan.Clear();
837    unwind_plan.SetRegisterKind (eRegisterKindDWARF);
838
839    uint32_t sp_reg_num = dwarf_esp;
840    uint32_t pc_reg_num = dwarf_eip;
841
842    UnwindPlan::RowSP row(new UnwindPlan::Row);
843    row->SetCFARegister (sp_reg_num);
844    row->SetCFAOffset (4);
845    row->SetRegisterLocationToAtCFAPlusOffset(pc_reg_num, -4, false);
846    unwind_plan.AppendRow (row);
847    unwind_plan.SetSourceName ("i386 at-func-entry default");
848    unwind_plan.SetSourcedFromCompiler (eLazyBoolNo);
849    return true;
850}
851
852bool
853ABIMacOSX_i386::CreateDefaultUnwindPlan (UnwindPlan &unwind_plan)
854{
855    unwind_plan.Clear ();
856    unwind_plan.SetRegisterKind (eRegisterKindDWARF);
857
858    uint32_t fp_reg_num = dwarf_ebp;
859    uint32_t sp_reg_num = dwarf_esp;
860    uint32_t pc_reg_num = dwarf_eip;
861
862    UnwindPlan::RowSP row(new UnwindPlan::Row);
863    const int32_t ptr_size = 4;
864
865    row->SetCFARegister (fp_reg_num);
866    row->SetCFAOffset (2 * ptr_size);
867    row->SetOffset (0);
868
869    row->SetRegisterLocationToAtCFAPlusOffset(fp_reg_num, ptr_size * -2, true);
870    row->SetRegisterLocationToAtCFAPlusOffset(pc_reg_num, ptr_size * -1, true);
871    row->SetRegisterLocationToIsCFAPlusOffset(sp_reg_num, 0, true);
872
873    unwind_plan.AppendRow (row);
874    unwind_plan.SetSourceName ("i386 default unwind plan");
875    unwind_plan.SetSourcedFromCompiler (eLazyBoolNo);
876    unwind_plan.SetUnwindPlanValidAtAllInstructions (eLazyBoolNo);
877    return true;
878}
879
880bool
881ABIMacOSX_i386::RegisterIsVolatile (const RegisterInfo *reg_info)
882{
883    return !RegisterIsCalleeSaved (reg_info);
884}
885
886// v. http://developer.apple.com/library/mac/#documentation/developertools/Conceptual/LowLevelABI/130-IA-32_Function_Calling_Conventions/IA32.html#//apple_ref/doc/uid/TP40002492-SW4
887
888bool
889ABIMacOSX_i386::RegisterIsCalleeSaved (const RegisterInfo *reg_info)
890{
891    if (reg_info)
892    {
893        // Saved registers are ebx, ebp, esi, edi, esp, eip
894        const char *name = reg_info->name;
895        if (name[0] == 'e')
896        {
897            switch (name[1])
898            {
899            case 'b':
900                if (name[2] == 'x' || name[2] == 'p')
901                    return name[3] == '\0';
902                break;
903            case 'd':
904                if (name[2] == 'i')
905                    return name[3] == '\0';
906                break;
907            case 'i':
908                if (name[2] == 'p')
909                    return name[3] == '\0';
910                break;
911            case 's':
912                if (name[2] == 'i' || name[2] == 'p')
913                    return name[3] == '\0';
914                break;
915            }
916        }
917        if (name[0] == 's' && name[1] == 'p' && name[2] == '\0')   // sp
918            return true;
919        if (name[0] == 'f' && name[1] == 'p' && name[2] == '\0')   // fp
920            return true;
921        if (name[0] == 'p' && name[1] == 'c' && name[2] == '\0')   // pc
922            return true;
923    }
924    return false;
925}
926
927void
928ABIMacOSX_i386::Initialize()
929{
930    PluginManager::RegisterPlugin (GetPluginNameStatic(),
931                                   "Mac OS X ABI for i386 targets",
932                                   CreateInstance);
933}
934
935void
936ABIMacOSX_i386::Terminate()
937{
938    PluginManager::UnregisterPlugin (CreateInstance);
939}
940
941lldb_private::ConstString
942ABIMacOSX_i386::GetPluginNameStatic ()
943{
944    static ConstString g_short_name("abi.macosx-i386");
945    return g_short_name;
946
947}
948
949//------------------------------------------------------------------
950// PluginInterface protocol
951//------------------------------------------------------------------
952lldb_private::ConstString
953ABIMacOSX_i386::GetPluginName()
954{
955    return GetPluginNameStatic();
956}
957
958uint32_t
959ABIMacOSX_i386::GetPluginVersion()
960{
961    return 1;
962}
963
964