SemaExpr.cpp revision 263508
1254721Semaste//===--- SemaExpr.cpp - Semantic Analysis for Expressions -----------------===//
2254721Semaste//
3353358Sdim//                     The LLVM Compiler Infrastructure
4353358Sdim//
5353358Sdim// This file is distributed under the University of Illinois Open Source
6254721Semaste// License. See LICENSE.TXT for details.
7254721Semaste//
8254721Semaste//===----------------------------------------------------------------------===//
9254721Semaste//
10254721Semaste//  This file implements semantic analysis for expressions.
11254721Semaste//
12254721Semaste//===----------------------------------------------------------------------===//
13254721Semaste
14254721Semaste#include "clang/Sema/SemaInternal.h"
15314564Sdim#include "TreeTransform.h"
16314564Sdim#include "clang/AST/ASTConsumer.h"
17314564Sdim#include "clang/AST/ASTContext.h"
18314564Sdim#include "clang/AST/ASTLambda.h"
19254721Semaste#include "clang/AST/ASTMutationListener.h"
20314564Sdim#include "clang/AST/CXXInheritance.h"
21314564Sdim#include "clang/AST/DeclObjC.h"
22314564Sdim#include "clang/AST/DeclTemplate.h"
23314564Sdim#include "clang/AST/EvaluatedExprVisitor.h"
24314564Sdim#include "clang/AST/Expr.h"
25314564Sdim#include "clang/AST/ExprCXX.h"
26314564Sdim#include "clang/AST/ExprObjC.h"
27314564Sdim#include "clang/AST/RecursiveASTVisitor.h"
28314564Sdim#include "clang/AST/TypeLoc.h"
29314564Sdim#include "clang/Basic/PartialDiagnostic.h"
30314564Sdim#include "clang/Basic/SourceManager.h"
31314564Sdim#include "clang/Basic/TargetInfo.h"
32314564Sdim#include "clang/Lex/LiteralSupport.h"
33314564Sdim#include "clang/Lex/Preprocessor.h"
34314564Sdim#include "clang/Sema/AnalysisBasedWarnings.h"
35314564Sdim#include "clang/Sema/DeclSpec.h"
36314564Sdim#include "clang/Sema/DelayedDiagnostic.h"
37314564Sdim#include "clang/Sema/Designator.h"
38314564Sdim#include "clang/Sema/Initialization.h"
39314564Sdim#include "clang/Sema/Lookup.h"
40314564Sdim#include "clang/Sema/ParsedTemplate.h"
41314564Sdim#include "clang/Sema/Scope.h"
42314564Sdim#include "clang/Sema/ScopeInfo.h"
43314564Sdim#include "clang/Sema/SemaFixItUtils.h"
44314564Sdim#include "clang/Sema/Template.h"
45314564Sdimusing namespace clang;
46314564Sdimusing namespace sema;
47314564Sdim
48314564Sdim/// \brief Determine whether the use of this declaration is valid, without
49314564Sdim/// emitting diagnostics.
50314564Sdimbool Sema::CanUseDecl(NamedDecl *D) {
51314564Sdim  // See if this is an auto-typed variable whose initializer we are parsing.
52314564Sdim  if (ParsingInitForAutoVars.count(D))
53314564Sdim    return false;
54314564Sdim
55314564Sdim  // See if this is a deleted function.
56314564Sdim  if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
57314564Sdim    if (FD->isDeleted())
58314564Sdim      return false;
59314564Sdim
60314564Sdim    // If the function has a deduced return type, and we can't deduce it,
61314564Sdim    // then we can't use it either.
62314564Sdim    if (getLangOpts().CPlusPlus1y && FD->getResultType()->isUndeducedType() &&
63314564Sdim        DeduceReturnType(FD, SourceLocation(), /*Diagnose*/false))
64314564Sdim      return false;
65314564Sdim  }
66314564Sdim
67314564Sdim  // See if this function is unavailable.
68314564Sdim  if (D->getAvailability() == AR_Unavailable &&
69314564Sdim      cast<Decl>(CurContext)->getAvailability() != AR_Unavailable)
70314564Sdim    return false;
71314564Sdim
72314564Sdim  return true;
73314564Sdim}
74314564Sdim
75314564Sdimstatic void DiagnoseUnusedOfDecl(Sema &S, NamedDecl *D, SourceLocation Loc) {
76314564Sdim  // Warn if this is used but marked unused.
77314564Sdim  if (D->hasAttr<UnusedAttr>()) {
78314564Sdim    const Decl *DC = cast<Decl>(S.getCurObjCLexicalContext());
79314564Sdim    if (!DC->hasAttr<UnusedAttr>())
80314564Sdim      S.Diag(Loc, diag::warn_used_but_marked_unused) << D->getDeclName();
81314564Sdim  }
82314564Sdim}
83314564Sdim
84314564Sdimstatic AvailabilityResult DiagnoseAvailabilityOfDecl(Sema &S,
85314564Sdim                              NamedDecl *D, SourceLocation Loc,
86314564Sdim                              const ObjCInterfaceDecl *UnknownObjCClass) {
87314564Sdim  // See if this declaration is unavailable or deprecated.
88314564Sdim  std::string Message;
89314564Sdim  AvailabilityResult Result = D->getAvailability(&Message);
90314564Sdim  if (const EnumConstantDecl *ECD = dyn_cast<EnumConstantDecl>(D))
91314564Sdim    if (Result == AR_Available) {
92314564Sdim      const DeclContext *DC = ECD->getDeclContext();
93314564Sdim      if (const EnumDecl *TheEnumDecl = dyn_cast<EnumDecl>(DC))
94314564Sdim        Result = TheEnumDecl->getAvailability(&Message);
95314564Sdim    }
96314564Sdim
97314564Sdim  const ObjCPropertyDecl *ObjCPDecl = 0;
98314564Sdim  if (Result == AR_Deprecated || Result == AR_Unavailable) {
99314564Sdim    if (const ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(D)) {
100314564Sdim      if (const ObjCPropertyDecl *PD = MD->findPropertyDecl()) {
101314564Sdim        AvailabilityResult PDeclResult = PD->getAvailability(0);
102314564Sdim        if (PDeclResult == Result)
103314564Sdim          ObjCPDecl = PD;
104314564Sdim      }
105314564Sdim    }
106314564Sdim  }
107314564Sdim
108314564Sdim  switch (Result) {
109314564Sdim    case AR_Available:
110314564Sdim    case AR_NotYetIntroduced:
111314564Sdim      break;
112314564Sdim
113314564Sdim    case AR_Deprecated:
114314564Sdim      S.EmitDeprecationWarning(D, Message, Loc, UnknownObjCClass, ObjCPDecl);
115314564Sdim      break;
116314564Sdim
117314564Sdim    case AR_Unavailable:
118314564Sdim      if (S.getCurContextAvailability() != AR_Unavailable) {
119314564Sdim        if (Message.empty()) {
120314564Sdim          if (!UnknownObjCClass) {
121314564Sdim            S.Diag(Loc, diag::err_unavailable) << D->getDeclName();
122314564Sdim            if (ObjCPDecl)
123254721Semaste              S.Diag(ObjCPDecl->getLocation(), diag::note_property_attribute)
124254721Semaste                << ObjCPDecl->getDeclName() << 1;
125314564Sdim          }
126314564Sdim          else
127314564Sdim            S.Diag(Loc, diag::warn_unavailable_fwdclass_message)
128314564Sdim              << D->getDeclName();
129314564Sdim        }
130254721Semaste        else
131254721Semaste          S.Diag(Loc, diag::err_unavailable_message)
132314564Sdim            << D->getDeclName() << Message;
133314564Sdim        S.Diag(D->getLocation(), diag::note_unavailable_here)
134                  << isa<FunctionDecl>(D) << false;
135        if (ObjCPDecl)
136          S.Diag(ObjCPDecl->getLocation(), diag::note_property_attribute)
137          << ObjCPDecl->getDeclName() << 1;
138      }
139      break;
140    }
141    return Result;
142}
143
144/// \brief Emit a note explaining that this function is deleted.
145void Sema::NoteDeletedFunction(FunctionDecl *Decl) {
146  assert(Decl->isDeleted());
147
148  CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Decl);
149
150  if (Method && Method->isDeleted() && Method->isDefaulted()) {
151    // If the method was explicitly defaulted, point at that declaration.
152    if (!Method->isImplicit())
153      Diag(Decl->getLocation(), diag::note_implicitly_deleted);
154
155    // Try to diagnose why this special member function was implicitly
156    // deleted. This might fail, if that reason no longer applies.
157    CXXSpecialMember CSM = getSpecialMember(Method);
158    if (CSM != CXXInvalid)
159      ShouldDeleteSpecialMember(Method, CSM, /*Diagnose=*/true);
160
161    return;
162  }
163
164  if (CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(Decl)) {
165    if (CXXConstructorDecl *BaseCD =
166            const_cast<CXXConstructorDecl*>(CD->getInheritedConstructor())) {
167      Diag(Decl->getLocation(), diag::note_inherited_deleted_here);
168      if (BaseCD->isDeleted()) {
169        NoteDeletedFunction(BaseCD);
170      } else {
171        // FIXME: An explanation of why exactly it can't be inherited
172        // would be nice.
173        Diag(BaseCD->getLocation(), diag::note_cannot_inherit);
174      }
175      return;
176    }
177  }
178
179  Diag(Decl->getLocation(), diag::note_unavailable_here)
180    << 1 << true;
181}
182
183/// \brief Determine whether a FunctionDecl was ever declared with an
184/// explicit storage class.
185static bool hasAnyExplicitStorageClass(const FunctionDecl *D) {
186  for (FunctionDecl::redecl_iterator I = D->redecls_begin(),
187                                     E = D->redecls_end();
188       I != E; ++I) {
189    if (I->getStorageClass() != SC_None)
190      return true;
191  }
192  return false;
193}
194
195/// \brief Check whether we're in an extern inline function and referring to a
196/// variable or function with internal linkage (C11 6.7.4p3).
197///
198/// This is only a warning because we used to silently accept this code, but
199/// in many cases it will not behave correctly. This is not enabled in C++ mode
200/// because the restriction language is a bit weaker (C++11 [basic.def.odr]p6)
201/// and so while there may still be user mistakes, most of the time we can't
202/// prove that there are errors.
203static void diagnoseUseOfInternalDeclInInlineFunction(Sema &S,
204                                                      const NamedDecl *D,
205                                                      SourceLocation Loc) {
206  // This is disabled under C++; there are too many ways for this to fire in
207  // contexts where the warning is a false positive, or where it is technically
208  // correct but benign.
209  if (S.getLangOpts().CPlusPlus)
210    return;
211
212  // Check if this is an inlined function or method.
213  FunctionDecl *Current = S.getCurFunctionDecl();
214  if (!Current)
215    return;
216  if (!Current->isInlined())
217    return;
218  if (!Current->isExternallyVisible())
219    return;
220
221  // Check if the decl has internal linkage.
222  if (D->getFormalLinkage() != InternalLinkage)
223    return;
224
225  // Downgrade from ExtWarn to Extension if
226  //  (1) the supposedly external inline function is in the main file,
227  //      and probably won't be included anywhere else.
228  //  (2) the thing we're referencing is a pure function.
229  //  (3) the thing we're referencing is another inline function.
230  // This last can give us false negatives, but it's better than warning on
231  // wrappers for simple C library functions.
232  const FunctionDecl *UsedFn = dyn_cast<FunctionDecl>(D);
233  bool DowngradeWarning = S.getSourceManager().isInMainFile(Loc);
234  if (!DowngradeWarning && UsedFn)
235    DowngradeWarning = UsedFn->isInlined() || UsedFn->hasAttr<ConstAttr>();
236
237  S.Diag(Loc, DowngradeWarning ? diag::ext_internal_in_extern_inline
238                               : diag::warn_internal_in_extern_inline)
239    << /*IsVar=*/!UsedFn << D;
240
241  S.MaybeSuggestAddingStaticToDecl(Current);
242
243  S.Diag(D->getCanonicalDecl()->getLocation(),
244         diag::note_internal_decl_declared_here)
245    << D;
246}
247
248void Sema::MaybeSuggestAddingStaticToDecl(const FunctionDecl *Cur) {
249  const FunctionDecl *First = Cur->getFirstDecl();
250
251  // Suggest "static" on the function, if possible.
252  if (!hasAnyExplicitStorageClass(First)) {
253    SourceLocation DeclBegin = First->getSourceRange().getBegin();
254    Diag(DeclBegin, diag::note_convert_inline_to_static)
255      << Cur << FixItHint::CreateInsertion(DeclBegin, "static ");
256  }
257}
258
259/// \brief Determine whether the use of this declaration is valid, and
260/// emit any corresponding diagnostics.
261///
262/// This routine diagnoses various problems with referencing
263/// declarations that can occur when using a declaration. For example,
264/// it might warn if a deprecated or unavailable declaration is being
265/// used, or produce an error (and return true) if a C++0x deleted
266/// function is being used.
267///
268/// \returns true if there was an error (this declaration cannot be
269/// referenced), false otherwise.
270///
271bool Sema::DiagnoseUseOfDecl(NamedDecl *D, SourceLocation Loc,
272                             const ObjCInterfaceDecl *UnknownObjCClass) {
273  if (getLangOpts().CPlusPlus && isa<FunctionDecl>(D)) {
274    // If there were any diagnostics suppressed by template argument deduction,
275    // emit them now.
276    SuppressedDiagnosticsMap::iterator
277      Pos = SuppressedDiagnostics.find(D->getCanonicalDecl());
278    if (Pos != SuppressedDiagnostics.end()) {
279      SmallVectorImpl<PartialDiagnosticAt> &Suppressed = Pos->second;
280      for (unsigned I = 0, N = Suppressed.size(); I != N; ++I)
281        Diag(Suppressed[I].first, Suppressed[I].second);
282
283      // Clear out the list of suppressed diagnostics, so that we don't emit
284      // them again for this specialization. However, we don't obsolete this
285      // entry from the table, because we want to avoid ever emitting these
286      // diagnostics again.
287      Suppressed.clear();
288    }
289  }
290
291  // See if this is an auto-typed variable whose initializer we are parsing.
292  if (ParsingInitForAutoVars.count(D)) {
293    Diag(Loc, diag::err_auto_variable_cannot_appear_in_own_initializer)
294      << D->getDeclName();
295    return true;
296  }
297
298  // See if this is a deleted function.
299  if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
300    if (FD->isDeleted()) {
301      Diag(Loc, diag::err_deleted_function_use);
302      NoteDeletedFunction(FD);
303      return true;
304    }
305
306    // If the function has a deduced return type, and we can't deduce it,
307    // then we can't use it either.
308    if (getLangOpts().CPlusPlus1y && FD->getResultType()->isUndeducedType() &&
309        DeduceReturnType(FD, Loc))
310      return true;
311  }
312  DiagnoseAvailabilityOfDecl(*this, D, Loc, UnknownObjCClass);
313
314  DiagnoseUnusedOfDecl(*this, D, Loc);
315
316  diagnoseUseOfInternalDeclInInlineFunction(*this, D, Loc);
317
318  return false;
319}
320
321/// \brief Retrieve the message suffix that should be added to a
322/// diagnostic complaining about the given function being deleted or
323/// unavailable.
324std::string Sema::getDeletedOrUnavailableSuffix(const FunctionDecl *FD) {
325  std::string Message;
326  if (FD->getAvailability(&Message))
327    return ": " + Message;
328
329  return std::string();
330}
331
332/// DiagnoseSentinelCalls - This routine checks whether a call or
333/// message-send is to a declaration with the sentinel attribute, and
334/// if so, it checks that the requirements of the sentinel are
335/// satisfied.
336void Sema::DiagnoseSentinelCalls(NamedDecl *D, SourceLocation Loc,
337                                 ArrayRef<Expr *> Args) {
338  const SentinelAttr *attr = D->getAttr<SentinelAttr>();
339  if (!attr)
340    return;
341
342  // The number of formal parameters of the declaration.
343  unsigned numFormalParams;
344
345  // The kind of declaration.  This is also an index into a %select in
346  // the diagnostic.
347  enum CalleeType { CT_Function, CT_Method, CT_Block } calleeType;
348
349  if (ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(D)) {
350    numFormalParams = MD->param_size();
351    calleeType = CT_Method;
352  } else if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
353    numFormalParams = FD->param_size();
354    calleeType = CT_Function;
355  } else if (isa<VarDecl>(D)) {
356    QualType type = cast<ValueDecl>(D)->getType();
357    const FunctionType *fn = 0;
358    if (const PointerType *ptr = type->getAs<PointerType>()) {
359      fn = ptr->getPointeeType()->getAs<FunctionType>();
360      if (!fn) return;
361      calleeType = CT_Function;
362    } else if (const BlockPointerType *ptr = type->getAs<BlockPointerType>()) {
363      fn = ptr->getPointeeType()->castAs<FunctionType>();
364      calleeType = CT_Block;
365    } else {
366      return;
367    }
368
369    if (const FunctionProtoType *proto = dyn_cast<FunctionProtoType>(fn)) {
370      numFormalParams = proto->getNumArgs();
371    } else {
372      numFormalParams = 0;
373    }
374  } else {
375    return;
376  }
377
378  // "nullPos" is the number of formal parameters at the end which
379  // effectively count as part of the variadic arguments.  This is
380  // useful if you would prefer to not have *any* formal parameters,
381  // but the language forces you to have at least one.
382  unsigned nullPos = attr->getNullPos();
383  assert((nullPos == 0 || nullPos == 1) && "invalid null position on sentinel");
384  numFormalParams = (nullPos > numFormalParams ? 0 : numFormalParams - nullPos);
385
386  // The number of arguments which should follow the sentinel.
387  unsigned numArgsAfterSentinel = attr->getSentinel();
388
389  // If there aren't enough arguments for all the formal parameters,
390  // the sentinel, and the args after the sentinel, complain.
391  if (Args.size() < numFormalParams + numArgsAfterSentinel + 1) {
392    Diag(Loc, diag::warn_not_enough_argument) << D->getDeclName();
393    Diag(D->getLocation(), diag::note_sentinel_here) << int(calleeType);
394    return;
395  }
396
397  // Otherwise, find the sentinel expression.
398  Expr *sentinelExpr = Args[Args.size() - numArgsAfterSentinel - 1];
399  if (!sentinelExpr) return;
400  if (sentinelExpr->isValueDependent()) return;
401  if (Context.isSentinelNullExpr(sentinelExpr)) return;
402
403  // Pick a reasonable string to insert.  Optimistically use 'nil' or
404  // 'NULL' if those are actually defined in the context.  Only use
405  // 'nil' for ObjC methods, where it's much more likely that the
406  // variadic arguments form a list of object pointers.
407  SourceLocation MissingNilLoc
408    = PP.getLocForEndOfToken(sentinelExpr->getLocEnd());
409  std::string NullValue;
410  if (calleeType == CT_Method &&
411      PP.getIdentifierInfo("nil")->hasMacroDefinition())
412    NullValue = "nil";
413  else if (PP.getIdentifierInfo("NULL")->hasMacroDefinition())
414    NullValue = "NULL";
415  else
416    NullValue = "(void*) 0";
417
418  if (MissingNilLoc.isInvalid())
419    Diag(Loc, diag::warn_missing_sentinel) << int(calleeType);
420  else
421    Diag(MissingNilLoc, diag::warn_missing_sentinel)
422      << int(calleeType)
423      << FixItHint::CreateInsertion(MissingNilLoc, ", " + NullValue);
424  Diag(D->getLocation(), diag::note_sentinel_here) << int(calleeType);
425}
426
427SourceRange Sema::getExprRange(Expr *E) const {
428  return E ? E->getSourceRange() : SourceRange();
429}
430
431//===----------------------------------------------------------------------===//
432//  Standard Promotions and Conversions
433//===----------------------------------------------------------------------===//
434
435/// DefaultFunctionArrayConversion (C99 6.3.2.1p3, C99 6.3.2.1p4).
436ExprResult Sema::DefaultFunctionArrayConversion(Expr *E) {
437  // Handle any placeholder expressions which made it here.
438  if (E->getType()->isPlaceholderType()) {
439    ExprResult result = CheckPlaceholderExpr(E);
440    if (result.isInvalid()) return ExprError();
441    E = result.take();
442  }
443
444  QualType Ty = E->getType();
445  assert(!Ty.isNull() && "DefaultFunctionArrayConversion - missing type");
446
447  if (Ty->isFunctionType())
448    E = ImpCastExprToType(E, Context.getPointerType(Ty),
449                          CK_FunctionToPointerDecay).take();
450  else if (Ty->isArrayType()) {
451    // In C90 mode, arrays only promote to pointers if the array expression is
452    // an lvalue.  The relevant legalese is C90 6.2.2.1p3: "an lvalue that has
453    // type 'array of type' is converted to an expression that has type 'pointer
454    // to type'...".  In C99 this was changed to: C99 6.3.2.1p3: "an expression
455    // that has type 'array of type' ...".  The relevant change is "an lvalue"
456    // (C90) to "an expression" (C99).
457    //
458    // C++ 4.2p1:
459    // An lvalue or rvalue of type "array of N T" or "array of unknown bound of
460    // T" can be converted to an rvalue of type "pointer to T".
461    //
462    if (getLangOpts().C99 || getLangOpts().CPlusPlus || E->isLValue())
463      E = ImpCastExprToType(E, Context.getArrayDecayedType(Ty),
464                            CK_ArrayToPointerDecay).take();
465  }
466  return Owned(E);
467}
468
469static void CheckForNullPointerDereference(Sema &S, Expr *E) {
470  // Check to see if we are dereferencing a null pointer.  If so,
471  // and if not volatile-qualified, this is undefined behavior that the
472  // optimizer will delete, so warn about it.  People sometimes try to use this
473  // to get a deterministic trap and are surprised by clang's behavior.  This
474  // only handles the pattern "*null", which is a very syntactic check.
475  if (UnaryOperator *UO = dyn_cast<UnaryOperator>(E->IgnoreParenCasts()))
476    if (UO->getOpcode() == UO_Deref &&
477        UO->getSubExpr()->IgnoreParenCasts()->
478          isNullPointerConstant(S.Context, Expr::NPC_ValueDependentIsNotNull) &&
479        !UO->getType().isVolatileQualified()) {
480    S.DiagRuntimeBehavior(UO->getOperatorLoc(), UO,
481                          S.PDiag(diag::warn_indirection_through_null)
482                            << UO->getSubExpr()->getSourceRange());
483    S.DiagRuntimeBehavior(UO->getOperatorLoc(), UO,
484                        S.PDiag(diag::note_indirection_through_null));
485  }
486}
487
488static void DiagnoseDirectIsaAccess(Sema &S, const ObjCIvarRefExpr *OIRE,
489                                    SourceLocation AssignLoc,
490                                    const Expr* RHS) {
491  const ObjCIvarDecl *IV = OIRE->getDecl();
492  if (!IV)
493    return;
494
495  DeclarationName MemberName = IV->getDeclName();
496  IdentifierInfo *Member = MemberName.getAsIdentifierInfo();
497  if (!Member || !Member->isStr("isa"))
498    return;
499
500  const Expr *Base = OIRE->getBase();
501  QualType BaseType = Base->getType();
502  if (OIRE->isArrow())
503    BaseType = BaseType->getPointeeType();
504  if (const ObjCObjectType *OTy = BaseType->getAs<ObjCObjectType>())
505    if (ObjCInterfaceDecl *IDecl = OTy->getInterface()) {
506      ObjCInterfaceDecl *ClassDeclared = 0;
507      ObjCIvarDecl *IV = IDecl->lookupInstanceVariable(Member, ClassDeclared);
508      if (!ClassDeclared->getSuperClass()
509          && (*ClassDeclared->ivar_begin()) == IV) {
510        if (RHS) {
511          NamedDecl *ObjectSetClass =
512            S.LookupSingleName(S.TUScope,
513                               &S.Context.Idents.get("object_setClass"),
514                               SourceLocation(), S.LookupOrdinaryName);
515          if (ObjectSetClass) {
516            SourceLocation RHSLocEnd = S.PP.getLocForEndOfToken(RHS->getLocEnd());
517            S.Diag(OIRE->getExprLoc(), diag::warn_objc_isa_assign) <<
518            FixItHint::CreateInsertion(OIRE->getLocStart(), "object_setClass(") <<
519            FixItHint::CreateReplacement(SourceRange(OIRE->getOpLoc(),
520                                                     AssignLoc), ",") <<
521            FixItHint::CreateInsertion(RHSLocEnd, ")");
522          }
523          else
524            S.Diag(OIRE->getLocation(), diag::warn_objc_isa_assign);
525        } else {
526          NamedDecl *ObjectGetClass =
527            S.LookupSingleName(S.TUScope,
528                               &S.Context.Idents.get("object_getClass"),
529                               SourceLocation(), S.LookupOrdinaryName);
530          if (ObjectGetClass)
531            S.Diag(OIRE->getExprLoc(), diag::warn_objc_isa_use) <<
532            FixItHint::CreateInsertion(OIRE->getLocStart(), "object_getClass(") <<
533            FixItHint::CreateReplacement(
534                                         SourceRange(OIRE->getOpLoc(),
535                                                     OIRE->getLocEnd()), ")");
536          else
537            S.Diag(OIRE->getLocation(), diag::warn_objc_isa_use);
538        }
539        S.Diag(IV->getLocation(), diag::note_ivar_decl);
540      }
541    }
542}
543
544ExprResult Sema::DefaultLvalueConversion(Expr *E) {
545  // Handle any placeholder expressions which made it here.
546  if (E->getType()->isPlaceholderType()) {
547    ExprResult result = CheckPlaceholderExpr(E);
548    if (result.isInvalid()) return ExprError();
549    E = result.take();
550  }
551
552  // C++ [conv.lval]p1:
553  //   A glvalue of a non-function, non-array type T can be
554  //   converted to a prvalue.
555  if (!E->isGLValue()) return Owned(E);
556
557  QualType T = E->getType();
558  assert(!T.isNull() && "r-value conversion on typeless expression?");
559
560  // We don't want to throw lvalue-to-rvalue casts on top of
561  // expressions of certain types in C++.
562  if (getLangOpts().CPlusPlus &&
563      (E->getType() == Context.OverloadTy ||
564       T->isDependentType() ||
565       T->isRecordType()))
566    return Owned(E);
567
568  // The C standard is actually really unclear on this point, and
569  // DR106 tells us what the result should be but not why.  It's
570  // generally best to say that void types just doesn't undergo
571  // lvalue-to-rvalue at all.  Note that expressions of unqualified
572  // 'void' type are never l-values, but qualified void can be.
573  if (T->isVoidType())
574    return Owned(E);
575
576  // OpenCL usually rejects direct accesses to values of 'half' type.
577  if (getLangOpts().OpenCL && !getOpenCLOptions().cl_khr_fp16 &&
578      T->isHalfType()) {
579    Diag(E->getExprLoc(), diag::err_opencl_half_load_store)
580      << 0 << T;
581    return ExprError();
582  }
583
584  CheckForNullPointerDereference(*this, E);
585  if (const ObjCIsaExpr *OISA = dyn_cast<ObjCIsaExpr>(E->IgnoreParenCasts())) {
586    NamedDecl *ObjectGetClass = LookupSingleName(TUScope,
587                                     &Context.Idents.get("object_getClass"),
588                                     SourceLocation(), LookupOrdinaryName);
589    if (ObjectGetClass)
590      Diag(E->getExprLoc(), diag::warn_objc_isa_use) <<
591        FixItHint::CreateInsertion(OISA->getLocStart(), "object_getClass(") <<
592        FixItHint::CreateReplacement(
593                    SourceRange(OISA->getOpLoc(), OISA->getIsaMemberLoc()), ")");
594    else
595      Diag(E->getExprLoc(), diag::warn_objc_isa_use);
596  }
597  else if (const ObjCIvarRefExpr *OIRE =
598            dyn_cast<ObjCIvarRefExpr>(E->IgnoreParenCasts()))
599    DiagnoseDirectIsaAccess(*this, OIRE, SourceLocation(), /* Expr*/0);
600
601  // C++ [conv.lval]p1:
602  //   [...] If T is a non-class type, the type of the prvalue is the
603  //   cv-unqualified version of T. Otherwise, the type of the
604  //   rvalue is T.
605  //
606  // C99 6.3.2.1p2:
607  //   If the lvalue has qualified type, the value has the unqualified
608  //   version of the type of the lvalue; otherwise, the value has the
609  //   type of the lvalue.
610  if (T.hasQualifiers())
611    T = T.getUnqualifiedType();
612
613  UpdateMarkingForLValueToRValue(E);
614
615  // Loading a __weak object implicitly retains the value, so we need a cleanup to
616  // balance that.
617  if (getLangOpts().ObjCAutoRefCount &&
618      E->getType().getObjCLifetime() == Qualifiers::OCL_Weak)
619    ExprNeedsCleanups = true;
620
621  ExprResult Res = Owned(ImplicitCastExpr::Create(Context, T, CK_LValueToRValue,
622                                                  E, 0, VK_RValue));
623
624  // C11 6.3.2.1p2:
625  //   ... if the lvalue has atomic type, the value has the non-atomic version
626  //   of the type of the lvalue ...
627  if (const AtomicType *Atomic = T->getAs<AtomicType>()) {
628    T = Atomic->getValueType().getUnqualifiedType();
629    Res = Owned(ImplicitCastExpr::Create(Context, T, CK_AtomicToNonAtomic,
630                                         Res.get(), 0, VK_RValue));
631  }
632
633  return Res;
634}
635
636ExprResult Sema::DefaultFunctionArrayLvalueConversion(Expr *E) {
637  ExprResult Res = DefaultFunctionArrayConversion(E);
638  if (Res.isInvalid())
639    return ExprError();
640  Res = DefaultLvalueConversion(Res.take());
641  if (Res.isInvalid())
642    return ExprError();
643  return Res;
644}
645
646
647/// UsualUnaryConversions - Performs various conversions that are common to most
648/// operators (C99 6.3). The conversions of array and function types are
649/// sometimes suppressed. For example, the array->pointer conversion doesn't
650/// apply if the array is an argument to the sizeof or address (&) operators.
651/// In these instances, this routine should *not* be called.
652ExprResult Sema::UsualUnaryConversions(Expr *E) {
653  // First, convert to an r-value.
654  ExprResult Res = DefaultFunctionArrayLvalueConversion(E);
655  if (Res.isInvalid())
656    return ExprError();
657  E = Res.take();
658
659  QualType Ty = E->getType();
660  assert(!Ty.isNull() && "UsualUnaryConversions - missing type");
661
662  // Half FP have to be promoted to float unless it is natively supported
663  if (Ty->isHalfType() && !getLangOpts().NativeHalfType)
664    return ImpCastExprToType(Res.take(), Context.FloatTy, CK_FloatingCast);
665
666  // Try to perform integral promotions if the object has a theoretically
667  // promotable type.
668  if (Ty->isIntegralOrUnscopedEnumerationType()) {
669    // C99 6.3.1.1p2:
670    //
671    //   The following may be used in an expression wherever an int or
672    //   unsigned int may be used:
673    //     - an object or expression with an integer type whose integer
674    //       conversion rank is less than or equal to the rank of int
675    //       and unsigned int.
676    //     - A bit-field of type _Bool, int, signed int, or unsigned int.
677    //
678    //   If an int can represent all values of the original type, the
679    //   value is converted to an int; otherwise, it is converted to an
680    //   unsigned int. These are called the integer promotions. All
681    //   other types are unchanged by the integer promotions.
682
683    QualType PTy = Context.isPromotableBitField(E);
684    if (!PTy.isNull()) {
685      E = ImpCastExprToType(E, PTy, CK_IntegralCast).take();
686      return Owned(E);
687    }
688    if (Ty->isPromotableIntegerType()) {
689      QualType PT = Context.getPromotedIntegerType(Ty);
690      E = ImpCastExprToType(E, PT, CK_IntegralCast).take();
691      return Owned(E);
692    }
693  }
694  return Owned(E);
695}
696
697/// DefaultArgumentPromotion (C99 6.5.2.2p6). Used for function calls that
698/// do not have a prototype. Arguments that have type float or __fp16
699/// are promoted to double. All other argument types are converted by
700/// UsualUnaryConversions().
701ExprResult Sema::DefaultArgumentPromotion(Expr *E) {
702  QualType Ty = E->getType();
703  assert(!Ty.isNull() && "DefaultArgumentPromotion - missing type");
704
705  ExprResult Res = UsualUnaryConversions(E);
706  if (Res.isInvalid())
707    return ExprError();
708  E = Res.take();
709
710  // If this is a 'float' or '__fp16' (CVR qualified or typedef) promote to
711  // double.
712  const BuiltinType *BTy = Ty->getAs<BuiltinType>();
713  if (BTy && (BTy->getKind() == BuiltinType::Half ||
714              BTy->getKind() == BuiltinType::Float))
715    E = ImpCastExprToType(E, Context.DoubleTy, CK_FloatingCast).take();
716
717  // C++ performs lvalue-to-rvalue conversion as a default argument
718  // promotion, even on class types, but note:
719  //   C++11 [conv.lval]p2:
720  //     When an lvalue-to-rvalue conversion occurs in an unevaluated
721  //     operand or a subexpression thereof the value contained in the
722  //     referenced object is not accessed. Otherwise, if the glvalue
723  //     has a class type, the conversion copy-initializes a temporary
724  //     of type T from the glvalue and the result of the conversion
725  //     is a prvalue for the temporary.
726  // FIXME: add some way to gate this entire thing for correctness in
727  // potentially potentially evaluated contexts.
728  if (getLangOpts().CPlusPlus && E->isGLValue() && !isUnevaluatedContext()) {
729    ExprResult Temp = PerformCopyInitialization(
730                       InitializedEntity::InitializeTemporary(E->getType()),
731                                                E->getExprLoc(),
732                                                Owned(E));
733    if (Temp.isInvalid())
734      return ExprError();
735    E = Temp.get();
736  }
737
738  return Owned(E);
739}
740
741/// Determine the degree of POD-ness for an expression.
742/// Incomplete types are considered POD, since this check can be performed
743/// when we're in an unevaluated context.
744Sema::VarArgKind Sema::isValidVarArgType(const QualType &Ty) {
745  if (Ty->isIncompleteType()) {
746    // C++11 [expr.call]p7:
747    //   After these conversions, if the argument does not have arithmetic,
748    //   enumeration, pointer, pointer to member, or class type, the program
749    //   is ill-formed.
750    //
751    // Since we've already performed array-to-pointer and function-to-pointer
752    // decay, the only such type in C++ is cv void. This also handles
753    // initializer lists as variadic arguments.
754    if (Ty->isVoidType())
755      return VAK_Invalid;
756
757    if (Ty->isObjCObjectType())
758      return VAK_Invalid;
759    return VAK_Valid;
760  }
761
762  if (Ty.isCXX98PODType(Context))
763    return VAK_Valid;
764
765  // C++11 [expr.call]p7:
766  //   Passing a potentially-evaluated argument of class type (Clause 9)
767  //   having a non-trivial copy constructor, a non-trivial move constructor,
768  //   or a non-trivial destructor, with no corresponding parameter,
769  //   is conditionally-supported with implementation-defined semantics.
770  if (getLangOpts().CPlusPlus11 && !Ty->isDependentType())
771    if (CXXRecordDecl *Record = Ty->getAsCXXRecordDecl())
772      if (!Record->hasNonTrivialCopyConstructor() &&
773          !Record->hasNonTrivialMoveConstructor() &&
774          !Record->hasNonTrivialDestructor())
775        return VAK_ValidInCXX11;
776
777  if (getLangOpts().ObjCAutoRefCount && Ty->isObjCLifetimeType())
778    return VAK_Valid;
779
780  if (Ty->isObjCObjectType())
781    return VAK_Invalid;
782
783  // FIXME: In C++11, these cases are conditionally-supported, meaning we're
784  // permitted to reject them. We should consider doing so.
785  return VAK_Undefined;
786}
787
788void Sema::checkVariadicArgument(const Expr *E, VariadicCallType CT) {
789  // Don't allow one to pass an Objective-C interface to a vararg.
790  const QualType &Ty = E->getType();
791  VarArgKind VAK = isValidVarArgType(Ty);
792
793  // Complain about passing non-POD types through varargs.
794  switch (VAK) {
795  case VAK_Valid:
796    break;
797
798  case VAK_ValidInCXX11:
799    DiagRuntimeBehavior(
800        E->getLocStart(), 0,
801        PDiag(diag::warn_cxx98_compat_pass_non_pod_arg_to_vararg)
802          << E->getType() << CT);
803    break;
804
805  case VAK_Undefined:
806    DiagRuntimeBehavior(
807        E->getLocStart(), 0,
808        PDiag(diag::warn_cannot_pass_non_pod_arg_to_vararg)
809          << getLangOpts().CPlusPlus11 << Ty << CT);
810    break;
811
812  case VAK_Invalid:
813    if (Ty->isObjCObjectType())
814      DiagRuntimeBehavior(
815          E->getLocStart(), 0,
816          PDiag(diag::err_cannot_pass_objc_interface_to_vararg)
817            << Ty << CT);
818    else
819      Diag(E->getLocStart(), diag::err_cannot_pass_to_vararg)
820        << isa<InitListExpr>(E) << Ty << CT;
821    break;
822  }
823}
824
825/// DefaultVariadicArgumentPromotion - Like DefaultArgumentPromotion, but
826/// will create a trap if the resulting type is not a POD type.
827ExprResult Sema::DefaultVariadicArgumentPromotion(Expr *E, VariadicCallType CT,
828                                                  FunctionDecl *FDecl) {
829  if (const BuiltinType *PlaceholderTy = E->getType()->getAsPlaceholderType()) {
830    // Strip the unbridged-cast placeholder expression off, if applicable.
831    if (PlaceholderTy->getKind() == BuiltinType::ARCUnbridgedCast &&
832        (CT == VariadicMethod ||
833         (FDecl && FDecl->hasAttr<CFAuditedTransferAttr>()))) {
834      E = stripARCUnbridgedCast(E);
835
836    // Otherwise, do normal placeholder checking.
837    } else {
838      ExprResult ExprRes = CheckPlaceholderExpr(E);
839      if (ExprRes.isInvalid())
840        return ExprError();
841      E = ExprRes.take();
842    }
843  }
844
845  ExprResult ExprRes = DefaultArgumentPromotion(E);
846  if (ExprRes.isInvalid())
847    return ExprError();
848  E = ExprRes.take();
849
850  // Diagnostics regarding non-POD argument types are
851  // emitted along with format string checking in Sema::CheckFunctionCall().
852  if (isValidVarArgType(E->getType()) == VAK_Undefined) {
853    // Turn this into a trap.
854    CXXScopeSpec SS;
855    SourceLocation TemplateKWLoc;
856    UnqualifiedId Name;
857    Name.setIdentifier(PP.getIdentifierInfo("__builtin_trap"),
858                       E->getLocStart());
859    ExprResult TrapFn = ActOnIdExpression(TUScope, SS, TemplateKWLoc,
860                                          Name, true, false);
861    if (TrapFn.isInvalid())
862      return ExprError();
863
864    ExprResult Call = ActOnCallExpr(TUScope, TrapFn.get(),
865                                    E->getLocStart(), None,
866                                    E->getLocEnd());
867    if (Call.isInvalid())
868      return ExprError();
869
870    ExprResult Comma = ActOnBinOp(TUScope, E->getLocStart(), tok::comma,
871                                  Call.get(), E);
872    if (Comma.isInvalid())
873      return ExprError();
874    return Comma.get();
875  }
876
877  if (!getLangOpts().CPlusPlus &&
878      RequireCompleteType(E->getExprLoc(), E->getType(),
879                          diag::err_call_incomplete_argument))
880    return ExprError();
881
882  return Owned(E);
883}
884
885/// \brief Converts an integer to complex float type.  Helper function of
886/// UsualArithmeticConversions()
887///
888/// \return false if the integer expression is an integer type and is
889/// successfully converted to the complex type.
890static bool handleIntegerToComplexFloatConversion(Sema &S, ExprResult &IntExpr,
891                                                  ExprResult &ComplexExpr,
892                                                  QualType IntTy,
893                                                  QualType ComplexTy,
894                                                  bool SkipCast) {
895  if (IntTy->isComplexType() || IntTy->isRealFloatingType()) return true;
896  if (SkipCast) return false;
897  if (IntTy->isIntegerType()) {
898    QualType fpTy = cast<ComplexType>(ComplexTy)->getElementType();
899    IntExpr = S.ImpCastExprToType(IntExpr.take(), fpTy, CK_IntegralToFloating);
900    IntExpr = S.ImpCastExprToType(IntExpr.take(), ComplexTy,
901                                  CK_FloatingRealToComplex);
902  } else {
903    assert(IntTy->isComplexIntegerType());
904    IntExpr = S.ImpCastExprToType(IntExpr.take(), ComplexTy,
905                                  CK_IntegralComplexToFloatingComplex);
906  }
907  return false;
908}
909
910/// \brief Takes two complex float types and converts them to the same type.
911/// Helper function of UsualArithmeticConversions()
912static QualType
913handleComplexFloatToComplexFloatConverstion(Sema &S, ExprResult &LHS,
914                                            ExprResult &RHS, QualType LHSType,
915                                            QualType RHSType,
916                                            bool IsCompAssign) {
917  int order = S.Context.getFloatingTypeOrder(LHSType, RHSType);
918
919  if (order < 0) {
920    // _Complex float -> _Complex double
921    if (!IsCompAssign)
922      LHS = S.ImpCastExprToType(LHS.take(), RHSType, CK_FloatingComplexCast);
923    return RHSType;
924  }
925  if (order > 0)
926    // _Complex float -> _Complex double
927    RHS = S.ImpCastExprToType(RHS.take(), LHSType, CK_FloatingComplexCast);
928  return LHSType;
929}
930
931/// \brief Converts otherExpr to complex float and promotes complexExpr if
932/// necessary.  Helper function of UsualArithmeticConversions()
933static QualType handleOtherComplexFloatConversion(Sema &S,
934                                                  ExprResult &ComplexExpr,
935                                                  ExprResult &OtherExpr,
936                                                  QualType ComplexTy,
937                                                  QualType OtherTy,
938                                                  bool ConvertComplexExpr,
939                                                  bool ConvertOtherExpr) {
940  int order = S.Context.getFloatingTypeOrder(ComplexTy, OtherTy);
941
942  // If just the complexExpr is complex, the otherExpr needs to be converted,
943  // and the complexExpr might need to be promoted.
944  if (order > 0) { // complexExpr is wider
945    // float -> _Complex double
946    if (ConvertOtherExpr) {
947      QualType fp = cast<ComplexType>(ComplexTy)->getElementType();
948      OtherExpr = S.ImpCastExprToType(OtherExpr.take(), fp, CK_FloatingCast);
949      OtherExpr = S.ImpCastExprToType(OtherExpr.take(), ComplexTy,
950                                      CK_FloatingRealToComplex);
951    }
952    return ComplexTy;
953  }
954
955  // otherTy is at least as wide.  Find its corresponding complex type.
956  QualType result = (order == 0 ? ComplexTy :
957                                  S.Context.getComplexType(OtherTy));
958
959  // double -> _Complex double
960  if (ConvertOtherExpr)
961    OtherExpr = S.ImpCastExprToType(OtherExpr.take(), result,
962                                    CK_FloatingRealToComplex);
963
964  // _Complex float -> _Complex double
965  if (ConvertComplexExpr && order < 0)
966    ComplexExpr = S.ImpCastExprToType(ComplexExpr.take(), result,
967                                      CK_FloatingComplexCast);
968
969  return result;
970}
971
972/// \brief Handle arithmetic conversion with complex types.  Helper function of
973/// UsualArithmeticConversions()
974static QualType handleComplexFloatConversion(Sema &S, ExprResult &LHS,
975                                             ExprResult &RHS, QualType LHSType,
976                                             QualType RHSType,
977                                             bool IsCompAssign) {
978  // if we have an integer operand, the result is the complex type.
979  if (!handleIntegerToComplexFloatConversion(S, RHS, LHS, RHSType, LHSType,
980                                             /*skipCast*/false))
981    return LHSType;
982  if (!handleIntegerToComplexFloatConversion(S, LHS, RHS, LHSType, RHSType,
983                                             /*skipCast*/IsCompAssign))
984    return RHSType;
985
986  // This handles complex/complex, complex/float, or float/complex.
987  // When both operands are complex, the shorter operand is converted to the
988  // type of the longer, and that is the type of the result. This corresponds
989  // to what is done when combining two real floating-point operands.
990  // The fun begins when size promotion occur across type domains.
991  // From H&S 6.3.4: When one operand is complex and the other is a real
992  // floating-point type, the less precise type is converted, within it's
993  // real or complex domain, to the precision of the other type. For example,
994  // when combining a "long double" with a "double _Complex", the
995  // "double _Complex" is promoted to "long double _Complex".
996
997  bool LHSComplexFloat = LHSType->isComplexType();
998  bool RHSComplexFloat = RHSType->isComplexType();
999
1000  // If both are complex, just cast to the more precise type.
1001  if (LHSComplexFloat && RHSComplexFloat)
1002    return handleComplexFloatToComplexFloatConverstion(S, LHS, RHS,
1003                                                       LHSType, RHSType,
1004                                                       IsCompAssign);
1005
1006  // If only one operand is complex, promote it if necessary and convert the
1007  // other operand to complex.
1008  if (LHSComplexFloat)
1009    return handleOtherComplexFloatConversion(
1010        S, LHS, RHS, LHSType, RHSType, /*convertComplexExpr*/!IsCompAssign,
1011        /*convertOtherExpr*/ true);
1012
1013  assert(RHSComplexFloat);
1014  return handleOtherComplexFloatConversion(
1015      S, RHS, LHS, RHSType, LHSType, /*convertComplexExpr*/true,
1016      /*convertOtherExpr*/ !IsCompAssign);
1017}
1018
1019/// \brief Hande arithmetic conversion from integer to float.  Helper function
1020/// of UsualArithmeticConversions()
1021static QualType handleIntToFloatConversion(Sema &S, ExprResult &FloatExpr,
1022                                           ExprResult &IntExpr,
1023                                           QualType FloatTy, QualType IntTy,
1024                                           bool ConvertFloat, bool ConvertInt) {
1025  if (IntTy->isIntegerType()) {
1026    if (ConvertInt)
1027      // Convert intExpr to the lhs floating point type.
1028      IntExpr = S.ImpCastExprToType(IntExpr.take(), FloatTy,
1029                                    CK_IntegralToFloating);
1030    return FloatTy;
1031  }
1032
1033  // Convert both sides to the appropriate complex float.
1034  assert(IntTy->isComplexIntegerType());
1035  QualType result = S.Context.getComplexType(FloatTy);
1036
1037  // _Complex int -> _Complex float
1038  if (ConvertInt)
1039    IntExpr = S.ImpCastExprToType(IntExpr.take(), result,
1040                                  CK_IntegralComplexToFloatingComplex);
1041
1042  // float -> _Complex float
1043  if (ConvertFloat)
1044    FloatExpr = S.ImpCastExprToType(FloatExpr.take(), result,
1045                                    CK_FloatingRealToComplex);
1046
1047  return result;
1048}
1049
1050/// \brief Handle arithmethic conversion with floating point types.  Helper
1051/// function of UsualArithmeticConversions()
1052static QualType handleFloatConversion(Sema &S, ExprResult &LHS,
1053                                      ExprResult &RHS, QualType LHSType,
1054                                      QualType RHSType, bool IsCompAssign) {
1055  bool LHSFloat = LHSType->isRealFloatingType();
1056  bool RHSFloat = RHSType->isRealFloatingType();
1057
1058  // If we have two real floating types, convert the smaller operand
1059  // to the bigger result.
1060  if (LHSFloat && RHSFloat) {
1061    int order = S.Context.getFloatingTypeOrder(LHSType, RHSType);
1062    if (order > 0) {
1063      RHS = S.ImpCastExprToType(RHS.take(), LHSType, CK_FloatingCast);
1064      return LHSType;
1065    }
1066
1067    assert(order < 0 && "illegal float comparison");
1068    if (!IsCompAssign)
1069      LHS = S.ImpCastExprToType(LHS.take(), RHSType, CK_FloatingCast);
1070    return RHSType;
1071  }
1072
1073  if (LHSFloat)
1074    return handleIntToFloatConversion(S, LHS, RHS, LHSType, RHSType,
1075                                      /*convertFloat=*/!IsCompAssign,
1076                                      /*convertInt=*/ true);
1077  assert(RHSFloat);
1078  return handleIntToFloatConversion(S, RHS, LHS, RHSType, LHSType,
1079                                    /*convertInt=*/ true,
1080                                    /*convertFloat=*/!IsCompAssign);
1081}
1082
1083typedef ExprResult PerformCastFn(Sema &S, Expr *operand, QualType toType);
1084
1085namespace {
1086/// These helper callbacks are placed in an anonymous namespace to
1087/// permit their use as function template parameters.
1088ExprResult doIntegralCast(Sema &S, Expr *op, QualType toType) {
1089  return S.ImpCastExprToType(op, toType, CK_IntegralCast);
1090}
1091
1092ExprResult doComplexIntegralCast(Sema &S, Expr *op, QualType toType) {
1093  return S.ImpCastExprToType(op, S.Context.getComplexType(toType),
1094                             CK_IntegralComplexCast);
1095}
1096}
1097
1098/// \brief Handle integer arithmetic conversions.  Helper function of
1099/// UsualArithmeticConversions()
1100template <PerformCastFn doLHSCast, PerformCastFn doRHSCast>
1101static QualType handleIntegerConversion(Sema &S, ExprResult &LHS,
1102                                        ExprResult &RHS, QualType LHSType,
1103                                        QualType RHSType, bool IsCompAssign) {
1104  // The rules for this case are in C99 6.3.1.8
1105  int order = S.Context.getIntegerTypeOrder(LHSType, RHSType);
1106  bool LHSSigned = LHSType->hasSignedIntegerRepresentation();
1107  bool RHSSigned = RHSType->hasSignedIntegerRepresentation();
1108  if (LHSSigned == RHSSigned) {
1109    // Same signedness; use the higher-ranked type
1110    if (order >= 0) {
1111      RHS = (*doRHSCast)(S, RHS.take(), LHSType);
1112      return LHSType;
1113    } else if (!IsCompAssign)
1114      LHS = (*doLHSCast)(S, LHS.take(), RHSType);
1115    return RHSType;
1116  } else if (order != (LHSSigned ? 1 : -1)) {
1117    // The unsigned type has greater than or equal rank to the
1118    // signed type, so use the unsigned type
1119    if (RHSSigned) {
1120      RHS = (*doRHSCast)(S, RHS.take(), LHSType);
1121      return LHSType;
1122    } else if (!IsCompAssign)
1123      LHS = (*doLHSCast)(S, LHS.take(), RHSType);
1124    return RHSType;
1125  } else if (S.Context.getIntWidth(LHSType) != S.Context.getIntWidth(RHSType)) {
1126    // The two types are different widths; if we are here, that
1127    // means the signed type is larger than the unsigned type, so
1128    // use the signed type.
1129    if (LHSSigned) {
1130      RHS = (*doRHSCast)(S, RHS.take(), LHSType);
1131      return LHSType;
1132    } else if (!IsCompAssign)
1133      LHS = (*doLHSCast)(S, LHS.take(), RHSType);
1134    return RHSType;
1135  } else {
1136    // The signed type is higher-ranked than the unsigned type,
1137    // but isn't actually any bigger (like unsigned int and long
1138    // on most 32-bit systems).  Use the unsigned type corresponding
1139    // to the signed type.
1140    QualType result =
1141      S.Context.getCorrespondingUnsignedType(LHSSigned ? LHSType : RHSType);
1142    RHS = (*doRHSCast)(S, RHS.take(), result);
1143    if (!IsCompAssign)
1144      LHS = (*doLHSCast)(S, LHS.take(), result);
1145    return result;
1146  }
1147}
1148
1149/// \brief Handle conversions with GCC complex int extension.  Helper function
1150/// of UsualArithmeticConversions()
1151static QualType handleComplexIntConversion(Sema &S, ExprResult &LHS,
1152                                           ExprResult &RHS, QualType LHSType,
1153                                           QualType RHSType,
1154                                           bool IsCompAssign) {
1155  const ComplexType *LHSComplexInt = LHSType->getAsComplexIntegerType();
1156  const ComplexType *RHSComplexInt = RHSType->getAsComplexIntegerType();
1157
1158  if (LHSComplexInt && RHSComplexInt) {
1159    QualType LHSEltType = LHSComplexInt->getElementType();
1160    QualType RHSEltType = RHSComplexInt->getElementType();
1161    QualType ScalarType =
1162      handleIntegerConversion<doComplexIntegralCast, doComplexIntegralCast>
1163        (S, LHS, RHS, LHSEltType, RHSEltType, IsCompAssign);
1164
1165    return S.Context.getComplexType(ScalarType);
1166  }
1167
1168  if (LHSComplexInt) {
1169    QualType LHSEltType = LHSComplexInt->getElementType();
1170    QualType ScalarType =
1171      handleIntegerConversion<doComplexIntegralCast, doIntegralCast>
1172        (S, LHS, RHS, LHSEltType, RHSType, IsCompAssign);
1173    QualType ComplexType = S.Context.getComplexType(ScalarType);
1174    RHS = S.ImpCastExprToType(RHS.take(), ComplexType,
1175                              CK_IntegralRealToComplex);
1176
1177    return ComplexType;
1178  }
1179
1180  assert(RHSComplexInt);
1181
1182  QualType RHSEltType = RHSComplexInt->getElementType();
1183  QualType ScalarType =
1184    handleIntegerConversion<doIntegralCast, doComplexIntegralCast>
1185      (S, LHS, RHS, LHSType, RHSEltType, IsCompAssign);
1186  QualType ComplexType = S.Context.getComplexType(ScalarType);
1187
1188  if (!IsCompAssign)
1189    LHS = S.ImpCastExprToType(LHS.take(), ComplexType,
1190                              CK_IntegralRealToComplex);
1191  return ComplexType;
1192}
1193
1194/// UsualArithmeticConversions - Performs various conversions that are common to
1195/// binary operators (C99 6.3.1.8). If both operands aren't arithmetic, this
1196/// routine returns the first non-arithmetic type found. The client is
1197/// responsible for emitting appropriate error diagnostics.
1198QualType Sema::UsualArithmeticConversions(ExprResult &LHS, ExprResult &RHS,
1199                                          bool IsCompAssign) {
1200  if (!IsCompAssign) {
1201    LHS = UsualUnaryConversions(LHS.take());
1202    if (LHS.isInvalid())
1203      return QualType();
1204  }
1205
1206  RHS = UsualUnaryConversions(RHS.take());
1207  if (RHS.isInvalid())
1208    return QualType();
1209
1210  // For conversion purposes, we ignore any qualifiers.
1211  // For example, "const float" and "float" are equivalent.
1212  QualType LHSType =
1213    Context.getCanonicalType(LHS.get()->getType()).getUnqualifiedType();
1214  QualType RHSType =
1215    Context.getCanonicalType(RHS.get()->getType()).getUnqualifiedType();
1216
1217  // For conversion purposes, we ignore any atomic qualifier on the LHS.
1218  if (const AtomicType *AtomicLHS = LHSType->getAs<AtomicType>())
1219    LHSType = AtomicLHS->getValueType();
1220
1221  // If both types are identical, no conversion is needed.
1222  if (LHSType == RHSType)
1223    return LHSType;
1224
1225  // If either side is a non-arithmetic type (e.g. a pointer), we are done.
1226  // The caller can deal with this (e.g. pointer + int).
1227  if (!LHSType->isArithmeticType() || !RHSType->isArithmeticType())
1228    return QualType();
1229
1230  // Apply unary and bitfield promotions to the LHS's type.
1231  QualType LHSUnpromotedType = LHSType;
1232  if (LHSType->isPromotableIntegerType())
1233    LHSType = Context.getPromotedIntegerType(LHSType);
1234  QualType LHSBitfieldPromoteTy = Context.isPromotableBitField(LHS.get());
1235  if (!LHSBitfieldPromoteTy.isNull())
1236    LHSType = LHSBitfieldPromoteTy;
1237  if (LHSType != LHSUnpromotedType && !IsCompAssign)
1238    LHS = ImpCastExprToType(LHS.take(), LHSType, CK_IntegralCast);
1239
1240  // If both types are identical, no conversion is needed.
1241  if (LHSType == RHSType)
1242    return LHSType;
1243
1244  // At this point, we have two different arithmetic types.
1245
1246  // Handle complex types first (C99 6.3.1.8p1).
1247  if (LHSType->isComplexType() || RHSType->isComplexType())
1248    return handleComplexFloatConversion(*this, LHS, RHS, LHSType, RHSType,
1249                                        IsCompAssign);
1250
1251  // Now handle "real" floating types (i.e. float, double, long double).
1252  if (LHSType->isRealFloatingType() || RHSType->isRealFloatingType())
1253    return handleFloatConversion(*this, LHS, RHS, LHSType, RHSType,
1254                                 IsCompAssign);
1255
1256  // Handle GCC complex int extension.
1257  if (LHSType->isComplexIntegerType() || RHSType->isComplexIntegerType())
1258    return handleComplexIntConversion(*this, LHS, RHS, LHSType, RHSType,
1259                                      IsCompAssign);
1260
1261  // Finally, we have two differing integer types.
1262  return handleIntegerConversion<doIntegralCast, doIntegralCast>
1263           (*this, LHS, RHS, LHSType, RHSType, IsCompAssign);
1264}
1265
1266
1267//===----------------------------------------------------------------------===//
1268//  Semantic Analysis for various Expression Types
1269//===----------------------------------------------------------------------===//
1270
1271
1272ExprResult
1273Sema::ActOnGenericSelectionExpr(SourceLocation KeyLoc,
1274                                SourceLocation DefaultLoc,
1275                                SourceLocation RParenLoc,
1276                                Expr *ControllingExpr,
1277                                ArrayRef<ParsedType> ArgTypes,
1278                                ArrayRef<Expr *> ArgExprs) {
1279  unsigned NumAssocs = ArgTypes.size();
1280  assert(NumAssocs == ArgExprs.size());
1281
1282  TypeSourceInfo **Types = new TypeSourceInfo*[NumAssocs];
1283  for (unsigned i = 0; i < NumAssocs; ++i) {
1284    if (ArgTypes[i])
1285      (void) GetTypeFromParser(ArgTypes[i], &Types[i]);
1286    else
1287      Types[i] = 0;
1288  }
1289
1290  ExprResult ER = CreateGenericSelectionExpr(KeyLoc, DefaultLoc, RParenLoc,
1291                                             ControllingExpr,
1292                                             llvm::makeArrayRef(Types, NumAssocs),
1293                                             ArgExprs);
1294  delete [] Types;
1295  return ER;
1296}
1297
1298ExprResult
1299Sema::CreateGenericSelectionExpr(SourceLocation KeyLoc,
1300                                 SourceLocation DefaultLoc,
1301                                 SourceLocation RParenLoc,
1302                                 Expr *ControllingExpr,
1303                                 ArrayRef<TypeSourceInfo *> Types,
1304                                 ArrayRef<Expr *> Exprs) {
1305  unsigned NumAssocs = Types.size();
1306  assert(NumAssocs == Exprs.size());
1307  if (ControllingExpr->getType()->isPlaceholderType()) {
1308    ExprResult result = CheckPlaceholderExpr(ControllingExpr);
1309    if (result.isInvalid()) return ExprError();
1310    ControllingExpr = result.take();
1311  }
1312
1313  bool TypeErrorFound = false,
1314       IsResultDependent = ControllingExpr->isTypeDependent(),
1315       ContainsUnexpandedParameterPack
1316         = ControllingExpr->containsUnexpandedParameterPack();
1317
1318  for (unsigned i = 0; i < NumAssocs; ++i) {
1319    if (Exprs[i]->containsUnexpandedParameterPack())
1320      ContainsUnexpandedParameterPack = true;
1321
1322    if (Types[i]) {
1323      if (Types[i]->getType()->containsUnexpandedParameterPack())
1324        ContainsUnexpandedParameterPack = true;
1325
1326      if (Types[i]->getType()->isDependentType()) {
1327        IsResultDependent = true;
1328      } else {
1329        // C11 6.5.1.1p2 "The type name in a generic association shall specify a
1330        // complete object type other than a variably modified type."
1331        unsigned D = 0;
1332        if (Types[i]->getType()->isIncompleteType())
1333          D = diag::err_assoc_type_incomplete;
1334        else if (!Types[i]->getType()->isObjectType())
1335          D = diag::err_assoc_type_nonobject;
1336        else if (Types[i]->getType()->isVariablyModifiedType())
1337          D = diag::err_assoc_type_variably_modified;
1338
1339        if (D != 0) {
1340          Diag(Types[i]->getTypeLoc().getBeginLoc(), D)
1341            << Types[i]->getTypeLoc().getSourceRange()
1342            << Types[i]->getType();
1343          TypeErrorFound = true;
1344        }
1345
1346        // C11 6.5.1.1p2 "No two generic associations in the same generic
1347        // selection shall specify compatible types."
1348        for (unsigned j = i+1; j < NumAssocs; ++j)
1349          if (Types[j] && !Types[j]->getType()->isDependentType() &&
1350              Context.typesAreCompatible(Types[i]->getType(),
1351                                         Types[j]->getType())) {
1352            Diag(Types[j]->getTypeLoc().getBeginLoc(),
1353                 diag::err_assoc_compatible_types)
1354              << Types[j]->getTypeLoc().getSourceRange()
1355              << Types[j]->getType()
1356              << Types[i]->getType();
1357            Diag(Types[i]->getTypeLoc().getBeginLoc(),
1358                 diag::note_compat_assoc)
1359              << Types[i]->getTypeLoc().getSourceRange()
1360              << Types[i]->getType();
1361            TypeErrorFound = true;
1362          }
1363      }
1364    }
1365  }
1366  if (TypeErrorFound)
1367    return ExprError();
1368
1369  // If we determined that the generic selection is result-dependent, don't
1370  // try to compute the result expression.
1371  if (IsResultDependent)
1372    return Owned(new (Context) GenericSelectionExpr(
1373                   Context, KeyLoc, ControllingExpr,
1374                   Types, Exprs,
1375                   DefaultLoc, RParenLoc, ContainsUnexpandedParameterPack));
1376
1377  SmallVector<unsigned, 1> CompatIndices;
1378  unsigned DefaultIndex = -1U;
1379  for (unsigned i = 0; i < NumAssocs; ++i) {
1380    if (!Types[i])
1381      DefaultIndex = i;
1382    else if (Context.typesAreCompatible(ControllingExpr->getType(),
1383                                        Types[i]->getType()))
1384      CompatIndices.push_back(i);
1385  }
1386
1387  // C11 6.5.1.1p2 "The controlling expression of a generic selection shall have
1388  // type compatible with at most one of the types named in its generic
1389  // association list."
1390  if (CompatIndices.size() > 1) {
1391    // We strip parens here because the controlling expression is typically
1392    // parenthesized in macro definitions.
1393    ControllingExpr = ControllingExpr->IgnoreParens();
1394    Diag(ControllingExpr->getLocStart(), diag::err_generic_sel_multi_match)
1395      << ControllingExpr->getSourceRange() << ControllingExpr->getType()
1396      << (unsigned) CompatIndices.size();
1397    for (SmallVectorImpl<unsigned>::iterator I = CompatIndices.begin(),
1398         E = CompatIndices.end(); I != E; ++I) {
1399      Diag(Types[*I]->getTypeLoc().getBeginLoc(),
1400           diag::note_compat_assoc)
1401        << Types[*I]->getTypeLoc().getSourceRange()
1402        << Types[*I]->getType();
1403    }
1404    return ExprError();
1405  }
1406
1407  // C11 6.5.1.1p2 "If a generic selection has no default generic association,
1408  // its controlling expression shall have type compatible with exactly one of
1409  // the types named in its generic association list."
1410  if (DefaultIndex == -1U && CompatIndices.size() == 0) {
1411    // We strip parens here because the controlling expression is typically
1412    // parenthesized in macro definitions.
1413    ControllingExpr = ControllingExpr->IgnoreParens();
1414    Diag(ControllingExpr->getLocStart(), diag::err_generic_sel_no_match)
1415      << ControllingExpr->getSourceRange() << ControllingExpr->getType();
1416    return ExprError();
1417  }
1418
1419  // C11 6.5.1.1p3 "If a generic selection has a generic association with a
1420  // type name that is compatible with the type of the controlling expression,
1421  // then the result expression of the generic selection is the expression
1422  // in that generic association. Otherwise, the result expression of the
1423  // generic selection is the expression in the default generic association."
1424  unsigned ResultIndex =
1425    CompatIndices.size() ? CompatIndices[0] : DefaultIndex;
1426
1427  return Owned(new (Context) GenericSelectionExpr(
1428                 Context, KeyLoc, ControllingExpr,
1429                 Types, Exprs,
1430                 DefaultLoc, RParenLoc, ContainsUnexpandedParameterPack,
1431                 ResultIndex));
1432}
1433
1434/// getUDSuffixLoc - Create a SourceLocation for a ud-suffix, given the
1435/// location of the token and the offset of the ud-suffix within it.
1436static SourceLocation getUDSuffixLoc(Sema &S, SourceLocation TokLoc,
1437                                     unsigned Offset) {
1438  return Lexer::AdvanceToTokenCharacter(TokLoc, Offset, S.getSourceManager(),
1439                                        S.getLangOpts());
1440}
1441
1442/// BuildCookedLiteralOperatorCall - A user-defined literal was found. Look up
1443/// the corresponding cooked (non-raw) literal operator, and build a call to it.
1444static ExprResult BuildCookedLiteralOperatorCall(Sema &S, Scope *Scope,
1445                                                 IdentifierInfo *UDSuffix,
1446                                                 SourceLocation UDSuffixLoc,
1447                                                 ArrayRef<Expr*> Args,
1448                                                 SourceLocation LitEndLoc) {
1449  assert(Args.size() <= 2 && "too many arguments for literal operator");
1450
1451  QualType ArgTy[2];
1452  for (unsigned ArgIdx = 0; ArgIdx != Args.size(); ++ArgIdx) {
1453    ArgTy[ArgIdx] = Args[ArgIdx]->getType();
1454    if (ArgTy[ArgIdx]->isArrayType())
1455      ArgTy[ArgIdx] = S.Context.getArrayDecayedType(ArgTy[ArgIdx]);
1456  }
1457
1458  DeclarationName OpName =
1459    S.Context.DeclarationNames.getCXXLiteralOperatorName(UDSuffix);
1460  DeclarationNameInfo OpNameInfo(OpName, UDSuffixLoc);
1461  OpNameInfo.setCXXLiteralOperatorNameLoc(UDSuffixLoc);
1462
1463  LookupResult R(S, OpName, UDSuffixLoc, Sema::LookupOrdinaryName);
1464  if (S.LookupLiteralOperator(Scope, R, llvm::makeArrayRef(ArgTy, Args.size()),
1465                              /*AllowRaw*/false, /*AllowTemplate*/false,
1466                              /*AllowStringTemplate*/false) == Sema::LOLR_Error)
1467    return ExprError();
1468
1469  return S.BuildLiteralOperatorCall(R, OpNameInfo, Args, LitEndLoc);
1470}
1471
1472/// ActOnStringLiteral - The specified tokens were lexed as pasted string
1473/// fragments (e.g. "foo" "bar" L"baz").  The result string has to handle string
1474/// concatenation ([C99 5.1.1.2, translation phase #6]), so it may come from
1475/// multiple tokens.  However, the common case is that StringToks points to one
1476/// string.
1477///
1478ExprResult
1479Sema::ActOnStringLiteral(const Token *StringToks, unsigned NumStringToks,
1480                         Scope *UDLScope) {
1481  assert(NumStringToks && "Must have at least one string!");
1482
1483  StringLiteralParser Literal(StringToks, NumStringToks, PP);
1484  if (Literal.hadError)
1485    return ExprError();
1486
1487  SmallVector<SourceLocation, 4> StringTokLocs;
1488  for (unsigned i = 0; i != NumStringToks; ++i)
1489    StringTokLocs.push_back(StringToks[i].getLocation());
1490
1491  QualType CharTy = Context.CharTy;
1492  StringLiteral::StringKind Kind = StringLiteral::Ascii;
1493  if (Literal.isWide()) {
1494    CharTy = Context.getWideCharType();
1495    Kind = StringLiteral::Wide;
1496  } else if (Literal.isUTF8()) {
1497    Kind = StringLiteral::UTF8;
1498  } else if (Literal.isUTF16()) {
1499    CharTy = Context.Char16Ty;
1500    Kind = StringLiteral::UTF16;
1501  } else if (Literal.isUTF32()) {
1502    CharTy = Context.Char32Ty;
1503    Kind = StringLiteral::UTF32;
1504  } else if (Literal.isPascal()) {
1505    CharTy = Context.UnsignedCharTy;
1506  }
1507
1508  QualType CharTyConst = CharTy;
1509  // A C++ string literal has a const-qualified element type (C++ 2.13.4p1).
1510  if (getLangOpts().CPlusPlus || getLangOpts().ConstStrings)
1511    CharTyConst.addConst();
1512
1513  // Get an array type for the string, according to C99 6.4.5.  This includes
1514  // the nul terminator character as well as the string length for pascal
1515  // strings.
1516  QualType StrTy = Context.getConstantArrayType(CharTyConst,
1517                                 llvm::APInt(32, Literal.GetNumStringChars()+1),
1518                                 ArrayType::Normal, 0);
1519
1520  // OpenCL v1.1 s6.5.3: a string literal is in the constant address space.
1521  if (getLangOpts().OpenCL) {
1522    StrTy = Context.getAddrSpaceQualType(StrTy, LangAS::opencl_constant);
1523  }
1524
1525  // Pass &StringTokLocs[0], StringTokLocs.size() to factory!
1526  StringLiteral *Lit = StringLiteral::Create(Context, Literal.GetString(),
1527                                             Kind, Literal.Pascal, StrTy,
1528                                             &StringTokLocs[0],
1529                                             StringTokLocs.size());
1530  if (Literal.getUDSuffix().empty())
1531    return Owned(Lit);
1532
1533  // We're building a user-defined literal.
1534  IdentifierInfo *UDSuffix = &Context.Idents.get(Literal.getUDSuffix());
1535  SourceLocation UDSuffixLoc =
1536    getUDSuffixLoc(*this, StringTokLocs[Literal.getUDSuffixToken()],
1537                   Literal.getUDSuffixOffset());
1538
1539  // Make sure we're allowed user-defined literals here.
1540  if (!UDLScope)
1541    return ExprError(Diag(UDSuffixLoc, diag::err_invalid_string_udl));
1542
1543  // C++11 [lex.ext]p5: The literal L is treated as a call of the form
1544  //   operator "" X (str, len)
1545  QualType SizeType = Context.getSizeType();
1546
1547  DeclarationName OpName =
1548    Context.DeclarationNames.getCXXLiteralOperatorName(UDSuffix);
1549  DeclarationNameInfo OpNameInfo(OpName, UDSuffixLoc);
1550  OpNameInfo.setCXXLiteralOperatorNameLoc(UDSuffixLoc);
1551
1552  QualType ArgTy[] = {
1553    Context.getArrayDecayedType(StrTy), SizeType
1554  };
1555
1556  LookupResult R(*this, OpName, UDSuffixLoc, LookupOrdinaryName);
1557  switch (LookupLiteralOperator(UDLScope, R, ArgTy,
1558                                /*AllowRaw*/false, /*AllowTemplate*/false,
1559                                /*AllowStringTemplate*/true)) {
1560
1561  case LOLR_Cooked: {
1562    llvm::APInt Len(Context.getIntWidth(SizeType), Literal.GetNumStringChars());
1563    IntegerLiteral *LenArg = IntegerLiteral::Create(Context, Len, SizeType,
1564                                                    StringTokLocs[0]);
1565    Expr *Args[] = { Lit, LenArg };
1566
1567    return BuildLiteralOperatorCall(R, OpNameInfo, Args, StringTokLocs.back());
1568  }
1569
1570  case LOLR_StringTemplate: {
1571    TemplateArgumentListInfo ExplicitArgs;
1572
1573    unsigned CharBits = Context.getIntWidth(CharTy);
1574    bool CharIsUnsigned = CharTy->isUnsignedIntegerType();
1575    llvm::APSInt Value(CharBits, CharIsUnsigned);
1576
1577    TemplateArgument TypeArg(CharTy);
1578    TemplateArgumentLocInfo TypeArgInfo(Context.getTrivialTypeSourceInfo(CharTy));
1579    ExplicitArgs.addArgument(TemplateArgumentLoc(TypeArg, TypeArgInfo));
1580
1581    for (unsigned I = 0, N = Lit->getLength(); I != N; ++I) {
1582      Value = Lit->getCodeUnit(I);
1583      TemplateArgument Arg(Context, Value, CharTy);
1584      TemplateArgumentLocInfo ArgInfo;
1585      ExplicitArgs.addArgument(TemplateArgumentLoc(Arg, ArgInfo));
1586    }
1587    return BuildLiteralOperatorCall(R, OpNameInfo, None, StringTokLocs.back(),
1588                                    &ExplicitArgs);
1589  }
1590  case LOLR_Raw:
1591  case LOLR_Template:
1592    llvm_unreachable("unexpected literal operator lookup result");
1593  case LOLR_Error:
1594    return ExprError();
1595  }
1596  llvm_unreachable("unexpected literal operator lookup result");
1597}
1598
1599ExprResult
1600Sema::BuildDeclRefExpr(ValueDecl *D, QualType Ty, ExprValueKind VK,
1601                       SourceLocation Loc,
1602                       const CXXScopeSpec *SS) {
1603  DeclarationNameInfo NameInfo(D->getDeclName(), Loc);
1604  return BuildDeclRefExpr(D, Ty, VK, NameInfo, SS);
1605}
1606
1607/// BuildDeclRefExpr - Build an expression that references a
1608/// declaration that does not require a closure capture.
1609ExprResult
1610Sema::BuildDeclRefExpr(ValueDecl *D, QualType Ty, ExprValueKind VK,
1611                       const DeclarationNameInfo &NameInfo,
1612                       const CXXScopeSpec *SS, NamedDecl *FoundD,
1613                       const TemplateArgumentListInfo *TemplateArgs) {
1614  if (getLangOpts().CUDA)
1615    if (const FunctionDecl *Caller = dyn_cast<FunctionDecl>(CurContext))
1616      if (const FunctionDecl *Callee = dyn_cast<FunctionDecl>(D)) {
1617        CUDAFunctionTarget CallerTarget = IdentifyCUDATarget(Caller),
1618                           CalleeTarget = IdentifyCUDATarget(Callee);
1619        if (CheckCUDATarget(CallerTarget, CalleeTarget)) {
1620          Diag(NameInfo.getLoc(), diag::err_ref_bad_target)
1621            << CalleeTarget << D->getIdentifier() << CallerTarget;
1622          Diag(D->getLocation(), diag::note_previous_decl)
1623            << D->getIdentifier();
1624          return ExprError();
1625        }
1626      }
1627
1628  bool refersToEnclosingScope =
1629    (CurContext != D->getDeclContext() &&
1630     D->getDeclContext()->isFunctionOrMethod()) ||
1631    (isa<VarDecl>(D) &&
1632     cast<VarDecl>(D)->isInitCapture());
1633
1634  DeclRefExpr *E;
1635  if (isa<VarTemplateSpecializationDecl>(D)) {
1636    VarTemplateSpecializationDecl *VarSpec =
1637        cast<VarTemplateSpecializationDecl>(D);
1638
1639    E = DeclRefExpr::Create(
1640        Context,
1641        SS ? SS->getWithLocInContext(Context) : NestedNameSpecifierLoc(),
1642        VarSpec->getTemplateKeywordLoc(), D, refersToEnclosingScope,
1643        NameInfo.getLoc(), Ty, VK, FoundD, TemplateArgs);
1644  } else {
1645    assert(!TemplateArgs && "No template arguments for non-variable"
1646                            " template specialization referrences");
1647    E = DeclRefExpr::Create(
1648        Context,
1649        SS ? SS->getWithLocInContext(Context) : NestedNameSpecifierLoc(),
1650        SourceLocation(), D, refersToEnclosingScope, NameInfo, Ty, VK, FoundD);
1651  }
1652
1653  MarkDeclRefReferenced(E);
1654
1655  if (getLangOpts().ObjCARCWeak && isa<VarDecl>(D) &&
1656      Ty.getObjCLifetime() == Qualifiers::OCL_Weak) {
1657    DiagnosticsEngine::Level Level =
1658      Diags.getDiagnosticLevel(diag::warn_arc_repeated_use_of_weak,
1659                               E->getLocStart());
1660    if (Level != DiagnosticsEngine::Ignored)
1661      recordUseOfEvaluatedWeak(E);
1662  }
1663
1664  // Just in case we're building an illegal pointer-to-member.
1665  FieldDecl *FD = dyn_cast<FieldDecl>(D);
1666  if (FD && FD->isBitField())
1667    E->setObjectKind(OK_BitField);
1668
1669  return Owned(E);
1670}
1671
1672/// Decomposes the given name into a DeclarationNameInfo, its location, and
1673/// possibly a list of template arguments.
1674///
1675/// If this produces template arguments, it is permitted to call
1676/// DecomposeTemplateName.
1677///
1678/// This actually loses a lot of source location information for
1679/// non-standard name kinds; we should consider preserving that in
1680/// some way.
1681void
1682Sema::DecomposeUnqualifiedId(const UnqualifiedId &Id,
1683                             TemplateArgumentListInfo &Buffer,
1684                             DeclarationNameInfo &NameInfo,
1685                             const TemplateArgumentListInfo *&TemplateArgs) {
1686  if (Id.getKind() == UnqualifiedId::IK_TemplateId) {
1687    Buffer.setLAngleLoc(Id.TemplateId->LAngleLoc);
1688    Buffer.setRAngleLoc(Id.TemplateId->RAngleLoc);
1689
1690    ASTTemplateArgsPtr TemplateArgsPtr(Id.TemplateId->getTemplateArgs(),
1691                                       Id.TemplateId->NumArgs);
1692    translateTemplateArguments(TemplateArgsPtr, Buffer);
1693
1694    TemplateName TName = Id.TemplateId->Template.get();
1695    SourceLocation TNameLoc = Id.TemplateId->TemplateNameLoc;
1696    NameInfo = Context.getNameForTemplate(TName, TNameLoc);
1697    TemplateArgs = &Buffer;
1698  } else {
1699    NameInfo = GetNameFromUnqualifiedId(Id);
1700    TemplateArgs = 0;
1701  }
1702}
1703
1704/// Diagnose an empty lookup.
1705///
1706/// \return false if new lookup candidates were found
1707bool Sema::DiagnoseEmptyLookup(Scope *S, CXXScopeSpec &SS, LookupResult &R,
1708                               CorrectionCandidateCallback &CCC,
1709                               TemplateArgumentListInfo *ExplicitTemplateArgs,
1710                               ArrayRef<Expr *> Args) {
1711  DeclarationName Name = R.getLookupName();
1712
1713  unsigned diagnostic = diag::err_undeclared_var_use;
1714  unsigned diagnostic_suggest = diag::err_undeclared_var_use_suggest;
1715  if (Name.getNameKind() == DeclarationName::CXXOperatorName ||
1716      Name.getNameKind() == DeclarationName::CXXLiteralOperatorName ||
1717      Name.getNameKind() == DeclarationName::CXXConversionFunctionName) {
1718    diagnostic = diag::err_undeclared_use;
1719    diagnostic_suggest = diag::err_undeclared_use_suggest;
1720  }
1721
1722  // If the original lookup was an unqualified lookup, fake an
1723  // unqualified lookup.  This is useful when (for example) the
1724  // original lookup would not have found something because it was a
1725  // dependent name.
1726  DeclContext *DC = (SS.isEmpty() && !CallsUndergoingInstantiation.empty())
1727    ? CurContext : 0;
1728  while (DC) {
1729    if (isa<CXXRecordDecl>(DC)) {
1730      LookupQualifiedName(R, DC);
1731
1732      if (!R.empty()) {
1733        // Don't give errors about ambiguities in this lookup.
1734        R.suppressDiagnostics();
1735
1736        // During a default argument instantiation the CurContext points
1737        // to a CXXMethodDecl; but we can't apply a this-> fixit inside a
1738        // function parameter list, hence add an explicit check.
1739        bool isDefaultArgument = !ActiveTemplateInstantiations.empty() &&
1740                              ActiveTemplateInstantiations.back().Kind ==
1741            ActiveTemplateInstantiation::DefaultFunctionArgumentInstantiation;
1742        CXXMethodDecl *CurMethod = dyn_cast<CXXMethodDecl>(CurContext);
1743        bool isInstance = CurMethod &&
1744                          CurMethod->isInstance() &&
1745                          DC == CurMethod->getParent() && !isDefaultArgument;
1746
1747
1748        // Give a code modification hint to insert 'this->'.
1749        // TODO: fixit for inserting 'Base<T>::' in the other cases.
1750        // Actually quite difficult!
1751        if (getLangOpts().MicrosoftMode)
1752          diagnostic = diag::warn_found_via_dependent_bases_lookup;
1753        if (isInstance) {
1754          Diag(R.getNameLoc(), diagnostic) << Name
1755            << FixItHint::CreateInsertion(R.getNameLoc(), "this->");
1756          UnresolvedLookupExpr *ULE = cast<UnresolvedLookupExpr>(
1757              CallsUndergoingInstantiation.back()->getCallee());
1758
1759          CXXMethodDecl *DepMethod;
1760          if (CurMethod->isDependentContext())
1761            DepMethod = CurMethod;
1762          else if (CurMethod->getTemplatedKind() ==
1763              FunctionDecl::TK_FunctionTemplateSpecialization)
1764            DepMethod = cast<CXXMethodDecl>(CurMethod->getPrimaryTemplate()->
1765                getInstantiatedFromMemberTemplate()->getTemplatedDecl());
1766          else
1767            DepMethod = cast<CXXMethodDecl>(
1768                CurMethod->getInstantiatedFromMemberFunction());
1769          assert(DepMethod && "No template pattern found");
1770
1771          QualType DepThisType = DepMethod->getThisType(Context);
1772          CheckCXXThisCapture(R.getNameLoc());
1773          CXXThisExpr *DepThis = new (Context) CXXThisExpr(
1774                                     R.getNameLoc(), DepThisType, false);
1775          TemplateArgumentListInfo TList;
1776          if (ULE->hasExplicitTemplateArgs())
1777            ULE->copyTemplateArgumentsInto(TList);
1778
1779          CXXScopeSpec SS;
1780          SS.Adopt(ULE->getQualifierLoc());
1781          CXXDependentScopeMemberExpr *DepExpr =
1782              CXXDependentScopeMemberExpr::Create(
1783                  Context, DepThis, DepThisType, true, SourceLocation(),
1784                  SS.getWithLocInContext(Context),
1785                  ULE->getTemplateKeywordLoc(), 0,
1786                  R.getLookupNameInfo(),
1787                  ULE->hasExplicitTemplateArgs() ? &TList : 0);
1788          CallsUndergoingInstantiation.back()->setCallee(DepExpr);
1789        } else {
1790          Diag(R.getNameLoc(), diagnostic) << Name;
1791        }
1792
1793        // Do we really want to note all of these?
1794        for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I)
1795          Diag((*I)->getLocation(), diag::note_dependent_var_use);
1796
1797        // Return true if we are inside a default argument instantiation
1798        // and the found name refers to an instance member function, otherwise
1799        // the function calling DiagnoseEmptyLookup will try to create an
1800        // implicit member call and this is wrong for default argument.
1801        if (isDefaultArgument && ((*R.begin())->isCXXInstanceMember())) {
1802          Diag(R.getNameLoc(), diag::err_member_call_without_object);
1803          return true;
1804        }
1805
1806        // Tell the callee to try to recover.
1807        return false;
1808      }
1809
1810      R.clear();
1811    }
1812
1813    // In Microsoft mode, if we are performing lookup from within a friend
1814    // function definition declared at class scope then we must set
1815    // DC to the lexical parent to be able to search into the parent
1816    // class.
1817    if (getLangOpts().MicrosoftMode && isa<FunctionDecl>(DC) &&
1818        cast<FunctionDecl>(DC)->getFriendObjectKind() &&
1819        DC->getLexicalParent()->isRecord())
1820      DC = DC->getLexicalParent();
1821    else
1822      DC = DC->getParent();
1823  }
1824
1825  // We didn't find anything, so try to correct for a typo.
1826  TypoCorrection Corrected;
1827  if (S && (Corrected = CorrectTypo(R.getLookupNameInfo(), R.getLookupKind(),
1828                                    S, &SS, CCC))) {
1829    std::string CorrectedStr(Corrected.getAsString(getLangOpts()));
1830    bool DroppedSpecifier =
1831        Corrected.WillReplaceSpecifier() && Name.getAsString() == CorrectedStr;
1832    R.setLookupName(Corrected.getCorrection());
1833
1834    bool AcceptableWithRecovery = false;
1835    bool AcceptableWithoutRecovery = false;
1836    NamedDecl *ND = Corrected.getCorrectionDecl();
1837    if (ND) {
1838      if (Corrected.isOverloaded()) {
1839        OverloadCandidateSet OCS(R.getNameLoc());
1840        OverloadCandidateSet::iterator Best;
1841        for (TypoCorrection::decl_iterator CD = Corrected.begin(),
1842                                        CDEnd = Corrected.end();
1843             CD != CDEnd; ++CD) {
1844          if (FunctionTemplateDecl *FTD =
1845                   dyn_cast<FunctionTemplateDecl>(*CD))
1846            AddTemplateOverloadCandidate(
1847                FTD, DeclAccessPair::make(FTD, AS_none), ExplicitTemplateArgs,
1848                Args, OCS);
1849          else if (FunctionDecl *FD = dyn_cast<FunctionDecl>(*CD))
1850            if (!ExplicitTemplateArgs || ExplicitTemplateArgs->size() == 0)
1851              AddOverloadCandidate(FD, DeclAccessPair::make(FD, AS_none),
1852                                   Args, OCS);
1853        }
1854        switch (OCS.BestViableFunction(*this, R.getNameLoc(), Best)) {
1855        case OR_Success:
1856          ND = Best->Function;
1857          Corrected.setCorrectionDecl(ND);
1858          break;
1859        default:
1860          // FIXME: Arbitrarily pick the first declaration for the note.
1861          Corrected.setCorrectionDecl(ND);
1862          break;
1863        }
1864      }
1865      R.addDecl(ND);
1866
1867      AcceptableWithRecovery =
1868          isa<ValueDecl>(ND) || isa<FunctionTemplateDecl>(ND);
1869      // FIXME: If we ended up with a typo for a type name or
1870      // Objective-C class name, we're in trouble because the parser
1871      // is in the wrong place to recover. Suggest the typo
1872      // correction, but don't make it a fix-it since we're not going
1873      // to recover well anyway.
1874      AcceptableWithoutRecovery =
1875          isa<TypeDecl>(ND) || isa<ObjCInterfaceDecl>(ND);
1876    } else {
1877      // FIXME: We found a keyword. Suggest it, but don't provide a fix-it
1878      // because we aren't able to recover.
1879      AcceptableWithoutRecovery = true;
1880    }
1881
1882    if (AcceptableWithRecovery || AcceptableWithoutRecovery) {
1883      unsigned NoteID = (Corrected.getCorrectionDecl() &&
1884                         isa<ImplicitParamDecl>(Corrected.getCorrectionDecl()))
1885                            ? diag::note_implicit_param_decl
1886                            : diag::note_previous_decl;
1887      if (SS.isEmpty())
1888        diagnoseTypo(Corrected, PDiag(diagnostic_suggest) << Name,
1889                     PDiag(NoteID), AcceptableWithRecovery);
1890      else
1891        diagnoseTypo(Corrected, PDiag(diag::err_no_member_suggest)
1892                                  << Name << computeDeclContext(SS, false)
1893                                  << DroppedSpecifier << SS.getRange(),
1894                     PDiag(NoteID), AcceptableWithRecovery);
1895
1896      // Tell the callee whether to try to recover.
1897      return !AcceptableWithRecovery;
1898    }
1899  }
1900  R.clear();
1901
1902  // Emit a special diagnostic for failed member lookups.
1903  // FIXME: computing the declaration context might fail here (?)
1904  if (!SS.isEmpty()) {
1905    Diag(R.getNameLoc(), diag::err_no_member)
1906      << Name << computeDeclContext(SS, false)
1907      << SS.getRange();
1908    return true;
1909  }
1910
1911  // Give up, we can't recover.
1912  Diag(R.getNameLoc(), diagnostic) << Name;
1913  return true;
1914}
1915
1916ExprResult Sema::ActOnIdExpression(Scope *S,
1917                                   CXXScopeSpec &SS,
1918                                   SourceLocation TemplateKWLoc,
1919                                   UnqualifiedId &Id,
1920                                   bool HasTrailingLParen,
1921                                   bool IsAddressOfOperand,
1922                                   CorrectionCandidateCallback *CCC,
1923                                   bool IsInlineAsmIdentifier) {
1924  assert(!(IsAddressOfOperand && HasTrailingLParen) &&
1925         "cannot be direct & operand and have a trailing lparen");
1926  if (SS.isInvalid())
1927    return ExprError();
1928
1929  TemplateArgumentListInfo TemplateArgsBuffer;
1930
1931  // Decompose the UnqualifiedId into the following data.
1932  DeclarationNameInfo NameInfo;
1933  const TemplateArgumentListInfo *TemplateArgs;
1934  DecomposeUnqualifiedId(Id, TemplateArgsBuffer, NameInfo, TemplateArgs);
1935
1936  DeclarationName Name = NameInfo.getName();
1937  IdentifierInfo *II = Name.getAsIdentifierInfo();
1938  SourceLocation NameLoc = NameInfo.getLoc();
1939
1940  // C++ [temp.dep.expr]p3:
1941  //   An id-expression is type-dependent if it contains:
1942  //     -- an identifier that was declared with a dependent type,
1943  //        (note: handled after lookup)
1944  //     -- a template-id that is dependent,
1945  //        (note: handled in BuildTemplateIdExpr)
1946  //     -- a conversion-function-id that specifies a dependent type,
1947  //     -- a nested-name-specifier that contains a class-name that
1948  //        names a dependent type.
1949  // Determine whether this is a member of an unknown specialization;
1950  // we need to handle these differently.
1951  bool DependentID = false;
1952  if (Name.getNameKind() == DeclarationName::CXXConversionFunctionName &&
1953      Name.getCXXNameType()->isDependentType()) {
1954    DependentID = true;
1955  } else if (SS.isSet()) {
1956    if (DeclContext *DC = computeDeclContext(SS, false)) {
1957      if (RequireCompleteDeclContext(SS, DC))
1958        return ExprError();
1959    } else {
1960      DependentID = true;
1961    }
1962  }
1963
1964  if (DependentID)
1965    return ActOnDependentIdExpression(SS, TemplateKWLoc, NameInfo,
1966                                      IsAddressOfOperand, TemplateArgs);
1967
1968  // Perform the required lookup.
1969  LookupResult R(*this, NameInfo,
1970                 (Id.getKind() == UnqualifiedId::IK_ImplicitSelfParam)
1971                  ? LookupObjCImplicitSelfParam : LookupOrdinaryName);
1972  if (TemplateArgs) {
1973    // Lookup the template name again to correctly establish the context in
1974    // which it was found. This is really unfortunate as we already did the
1975    // lookup to determine that it was a template name in the first place. If
1976    // this becomes a performance hit, we can work harder to preserve those
1977    // results until we get here but it's likely not worth it.
1978    bool MemberOfUnknownSpecialization;
1979    LookupTemplateName(R, S, SS, QualType(), /*EnteringContext=*/false,
1980                       MemberOfUnknownSpecialization);
1981
1982    if (MemberOfUnknownSpecialization ||
1983        (R.getResultKind() == LookupResult::NotFoundInCurrentInstantiation))
1984      return ActOnDependentIdExpression(SS, TemplateKWLoc, NameInfo,
1985                                        IsAddressOfOperand, TemplateArgs);
1986  } else {
1987    bool IvarLookupFollowUp = II && !SS.isSet() && getCurMethodDecl();
1988    LookupParsedName(R, S, &SS, !IvarLookupFollowUp);
1989
1990    // If the result might be in a dependent base class, this is a dependent
1991    // id-expression.
1992    if (R.getResultKind() == LookupResult::NotFoundInCurrentInstantiation)
1993      return ActOnDependentIdExpression(SS, TemplateKWLoc, NameInfo,
1994                                        IsAddressOfOperand, TemplateArgs);
1995
1996    // If this reference is in an Objective-C method, then we need to do
1997    // some special Objective-C lookup, too.
1998    if (IvarLookupFollowUp) {
1999      ExprResult E(LookupInObjCMethod(R, S, II, true));
2000      if (E.isInvalid())
2001        return ExprError();
2002
2003      if (Expr *Ex = E.takeAs<Expr>())
2004        return Owned(Ex);
2005    }
2006  }
2007
2008  if (R.isAmbiguous())
2009    return ExprError();
2010
2011  // Determine whether this name might be a candidate for
2012  // argument-dependent lookup.
2013  bool ADL = UseArgumentDependentLookup(SS, R, HasTrailingLParen);
2014
2015  if (R.empty() && !ADL) {
2016
2017    // Otherwise, this could be an implicitly declared function reference (legal
2018    // in C90, extension in C99, forbidden in C++).
2019    if (HasTrailingLParen && II && !getLangOpts().CPlusPlus) {
2020      NamedDecl *D = ImplicitlyDefineFunction(NameLoc, *II, S);
2021      if (D) R.addDecl(D);
2022    }
2023
2024    // If this name wasn't predeclared and if this is not a function
2025    // call, diagnose the problem.
2026    if (R.empty()) {
2027      // In Microsoft mode, if we are inside a template class member function
2028      // whose parent class has dependent base classes, and we can't resolve
2029      // an identifier, then assume the identifier is a member of a dependent
2030      // base class.  The goal is to postpone name lookup to instantiation time
2031      // to be able to search into the type dependent base classes.
2032      // FIXME: If we want 100% compatibility with MSVC, we will have delay all
2033      // unqualified name lookup.  Any name lookup during template parsing means
2034      // clang might find something that MSVC doesn't.  For now, we only handle
2035      // the common case of members of a dependent base class.
2036      if (getLangOpts().MicrosoftMode) {
2037        CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(CurContext);
2038        if (MD && MD->isInstance() && MD->getParent()->hasAnyDependentBases()) {
2039          assert(SS.isEmpty() && "qualifiers should be already handled");
2040          QualType ThisType = MD->getThisType(Context);
2041          // Since the 'this' expression is synthesized, we don't need to
2042          // perform the double-lookup check.
2043          NamedDecl *FirstQualifierInScope = 0;
2044          return Owned(CXXDependentScopeMemberExpr::Create(
2045              Context, /*This=*/0, ThisType, /*IsArrow=*/true,
2046              /*Op=*/SourceLocation(), SS.getWithLocInContext(Context),
2047              TemplateKWLoc, FirstQualifierInScope, NameInfo, TemplateArgs));
2048        }
2049      }
2050
2051      // Don't diagnose an empty lookup for inline assmebly.
2052      if (IsInlineAsmIdentifier)
2053        return ExprError();
2054
2055      CorrectionCandidateCallback DefaultValidator;
2056      if (DiagnoseEmptyLookup(S, SS, R, CCC ? *CCC : DefaultValidator))
2057        return ExprError();
2058
2059      assert(!R.empty() &&
2060             "DiagnoseEmptyLookup returned false but added no results");
2061
2062      // If we found an Objective-C instance variable, let
2063      // LookupInObjCMethod build the appropriate expression to
2064      // reference the ivar.
2065      if (ObjCIvarDecl *Ivar = R.getAsSingle<ObjCIvarDecl>()) {
2066        R.clear();
2067        ExprResult E(LookupInObjCMethod(R, S, Ivar->getIdentifier()));
2068        // In a hopelessly buggy code, Objective-C instance variable
2069        // lookup fails and no expression will be built to reference it.
2070        if (!E.isInvalid() && !E.get())
2071          return ExprError();
2072        return E;
2073      }
2074    }
2075  }
2076
2077  // This is guaranteed from this point on.
2078  assert(!R.empty() || ADL);
2079
2080  // Check whether this might be a C++ implicit instance member access.
2081  // C++ [class.mfct.non-static]p3:
2082  //   When an id-expression that is not part of a class member access
2083  //   syntax and not used to form a pointer to member is used in the
2084  //   body of a non-static member function of class X, if name lookup
2085  //   resolves the name in the id-expression to a non-static non-type
2086  //   member of some class C, the id-expression is transformed into a
2087  //   class member access expression using (*this) as the
2088  //   postfix-expression to the left of the . operator.
2089  //
2090  // But we don't actually need to do this for '&' operands if R
2091  // resolved to a function or overloaded function set, because the
2092  // expression is ill-formed if it actually works out to be a
2093  // non-static member function:
2094  //
2095  // C++ [expr.ref]p4:
2096  //   Otherwise, if E1.E2 refers to a non-static member function. . .
2097  //   [t]he expression can be used only as the left-hand operand of a
2098  //   member function call.
2099  //
2100  // There are other safeguards against such uses, but it's important
2101  // to get this right here so that we don't end up making a
2102  // spuriously dependent expression if we're inside a dependent
2103  // instance method.
2104  if (!R.empty() && (*R.begin())->isCXXClassMember()) {
2105    bool MightBeImplicitMember;
2106    if (!IsAddressOfOperand)
2107      MightBeImplicitMember = true;
2108    else if (!SS.isEmpty())
2109      MightBeImplicitMember = false;
2110    else if (R.isOverloadedResult())
2111      MightBeImplicitMember = false;
2112    else if (R.isUnresolvableResult())
2113      MightBeImplicitMember = true;
2114    else
2115      MightBeImplicitMember = isa<FieldDecl>(R.getFoundDecl()) ||
2116                              isa<IndirectFieldDecl>(R.getFoundDecl()) ||
2117                              isa<MSPropertyDecl>(R.getFoundDecl());
2118
2119    if (MightBeImplicitMember)
2120      return BuildPossibleImplicitMemberExpr(SS, TemplateKWLoc,
2121                                             R, TemplateArgs);
2122  }
2123
2124  if (TemplateArgs || TemplateKWLoc.isValid()) {
2125
2126    // In C++1y, if this is a variable template id, then check it
2127    // in BuildTemplateIdExpr().
2128    // The single lookup result must be a variable template declaration.
2129    if (Id.getKind() == UnqualifiedId::IK_TemplateId && Id.TemplateId &&
2130        Id.TemplateId->Kind == TNK_Var_template) {
2131      assert(R.getAsSingle<VarTemplateDecl>() &&
2132             "There should only be one declaration found.");
2133    }
2134
2135    return BuildTemplateIdExpr(SS, TemplateKWLoc, R, ADL, TemplateArgs);
2136  }
2137
2138  return BuildDeclarationNameExpr(SS, R, ADL);
2139}
2140
2141/// BuildQualifiedDeclarationNameExpr - Build a C++ qualified
2142/// declaration name, generally during template instantiation.
2143/// There's a large number of things which don't need to be done along
2144/// this path.
2145ExprResult
2146Sema::BuildQualifiedDeclarationNameExpr(CXXScopeSpec &SS,
2147                                        const DeclarationNameInfo &NameInfo,
2148                                        bool IsAddressOfOperand) {
2149  DeclContext *DC = computeDeclContext(SS, false);
2150  if (!DC)
2151    return BuildDependentDeclRefExpr(SS, /*TemplateKWLoc=*/SourceLocation(),
2152                                     NameInfo, /*TemplateArgs=*/0);
2153
2154  if (RequireCompleteDeclContext(SS, DC))
2155    return ExprError();
2156
2157  LookupResult R(*this, NameInfo, LookupOrdinaryName);
2158  LookupQualifiedName(R, DC);
2159
2160  if (R.isAmbiguous())
2161    return ExprError();
2162
2163  if (R.getResultKind() == LookupResult::NotFoundInCurrentInstantiation)
2164    return BuildDependentDeclRefExpr(SS, /*TemplateKWLoc=*/SourceLocation(),
2165                                     NameInfo, /*TemplateArgs=*/0);
2166
2167  if (R.empty()) {
2168    Diag(NameInfo.getLoc(), diag::err_no_member)
2169      << NameInfo.getName() << DC << SS.getRange();
2170    return ExprError();
2171  }
2172
2173  // Defend against this resolving to an implicit member access. We usually
2174  // won't get here if this might be a legitimate a class member (we end up in
2175  // BuildMemberReferenceExpr instead), but this can be valid if we're forming
2176  // a pointer-to-member or in an unevaluated context in C++11.
2177  if (!R.empty() && (*R.begin())->isCXXClassMember() && !IsAddressOfOperand)
2178    return BuildPossibleImplicitMemberExpr(SS,
2179                                           /*TemplateKWLoc=*/SourceLocation(),
2180                                           R, /*TemplateArgs=*/0);
2181
2182  return BuildDeclarationNameExpr(SS, R, /* ADL */ false);
2183}
2184
2185/// LookupInObjCMethod - The parser has read a name in, and Sema has
2186/// detected that we're currently inside an ObjC method.  Perform some
2187/// additional lookup.
2188///
2189/// Ideally, most of this would be done by lookup, but there's
2190/// actually quite a lot of extra work involved.
2191///
2192/// Returns a null sentinel to indicate trivial success.
2193ExprResult
2194Sema::LookupInObjCMethod(LookupResult &Lookup, Scope *S,
2195                         IdentifierInfo *II, bool AllowBuiltinCreation) {
2196  SourceLocation Loc = Lookup.getNameLoc();
2197  ObjCMethodDecl *CurMethod = getCurMethodDecl();
2198
2199  // Check for error condition which is already reported.
2200  if (!CurMethod)
2201    return ExprError();
2202
2203  // There are two cases to handle here.  1) scoped lookup could have failed,
2204  // in which case we should look for an ivar.  2) scoped lookup could have
2205  // found a decl, but that decl is outside the current instance method (i.e.
2206  // a global variable).  In these two cases, we do a lookup for an ivar with
2207  // this name, if the lookup sucedes, we replace it our current decl.
2208
2209  // If we're in a class method, we don't normally want to look for
2210  // ivars.  But if we don't find anything else, and there's an
2211  // ivar, that's an error.
2212  bool IsClassMethod = CurMethod->isClassMethod();
2213
2214  bool LookForIvars;
2215  if (Lookup.empty())
2216    LookForIvars = true;
2217  else if (IsClassMethod)
2218    LookForIvars = false;
2219  else
2220    LookForIvars = (Lookup.isSingleResult() &&
2221                    Lookup.getFoundDecl()->isDefinedOutsideFunctionOrMethod());
2222  ObjCInterfaceDecl *IFace = 0;
2223  if (LookForIvars) {
2224    IFace = CurMethod->getClassInterface();
2225    ObjCInterfaceDecl *ClassDeclared;
2226    ObjCIvarDecl *IV = 0;
2227    if (IFace && (IV = IFace->lookupInstanceVariable(II, ClassDeclared))) {
2228      // Diagnose using an ivar in a class method.
2229      if (IsClassMethod)
2230        return ExprError(Diag(Loc, diag::error_ivar_use_in_class_method)
2231                         << IV->getDeclName());
2232
2233      // If we're referencing an invalid decl, just return this as a silent
2234      // error node.  The error diagnostic was already emitted on the decl.
2235      if (IV->isInvalidDecl())
2236        return ExprError();
2237
2238      // Check if referencing a field with __attribute__((deprecated)).
2239      if (DiagnoseUseOfDecl(IV, Loc))
2240        return ExprError();
2241
2242      // Diagnose the use of an ivar outside of the declaring class.
2243      if (IV->getAccessControl() == ObjCIvarDecl::Private &&
2244          !declaresSameEntity(ClassDeclared, IFace) &&
2245          !getLangOpts().DebuggerSupport)
2246        Diag(Loc, diag::error_private_ivar_access) << IV->getDeclName();
2247
2248      // FIXME: This should use a new expr for a direct reference, don't
2249      // turn this into Self->ivar, just return a BareIVarExpr or something.
2250      IdentifierInfo &II = Context.Idents.get("self");
2251      UnqualifiedId SelfName;
2252      SelfName.setIdentifier(&II, SourceLocation());
2253      SelfName.setKind(UnqualifiedId::IK_ImplicitSelfParam);
2254      CXXScopeSpec SelfScopeSpec;
2255      SourceLocation TemplateKWLoc;
2256      ExprResult SelfExpr = ActOnIdExpression(S, SelfScopeSpec, TemplateKWLoc,
2257                                              SelfName, false, false);
2258      if (SelfExpr.isInvalid())
2259        return ExprError();
2260
2261      SelfExpr = DefaultLvalueConversion(SelfExpr.take());
2262      if (SelfExpr.isInvalid())
2263        return ExprError();
2264
2265      MarkAnyDeclReferenced(Loc, IV, true);
2266      if (!IV->getBackingIvarReferencedInAccessor()) {
2267        // Mark this ivar 'referenced' in this method, if it is a backing ivar
2268        // of a property and current method is one of its property accessor.
2269        const ObjCPropertyDecl *PDecl;
2270        const ObjCIvarDecl *BIV = GetIvarBackingPropertyAccessor(CurMethod, PDecl);
2271        if (BIV && BIV == IV)
2272          IV->setBackingIvarReferencedInAccessor(true);
2273      }
2274
2275      ObjCMethodFamily MF = CurMethod->getMethodFamily();
2276      if (MF != OMF_init && MF != OMF_dealloc && MF != OMF_finalize &&
2277          !IvarBacksCurrentMethodAccessor(IFace, CurMethod, IV))
2278        Diag(Loc, diag::warn_direct_ivar_access) << IV->getDeclName();
2279
2280      ObjCIvarRefExpr *Result = new (Context) ObjCIvarRefExpr(IV, IV->getType(),
2281                                                              Loc, IV->getLocation(),
2282                                                              SelfExpr.take(),
2283                                                              true, true);
2284
2285      if (getLangOpts().ObjCAutoRefCount) {
2286        if (IV->getType().getObjCLifetime() == Qualifiers::OCL_Weak) {
2287          DiagnosticsEngine::Level Level =
2288            Diags.getDiagnosticLevel(diag::warn_arc_repeated_use_of_weak, Loc);
2289          if (Level != DiagnosticsEngine::Ignored)
2290            recordUseOfEvaluatedWeak(Result);
2291        }
2292        if (CurContext->isClosure())
2293          Diag(Loc, diag::warn_implicitly_retains_self)
2294            << FixItHint::CreateInsertion(Loc, "self->");
2295      }
2296
2297      return Owned(Result);
2298    }
2299  } else if (CurMethod->isInstanceMethod()) {
2300    // We should warn if a local variable hides an ivar.
2301    if (ObjCInterfaceDecl *IFace = CurMethod->getClassInterface()) {
2302      ObjCInterfaceDecl *ClassDeclared;
2303      if (ObjCIvarDecl *IV = IFace->lookupInstanceVariable(II, ClassDeclared)) {
2304        if (IV->getAccessControl() != ObjCIvarDecl::Private ||
2305            declaresSameEntity(IFace, ClassDeclared))
2306          Diag(Loc, diag::warn_ivar_use_hidden) << IV->getDeclName();
2307      }
2308    }
2309  } else if (Lookup.isSingleResult() &&
2310             Lookup.getFoundDecl()->isDefinedOutsideFunctionOrMethod()) {
2311    // If accessing a stand-alone ivar in a class method, this is an error.
2312    if (const ObjCIvarDecl *IV = dyn_cast<ObjCIvarDecl>(Lookup.getFoundDecl()))
2313      return ExprError(Diag(Loc, diag::error_ivar_use_in_class_method)
2314                       << IV->getDeclName());
2315  }
2316
2317  if (Lookup.empty() && II && AllowBuiltinCreation) {
2318    // FIXME. Consolidate this with similar code in LookupName.
2319    if (unsigned BuiltinID = II->getBuiltinID()) {
2320      if (!(getLangOpts().CPlusPlus &&
2321            Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID))) {
2322        NamedDecl *D = LazilyCreateBuiltin((IdentifierInfo *)II, BuiltinID,
2323                                           S, Lookup.isForRedeclaration(),
2324                                           Lookup.getNameLoc());
2325        if (D) Lookup.addDecl(D);
2326      }
2327    }
2328  }
2329  // Sentinel value saying that we didn't do anything special.
2330  return Owned((Expr*) 0);
2331}
2332
2333/// \brief Cast a base object to a member's actual type.
2334///
2335/// Logically this happens in three phases:
2336///
2337/// * First we cast from the base type to the naming class.
2338///   The naming class is the class into which we were looking
2339///   when we found the member;  it's the qualifier type if a
2340///   qualifier was provided, and otherwise it's the base type.
2341///
2342/// * Next we cast from the naming class to the declaring class.
2343///   If the member we found was brought into a class's scope by
2344///   a using declaration, this is that class;  otherwise it's
2345///   the class declaring the member.
2346///
2347/// * Finally we cast from the declaring class to the "true"
2348///   declaring class of the member.  This conversion does not
2349///   obey access control.
2350ExprResult
2351Sema::PerformObjectMemberConversion(Expr *From,
2352                                    NestedNameSpecifier *Qualifier,
2353                                    NamedDecl *FoundDecl,
2354                                    NamedDecl *Member) {
2355  CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Member->getDeclContext());
2356  if (!RD)
2357    return Owned(From);
2358
2359  QualType DestRecordType;
2360  QualType DestType;
2361  QualType FromRecordType;
2362  QualType FromType = From->getType();
2363  bool PointerConversions = false;
2364  if (isa<FieldDecl>(Member)) {
2365    DestRecordType = Context.getCanonicalType(Context.getTypeDeclType(RD));
2366
2367    if (FromType->getAs<PointerType>()) {
2368      DestType = Context.getPointerType(DestRecordType);
2369      FromRecordType = FromType->getPointeeType();
2370      PointerConversions = true;
2371    } else {
2372      DestType = DestRecordType;
2373      FromRecordType = FromType;
2374    }
2375  } else if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Member)) {
2376    if (Method->isStatic())
2377      return Owned(From);
2378
2379    DestType = Method->getThisType(Context);
2380    DestRecordType = DestType->getPointeeType();
2381
2382    if (FromType->getAs<PointerType>()) {
2383      FromRecordType = FromType->getPointeeType();
2384      PointerConversions = true;
2385    } else {
2386      FromRecordType = FromType;
2387      DestType = DestRecordType;
2388    }
2389  } else {
2390    // No conversion necessary.
2391    return Owned(From);
2392  }
2393
2394  if (DestType->isDependentType() || FromType->isDependentType())
2395    return Owned(From);
2396
2397  // If the unqualified types are the same, no conversion is necessary.
2398  if (Context.hasSameUnqualifiedType(FromRecordType, DestRecordType))
2399    return Owned(From);
2400
2401  SourceRange FromRange = From->getSourceRange();
2402  SourceLocation FromLoc = FromRange.getBegin();
2403
2404  ExprValueKind VK = From->getValueKind();
2405
2406  // C++ [class.member.lookup]p8:
2407  //   [...] Ambiguities can often be resolved by qualifying a name with its
2408  //   class name.
2409  //
2410  // If the member was a qualified name and the qualified referred to a
2411  // specific base subobject type, we'll cast to that intermediate type
2412  // first and then to the object in which the member is declared. That allows
2413  // one to resolve ambiguities in, e.g., a diamond-shaped hierarchy such as:
2414  //
2415  //   class Base { public: int x; };
2416  //   class Derived1 : public Base { };
2417  //   class Derived2 : public Base { };
2418  //   class VeryDerived : public Derived1, public Derived2 { void f(); };
2419  //
2420  //   void VeryDerived::f() {
2421  //     x = 17; // error: ambiguous base subobjects
2422  //     Derived1::x = 17; // okay, pick the Base subobject of Derived1
2423  //   }
2424  if (Qualifier && Qualifier->getAsType()) {
2425    QualType QType = QualType(Qualifier->getAsType(), 0);
2426    assert(QType->isRecordType() && "lookup done with non-record type");
2427
2428    QualType QRecordType = QualType(QType->getAs<RecordType>(), 0);
2429
2430    // In C++98, the qualifier type doesn't actually have to be a base
2431    // type of the object type, in which case we just ignore it.
2432    // Otherwise build the appropriate casts.
2433    if (IsDerivedFrom(FromRecordType, QRecordType)) {
2434      CXXCastPath BasePath;
2435      if (CheckDerivedToBaseConversion(FromRecordType, QRecordType,
2436                                       FromLoc, FromRange, &BasePath))
2437        return ExprError();
2438
2439      if (PointerConversions)
2440        QType = Context.getPointerType(QType);
2441      From = ImpCastExprToType(From, QType, CK_UncheckedDerivedToBase,
2442                               VK, &BasePath).take();
2443
2444      FromType = QType;
2445      FromRecordType = QRecordType;
2446
2447      // If the qualifier type was the same as the destination type,
2448      // we're done.
2449      if (Context.hasSameUnqualifiedType(FromRecordType, DestRecordType))
2450        return Owned(From);
2451    }
2452  }
2453
2454  bool IgnoreAccess = false;
2455
2456  // If we actually found the member through a using declaration, cast
2457  // down to the using declaration's type.
2458  //
2459  // Pointer equality is fine here because only one declaration of a
2460  // class ever has member declarations.
2461  if (FoundDecl->getDeclContext() != Member->getDeclContext()) {
2462    assert(isa<UsingShadowDecl>(FoundDecl));
2463    QualType URecordType = Context.getTypeDeclType(
2464                           cast<CXXRecordDecl>(FoundDecl->getDeclContext()));
2465
2466    // We only need to do this if the naming-class to declaring-class
2467    // conversion is non-trivial.
2468    if (!Context.hasSameUnqualifiedType(FromRecordType, URecordType)) {
2469      assert(IsDerivedFrom(FromRecordType, URecordType));
2470      CXXCastPath BasePath;
2471      if (CheckDerivedToBaseConversion(FromRecordType, URecordType,
2472                                       FromLoc, FromRange, &BasePath))
2473        return ExprError();
2474
2475      QualType UType = URecordType;
2476      if (PointerConversions)
2477        UType = Context.getPointerType(UType);
2478      From = ImpCastExprToType(From, UType, CK_UncheckedDerivedToBase,
2479                               VK, &BasePath).take();
2480      FromType = UType;
2481      FromRecordType = URecordType;
2482    }
2483
2484    // We don't do access control for the conversion from the
2485    // declaring class to the true declaring class.
2486    IgnoreAccess = true;
2487  }
2488
2489  CXXCastPath BasePath;
2490  if (CheckDerivedToBaseConversion(FromRecordType, DestRecordType,
2491                                   FromLoc, FromRange, &BasePath,
2492                                   IgnoreAccess))
2493    return ExprError();
2494
2495  return ImpCastExprToType(From, DestType, CK_UncheckedDerivedToBase,
2496                           VK, &BasePath);
2497}
2498
2499bool Sema::UseArgumentDependentLookup(const CXXScopeSpec &SS,
2500                                      const LookupResult &R,
2501                                      bool HasTrailingLParen) {
2502  // Only when used directly as the postfix-expression of a call.
2503  if (!HasTrailingLParen)
2504    return false;
2505
2506  // Never if a scope specifier was provided.
2507  if (SS.isSet())
2508    return false;
2509
2510  // Only in C++ or ObjC++.
2511  if (!getLangOpts().CPlusPlus)
2512    return false;
2513
2514  // Turn off ADL when we find certain kinds of declarations during
2515  // normal lookup:
2516  for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I) {
2517    NamedDecl *D = *I;
2518
2519    // C++0x [basic.lookup.argdep]p3:
2520    //     -- a declaration of a class member
2521    // Since using decls preserve this property, we check this on the
2522    // original decl.
2523    if (D->isCXXClassMember())
2524      return false;
2525
2526    // C++0x [basic.lookup.argdep]p3:
2527    //     -- a block-scope function declaration that is not a
2528    //        using-declaration
2529    // NOTE: we also trigger this for function templates (in fact, we
2530    // don't check the decl type at all, since all other decl types
2531    // turn off ADL anyway).
2532    if (isa<UsingShadowDecl>(D))
2533      D = cast<UsingShadowDecl>(D)->getTargetDecl();
2534    else if (D->getLexicalDeclContext()->isFunctionOrMethod())
2535      return false;
2536
2537    // C++0x [basic.lookup.argdep]p3:
2538    //     -- a declaration that is neither a function or a function
2539    //        template
2540    // And also for builtin functions.
2541    if (isa<FunctionDecl>(D)) {
2542      FunctionDecl *FDecl = cast<FunctionDecl>(D);
2543
2544      // But also builtin functions.
2545      if (FDecl->getBuiltinID() && FDecl->isImplicit())
2546        return false;
2547    } else if (!isa<FunctionTemplateDecl>(D))
2548      return false;
2549  }
2550
2551  return true;
2552}
2553
2554
2555/// Diagnoses obvious problems with the use of the given declaration
2556/// as an expression.  This is only actually called for lookups that
2557/// were not overloaded, and it doesn't promise that the declaration
2558/// will in fact be used.
2559static bool CheckDeclInExpr(Sema &S, SourceLocation Loc, NamedDecl *D) {
2560  if (isa<TypedefNameDecl>(D)) {
2561    S.Diag(Loc, diag::err_unexpected_typedef) << D->getDeclName();
2562    return true;
2563  }
2564
2565  if (isa<ObjCInterfaceDecl>(D)) {
2566    S.Diag(Loc, diag::err_unexpected_interface) << D->getDeclName();
2567    return true;
2568  }
2569
2570  if (isa<NamespaceDecl>(D)) {
2571    S.Diag(Loc, diag::err_unexpected_namespace) << D->getDeclName();
2572    return true;
2573  }
2574
2575  return false;
2576}
2577
2578ExprResult
2579Sema::BuildDeclarationNameExpr(const CXXScopeSpec &SS,
2580                               LookupResult &R,
2581                               bool NeedsADL) {
2582  // If this is a single, fully-resolved result and we don't need ADL,
2583  // just build an ordinary singleton decl ref.
2584  if (!NeedsADL && R.isSingleResult() && !R.getAsSingle<FunctionTemplateDecl>())
2585    return BuildDeclarationNameExpr(SS, R.getLookupNameInfo(), R.getFoundDecl(),
2586                                    R.getRepresentativeDecl());
2587
2588  // We only need to check the declaration if there's exactly one
2589  // result, because in the overloaded case the results can only be
2590  // functions and function templates.
2591  if (R.isSingleResult() &&
2592      CheckDeclInExpr(*this, R.getNameLoc(), R.getFoundDecl()))
2593    return ExprError();
2594
2595  // Otherwise, just build an unresolved lookup expression.  Suppress
2596  // any lookup-related diagnostics; we'll hash these out later, when
2597  // we've picked a target.
2598  R.suppressDiagnostics();
2599
2600  UnresolvedLookupExpr *ULE
2601    = UnresolvedLookupExpr::Create(Context, R.getNamingClass(),
2602                                   SS.getWithLocInContext(Context),
2603                                   R.getLookupNameInfo(),
2604                                   NeedsADL, R.isOverloadedResult(),
2605                                   R.begin(), R.end());
2606
2607  return Owned(ULE);
2608}
2609
2610/// \brief Complete semantic analysis for a reference to the given declaration.
2611ExprResult Sema::BuildDeclarationNameExpr(
2612    const CXXScopeSpec &SS, const DeclarationNameInfo &NameInfo, NamedDecl *D,
2613    NamedDecl *FoundD, const TemplateArgumentListInfo *TemplateArgs) {
2614  assert(D && "Cannot refer to a NULL declaration");
2615  assert(!isa<FunctionTemplateDecl>(D) &&
2616         "Cannot refer unambiguously to a function template");
2617
2618  SourceLocation Loc = NameInfo.getLoc();
2619  if (CheckDeclInExpr(*this, Loc, D))
2620    return ExprError();
2621
2622  if (TemplateDecl *Template = dyn_cast<TemplateDecl>(D)) {
2623    // Specifically diagnose references to class templates that are missing
2624    // a template argument list.
2625    Diag(Loc, diag::err_template_decl_ref) << (isa<VarTemplateDecl>(D) ? 1 : 0)
2626                                           << Template << SS.getRange();
2627    Diag(Template->getLocation(), diag::note_template_decl_here);
2628    return ExprError();
2629  }
2630
2631  // Make sure that we're referring to a value.
2632  ValueDecl *VD = dyn_cast<ValueDecl>(D);
2633  if (!VD) {
2634    Diag(Loc, diag::err_ref_non_value)
2635      << D << SS.getRange();
2636    Diag(D->getLocation(), diag::note_declared_at);
2637    return ExprError();
2638  }
2639
2640  // Check whether this declaration can be used. Note that we suppress
2641  // this check when we're going to perform argument-dependent lookup
2642  // on this function name, because this might not be the function
2643  // that overload resolution actually selects.
2644  if (DiagnoseUseOfDecl(VD, Loc))
2645    return ExprError();
2646
2647  // Only create DeclRefExpr's for valid Decl's.
2648  if (VD->isInvalidDecl())
2649    return ExprError();
2650
2651  // Handle members of anonymous structs and unions.  If we got here,
2652  // and the reference is to a class member indirect field, then this
2653  // must be the subject of a pointer-to-member expression.
2654  if (IndirectFieldDecl *indirectField = dyn_cast<IndirectFieldDecl>(VD))
2655    if (!indirectField->isCXXClassMember())
2656      return BuildAnonymousStructUnionMemberReference(SS, NameInfo.getLoc(),
2657                                                      indirectField);
2658
2659  {
2660    QualType type = VD->getType();
2661    ExprValueKind valueKind = VK_RValue;
2662
2663    switch (D->getKind()) {
2664    // Ignore all the non-ValueDecl kinds.
2665#define ABSTRACT_DECL(kind)
2666#define VALUE(type, base)
2667#define DECL(type, base) \
2668    case Decl::type:
2669#include "clang/AST/DeclNodes.inc"
2670      llvm_unreachable("invalid value decl kind");
2671
2672    // These shouldn't make it here.
2673    case Decl::ObjCAtDefsField:
2674    case Decl::ObjCIvar:
2675      llvm_unreachable("forming non-member reference to ivar?");
2676
2677    // Enum constants are always r-values and never references.
2678    // Unresolved using declarations are dependent.
2679    case Decl::EnumConstant:
2680    case Decl::UnresolvedUsingValue:
2681      valueKind = VK_RValue;
2682      break;
2683
2684    // Fields and indirect fields that got here must be for
2685    // pointer-to-member expressions; we just call them l-values for
2686    // internal consistency, because this subexpression doesn't really
2687    // exist in the high-level semantics.
2688    case Decl::Field:
2689    case Decl::IndirectField:
2690      assert(getLangOpts().CPlusPlus &&
2691             "building reference to field in C?");
2692
2693      // These can't have reference type in well-formed programs, but
2694      // for internal consistency we do this anyway.
2695      type = type.getNonReferenceType();
2696      valueKind = VK_LValue;
2697      break;
2698
2699    // Non-type template parameters are either l-values or r-values
2700    // depending on the type.
2701    case Decl::NonTypeTemplateParm: {
2702      if (const ReferenceType *reftype = type->getAs<ReferenceType>()) {
2703        type = reftype->getPointeeType();
2704        valueKind = VK_LValue; // even if the parameter is an r-value reference
2705        break;
2706      }
2707
2708      // For non-references, we need to strip qualifiers just in case
2709      // the template parameter was declared as 'const int' or whatever.
2710      valueKind = VK_RValue;
2711      type = type.getUnqualifiedType();
2712      break;
2713    }
2714
2715    case Decl::Var:
2716    case Decl::VarTemplateSpecialization:
2717    case Decl::VarTemplatePartialSpecialization:
2718      // In C, "extern void blah;" is valid and is an r-value.
2719      if (!getLangOpts().CPlusPlus &&
2720          !type.hasQualifiers() &&
2721          type->isVoidType()) {
2722        valueKind = VK_RValue;
2723        break;
2724      }
2725      // fallthrough
2726
2727    case Decl::ImplicitParam:
2728    case Decl::ParmVar: {
2729      // These are always l-values.
2730      valueKind = VK_LValue;
2731      type = type.getNonReferenceType();
2732
2733      // FIXME: Does the addition of const really only apply in
2734      // potentially-evaluated contexts? Since the variable isn't actually
2735      // captured in an unevaluated context, it seems that the answer is no.
2736      if (!isUnevaluatedContext()) {
2737        QualType CapturedType = getCapturedDeclRefType(cast<VarDecl>(VD), Loc);
2738        if (!CapturedType.isNull())
2739          type = CapturedType;
2740      }
2741
2742      break;
2743    }
2744
2745    case Decl::Function: {
2746      if (unsigned BID = cast<FunctionDecl>(VD)->getBuiltinID()) {
2747        if (!Context.BuiltinInfo.isPredefinedLibFunction(BID)) {
2748          type = Context.BuiltinFnTy;
2749          valueKind = VK_RValue;
2750          break;
2751        }
2752      }
2753
2754      const FunctionType *fty = type->castAs<FunctionType>();
2755
2756      // If we're referring to a function with an __unknown_anytype
2757      // result type, make the entire expression __unknown_anytype.
2758      if (fty->getResultType() == Context.UnknownAnyTy) {
2759        type = Context.UnknownAnyTy;
2760        valueKind = VK_RValue;
2761        break;
2762      }
2763
2764      // Functions are l-values in C++.
2765      if (getLangOpts().CPlusPlus) {
2766        valueKind = VK_LValue;
2767        break;
2768      }
2769
2770      // C99 DR 316 says that, if a function type comes from a
2771      // function definition (without a prototype), that type is only
2772      // used for checking compatibility. Therefore, when referencing
2773      // the function, we pretend that we don't have the full function
2774      // type.
2775      if (!cast<FunctionDecl>(VD)->hasPrototype() &&
2776          isa<FunctionProtoType>(fty))
2777        type = Context.getFunctionNoProtoType(fty->getResultType(),
2778                                              fty->getExtInfo());
2779
2780      // Functions are r-values in C.
2781      valueKind = VK_RValue;
2782      break;
2783    }
2784
2785    case Decl::MSProperty:
2786      valueKind = VK_LValue;
2787      break;
2788
2789    case Decl::CXXMethod:
2790      // If we're referring to a method with an __unknown_anytype
2791      // result type, make the entire expression __unknown_anytype.
2792      // This should only be possible with a type written directly.
2793      if (const FunctionProtoType *proto
2794            = dyn_cast<FunctionProtoType>(VD->getType()))
2795        if (proto->getResultType() == Context.UnknownAnyTy) {
2796          type = Context.UnknownAnyTy;
2797          valueKind = VK_RValue;
2798          break;
2799        }
2800
2801      // C++ methods are l-values if static, r-values if non-static.
2802      if (cast<CXXMethodDecl>(VD)->isStatic()) {
2803        valueKind = VK_LValue;
2804        break;
2805      }
2806      // fallthrough
2807
2808    case Decl::CXXConversion:
2809    case Decl::CXXDestructor:
2810    case Decl::CXXConstructor:
2811      valueKind = VK_RValue;
2812      break;
2813    }
2814
2815    return BuildDeclRefExpr(VD, type, valueKind, NameInfo, &SS, FoundD,
2816                            TemplateArgs);
2817  }
2818}
2819
2820ExprResult Sema::BuildPredefinedExpr(SourceLocation Loc,
2821                                     PredefinedExpr::IdentType IT) {
2822  // Pick the current block, lambda, captured statement or function.
2823  Decl *currentDecl = 0;
2824  if (const BlockScopeInfo *BSI = getCurBlock())
2825    currentDecl = BSI->TheDecl;
2826  else if (const LambdaScopeInfo *LSI = getCurLambda())
2827    currentDecl = LSI->CallOperator;
2828  else if (const CapturedRegionScopeInfo *CSI = getCurCapturedRegion())
2829    currentDecl = CSI->TheCapturedDecl;
2830  else
2831    currentDecl = getCurFunctionOrMethodDecl();
2832
2833  if (!currentDecl) {
2834    Diag(Loc, diag::ext_predef_outside_function);
2835    currentDecl = Context.getTranslationUnitDecl();
2836  }
2837
2838  QualType ResTy;
2839  if (cast<DeclContext>(currentDecl)->isDependentContext())
2840    ResTy = Context.DependentTy;
2841  else {
2842    // Pre-defined identifiers are of type char[x], where x is the length of
2843    // the string.
2844    unsigned Length = PredefinedExpr::ComputeName(IT, currentDecl).length();
2845
2846    llvm::APInt LengthI(32, Length + 1);
2847    if (IT == PredefinedExpr::LFunction)
2848      ResTy = Context.WideCharTy.withConst();
2849    else
2850      ResTy = Context.CharTy.withConst();
2851    ResTy = Context.getConstantArrayType(ResTy, LengthI, ArrayType::Normal, 0);
2852  }
2853
2854  return Owned(new (Context) PredefinedExpr(Loc, ResTy, IT));
2855}
2856
2857ExprResult Sema::ActOnPredefinedExpr(SourceLocation Loc, tok::TokenKind Kind) {
2858  PredefinedExpr::IdentType IT;
2859
2860  switch (Kind) {
2861  default: llvm_unreachable("Unknown simple primary expr!");
2862  case tok::kw___func__: IT = PredefinedExpr::Func; break; // [C99 6.4.2.2]
2863  case tok::kw___FUNCTION__: IT = PredefinedExpr::Function; break;
2864  case tok::kw___FUNCDNAME__: IT = PredefinedExpr::FuncDName; break; // [MS]
2865  case tok::kw_L__FUNCTION__: IT = PredefinedExpr::LFunction; break;
2866  case tok::kw___PRETTY_FUNCTION__: IT = PredefinedExpr::PrettyFunction; break;
2867  }
2868
2869  return BuildPredefinedExpr(Loc, IT);
2870}
2871
2872ExprResult Sema::ActOnCharacterConstant(const Token &Tok, Scope *UDLScope) {
2873  SmallString<16> CharBuffer;
2874  bool Invalid = false;
2875  StringRef ThisTok = PP.getSpelling(Tok, CharBuffer, &Invalid);
2876  if (Invalid)
2877    return ExprError();
2878
2879  CharLiteralParser Literal(ThisTok.begin(), ThisTok.end(), Tok.getLocation(),
2880                            PP, Tok.getKind());
2881  if (Literal.hadError())
2882    return ExprError();
2883
2884  QualType Ty;
2885  if (Literal.isWide())
2886    Ty = Context.WideCharTy; // L'x' -> wchar_t in C and C++.
2887  else if (Literal.isUTF16())
2888    Ty = Context.Char16Ty; // u'x' -> char16_t in C11 and C++11.
2889  else if (Literal.isUTF32())
2890    Ty = Context.Char32Ty; // U'x' -> char32_t in C11 and C++11.
2891  else if (!getLangOpts().CPlusPlus || Literal.isMultiChar())
2892    Ty = Context.IntTy;   // 'x' -> int in C, 'wxyz' -> int in C++.
2893  else
2894    Ty = Context.CharTy;  // 'x' -> char in C++
2895
2896  CharacterLiteral::CharacterKind Kind = CharacterLiteral::Ascii;
2897  if (Literal.isWide())
2898    Kind = CharacterLiteral::Wide;
2899  else if (Literal.isUTF16())
2900    Kind = CharacterLiteral::UTF16;
2901  else if (Literal.isUTF32())
2902    Kind = CharacterLiteral::UTF32;
2903
2904  Expr *Lit = new (Context) CharacterLiteral(Literal.getValue(), Kind, Ty,
2905                                             Tok.getLocation());
2906
2907  if (Literal.getUDSuffix().empty())
2908    return Owned(Lit);
2909
2910  // We're building a user-defined literal.
2911  IdentifierInfo *UDSuffix = &Context.Idents.get(Literal.getUDSuffix());
2912  SourceLocation UDSuffixLoc =
2913    getUDSuffixLoc(*this, Tok.getLocation(), Literal.getUDSuffixOffset());
2914
2915  // Make sure we're allowed user-defined literals here.
2916  if (!UDLScope)
2917    return ExprError(Diag(UDSuffixLoc, diag::err_invalid_character_udl));
2918
2919  // C++11 [lex.ext]p6: The literal L is treated as a call of the form
2920  //   operator "" X (ch)
2921  return BuildCookedLiteralOperatorCall(*this, UDLScope, UDSuffix, UDSuffixLoc,
2922                                        Lit, Tok.getLocation());
2923}
2924
2925ExprResult Sema::ActOnIntegerConstant(SourceLocation Loc, uint64_t Val) {
2926  unsigned IntSize = Context.getTargetInfo().getIntWidth();
2927  return Owned(IntegerLiteral::Create(Context, llvm::APInt(IntSize, Val),
2928                                      Context.IntTy, Loc));
2929}
2930
2931static Expr *BuildFloatingLiteral(Sema &S, NumericLiteralParser &Literal,
2932                                  QualType Ty, SourceLocation Loc) {
2933  const llvm::fltSemantics &Format = S.Context.getFloatTypeSemantics(Ty);
2934
2935  using llvm::APFloat;
2936  APFloat Val(Format);
2937
2938  APFloat::opStatus result = Literal.GetFloatValue(Val);
2939
2940  // Overflow is always an error, but underflow is only an error if
2941  // we underflowed to zero (APFloat reports denormals as underflow).
2942  if ((result & APFloat::opOverflow) ||
2943      ((result & APFloat::opUnderflow) && Val.isZero())) {
2944    unsigned diagnostic;
2945    SmallString<20> buffer;
2946    if (result & APFloat::opOverflow) {
2947      diagnostic = diag::warn_float_overflow;
2948      APFloat::getLargest(Format).toString(buffer);
2949    } else {
2950      diagnostic = diag::warn_float_underflow;
2951      APFloat::getSmallest(Format).toString(buffer);
2952    }
2953
2954    S.Diag(Loc, diagnostic)
2955      << Ty
2956      << StringRef(buffer.data(), buffer.size());
2957  }
2958
2959  bool isExact = (result == APFloat::opOK);
2960  return FloatingLiteral::Create(S.Context, Val, isExact, Ty, Loc);
2961}
2962
2963ExprResult Sema::ActOnNumericConstant(const Token &Tok, Scope *UDLScope) {
2964  // Fast path for a single digit (which is quite common).  A single digit
2965  // cannot have a trigraph, escaped newline, radix prefix, or suffix.
2966  if (Tok.getLength() == 1) {
2967    const char Val = PP.getSpellingOfSingleCharacterNumericConstant(Tok);
2968    return ActOnIntegerConstant(Tok.getLocation(), Val-'0');
2969  }
2970
2971  SmallString<128> SpellingBuffer;
2972  // NumericLiteralParser wants to overread by one character.  Add padding to
2973  // the buffer in case the token is copied to the buffer.  If getSpelling()
2974  // returns a StringRef to the memory buffer, it should have a null char at
2975  // the EOF, so it is also safe.
2976  SpellingBuffer.resize(Tok.getLength() + 1);
2977
2978  // Get the spelling of the token, which eliminates trigraphs, etc.
2979  bool Invalid = false;
2980  StringRef TokSpelling = PP.getSpelling(Tok, SpellingBuffer, &Invalid);
2981  if (Invalid)
2982    return ExprError();
2983
2984  NumericLiteralParser Literal(TokSpelling, Tok.getLocation(), PP);
2985  if (Literal.hadError)
2986    return ExprError();
2987
2988  if (Literal.hasUDSuffix()) {
2989    // We're building a user-defined literal.
2990    IdentifierInfo *UDSuffix = &Context.Idents.get(Literal.getUDSuffix());
2991    SourceLocation UDSuffixLoc =
2992      getUDSuffixLoc(*this, Tok.getLocation(), Literal.getUDSuffixOffset());
2993
2994    // Make sure we're allowed user-defined literals here.
2995    if (!UDLScope)
2996      return ExprError(Diag(UDSuffixLoc, diag::err_invalid_numeric_udl));
2997
2998    QualType CookedTy;
2999    if (Literal.isFloatingLiteral()) {
3000      // C++11 [lex.ext]p4: If S contains a literal operator with parameter type
3001      // long double, the literal is treated as a call of the form
3002      //   operator "" X (f L)
3003      CookedTy = Context.LongDoubleTy;
3004    } else {
3005      // C++11 [lex.ext]p3: If S contains a literal operator with parameter type
3006      // unsigned long long, the literal is treated as a call of the form
3007      //   operator "" X (n ULL)
3008      CookedTy = Context.UnsignedLongLongTy;
3009    }
3010
3011    DeclarationName OpName =
3012      Context.DeclarationNames.getCXXLiteralOperatorName(UDSuffix);
3013    DeclarationNameInfo OpNameInfo(OpName, UDSuffixLoc);
3014    OpNameInfo.setCXXLiteralOperatorNameLoc(UDSuffixLoc);
3015
3016    SourceLocation TokLoc = Tok.getLocation();
3017
3018    // Perform literal operator lookup to determine if we're building a raw
3019    // literal or a cooked one.
3020    LookupResult R(*this, OpName, UDSuffixLoc, LookupOrdinaryName);
3021    switch (LookupLiteralOperator(UDLScope, R, CookedTy,
3022                                  /*AllowRaw*/true, /*AllowTemplate*/true,
3023                                  /*AllowStringTemplate*/false)) {
3024    case LOLR_Error:
3025      return ExprError();
3026
3027    case LOLR_Cooked: {
3028      Expr *Lit;
3029      if (Literal.isFloatingLiteral()) {
3030        Lit = BuildFloatingLiteral(*this, Literal, CookedTy, Tok.getLocation());
3031      } else {
3032        llvm::APInt ResultVal(Context.getTargetInfo().getLongLongWidth(), 0);
3033        if (Literal.GetIntegerValue(ResultVal))
3034          Diag(Tok.getLocation(), diag::err_integer_too_large);
3035        Lit = IntegerLiteral::Create(Context, ResultVal, CookedTy,
3036                                     Tok.getLocation());
3037      }
3038      return BuildLiteralOperatorCall(R, OpNameInfo, Lit, TokLoc);
3039    }
3040
3041    case LOLR_Raw: {
3042      // C++11 [lit.ext]p3, p4: If S contains a raw literal operator, the
3043      // literal is treated as a call of the form
3044      //   operator "" X ("n")
3045      unsigned Length = Literal.getUDSuffixOffset();
3046      QualType StrTy = Context.getConstantArrayType(
3047          Context.CharTy.withConst(), llvm::APInt(32, Length + 1),
3048          ArrayType::Normal, 0);
3049      Expr *Lit = StringLiteral::Create(
3050          Context, StringRef(TokSpelling.data(), Length), StringLiteral::Ascii,
3051          /*Pascal*/false, StrTy, &TokLoc, 1);
3052      return BuildLiteralOperatorCall(R, OpNameInfo, Lit, TokLoc);
3053    }
3054
3055    case LOLR_Template: {
3056      // C++11 [lit.ext]p3, p4: Otherwise (S contains a literal operator
3057      // template), L is treated as a call fo the form
3058      //   operator "" X <'c1', 'c2', ... 'ck'>()
3059      // where n is the source character sequence c1 c2 ... ck.
3060      TemplateArgumentListInfo ExplicitArgs;
3061      unsigned CharBits = Context.getIntWidth(Context.CharTy);
3062      bool CharIsUnsigned = Context.CharTy->isUnsignedIntegerType();
3063      llvm::APSInt Value(CharBits, CharIsUnsigned);
3064      for (unsigned I = 0, N = Literal.getUDSuffixOffset(); I != N; ++I) {
3065        Value = TokSpelling[I];
3066        TemplateArgument Arg(Context, Value, Context.CharTy);
3067        TemplateArgumentLocInfo ArgInfo;
3068        ExplicitArgs.addArgument(TemplateArgumentLoc(Arg, ArgInfo));
3069      }
3070      return BuildLiteralOperatorCall(R, OpNameInfo, None, TokLoc,
3071                                      &ExplicitArgs);
3072    }
3073    case LOLR_StringTemplate:
3074      llvm_unreachable("unexpected literal operator lookup result");
3075    }
3076  }
3077
3078  Expr *Res;
3079
3080  if (Literal.isFloatingLiteral()) {
3081    QualType Ty;
3082    if (Literal.isFloat)
3083      Ty = Context.FloatTy;
3084    else if (!Literal.isLong)
3085      Ty = Context.DoubleTy;
3086    else
3087      Ty = Context.LongDoubleTy;
3088
3089    Res = BuildFloatingLiteral(*this, Literal, Ty, Tok.getLocation());
3090
3091    if (Ty == Context.DoubleTy) {
3092      if (getLangOpts().SinglePrecisionConstants) {
3093        Res = ImpCastExprToType(Res, Context.FloatTy, CK_FloatingCast).take();
3094      } else if (getLangOpts().OpenCL && !getOpenCLOptions().cl_khr_fp64) {
3095        Diag(Tok.getLocation(), diag::warn_double_const_requires_fp64);
3096        Res = ImpCastExprToType(Res, Context.FloatTy, CK_FloatingCast).take();
3097      }
3098    }
3099  } else if (!Literal.isIntegerLiteral()) {
3100    return ExprError();
3101  } else {
3102    QualType Ty;
3103
3104    // 'long long' is a C99 or C++11 feature.
3105    if (!getLangOpts().C99 && Literal.isLongLong) {
3106      if (getLangOpts().CPlusPlus)
3107        Diag(Tok.getLocation(),
3108             getLangOpts().CPlusPlus11 ?
3109             diag::warn_cxx98_compat_longlong : diag::ext_cxx11_longlong);
3110      else
3111        Diag(Tok.getLocation(), diag::ext_c99_longlong);
3112    }
3113
3114    // Get the value in the widest-possible width.
3115    unsigned MaxWidth = Context.getTargetInfo().getIntMaxTWidth();
3116    // The microsoft literal suffix extensions support 128-bit literals, which
3117    // may be wider than [u]intmax_t.
3118    // FIXME: Actually, they don't. We seem to have accidentally invented the
3119    //        i128 suffix.
3120    if (Literal.isMicrosoftInteger && MaxWidth < 128 &&
3121        PP.getTargetInfo().hasInt128Type())
3122      MaxWidth = 128;
3123    llvm::APInt ResultVal(MaxWidth, 0);
3124
3125    if (Literal.GetIntegerValue(ResultVal)) {
3126      // If this value didn't fit into uintmax_t, error and force to ull.
3127      Diag(Tok.getLocation(), diag::err_integer_too_large);
3128      Ty = Context.UnsignedLongLongTy;
3129      assert(Context.getTypeSize(Ty) == ResultVal.getBitWidth() &&
3130             "long long is not intmax_t?");
3131    } else {
3132      // If this value fits into a ULL, try to figure out what else it fits into
3133      // according to the rules of C99 6.4.4.1p5.
3134
3135      // Octal, Hexadecimal, and integers with a U suffix are allowed to
3136      // be an unsigned int.
3137      bool AllowUnsigned = Literal.isUnsigned || Literal.getRadix() != 10;
3138
3139      // Check from smallest to largest, picking the smallest type we can.
3140      unsigned Width = 0;
3141      if (!Literal.isLong && !Literal.isLongLong) {
3142        // Are int/unsigned possibilities?
3143        unsigned IntSize = Context.getTargetInfo().getIntWidth();
3144
3145        // Does it fit in a unsigned int?
3146        if (ResultVal.isIntN(IntSize)) {
3147          // Does it fit in a signed int?
3148          if (!Literal.isUnsigned && ResultVal[IntSize-1] == 0)
3149            Ty = Context.IntTy;
3150          else if (AllowUnsigned)
3151            Ty = Context.UnsignedIntTy;
3152          Width = IntSize;
3153        }
3154      }
3155
3156      // Are long/unsigned long possibilities?
3157      if (Ty.isNull() && !Literal.isLongLong) {
3158        unsigned LongSize = Context.getTargetInfo().getLongWidth();
3159
3160        // Does it fit in a unsigned long?
3161        if (ResultVal.isIntN(LongSize)) {
3162          // Does it fit in a signed long?
3163          if (!Literal.isUnsigned && ResultVal[LongSize-1] == 0)
3164            Ty = Context.LongTy;
3165          else if (AllowUnsigned)
3166            Ty = Context.UnsignedLongTy;
3167          Width = LongSize;
3168        }
3169      }
3170
3171      // Check long long if needed.
3172      if (Ty.isNull()) {
3173        unsigned LongLongSize = Context.getTargetInfo().getLongLongWidth();
3174
3175        // Does it fit in a unsigned long long?
3176        if (ResultVal.isIntN(LongLongSize)) {
3177          // Does it fit in a signed long long?
3178          // To be compatible with MSVC, hex integer literals ending with the
3179          // LL or i64 suffix are always signed in Microsoft mode.
3180          if (!Literal.isUnsigned && (ResultVal[LongLongSize-1] == 0 ||
3181              (getLangOpts().MicrosoftExt && Literal.isLongLong)))
3182            Ty = Context.LongLongTy;
3183          else if (AllowUnsigned)
3184            Ty = Context.UnsignedLongLongTy;
3185          Width = LongLongSize;
3186        }
3187      }
3188
3189      // If it doesn't fit in unsigned long long, and we're using Microsoft
3190      // extensions, then its a 128-bit integer literal.
3191      if (Ty.isNull() && Literal.isMicrosoftInteger &&
3192          PP.getTargetInfo().hasInt128Type()) {
3193        if (Literal.isUnsigned)
3194          Ty = Context.UnsignedInt128Ty;
3195        else
3196          Ty = Context.Int128Ty;
3197        Width = 128;
3198      }
3199
3200      // If we still couldn't decide a type, we probably have something that
3201      // does not fit in a signed long long, but has no U suffix.
3202      if (Ty.isNull()) {
3203        Diag(Tok.getLocation(), diag::warn_integer_too_large_for_signed);
3204        Ty = Context.UnsignedLongLongTy;
3205        Width = Context.getTargetInfo().getLongLongWidth();
3206      }
3207
3208      if (ResultVal.getBitWidth() != Width)
3209        ResultVal = ResultVal.trunc(Width);
3210    }
3211    Res = IntegerLiteral::Create(Context, ResultVal, Ty, Tok.getLocation());
3212  }
3213
3214  // If this is an imaginary literal, create the ImaginaryLiteral wrapper.
3215  if (Literal.isImaginary)
3216    Res = new (Context) ImaginaryLiteral(Res,
3217                                        Context.getComplexType(Res->getType()));
3218
3219  return Owned(Res);
3220}
3221
3222ExprResult Sema::ActOnParenExpr(SourceLocation L, SourceLocation R, Expr *E) {
3223  assert((E != 0) && "ActOnParenExpr() missing expr");
3224  return Owned(new (Context) ParenExpr(L, R, E));
3225}
3226
3227static bool CheckVecStepTraitOperandType(Sema &S, QualType T,
3228                                         SourceLocation Loc,
3229                                         SourceRange ArgRange) {
3230  // [OpenCL 1.1 6.11.12] "The vec_step built-in function takes a built-in
3231  // scalar or vector data type argument..."
3232  // Every built-in scalar type (OpenCL 1.1 6.1.1) is either an arithmetic
3233  // type (C99 6.2.5p18) or void.
3234  if (!(T->isArithmeticType() || T->isVoidType() || T->isVectorType())) {
3235    S.Diag(Loc, diag::err_vecstep_non_scalar_vector_type)
3236      << T << ArgRange;
3237    return true;
3238  }
3239
3240  assert((T->isVoidType() || !T->isIncompleteType()) &&
3241         "Scalar types should always be complete");
3242  return false;
3243}
3244
3245static bool CheckExtensionTraitOperandType(Sema &S, QualType T,
3246                                           SourceLocation Loc,
3247                                           SourceRange ArgRange,
3248                                           UnaryExprOrTypeTrait TraitKind) {
3249  // Invalid types must be hard errors for SFINAE in C++.
3250  if (S.LangOpts.CPlusPlus)
3251    return true;
3252
3253  // C99 6.5.3.4p1:
3254  if (T->isFunctionType() &&
3255      (TraitKind == UETT_SizeOf || TraitKind == UETT_AlignOf)) {
3256    // sizeof(function)/alignof(function) is allowed as an extension.
3257    S.Diag(Loc, diag::ext_sizeof_alignof_function_type)
3258      << TraitKind << ArgRange;
3259    return false;
3260  }
3261
3262  // Allow sizeof(void)/alignof(void) as an extension.
3263  if (T->isVoidType()) {
3264    S.Diag(Loc, diag::ext_sizeof_alignof_void_type) << TraitKind << ArgRange;
3265    return false;
3266  }
3267
3268  return true;
3269}
3270
3271static bool CheckObjCTraitOperandConstraints(Sema &S, QualType T,
3272                                             SourceLocation Loc,
3273                                             SourceRange ArgRange,
3274                                             UnaryExprOrTypeTrait TraitKind) {
3275  // Reject sizeof(interface) and sizeof(interface<proto>) if the
3276  // runtime doesn't allow it.
3277  if (!S.LangOpts.ObjCRuntime.allowsSizeofAlignof() && T->isObjCObjectType()) {
3278    S.Diag(Loc, diag::err_sizeof_nonfragile_interface)
3279      << T << (TraitKind == UETT_SizeOf)
3280      << ArgRange;
3281    return true;
3282  }
3283
3284  return false;
3285}
3286
3287/// \brief Check whether E is a pointer from a decayed array type (the decayed
3288/// pointer type is equal to T) and emit a warning if it is.
3289static void warnOnSizeofOnArrayDecay(Sema &S, SourceLocation Loc, QualType T,
3290                                     Expr *E) {
3291  // Don't warn if the operation changed the type.
3292  if (T != E->getType())
3293    return;
3294
3295  // Now look for array decays.
3296  ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E);
3297  if (!ICE || ICE->getCastKind() != CK_ArrayToPointerDecay)
3298    return;
3299
3300  S.Diag(Loc, diag::warn_sizeof_array_decay) << ICE->getSourceRange()
3301                                             << ICE->getType()
3302                                             << ICE->getSubExpr()->getType();
3303}
3304
3305/// \brief Check the constrains on expression operands to unary type expression
3306/// and type traits.
3307///
3308/// Completes any types necessary and validates the constraints on the operand
3309/// expression. The logic mostly mirrors the type-based overload, but may modify
3310/// the expression as it completes the type for that expression through template
3311/// instantiation, etc.
3312bool Sema::CheckUnaryExprOrTypeTraitOperand(Expr *E,
3313                                            UnaryExprOrTypeTrait ExprKind) {
3314  QualType ExprTy = E->getType();
3315  assert(!ExprTy->isReferenceType());
3316
3317  if (ExprKind == UETT_VecStep)
3318    return CheckVecStepTraitOperandType(*this, ExprTy, E->getExprLoc(),
3319                                        E->getSourceRange());
3320
3321  // Whitelist some types as extensions
3322  if (!CheckExtensionTraitOperandType(*this, ExprTy, E->getExprLoc(),
3323                                      E->getSourceRange(), ExprKind))
3324    return false;
3325
3326  if (RequireCompleteExprType(E,
3327                              diag::err_sizeof_alignof_incomplete_type,
3328                              ExprKind, E->getSourceRange()))
3329    return true;
3330
3331  // Completing the expression's type may have changed it.
3332  ExprTy = E->getType();
3333  assert(!ExprTy->isReferenceType());
3334
3335  if (ExprTy->isFunctionType()) {
3336    Diag(E->getExprLoc(), diag::err_sizeof_alignof_function_type)
3337      << ExprKind << E->getSourceRange();
3338    return true;
3339  }
3340
3341  if (CheckObjCTraitOperandConstraints(*this, ExprTy, E->getExprLoc(),
3342                                       E->getSourceRange(), ExprKind))
3343    return true;
3344
3345  if (ExprKind == UETT_SizeOf) {
3346    if (DeclRefExpr *DeclRef = dyn_cast<DeclRefExpr>(E->IgnoreParens())) {
3347      if (ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(DeclRef->getFoundDecl())) {
3348        QualType OType = PVD->getOriginalType();
3349        QualType Type = PVD->getType();
3350        if (Type->isPointerType() && OType->isArrayType()) {
3351          Diag(E->getExprLoc(), diag::warn_sizeof_array_param)
3352            << Type << OType;
3353          Diag(PVD->getLocation(), diag::note_declared_at);
3354        }
3355      }
3356    }
3357
3358    // Warn on "sizeof(array op x)" and "sizeof(x op array)", where the array
3359    // decays into a pointer and returns an unintended result. This is most
3360    // likely a typo for "sizeof(array) op x".
3361    if (BinaryOperator *BO = dyn_cast<BinaryOperator>(E->IgnoreParens())) {
3362      warnOnSizeofOnArrayDecay(*this, BO->getOperatorLoc(), BO->getType(),
3363                               BO->getLHS());
3364      warnOnSizeofOnArrayDecay(*this, BO->getOperatorLoc(), BO->getType(),
3365                               BO->getRHS());
3366    }
3367  }
3368
3369  return false;
3370}
3371
3372/// \brief Check the constraints on operands to unary expression and type
3373/// traits.
3374///
3375/// This will complete any types necessary, and validate the various constraints
3376/// on those operands.
3377///
3378/// The UsualUnaryConversions() function is *not* called by this routine.
3379/// C99 6.3.2.1p[2-4] all state:
3380///   Except when it is the operand of the sizeof operator ...
3381///
3382/// C++ [expr.sizeof]p4
3383///   The lvalue-to-rvalue, array-to-pointer, and function-to-pointer
3384///   standard conversions are not applied to the operand of sizeof.
3385///
3386/// This policy is followed for all of the unary trait expressions.
3387bool Sema::CheckUnaryExprOrTypeTraitOperand(QualType ExprType,
3388                                            SourceLocation OpLoc,
3389                                            SourceRange ExprRange,
3390                                            UnaryExprOrTypeTrait ExprKind) {
3391  if (ExprType->isDependentType())
3392    return false;
3393
3394  // C++ [expr.sizeof]p2: "When applied to a reference or a reference type,
3395  //   the result is the size of the referenced type."
3396  // C++ [expr.alignof]p3: "When alignof is applied to a reference type, the
3397  //   result shall be the alignment of the referenced type."
3398  if (const ReferenceType *Ref = ExprType->getAs<ReferenceType>())
3399    ExprType = Ref->getPointeeType();
3400
3401  if (ExprKind == UETT_VecStep)
3402    return CheckVecStepTraitOperandType(*this, ExprType, OpLoc, ExprRange);
3403
3404  // Whitelist some types as extensions
3405  if (!CheckExtensionTraitOperandType(*this, ExprType, OpLoc, ExprRange,
3406                                      ExprKind))
3407    return false;
3408
3409  if (RequireCompleteType(OpLoc, ExprType,
3410                          diag::err_sizeof_alignof_incomplete_type,
3411                          ExprKind, ExprRange))
3412    return true;
3413
3414  if (ExprType->isFunctionType()) {
3415    Diag(OpLoc, diag::err_sizeof_alignof_function_type)
3416      << ExprKind << ExprRange;
3417    return true;
3418  }
3419
3420  if (CheckObjCTraitOperandConstraints(*this, ExprType, OpLoc, ExprRange,
3421                                       ExprKind))
3422    return true;
3423
3424  return false;
3425}
3426
3427static bool CheckAlignOfExpr(Sema &S, Expr *E) {
3428  E = E->IgnoreParens();
3429
3430  // Cannot know anything else if the expression is dependent.
3431  if (E->isTypeDependent())
3432    return false;
3433
3434  if (E->getObjectKind() == OK_BitField) {
3435    S.Diag(E->getExprLoc(), diag::err_sizeof_alignof_bitfield)
3436       << 1 << E->getSourceRange();
3437    return true;
3438  }
3439
3440  ValueDecl *D = 0;
3441  if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E)) {
3442    D = DRE->getDecl();
3443  } else if (MemberExpr *ME = dyn_cast<MemberExpr>(E)) {
3444    D = ME->getMemberDecl();
3445  }
3446
3447  // If it's a field, require the containing struct to have a
3448  // complete definition so that we can compute the layout.
3449  //
3450  // This requires a very particular set of circumstances.  For a
3451  // field to be contained within an incomplete type, we must in the
3452  // process of parsing that type.  To have an expression refer to a
3453  // field, it must be an id-expression or a member-expression, but
3454  // the latter are always ill-formed when the base type is
3455  // incomplete, including only being partially complete.  An
3456  // id-expression can never refer to a field in C because fields
3457  // are not in the ordinary namespace.  In C++, an id-expression
3458  // can implicitly be a member access, but only if there's an
3459  // implicit 'this' value, and all such contexts are subject to
3460  // delayed parsing --- except for trailing return types in C++11.
3461  // And if an id-expression referring to a field occurs in a
3462  // context that lacks a 'this' value, it's ill-formed --- except,
3463  // agian, in C++11, where such references are allowed in an
3464  // unevaluated context.  So C++11 introduces some new complexity.
3465  //
3466  // For the record, since __alignof__ on expressions is a GCC
3467  // extension, GCC seems to permit this but always gives the
3468  // nonsensical answer 0.
3469  //
3470  // We don't really need the layout here --- we could instead just
3471  // directly check for all the appropriate alignment-lowing
3472  // attributes --- but that would require duplicating a lot of
3473  // logic that just isn't worth duplicating for such a marginal
3474  // use-case.
3475  if (FieldDecl *FD = dyn_cast_or_null<FieldDecl>(D)) {
3476    // Fast path this check, since we at least know the record has a
3477    // definition if we can find a member of it.
3478    if (!FD->getParent()->isCompleteDefinition()) {
3479      S.Diag(E->getExprLoc(), diag::err_alignof_member_of_incomplete_type)
3480        << E->getSourceRange();
3481      return true;
3482    }
3483
3484    // Otherwise, if it's a field, and the field doesn't have
3485    // reference type, then it must have a complete type (or be a
3486    // flexible array member, which we explicitly want to
3487    // white-list anyway), which makes the following checks trivial.
3488    if (!FD->getType()->isReferenceType())
3489      return false;
3490  }
3491
3492  return S.CheckUnaryExprOrTypeTraitOperand(E, UETT_AlignOf);
3493}
3494
3495bool Sema::CheckVecStepExpr(Expr *E) {
3496  E = E->IgnoreParens();
3497
3498  // Cannot know anything else if the expression is dependent.
3499  if (E->isTypeDependent())
3500    return false;
3501
3502  return CheckUnaryExprOrTypeTraitOperand(E, UETT_VecStep);
3503}
3504
3505/// \brief Build a sizeof or alignof expression given a type operand.
3506ExprResult
3507Sema::CreateUnaryExprOrTypeTraitExpr(TypeSourceInfo *TInfo,
3508                                     SourceLocation OpLoc,
3509                                     UnaryExprOrTypeTrait ExprKind,
3510                                     SourceRange R) {
3511  if (!TInfo)
3512    return ExprError();
3513
3514  QualType T = TInfo->getType();
3515
3516  if (!T->isDependentType() &&
3517      CheckUnaryExprOrTypeTraitOperand(T, OpLoc, R, ExprKind))
3518    return ExprError();
3519
3520  // C99 6.5.3.4p4: the type (an unsigned integer type) is size_t.
3521  return Owned(new (Context) UnaryExprOrTypeTraitExpr(ExprKind, TInfo,
3522                                                      Context.getSizeType(),
3523                                                      OpLoc, R.getEnd()));
3524}
3525
3526/// \brief Build a sizeof or alignof expression given an expression
3527/// operand.
3528ExprResult
3529Sema::CreateUnaryExprOrTypeTraitExpr(Expr *E, SourceLocation OpLoc,
3530                                     UnaryExprOrTypeTrait ExprKind) {
3531  ExprResult PE = CheckPlaceholderExpr(E);
3532  if (PE.isInvalid())
3533    return ExprError();
3534
3535  E = PE.get();
3536
3537  // Verify that the operand is valid.
3538  bool isInvalid = false;
3539  if (E->isTypeDependent()) {
3540    // Delay type-checking for type-dependent expressions.
3541  } else if (ExprKind == UETT_AlignOf) {
3542    isInvalid = CheckAlignOfExpr(*this, E);
3543  } else if (ExprKind == UETT_VecStep) {
3544    isInvalid = CheckVecStepExpr(E);
3545  } else if (E->refersToBitField()) {  // C99 6.5.3.4p1.
3546    Diag(E->getExprLoc(), diag::err_sizeof_alignof_bitfield) << 0;
3547    isInvalid = true;
3548  } else {
3549    isInvalid = CheckUnaryExprOrTypeTraitOperand(E, UETT_SizeOf);
3550  }
3551
3552  if (isInvalid)
3553    return ExprError();
3554
3555  if (ExprKind == UETT_SizeOf && E->getType()->isVariableArrayType()) {
3556    PE = TransformToPotentiallyEvaluated(E);
3557    if (PE.isInvalid()) return ExprError();
3558    E = PE.take();
3559  }
3560
3561  // C99 6.5.3.4p4: the type (an unsigned integer type) is size_t.
3562  return Owned(new (Context) UnaryExprOrTypeTraitExpr(
3563      ExprKind, E, Context.getSizeType(), OpLoc,
3564      E->getSourceRange().getEnd()));
3565}
3566
3567/// ActOnUnaryExprOrTypeTraitExpr - Handle @c sizeof(type) and @c sizeof @c
3568/// expr and the same for @c alignof and @c __alignof
3569/// Note that the ArgRange is invalid if isType is false.
3570ExprResult
3571Sema::ActOnUnaryExprOrTypeTraitExpr(SourceLocation OpLoc,
3572                                    UnaryExprOrTypeTrait ExprKind, bool IsType,
3573                                    void *TyOrEx, const SourceRange &ArgRange) {
3574  // If error parsing type, ignore.
3575  if (TyOrEx == 0) return ExprError();
3576
3577  if (IsType) {
3578    TypeSourceInfo *TInfo;
3579    (void) GetTypeFromParser(ParsedType::getFromOpaquePtr(TyOrEx), &TInfo);
3580    return CreateUnaryExprOrTypeTraitExpr(TInfo, OpLoc, ExprKind, ArgRange);
3581  }
3582
3583  Expr *ArgEx = (Expr *)TyOrEx;
3584  ExprResult Result = CreateUnaryExprOrTypeTraitExpr(ArgEx, OpLoc, ExprKind);
3585  return Result;
3586}
3587
3588static QualType CheckRealImagOperand(Sema &S, ExprResult &V, SourceLocation Loc,
3589                                     bool IsReal) {
3590  if (V.get()->isTypeDependent())
3591    return S.Context.DependentTy;
3592
3593  // _Real and _Imag are only l-values for normal l-values.
3594  if (V.get()->getObjectKind() != OK_Ordinary) {
3595    V = S.DefaultLvalueConversion(V.take());
3596    if (V.isInvalid())
3597      return QualType();
3598  }
3599
3600  // These operators return the element type of a complex type.
3601  if (const ComplexType *CT = V.get()->getType()->getAs<ComplexType>())
3602    return CT->getElementType();
3603
3604  // Otherwise they pass through real integer and floating point types here.
3605  if (V.get()->getType()->isArithmeticType())
3606    return V.get()->getType();
3607
3608  // Test for placeholders.
3609  ExprResult PR = S.CheckPlaceholderExpr(V.get());
3610  if (PR.isInvalid()) return QualType();
3611  if (PR.get() != V.get()) {
3612    V = PR;
3613    return CheckRealImagOperand(S, V, Loc, IsReal);
3614  }
3615
3616  // Reject anything else.
3617  S.Diag(Loc, diag::err_realimag_invalid_type) << V.get()->getType()
3618    << (IsReal ? "__real" : "__imag");
3619  return QualType();
3620}
3621
3622
3623
3624ExprResult
3625Sema::ActOnPostfixUnaryOp(Scope *S, SourceLocation OpLoc,
3626                          tok::TokenKind Kind, Expr *Input) {
3627  UnaryOperatorKind Opc;
3628  switch (Kind) {
3629  default: llvm_unreachable("Unknown unary op!");
3630  case tok::plusplus:   Opc = UO_PostInc; break;
3631  case tok::minusminus: Opc = UO_PostDec; break;
3632  }
3633
3634  // Since this might is a postfix expression, get rid of ParenListExprs.
3635  ExprResult Result = MaybeConvertParenListExprToParenExpr(S, Input);
3636  if (Result.isInvalid()) return ExprError();
3637  Input = Result.take();
3638
3639  return BuildUnaryOp(S, OpLoc, Opc, Input);
3640}
3641
3642/// \brief Diagnose if arithmetic on the given ObjC pointer is illegal.
3643///
3644/// \return true on error
3645static bool checkArithmeticOnObjCPointer(Sema &S,
3646                                         SourceLocation opLoc,
3647                                         Expr *op) {
3648  assert(op->getType()->isObjCObjectPointerType());
3649  if (S.LangOpts.ObjCRuntime.allowsPointerArithmetic() &&
3650      !S.LangOpts.ObjCSubscriptingLegacyRuntime)
3651    return false;
3652
3653  S.Diag(opLoc, diag::err_arithmetic_nonfragile_interface)
3654    << op->getType()->castAs<ObjCObjectPointerType>()->getPointeeType()
3655    << op->getSourceRange();
3656  return true;
3657}
3658
3659ExprResult
3660Sema::ActOnArraySubscriptExpr(Scope *S, Expr *base, SourceLocation lbLoc,
3661                              Expr *idx, SourceLocation rbLoc) {
3662  // Since this might be a postfix expression, get rid of ParenListExprs.
3663  if (isa<ParenListExpr>(base)) {
3664    ExprResult result = MaybeConvertParenListExprToParenExpr(S, base);
3665    if (result.isInvalid()) return ExprError();
3666    base = result.take();
3667  }
3668
3669  // Handle any non-overload placeholder types in the base and index
3670  // expressions.  We can't handle overloads here because the other
3671  // operand might be an overloadable type, in which case the overload
3672  // resolution for the operator overload should get the first crack
3673  // at the overload.
3674  if (base->getType()->isNonOverloadPlaceholderType()) {
3675    ExprResult result = CheckPlaceholderExpr(base);
3676    if (result.isInvalid()) return ExprError();
3677    base = result.take();
3678  }
3679  if (idx->getType()->isNonOverloadPlaceholderType()) {
3680    ExprResult result = CheckPlaceholderExpr(idx);
3681    if (result.isInvalid()) return ExprError();
3682    idx = result.take();
3683  }
3684
3685  // Build an unanalyzed expression if either operand is type-dependent.
3686  if (getLangOpts().CPlusPlus &&
3687      (base->isTypeDependent() || idx->isTypeDependent())) {
3688    return Owned(new (Context) ArraySubscriptExpr(base, idx,
3689                                                  Context.DependentTy,
3690                                                  VK_LValue, OK_Ordinary,
3691                                                  rbLoc));
3692  }
3693
3694  // Use C++ overloaded-operator rules if either operand has record
3695  // type.  The spec says to do this if either type is *overloadable*,
3696  // but enum types can't declare subscript operators or conversion
3697  // operators, so there's nothing interesting for overload resolution
3698  // to do if there aren't any record types involved.
3699  //
3700  // ObjC pointers have their own subscripting logic that is not tied
3701  // to overload resolution and so should not take this path.
3702  if (getLangOpts().CPlusPlus &&
3703      (base->getType()->isRecordType() ||
3704       (!base->getType()->isObjCObjectPointerType() &&
3705        idx->getType()->isRecordType()))) {
3706    return CreateOverloadedArraySubscriptExpr(lbLoc, rbLoc, base, idx);
3707  }
3708
3709  return CreateBuiltinArraySubscriptExpr(base, lbLoc, idx, rbLoc);
3710}
3711
3712ExprResult
3713Sema::CreateBuiltinArraySubscriptExpr(Expr *Base, SourceLocation LLoc,
3714                                      Expr *Idx, SourceLocation RLoc) {
3715  Expr *LHSExp = Base;
3716  Expr *RHSExp = Idx;
3717
3718  // Perform default conversions.
3719  if (!LHSExp->getType()->getAs<VectorType>()) {
3720    ExprResult Result = DefaultFunctionArrayLvalueConversion(LHSExp);
3721    if (Result.isInvalid())
3722      return ExprError();
3723    LHSExp = Result.take();
3724  }
3725  ExprResult Result = DefaultFunctionArrayLvalueConversion(RHSExp);
3726  if (Result.isInvalid())
3727    return ExprError();
3728  RHSExp = Result.take();
3729
3730  QualType LHSTy = LHSExp->getType(), RHSTy = RHSExp->getType();
3731  ExprValueKind VK = VK_LValue;
3732  ExprObjectKind OK = OK_Ordinary;
3733
3734  // C99 6.5.2.1p2: the expression e1[e2] is by definition precisely equivalent
3735  // to the expression *((e1)+(e2)). This means the array "Base" may actually be
3736  // in the subscript position. As a result, we need to derive the array base
3737  // and index from the expression types.
3738  Expr *BaseExpr, *IndexExpr;
3739  QualType ResultType;
3740  if (LHSTy->isDependentType() || RHSTy->isDependentType()) {
3741    BaseExpr = LHSExp;
3742    IndexExpr = RHSExp;
3743    ResultType = Context.DependentTy;
3744  } else if (const PointerType *PTy = LHSTy->getAs<PointerType>()) {
3745    BaseExpr = LHSExp;
3746    IndexExpr = RHSExp;
3747    ResultType = PTy->getPointeeType();
3748  } else if (const ObjCObjectPointerType *PTy =
3749               LHSTy->getAs<ObjCObjectPointerType>()) {
3750    BaseExpr = LHSExp;
3751    IndexExpr = RHSExp;
3752
3753    // Use custom logic if this should be the pseudo-object subscript
3754    // expression.
3755    if (!LangOpts.isSubscriptPointerArithmetic())
3756      return BuildObjCSubscriptExpression(RLoc, BaseExpr, IndexExpr, 0, 0);
3757
3758    ResultType = PTy->getPointeeType();
3759  } else if (const PointerType *PTy = RHSTy->getAs<PointerType>()) {
3760     // Handle the uncommon case of "123[Ptr]".
3761    BaseExpr = RHSExp;
3762    IndexExpr = LHSExp;
3763    ResultType = PTy->getPointeeType();
3764  } else if (const ObjCObjectPointerType *PTy =
3765               RHSTy->getAs<ObjCObjectPointerType>()) {
3766     // Handle the uncommon case of "123[Ptr]".
3767    BaseExpr = RHSExp;
3768    IndexExpr = LHSExp;
3769    ResultType = PTy->getPointeeType();
3770    if (!LangOpts.isSubscriptPointerArithmetic()) {
3771      Diag(LLoc, diag::err_subscript_nonfragile_interface)
3772        << ResultType << BaseExpr->getSourceRange();
3773      return ExprError();
3774    }
3775  } else if (const VectorType *VTy = LHSTy->getAs<VectorType>()) {
3776    BaseExpr = LHSExp;    // vectors: V[123]
3777    IndexExpr = RHSExp;
3778    VK = LHSExp->getValueKind();
3779    if (VK != VK_RValue)
3780      OK = OK_VectorComponent;
3781
3782    // FIXME: need to deal with const...
3783    ResultType = VTy->getElementType();
3784  } else if (LHSTy->isArrayType()) {
3785    // If we see an array that wasn't promoted by
3786    // DefaultFunctionArrayLvalueConversion, it must be an array that
3787    // wasn't promoted because of the C90 rule that doesn't
3788    // allow promoting non-lvalue arrays.  Warn, then
3789    // force the promotion here.
3790    Diag(LHSExp->getLocStart(), diag::ext_subscript_non_lvalue) <<
3791        LHSExp->getSourceRange();
3792    LHSExp = ImpCastExprToType(LHSExp, Context.getArrayDecayedType(LHSTy),
3793                               CK_ArrayToPointerDecay).take();
3794    LHSTy = LHSExp->getType();
3795
3796    BaseExpr = LHSExp;
3797    IndexExpr = RHSExp;
3798    ResultType = LHSTy->getAs<PointerType>()->getPointeeType();
3799  } else if (RHSTy->isArrayType()) {
3800    // Same as previous, except for 123[f().a] case
3801    Diag(RHSExp->getLocStart(), diag::ext_subscript_non_lvalue) <<
3802        RHSExp->getSourceRange();
3803    RHSExp = ImpCastExprToType(RHSExp, Context.getArrayDecayedType(RHSTy),
3804                               CK_ArrayToPointerDecay).take();
3805    RHSTy = RHSExp->getType();
3806
3807    BaseExpr = RHSExp;
3808    IndexExpr = LHSExp;
3809    ResultType = RHSTy->getAs<PointerType>()->getPointeeType();
3810  } else {
3811    return ExprError(Diag(LLoc, diag::err_typecheck_subscript_value)
3812       << LHSExp->getSourceRange() << RHSExp->getSourceRange());
3813  }
3814  // C99 6.5.2.1p1
3815  if (!IndexExpr->getType()->isIntegerType() && !IndexExpr->isTypeDependent())
3816    return ExprError(Diag(LLoc, diag::err_typecheck_subscript_not_integer)
3817                     << IndexExpr->getSourceRange());
3818
3819  if ((IndexExpr->getType()->isSpecificBuiltinType(BuiltinType::Char_S) ||
3820       IndexExpr->getType()->isSpecificBuiltinType(BuiltinType::Char_U))
3821         && !IndexExpr->isTypeDependent())
3822    Diag(LLoc, diag::warn_subscript_is_char) << IndexExpr->getSourceRange();
3823
3824  // C99 6.5.2.1p1: "shall have type "pointer to *object* type". Similarly,
3825  // C++ [expr.sub]p1: The type "T" shall be a completely-defined object
3826  // type. Note that Functions are not objects, and that (in C99 parlance)
3827  // incomplete types are not object types.
3828  if (ResultType->isFunctionType()) {
3829    Diag(BaseExpr->getLocStart(), diag::err_subscript_function_type)
3830      << ResultType << BaseExpr->getSourceRange();
3831    return ExprError();
3832  }
3833
3834  if (ResultType->isVoidType() && !getLangOpts().CPlusPlus) {
3835    // GNU extension: subscripting on pointer to void
3836    Diag(LLoc, diag::ext_gnu_subscript_void_type)
3837      << BaseExpr->getSourceRange();
3838
3839    // C forbids expressions of unqualified void type from being l-values.
3840    // See IsCForbiddenLValueType.
3841    if (!ResultType.hasQualifiers()) VK = VK_RValue;
3842  } else if (!ResultType->isDependentType() &&
3843      RequireCompleteType(LLoc, ResultType,
3844                          diag::err_subscript_incomplete_type, BaseExpr))
3845    return ExprError();
3846
3847  assert(VK == VK_RValue || LangOpts.CPlusPlus ||
3848         !ResultType.isCForbiddenLValueType());
3849
3850  return Owned(new (Context) ArraySubscriptExpr(LHSExp, RHSExp,
3851                                                ResultType, VK, OK, RLoc));
3852}
3853
3854ExprResult Sema::BuildCXXDefaultArgExpr(SourceLocation CallLoc,
3855                                        FunctionDecl *FD,
3856                                        ParmVarDecl *Param) {
3857  if (Param->hasUnparsedDefaultArg()) {
3858    Diag(CallLoc,
3859         diag::err_use_of_default_argument_to_function_declared_later) <<
3860      FD << cast<CXXRecordDecl>(FD->getDeclContext())->getDeclName();
3861    Diag(UnparsedDefaultArgLocs[Param],
3862         diag::note_default_argument_declared_here);
3863    return ExprError();
3864  }
3865
3866  if (Param->hasUninstantiatedDefaultArg()) {
3867    Expr *UninstExpr = Param->getUninstantiatedDefaultArg();
3868
3869    EnterExpressionEvaluationContext EvalContext(*this, PotentiallyEvaluated,
3870                                                 Param);
3871
3872    // Instantiate the expression.
3873    MultiLevelTemplateArgumentList MutiLevelArgList
3874      = getTemplateInstantiationArgs(FD, 0, /*RelativeToPrimary=*/true);
3875
3876    InstantiatingTemplate Inst(*this, CallLoc, Param,
3877                               MutiLevelArgList.getInnermost());
3878    if (Inst.isInvalid())
3879      return ExprError();
3880
3881    ExprResult Result;
3882    {
3883      // C++ [dcl.fct.default]p5:
3884      //   The names in the [default argument] expression are bound, and
3885      //   the semantic constraints are checked, at the point where the
3886      //   default argument expression appears.
3887      ContextRAII SavedContext(*this, FD);
3888      LocalInstantiationScope Local(*this);
3889      Result = SubstExpr(UninstExpr, MutiLevelArgList);
3890    }
3891    if (Result.isInvalid())
3892      return ExprError();
3893
3894    // Check the expression as an initializer for the parameter.
3895    InitializedEntity Entity
3896      = InitializedEntity::InitializeParameter(Context, Param);
3897    InitializationKind Kind
3898      = InitializationKind::CreateCopy(Param->getLocation(),
3899             /*FIXME:EqualLoc*/UninstExpr->getLocStart());
3900    Expr *ResultE = Result.takeAs<Expr>();
3901
3902    InitializationSequence InitSeq(*this, Entity, Kind, ResultE);
3903    Result = InitSeq.Perform(*this, Entity, Kind, ResultE);
3904    if (Result.isInvalid())
3905      return ExprError();
3906
3907    Expr *Arg = Result.takeAs<Expr>();
3908    CheckCompletedExpr(Arg, Param->getOuterLocStart());
3909    // Build the default argument expression.
3910    return Owned(CXXDefaultArgExpr::Create(Context, CallLoc, Param, Arg));
3911  }
3912
3913  // If the default expression creates temporaries, we need to
3914  // push them to the current stack of expression temporaries so they'll
3915  // be properly destroyed.
3916  // FIXME: We should really be rebuilding the default argument with new
3917  // bound temporaries; see the comment in PR5810.
3918  // We don't need to do that with block decls, though, because
3919  // blocks in default argument expression can never capture anything.
3920  if (isa<ExprWithCleanups>(Param->getInit())) {
3921    // Set the "needs cleanups" bit regardless of whether there are
3922    // any explicit objects.
3923    ExprNeedsCleanups = true;
3924
3925    // Append all the objects to the cleanup list.  Right now, this
3926    // should always be a no-op, because blocks in default argument
3927    // expressions should never be able to capture anything.
3928    assert(!cast<ExprWithCleanups>(Param->getInit())->getNumObjects() &&
3929           "default argument expression has capturing blocks?");
3930  }
3931
3932  // We already type-checked the argument, so we know it works.
3933  // Just mark all of the declarations in this potentially-evaluated expression
3934  // as being "referenced".
3935  MarkDeclarationsReferencedInExpr(Param->getDefaultArg(),
3936                                   /*SkipLocalVariables=*/true);
3937  return Owned(CXXDefaultArgExpr::Create(Context, CallLoc, Param));
3938}
3939
3940
3941Sema::VariadicCallType
3942Sema::getVariadicCallType(FunctionDecl *FDecl, const FunctionProtoType *Proto,
3943                          Expr *Fn) {
3944  if (Proto && Proto->isVariadic()) {
3945    if (dyn_cast_or_null<CXXConstructorDecl>(FDecl))
3946      return VariadicConstructor;
3947    else if (Fn && Fn->getType()->isBlockPointerType())
3948      return VariadicBlock;
3949    else if (FDecl) {
3950      if (CXXMethodDecl *Method = dyn_cast_or_null<CXXMethodDecl>(FDecl))
3951        if (Method->isInstance())
3952          return VariadicMethod;
3953    } else if (Fn && Fn->getType() == Context.BoundMemberTy)
3954      return VariadicMethod;
3955    return VariadicFunction;
3956  }
3957  return VariadicDoesNotApply;
3958}
3959
3960namespace {
3961class FunctionCallCCC : public FunctionCallFilterCCC {
3962public:
3963  FunctionCallCCC(Sema &SemaRef, const IdentifierInfo *FuncName,
3964                  unsigned NumArgs, bool HasExplicitTemplateArgs)
3965      : FunctionCallFilterCCC(SemaRef, NumArgs, HasExplicitTemplateArgs),
3966        FunctionName(FuncName) {}
3967
3968  virtual bool ValidateCandidate(const TypoCorrection &candidate) {
3969    if (!candidate.getCorrectionSpecifier() ||
3970        candidate.getCorrectionAsIdentifierInfo() != FunctionName) {
3971      return false;
3972    }
3973
3974    return FunctionCallFilterCCC::ValidateCandidate(candidate);
3975  }
3976
3977private:
3978  const IdentifierInfo *const FunctionName;
3979};
3980}
3981
3982static TypoCorrection TryTypoCorrectionForCall(Sema &S,
3983                                               DeclarationNameInfo FuncName,
3984                                               ArrayRef<Expr *> Args) {
3985  FunctionCallCCC CCC(S, FuncName.getName().getAsIdentifierInfo(),
3986                      Args.size(), false);
3987  if (TypoCorrection Corrected =
3988          S.CorrectTypo(FuncName, Sema::LookupOrdinaryName,
3989                        S.getScopeForContext(S.CurContext), NULL, CCC)) {
3990    if (NamedDecl *ND = Corrected.getCorrectionDecl()) {
3991      if (Corrected.isOverloaded()) {
3992        OverloadCandidateSet OCS(FuncName.getLoc());
3993        OverloadCandidateSet::iterator Best;
3994        for (TypoCorrection::decl_iterator CD = Corrected.begin(),
3995                                           CDEnd = Corrected.end();
3996             CD != CDEnd; ++CD) {
3997          if (FunctionDecl *FD = dyn_cast<FunctionDecl>(*CD))
3998            S.AddOverloadCandidate(FD, DeclAccessPair::make(FD, AS_none), Args,
3999                                   OCS);
4000        }
4001        switch (OCS.BestViableFunction(S, FuncName.getLoc(), Best)) {
4002        case OR_Success:
4003          ND = Best->Function;
4004          Corrected.setCorrectionDecl(ND);
4005          break;
4006        default:
4007          break;
4008        }
4009      }
4010      if (isa<ValueDecl>(ND) || isa<FunctionTemplateDecl>(ND)) {
4011        return Corrected;
4012      }
4013    }
4014  }
4015  return TypoCorrection();
4016}
4017
4018/// ConvertArgumentsForCall - Converts the arguments specified in
4019/// Args/NumArgs to the parameter types of the function FDecl with
4020/// function prototype Proto. Call is the call expression itself, and
4021/// Fn is the function expression. For a C++ member function, this
4022/// routine does not attempt to convert the object argument. Returns
4023/// true if the call is ill-formed.
4024bool
4025Sema::ConvertArgumentsForCall(CallExpr *Call, Expr *Fn,
4026                              FunctionDecl *FDecl,
4027                              const FunctionProtoType *Proto,
4028                              ArrayRef<Expr *> Args,
4029                              SourceLocation RParenLoc,
4030                              bool IsExecConfig) {
4031  // Bail out early if calling a builtin with custom typechecking.
4032  // We don't need to do this in the
4033  if (FDecl)
4034    if (unsigned ID = FDecl->getBuiltinID())
4035      if (Context.BuiltinInfo.hasCustomTypechecking(ID))
4036        return false;
4037
4038  // C99 6.5.2.2p7 - the arguments are implicitly converted, as if by
4039  // assignment, to the types of the corresponding parameter, ...
4040  unsigned NumArgsInProto = Proto->getNumArgs();
4041  bool Invalid = false;
4042  unsigned MinArgs = FDecl ? FDecl->getMinRequiredArguments() : NumArgsInProto;
4043  unsigned FnKind = Fn->getType()->isBlockPointerType()
4044                       ? 1 /* block */
4045                       : (IsExecConfig ? 3 /* kernel function (exec config) */
4046                                       : 0 /* function */);
4047
4048  // If too few arguments are available (and we don't have default
4049  // arguments for the remaining parameters), don't make the call.
4050  if (Args.size() < NumArgsInProto) {
4051    if (Args.size() < MinArgs) {
4052      MemberExpr *ME = dyn_cast<MemberExpr>(Fn);
4053      TypoCorrection TC;
4054      if (FDecl && (TC = TryTypoCorrectionForCall(
4055                        *this, DeclarationNameInfo(FDecl->getDeclName(),
4056                                                   (ME ? ME->getMemberLoc()
4057                                                       : Fn->getLocStart())),
4058                        Args))) {
4059        unsigned diag_id =
4060            MinArgs == NumArgsInProto && !Proto->isVariadic()
4061                ? diag::err_typecheck_call_too_few_args_suggest
4062                : diag::err_typecheck_call_too_few_args_at_least_suggest;
4063        diagnoseTypo(TC, PDiag(diag_id) << FnKind << MinArgs
4064                                        << static_cast<unsigned>(Args.size())
4065                                        << Fn->getSourceRange());
4066      } else if (MinArgs == 1 && FDecl && FDecl->getParamDecl(0)->getDeclName())
4067        Diag(RParenLoc, MinArgs == NumArgsInProto && !Proto->isVariadic()
4068                          ? diag::err_typecheck_call_too_few_args_one
4069                          : diag::err_typecheck_call_too_few_args_at_least_one)
4070          << FnKind
4071          << FDecl->getParamDecl(0) << Fn->getSourceRange();
4072      else
4073        Diag(RParenLoc, MinArgs == NumArgsInProto && !Proto->isVariadic()
4074                          ? diag::err_typecheck_call_too_few_args
4075                          : diag::err_typecheck_call_too_few_args_at_least)
4076          << FnKind
4077          << MinArgs << static_cast<unsigned>(Args.size())
4078          << Fn->getSourceRange();
4079
4080      // Emit the location of the prototype.
4081      if (!TC && FDecl && !FDecl->getBuiltinID() && !IsExecConfig)
4082        Diag(FDecl->getLocStart(), diag::note_callee_decl)
4083          << FDecl;
4084
4085      return true;
4086    }
4087    Call->setNumArgs(Context, NumArgsInProto);
4088  }
4089
4090  // If too many are passed and not variadic, error on the extras and drop
4091  // them.
4092  if (Args.size() > NumArgsInProto) {
4093    if (!Proto->isVariadic()) {
4094      TypoCorrection TC;
4095      if (FDecl && (TC = TryTypoCorrectionForCall(
4096                        *this, DeclarationNameInfo(FDecl->getDeclName(),
4097                                                   Fn->getLocStart()),
4098                        Args))) {
4099        unsigned diag_id =
4100            MinArgs == NumArgsInProto && !Proto->isVariadic()
4101                ? diag::err_typecheck_call_too_many_args_suggest
4102                : diag::err_typecheck_call_too_many_args_at_most_suggest;
4103        diagnoseTypo(TC, PDiag(diag_id) << FnKind << NumArgsInProto
4104                                        << static_cast<unsigned>(Args.size())
4105                                        << Fn->getSourceRange());
4106      } else if (NumArgsInProto == 1 && FDecl &&
4107                 FDecl->getParamDecl(0)->getDeclName())
4108        Diag(Args[NumArgsInProto]->getLocStart(),
4109             MinArgs == NumArgsInProto
4110               ? diag::err_typecheck_call_too_many_args_one
4111               : diag::err_typecheck_call_too_many_args_at_most_one)
4112          << FnKind
4113          << FDecl->getParamDecl(0) << static_cast<unsigned>(Args.size())
4114          << Fn->getSourceRange()
4115          << SourceRange(Args[NumArgsInProto]->getLocStart(),
4116                         Args.back()->getLocEnd());
4117      else
4118        Diag(Args[NumArgsInProto]->getLocStart(),
4119             MinArgs == NumArgsInProto
4120               ? diag::err_typecheck_call_too_many_args
4121               : diag::err_typecheck_call_too_many_args_at_most)
4122          << FnKind
4123          << NumArgsInProto << static_cast<unsigned>(Args.size())
4124          << Fn->getSourceRange()
4125          << SourceRange(Args[NumArgsInProto]->getLocStart(),
4126                         Args.back()->getLocEnd());
4127
4128      // Emit the location of the prototype.
4129      if (!TC && FDecl && !FDecl->getBuiltinID() && !IsExecConfig)
4130        Diag(FDecl->getLocStart(), diag::note_callee_decl)
4131          << FDecl;
4132
4133      // This deletes the extra arguments.
4134      Call->setNumArgs(Context, NumArgsInProto);
4135      return true;
4136    }
4137  }
4138  SmallVector<Expr *, 8> AllArgs;
4139  VariadicCallType CallType = getVariadicCallType(FDecl, Proto, Fn);
4140
4141  Invalid = GatherArgumentsForCall(Call->getLocStart(), FDecl,
4142                                   Proto, 0, Args, AllArgs, CallType);
4143  if (Invalid)
4144    return true;
4145  unsigned TotalNumArgs = AllArgs.size();
4146  for (unsigned i = 0; i < TotalNumArgs; ++i)
4147    Call->setArg(i, AllArgs[i]);
4148
4149  return false;
4150}
4151
4152bool Sema::GatherArgumentsForCall(SourceLocation CallLoc,
4153                                  FunctionDecl *FDecl,
4154                                  const FunctionProtoType *Proto,
4155                                  unsigned FirstProtoArg,
4156                                  ArrayRef<Expr *> Args,
4157                                  SmallVectorImpl<Expr *> &AllArgs,
4158                                  VariadicCallType CallType,
4159                                  bool AllowExplicit,
4160                                  bool IsListInitialization) {
4161  unsigned NumArgsInProto = Proto->getNumArgs();
4162  unsigned NumArgsToCheck = Args.size();
4163  bool Invalid = false;
4164  if (Args.size() != NumArgsInProto)
4165    // Use default arguments for missing arguments
4166    NumArgsToCheck = NumArgsInProto;
4167  unsigned ArgIx = 0;
4168  // Continue to check argument types (even if we have too few/many args).
4169  for (unsigned i = FirstProtoArg; i != NumArgsToCheck; i++) {
4170    QualType ProtoArgType = Proto->getArgType(i);
4171
4172    Expr *Arg;
4173    ParmVarDecl *Param;
4174    if (ArgIx < Args.size()) {
4175      Arg = Args[ArgIx++];
4176
4177      if (RequireCompleteType(Arg->getLocStart(),
4178                              ProtoArgType,
4179                              diag::err_call_incomplete_argument, Arg))
4180        return true;
4181
4182      // Pass the argument
4183      Param = 0;
4184      if (FDecl && i < FDecl->getNumParams())
4185        Param = FDecl->getParamDecl(i);
4186
4187      // Strip the unbridged-cast placeholder expression off, if applicable.
4188      bool CFAudited = false;
4189      if (Arg->getType() == Context.ARCUnbridgedCastTy &&
4190          FDecl && FDecl->hasAttr<CFAuditedTransferAttr>() &&
4191          (!Param || !Param->hasAttr<CFConsumedAttr>()))
4192        Arg = stripARCUnbridgedCast(Arg);
4193      else if (getLangOpts().ObjCAutoRefCount &&
4194               FDecl && FDecl->hasAttr<CFAuditedTransferAttr>() &&
4195               (!Param || !Param->hasAttr<CFConsumedAttr>()))
4196        CFAudited = true;
4197
4198      InitializedEntity Entity = Param ?
4199          InitializedEntity::InitializeParameter(Context, Param, ProtoArgType)
4200        : InitializedEntity::InitializeParameter(Context, ProtoArgType,
4201                                                 Proto->isArgConsumed(i));
4202
4203      // Remember that parameter belongs to a CF audited API.
4204      if (CFAudited)
4205        Entity.setParameterCFAudited();
4206
4207      ExprResult ArgE = PerformCopyInitialization(Entity,
4208                                                  SourceLocation(),
4209                                                  Owned(Arg),
4210                                                  IsListInitialization,
4211                                                  AllowExplicit);
4212      if (ArgE.isInvalid())
4213        return true;
4214
4215      Arg = ArgE.takeAs<Expr>();
4216    } else {
4217      assert(FDecl && "can't use default arguments without a known callee");
4218      Param = FDecl->getParamDecl(i);
4219
4220      ExprResult ArgExpr =
4221        BuildCXXDefaultArgExpr(CallLoc, FDecl, Param);
4222      if (ArgExpr.isInvalid())
4223        return true;
4224
4225      Arg = ArgExpr.takeAs<Expr>();
4226    }
4227
4228    // Check for array bounds violations for each argument to the call. This
4229    // check only triggers warnings when the argument isn't a more complex Expr
4230    // with its own checking, such as a BinaryOperator.
4231    CheckArrayAccess(Arg);
4232
4233    // Check for violations of C99 static array rules (C99 6.7.5.3p7).
4234    CheckStaticArrayArgument(CallLoc, Param, Arg);
4235
4236    AllArgs.push_back(Arg);
4237  }
4238
4239  // If this is a variadic call, handle args passed through "...".
4240  if (CallType != VariadicDoesNotApply) {
4241    // Assume that extern "C" functions with variadic arguments that
4242    // return __unknown_anytype aren't *really* variadic.
4243    if (Proto->getResultType() == Context.UnknownAnyTy &&
4244        FDecl && FDecl->isExternC()) {
4245      for (unsigned i = ArgIx, e = Args.size(); i != e; ++i) {
4246        QualType paramType; // ignored
4247        ExprResult arg = checkUnknownAnyArg(CallLoc, Args[i], paramType);
4248        Invalid |= arg.isInvalid();
4249        AllArgs.push_back(arg.take());
4250      }
4251
4252    // Otherwise do argument promotion, (C99 6.5.2.2p7).
4253    } else {
4254      for (unsigned i = ArgIx, e = Args.size(); i != e; ++i) {
4255        ExprResult Arg = DefaultVariadicArgumentPromotion(Args[i], CallType,
4256                                                          FDecl);
4257        Invalid |= Arg.isInvalid();
4258        AllArgs.push_back(Arg.take());
4259      }
4260    }
4261
4262    // Check for array bounds violations.
4263    for (unsigned i = ArgIx, e = Args.size(); i != e; ++i)
4264      CheckArrayAccess(Args[i]);
4265  }
4266  return Invalid;
4267}
4268
4269static void DiagnoseCalleeStaticArrayParam(Sema &S, ParmVarDecl *PVD) {
4270  TypeLoc TL = PVD->getTypeSourceInfo()->getTypeLoc();
4271  if (DecayedTypeLoc DTL = TL.getAs<DecayedTypeLoc>())
4272    TL = DTL.getOriginalLoc();
4273  if (ArrayTypeLoc ATL = TL.getAs<ArrayTypeLoc>())
4274    S.Diag(PVD->getLocation(), diag::note_callee_static_array)
4275      << ATL.getLocalSourceRange();
4276}
4277
4278/// CheckStaticArrayArgument - If the given argument corresponds to a static
4279/// array parameter, check that it is non-null, and that if it is formed by
4280/// array-to-pointer decay, the underlying array is sufficiently large.
4281///
4282/// C99 6.7.5.3p7: If the keyword static also appears within the [ and ] of the
4283/// array type derivation, then for each call to the function, the value of the
4284/// corresponding actual argument shall provide access to the first element of
4285/// an array with at least as many elements as specified by the size expression.
4286void
4287Sema::CheckStaticArrayArgument(SourceLocation CallLoc,
4288                               ParmVarDecl *Param,
4289                               const Expr *ArgExpr) {
4290  // Static array parameters are not supported in C++.
4291  if (!Param || getLangOpts().CPlusPlus)
4292    return;
4293
4294  QualType OrigTy = Param->getOriginalType();
4295
4296  const ArrayType *AT = Context.getAsArrayType(OrigTy);
4297  if (!AT || AT->getSizeModifier() != ArrayType::Static)
4298    return;
4299
4300  if (ArgExpr->isNullPointerConstant(Context,
4301                                     Expr::NPC_NeverValueDependent)) {
4302    Diag(CallLoc, diag::warn_null_arg) << ArgExpr->getSourceRange();
4303    DiagnoseCalleeStaticArrayParam(*this, Param);
4304    return;
4305  }
4306
4307  const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT);
4308  if (!CAT)
4309    return;
4310
4311  const ConstantArrayType *ArgCAT =
4312    Context.getAsConstantArrayType(ArgExpr->IgnoreParenImpCasts()->getType());
4313  if (!ArgCAT)
4314    return;
4315
4316  if (ArgCAT->getSize().ult(CAT->getSize())) {
4317    Diag(CallLoc, diag::warn_static_array_too_small)
4318      << ArgExpr->getSourceRange()
4319      << (unsigned) ArgCAT->getSize().getZExtValue()
4320      << (unsigned) CAT->getSize().getZExtValue();
4321    DiagnoseCalleeStaticArrayParam(*this, Param);
4322  }
4323}
4324
4325/// Given a function expression of unknown-any type, try to rebuild it
4326/// to have a function type.
4327static ExprResult rebuildUnknownAnyFunction(Sema &S, Expr *fn);
4328
4329/// Is the given type a placeholder that we need to lower out
4330/// immediately during argument processing?
4331static bool isPlaceholderToRemoveAsArg(QualType type) {
4332  // Placeholders are never sugared.
4333  const BuiltinType *placeholder = dyn_cast<BuiltinType>(type);
4334  if (!placeholder) return false;
4335
4336  switch (placeholder->getKind()) {
4337  // Ignore all the non-placeholder types.
4338#define PLACEHOLDER_TYPE(ID, SINGLETON_ID)
4339#define BUILTIN_TYPE(ID, SINGLETON_ID) case BuiltinType::ID:
4340#include "clang/AST/BuiltinTypes.def"
4341    return false;
4342
4343  // We cannot lower out overload sets; they might validly be resolved
4344  // by the call machinery.
4345  case BuiltinType::Overload:
4346    return false;
4347
4348  // Unbridged casts in ARC can be handled in some call positions and
4349  // should be left in place.
4350  case BuiltinType::ARCUnbridgedCast:
4351    return false;
4352
4353  // Pseudo-objects should be converted as soon as possible.
4354  case BuiltinType::PseudoObject:
4355    return true;
4356
4357  // The debugger mode could theoretically but currently does not try
4358  // to resolve unknown-typed arguments based on known parameter types.
4359  case BuiltinType::UnknownAny:
4360    return true;
4361
4362  // These are always invalid as call arguments and should be reported.
4363  case BuiltinType::BoundMember:
4364  case BuiltinType::BuiltinFn:
4365    return true;
4366  }
4367  llvm_unreachable("bad builtin type kind");
4368}
4369
4370/// Check an argument list for placeholders that we won't try to
4371/// handle later.
4372static bool checkArgsForPlaceholders(Sema &S, MultiExprArg args) {
4373  // Apply this processing to all the arguments at once instead of
4374  // dying at the first failure.
4375  bool hasInvalid = false;
4376  for (size_t i = 0, e = args.size(); i != e; i++) {
4377    if (isPlaceholderToRemoveAsArg(args[i]->getType())) {
4378      ExprResult result = S.CheckPlaceholderExpr(args[i]);
4379      if (result.isInvalid()) hasInvalid = true;
4380      else args[i] = result.take();
4381    }
4382  }
4383  return hasInvalid;
4384}
4385
4386/// ActOnCallExpr - Handle a call to Fn with the specified array of arguments.
4387/// This provides the location of the left/right parens and a list of comma
4388/// locations.
4389ExprResult
4390Sema::ActOnCallExpr(Scope *S, Expr *Fn, SourceLocation LParenLoc,
4391                    MultiExprArg ArgExprs, SourceLocation RParenLoc,
4392                    Expr *ExecConfig, bool IsExecConfig) {
4393  // Since this might be a postfix expression, get rid of ParenListExprs.
4394  ExprResult Result = MaybeConvertParenListExprToParenExpr(S, Fn);
4395  if (Result.isInvalid()) return ExprError();
4396  Fn = Result.take();
4397
4398  if (checkArgsForPlaceholders(*this, ArgExprs))
4399    return ExprError();
4400
4401  if (getLangOpts().CPlusPlus) {
4402    // If this is a pseudo-destructor expression, build the call immediately.
4403    if (isa<CXXPseudoDestructorExpr>(Fn)) {
4404      if (!ArgExprs.empty()) {
4405        // Pseudo-destructor calls should not have any arguments.
4406        Diag(Fn->getLocStart(), diag::err_pseudo_dtor_call_with_args)
4407          << FixItHint::CreateRemoval(
4408                                    SourceRange(ArgExprs[0]->getLocStart(),
4409                                                ArgExprs.back()->getLocEnd()));
4410      }
4411
4412      return Owned(new (Context) CallExpr(Context, Fn, None,
4413                                          Context.VoidTy, VK_RValue,
4414                                          RParenLoc));
4415    }
4416    if (Fn->getType() == Context.PseudoObjectTy) {
4417      ExprResult result = CheckPlaceholderExpr(Fn);
4418      if (result.isInvalid()) return ExprError();
4419      Fn = result.take();
4420    }
4421
4422    // Determine whether this is a dependent call inside a C++ template,
4423    // in which case we won't do any semantic analysis now.
4424    // FIXME: Will need to cache the results of name lookup (including ADL) in
4425    // Fn.
4426    bool Dependent = false;
4427    if (Fn->isTypeDependent())
4428      Dependent = true;
4429    else if (Expr::hasAnyTypeDependentArguments(ArgExprs))
4430      Dependent = true;
4431
4432    if (Dependent) {
4433      if (ExecConfig) {
4434        return Owned(new (Context) CUDAKernelCallExpr(
4435            Context, Fn, cast<CallExpr>(ExecConfig), ArgExprs,
4436            Context.DependentTy, VK_RValue, RParenLoc));
4437      } else {
4438        return Owned(new (Context) CallExpr(Context, Fn, ArgExprs,
4439                                            Context.DependentTy, VK_RValue,
4440                                            RParenLoc));
4441      }
4442    }
4443
4444    // Determine whether this is a call to an object (C++ [over.call.object]).
4445    if (Fn->getType()->isRecordType())
4446      return Owned(BuildCallToObjectOfClassType(S, Fn, LParenLoc,
4447                                                ArgExprs, RParenLoc));
4448
4449    if (Fn->getType() == Context.UnknownAnyTy) {
4450      ExprResult result = rebuildUnknownAnyFunction(*this, Fn);
4451      if (result.isInvalid()) return ExprError();
4452      Fn = result.take();
4453    }
4454
4455    if (Fn->getType() == Context.BoundMemberTy) {
4456      return BuildCallToMemberFunction(S, Fn, LParenLoc, ArgExprs, RParenLoc);
4457    }
4458  }
4459
4460  // Check for overloaded calls.  This can happen even in C due to extensions.
4461  if (Fn->getType() == Context.OverloadTy) {
4462    OverloadExpr::FindResult find = OverloadExpr::find(Fn);
4463
4464    // We aren't supposed to apply this logic for if there's an '&' involved.
4465    if (!find.HasFormOfMemberPointer) {
4466      OverloadExpr *ovl = find.Expression;
4467      if (isa<UnresolvedLookupExpr>(ovl)) {
4468        UnresolvedLookupExpr *ULE = cast<UnresolvedLookupExpr>(ovl);
4469        return BuildOverloadedCallExpr(S, Fn, ULE, LParenLoc, ArgExprs,
4470                                       RParenLoc, ExecConfig);
4471      } else {
4472        return BuildCallToMemberFunction(S, Fn, LParenLoc, ArgExprs,
4473                                         RParenLoc);
4474      }
4475    }
4476  }
4477
4478  // If we're directly calling a function, get the appropriate declaration.
4479  if (Fn->getType() == Context.UnknownAnyTy) {
4480    ExprResult result = rebuildUnknownAnyFunction(*this, Fn);
4481    if (result.isInvalid()) return ExprError();
4482    Fn = result.take();
4483  }
4484
4485  Expr *NakedFn = Fn->IgnoreParens();
4486
4487  NamedDecl *NDecl = 0;
4488  if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(NakedFn))
4489    if (UnOp->getOpcode() == UO_AddrOf)
4490      NakedFn = UnOp->getSubExpr()->IgnoreParens();
4491
4492  if (isa<DeclRefExpr>(NakedFn))
4493    NDecl = cast<DeclRefExpr>(NakedFn)->getDecl();
4494  else if (isa<MemberExpr>(NakedFn))
4495    NDecl = cast<MemberExpr>(NakedFn)->getMemberDecl();
4496
4497  return BuildResolvedCallExpr(Fn, NDecl, LParenLoc, ArgExprs, RParenLoc,
4498                               ExecConfig, IsExecConfig);
4499}
4500
4501ExprResult
4502Sema::ActOnCUDAExecConfigExpr(Scope *S, SourceLocation LLLLoc,
4503                              MultiExprArg ExecConfig, SourceLocation GGGLoc) {
4504  FunctionDecl *ConfigDecl = Context.getcudaConfigureCallDecl();
4505  if (!ConfigDecl)
4506    return ExprError(Diag(LLLLoc, diag::err_undeclared_var_use)
4507                          << "cudaConfigureCall");
4508  QualType ConfigQTy = ConfigDecl->getType();
4509
4510  DeclRefExpr *ConfigDR = new (Context) DeclRefExpr(
4511      ConfigDecl, false, ConfigQTy, VK_LValue, LLLLoc);
4512  MarkFunctionReferenced(LLLLoc, ConfigDecl);
4513
4514  return ActOnCallExpr(S, ConfigDR, LLLLoc, ExecConfig, GGGLoc, 0,
4515                       /*IsExecConfig=*/true);
4516}
4517
4518/// ActOnAsTypeExpr - create a new asType (bitcast) from the arguments.
4519///
4520/// __builtin_astype( value, dst type )
4521///
4522ExprResult Sema::ActOnAsTypeExpr(Expr *E, ParsedType ParsedDestTy,
4523                                 SourceLocation BuiltinLoc,
4524                                 SourceLocation RParenLoc) {
4525  ExprValueKind VK = VK_RValue;
4526  ExprObjectKind OK = OK_Ordinary;
4527  QualType DstTy = GetTypeFromParser(ParsedDestTy);
4528  QualType SrcTy = E->getType();
4529  if (Context.getTypeSize(DstTy) != Context.getTypeSize(SrcTy))
4530    return ExprError(Diag(BuiltinLoc,
4531                          diag::err_invalid_astype_of_different_size)
4532                     << DstTy
4533                     << SrcTy
4534                     << E->getSourceRange());
4535  return Owned(new (Context) AsTypeExpr(E, DstTy, VK, OK, BuiltinLoc,
4536               RParenLoc));
4537}
4538
4539/// ActOnConvertVectorExpr - create a new convert-vector expression from the
4540/// provided arguments.
4541///
4542/// __builtin_convertvector( value, dst type )
4543///
4544ExprResult Sema::ActOnConvertVectorExpr(Expr *E, ParsedType ParsedDestTy,
4545                                        SourceLocation BuiltinLoc,
4546                                        SourceLocation RParenLoc) {
4547  TypeSourceInfo *TInfo;
4548  GetTypeFromParser(ParsedDestTy, &TInfo);
4549  return SemaConvertVectorExpr(E, TInfo, BuiltinLoc, RParenLoc);
4550}
4551
4552/// BuildResolvedCallExpr - Build a call to a resolved expression,
4553/// i.e. an expression not of \p OverloadTy.  The expression should
4554/// unary-convert to an expression of function-pointer or
4555/// block-pointer type.
4556///
4557/// \param NDecl the declaration being called, if available
4558ExprResult
4559Sema::BuildResolvedCallExpr(Expr *Fn, NamedDecl *NDecl,
4560                            SourceLocation LParenLoc,
4561                            ArrayRef<Expr *> Args,
4562                            SourceLocation RParenLoc,
4563                            Expr *Config, bool IsExecConfig) {
4564  FunctionDecl *FDecl = dyn_cast_or_null<FunctionDecl>(NDecl);
4565  unsigned BuiltinID = (FDecl ? FDecl->getBuiltinID() : 0);
4566
4567  // Promote the function operand.
4568  // We special-case function promotion here because we only allow promoting
4569  // builtin functions to function pointers in the callee of a call.
4570  ExprResult Result;
4571  if (BuiltinID &&
4572      Fn->getType()->isSpecificBuiltinType(BuiltinType::BuiltinFn)) {
4573    Result = ImpCastExprToType(Fn, Context.getPointerType(FDecl->getType()),
4574                               CK_BuiltinFnToFnPtr).take();
4575  } else {
4576    Result = UsualUnaryConversions(Fn);
4577  }
4578  if (Result.isInvalid())
4579    return ExprError();
4580  Fn = Result.take();
4581
4582  // Make the call expr early, before semantic checks.  This guarantees cleanup
4583  // of arguments and function on error.
4584  CallExpr *TheCall;
4585  if (Config)
4586    TheCall = new (Context) CUDAKernelCallExpr(Context, Fn,
4587                                               cast<CallExpr>(Config), Args,
4588                                               Context.BoolTy, VK_RValue,
4589                                               RParenLoc);
4590  else
4591    TheCall = new (Context) CallExpr(Context, Fn, Args, Context.BoolTy,
4592                                     VK_RValue, RParenLoc);
4593
4594  // Bail out early if calling a builtin with custom typechecking.
4595  if (BuiltinID && Context.BuiltinInfo.hasCustomTypechecking(BuiltinID))
4596    return CheckBuiltinFunctionCall(BuiltinID, TheCall);
4597
4598 retry:
4599  const FunctionType *FuncT;
4600  if (const PointerType *PT = Fn->getType()->getAs<PointerType>()) {
4601    // C99 6.5.2.2p1 - "The expression that denotes the called function shall
4602    // have type pointer to function".
4603    FuncT = PT->getPointeeType()->getAs<FunctionType>();
4604    if (FuncT == 0)
4605      return ExprError(Diag(LParenLoc, diag::err_typecheck_call_not_function)
4606                         << Fn->getType() << Fn->getSourceRange());
4607  } else if (const BlockPointerType *BPT =
4608               Fn->getType()->getAs<BlockPointerType>()) {
4609    FuncT = BPT->getPointeeType()->castAs<FunctionType>();
4610  } else {
4611    // Handle calls to expressions of unknown-any type.
4612    if (Fn->getType() == Context.UnknownAnyTy) {
4613      ExprResult rewrite = rebuildUnknownAnyFunction(*this, Fn);
4614      if (rewrite.isInvalid()) return ExprError();
4615      Fn = rewrite.take();
4616      TheCall->setCallee(Fn);
4617      goto retry;
4618    }
4619
4620    return ExprError(Diag(LParenLoc, diag::err_typecheck_call_not_function)
4621      << Fn->getType() << Fn->getSourceRange());
4622  }
4623
4624  if (getLangOpts().CUDA) {
4625    if (Config) {
4626      // CUDA: Kernel calls must be to global functions
4627      if (FDecl && !FDecl->hasAttr<CUDAGlobalAttr>())
4628        return ExprError(Diag(LParenLoc,diag::err_kern_call_not_global_function)
4629            << FDecl->getName() << Fn->getSourceRange());
4630
4631      // CUDA: Kernel function must have 'void' return type
4632      if (!FuncT->getResultType()->isVoidType())
4633        return ExprError(Diag(LParenLoc, diag::err_kern_type_not_void_return)
4634            << Fn->getType() << Fn->getSourceRange());
4635    } else {
4636      // CUDA: Calls to global functions must be configured
4637      if (FDecl && FDecl->hasAttr<CUDAGlobalAttr>())
4638        return ExprError(Diag(LParenLoc, diag::err_global_call_not_config)
4639            << FDecl->getName() << Fn->getSourceRange());
4640    }
4641  }
4642
4643  // Check for a valid return type
4644  if (CheckCallReturnType(FuncT->getResultType(),
4645                          Fn->getLocStart(), TheCall,
4646                          FDecl))
4647    return ExprError();
4648
4649  // We know the result type of the call, set it.
4650  TheCall->setType(FuncT->getCallResultType(Context));
4651  TheCall->setValueKind(Expr::getValueKindForType(FuncT->getResultType()));
4652
4653  const FunctionProtoType *Proto = dyn_cast<FunctionProtoType>(FuncT);
4654  if (Proto) {
4655    if (ConvertArgumentsForCall(TheCall, Fn, FDecl, Proto, Args, RParenLoc,
4656                                IsExecConfig))
4657      return ExprError();
4658  } else {
4659    assert(isa<FunctionNoProtoType>(FuncT) && "Unknown FunctionType!");
4660
4661    if (FDecl) {
4662      // Check if we have too few/too many template arguments, based
4663      // on our knowledge of the function definition.
4664      const FunctionDecl *Def = 0;
4665      if (FDecl->hasBody(Def) && Args.size() != Def->param_size()) {
4666        Proto = Def->getType()->getAs<FunctionProtoType>();
4667       if (!Proto || !(Proto->isVariadic() && Args.size() >= Def->param_size()))
4668          Diag(RParenLoc, diag::warn_call_wrong_number_of_arguments)
4669          << (Args.size() > Def->param_size()) << FDecl << Fn->getSourceRange();
4670      }
4671
4672      // If the function we're calling isn't a function prototype, but we have
4673      // a function prototype from a prior declaratiom, use that prototype.
4674      if (!FDecl->hasPrototype())
4675        Proto = FDecl->getType()->getAs<FunctionProtoType>();
4676    }
4677
4678    // Promote the arguments (C99 6.5.2.2p6).
4679    for (unsigned i = 0, e = Args.size(); i != e; i++) {
4680      Expr *Arg = Args[i];
4681
4682      if (Proto && i < Proto->getNumArgs()) {
4683        InitializedEntity Entity
4684          = InitializedEntity::InitializeParameter(Context,
4685                                                   Proto->getArgType(i),
4686                                                   Proto->isArgConsumed(i));
4687        ExprResult ArgE = PerformCopyInitialization(Entity,
4688                                                    SourceLocation(),
4689                                                    Owned(Arg));
4690        if (ArgE.isInvalid())
4691          return true;
4692
4693        Arg = ArgE.takeAs<Expr>();
4694
4695      } else {
4696        ExprResult ArgE = DefaultArgumentPromotion(Arg);
4697
4698        if (ArgE.isInvalid())
4699          return true;
4700
4701        Arg = ArgE.takeAs<Expr>();
4702      }
4703
4704      if (RequireCompleteType(Arg->getLocStart(),
4705                              Arg->getType(),
4706                              diag::err_call_incomplete_argument, Arg))
4707        return ExprError();
4708
4709      TheCall->setArg(i, Arg);
4710    }
4711  }
4712
4713  if (CXXMethodDecl *Method = dyn_cast_or_null<CXXMethodDecl>(FDecl))
4714    if (!Method->isStatic())
4715      return ExprError(Diag(LParenLoc, diag::err_member_call_without_object)
4716        << Fn->getSourceRange());
4717
4718  // Check for sentinels
4719  if (NDecl)
4720    DiagnoseSentinelCalls(NDecl, LParenLoc, Args);
4721
4722  // Do special checking on direct calls to functions.
4723  if (FDecl) {
4724    if (CheckFunctionCall(FDecl, TheCall, Proto))
4725      return ExprError();
4726
4727    if (BuiltinID)
4728      return CheckBuiltinFunctionCall(BuiltinID, TheCall);
4729  } else if (NDecl) {
4730    if (CheckPointerCall(NDecl, TheCall, Proto))
4731      return ExprError();
4732  } else {
4733    if (CheckOtherCall(TheCall, Proto))
4734      return ExprError();
4735  }
4736
4737  return MaybeBindToTemporary(TheCall);
4738}
4739
4740ExprResult
4741Sema::ActOnCompoundLiteral(SourceLocation LParenLoc, ParsedType Ty,
4742                           SourceLocation RParenLoc, Expr *InitExpr) {
4743  assert(Ty && "ActOnCompoundLiteral(): missing type");
4744  // FIXME: put back this assert when initializers are worked out.
4745  //assert((InitExpr != 0) && "ActOnCompoundLiteral(): missing expression");
4746
4747  TypeSourceInfo *TInfo;
4748  QualType literalType = GetTypeFromParser(Ty, &TInfo);
4749  if (!TInfo)
4750    TInfo = Context.getTrivialTypeSourceInfo(literalType);
4751
4752  return BuildCompoundLiteralExpr(LParenLoc, TInfo, RParenLoc, InitExpr);
4753}
4754
4755ExprResult
4756Sema::BuildCompoundLiteralExpr(SourceLocation LParenLoc, TypeSourceInfo *TInfo,
4757                               SourceLocation RParenLoc, Expr *LiteralExpr) {
4758  QualType literalType = TInfo->getType();
4759
4760  if (literalType->isArrayType()) {
4761    if (RequireCompleteType(LParenLoc, Context.getBaseElementType(literalType),
4762          diag::err_illegal_decl_array_incomplete_type,
4763          SourceRange(LParenLoc,
4764                      LiteralExpr->getSourceRange().getEnd())))
4765      return ExprError();
4766    if (literalType->isVariableArrayType())
4767      return ExprError(Diag(LParenLoc, diag::err_variable_object_no_init)
4768        << SourceRange(LParenLoc, LiteralExpr->getSourceRange().getEnd()));
4769  } else if (!literalType->isDependentType() &&
4770             RequireCompleteType(LParenLoc, literalType,
4771               diag::err_typecheck_decl_incomplete_type,
4772               SourceRange(LParenLoc, LiteralExpr->getSourceRange().getEnd())))
4773    return ExprError();
4774
4775  InitializedEntity Entity
4776    = InitializedEntity::InitializeCompoundLiteralInit(TInfo);
4777  InitializationKind Kind
4778    = InitializationKind::CreateCStyleCast(LParenLoc,
4779                                           SourceRange(LParenLoc, RParenLoc),
4780                                           /*InitList=*/true);
4781  InitializationSequence InitSeq(*this, Entity, Kind, LiteralExpr);
4782  ExprResult Result = InitSeq.Perform(*this, Entity, Kind, LiteralExpr,
4783                                      &literalType);
4784  if (Result.isInvalid())
4785    return ExprError();
4786  LiteralExpr = Result.get();
4787
4788  bool isFileScope = getCurFunctionOrMethodDecl() == 0;
4789  if (isFileScope &&
4790      !LiteralExpr->isTypeDependent() &&
4791      !LiteralExpr->isValueDependent() &&
4792      !literalType->isDependentType()) { // 6.5.2.5p3
4793    if (CheckForConstantInitializer(LiteralExpr, literalType))
4794      return ExprError();
4795  }
4796
4797  // In C, compound literals are l-values for some reason.
4798  ExprValueKind VK = getLangOpts().CPlusPlus ? VK_RValue : VK_LValue;
4799
4800  return MaybeBindToTemporary(
4801           new (Context) CompoundLiteralExpr(LParenLoc, TInfo, literalType,
4802                                             VK, LiteralExpr, isFileScope));
4803}
4804
4805ExprResult
4806Sema::ActOnInitList(SourceLocation LBraceLoc, MultiExprArg InitArgList,
4807                    SourceLocation RBraceLoc) {
4808  // Immediately handle non-overload placeholders.  Overloads can be
4809  // resolved contextually, but everything else here can't.
4810  for (unsigned I = 0, E = InitArgList.size(); I != E; ++I) {
4811    if (InitArgList[I]->getType()->isNonOverloadPlaceholderType()) {
4812      ExprResult result = CheckPlaceholderExpr(InitArgList[I]);
4813
4814      // Ignore failures; dropping the entire initializer list because
4815      // of one failure would be terrible for indexing/etc.
4816      if (result.isInvalid()) continue;
4817
4818      InitArgList[I] = result.take();
4819    }
4820  }
4821
4822  // Semantic analysis for initializers is done by ActOnDeclarator() and
4823  // CheckInitializer() - it requires knowledge of the object being intialized.
4824
4825  InitListExpr *E = new (Context) InitListExpr(Context, LBraceLoc, InitArgList,
4826                                               RBraceLoc);
4827  E->setType(Context.VoidTy); // FIXME: just a place holder for now.
4828  return Owned(E);
4829}
4830
4831/// Do an explicit extend of the given block pointer if we're in ARC.
4832static void maybeExtendBlockObject(Sema &S, ExprResult &E) {
4833  assert(E.get()->getType()->isBlockPointerType());
4834  assert(E.get()->isRValue());
4835
4836  // Only do this in an r-value context.
4837  if (!S.getLangOpts().ObjCAutoRefCount) return;
4838
4839  E = ImplicitCastExpr::Create(S.Context, E.get()->getType(),
4840                               CK_ARCExtendBlockObject, E.get(),
4841                               /*base path*/ 0, VK_RValue);
4842  S.ExprNeedsCleanups = true;
4843}
4844
4845/// Prepare a conversion of the given expression to an ObjC object
4846/// pointer type.
4847CastKind Sema::PrepareCastToObjCObjectPointer(ExprResult &E) {
4848  QualType type = E.get()->getType();
4849  if (type->isObjCObjectPointerType()) {
4850    return CK_BitCast;
4851  } else if (type->isBlockPointerType()) {
4852    maybeExtendBlockObject(*this, E);
4853    return CK_BlockPointerToObjCPointerCast;
4854  } else {
4855    assert(type->isPointerType());
4856    return CK_CPointerToObjCPointerCast;
4857  }
4858}
4859
4860/// Prepares for a scalar cast, performing all the necessary stages
4861/// except the final cast and returning the kind required.
4862CastKind Sema::PrepareScalarCast(ExprResult &Src, QualType DestTy) {
4863  // Both Src and Dest are scalar types, i.e. arithmetic or pointer.
4864  // Also, callers should have filtered out the invalid cases with
4865  // pointers.  Everything else should be possible.
4866
4867  QualType SrcTy = Src.get()->getType();
4868  if (Context.hasSameUnqualifiedType(SrcTy, DestTy))
4869    return CK_NoOp;
4870
4871  switch (Type::ScalarTypeKind SrcKind = SrcTy->getScalarTypeKind()) {
4872  case Type::STK_MemberPointer:
4873    llvm_unreachable("member pointer type in C");
4874
4875  case Type::STK_CPointer:
4876  case Type::STK_BlockPointer:
4877  case Type::STK_ObjCObjectPointer:
4878    switch (DestTy->getScalarTypeKind()) {
4879    case Type::STK_CPointer:
4880      return CK_BitCast;
4881    case Type::STK_BlockPointer:
4882      return (SrcKind == Type::STK_BlockPointer
4883                ? CK_BitCast : CK_AnyPointerToBlockPointerCast);
4884    case Type::STK_ObjCObjectPointer:
4885      if (SrcKind == Type::STK_ObjCObjectPointer)
4886        return CK_BitCast;
4887      if (SrcKind == Type::STK_CPointer)
4888        return CK_CPointerToObjCPointerCast;
4889      maybeExtendBlockObject(*this, Src);
4890      return CK_BlockPointerToObjCPointerCast;
4891    case Type::STK_Bool:
4892      return CK_PointerToBoolean;
4893    case Type::STK_Integral:
4894      return CK_PointerToIntegral;
4895    case Type::STK_Floating:
4896    case Type::STK_FloatingComplex:
4897    case Type::STK_IntegralComplex:
4898    case Type::STK_MemberPointer:
4899      llvm_unreachable("illegal cast from pointer");
4900    }
4901    llvm_unreachable("Should have returned before this");
4902
4903  case Type::STK_Bool: // casting from bool is like casting from an integer
4904  case Type::STK_Integral:
4905    switch (DestTy->getScalarTypeKind()) {
4906    case Type::STK_CPointer:
4907    case Type::STK_ObjCObjectPointer:
4908    case Type::STK_BlockPointer:
4909      if (Src.get()->isNullPointerConstant(Context,
4910                                           Expr::NPC_ValueDependentIsNull))
4911        return CK_NullToPointer;
4912      return CK_IntegralToPointer;
4913    case Type::STK_Bool:
4914      return CK_IntegralToBoolean;
4915    case Type::STK_Integral:
4916      return CK_IntegralCast;
4917    case Type::STK_Floating:
4918      return CK_IntegralToFloating;
4919    case Type::STK_IntegralComplex:
4920      Src = ImpCastExprToType(Src.take(),
4921                              DestTy->castAs<ComplexType>()->getElementType(),
4922                              CK_IntegralCast);
4923      return CK_IntegralRealToComplex;
4924    case Type::STK_FloatingComplex:
4925      Src = ImpCastExprToType(Src.take(),
4926                              DestTy->castAs<ComplexType>()->getElementType(),
4927                              CK_IntegralToFloating);
4928      return CK_FloatingRealToComplex;
4929    case Type::STK_MemberPointer:
4930      llvm_unreachable("member pointer type in C");
4931    }
4932    llvm_unreachable("Should have returned before this");
4933
4934  case Type::STK_Floating:
4935    switch (DestTy->getScalarTypeKind()) {
4936    case Type::STK_Floating:
4937      return CK_FloatingCast;
4938    case Type::STK_Bool:
4939      return CK_FloatingToBoolean;
4940    case Type::STK_Integral:
4941      return CK_FloatingToIntegral;
4942    case Type::STK_FloatingComplex:
4943      Src = ImpCastExprToType(Src.take(),
4944                              DestTy->castAs<ComplexType>()->getElementType(),
4945                              CK_FloatingCast);
4946      return CK_FloatingRealToComplex;
4947    case Type::STK_IntegralComplex:
4948      Src = ImpCastExprToType(Src.take(),
4949                              DestTy->castAs<ComplexType>()->getElementType(),
4950                              CK_FloatingToIntegral);
4951      return CK_IntegralRealToComplex;
4952    case Type::STK_CPointer:
4953    case Type::STK_ObjCObjectPointer:
4954    case Type::STK_BlockPointer:
4955      llvm_unreachable("valid float->pointer cast?");
4956    case Type::STK_MemberPointer:
4957      llvm_unreachable("member pointer type in C");
4958    }
4959    llvm_unreachable("Should have returned before this");
4960
4961  case Type::STK_FloatingComplex:
4962    switch (DestTy->getScalarTypeKind()) {
4963    case Type::STK_FloatingComplex:
4964      return CK_FloatingComplexCast;
4965    case Type::STK_IntegralComplex:
4966      return CK_FloatingComplexToIntegralComplex;
4967    case Type::STK_Floating: {
4968      QualType ET = SrcTy->castAs<ComplexType>()->getElementType();
4969      if (Context.hasSameType(ET, DestTy))
4970        return CK_FloatingComplexToReal;
4971      Src = ImpCastExprToType(Src.take(), ET, CK_FloatingComplexToReal);
4972      return CK_FloatingCast;
4973    }
4974    case Type::STK_Bool:
4975      return CK_FloatingComplexToBoolean;
4976    case Type::STK_Integral:
4977      Src = ImpCastExprToType(Src.take(),
4978                              SrcTy->castAs<ComplexType>()->getElementType(),
4979                              CK_FloatingComplexToReal);
4980      return CK_FloatingToIntegral;
4981    case Type::STK_CPointer:
4982    case Type::STK_ObjCObjectPointer:
4983    case Type::STK_BlockPointer:
4984      llvm_unreachable("valid complex float->pointer cast?");
4985    case Type::STK_MemberPointer:
4986      llvm_unreachable("member pointer type in C");
4987    }
4988    llvm_unreachable("Should have returned before this");
4989
4990  case Type::STK_IntegralComplex:
4991    switch (DestTy->getScalarTypeKind()) {
4992    case Type::STK_FloatingComplex:
4993      return CK_IntegralComplexToFloatingComplex;
4994    case Type::STK_IntegralComplex:
4995      return CK_IntegralComplexCast;
4996    case Type::STK_Integral: {
4997      QualType ET = SrcTy->castAs<ComplexType>()->getElementType();
4998      if (Context.hasSameType(ET, DestTy))
4999        return CK_IntegralComplexToReal;
5000      Src = ImpCastExprToType(Src.take(), ET, CK_IntegralComplexToReal);
5001      return CK_IntegralCast;
5002    }
5003    case Type::STK_Bool:
5004      return CK_IntegralComplexToBoolean;
5005    case Type::STK_Floating:
5006      Src = ImpCastExprToType(Src.take(),
5007                              SrcTy->castAs<ComplexType>()->getElementType(),
5008                              CK_IntegralComplexToReal);
5009      return CK_IntegralToFloating;
5010    case Type::STK_CPointer:
5011    case Type::STK_ObjCObjectPointer:
5012    case Type::STK_BlockPointer:
5013      llvm_unreachable("valid complex int->pointer cast?");
5014    case Type::STK_MemberPointer:
5015      llvm_unreachable("member pointer type in C");
5016    }
5017    llvm_unreachable("Should have returned before this");
5018  }
5019
5020  llvm_unreachable("Unhandled scalar cast");
5021}
5022
5023bool Sema::CheckVectorCast(SourceRange R, QualType VectorTy, QualType Ty,
5024                           CastKind &Kind) {
5025  assert(VectorTy->isVectorType() && "Not a vector type!");
5026
5027  if (Ty->isVectorType() || Ty->isIntegerType()) {
5028    if (Context.getTypeSize(VectorTy) != Context.getTypeSize(Ty))
5029      return Diag(R.getBegin(),
5030                  Ty->isVectorType() ?
5031                  diag::err_invalid_conversion_between_vectors :
5032                  diag::err_invalid_conversion_between_vector_and_integer)
5033        << VectorTy << Ty << R;
5034  } else
5035    return Diag(R.getBegin(),
5036                diag::err_invalid_conversion_between_vector_and_scalar)
5037      << VectorTy << Ty << R;
5038
5039  Kind = CK_BitCast;
5040  return false;
5041}
5042
5043ExprResult Sema::CheckExtVectorCast(SourceRange R, QualType DestTy,
5044                                    Expr *CastExpr, CastKind &Kind) {
5045  assert(DestTy->isExtVectorType() && "Not an extended vector type!");
5046
5047  QualType SrcTy = CastExpr->getType();
5048
5049  // If SrcTy is a VectorType, the total size must match to explicitly cast to
5050  // an ExtVectorType.
5051  // In OpenCL, casts between vectors of different types are not allowed.
5052  // (See OpenCL 6.2).
5053  if (SrcTy->isVectorType()) {
5054    if (Context.getTypeSize(DestTy) != Context.getTypeSize(SrcTy)
5055        || (getLangOpts().OpenCL &&
5056            (DestTy.getCanonicalType() != SrcTy.getCanonicalType()))) {
5057      Diag(R.getBegin(),diag::err_invalid_conversion_between_ext_vectors)
5058        << DestTy << SrcTy << R;
5059      return ExprError();
5060    }
5061    Kind = CK_BitCast;
5062    return Owned(CastExpr);
5063  }
5064
5065  // All non-pointer scalars can be cast to ExtVector type.  The appropriate
5066  // conversion will take place first from scalar to elt type, and then
5067  // splat from elt type to vector.
5068  if (SrcTy->isPointerType())
5069    return Diag(R.getBegin(),
5070                diag::err_invalid_conversion_between_vector_and_scalar)
5071      << DestTy << SrcTy << R;
5072
5073  QualType DestElemTy = DestTy->getAs<ExtVectorType>()->getElementType();
5074  ExprResult CastExprRes = Owned(CastExpr);
5075  CastKind CK = PrepareScalarCast(CastExprRes, DestElemTy);
5076  if (CastExprRes.isInvalid())
5077    return ExprError();
5078  CastExpr = ImpCastExprToType(CastExprRes.take(), DestElemTy, CK).take();
5079
5080  Kind = CK_VectorSplat;
5081  return Owned(CastExpr);
5082}
5083
5084ExprResult
5085Sema::ActOnCastExpr(Scope *S, SourceLocation LParenLoc,
5086                    Declarator &D, ParsedType &Ty,
5087                    SourceLocation RParenLoc, Expr *CastExpr) {
5088  assert(!D.isInvalidType() && (CastExpr != 0) &&
5089         "ActOnCastExpr(): missing type or expr");
5090
5091  TypeSourceInfo *castTInfo = GetTypeForDeclaratorCast(D, CastExpr->getType());
5092  if (D.isInvalidType())
5093    return ExprError();
5094
5095  if (getLangOpts().CPlusPlus) {
5096    // Check that there are no default arguments (C++ only).
5097    CheckExtraCXXDefaultArguments(D);
5098  }
5099
5100  checkUnusedDeclAttributes(D);
5101
5102  QualType castType = castTInfo->getType();
5103  Ty = CreateParsedType(castType, castTInfo);
5104
5105  bool isVectorLiteral = false;
5106
5107  // Check for an altivec or OpenCL literal,
5108  // i.e. all the elements are integer constants.
5109  ParenExpr *PE = dyn_cast<ParenExpr>(CastExpr);
5110  ParenListExpr *PLE = dyn_cast<ParenListExpr>(CastExpr);
5111  if ((getLangOpts().AltiVec || getLangOpts().OpenCL)
5112       && castType->isVectorType() && (PE || PLE)) {
5113    if (PLE && PLE->getNumExprs() == 0) {
5114      Diag(PLE->getExprLoc(), diag::err_altivec_empty_initializer);
5115      return ExprError();
5116    }
5117    if (PE || PLE->getNumExprs() == 1) {
5118      Expr *E = (PE ? PE->getSubExpr() : PLE->getExpr(0));
5119      if (!E->getType()->isVectorType())
5120        isVectorLiteral = true;
5121    }
5122    else
5123      isVectorLiteral = true;
5124  }
5125
5126  // If this is a vector initializer, '(' type ')' '(' init, ..., init ')'
5127  // then handle it as such.
5128  if (isVectorLiteral)
5129    return BuildVectorLiteral(LParenLoc, RParenLoc, CastExpr, castTInfo);
5130
5131  // If the Expr being casted is a ParenListExpr, handle it specially.
5132  // This is not an AltiVec-style cast, so turn the ParenListExpr into a
5133  // sequence of BinOp comma operators.
5134  if (isa<ParenListExpr>(CastExpr)) {
5135    ExprResult Result = MaybeConvertParenListExprToParenExpr(S, CastExpr);
5136    if (Result.isInvalid()) return ExprError();
5137    CastExpr = Result.take();
5138  }
5139
5140  return BuildCStyleCastExpr(LParenLoc, castTInfo, RParenLoc, CastExpr);
5141}
5142
5143ExprResult Sema::BuildVectorLiteral(SourceLocation LParenLoc,
5144                                    SourceLocation RParenLoc, Expr *E,
5145                                    TypeSourceInfo *TInfo) {
5146  assert((isa<ParenListExpr>(E) || isa<ParenExpr>(E)) &&
5147         "Expected paren or paren list expression");
5148
5149  Expr **exprs;
5150  unsigned numExprs;
5151  Expr *subExpr;
5152  SourceLocation LiteralLParenLoc, LiteralRParenLoc;
5153  if (ParenListExpr *PE = dyn_cast<ParenListExpr>(E)) {
5154    LiteralLParenLoc = PE->getLParenLoc();
5155    LiteralRParenLoc = PE->getRParenLoc();
5156    exprs = PE->getExprs();
5157    numExprs = PE->getNumExprs();
5158  } else { // isa<ParenExpr> by assertion at function entrance
5159    LiteralLParenLoc = cast<ParenExpr>(E)->getLParen();
5160    LiteralRParenLoc = cast<ParenExpr>(E)->getRParen();
5161    subExpr = cast<ParenExpr>(E)->getSubExpr();
5162    exprs = &subExpr;
5163    numExprs = 1;
5164  }
5165
5166  QualType Ty = TInfo->getType();
5167  assert(Ty->isVectorType() && "Expected vector type");
5168
5169  SmallVector<Expr *, 8> initExprs;
5170  const VectorType *VTy = Ty->getAs<VectorType>();
5171  unsigned numElems = Ty->getAs<VectorType>()->getNumElements();
5172
5173  // '(...)' form of vector initialization in AltiVec: the number of
5174  // initializers must be one or must match the size of the vector.
5175  // If a single value is specified in the initializer then it will be
5176  // replicated to all the components of the vector
5177  if (VTy->getVectorKind() == VectorType::AltiVecVector) {
5178    // The number of initializers must be one or must match the size of the
5179    // vector. If a single value is specified in the initializer then it will
5180    // be replicated to all the components of the vector
5181    if (numExprs == 1) {
5182      QualType ElemTy = Ty->getAs<VectorType>()->getElementType();
5183      ExprResult Literal = DefaultLvalueConversion(exprs[0]);
5184      if (Literal.isInvalid())
5185        return ExprError();
5186      Literal = ImpCastExprToType(Literal.take(), ElemTy,
5187                                  PrepareScalarCast(Literal, ElemTy));
5188      return BuildCStyleCastExpr(LParenLoc, TInfo, RParenLoc, Literal.take());
5189    }
5190    else if (numExprs < numElems) {
5191      Diag(E->getExprLoc(),
5192           diag::err_incorrect_number_of_vector_initializers);
5193      return ExprError();
5194    }
5195    else
5196      initExprs.append(exprs, exprs + numExprs);
5197  }
5198  else {
5199    // For OpenCL, when the number of initializers is a single value,
5200    // it will be replicated to all components of the vector.
5201    if (getLangOpts().OpenCL &&
5202        VTy->getVectorKind() == VectorType::GenericVector &&
5203        numExprs == 1) {
5204        QualType ElemTy = Ty->getAs<VectorType>()->getElementType();
5205        ExprResult Literal = DefaultLvalueConversion(exprs[0]);
5206        if (Literal.isInvalid())
5207          return ExprError();
5208        Literal = ImpCastExprToType(Literal.take(), ElemTy,
5209                                    PrepareScalarCast(Literal, ElemTy));
5210        return BuildCStyleCastExpr(LParenLoc, TInfo, RParenLoc, Literal.take());
5211    }
5212
5213    initExprs.append(exprs, exprs + numExprs);
5214  }
5215  // FIXME: This means that pretty-printing the final AST will produce curly
5216  // braces instead of the original commas.
5217  InitListExpr *initE = new (Context) InitListExpr(Context, LiteralLParenLoc,
5218                                                   initExprs, LiteralRParenLoc);
5219  initE->setType(Ty);
5220  return BuildCompoundLiteralExpr(LParenLoc, TInfo, RParenLoc, initE);
5221}
5222
5223/// This is not an AltiVec-style cast or or C++ direct-initialization, so turn
5224/// the ParenListExpr into a sequence of comma binary operators.
5225ExprResult
5226Sema::MaybeConvertParenListExprToParenExpr(Scope *S, Expr *OrigExpr) {
5227  ParenListExpr *E = dyn_cast<ParenListExpr>(OrigExpr);
5228  if (!E)
5229    return Owned(OrigExpr);
5230
5231  ExprResult Result(E->getExpr(0));
5232
5233  for (unsigned i = 1, e = E->getNumExprs(); i != e && !Result.isInvalid(); ++i)
5234    Result = ActOnBinOp(S, E->getExprLoc(), tok::comma, Result.get(),
5235                        E->getExpr(i));
5236
5237  if (Result.isInvalid()) return ExprError();
5238
5239  return ActOnParenExpr(E->getLParenLoc(), E->getRParenLoc(), Result.get());
5240}
5241
5242ExprResult Sema::ActOnParenListExpr(SourceLocation L,
5243                                    SourceLocation R,
5244                                    MultiExprArg Val) {
5245  Expr *expr = new (Context) ParenListExpr(Context, L, Val, R);
5246  return Owned(expr);
5247}
5248
5249/// \brief Emit a specialized diagnostic when one expression is a null pointer
5250/// constant and the other is not a pointer.  Returns true if a diagnostic is
5251/// emitted.
5252bool Sema::DiagnoseConditionalForNull(Expr *LHSExpr, Expr *RHSExpr,
5253                                      SourceLocation QuestionLoc) {
5254  Expr *NullExpr = LHSExpr;
5255  Expr *NonPointerExpr = RHSExpr;
5256  Expr::NullPointerConstantKind NullKind =
5257      NullExpr->isNullPointerConstant(Context,
5258                                      Expr::NPC_ValueDependentIsNotNull);
5259
5260  if (NullKind == Expr::NPCK_NotNull) {
5261    NullExpr = RHSExpr;
5262    NonPointerExpr = LHSExpr;
5263    NullKind =
5264        NullExpr->isNullPointerConstant(Context,
5265                                        Expr::NPC_ValueDependentIsNotNull);
5266  }
5267
5268  if (NullKind == Expr::NPCK_NotNull)
5269    return false;
5270
5271  if (NullKind == Expr::NPCK_ZeroExpression)
5272    return false;
5273
5274  if (NullKind == Expr::NPCK_ZeroLiteral) {
5275    // In this case, check to make sure that we got here from a "NULL"
5276    // string in the source code.
5277    NullExpr = NullExpr->IgnoreParenImpCasts();
5278    SourceLocation loc = NullExpr->getExprLoc();
5279    if (!findMacroSpelling(loc, "NULL"))
5280      return false;
5281  }
5282
5283  int DiagType = (NullKind == Expr::NPCK_CXX11_nullptr);
5284  Diag(QuestionLoc, diag::err_typecheck_cond_incompatible_operands_null)
5285      << NonPointerExpr->getType() << DiagType
5286      << NonPointerExpr->getSourceRange();
5287  return true;
5288}
5289
5290/// \brief Return false if the condition expression is valid, true otherwise.
5291static bool checkCondition(Sema &S, Expr *Cond) {
5292  QualType CondTy = Cond->getType();
5293
5294  // C99 6.5.15p2
5295  if (CondTy->isScalarType()) return false;
5296
5297  // OpenCL v1.1 s6.3.i says the condition is allowed to be a vector or scalar.
5298  if (S.getLangOpts().OpenCL && CondTy->isVectorType())
5299    return false;
5300
5301  // Emit the proper error message.
5302  S.Diag(Cond->getLocStart(), S.getLangOpts().OpenCL ?
5303                              diag::err_typecheck_cond_expect_scalar :
5304                              diag::err_typecheck_cond_expect_scalar_or_vector)
5305    << CondTy;
5306  return true;
5307}
5308
5309/// \brief Return false if the two expressions can be converted to a vector,
5310/// true otherwise
5311static bool checkConditionalConvertScalarsToVectors(Sema &S, ExprResult &LHS,
5312                                                    ExprResult &RHS,
5313                                                    QualType CondTy) {
5314  // Both operands should be of scalar type.
5315  if (!LHS.get()->getType()->isScalarType()) {
5316    S.Diag(LHS.get()->getLocStart(), diag::err_typecheck_cond_expect_scalar)
5317      << CondTy;
5318    return true;
5319  }
5320  if (!RHS.get()->getType()->isScalarType()) {
5321    S.Diag(RHS.get()->getLocStart(), diag::err_typecheck_cond_expect_scalar)
5322      << CondTy;
5323    return true;
5324  }
5325
5326  // Implicity convert these scalars to the type of the condition.
5327  LHS = S.ImpCastExprToType(LHS.take(), CondTy, CK_IntegralCast);
5328  RHS = S.ImpCastExprToType(RHS.take(), CondTy, CK_IntegralCast);
5329  return false;
5330}
5331
5332/// \brief Handle when one or both operands are void type.
5333static QualType checkConditionalVoidType(Sema &S, ExprResult &LHS,
5334                                         ExprResult &RHS) {
5335    Expr *LHSExpr = LHS.get();
5336    Expr *RHSExpr = RHS.get();
5337
5338    if (!LHSExpr->getType()->isVoidType())
5339      S.Diag(RHSExpr->getLocStart(), diag::ext_typecheck_cond_one_void)
5340        << RHSExpr->getSourceRange();
5341    if (!RHSExpr->getType()->isVoidType())
5342      S.Diag(LHSExpr->getLocStart(), diag::ext_typecheck_cond_one_void)
5343        << LHSExpr->getSourceRange();
5344    LHS = S.ImpCastExprToType(LHS.take(), S.Context.VoidTy, CK_ToVoid);
5345    RHS = S.ImpCastExprToType(RHS.take(), S.Context.VoidTy, CK_ToVoid);
5346    return S.Context.VoidTy;
5347}
5348
5349/// \brief Return false if the NullExpr can be promoted to PointerTy,
5350/// true otherwise.
5351static bool checkConditionalNullPointer(Sema &S, ExprResult &NullExpr,
5352                                        QualType PointerTy) {
5353  if ((!PointerTy->isAnyPointerType() && !PointerTy->isBlockPointerType()) ||
5354      !NullExpr.get()->isNullPointerConstant(S.Context,
5355                                            Expr::NPC_ValueDependentIsNull))
5356    return true;
5357
5358  NullExpr = S.ImpCastExprToType(NullExpr.take(), PointerTy, CK_NullToPointer);
5359  return false;
5360}
5361
5362/// \brief Checks compatibility between two pointers and return the resulting
5363/// type.
5364static QualType checkConditionalPointerCompatibility(Sema &S, ExprResult &LHS,
5365                                                     ExprResult &RHS,
5366                                                     SourceLocation Loc) {
5367  QualType LHSTy = LHS.get()->getType();
5368  QualType RHSTy = RHS.get()->getType();
5369
5370  if (S.Context.hasSameType(LHSTy, RHSTy)) {
5371    // Two identical pointers types are always compatible.
5372    return LHSTy;
5373  }
5374
5375  QualType lhptee, rhptee;
5376
5377  // Get the pointee types.
5378  bool IsBlockPointer = false;
5379  if (const BlockPointerType *LHSBTy = LHSTy->getAs<BlockPointerType>()) {
5380    lhptee = LHSBTy->getPointeeType();
5381    rhptee = RHSTy->castAs<BlockPointerType>()->getPointeeType();
5382    IsBlockPointer = true;
5383  } else {
5384    lhptee = LHSTy->castAs<PointerType>()->getPointeeType();
5385    rhptee = RHSTy->castAs<PointerType>()->getPointeeType();
5386  }
5387
5388  // C99 6.5.15p6: If both operands are pointers to compatible types or to
5389  // differently qualified versions of compatible types, the result type is
5390  // a pointer to an appropriately qualified version of the composite
5391  // type.
5392
5393  // Only CVR-qualifiers exist in the standard, and the differently-qualified
5394  // clause doesn't make sense for our extensions. E.g. address space 2 should
5395  // be incompatible with address space 3: they may live on different devices or
5396  // anything.
5397  Qualifiers lhQual = lhptee.getQualifiers();
5398  Qualifiers rhQual = rhptee.getQualifiers();
5399
5400  unsigned MergedCVRQual = lhQual.getCVRQualifiers() | rhQual.getCVRQualifiers();
5401  lhQual.removeCVRQualifiers();
5402  rhQual.removeCVRQualifiers();
5403
5404  lhptee = S.Context.getQualifiedType(lhptee.getUnqualifiedType(), lhQual);
5405  rhptee = S.Context.getQualifiedType(rhptee.getUnqualifiedType(), rhQual);
5406
5407  QualType CompositeTy = S.Context.mergeTypes(lhptee, rhptee);
5408
5409  if (CompositeTy.isNull()) {
5410    S.Diag(Loc, diag::warn_typecheck_cond_incompatible_pointers)
5411      << LHSTy << RHSTy << LHS.get()->getSourceRange()
5412      << RHS.get()->getSourceRange();
5413    // In this situation, we assume void* type. No especially good
5414    // reason, but this is what gcc does, and we do have to pick
5415    // to get a consistent AST.
5416    QualType incompatTy = S.Context.getPointerType(S.Context.VoidTy);
5417    LHS = S.ImpCastExprToType(LHS.take(), incompatTy, CK_BitCast);
5418    RHS = S.ImpCastExprToType(RHS.take(), incompatTy, CK_BitCast);
5419    return incompatTy;
5420  }
5421
5422  // The pointer types are compatible.
5423  QualType ResultTy = CompositeTy.withCVRQualifiers(MergedCVRQual);
5424  if (IsBlockPointer)
5425    ResultTy = S.Context.getBlockPointerType(ResultTy);
5426  else
5427    ResultTy = S.Context.getPointerType(ResultTy);
5428
5429  LHS = S.ImpCastExprToType(LHS.take(), ResultTy, CK_BitCast);
5430  RHS = S.ImpCastExprToType(RHS.take(), ResultTy, CK_BitCast);
5431  return ResultTy;
5432}
5433
5434/// \brief Return the resulting type when the operands are both block pointers.
5435static QualType checkConditionalBlockPointerCompatibility(Sema &S,
5436                                                          ExprResult &LHS,
5437                                                          ExprResult &RHS,
5438                                                          SourceLocation Loc) {
5439  QualType LHSTy = LHS.get()->getType();
5440  QualType RHSTy = RHS.get()->getType();
5441
5442  if (!LHSTy->isBlockPointerType() || !RHSTy->isBlockPointerType()) {
5443    if (LHSTy->isVoidPointerType() || RHSTy->isVoidPointerType()) {
5444      QualType destType = S.Context.getPointerType(S.Context.VoidTy);
5445      LHS = S.ImpCastExprToType(LHS.take(), destType, CK_BitCast);
5446      RHS = S.ImpCastExprToType(RHS.take(), destType, CK_BitCast);
5447      return destType;
5448    }
5449    S.Diag(Loc, diag::err_typecheck_cond_incompatible_operands)
5450      << LHSTy << RHSTy << LHS.get()->getSourceRange()
5451      << RHS.get()->getSourceRange();
5452    return QualType();
5453  }
5454
5455  // We have 2 block pointer types.
5456  return checkConditionalPointerCompatibility(S, LHS, RHS, Loc);
5457}
5458
5459/// \brief Return the resulting type when the operands are both pointers.
5460static QualType
5461checkConditionalObjectPointersCompatibility(Sema &S, ExprResult &LHS,
5462                                            ExprResult &RHS,
5463                                            SourceLocation Loc) {
5464  // get the pointer types
5465  QualType LHSTy = LHS.get()->getType();
5466  QualType RHSTy = RHS.get()->getType();
5467
5468  // get the "pointed to" types
5469  QualType lhptee = LHSTy->getAs<PointerType>()->getPointeeType();
5470  QualType rhptee = RHSTy->getAs<PointerType>()->getPointeeType();
5471
5472  // ignore qualifiers on void (C99 6.5.15p3, clause 6)
5473  if (lhptee->isVoidType() && rhptee->isIncompleteOrObjectType()) {
5474    // Figure out necessary qualifiers (C99 6.5.15p6)
5475    QualType destPointee
5476      = S.Context.getQualifiedType(lhptee, rhptee.getQualifiers());
5477    QualType destType = S.Context.getPointerType(destPointee);
5478    // Add qualifiers if necessary.
5479    LHS = S.ImpCastExprToType(LHS.take(), destType, CK_NoOp);
5480    // Promote to void*.
5481    RHS = S.ImpCastExprToType(RHS.take(), destType, CK_BitCast);
5482    return destType;
5483  }
5484  if (rhptee->isVoidType() && lhptee->isIncompleteOrObjectType()) {
5485    QualType destPointee
5486      = S.Context.getQualifiedType(rhptee, lhptee.getQualifiers());
5487    QualType destType = S.Context.getPointerType(destPointee);
5488    // Add qualifiers if necessary.
5489    RHS = S.ImpCastExprToType(RHS.take(), destType, CK_NoOp);
5490    // Promote to void*.
5491    LHS = S.ImpCastExprToType(LHS.take(), destType, CK_BitCast);
5492    return destType;
5493  }
5494
5495  return checkConditionalPointerCompatibility(S, LHS, RHS, Loc);
5496}
5497
5498/// \brief Return false if the first expression is not an integer and the second
5499/// expression is not a pointer, true otherwise.
5500static bool checkPointerIntegerMismatch(Sema &S, ExprResult &Int,
5501                                        Expr* PointerExpr, SourceLocation Loc,
5502                                        bool IsIntFirstExpr) {
5503  if (!PointerExpr->getType()->isPointerType() ||
5504      !Int.get()->getType()->isIntegerType())
5505    return false;
5506
5507  Expr *Expr1 = IsIntFirstExpr ? Int.get() : PointerExpr;
5508  Expr *Expr2 = IsIntFirstExpr ? PointerExpr : Int.get();
5509
5510  S.Diag(Loc, diag::warn_typecheck_cond_pointer_integer_mismatch)
5511    << Expr1->getType() << Expr2->getType()
5512    << Expr1->getSourceRange() << Expr2->getSourceRange();
5513  Int = S.ImpCastExprToType(Int.take(), PointerExpr->getType(),
5514                            CK_IntegralToPointer);
5515  return true;
5516}
5517
5518/// Note that LHS is not null here, even if this is the gnu "x ?: y" extension.
5519/// In that case, LHS = cond.
5520/// C99 6.5.15
5521QualType Sema::CheckConditionalOperands(ExprResult &Cond, ExprResult &LHS,
5522                                        ExprResult &RHS, ExprValueKind &VK,
5523                                        ExprObjectKind &OK,
5524                                        SourceLocation QuestionLoc) {
5525
5526  ExprResult LHSResult = CheckPlaceholderExpr(LHS.get());
5527  if (!LHSResult.isUsable()) return QualType();
5528  LHS = LHSResult;
5529
5530  ExprResult RHSResult = CheckPlaceholderExpr(RHS.get());
5531  if (!RHSResult.isUsable()) return QualType();
5532  RHS = RHSResult;
5533
5534  // C++ is sufficiently different to merit its own checker.
5535  if (getLangOpts().CPlusPlus)
5536    return CXXCheckConditionalOperands(Cond, LHS, RHS, VK, OK, QuestionLoc);
5537
5538  VK = VK_RValue;
5539  OK = OK_Ordinary;
5540
5541  // First, check the condition.
5542  Cond = UsualUnaryConversions(Cond.take());
5543  if (Cond.isInvalid())
5544    return QualType();
5545  if (checkCondition(*this, Cond.get()))
5546    return QualType();
5547
5548  // Now check the two expressions.
5549  if (LHS.get()->getType()->isVectorType() ||
5550      RHS.get()->getType()->isVectorType())
5551    return CheckVectorOperands(LHS, RHS, QuestionLoc, /*isCompAssign*/false);
5552
5553  UsualArithmeticConversions(LHS, RHS);
5554  if (LHS.isInvalid() || RHS.isInvalid())
5555    return QualType();
5556
5557  QualType CondTy = Cond.get()->getType();
5558  QualType LHSTy = LHS.get()->getType();
5559  QualType RHSTy = RHS.get()->getType();
5560
5561  // If the condition is a vector, and both operands are scalar,
5562  // attempt to implicity convert them to the vector type to act like the
5563  // built in select. (OpenCL v1.1 s6.3.i)
5564  if (getLangOpts().OpenCL && CondTy->isVectorType())
5565    if (checkConditionalConvertScalarsToVectors(*this, LHS, RHS, CondTy))
5566      return QualType();
5567
5568  // If both operands have arithmetic type, do the usual arithmetic conversions
5569  // to find a common type: C99 6.5.15p3,5.
5570  if (LHSTy->isArithmeticType() && RHSTy->isArithmeticType())
5571    return LHS.get()->getType();
5572
5573  // If both operands are the same structure or union type, the result is that
5574  // type.
5575  if (const RecordType *LHSRT = LHSTy->getAs<RecordType>()) {    // C99 6.5.15p3
5576    if (const RecordType *RHSRT = RHSTy->getAs<RecordType>())
5577      if (LHSRT->getDecl() == RHSRT->getDecl())
5578        // "If both the operands have structure or union type, the result has
5579        // that type."  This implies that CV qualifiers are dropped.
5580        return LHSTy.getUnqualifiedType();
5581    // FIXME: Type of conditional expression must be complete in C mode.
5582  }
5583
5584  // C99 6.5.15p5: "If both operands have void type, the result has void type."
5585  // The following || allows only one side to be void (a GCC-ism).
5586  if (LHSTy->isVoidType() || RHSTy->isVoidType()) {
5587    return checkConditionalVoidType(*this, LHS, RHS);
5588  }
5589
5590  // C99 6.5.15p6 - "if one operand is a null pointer constant, the result has
5591  // the type of the other operand."
5592  if (!checkConditionalNullPointer(*this, RHS, LHSTy)) return LHSTy;
5593  if (!checkConditionalNullPointer(*this, LHS, RHSTy)) return RHSTy;
5594
5595  // All objective-c pointer type analysis is done here.
5596  QualType compositeType = FindCompositeObjCPointerType(LHS, RHS,
5597                                                        QuestionLoc);
5598  if (LHS.isInvalid() || RHS.isInvalid())
5599    return QualType();
5600  if (!compositeType.isNull())
5601    return compositeType;
5602
5603
5604  // Handle block pointer types.
5605  if (LHSTy->isBlockPointerType() || RHSTy->isBlockPointerType())
5606    return checkConditionalBlockPointerCompatibility(*this, LHS, RHS,
5607                                                     QuestionLoc);
5608
5609  // Check constraints for C object pointers types (C99 6.5.15p3,6).
5610  if (LHSTy->isPointerType() && RHSTy->isPointerType())
5611    return checkConditionalObjectPointersCompatibility(*this, LHS, RHS,
5612                                                       QuestionLoc);
5613
5614  // GCC compatibility: soften pointer/integer mismatch.  Note that
5615  // null pointers have been filtered out by this point.
5616  if (checkPointerIntegerMismatch(*this, LHS, RHS.get(), QuestionLoc,
5617      /*isIntFirstExpr=*/true))
5618    return RHSTy;
5619  if (checkPointerIntegerMismatch(*this, RHS, LHS.get(), QuestionLoc,
5620      /*isIntFirstExpr=*/false))
5621    return LHSTy;
5622
5623  // Emit a better diagnostic if one of the expressions is a null pointer
5624  // constant and the other is not a pointer type. In this case, the user most
5625  // likely forgot to take the address of the other expression.
5626  if (DiagnoseConditionalForNull(LHS.get(), RHS.get(), QuestionLoc))
5627    return QualType();
5628
5629  // Otherwise, the operands are not compatible.
5630  Diag(QuestionLoc, diag::err_typecheck_cond_incompatible_operands)
5631    << LHSTy << RHSTy << LHS.get()->getSourceRange()
5632    << RHS.get()->getSourceRange();
5633  return QualType();
5634}
5635
5636/// FindCompositeObjCPointerType - Helper method to find composite type of
5637/// two objective-c pointer types of the two input expressions.
5638QualType Sema::FindCompositeObjCPointerType(ExprResult &LHS, ExprResult &RHS,
5639                                            SourceLocation QuestionLoc) {
5640  QualType LHSTy = LHS.get()->getType();
5641  QualType RHSTy = RHS.get()->getType();
5642
5643  // Handle things like Class and struct objc_class*.  Here we case the result
5644  // to the pseudo-builtin, because that will be implicitly cast back to the
5645  // redefinition type if an attempt is made to access its fields.
5646  if (LHSTy->isObjCClassType() &&
5647      (Context.hasSameType(RHSTy, Context.getObjCClassRedefinitionType()))) {
5648    RHS = ImpCastExprToType(RHS.take(), LHSTy, CK_CPointerToObjCPointerCast);
5649    return LHSTy;
5650  }
5651  if (RHSTy->isObjCClassType() &&
5652      (Context.hasSameType(LHSTy, Context.getObjCClassRedefinitionType()))) {
5653    LHS = ImpCastExprToType(LHS.take(), RHSTy, CK_CPointerToObjCPointerCast);
5654    return RHSTy;
5655  }
5656  // And the same for struct objc_object* / id
5657  if (LHSTy->isObjCIdType() &&
5658      (Context.hasSameType(RHSTy, Context.getObjCIdRedefinitionType()))) {
5659    RHS = ImpCastExprToType(RHS.take(), LHSTy, CK_CPointerToObjCPointerCast);
5660    return LHSTy;
5661  }
5662  if (RHSTy->isObjCIdType() &&
5663      (Context.hasSameType(LHSTy, Context.getObjCIdRedefinitionType()))) {
5664    LHS = ImpCastExprToType(LHS.take(), RHSTy, CK_CPointerToObjCPointerCast);
5665    return RHSTy;
5666  }
5667  // And the same for struct objc_selector* / SEL
5668  if (Context.isObjCSelType(LHSTy) &&
5669      (Context.hasSameType(RHSTy, Context.getObjCSelRedefinitionType()))) {
5670    RHS = ImpCastExprToType(RHS.take(), LHSTy, CK_BitCast);
5671    return LHSTy;
5672  }
5673  if (Context.isObjCSelType(RHSTy) &&
5674      (Context.hasSameType(LHSTy, Context.getObjCSelRedefinitionType()))) {
5675    LHS = ImpCastExprToType(LHS.take(), RHSTy, CK_BitCast);
5676    return RHSTy;
5677  }
5678  // Check constraints for Objective-C object pointers types.
5679  if (LHSTy->isObjCObjectPointerType() && RHSTy->isObjCObjectPointerType()) {
5680
5681    if (Context.getCanonicalType(LHSTy) == Context.getCanonicalType(RHSTy)) {
5682      // Two identical object pointer types are always compatible.
5683      return LHSTy;
5684    }
5685    const ObjCObjectPointerType *LHSOPT = LHSTy->castAs<ObjCObjectPointerType>();
5686    const ObjCObjectPointerType *RHSOPT = RHSTy->castAs<ObjCObjectPointerType>();
5687    QualType compositeType = LHSTy;
5688
5689    // If both operands are interfaces and either operand can be
5690    // assigned to the other, use that type as the composite
5691    // type. This allows
5692    //   xxx ? (A*) a : (B*) b
5693    // where B is a subclass of A.
5694    //
5695    // Additionally, as for assignment, if either type is 'id'
5696    // allow silent coercion. Finally, if the types are
5697    // incompatible then make sure to use 'id' as the composite
5698    // type so the result is acceptable for sending messages to.
5699
5700    // FIXME: Consider unifying with 'areComparableObjCPointerTypes'.
5701    // It could return the composite type.
5702    if (Context.canAssignObjCInterfaces(LHSOPT, RHSOPT)) {
5703      compositeType = RHSOPT->isObjCBuiltinType() ? RHSTy : LHSTy;
5704    } else if (Context.canAssignObjCInterfaces(RHSOPT, LHSOPT)) {
5705      compositeType = LHSOPT->isObjCBuiltinType() ? LHSTy : RHSTy;
5706    } else if ((LHSTy->isObjCQualifiedIdType() ||
5707                RHSTy->isObjCQualifiedIdType()) &&
5708               Context.ObjCQualifiedIdTypesAreCompatible(LHSTy, RHSTy, true)) {
5709      // Need to handle "id<xx>" explicitly.
5710      // GCC allows qualified id and any Objective-C type to devolve to
5711      // id. Currently localizing to here until clear this should be
5712      // part of ObjCQualifiedIdTypesAreCompatible.
5713      compositeType = Context.getObjCIdType();
5714    } else if (LHSTy->isObjCIdType() || RHSTy->isObjCIdType()) {
5715      compositeType = Context.getObjCIdType();
5716    } else if (!(compositeType =
5717                 Context.areCommonBaseCompatible(LHSOPT, RHSOPT)).isNull())
5718      ;
5719    else {
5720      Diag(QuestionLoc, diag::ext_typecheck_cond_incompatible_operands)
5721      << LHSTy << RHSTy
5722      << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
5723      QualType incompatTy = Context.getObjCIdType();
5724      LHS = ImpCastExprToType(LHS.take(), incompatTy, CK_BitCast);
5725      RHS = ImpCastExprToType(RHS.take(), incompatTy, CK_BitCast);
5726      return incompatTy;
5727    }
5728    // The object pointer types are compatible.
5729    LHS = ImpCastExprToType(LHS.take(), compositeType, CK_BitCast);
5730    RHS = ImpCastExprToType(RHS.take(), compositeType, CK_BitCast);
5731    return compositeType;
5732  }
5733  // Check Objective-C object pointer types and 'void *'
5734  if (LHSTy->isVoidPointerType() && RHSTy->isObjCObjectPointerType()) {
5735    if (getLangOpts().ObjCAutoRefCount) {
5736      // ARC forbids the implicit conversion of object pointers to 'void *',
5737      // so these types are not compatible.
5738      Diag(QuestionLoc, diag::err_cond_voidptr_arc) << LHSTy << RHSTy
5739          << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
5740      LHS = RHS = true;
5741      return QualType();
5742    }
5743    QualType lhptee = LHSTy->getAs<PointerType>()->getPointeeType();
5744    QualType rhptee = RHSTy->getAs<ObjCObjectPointerType>()->getPointeeType();
5745    QualType destPointee
5746    = Context.getQualifiedType(lhptee, rhptee.getQualifiers());
5747    QualType destType = Context.getPointerType(destPointee);
5748    // Add qualifiers if necessary.
5749    LHS = ImpCastExprToType(LHS.take(), destType, CK_NoOp);
5750    // Promote to void*.
5751    RHS = ImpCastExprToType(RHS.take(), destType, CK_BitCast);
5752    return destType;
5753  }
5754  if (LHSTy->isObjCObjectPointerType() && RHSTy->isVoidPointerType()) {
5755    if (getLangOpts().ObjCAutoRefCount) {
5756      // ARC forbids the implicit conversion of object pointers to 'void *',
5757      // so these types are not compatible.
5758      Diag(QuestionLoc, diag::err_cond_voidptr_arc) << LHSTy << RHSTy
5759          << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
5760      LHS = RHS = true;
5761      return QualType();
5762    }
5763    QualType lhptee = LHSTy->getAs<ObjCObjectPointerType>()->getPointeeType();
5764    QualType rhptee = RHSTy->getAs<PointerType>()->getPointeeType();
5765    QualType destPointee
5766    = Context.getQualifiedType(rhptee, lhptee.getQualifiers());
5767    QualType destType = Context.getPointerType(destPointee);
5768    // Add qualifiers if necessary.
5769    RHS = ImpCastExprToType(RHS.take(), destType, CK_NoOp);
5770    // Promote to void*.
5771    LHS = ImpCastExprToType(LHS.take(), destType, CK_BitCast);
5772    return destType;
5773  }
5774  return QualType();
5775}
5776
5777/// SuggestParentheses - Emit a note with a fixit hint that wraps
5778/// ParenRange in parentheses.
5779static void SuggestParentheses(Sema &Self, SourceLocation Loc,
5780                               const PartialDiagnostic &Note,
5781                               SourceRange ParenRange) {
5782  SourceLocation EndLoc = Self.PP.getLocForEndOfToken(ParenRange.getEnd());
5783  if (ParenRange.getBegin().isFileID() && ParenRange.getEnd().isFileID() &&
5784      EndLoc.isValid()) {
5785    Self.Diag(Loc, Note)
5786      << FixItHint::CreateInsertion(ParenRange.getBegin(), "(")
5787      << FixItHint::CreateInsertion(EndLoc, ")");
5788  } else {
5789    // We can't display the parentheses, so just show the bare note.
5790    Self.Diag(Loc, Note) << ParenRange;
5791  }
5792}
5793
5794static bool IsArithmeticOp(BinaryOperatorKind Opc) {
5795  return Opc >= BO_Mul && Opc <= BO_Shr;
5796}
5797
5798/// IsArithmeticBinaryExpr - Returns true if E is an arithmetic binary
5799/// expression, either using a built-in or overloaded operator,
5800/// and sets *OpCode to the opcode and *RHSExprs to the right-hand side
5801/// expression.
5802static bool IsArithmeticBinaryExpr(Expr *E, BinaryOperatorKind *Opcode,
5803                                   Expr **RHSExprs) {
5804  // Don't strip parenthesis: we should not warn if E is in parenthesis.
5805  E = E->IgnoreImpCasts();
5806  E = E->IgnoreConversionOperator();
5807  E = E->IgnoreImpCasts();
5808
5809  // Built-in binary operator.
5810  if (BinaryOperator *OP = dyn_cast<BinaryOperator>(E)) {
5811    if (IsArithmeticOp(OP->getOpcode())) {
5812      *Opcode = OP->getOpcode();
5813      *RHSExprs = OP->getRHS();
5814      return true;
5815    }
5816  }
5817
5818  // Overloaded operator.
5819  if (CXXOperatorCallExpr *Call = dyn_cast<CXXOperatorCallExpr>(E)) {
5820    if (Call->getNumArgs() != 2)
5821      return false;
5822
5823    // Make sure this is really a binary operator that is safe to pass into
5824    // BinaryOperator::getOverloadedOpcode(), e.g. it's not a subscript op.
5825    OverloadedOperatorKind OO = Call->getOperator();
5826    if (OO < OO_Plus || OO > OO_Arrow ||
5827        OO == OO_PlusPlus || OO == OO_MinusMinus)
5828      return false;
5829
5830    BinaryOperatorKind OpKind = BinaryOperator::getOverloadedOpcode(OO);
5831    if (IsArithmeticOp(OpKind)) {
5832      *Opcode = OpKind;
5833      *RHSExprs = Call->getArg(1);
5834      return true;
5835    }
5836  }
5837
5838  return false;
5839}
5840
5841static bool IsLogicOp(BinaryOperatorKind Opc) {
5842  return (Opc >= BO_LT && Opc <= BO_NE) || (Opc >= BO_LAnd && Opc <= BO_LOr);
5843}
5844
5845/// ExprLooksBoolean - Returns true if E looks boolean, i.e. it has boolean type
5846/// or is a logical expression such as (x==y) which has int type, but is
5847/// commonly interpreted as boolean.
5848static bool ExprLooksBoolean(Expr *E) {
5849  E = E->IgnoreParenImpCasts();
5850
5851  if (E->getType()->isBooleanType())
5852    return true;
5853  if (BinaryOperator *OP = dyn_cast<BinaryOperator>(E))
5854    return IsLogicOp(OP->getOpcode());
5855  if (UnaryOperator *OP = dyn_cast<UnaryOperator>(E))
5856    return OP->getOpcode() == UO_LNot;
5857
5858  return false;
5859}
5860
5861/// DiagnoseConditionalPrecedence - Emit a warning when a conditional operator
5862/// and binary operator are mixed in a way that suggests the programmer assumed
5863/// the conditional operator has higher precedence, for example:
5864/// "int x = a + someBinaryCondition ? 1 : 2".
5865static void DiagnoseConditionalPrecedence(Sema &Self,
5866                                          SourceLocation OpLoc,
5867                                          Expr *Condition,
5868                                          Expr *LHSExpr,
5869                                          Expr *RHSExpr) {
5870  BinaryOperatorKind CondOpcode;
5871  Expr *CondRHS;
5872
5873  if (!IsArithmeticBinaryExpr(Condition, &CondOpcode, &CondRHS))
5874    return;
5875  if (!ExprLooksBoolean(CondRHS))
5876    return;
5877
5878  // The condition is an arithmetic binary expression, with a right-
5879  // hand side that looks boolean, so warn.
5880
5881  Self.Diag(OpLoc, diag::warn_precedence_conditional)
5882      << Condition->getSourceRange()
5883      << BinaryOperator::getOpcodeStr(CondOpcode);
5884
5885  SuggestParentheses(Self, OpLoc,
5886    Self.PDiag(diag::note_precedence_silence)
5887      << BinaryOperator::getOpcodeStr(CondOpcode),
5888    SourceRange(Condition->getLocStart(), Condition->getLocEnd()));
5889
5890  SuggestParentheses(Self, OpLoc,
5891    Self.PDiag(diag::note_precedence_conditional_first),
5892    SourceRange(CondRHS->getLocStart(), RHSExpr->getLocEnd()));
5893}
5894
5895/// ActOnConditionalOp - Parse a ?: operation.  Note that 'LHS' may be null
5896/// in the case of a the GNU conditional expr extension.
5897ExprResult Sema::ActOnConditionalOp(SourceLocation QuestionLoc,
5898                                    SourceLocation ColonLoc,
5899                                    Expr *CondExpr, Expr *LHSExpr,
5900                                    Expr *RHSExpr) {
5901  // If this is the gnu "x ?: y" extension, analyze the types as though the LHS
5902  // was the condition.
5903  OpaqueValueExpr *opaqueValue = 0;
5904  Expr *commonExpr = 0;
5905  if (LHSExpr == 0) {
5906    commonExpr = CondExpr;
5907    // Lower out placeholder types first.  This is important so that we don't
5908    // try to capture a placeholder. This happens in few cases in C++; such
5909    // as Objective-C++'s dictionary subscripting syntax.
5910    if (commonExpr->hasPlaceholderType()) {
5911      ExprResult result = CheckPlaceholderExpr(commonExpr);
5912      if (!result.isUsable()) return ExprError();
5913      commonExpr = result.take();
5914    }
5915    // We usually want to apply unary conversions *before* saving, except
5916    // in the special case of a C++ l-value conditional.
5917    if (!(getLangOpts().CPlusPlus
5918          && !commonExpr->isTypeDependent()
5919          && commonExpr->getValueKind() == RHSExpr->getValueKind()
5920          && commonExpr->isGLValue()
5921          && commonExpr->isOrdinaryOrBitFieldObject()
5922          && RHSExpr->isOrdinaryOrBitFieldObject()
5923          && Context.hasSameType(commonExpr->getType(), RHSExpr->getType()))) {
5924      ExprResult commonRes = UsualUnaryConversions(commonExpr);
5925      if (commonRes.isInvalid())
5926        return ExprError();
5927      commonExpr = commonRes.take();
5928    }
5929
5930    opaqueValue = new (Context) OpaqueValueExpr(commonExpr->getExprLoc(),
5931                                                commonExpr->getType(),
5932                                                commonExpr->getValueKind(),
5933                                                commonExpr->getObjectKind(),
5934                                                commonExpr);
5935    LHSExpr = CondExpr = opaqueValue;
5936  }
5937
5938  ExprValueKind VK = VK_RValue;
5939  ExprObjectKind OK = OK_Ordinary;
5940  ExprResult Cond = Owned(CondExpr), LHS = Owned(LHSExpr), RHS = Owned(RHSExpr);
5941  QualType result = CheckConditionalOperands(Cond, LHS, RHS,
5942                                             VK, OK, QuestionLoc);
5943  if (result.isNull() || Cond.isInvalid() || LHS.isInvalid() ||
5944      RHS.isInvalid())
5945    return ExprError();
5946
5947  DiagnoseConditionalPrecedence(*this, QuestionLoc, Cond.get(), LHS.get(),
5948                                RHS.get());
5949
5950  if (!commonExpr)
5951    return Owned(new (Context) ConditionalOperator(Cond.take(), QuestionLoc,
5952                                                   LHS.take(), ColonLoc,
5953                                                   RHS.take(), result, VK, OK));
5954
5955  return Owned(new (Context)
5956    BinaryConditionalOperator(commonExpr, opaqueValue, Cond.take(), LHS.take(),
5957                              RHS.take(), QuestionLoc, ColonLoc, result, VK,
5958                              OK));
5959}
5960
5961// checkPointerTypesForAssignment - This is a very tricky routine (despite
5962// being closely modeled after the C99 spec:-). The odd characteristic of this
5963// routine is it effectively iqnores the qualifiers on the top level pointee.
5964// This circumvents the usual type rules specified in 6.2.7p1 & 6.7.5.[1-3].
5965// FIXME: add a couple examples in this comment.
5966static Sema::AssignConvertType
5967checkPointerTypesForAssignment(Sema &S, QualType LHSType, QualType RHSType) {
5968  assert(LHSType.isCanonical() && "LHS not canonicalized!");
5969  assert(RHSType.isCanonical() && "RHS not canonicalized!");
5970
5971  // get the "pointed to" type (ignoring qualifiers at the top level)
5972  const Type *lhptee, *rhptee;
5973  Qualifiers lhq, rhq;
5974  llvm::tie(lhptee, lhq) = cast<PointerType>(LHSType)->getPointeeType().split();
5975  llvm::tie(rhptee, rhq) = cast<PointerType>(RHSType)->getPointeeType().split();
5976
5977  Sema::AssignConvertType ConvTy = Sema::Compatible;
5978
5979  // C99 6.5.16.1p1: This following citation is common to constraints
5980  // 3 & 4 (below). ...and the type *pointed to* by the left has all the
5981  // qualifiers of the type *pointed to* by the right;
5982  Qualifiers lq;
5983
5984  // As a special case, 'non-__weak A *' -> 'non-__weak const *' is okay.
5985  if (lhq.getObjCLifetime() != rhq.getObjCLifetime() &&
5986      lhq.compatiblyIncludesObjCLifetime(rhq)) {
5987    // Ignore lifetime for further calculation.
5988    lhq.removeObjCLifetime();
5989    rhq.removeObjCLifetime();
5990  }
5991
5992  if (!lhq.compatiblyIncludes(rhq)) {
5993    // Treat address-space mismatches as fatal.  TODO: address subspaces
5994    if (lhq.getAddressSpace() != rhq.getAddressSpace())
5995      ConvTy = Sema::IncompatiblePointerDiscardsQualifiers;
5996
5997    // It's okay to add or remove GC or lifetime qualifiers when converting to
5998    // and from void*.
5999    else if (lhq.withoutObjCGCAttr().withoutObjCLifetime()
6000                        .compatiblyIncludes(
6001                                rhq.withoutObjCGCAttr().withoutObjCLifetime())
6002             && (lhptee->isVoidType() || rhptee->isVoidType()))
6003      ; // keep old
6004
6005    // Treat lifetime mismatches as fatal.
6006    else if (lhq.getObjCLifetime() != rhq.getObjCLifetime())
6007      ConvTy = Sema::IncompatiblePointerDiscardsQualifiers;
6008
6009    // For GCC compatibility, other qualifier mismatches are treated
6010    // as still compatible in C.
6011    else ConvTy = Sema::CompatiblePointerDiscardsQualifiers;
6012  }
6013
6014  // C99 6.5.16.1p1 (constraint 4): If one operand is a pointer to an object or
6015  // incomplete type and the other is a pointer to a qualified or unqualified
6016  // version of void...
6017  if (lhptee->isVoidType()) {
6018    if (rhptee->isIncompleteOrObjectType())
6019      return ConvTy;
6020
6021    // As an extension, we allow cast to/from void* to function pointer.
6022    assert(rhptee->isFunctionType());
6023    return Sema::FunctionVoidPointer;
6024  }
6025
6026  if (rhptee->isVoidType()) {
6027    if (lhptee->isIncompleteOrObjectType())
6028      return ConvTy;
6029
6030    // As an extension, we allow cast to/from void* to function pointer.
6031    assert(lhptee->isFunctionType());
6032    return Sema::FunctionVoidPointer;
6033  }
6034
6035  // C99 6.5.16.1p1 (constraint 3): both operands are pointers to qualified or
6036  // unqualified versions of compatible types, ...
6037  QualType ltrans = QualType(lhptee, 0), rtrans = QualType(rhptee, 0);
6038  if (!S.Context.typesAreCompatible(ltrans, rtrans)) {
6039    // Check if the pointee types are compatible ignoring the sign.
6040    // We explicitly check for char so that we catch "char" vs
6041    // "unsigned char" on systems where "char" is unsigned.
6042    if (lhptee->isCharType())
6043      ltrans = S.Context.UnsignedCharTy;
6044    else if (lhptee->hasSignedIntegerRepresentation())
6045      ltrans = S.Context.getCorrespondingUnsignedType(ltrans);
6046
6047    if (rhptee->isCharType())
6048      rtrans = S.Context.UnsignedCharTy;
6049    else if (rhptee->hasSignedIntegerRepresentation())
6050      rtrans = S.Context.getCorrespondingUnsignedType(rtrans);
6051
6052    if (ltrans == rtrans) {
6053      // Types are compatible ignoring the sign. Qualifier incompatibility
6054      // takes priority over sign incompatibility because the sign
6055      // warning can be disabled.
6056      if (ConvTy != Sema::Compatible)
6057        return ConvTy;
6058
6059      return Sema::IncompatiblePointerSign;
6060    }
6061
6062    // If we are a multi-level pointer, it's possible that our issue is simply
6063    // one of qualification - e.g. char ** -> const char ** is not allowed. If
6064    // the eventual target type is the same and the pointers have the same
6065    // level of indirection, this must be the issue.
6066    if (isa<PointerType>(lhptee) && isa<PointerType>(rhptee)) {
6067      do {
6068        lhptee = cast<PointerType>(lhptee)->getPointeeType().getTypePtr();
6069        rhptee = cast<PointerType>(rhptee)->getPointeeType().getTypePtr();
6070      } while (isa<PointerType>(lhptee) && isa<PointerType>(rhptee));
6071
6072      if (lhptee == rhptee)
6073        return Sema::IncompatibleNestedPointerQualifiers;
6074    }
6075
6076    // General pointer incompatibility takes priority over qualifiers.
6077    return Sema::IncompatiblePointer;
6078  }
6079  if (!S.getLangOpts().CPlusPlus &&
6080      S.IsNoReturnConversion(ltrans, rtrans, ltrans))
6081    return Sema::IncompatiblePointer;
6082  return ConvTy;
6083}
6084
6085/// checkBlockPointerTypesForAssignment - This routine determines whether two
6086/// block pointer types are compatible or whether a block and normal pointer
6087/// are compatible. It is more restrict than comparing two function pointer
6088// types.
6089static Sema::AssignConvertType
6090checkBlockPointerTypesForAssignment(Sema &S, QualType LHSType,
6091                                    QualType RHSType) {
6092  assert(LHSType.isCanonical() && "LHS not canonicalized!");
6093  assert(RHSType.isCanonical() && "RHS not canonicalized!");
6094
6095  QualType lhptee, rhptee;
6096
6097  // get the "pointed to" type (ignoring qualifiers at the top level)
6098  lhptee = cast<BlockPointerType>(LHSType)->getPointeeType();
6099  rhptee = cast<BlockPointerType>(RHSType)->getPointeeType();
6100
6101  // In C++, the types have to match exactly.
6102  if (S.getLangOpts().CPlusPlus)
6103    return Sema::IncompatibleBlockPointer;
6104
6105  Sema::AssignConvertType ConvTy = Sema::Compatible;
6106
6107  // For blocks we enforce that qualifiers are identical.
6108  if (lhptee.getLocalQualifiers() != rhptee.getLocalQualifiers())
6109    ConvTy = Sema::CompatiblePointerDiscardsQualifiers;
6110
6111  if (!S.Context.typesAreBlockPointerCompatible(LHSType, RHSType))
6112    return Sema::IncompatibleBlockPointer;
6113
6114  return ConvTy;
6115}
6116
6117/// checkObjCPointerTypesForAssignment - Compares two objective-c pointer types
6118/// for assignment compatibility.
6119static Sema::AssignConvertType
6120checkObjCPointerTypesForAssignment(Sema &S, QualType LHSType,
6121                                   QualType RHSType) {
6122  assert(LHSType.isCanonical() && "LHS was not canonicalized!");
6123  assert(RHSType.isCanonical() && "RHS was not canonicalized!");
6124
6125  if (LHSType->isObjCBuiltinType()) {
6126    // Class is not compatible with ObjC object pointers.
6127    if (LHSType->isObjCClassType() && !RHSType->isObjCBuiltinType() &&
6128        !RHSType->isObjCQualifiedClassType())
6129      return Sema::IncompatiblePointer;
6130    return Sema::Compatible;
6131  }
6132  if (RHSType->isObjCBuiltinType()) {
6133    if (RHSType->isObjCClassType() && !LHSType->isObjCBuiltinType() &&
6134        !LHSType->isObjCQualifiedClassType())
6135      return Sema::IncompatiblePointer;
6136    return Sema::Compatible;
6137  }
6138  QualType lhptee = LHSType->getAs<ObjCObjectPointerType>()->getPointeeType();
6139  QualType rhptee = RHSType->getAs<ObjCObjectPointerType>()->getPointeeType();
6140
6141  if (!lhptee.isAtLeastAsQualifiedAs(rhptee) &&
6142      // make an exception for id<P>
6143      !LHSType->isObjCQualifiedIdType())
6144    return Sema::CompatiblePointerDiscardsQualifiers;
6145
6146  if (S.Context.typesAreCompatible(LHSType, RHSType))
6147    return Sema::Compatible;
6148  if (LHSType->isObjCQualifiedIdType() || RHSType->isObjCQualifiedIdType())
6149    return Sema::IncompatibleObjCQualifiedId;
6150  return Sema::IncompatiblePointer;
6151}
6152
6153Sema::AssignConvertType
6154Sema::CheckAssignmentConstraints(SourceLocation Loc,
6155                                 QualType LHSType, QualType RHSType) {
6156  // Fake up an opaque expression.  We don't actually care about what
6157  // cast operations are required, so if CheckAssignmentConstraints
6158  // adds casts to this they'll be wasted, but fortunately that doesn't
6159  // usually happen on valid code.
6160  OpaqueValueExpr RHSExpr(Loc, RHSType, VK_RValue);
6161  ExprResult RHSPtr = &RHSExpr;
6162  CastKind K = CK_Invalid;
6163
6164  return CheckAssignmentConstraints(LHSType, RHSPtr, K);
6165}
6166
6167/// CheckAssignmentConstraints (C99 6.5.16) - This routine currently
6168/// has code to accommodate several GCC extensions when type checking
6169/// pointers. Here are some objectionable examples that GCC considers warnings:
6170///
6171///  int a, *pint;
6172///  short *pshort;
6173///  struct foo *pfoo;
6174///
6175///  pint = pshort; // warning: assignment from incompatible pointer type
6176///  a = pint; // warning: assignment makes integer from pointer without a cast
6177///  pint = a; // warning: assignment makes pointer from integer without a cast
6178///  pint = pfoo; // warning: assignment from incompatible pointer type
6179///
6180/// As a result, the code for dealing with pointers is more complex than the
6181/// C99 spec dictates.
6182///
6183/// Sets 'Kind' for any result kind except Incompatible.
6184Sema::AssignConvertType
6185Sema::CheckAssignmentConstraints(QualType LHSType, ExprResult &RHS,
6186                                 CastKind &Kind) {
6187  QualType RHSType = RHS.get()->getType();
6188  QualType OrigLHSType = LHSType;
6189
6190  // Get canonical types.  We're not formatting these types, just comparing
6191  // them.
6192  LHSType = Context.getCanonicalType(LHSType).getUnqualifiedType();
6193  RHSType = Context.getCanonicalType(RHSType).getUnqualifiedType();
6194
6195  // Common case: no conversion required.
6196  if (LHSType == RHSType) {
6197    Kind = CK_NoOp;
6198    return Compatible;
6199  }
6200
6201  // If we have an atomic type, try a non-atomic assignment, then just add an
6202  // atomic qualification step.
6203  if (const AtomicType *AtomicTy = dyn_cast<AtomicType>(LHSType)) {
6204    Sema::AssignConvertType result =
6205      CheckAssignmentConstraints(AtomicTy->getValueType(), RHS, Kind);
6206    if (result != Compatible)
6207      return result;
6208    if (Kind != CK_NoOp)
6209      RHS = ImpCastExprToType(RHS.take(), AtomicTy->getValueType(), Kind);
6210    Kind = CK_NonAtomicToAtomic;
6211    return Compatible;
6212  }
6213
6214  // If the left-hand side is a reference type, then we are in a
6215  // (rare!) case where we've allowed the use of references in C,
6216  // e.g., as a parameter type in a built-in function. In this case,
6217  // just make sure that the type referenced is compatible with the
6218  // right-hand side type. The caller is responsible for adjusting
6219  // LHSType so that the resulting expression does not have reference
6220  // type.
6221  if (const ReferenceType *LHSTypeRef = LHSType->getAs<ReferenceType>()) {
6222    if (Context.typesAreCompatible(LHSTypeRef->getPointeeType(), RHSType)) {
6223      Kind = CK_LValueBitCast;
6224      return Compatible;
6225    }
6226    return Incompatible;
6227  }
6228
6229  // Allow scalar to ExtVector assignments, and assignments of an ExtVector type
6230  // to the same ExtVector type.
6231  if (LHSType->isExtVectorType()) {
6232    if (RHSType->isExtVectorType())
6233      return Incompatible;
6234    if (RHSType->isArithmeticType()) {
6235      // CK_VectorSplat does T -> vector T, so first cast to the
6236      // element type.
6237      QualType elType = cast<ExtVectorType>(LHSType)->getElementType();
6238      if (elType != RHSType) {
6239        Kind = PrepareScalarCast(RHS, elType);
6240        RHS = ImpCastExprToType(RHS.take(), elType, Kind);
6241      }
6242      Kind = CK_VectorSplat;
6243      return Compatible;
6244    }
6245  }
6246
6247  // Conversions to or from vector type.
6248  if (LHSType->isVectorType() || RHSType->isVectorType()) {
6249    if (LHSType->isVectorType() && RHSType->isVectorType()) {
6250      // Allow assignments of an AltiVec vector type to an equivalent GCC
6251      // vector type and vice versa
6252      if (Context.areCompatibleVectorTypes(LHSType, RHSType)) {
6253        Kind = CK_BitCast;
6254        return Compatible;
6255      }
6256
6257      // If we are allowing lax vector conversions, and LHS and RHS are both
6258      // vectors, the total size only needs to be the same. This is a bitcast;
6259      // no bits are changed but the result type is different.
6260      if (getLangOpts().LaxVectorConversions &&
6261          (Context.getTypeSize(LHSType) == Context.getTypeSize(RHSType))) {
6262        Kind = CK_BitCast;
6263        return IncompatibleVectors;
6264      }
6265    }
6266    return Incompatible;
6267  }
6268
6269  // Arithmetic conversions.
6270  if (LHSType->isArithmeticType() && RHSType->isArithmeticType() &&
6271      !(getLangOpts().CPlusPlus && LHSType->isEnumeralType())) {
6272    Kind = PrepareScalarCast(RHS, LHSType);
6273    return Compatible;
6274  }
6275
6276  // Conversions to normal pointers.
6277  if (const PointerType *LHSPointer = dyn_cast<PointerType>(LHSType)) {
6278    // U* -> T*
6279    if (isa<PointerType>(RHSType)) {
6280      Kind = CK_BitCast;
6281      return checkPointerTypesForAssignment(*this, LHSType, RHSType);
6282    }
6283
6284    // int -> T*
6285    if (RHSType->isIntegerType()) {
6286      Kind = CK_IntegralToPointer; // FIXME: null?
6287      return IntToPointer;
6288    }
6289
6290    // C pointers are not compatible with ObjC object pointers,
6291    // with two exceptions:
6292    if (isa<ObjCObjectPointerType>(RHSType)) {
6293      //  - conversions to void*
6294      if (LHSPointer->getPointeeType()->isVoidType()) {
6295        Kind = CK_BitCast;
6296        return Compatible;
6297      }
6298
6299      //  - conversions from 'Class' to the redefinition type
6300      if (RHSType->isObjCClassType() &&
6301          Context.hasSameType(LHSType,
6302                              Context.getObjCClassRedefinitionType())) {
6303        Kind = CK_BitCast;
6304        return Compatible;
6305      }
6306
6307      Kind = CK_BitCast;
6308      return IncompatiblePointer;
6309    }
6310
6311    // U^ -> void*
6312    if (RHSType->getAs<BlockPointerType>()) {
6313      if (LHSPointer->getPointeeType()->isVoidType()) {
6314        Kind = CK_BitCast;
6315        return Compatible;
6316      }
6317    }
6318
6319    return Incompatible;
6320  }
6321
6322  // Conversions to block pointers.
6323  if (isa<BlockPointerType>(LHSType)) {
6324    // U^ -> T^
6325    if (RHSType->isBlockPointerType()) {
6326      Kind = CK_BitCast;
6327      return checkBlockPointerTypesForAssignment(*this, LHSType, RHSType);
6328    }
6329
6330    // int or null -> T^
6331    if (RHSType->isIntegerType()) {
6332      Kind = CK_IntegralToPointer; // FIXME: null
6333      return IntToBlockPointer;
6334    }
6335
6336    // id -> T^
6337    if (getLangOpts().ObjC1 && RHSType->isObjCIdType()) {
6338      Kind = CK_AnyPointerToBlockPointerCast;
6339      return Compatible;
6340    }
6341
6342    // void* -> T^
6343    if (const PointerType *RHSPT = RHSType->getAs<PointerType>())
6344      if (RHSPT->getPointeeType()->isVoidType()) {
6345        Kind = CK_AnyPointerToBlockPointerCast;
6346        return Compatible;
6347      }
6348
6349    return Incompatible;
6350  }
6351
6352  // Conversions to Objective-C pointers.
6353  if (isa<ObjCObjectPointerType>(LHSType)) {
6354    // A* -> B*
6355    if (RHSType->isObjCObjectPointerType()) {
6356      Kind = CK_BitCast;
6357      Sema::AssignConvertType result =
6358        checkObjCPointerTypesForAssignment(*this, LHSType, RHSType);
6359      if (getLangOpts().ObjCAutoRefCount &&
6360          result == Compatible &&
6361          !CheckObjCARCUnavailableWeakConversion(OrigLHSType, RHSType))
6362        result = IncompatibleObjCWeakRef;
6363      return result;
6364    }
6365
6366    // int or null -> A*
6367    if (RHSType->isIntegerType()) {
6368      Kind = CK_IntegralToPointer; // FIXME: null
6369      return IntToPointer;
6370    }
6371
6372    // In general, C pointers are not compatible with ObjC object pointers,
6373    // with two exceptions:
6374    if (isa<PointerType>(RHSType)) {
6375      Kind = CK_CPointerToObjCPointerCast;
6376
6377      //  - conversions from 'void*'
6378      if (RHSType->isVoidPointerType()) {
6379        return Compatible;
6380      }
6381
6382      //  - conversions to 'Class' from its redefinition type
6383      if (LHSType->isObjCClassType() &&
6384          Context.hasSameType(RHSType,
6385                              Context.getObjCClassRedefinitionType())) {
6386        return Compatible;
6387      }
6388
6389      return IncompatiblePointer;
6390    }
6391
6392    // T^ -> A*
6393    if (RHSType->isBlockPointerType()) {
6394      maybeExtendBlockObject(*this, RHS);
6395      Kind = CK_BlockPointerToObjCPointerCast;
6396      return Compatible;
6397    }
6398
6399    return Incompatible;
6400  }
6401
6402  // Conversions from pointers that are not covered by the above.
6403  if (isa<PointerType>(RHSType)) {
6404    // T* -> _Bool
6405    if (LHSType == Context.BoolTy) {
6406      Kind = CK_PointerToBoolean;
6407      return Compatible;
6408    }
6409
6410    // T* -> int
6411    if (LHSType->isIntegerType()) {
6412      Kind = CK_PointerToIntegral;
6413      return PointerToInt;
6414    }
6415
6416    return Incompatible;
6417  }
6418
6419  // Conversions from Objective-C pointers that are not covered by the above.
6420  if (isa<ObjCObjectPointerType>(RHSType)) {
6421    // T* -> _Bool
6422    if (LHSType == Context.BoolTy) {
6423      Kind = CK_PointerToBoolean;
6424      return Compatible;
6425    }
6426
6427    // T* -> int
6428    if (LHSType->isIntegerType()) {
6429      Kind = CK_PointerToIntegral;
6430      return PointerToInt;
6431    }
6432
6433    return Incompatible;
6434  }
6435
6436  // struct A -> struct B
6437  if (isa<TagType>(LHSType) && isa<TagType>(RHSType)) {
6438    if (Context.typesAreCompatible(LHSType, RHSType)) {
6439      Kind = CK_NoOp;
6440      return Compatible;
6441    }
6442  }
6443
6444  return Incompatible;
6445}
6446
6447/// \brief Constructs a transparent union from an expression that is
6448/// used to initialize the transparent union.
6449static void ConstructTransparentUnion(Sema &S, ASTContext &C,
6450                                      ExprResult &EResult, QualType UnionType,
6451                                      FieldDecl *Field) {
6452  // Build an initializer list that designates the appropriate member
6453  // of the transparent union.
6454  Expr *E = EResult.take();
6455  InitListExpr *Initializer = new (C) InitListExpr(C, SourceLocation(),
6456                                                   E, SourceLocation());
6457  Initializer->setType(UnionType);
6458  Initializer->setInitializedFieldInUnion(Field);
6459
6460  // Build a compound literal constructing a value of the transparent
6461  // union type from this initializer list.
6462  TypeSourceInfo *unionTInfo = C.getTrivialTypeSourceInfo(UnionType);
6463  EResult = S.Owned(
6464    new (C) CompoundLiteralExpr(SourceLocation(), unionTInfo, UnionType,
6465                                VK_RValue, Initializer, false));
6466}
6467
6468Sema::AssignConvertType
6469Sema::CheckTransparentUnionArgumentConstraints(QualType ArgType,
6470                                               ExprResult &RHS) {
6471  QualType RHSType = RHS.get()->getType();
6472
6473  // If the ArgType is a Union type, we want to handle a potential
6474  // transparent_union GCC extension.
6475  const RecordType *UT = ArgType->getAsUnionType();
6476  if (!UT || !UT->getDecl()->hasAttr<TransparentUnionAttr>())
6477    return Incompatible;
6478
6479  // The field to initialize within the transparent union.
6480  RecordDecl *UD = UT->getDecl();
6481  FieldDecl *InitField = 0;
6482  // It's compatible if the expression matches any of the fields.
6483  for (RecordDecl::field_iterator it = UD->field_begin(),
6484         itend = UD->field_end();
6485       it != itend; ++it) {
6486    if (it->getType()->isPointerType()) {
6487      // If the transparent union contains a pointer type, we allow:
6488      // 1) void pointer
6489      // 2) null pointer constant
6490      if (RHSType->isPointerType())
6491        if (RHSType->castAs<PointerType>()->getPointeeType()->isVoidType()) {
6492          RHS = ImpCastExprToType(RHS.take(), it->getType(), CK_BitCast);
6493          InitField = *it;
6494          break;
6495        }
6496
6497      if (RHS.get()->isNullPointerConstant(Context,
6498                                           Expr::NPC_ValueDependentIsNull)) {
6499        RHS = ImpCastExprToType(RHS.take(), it->getType(),
6500                                CK_NullToPointer);
6501        InitField = *it;
6502        break;
6503      }
6504    }
6505
6506    CastKind Kind = CK_Invalid;
6507    if (CheckAssignmentConstraints(it->getType(), RHS, Kind)
6508          == Compatible) {
6509      RHS = ImpCastExprToType(RHS.take(), it->getType(), Kind);
6510      InitField = *it;
6511      break;
6512    }
6513  }
6514
6515  if (!InitField)
6516    return Incompatible;
6517
6518  ConstructTransparentUnion(*this, Context, RHS, ArgType, InitField);
6519  return Compatible;
6520}
6521
6522Sema::AssignConvertType
6523Sema::CheckSingleAssignmentConstraints(QualType LHSType, ExprResult &RHS,
6524                                       bool Diagnose,
6525                                       bool DiagnoseCFAudited) {
6526  if (getLangOpts().CPlusPlus) {
6527    if (!LHSType->isRecordType() && !LHSType->isAtomicType()) {
6528      // C++ 5.17p3: If the left operand is not of class type, the
6529      // expression is implicitly converted (C++ 4) to the
6530      // cv-unqualified type of the left operand.
6531      ExprResult Res;
6532      if (Diagnose) {
6533        Res = PerformImplicitConversion(RHS.get(), LHSType.getUnqualifiedType(),
6534                                        AA_Assigning);
6535      } else {
6536        ImplicitConversionSequence ICS =
6537            TryImplicitConversion(RHS.get(), LHSType.getUnqualifiedType(),
6538                                  /*SuppressUserConversions=*/false,
6539                                  /*AllowExplicit=*/false,
6540                                  /*InOverloadResolution=*/false,
6541                                  /*CStyle=*/false,
6542                                  /*AllowObjCWritebackConversion=*/false);
6543        if (ICS.isFailure())
6544          return Incompatible;
6545        Res = PerformImplicitConversion(RHS.get(), LHSType.getUnqualifiedType(),
6546                                        ICS, AA_Assigning);
6547      }
6548      if (Res.isInvalid())
6549        return Incompatible;
6550      Sema::AssignConvertType result = Compatible;
6551      if (getLangOpts().ObjCAutoRefCount &&
6552          !CheckObjCARCUnavailableWeakConversion(LHSType,
6553                                                 RHS.get()->getType()))
6554        result = IncompatibleObjCWeakRef;
6555      RHS = Res;
6556      return result;
6557    }
6558
6559    // FIXME: Currently, we fall through and treat C++ classes like C
6560    // structures.
6561    // FIXME: We also fall through for atomics; not sure what should
6562    // happen there, though.
6563  }
6564
6565  // C99 6.5.16.1p1: the left operand is a pointer and the right is
6566  // a null pointer constant.
6567  if ((LHSType->isPointerType() || LHSType->isObjCObjectPointerType() ||
6568       LHSType->isBlockPointerType()) &&
6569      RHS.get()->isNullPointerConstant(Context,
6570                                       Expr::NPC_ValueDependentIsNull)) {
6571    CastKind Kind;
6572    CXXCastPath Path;
6573    CheckPointerConversion(RHS.get(), LHSType, Kind, Path, false);
6574    RHS = ImpCastExprToType(RHS.take(), LHSType, Kind, VK_RValue, &Path);
6575    return Compatible;
6576  }
6577
6578  // This check seems unnatural, however it is necessary to ensure the proper
6579  // conversion of functions/arrays. If the conversion were done for all
6580  // DeclExpr's (created by ActOnIdExpression), it would mess up the unary
6581  // expressions that suppress this implicit conversion (&, sizeof).
6582  //
6583  // Suppress this for references: C++ 8.5.3p5.
6584  if (!LHSType->isReferenceType()) {
6585    RHS = DefaultFunctionArrayLvalueConversion(RHS.take());
6586    if (RHS.isInvalid())
6587      return Incompatible;
6588  }
6589
6590  CastKind Kind = CK_Invalid;
6591  Sema::AssignConvertType result =
6592    CheckAssignmentConstraints(LHSType, RHS, Kind);
6593
6594  // C99 6.5.16.1p2: The value of the right operand is converted to the
6595  // type of the assignment expression.
6596  // CheckAssignmentConstraints allows the left-hand side to be a reference,
6597  // so that we can use references in built-in functions even in C.
6598  // The getNonReferenceType() call makes sure that the resulting expression
6599  // does not have reference type.
6600  if (result != Incompatible && RHS.get()->getType() != LHSType) {
6601    QualType Ty = LHSType.getNonLValueExprType(Context);
6602    Expr *E = RHS.take();
6603    if (getLangOpts().ObjCAutoRefCount)
6604      CheckObjCARCConversion(SourceRange(), Ty, E, CCK_ImplicitConversion,
6605                             DiagnoseCFAudited);
6606    RHS = ImpCastExprToType(E, Ty, Kind);
6607  }
6608  return result;
6609}
6610
6611QualType Sema::InvalidOperands(SourceLocation Loc, ExprResult &LHS,
6612                               ExprResult &RHS) {
6613  Diag(Loc, diag::err_typecheck_invalid_operands)
6614    << LHS.get()->getType() << RHS.get()->getType()
6615    << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
6616  return QualType();
6617}
6618
6619QualType Sema::CheckVectorOperands(ExprResult &LHS, ExprResult &RHS,
6620                                   SourceLocation Loc, bool IsCompAssign) {
6621  if (!IsCompAssign) {
6622    LHS = DefaultFunctionArrayLvalueConversion(LHS.take());
6623    if (LHS.isInvalid())
6624      return QualType();
6625  }
6626  RHS = DefaultFunctionArrayLvalueConversion(RHS.take());
6627  if (RHS.isInvalid())
6628    return QualType();
6629
6630  // For conversion purposes, we ignore any qualifiers.
6631  // For example, "const float" and "float" are equivalent.
6632  QualType LHSType =
6633    Context.getCanonicalType(LHS.get()->getType()).getUnqualifiedType();
6634  QualType RHSType =
6635    Context.getCanonicalType(RHS.get()->getType()).getUnqualifiedType();
6636
6637  // If the vector types are identical, return.
6638  if (LHSType == RHSType)
6639    return LHSType;
6640
6641  // Handle the case of equivalent AltiVec and GCC vector types
6642  if (LHSType->isVectorType() && RHSType->isVectorType() &&
6643      Context.areCompatibleVectorTypes(LHSType, RHSType)) {
6644    if (LHSType->isExtVectorType()) {
6645      RHS = ImpCastExprToType(RHS.take(), LHSType, CK_BitCast);
6646      return LHSType;
6647    }
6648
6649    if (!IsCompAssign)
6650      LHS = ImpCastExprToType(LHS.take(), RHSType, CK_BitCast);
6651    return RHSType;
6652  }
6653
6654  if (getLangOpts().LaxVectorConversions &&
6655      Context.getTypeSize(LHSType) == Context.getTypeSize(RHSType)) {
6656    // If we are allowing lax vector conversions, and LHS and RHS are both
6657    // vectors, the total size only needs to be the same. This is a
6658    // bitcast; no bits are changed but the result type is different.
6659    // FIXME: Should we really be allowing this?
6660    RHS = ImpCastExprToType(RHS.take(), LHSType, CK_BitCast);
6661    return LHSType;
6662  }
6663
6664  // Canonicalize the ExtVector to the LHS, remember if we swapped so we can
6665  // swap back (so that we don't reverse the inputs to a subtract, for instance.
6666  bool swapped = false;
6667  if (RHSType->isExtVectorType() && !IsCompAssign) {
6668    swapped = true;
6669    std::swap(RHS, LHS);
6670    std::swap(RHSType, LHSType);
6671  }
6672
6673  // Handle the case of an ext vector and scalar.
6674  if (const ExtVectorType *LV = LHSType->getAs<ExtVectorType>()) {
6675    QualType EltTy = LV->getElementType();
6676    if (EltTy->isIntegralType(Context) && RHSType->isIntegralType(Context)) {
6677      int order = Context.getIntegerTypeOrder(EltTy, RHSType);
6678      if (order > 0)
6679        RHS = ImpCastExprToType(RHS.take(), EltTy, CK_IntegralCast);
6680      if (order >= 0) {
6681        RHS = ImpCastExprToType(RHS.take(), LHSType, CK_VectorSplat);
6682        if (swapped) std::swap(RHS, LHS);
6683        return LHSType;
6684      }
6685    }
6686    if (EltTy->isRealFloatingType() && RHSType->isScalarType()) {
6687      if (RHSType->isRealFloatingType()) {
6688        int order = Context.getFloatingTypeOrder(EltTy, RHSType);
6689        if (order > 0)
6690          RHS = ImpCastExprToType(RHS.take(), EltTy, CK_FloatingCast);
6691        if (order >= 0) {
6692          RHS = ImpCastExprToType(RHS.take(), LHSType, CK_VectorSplat);
6693          if (swapped) std::swap(RHS, LHS);
6694          return LHSType;
6695        }
6696      }
6697      if (RHSType->isIntegralType(Context)) {
6698        RHS = ImpCastExprToType(RHS.take(), EltTy, CK_IntegralToFloating);
6699        RHS = ImpCastExprToType(RHS.take(), LHSType, CK_VectorSplat);
6700        if (swapped) std::swap(RHS, LHS);
6701        return LHSType;
6702      }
6703    }
6704  }
6705
6706  // Vectors of different size or scalar and non-ext-vector are errors.
6707  if (swapped) std::swap(RHS, LHS);
6708  Diag(Loc, diag::err_typecheck_vector_not_convertable)
6709    << LHS.get()->getType() << RHS.get()->getType()
6710    << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
6711  return QualType();
6712}
6713
6714// checkArithmeticNull - Detect when a NULL constant is used improperly in an
6715// expression.  These are mainly cases where the null pointer is used as an
6716// integer instead of a pointer.
6717static void checkArithmeticNull(Sema &S, ExprResult &LHS, ExprResult &RHS,
6718                                SourceLocation Loc, bool IsCompare) {
6719  // The canonical way to check for a GNU null is with isNullPointerConstant,
6720  // but we use a bit of a hack here for speed; this is a relatively
6721  // hot path, and isNullPointerConstant is slow.
6722  bool LHSNull = isa<GNUNullExpr>(LHS.get()->IgnoreParenImpCasts());
6723  bool RHSNull = isa<GNUNullExpr>(RHS.get()->IgnoreParenImpCasts());
6724
6725  QualType NonNullType = LHSNull ? RHS.get()->getType() : LHS.get()->getType();
6726
6727  // Avoid analyzing cases where the result will either be invalid (and
6728  // diagnosed as such) or entirely valid and not something to warn about.
6729  if ((!LHSNull && !RHSNull) || NonNullType->isBlockPointerType() ||
6730      NonNullType->isMemberPointerType() || NonNullType->isFunctionType())
6731    return;
6732
6733  // Comparison operations would not make sense with a null pointer no matter
6734  // what the other expression is.
6735  if (!IsCompare) {
6736    S.Diag(Loc, diag::warn_null_in_arithmetic_operation)
6737        << (LHSNull ? LHS.get()->getSourceRange() : SourceRange())
6738        << (RHSNull ? RHS.get()->getSourceRange() : SourceRange());
6739    return;
6740  }
6741
6742  // The rest of the operations only make sense with a null pointer
6743  // if the other expression is a pointer.
6744  if (LHSNull == RHSNull || NonNullType->isAnyPointerType() ||
6745      NonNullType->canDecayToPointerType())
6746    return;
6747
6748  S.Diag(Loc, diag::warn_null_in_comparison_operation)
6749      << LHSNull /* LHS is NULL */ << NonNullType
6750      << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
6751}
6752
6753QualType Sema::CheckMultiplyDivideOperands(ExprResult &LHS, ExprResult &RHS,
6754                                           SourceLocation Loc,
6755                                           bool IsCompAssign, bool IsDiv) {
6756  checkArithmeticNull(*this, LHS, RHS, Loc, /*isCompare=*/false);
6757
6758  if (LHS.get()->getType()->isVectorType() ||
6759      RHS.get()->getType()->isVectorType())
6760    return CheckVectorOperands(LHS, RHS, Loc, IsCompAssign);
6761
6762  QualType compType = UsualArithmeticConversions(LHS, RHS, IsCompAssign);
6763  if (LHS.isInvalid() || RHS.isInvalid())
6764    return QualType();
6765
6766
6767  if (compType.isNull() || !compType->isArithmeticType())
6768    return InvalidOperands(Loc, LHS, RHS);
6769
6770  // Check for division by zero.
6771  llvm::APSInt RHSValue;
6772  if (IsDiv && !RHS.get()->isValueDependent() &&
6773      RHS.get()->EvaluateAsInt(RHSValue, Context) && RHSValue == 0)
6774    DiagRuntimeBehavior(Loc, RHS.get(),
6775                        PDiag(diag::warn_division_by_zero)
6776                          << RHS.get()->getSourceRange());
6777
6778  return compType;
6779}
6780
6781QualType Sema::CheckRemainderOperands(
6782  ExprResult &LHS, ExprResult &RHS, SourceLocation Loc, bool IsCompAssign) {
6783  checkArithmeticNull(*this, LHS, RHS, Loc, /*isCompare=*/false);
6784
6785  if (LHS.get()->getType()->isVectorType() ||
6786      RHS.get()->getType()->isVectorType()) {
6787    if (LHS.get()->getType()->hasIntegerRepresentation() &&
6788        RHS.get()->getType()->hasIntegerRepresentation())
6789      return CheckVectorOperands(LHS, RHS, Loc, IsCompAssign);
6790    return InvalidOperands(Loc, LHS, RHS);
6791  }
6792
6793  QualType compType = UsualArithmeticConversions(LHS, RHS, IsCompAssign);
6794  if (LHS.isInvalid() || RHS.isInvalid())
6795    return QualType();
6796
6797  if (compType.isNull() || !compType->isIntegerType())
6798    return InvalidOperands(Loc, LHS, RHS);
6799
6800  // Check for remainder by zero.
6801  llvm::APSInt RHSValue;
6802  if (!RHS.get()->isValueDependent() &&
6803      RHS.get()->EvaluateAsInt(RHSValue, Context) && RHSValue == 0)
6804    DiagRuntimeBehavior(Loc, RHS.get(),
6805                        PDiag(diag::warn_remainder_by_zero)
6806                          << RHS.get()->getSourceRange());
6807
6808  return compType;
6809}
6810
6811/// \brief Diagnose invalid arithmetic on two void pointers.
6812static void diagnoseArithmeticOnTwoVoidPointers(Sema &S, SourceLocation Loc,
6813                                                Expr *LHSExpr, Expr *RHSExpr) {
6814  S.Diag(Loc, S.getLangOpts().CPlusPlus
6815                ? diag::err_typecheck_pointer_arith_void_type
6816                : diag::ext_gnu_void_ptr)
6817    << 1 /* two pointers */ << LHSExpr->getSourceRange()
6818                            << RHSExpr->getSourceRange();
6819}
6820
6821/// \brief Diagnose invalid arithmetic on a void pointer.
6822static void diagnoseArithmeticOnVoidPointer(Sema &S, SourceLocation Loc,
6823                                            Expr *Pointer) {
6824  S.Diag(Loc, S.getLangOpts().CPlusPlus
6825                ? diag::err_typecheck_pointer_arith_void_type
6826                : diag::ext_gnu_void_ptr)
6827    << 0 /* one pointer */ << Pointer->getSourceRange();
6828}
6829
6830/// \brief Diagnose invalid arithmetic on two function pointers.
6831static void diagnoseArithmeticOnTwoFunctionPointers(Sema &S, SourceLocation Loc,
6832                                                    Expr *LHS, Expr *RHS) {
6833  assert(LHS->getType()->isAnyPointerType());
6834  assert(RHS->getType()->isAnyPointerType());
6835  S.Diag(Loc, S.getLangOpts().CPlusPlus
6836                ? diag::err_typecheck_pointer_arith_function_type
6837                : diag::ext_gnu_ptr_func_arith)
6838    << 1 /* two pointers */ << LHS->getType()->getPointeeType()
6839    // We only show the second type if it differs from the first.
6840    << (unsigned)!S.Context.hasSameUnqualifiedType(LHS->getType(),
6841                                                   RHS->getType())
6842    << RHS->getType()->getPointeeType()
6843    << LHS->getSourceRange() << RHS->getSourceRange();
6844}
6845
6846/// \brief Diagnose invalid arithmetic on a function pointer.
6847static void diagnoseArithmeticOnFunctionPointer(Sema &S, SourceLocation Loc,
6848                                                Expr *Pointer) {
6849  assert(Pointer->getType()->isAnyPointerType());
6850  S.Diag(Loc, S.getLangOpts().CPlusPlus
6851                ? diag::err_typecheck_pointer_arith_function_type
6852                : diag::ext_gnu_ptr_func_arith)
6853    << 0 /* one pointer */ << Pointer->getType()->getPointeeType()
6854    << 0 /* one pointer, so only one type */
6855    << Pointer->getSourceRange();
6856}
6857
6858/// \brief Emit error if Operand is incomplete pointer type
6859///
6860/// \returns True if pointer has incomplete type
6861static bool checkArithmeticIncompletePointerType(Sema &S, SourceLocation Loc,
6862                                                 Expr *Operand) {
6863  assert(Operand->getType()->isAnyPointerType() &&
6864         !Operand->getType()->isDependentType());
6865  QualType PointeeTy = Operand->getType()->getPointeeType();
6866  return S.RequireCompleteType(Loc, PointeeTy,
6867                               diag::err_typecheck_arithmetic_incomplete_type,
6868                               PointeeTy, Operand->getSourceRange());
6869}
6870
6871/// \brief Check the validity of an arithmetic pointer operand.
6872///
6873/// If the operand has pointer type, this code will check for pointer types
6874/// which are invalid in arithmetic operations. These will be diagnosed
6875/// appropriately, including whether or not the use is supported as an
6876/// extension.
6877///
6878/// \returns True when the operand is valid to use (even if as an extension).
6879static bool checkArithmeticOpPointerOperand(Sema &S, SourceLocation Loc,
6880                                            Expr *Operand) {
6881  if (!Operand->getType()->isAnyPointerType()) return true;
6882
6883  QualType PointeeTy = Operand->getType()->getPointeeType();
6884  if (PointeeTy->isVoidType()) {
6885    diagnoseArithmeticOnVoidPointer(S, Loc, Operand);
6886    return !S.getLangOpts().CPlusPlus;
6887  }
6888  if (PointeeTy->isFunctionType()) {
6889    diagnoseArithmeticOnFunctionPointer(S, Loc, Operand);
6890    return !S.getLangOpts().CPlusPlus;
6891  }
6892
6893  if (checkArithmeticIncompletePointerType(S, Loc, Operand)) return false;
6894
6895  return true;
6896}
6897
6898/// \brief Check the validity of a binary arithmetic operation w.r.t. pointer
6899/// operands.
6900///
6901/// This routine will diagnose any invalid arithmetic on pointer operands much
6902/// like \see checkArithmeticOpPointerOperand. However, it has special logic
6903/// for emitting a single diagnostic even for operations where both LHS and RHS
6904/// are (potentially problematic) pointers.
6905///
6906/// \returns True when the operand is valid to use (even if as an extension).
6907static bool checkArithmeticBinOpPointerOperands(Sema &S, SourceLocation Loc,
6908                                                Expr *LHSExpr, Expr *RHSExpr) {
6909  bool isLHSPointer = LHSExpr->getType()->isAnyPointerType();
6910  bool isRHSPointer = RHSExpr->getType()->isAnyPointerType();
6911  if (!isLHSPointer && !isRHSPointer) return true;
6912
6913  QualType LHSPointeeTy, RHSPointeeTy;
6914  if (isLHSPointer) LHSPointeeTy = LHSExpr->getType()->getPointeeType();
6915  if (isRHSPointer) RHSPointeeTy = RHSExpr->getType()->getPointeeType();
6916
6917  // Check for arithmetic on pointers to incomplete types.
6918  bool isLHSVoidPtr = isLHSPointer && LHSPointeeTy->isVoidType();
6919  bool isRHSVoidPtr = isRHSPointer && RHSPointeeTy->isVoidType();
6920  if (isLHSVoidPtr || isRHSVoidPtr) {
6921    if (!isRHSVoidPtr) diagnoseArithmeticOnVoidPointer(S, Loc, LHSExpr);
6922    else if (!isLHSVoidPtr) diagnoseArithmeticOnVoidPointer(S, Loc, RHSExpr);
6923    else diagnoseArithmeticOnTwoVoidPointers(S, Loc, LHSExpr, RHSExpr);
6924
6925    return !S.getLangOpts().CPlusPlus;
6926  }
6927
6928  bool isLHSFuncPtr = isLHSPointer && LHSPointeeTy->isFunctionType();
6929  bool isRHSFuncPtr = isRHSPointer && RHSPointeeTy->isFunctionType();
6930  if (isLHSFuncPtr || isRHSFuncPtr) {
6931    if (!isRHSFuncPtr) diagnoseArithmeticOnFunctionPointer(S, Loc, LHSExpr);
6932    else if (!isLHSFuncPtr) diagnoseArithmeticOnFunctionPointer(S, Loc,
6933                                                                RHSExpr);
6934    else diagnoseArithmeticOnTwoFunctionPointers(S, Loc, LHSExpr, RHSExpr);
6935
6936    return !S.getLangOpts().CPlusPlus;
6937  }
6938
6939  if (isLHSPointer && checkArithmeticIncompletePointerType(S, Loc, LHSExpr))
6940    return false;
6941  if (isRHSPointer && checkArithmeticIncompletePointerType(S, Loc, RHSExpr))
6942    return false;
6943
6944  return true;
6945}
6946
6947/// diagnoseStringPlusInt - Emit a warning when adding an integer to a string
6948/// literal.
6949static void diagnoseStringPlusInt(Sema &Self, SourceLocation OpLoc,
6950                                  Expr *LHSExpr, Expr *RHSExpr) {
6951  StringLiteral* StrExpr = dyn_cast<StringLiteral>(LHSExpr->IgnoreImpCasts());
6952  Expr* IndexExpr = RHSExpr;
6953  if (!StrExpr) {
6954    StrExpr = dyn_cast<StringLiteral>(RHSExpr->IgnoreImpCasts());
6955    IndexExpr = LHSExpr;
6956  }
6957
6958  bool IsStringPlusInt = StrExpr &&
6959      IndexExpr->getType()->isIntegralOrUnscopedEnumerationType();
6960  if (!IsStringPlusInt)
6961    return;
6962
6963  llvm::APSInt index;
6964  if (IndexExpr->EvaluateAsInt(index, Self.getASTContext())) {
6965    unsigned StrLenWithNull = StrExpr->getLength() + 1;
6966    if (index.isNonNegative() &&
6967        index <= llvm::APSInt(llvm::APInt(index.getBitWidth(), StrLenWithNull),
6968                              index.isUnsigned()))
6969      return;
6970  }
6971
6972  SourceRange DiagRange(LHSExpr->getLocStart(), RHSExpr->getLocEnd());
6973  Self.Diag(OpLoc, diag::warn_string_plus_int)
6974      << DiagRange << IndexExpr->IgnoreImpCasts()->getType();
6975
6976  // Only print a fixit for "str" + int, not for int + "str".
6977  if (IndexExpr == RHSExpr) {
6978    SourceLocation EndLoc = Self.PP.getLocForEndOfToken(RHSExpr->getLocEnd());
6979    Self.Diag(OpLoc, diag::note_string_plus_scalar_silence)
6980        << FixItHint::CreateInsertion(LHSExpr->getLocStart(), "&")
6981        << FixItHint::CreateReplacement(SourceRange(OpLoc), "[")
6982        << FixItHint::CreateInsertion(EndLoc, "]");
6983  } else
6984    Self.Diag(OpLoc, diag::note_string_plus_scalar_silence);
6985}
6986
6987/// \brief Emit a warning when adding a char literal to a string.
6988static void diagnoseStringPlusChar(Sema &Self, SourceLocation OpLoc,
6989                                   Expr *LHSExpr, Expr *RHSExpr) {
6990  const DeclRefExpr *StringRefExpr =
6991      dyn_cast<DeclRefExpr>(LHSExpr->IgnoreImpCasts());
6992  const CharacterLiteral *CharExpr =
6993      dyn_cast<CharacterLiteral>(RHSExpr->IgnoreImpCasts());
6994  if (!StringRefExpr) {
6995    StringRefExpr = dyn_cast<DeclRefExpr>(RHSExpr->IgnoreImpCasts());
6996    CharExpr = dyn_cast<CharacterLiteral>(LHSExpr->IgnoreImpCasts());
6997  }
6998
6999  if (!CharExpr || !StringRefExpr)
7000    return;
7001
7002  const QualType StringType = StringRefExpr->getType();
7003
7004  // Return if not a PointerType.
7005  if (!StringType->isAnyPointerType())
7006    return;
7007
7008  // Return if not a CharacterType.
7009  if (!StringType->getPointeeType()->isAnyCharacterType())
7010    return;
7011
7012  ASTContext &Ctx = Self.getASTContext();
7013  SourceRange DiagRange(LHSExpr->getLocStart(), RHSExpr->getLocEnd());
7014
7015  const QualType CharType = CharExpr->getType();
7016  if (!CharType->isAnyCharacterType() &&
7017      CharType->isIntegerType() &&
7018      llvm::isUIntN(Ctx.getCharWidth(), CharExpr->getValue())) {
7019    Self.Diag(OpLoc, diag::warn_string_plus_char)
7020        << DiagRange << Ctx.CharTy;
7021  } else {
7022    Self.Diag(OpLoc, diag::warn_string_plus_char)
7023        << DiagRange << CharExpr->getType();
7024  }
7025
7026  // Only print a fixit for str + char, not for char + str.
7027  if (isa<CharacterLiteral>(RHSExpr->IgnoreImpCasts())) {
7028    SourceLocation EndLoc = Self.PP.getLocForEndOfToken(RHSExpr->getLocEnd());
7029    Self.Diag(OpLoc, diag::note_string_plus_scalar_silence)
7030        << FixItHint::CreateInsertion(LHSExpr->getLocStart(), "&")
7031        << FixItHint::CreateReplacement(SourceRange(OpLoc), "[")
7032        << FixItHint::CreateInsertion(EndLoc, "]");
7033  } else {
7034    Self.Diag(OpLoc, diag::note_string_plus_scalar_silence);
7035  }
7036}
7037
7038/// \brief Emit error when two pointers are incompatible.
7039static void diagnosePointerIncompatibility(Sema &S, SourceLocation Loc,
7040                                           Expr *LHSExpr, Expr *RHSExpr) {
7041  assert(LHSExpr->getType()->isAnyPointerType());
7042  assert(RHSExpr->getType()->isAnyPointerType());
7043  S.Diag(Loc, diag::err_typecheck_sub_ptr_compatible)
7044    << LHSExpr->getType() << RHSExpr->getType() << LHSExpr->getSourceRange()
7045    << RHSExpr->getSourceRange();
7046}
7047
7048QualType Sema::CheckAdditionOperands( // C99 6.5.6
7049    ExprResult &LHS, ExprResult &RHS, SourceLocation Loc, unsigned Opc,
7050    QualType* CompLHSTy) {
7051  checkArithmeticNull(*this, LHS, RHS, Loc, /*isCompare=*/false);
7052
7053  if (LHS.get()->getType()->isVectorType() ||
7054      RHS.get()->getType()->isVectorType()) {
7055    QualType compType = CheckVectorOperands(LHS, RHS, Loc, CompLHSTy);
7056    if (CompLHSTy) *CompLHSTy = compType;
7057    return compType;
7058  }
7059
7060  QualType compType = UsualArithmeticConversions(LHS, RHS, CompLHSTy);
7061  if (LHS.isInvalid() || RHS.isInvalid())
7062    return QualType();
7063
7064  // Diagnose "string literal" '+' int and string '+' "char literal".
7065  if (Opc == BO_Add) {
7066    diagnoseStringPlusInt(*this, Loc, LHS.get(), RHS.get());
7067    diagnoseStringPlusChar(*this, Loc, LHS.get(), RHS.get());
7068  }
7069
7070  // handle the common case first (both operands are arithmetic).
7071  if (!compType.isNull() && compType->isArithmeticType()) {
7072    if (CompLHSTy) *CompLHSTy = compType;
7073    return compType;
7074  }
7075
7076  // Type-checking.  Ultimately the pointer's going to be in PExp;
7077  // note that we bias towards the LHS being the pointer.
7078  Expr *PExp = LHS.get(), *IExp = RHS.get();
7079
7080  bool isObjCPointer;
7081  if (PExp->getType()->isPointerType()) {
7082    isObjCPointer = false;
7083  } else if (PExp->getType()->isObjCObjectPointerType()) {
7084    isObjCPointer = true;
7085  } else {
7086    std::swap(PExp, IExp);
7087    if (PExp->getType()->isPointerType()) {
7088      isObjCPointer = false;
7089    } else if (PExp->getType()->isObjCObjectPointerType()) {
7090      isObjCPointer = true;
7091    } else {
7092      return InvalidOperands(Loc, LHS, RHS);
7093    }
7094  }
7095  assert(PExp->getType()->isAnyPointerType());
7096
7097  if (!IExp->getType()->isIntegerType())
7098    return InvalidOperands(Loc, LHS, RHS);
7099
7100  if (!checkArithmeticOpPointerOperand(*this, Loc, PExp))
7101    return QualType();
7102
7103  if (isObjCPointer && checkArithmeticOnObjCPointer(*this, Loc, PExp))
7104    return QualType();
7105
7106  // Check array bounds for pointer arithemtic
7107  CheckArrayAccess(PExp, IExp);
7108
7109  if (CompLHSTy) {
7110    QualType LHSTy = Context.isPromotableBitField(LHS.get());
7111    if (LHSTy.isNull()) {
7112      LHSTy = LHS.get()->getType();
7113      if (LHSTy->isPromotableIntegerType())
7114        LHSTy = Context.getPromotedIntegerType(LHSTy);
7115    }
7116    *CompLHSTy = LHSTy;
7117  }
7118
7119  return PExp->getType();
7120}
7121
7122// C99 6.5.6
7123QualType Sema::CheckSubtractionOperands(ExprResult &LHS, ExprResult &RHS,
7124                                        SourceLocation Loc,
7125                                        QualType* CompLHSTy) {
7126  checkArithmeticNull(*this, LHS, RHS, Loc, /*isCompare=*/false);
7127
7128  if (LHS.get()->getType()->isVectorType() ||
7129      RHS.get()->getType()->isVectorType()) {
7130    QualType compType = CheckVectorOperands(LHS, RHS, Loc, CompLHSTy);
7131    if (CompLHSTy) *CompLHSTy = compType;
7132    return compType;
7133  }
7134
7135  QualType compType = UsualArithmeticConversions(LHS, RHS, CompLHSTy);
7136  if (LHS.isInvalid() || RHS.isInvalid())
7137    return QualType();
7138
7139  // Enforce type constraints: C99 6.5.6p3.
7140
7141  // Handle the common case first (both operands are arithmetic).
7142  if (!compType.isNull() && compType->isArithmeticType()) {
7143    if (CompLHSTy) *CompLHSTy = compType;
7144    return compType;
7145  }
7146
7147  // Either ptr - int   or   ptr - ptr.
7148  if (LHS.get()->getType()->isAnyPointerType()) {
7149    QualType lpointee = LHS.get()->getType()->getPointeeType();
7150
7151    // Diagnose bad cases where we step over interface counts.
7152    if (LHS.get()->getType()->isObjCObjectPointerType() &&
7153        checkArithmeticOnObjCPointer(*this, Loc, LHS.get()))
7154      return QualType();
7155
7156    // The result type of a pointer-int computation is the pointer type.
7157    if (RHS.get()->getType()->isIntegerType()) {
7158      if (!checkArithmeticOpPointerOperand(*this, Loc, LHS.get()))
7159        return QualType();
7160
7161      // Check array bounds for pointer arithemtic
7162      CheckArrayAccess(LHS.get(), RHS.get(), /*ArraySubscriptExpr*/0,
7163                       /*AllowOnePastEnd*/true, /*IndexNegated*/true);
7164
7165      if (CompLHSTy) *CompLHSTy = LHS.get()->getType();
7166      return LHS.get()->getType();
7167    }
7168
7169    // Handle pointer-pointer subtractions.
7170    if (const PointerType *RHSPTy
7171          = RHS.get()->getType()->getAs<PointerType>()) {
7172      QualType rpointee = RHSPTy->getPointeeType();
7173
7174      if (getLangOpts().CPlusPlus) {
7175        // Pointee types must be the same: C++ [expr.add]
7176        if (!Context.hasSameUnqualifiedType(lpointee, rpointee)) {
7177          diagnosePointerIncompatibility(*this, Loc, LHS.get(), RHS.get());
7178        }
7179      } else {
7180        // Pointee types must be compatible C99 6.5.6p3
7181        if (!Context.typesAreCompatible(
7182                Context.getCanonicalType(lpointee).getUnqualifiedType(),
7183                Context.getCanonicalType(rpointee).getUnqualifiedType())) {
7184          diagnosePointerIncompatibility(*this, Loc, LHS.get(), RHS.get());
7185          return QualType();
7186        }
7187      }
7188
7189      if (!checkArithmeticBinOpPointerOperands(*this, Loc,
7190                                               LHS.get(), RHS.get()))
7191        return QualType();
7192
7193      // The pointee type may have zero size.  As an extension, a structure or
7194      // union may have zero size or an array may have zero length.  In this
7195      // case subtraction does not make sense.
7196      if (!rpointee->isVoidType() && !rpointee->isFunctionType()) {
7197        CharUnits ElementSize = Context.getTypeSizeInChars(rpointee);
7198        if (ElementSize.isZero()) {
7199          Diag(Loc,diag::warn_sub_ptr_zero_size_types)
7200            << rpointee.getUnqualifiedType()
7201            << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
7202        }
7203      }
7204
7205      if (CompLHSTy) *CompLHSTy = LHS.get()->getType();
7206      return Context.getPointerDiffType();
7207    }
7208  }
7209
7210  return InvalidOperands(Loc, LHS, RHS);
7211}
7212
7213static bool isScopedEnumerationType(QualType T) {
7214  if (const EnumType *ET = dyn_cast<EnumType>(T))
7215    return ET->getDecl()->isScoped();
7216  return false;
7217}
7218
7219static void DiagnoseBadShiftValues(Sema& S, ExprResult &LHS, ExprResult &RHS,
7220                                   SourceLocation Loc, unsigned Opc,
7221                                   QualType LHSType) {
7222  // OpenCL 6.3j: shift values are effectively % word size of LHS (more defined),
7223  // so skip remaining warnings as we don't want to modify values within Sema.
7224  if (S.getLangOpts().OpenCL)
7225    return;
7226
7227  llvm::APSInt Right;
7228  // Check right/shifter operand
7229  if (RHS.get()->isValueDependent() ||
7230      !RHS.get()->isIntegerConstantExpr(Right, S.Context))
7231    return;
7232
7233  if (Right.isNegative()) {
7234    S.DiagRuntimeBehavior(Loc, RHS.get(),
7235                          S.PDiag(diag::warn_shift_negative)
7236                            << RHS.get()->getSourceRange());
7237    return;
7238  }
7239  llvm::APInt LeftBits(Right.getBitWidth(),
7240                       S.Context.getTypeSize(LHS.get()->getType()));
7241  if (Right.uge(LeftBits)) {
7242    S.DiagRuntimeBehavior(Loc, RHS.get(),
7243                          S.PDiag(diag::warn_shift_gt_typewidth)
7244                            << RHS.get()->getSourceRange());
7245    return;
7246  }
7247  if (Opc != BO_Shl)
7248    return;
7249
7250  // When left shifting an ICE which is signed, we can check for overflow which
7251  // according to C++ has undefined behavior ([expr.shift] 5.8/2). Unsigned
7252  // integers have defined behavior modulo one more than the maximum value
7253  // representable in the result type, so never warn for those.
7254  llvm::APSInt Left;
7255  if (LHS.get()->isValueDependent() ||
7256      !LHS.get()->isIntegerConstantExpr(Left, S.Context) ||
7257      LHSType->hasUnsignedIntegerRepresentation())
7258    return;
7259  llvm::APInt ResultBits =
7260      static_cast<llvm::APInt&>(Right) + Left.getMinSignedBits();
7261  if (LeftBits.uge(ResultBits))
7262    return;
7263  llvm::APSInt Result = Left.extend(ResultBits.getLimitedValue());
7264  Result = Result.shl(Right);
7265
7266  // Print the bit representation of the signed integer as an unsigned
7267  // hexadecimal number.
7268  SmallString<40> HexResult;
7269  Result.toString(HexResult, 16, /*Signed =*/false, /*Literal =*/true);
7270
7271  // If we are only missing a sign bit, this is less likely to result in actual
7272  // bugs -- if the result is cast back to an unsigned type, it will have the
7273  // expected value. Thus we place this behind a different warning that can be
7274  // turned off separately if needed.
7275  if (LeftBits == ResultBits - 1) {
7276    S.Diag(Loc, diag::warn_shift_result_sets_sign_bit)
7277        << HexResult.str() << LHSType
7278        << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
7279    return;
7280  }
7281
7282  S.Diag(Loc, diag::warn_shift_result_gt_typewidth)
7283    << HexResult.str() << Result.getMinSignedBits() << LHSType
7284    << Left.getBitWidth() << LHS.get()->getSourceRange()
7285    << RHS.get()->getSourceRange();
7286}
7287
7288// C99 6.5.7
7289QualType Sema::CheckShiftOperands(ExprResult &LHS, ExprResult &RHS,
7290                                  SourceLocation Loc, unsigned Opc,
7291                                  bool IsCompAssign) {
7292  checkArithmeticNull(*this, LHS, RHS, Loc, /*isCompare=*/false);
7293
7294  // Vector shifts promote their scalar inputs to vector type.
7295  if (LHS.get()->getType()->isVectorType() ||
7296      RHS.get()->getType()->isVectorType())
7297    return CheckVectorOperands(LHS, RHS, Loc, IsCompAssign);
7298
7299  // Shifts don't perform usual arithmetic conversions, they just do integer
7300  // promotions on each operand. C99 6.5.7p3
7301
7302  // For the LHS, do usual unary conversions, but then reset them away
7303  // if this is a compound assignment.
7304  ExprResult OldLHS = LHS;
7305  LHS = UsualUnaryConversions(LHS.take());
7306  if (LHS.isInvalid())
7307    return QualType();
7308  QualType LHSType = LHS.get()->getType();
7309  if (IsCompAssign) LHS = OldLHS;
7310
7311  // The RHS is simpler.
7312  RHS = UsualUnaryConversions(RHS.take());
7313  if (RHS.isInvalid())
7314    return QualType();
7315  QualType RHSType = RHS.get()->getType();
7316
7317  // C99 6.5.7p2: Each of the operands shall have integer type.
7318  if (!LHSType->hasIntegerRepresentation() ||
7319      !RHSType->hasIntegerRepresentation())
7320    return InvalidOperands(Loc, LHS, RHS);
7321
7322  // C++0x: Don't allow scoped enums. FIXME: Use something better than
7323  // hasIntegerRepresentation() above instead of this.
7324  if (isScopedEnumerationType(LHSType) ||
7325      isScopedEnumerationType(RHSType)) {
7326    return InvalidOperands(Loc, LHS, RHS);
7327  }
7328  // Sanity-check shift operands
7329  DiagnoseBadShiftValues(*this, LHS, RHS, Loc, Opc, LHSType);
7330
7331  // "The type of the result is that of the promoted left operand."
7332  return LHSType;
7333}
7334
7335static bool IsWithinTemplateSpecialization(Decl *D) {
7336  if (DeclContext *DC = D->getDeclContext()) {
7337    if (isa<ClassTemplateSpecializationDecl>(DC))
7338      return true;
7339    if (FunctionDecl *FD = dyn_cast<FunctionDecl>(DC))
7340      return FD->isFunctionTemplateSpecialization();
7341  }
7342  return false;
7343}
7344
7345/// If two different enums are compared, raise a warning.
7346static void checkEnumComparison(Sema &S, SourceLocation Loc, Expr *LHS,
7347                                Expr *RHS) {
7348  QualType LHSStrippedType = LHS->IgnoreParenImpCasts()->getType();
7349  QualType RHSStrippedType = RHS->IgnoreParenImpCasts()->getType();
7350
7351  const EnumType *LHSEnumType = LHSStrippedType->getAs<EnumType>();
7352  if (!LHSEnumType)
7353    return;
7354  const EnumType *RHSEnumType = RHSStrippedType->getAs<EnumType>();
7355  if (!RHSEnumType)
7356    return;
7357
7358  // Ignore anonymous enums.
7359  if (!LHSEnumType->getDecl()->getIdentifier())
7360    return;
7361  if (!RHSEnumType->getDecl()->getIdentifier())
7362    return;
7363
7364  if (S.Context.hasSameUnqualifiedType(LHSStrippedType, RHSStrippedType))
7365    return;
7366
7367  S.Diag(Loc, diag::warn_comparison_of_mixed_enum_types)
7368      << LHSStrippedType << RHSStrippedType
7369      << LHS->getSourceRange() << RHS->getSourceRange();
7370}
7371
7372/// \brief Diagnose bad pointer comparisons.
7373static void diagnoseDistinctPointerComparison(Sema &S, SourceLocation Loc,
7374                                              ExprResult &LHS, ExprResult &RHS,
7375                                              bool IsError) {
7376  S.Diag(Loc, IsError ? diag::err_typecheck_comparison_of_distinct_pointers
7377                      : diag::ext_typecheck_comparison_of_distinct_pointers)
7378    << LHS.get()->getType() << RHS.get()->getType()
7379    << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
7380}
7381
7382/// \brief Returns false if the pointers are converted to a composite type,
7383/// true otherwise.
7384static bool convertPointersToCompositeType(Sema &S, SourceLocation Loc,
7385                                           ExprResult &LHS, ExprResult &RHS) {
7386  // C++ [expr.rel]p2:
7387  //   [...] Pointer conversions (4.10) and qualification
7388  //   conversions (4.4) are performed on pointer operands (or on
7389  //   a pointer operand and a null pointer constant) to bring
7390  //   them to their composite pointer type. [...]
7391  //
7392  // C++ [expr.eq]p1 uses the same notion for (in)equality
7393  // comparisons of pointers.
7394
7395  // C++ [expr.eq]p2:
7396  //   In addition, pointers to members can be compared, or a pointer to
7397  //   member and a null pointer constant. Pointer to member conversions
7398  //   (4.11) and qualification conversions (4.4) are performed to bring
7399  //   them to a common type. If one operand is a null pointer constant,
7400  //   the common type is the type of the other operand. Otherwise, the
7401  //   common type is a pointer to member type similar (4.4) to the type
7402  //   of one of the operands, with a cv-qualification signature (4.4)
7403  //   that is the union of the cv-qualification signatures of the operand
7404  //   types.
7405
7406  QualType LHSType = LHS.get()->getType();
7407  QualType RHSType = RHS.get()->getType();
7408  assert((LHSType->isPointerType() && RHSType->isPointerType()) ||
7409         (LHSType->isMemberPointerType() && RHSType->isMemberPointerType()));
7410
7411  bool NonStandardCompositeType = false;
7412  bool *BoolPtr = S.isSFINAEContext() ? 0 : &NonStandardCompositeType;
7413  QualType T = S.FindCompositePointerType(Loc, LHS, RHS, BoolPtr);
7414  if (T.isNull()) {
7415    diagnoseDistinctPointerComparison(S, Loc, LHS, RHS, /*isError*/true);
7416    return true;
7417  }
7418
7419  if (NonStandardCompositeType)
7420    S.Diag(Loc, diag::ext_typecheck_comparison_of_distinct_pointers_nonstandard)
7421      << LHSType << RHSType << T << LHS.get()->getSourceRange()
7422      << RHS.get()->getSourceRange();
7423
7424  LHS = S.ImpCastExprToType(LHS.take(), T, CK_BitCast);
7425  RHS = S.ImpCastExprToType(RHS.take(), T, CK_BitCast);
7426  return false;
7427}
7428
7429static void diagnoseFunctionPointerToVoidComparison(Sema &S, SourceLocation Loc,
7430                                                    ExprResult &LHS,
7431                                                    ExprResult &RHS,
7432                                                    bool IsError) {
7433  S.Diag(Loc, IsError ? diag::err_typecheck_comparison_of_fptr_to_void
7434                      : diag::ext_typecheck_comparison_of_fptr_to_void)
7435    << LHS.get()->getType() << RHS.get()->getType()
7436    << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
7437}
7438
7439static bool isObjCObjectLiteral(ExprResult &E) {
7440  switch (E.get()->IgnoreParenImpCasts()->getStmtClass()) {
7441  case Stmt::ObjCArrayLiteralClass:
7442  case Stmt::ObjCDictionaryLiteralClass:
7443  case Stmt::ObjCStringLiteralClass:
7444  case Stmt::ObjCBoxedExprClass:
7445    return true;
7446  default:
7447    // Note that ObjCBoolLiteral is NOT an object literal!
7448    return false;
7449  }
7450}
7451
7452static bool hasIsEqualMethod(Sema &S, const Expr *LHS, const Expr *RHS) {
7453  const ObjCObjectPointerType *Type =
7454    LHS->getType()->getAs<ObjCObjectPointerType>();
7455
7456  // If this is not actually an Objective-C object, bail out.
7457  if (!Type)
7458    return false;
7459
7460  // Get the LHS object's interface type.
7461  QualType InterfaceType = Type->getPointeeType();
7462  if (const ObjCObjectType *iQFaceTy =
7463      InterfaceType->getAsObjCQualifiedInterfaceType())
7464    InterfaceType = iQFaceTy->getBaseType();
7465
7466  // If the RHS isn't an Objective-C object, bail out.
7467  if (!RHS->getType()->isObjCObjectPointerType())
7468    return false;
7469
7470  // Try to find the -isEqual: method.
7471  Selector IsEqualSel = S.NSAPIObj->getIsEqualSelector();
7472  ObjCMethodDecl *Method = S.LookupMethodInObjectType(IsEqualSel,
7473                                                      InterfaceType,
7474                                                      /*instance=*/true);
7475  if (!Method) {
7476    if (Type->isObjCIdType()) {
7477      // For 'id', just check the global pool.
7478      Method = S.LookupInstanceMethodInGlobalPool(IsEqualSel, SourceRange(),
7479                                                  /*receiverId=*/true,
7480                                                  /*warn=*/false);
7481    } else {
7482      // Check protocols.
7483      Method = S.LookupMethodInQualifiedType(IsEqualSel, Type,
7484                                             /*instance=*/true);
7485    }
7486  }
7487
7488  if (!Method)
7489    return false;
7490
7491  QualType T = Method->param_begin()[0]->getType();
7492  if (!T->isObjCObjectPointerType())
7493    return false;
7494
7495  QualType R = Method->getResultType();
7496  if (!R->isScalarType())
7497    return false;
7498
7499  return true;
7500}
7501
7502Sema::ObjCLiteralKind Sema::CheckLiteralKind(Expr *FromE) {
7503  FromE = FromE->IgnoreParenImpCasts();
7504  switch (FromE->getStmtClass()) {
7505    default:
7506      break;
7507    case Stmt::ObjCStringLiteralClass:
7508      // "string literal"
7509      return LK_String;
7510    case Stmt::ObjCArrayLiteralClass:
7511      // "array literal"
7512      return LK_Array;
7513    case Stmt::ObjCDictionaryLiteralClass:
7514      // "dictionary literal"
7515      return LK_Dictionary;
7516    case Stmt::BlockExprClass:
7517      return LK_Block;
7518    case Stmt::ObjCBoxedExprClass: {
7519      Expr *Inner = cast<ObjCBoxedExpr>(FromE)->getSubExpr()->IgnoreParens();
7520      switch (Inner->getStmtClass()) {
7521        case Stmt::IntegerLiteralClass:
7522        case Stmt::FloatingLiteralClass:
7523        case Stmt::CharacterLiteralClass:
7524        case Stmt::ObjCBoolLiteralExprClass:
7525        case Stmt::CXXBoolLiteralExprClass:
7526          // "numeric literal"
7527          return LK_Numeric;
7528        case Stmt::ImplicitCastExprClass: {
7529          CastKind CK = cast<CastExpr>(Inner)->getCastKind();
7530          // Boolean literals can be represented by implicit casts.
7531          if (CK == CK_IntegralToBoolean || CK == CK_IntegralCast)
7532            return LK_Numeric;
7533          break;
7534        }
7535        default:
7536          break;
7537      }
7538      return LK_Boxed;
7539    }
7540  }
7541  return LK_None;
7542}
7543
7544static void diagnoseObjCLiteralComparison(Sema &S, SourceLocation Loc,
7545                                          ExprResult &LHS, ExprResult &RHS,
7546                                          BinaryOperator::Opcode Opc){
7547  Expr *Literal;
7548  Expr *Other;
7549  if (isObjCObjectLiteral(LHS)) {
7550    Literal = LHS.get();
7551    Other = RHS.get();
7552  } else {
7553    Literal = RHS.get();
7554    Other = LHS.get();
7555  }
7556
7557  // Don't warn on comparisons against nil.
7558  Other = Other->IgnoreParenCasts();
7559  if (Other->isNullPointerConstant(S.getASTContext(),
7560                                   Expr::NPC_ValueDependentIsNotNull))
7561    return;
7562
7563  // This should be kept in sync with warn_objc_literal_comparison.
7564  // LK_String should always be after the other literals, since it has its own
7565  // warning flag.
7566  Sema::ObjCLiteralKind LiteralKind = S.CheckLiteralKind(Literal);
7567  assert(LiteralKind != Sema::LK_Block);
7568  if (LiteralKind == Sema::LK_None) {
7569    llvm_unreachable("Unknown Objective-C object literal kind");
7570  }
7571
7572  if (LiteralKind == Sema::LK_String)
7573    S.Diag(Loc, diag::warn_objc_string_literal_comparison)
7574      << Literal->getSourceRange();
7575  else
7576    S.Diag(Loc, diag::warn_objc_literal_comparison)
7577      << LiteralKind << Literal->getSourceRange();
7578
7579  if (BinaryOperator::isEqualityOp(Opc) &&
7580      hasIsEqualMethod(S, LHS.get(), RHS.get())) {
7581    SourceLocation Start = LHS.get()->getLocStart();
7582    SourceLocation End = S.PP.getLocForEndOfToken(RHS.get()->getLocEnd());
7583    CharSourceRange OpRange =
7584      CharSourceRange::getCharRange(Loc, S.PP.getLocForEndOfToken(Loc));
7585
7586    S.Diag(Loc, diag::note_objc_literal_comparison_isequal)
7587      << FixItHint::CreateInsertion(Start, Opc == BO_EQ ? "[" : "![")
7588      << FixItHint::CreateReplacement(OpRange, " isEqual:")
7589      << FixItHint::CreateInsertion(End, "]");
7590  }
7591}
7592
7593static void diagnoseLogicalNotOnLHSofComparison(Sema &S, ExprResult &LHS,
7594                                                ExprResult &RHS,
7595                                                SourceLocation Loc,
7596                                                unsigned OpaqueOpc) {
7597  // This checking requires bools.
7598  if (!S.getLangOpts().Bool) return;
7599
7600  // Check that left hand side is !something.
7601  UnaryOperator *UO = dyn_cast<UnaryOperator>(LHS.get()->IgnoreImpCasts());
7602  if (!UO || UO->getOpcode() != UO_LNot) return;
7603
7604  // Only check if the right hand side is non-bool arithmetic type.
7605  if (RHS.get()->getType()->isBooleanType()) return;
7606
7607  // Make sure that the something in !something is not bool.
7608  Expr *SubExpr = UO->getSubExpr()->IgnoreImpCasts();
7609  if (SubExpr->getType()->isBooleanType()) return;
7610
7611  // Emit warning.
7612  S.Diag(UO->getOperatorLoc(), diag::warn_logical_not_on_lhs_of_comparison)
7613      << Loc;
7614
7615  // First note suggest !(x < y)
7616  SourceLocation FirstOpen = SubExpr->getLocStart();
7617  SourceLocation FirstClose = RHS.get()->getLocEnd();
7618  FirstClose = S.getPreprocessor().getLocForEndOfToken(FirstClose);
7619  if (FirstClose.isInvalid())
7620    FirstOpen = SourceLocation();
7621  S.Diag(UO->getOperatorLoc(), diag::note_logical_not_fix)
7622      << FixItHint::CreateInsertion(FirstOpen, "(")
7623      << FixItHint::CreateInsertion(FirstClose, ")");
7624
7625  // Second note suggests (!x) < y
7626  SourceLocation SecondOpen = LHS.get()->getLocStart();
7627  SourceLocation SecondClose = LHS.get()->getLocEnd();
7628  SecondClose = S.getPreprocessor().getLocForEndOfToken(SecondClose);
7629  if (SecondClose.isInvalid())
7630    SecondOpen = SourceLocation();
7631  S.Diag(UO->getOperatorLoc(), diag::note_logical_not_silence_with_parens)
7632      << FixItHint::CreateInsertion(SecondOpen, "(")
7633      << FixItHint::CreateInsertion(SecondClose, ")");
7634}
7635
7636// Get the decl for a simple expression: a reference to a variable,
7637// an implicit C++ field reference, or an implicit ObjC ivar reference.
7638static ValueDecl *getCompareDecl(Expr *E) {
7639  if (DeclRefExpr* DR = dyn_cast<DeclRefExpr>(E))
7640    return DR->getDecl();
7641  if (ObjCIvarRefExpr* Ivar = dyn_cast<ObjCIvarRefExpr>(E)) {
7642    if (Ivar->isFreeIvar())
7643      return Ivar->getDecl();
7644  }
7645  if (MemberExpr* Mem = dyn_cast<MemberExpr>(E)) {
7646    if (Mem->isImplicitAccess())
7647      return Mem->getMemberDecl();
7648  }
7649  return 0;
7650}
7651
7652// C99 6.5.8, C++ [expr.rel]
7653QualType Sema::CheckCompareOperands(ExprResult &LHS, ExprResult &RHS,
7654                                    SourceLocation Loc, unsigned OpaqueOpc,
7655                                    bool IsRelational) {
7656  checkArithmeticNull(*this, LHS, RHS, Loc, /*isCompare=*/true);
7657
7658  BinaryOperatorKind Opc = (BinaryOperatorKind) OpaqueOpc;
7659
7660  // Handle vector comparisons separately.
7661  if (LHS.get()->getType()->isVectorType() ||
7662      RHS.get()->getType()->isVectorType())
7663    return CheckVectorCompareOperands(LHS, RHS, Loc, IsRelational);
7664
7665  QualType LHSType = LHS.get()->getType();
7666  QualType RHSType = RHS.get()->getType();
7667
7668  Expr *LHSStripped = LHS.get()->IgnoreParenImpCasts();
7669  Expr *RHSStripped = RHS.get()->IgnoreParenImpCasts();
7670
7671  checkEnumComparison(*this, Loc, LHS.get(), RHS.get());
7672  diagnoseLogicalNotOnLHSofComparison(*this, LHS, RHS, Loc, OpaqueOpc);
7673
7674  if (!LHSType->hasFloatingRepresentation() &&
7675      !(LHSType->isBlockPointerType() && IsRelational) &&
7676      !LHS.get()->getLocStart().isMacroID() &&
7677      !RHS.get()->getLocStart().isMacroID() &&
7678      ActiveTemplateInstantiations.empty()) {
7679    // For non-floating point types, check for self-comparisons of the form
7680    // x == x, x != x, x < x, etc.  These always evaluate to a constant, and
7681    // often indicate logic errors in the program.
7682    //
7683    // NOTE: Don't warn about comparison expressions resulting from macro
7684    // expansion. Also don't warn about comparisons which are only self
7685    // comparisons within a template specialization. The warnings should catch
7686    // obvious cases in the definition of the template anyways. The idea is to
7687    // warn when the typed comparison operator will always evaluate to the same
7688    // result.
7689    ValueDecl *DL = getCompareDecl(LHSStripped);
7690    ValueDecl *DR = getCompareDecl(RHSStripped);
7691    if (DL && DR && DL == DR && !IsWithinTemplateSpecialization(DL)) {
7692      DiagRuntimeBehavior(Loc, 0, PDiag(diag::warn_comparison_always)
7693                          << 0 // self-
7694                          << (Opc == BO_EQ
7695                              || Opc == BO_LE
7696                              || Opc == BO_GE));
7697    } else if (DL && DR && LHSType->isArrayType() && RHSType->isArrayType() &&
7698               !DL->getType()->isReferenceType() &&
7699               !DR->getType()->isReferenceType()) {
7700        // what is it always going to eval to?
7701        char always_evals_to;
7702        switch(Opc) {
7703        case BO_EQ: // e.g. array1 == array2
7704          always_evals_to = 0; // false
7705          break;
7706        case BO_NE: // e.g. array1 != array2
7707          always_evals_to = 1; // true
7708          break;
7709        default:
7710          // best we can say is 'a constant'
7711          always_evals_to = 2; // e.g. array1 <= array2
7712          break;
7713        }
7714        DiagRuntimeBehavior(Loc, 0, PDiag(diag::warn_comparison_always)
7715                            << 1 // array
7716                            << always_evals_to);
7717    }
7718
7719    if (isa<CastExpr>(LHSStripped))
7720      LHSStripped = LHSStripped->IgnoreParenCasts();
7721    if (isa<CastExpr>(RHSStripped))
7722      RHSStripped = RHSStripped->IgnoreParenCasts();
7723
7724    // Warn about comparisons against a string constant (unless the other
7725    // operand is null), the user probably wants strcmp.
7726    Expr *literalString = 0;
7727    Expr *literalStringStripped = 0;
7728    if ((isa<StringLiteral>(LHSStripped) || isa<ObjCEncodeExpr>(LHSStripped)) &&
7729        !RHSStripped->isNullPointerConstant(Context,
7730                                            Expr::NPC_ValueDependentIsNull)) {
7731      literalString = LHS.get();
7732      literalStringStripped = LHSStripped;
7733    } else if ((isa<StringLiteral>(RHSStripped) ||
7734                isa<ObjCEncodeExpr>(RHSStripped)) &&
7735               !LHSStripped->isNullPointerConstant(Context,
7736                                            Expr::NPC_ValueDependentIsNull)) {
7737      literalString = RHS.get();
7738      literalStringStripped = RHSStripped;
7739    }
7740
7741    if (literalString) {
7742      DiagRuntimeBehavior(Loc, 0,
7743        PDiag(diag::warn_stringcompare)
7744          << isa<ObjCEncodeExpr>(literalStringStripped)
7745          << literalString->getSourceRange());
7746    }
7747  }
7748
7749  // C99 6.5.8p3 / C99 6.5.9p4
7750  UsualArithmeticConversions(LHS, RHS);
7751  if (LHS.isInvalid() || RHS.isInvalid())
7752    return QualType();
7753
7754  LHSType = LHS.get()->getType();
7755  RHSType = RHS.get()->getType();
7756
7757  // The result of comparisons is 'bool' in C++, 'int' in C.
7758  QualType ResultTy = Context.getLogicalOperationType();
7759
7760  if (IsRelational) {
7761    if (LHSType->isRealType() && RHSType->isRealType())
7762      return ResultTy;
7763  } else {
7764    // Check for comparisons of floating point operands using != and ==.
7765    if (LHSType->hasFloatingRepresentation())
7766      CheckFloatComparison(Loc, LHS.get(), RHS.get());
7767
7768    if (LHSType->isArithmeticType() && RHSType->isArithmeticType())
7769      return ResultTy;
7770  }
7771
7772  bool LHSIsNull = LHS.get()->isNullPointerConstant(Context,
7773                                              Expr::NPC_ValueDependentIsNull);
7774  bool RHSIsNull = RHS.get()->isNullPointerConstant(Context,
7775                                              Expr::NPC_ValueDependentIsNull);
7776
7777  // All of the following pointer-related warnings are GCC extensions, except
7778  // when handling null pointer constants.
7779  if (LHSType->isPointerType() && RHSType->isPointerType()) { // C99 6.5.8p2
7780    QualType LCanPointeeTy =
7781      LHSType->castAs<PointerType>()->getPointeeType().getCanonicalType();
7782    QualType RCanPointeeTy =
7783      RHSType->castAs<PointerType>()->getPointeeType().getCanonicalType();
7784
7785    if (getLangOpts().CPlusPlus) {
7786      if (LCanPointeeTy == RCanPointeeTy)
7787        return ResultTy;
7788      if (!IsRelational &&
7789          (LCanPointeeTy->isVoidType() || RCanPointeeTy->isVoidType())) {
7790        // Valid unless comparison between non-null pointer and function pointer
7791        // This is a gcc extension compatibility comparison.
7792        // In a SFINAE context, we treat this as a hard error to maintain
7793        // conformance with the C++ standard.
7794        if ((LCanPointeeTy->isFunctionType() || RCanPointeeTy->isFunctionType())
7795            && !LHSIsNull && !RHSIsNull) {
7796          diagnoseFunctionPointerToVoidComparison(
7797              *this, Loc, LHS, RHS, /*isError*/ (bool)isSFINAEContext());
7798
7799          if (isSFINAEContext())
7800            return QualType();
7801
7802          RHS = ImpCastExprToType(RHS.take(), LHSType, CK_BitCast);
7803          return ResultTy;
7804        }
7805      }
7806
7807      if (convertPointersToCompositeType(*this, Loc, LHS, RHS))
7808        return QualType();
7809      else
7810        return ResultTy;
7811    }
7812    // C99 6.5.9p2 and C99 6.5.8p2
7813    if (Context.typesAreCompatible(LCanPointeeTy.getUnqualifiedType(),
7814                                   RCanPointeeTy.getUnqualifiedType())) {
7815      // Valid unless a relational comparison of function pointers
7816      if (IsRelational && LCanPointeeTy->isFunctionType()) {
7817        Diag(Loc, diag::ext_typecheck_ordered_comparison_of_function_pointers)
7818          << LHSType << RHSType << LHS.get()->getSourceRange()
7819          << RHS.get()->getSourceRange();
7820      }
7821    } else if (!IsRelational &&
7822               (LCanPointeeTy->isVoidType() || RCanPointeeTy->isVoidType())) {
7823      // Valid unless comparison between non-null pointer and function pointer
7824      if ((LCanPointeeTy->isFunctionType() || RCanPointeeTy->isFunctionType())
7825          && !LHSIsNull && !RHSIsNull)
7826        diagnoseFunctionPointerToVoidComparison(*this, Loc, LHS, RHS,
7827                                                /*isError*/false);
7828    } else {
7829      // Invalid
7830      diagnoseDistinctPointerComparison(*this, Loc, LHS, RHS, /*isError*/false);
7831    }
7832    if (LCanPointeeTy != RCanPointeeTy) {
7833      if (LHSIsNull && !RHSIsNull)
7834        LHS = ImpCastExprToType(LHS.take(), RHSType, CK_BitCast);
7835      else
7836        RHS = ImpCastExprToType(RHS.take(), LHSType, CK_BitCast);
7837    }
7838    return ResultTy;
7839  }
7840
7841  if (getLangOpts().CPlusPlus) {
7842    // Comparison of nullptr_t with itself.
7843    if (LHSType->isNullPtrType() && RHSType->isNullPtrType())
7844      return ResultTy;
7845
7846    // Comparison of pointers with null pointer constants and equality
7847    // comparisons of member pointers to null pointer constants.
7848    if (RHSIsNull &&
7849        ((LHSType->isAnyPointerType() || LHSType->isNullPtrType()) ||
7850         (!IsRelational &&
7851          (LHSType->isMemberPointerType() || LHSType->isBlockPointerType())))) {
7852      RHS = ImpCastExprToType(RHS.take(), LHSType,
7853                        LHSType->isMemberPointerType()
7854                          ? CK_NullToMemberPointer
7855                          : CK_NullToPointer);
7856      return ResultTy;
7857    }
7858    if (LHSIsNull &&
7859        ((RHSType->isAnyPointerType() || RHSType->isNullPtrType()) ||
7860         (!IsRelational &&
7861          (RHSType->isMemberPointerType() || RHSType->isBlockPointerType())))) {
7862      LHS = ImpCastExprToType(LHS.take(), RHSType,
7863                        RHSType->isMemberPointerType()
7864                          ? CK_NullToMemberPointer
7865                          : CK_NullToPointer);
7866      return ResultTy;
7867    }
7868
7869    // Comparison of member pointers.
7870    if (!IsRelational &&
7871        LHSType->isMemberPointerType() && RHSType->isMemberPointerType()) {
7872      if (convertPointersToCompositeType(*this, Loc, LHS, RHS))
7873        return QualType();
7874      else
7875        return ResultTy;
7876    }
7877
7878    // Handle scoped enumeration types specifically, since they don't promote
7879    // to integers.
7880    if (LHS.get()->getType()->isEnumeralType() &&
7881        Context.hasSameUnqualifiedType(LHS.get()->getType(),
7882                                       RHS.get()->getType()))
7883      return ResultTy;
7884  }
7885
7886  // Handle block pointer types.
7887  if (!IsRelational && LHSType->isBlockPointerType() &&
7888      RHSType->isBlockPointerType()) {
7889    QualType lpointee = LHSType->castAs<BlockPointerType>()->getPointeeType();
7890    QualType rpointee = RHSType->castAs<BlockPointerType>()->getPointeeType();
7891
7892    if (!LHSIsNull && !RHSIsNull &&
7893        !Context.typesAreCompatible(lpointee, rpointee)) {
7894      Diag(Loc, diag::err_typecheck_comparison_of_distinct_blocks)
7895        << LHSType << RHSType << LHS.get()->getSourceRange()
7896        << RHS.get()->getSourceRange();
7897    }
7898    RHS = ImpCastExprToType(RHS.take(), LHSType, CK_BitCast);
7899    return ResultTy;
7900  }
7901
7902  // Allow block pointers to be compared with null pointer constants.
7903  if (!IsRelational
7904      && ((LHSType->isBlockPointerType() && RHSType->isPointerType())
7905          || (LHSType->isPointerType() && RHSType->isBlockPointerType()))) {
7906    if (!LHSIsNull && !RHSIsNull) {
7907      if (!((RHSType->isPointerType() && RHSType->castAs<PointerType>()
7908             ->getPointeeType()->isVoidType())
7909            || (LHSType->isPointerType() && LHSType->castAs<PointerType>()
7910                ->getPointeeType()->isVoidType())))
7911        Diag(Loc, diag::err_typecheck_comparison_of_distinct_blocks)
7912          << LHSType << RHSType << LHS.get()->getSourceRange()
7913          << RHS.get()->getSourceRange();
7914    }
7915    if (LHSIsNull && !RHSIsNull)
7916      LHS = ImpCastExprToType(LHS.take(), RHSType,
7917                              RHSType->isPointerType() ? CK_BitCast
7918                                : CK_AnyPointerToBlockPointerCast);
7919    else
7920      RHS = ImpCastExprToType(RHS.take(), LHSType,
7921                              LHSType->isPointerType() ? CK_BitCast
7922                                : CK_AnyPointerToBlockPointerCast);
7923    return ResultTy;
7924  }
7925
7926  if (LHSType->isObjCObjectPointerType() ||
7927      RHSType->isObjCObjectPointerType()) {
7928    const PointerType *LPT = LHSType->getAs<PointerType>();
7929    const PointerType *RPT = RHSType->getAs<PointerType>();
7930    if (LPT || RPT) {
7931      bool LPtrToVoid = LPT ? LPT->getPointeeType()->isVoidType() : false;
7932      bool RPtrToVoid = RPT ? RPT->getPointeeType()->isVoidType() : false;
7933
7934      if (!LPtrToVoid && !RPtrToVoid &&
7935          !Context.typesAreCompatible(LHSType, RHSType)) {
7936        diagnoseDistinctPointerComparison(*this, Loc, LHS, RHS,
7937                                          /*isError*/false);
7938      }
7939      if (LHSIsNull && !RHSIsNull) {
7940        Expr *E = LHS.take();
7941        if (getLangOpts().ObjCAutoRefCount)
7942          CheckObjCARCConversion(SourceRange(), RHSType, E, CCK_ImplicitConversion);
7943        LHS = ImpCastExprToType(E, RHSType,
7944                                RPT ? CK_BitCast :CK_CPointerToObjCPointerCast);
7945      }
7946      else {
7947        Expr *E = RHS.take();
7948        if (getLangOpts().ObjCAutoRefCount)
7949          CheckObjCARCConversion(SourceRange(), LHSType, E, CCK_ImplicitConversion);
7950        RHS = ImpCastExprToType(E, LHSType,
7951                                LPT ? CK_BitCast :CK_CPointerToObjCPointerCast);
7952      }
7953      return ResultTy;
7954    }
7955    if (LHSType->isObjCObjectPointerType() &&
7956        RHSType->isObjCObjectPointerType()) {
7957      if (!Context.areComparableObjCPointerTypes(LHSType, RHSType))
7958        diagnoseDistinctPointerComparison(*this, Loc, LHS, RHS,
7959                                          /*isError*/false);
7960      if (isObjCObjectLiteral(LHS) || isObjCObjectLiteral(RHS))
7961        diagnoseObjCLiteralComparison(*this, Loc, LHS, RHS, Opc);
7962
7963      if (LHSIsNull && !RHSIsNull)
7964        LHS = ImpCastExprToType(LHS.take(), RHSType, CK_BitCast);
7965      else
7966        RHS = ImpCastExprToType(RHS.take(), LHSType, CK_BitCast);
7967      return ResultTy;
7968    }
7969  }
7970  if ((LHSType->isAnyPointerType() && RHSType->isIntegerType()) ||
7971      (LHSType->isIntegerType() && RHSType->isAnyPointerType())) {
7972    unsigned DiagID = 0;
7973    bool isError = false;
7974    if (LangOpts.DebuggerSupport) {
7975      // Under a debugger, allow the comparison of pointers to integers,
7976      // since users tend to want to compare addresses.
7977    } else if ((LHSIsNull && LHSType->isIntegerType()) ||
7978        (RHSIsNull && RHSType->isIntegerType())) {
7979      if (IsRelational && !getLangOpts().CPlusPlus)
7980        DiagID = diag::ext_typecheck_ordered_comparison_of_pointer_and_zero;
7981    } else if (IsRelational && !getLangOpts().CPlusPlus)
7982      DiagID = diag::ext_typecheck_ordered_comparison_of_pointer_integer;
7983    else if (getLangOpts().CPlusPlus) {
7984      DiagID = diag::err_typecheck_comparison_of_pointer_integer;
7985      isError = true;
7986    } else
7987      DiagID = diag::ext_typecheck_comparison_of_pointer_integer;
7988
7989    if (DiagID) {
7990      Diag(Loc, DiagID)
7991        << LHSType << RHSType << LHS.get()->getSourceRange()
7992        << RHS.get()->getSourceRange();
7993      if (isError)
7994        return QualType();
7995    }
7996
7997    if (LHSType->isIntegerType())
7998      LHS = ImpCastExprToType(LHS.take(), RHSType,
7999                        LHSIsNull ? CK_NullToPointer : CK_IntegralToPointer);
8000    else
8001      RHS = ImpCastExprToType(RHS.take(), LHSType,
8002                        RHSIsNull ? CK_NullToPointer : CK_IntegralToPointer);
8003    return ResultTy;
8004  }
8005
8006  // Handle block pointers.
8007  if (!IsRelational && RHSIsNull
8008      && LHSType->isBlockPointerType() && RHSType->isIntegerType()) {
8009    RHS = ImpCastExprToType(RHS.take(), LHSType, CK_NullToPointer);
8010    return ResultTy;
8011  }
8012  if (!IsRelational && LHSIsNull
8013      && LHSType->isIntegerType() && RHSType->isBlockPointerType()) {
8014    LHS = ImpCastExprToType(LHS.take(), RHSType, CK_NullToPointer);
8015    return ResultTy;
8016  }
8017
8018  return InvalidOperands(Loc, LHS, RHS);
8019}
8020
8021
8022// Return a signed type that is of identical size and number of elements.
8023// For floating point vectors, return an integer type of identical size
8024// and number of elements.
8025QualType Sema::GetSignedVectorType(QualType V) {
8026  const VectorType *VTy = V->getAs<VectorType>();
8027  unsigned TypeSize = Context.getTypeSize(VTy->getElementType());
8028  if (TypeSize == Context.getTypeSize(Context.CharTy))
8029    return Context.getExtVectorType(Context.CharTy, VTy->getNumElements());
8030  else if (TypeSize == Context.getTypeSize(Context.ShortTy))
8031    return Context.getExtVectorType(Context.ShortTy, VTy->getNumElements());
8032  else if (TypeSize == Context.getTypeSize(Context.IntTy))
8033    return Context.getExtVectorType(Context.IntTy, VTy->getNumElements());
8034  else if (TypeSize == Context.getTypeSize(Context.LongTy))
8035    return Context.getExtVectorType(Context.LongTy, VTy->getNumElements());
8036  assert(TypeSize == Context.getTypeSize(Context.LongLongTy) &&
8037         "Unhandled vector element size in vector compare");
8038  return Context.getExtVectorType(Context.LongLongTy, VTy->getNumElements());
8039}
8040
8041/// CheckVectorCompareOperands - vector comparisons are a clang extension that
8042/// operates on extended vector types.  Instead of producing an IntTy result,
8043/// like a scalar comparison, a vector comparison produces a vector of integer
8044/// types.
8045QualType Sema::CheckVectorCompareOperands(ExprResult &LHS, ExprResult &RHS,
8046                                          SourceLocation Loc,
8047                                          bool IsRelational) {
8048  // Check to make sure we're operating on vectors of the same type and width,
8049  // Allowing one side to be a scalar of element type.
8050  QualType vType = CheckVectorOperands(LHS, RHS, Loc, /*isCompAssign*/false);
8051  if (vType.isNull())
8052    return vType;
8053
8054  QualType LHSType = LHS.get()->getType();
8055
8056  // If AltiVec, the comparison results in a numeric type, i.e.
8057  // bool for C++, int for C
8058  if (vType->getAs<VectorType>()->getVectorKind() == VectorType::AltiVecVector)
8059    return Context.getLogicalOperationType();
8060
8061  // For non-floating point types, check for self-comparisons of the form
8062  // x == x, x != x, x < x, etc.  These always evaluate to a constant, and
8063  // often indicate logic errors in the program.
8064  if (!LHSType->hasFloatingRepresentation() &&
8065      ActiveTemplateInstantiations.empty()) {
8066    if (DeclRefExpr* DRL
8067          = dyn_cast<DeclRefExpr>(LHS.get()->IgnoreParenImpCasts()))
8068      if (DeclRefExpr* DRR
8069            = dyn_cast<DeclRefExpr>(RHS.get()->IgnoreParenImpCasts()))
8070        if (DRL->getDecl() == DRR->getDecl())
8071          DiagRuntimeBehavior(Loc, 0,
8072                              PDiag(diag::warn_comparison_always)
8073                                << 0 // self-
8074                                << 2 // "a constant"
8075                              );
8076  }
8077
8078  // Check for comparisons of floating point operands using != and ==.
8079  if (!IsRelational && LHSType->hasFloatingRepresentation()) {
8080    assert (RHS.get()->getType()->hasFloatingRepresentation());
8081    CheckFloatComparison(Loc, LHS.get(), RHS.get());
8082  }
8083
8084  // Return a signed type for the vector.
8085  return GetSignedVectorType(LHSType);
8086}
8087
8088QualType Sema::CheckVectorLogicalOperands(ExprResult &LHS, ExprResult &RHS,
8089                                          SourceLocation Loc) {
8090  // Ensure that either both operands are of the same vector type, or
8091  // one operand is of a vector type and the other is of its element type.
8092  QualType vType = CheckVectorOperands(LHS, RHS, Loc, false);
8093  if (vType.isNull())
8094    return InvalidOperands(Loc, LHS, RHS);
8095  if (getLangOpts().OpenCL && getLangOpts().OpenCLVersion < 120 &&
8096      vType->hasFloatingRepresentation())
8097    return InvalidOperands(Loc, LHS, RHS);
8098
8099  return GetSignedVectorType(LHS.get()->getType());
8100}
8101
8102inline QualType Sema::CheckBitwiseOperands(
8103  ExprResult &LHS, ExprResult &RHS, SourceLocation Loc, bool IsCompAssign) {
8104  checkArithmeticNull(*this, LHS, RHS, Loc, /*isCompare=*/false);
8105
8106  if (LHS.get()->getType()->isVectorType() ||
8107      RHS.get()->getType()->isVectorType()) {
8108    if (LHS.get()->getType()->hasIntegerRepresentation() &&
8109        RHS.get()->getType()->hasIntegerRepresentation())
8110      return CheckVectorOperands(LHS, RHS, Loc, IsCompAssign);
8111
8112    return InvalidOperands(Loc, LHS, RHS);
8113  }
8114
8115  ExprResult LHSResult = Owned(LHS), RHSResult = Owned(RHS);
8116  QualType compType = UsualArithmeticConversions(LHSResult, RHSResult,
8117                                                 IsCompAssign);
8118  if (LHSResult.isInvalid() || RHSResult.isInvalid())
8119    return QualType();
8120  LHS = LHSResult.take();
8121  RHS = RHSResult.take();
8122
8123  if (!compType.isNull() && compType->isIntegralOrUnscopedEnumerationType())
8124    return compType;
8125  return InvalidOperands(Loc, LHS, RHS);
8126}
8127
8128inline QualType Sema::CheckLogicalOperands( // C99 6.5.[13,14]
8129  ExprResult &LHS, ExprResult &RHS, SourceLocation Loc, unsigned Opc) {
8130
8131  // Check vector operands differently.
8132  if (LHS.get()->getType()->isVectorType() || RHS.get()->getType()->isVectorType())
8133    return CheckVectorLogicalOperands(LHS, RHS, Loc);
8134
8135  // Diagnose cases where the user write a logical and/or but probably meant a
8136  // bitwise one.  We do this when the LHS is a non-bool integer and the RHS
8137  // is a constant.
8138  if (LHS.get()->getType()->isIntegerType() &&
8139      !LHS.get()->getType()->isBooleanType() &&
8140      RHS.get()->getType()->isIntegerType() && !RHS.get()->isValueDependent() &&
8141      // Don't warn in macros or template instantiations.
8142      !Loc.isMacroID() && ActiveTemplateInstantiations.empty()) {
8143    // If the RHS can be constant folded, and if it constant folds to something
8144    // that isn't 0 or 1 (which indicate a potential logical operation that
8145    // happened to fold to true/false) then warn.
8146    // Parens on the RHS are ignored.
8147    llvm::APSInt Result;
8148    if (RHS.get()->EvaluateAsInt(Result, Context))
8149      if ((getLangOpts().Bool && !RHS.get()->getType()->isBooleanType()) ||
8150          (Result != 0 && Result != 1)) {
8151        Diag(Loc, diag::warn_logical_instead_of_bitwise)
8152          << RHS.get()->getSourceRange()
8153          << (Opc == BO_LAnd ? "&&" : "||");
8154        // Suggest replacing the logical operator with the bitwise version
8155        Diag(Loc, diag::note_logical_instead_of_bitwise_change_operator)
8156            << (Opc == BO_LAnd ? "&" : "|")
8157            << FixItHint::CreateReplacement(SourceRange(
8158                Loc, Lexer::getLocForEndOfToken(Loc, 0, getSourceManager(),
8159                                                getLangOpts())),
8160                                            Opc == BO_LAnd ? "&" : "|");
8161        if (Opc == BO_LAnd)
8162          // Suggest replacing "Foo() && kNonZero" with "Foo()"
8163          Diag(Loc, diag::note_logical_instead_of_bitwise_remove_constant)
8164              << FixItHint::CreateRemoval(
8165                  SourceRange(
8166                      Lexer::getLocForEndOfToken(LHS.get()->getLocEnd(),
8167                                                 0, getSourceManager(),
8168                                                 getLangOpts()),
8169                      RHS.get()->getLocEnd()));
8170      }
8171  }
8172
8173  if (!Context.getLangOpts().CPlusPlus) {
8174    // OpenCL v1.1 s6.3.g: The logical operators and (&&), or (||) do
8175    // not operate on the built-in scalar and vector float types.
8176    if (Context.getLangOpts().OpenCL &&
8177        Context.getLangOpts().OpenCLVersion < 120) {
8178      if (LHS.get()->getType()->isFloatingType() ||
8179          RHS.get()->getType()->isFloatingType())
8180        return InvalidOperands(Loc, LHS, RHS);
8181    }
8182
8183    LHS = UsualUnaryConversions(LHS.take());
8184    if (LHS.isInvalid())
8185      return QualType();
8186
8187    RHS = UsualUnaryConversions(RHS.take());
8188    if (RHS.isInvalid())
8189      return QualType();
8190
8191    if (!LHS.get()->getType()->isScalarType() ||
8192        !RHS.get()->getType()->isScalarType())
8193      return InvalidOperands(Loc, LHS, RHS);
8194
8195    return Context.IntTy;
8196  }
8197
8198  // The following is safe because we only use this method for
8199  // non-overloadable operands.
8200
8201  // C++ [expr.log.and]p1
8202  // C++ [expr.log.or]p1
8203  // The operands are both contextually converted to type bool.
8204  ExprResult LHSRes = PerformContextuallyConvertToBool(LHS.get());
8205  if (LHSRes.isInvalid())
8206    return InvalidOperands(Loc, LHS, RHS);
8207  LHS = LHSRes;
8208
8209  ExprResult RHSRes = PerformContextuallyConvertToBool(RHS.get());
8210  if (RHSRes.isInvalid())
8211    return InvalidOperands(Loc, LHS, RHS);
8212  RHS = RHSRes;
8213
8214  // C++ [expr.log.and]p2
8215  // C++ [expr.log.or]p2
8216  // The result is a bool.
8217  return Context.BoolTy;
8218}
8219
8220static bool IsReadonlyMessage(Expr *E, Sema &S) {
8221  const MemberExpr *ME = dyn_cast<MemberExpr>(E);
8222  if (!ME) return false;
8223  if (!isa<FieldDecl>(ME->getMemberDecl())) return false;
8224  ObjCMessageExpr *Base =
8225    dyn_cast<ObjCMessageExpr>(ME->getBase()->IgnoreParenImpCasts());
8226  if (!Base) return false;
8227  return Base->getMethodDecl() != 0;
8228}
8229
8230/// Is the given expression (which must be 'const') a reference to a
8231/// variable which was originally non-const, but which has become
8232/// 'const' due to being captured within a block?
8233enum NonConstCaptureKind { NCCK_None, NCCK_Block, NCCK_Lambda };
8234static NonConstCaptureKind isReferenceToNonConstCapture(Sema &S, Expr *E) {
8235  assert(E->isLValue() && E->getType().isConstQualified());
8236  E = E->IgnoreParens();
8237
8238  // Must be a reference to a declaration from an enclosing scope.
8239  DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E);
8240  if (!DRE) return NCCK_None;
8241  if (!DRE->refersToEnclosingLocal()) return NCCK_None;
8242
8243  // The declaration must be a variable which is not declared 'const'.
8244  VarDecl *var = dyn_cast<VarDecl>(DRE->getDecl());
8245  if (!var) return NCCK_None;
8246  if (var->getType().isConstQualified()) return NCCK_None;
8247  assert(var->hasLocalStorage() && "capture added 'const' to non-local?");
8248
8249  // Decide whether the first capture was for a block or a lambda.
8250  DeclContext *DC = S.CurContext, *Prev = 0;
8251  while (DC != var->getDeclContext()) {
8252    Prev = DC;
8253    DC = DC->getParent();
8254  }
8255  // Unless we have an init-capture, we've gone one step too far.
8256  if (!var->isInitCapture())
8257    DC = Prev;
8258  return (isa<BlockDecl>(DC) ? NCCK_Block : NCCK_Lambda);
8259}
8260
8261/// CheckForModifiableLvalue - Verify that E is a modifiable lvalue.  If not,
8262/// emit an error and return true.  If so, return false.
8263static bool CheckForModifiableLvalue(Expr *E, SourceLocation Loc, Sema &S) {
8264  assert(!E->hasPlaceholderType(BuiltinType::PseudoObject));
8265  SourceLocation OrigLoc = Loc;
8266  Expr::isModifiableLvalueResult IsLV = E->isModifiableLvalue(S.Context,
8267                                                              &Loc);
8268  if (IsLV == Expr::MLV_ClassTemporary && IsReadonlyMessage(E, S))
8269    IsLV = Expr::MLV_InvalidMessageExpression;
8270  if (IsLV == Expr::MLV_Valid)
8271    return false;
8272
8273  unsigned Diag = 0;
8274  bool NeedType = false;
8275  switch (IsLV) { // C99 6.5.16p2
8276  case Expr::MLV_ConstQualified:
8277    Diag = diag::err_typecheck_assign_const;
8278
8279    // Use a specialized diagnostic when we're assigning to an object
8280    // from an enclosing function or block.
8281    if (NonConstCaptureKind NCCK = isReferenceToNonConstCapture(S, E)) {
8282      if (NCCK == NCCK_Block)
8283        Diag = diag::err_block_decl_ref_not_modifiable_lvalue;
8284      else
8285        Diag = diag::err_lambda_decl_ref_not_modifiable_lvalue;
8286      break;
8287    }
8288
8289    // In ARC, use some specialized diagnostics for occasions where we
8290    // infer 'const'.  These are always pseudo-strong variables.
8291    if (S.getLangOpts().ObjCAutoRefCount) {
8292      DeclRefExpr *declRef = dyn_cast<DeclRefExpr>(E->IgnoreParenCasts());
8293      if (declRef && isa<VarDecl>(declRef->getDecl())) {
8294        VarDecl *var = cast<VarDecl>(declRef->getDecl());
8295
8296        // Use the normal diagnostic if it's pseudo-__strong but the
8297        // user actually wrote 'const'.
8298        if (var->isARCPseudoStrong() &&
8299            (!var->getTypeSourceInfo() ||
8300             !var->getTypeSourceInfo()->getType().isConstQualified())) {
8301          // There are two pseudo-strong cases:
8302          //  - self
8303          ObjCMethodDecl *method = S.getCurMethodDecl();
8304          if (method && var == method->getSelfDecl())
8305            Diag = method->isClassMethod()
8306              ? diag::err_typecheck_arc_assign_self_class_method
8307              : diag::err_typecheck_arc_assign_self;
8308
8309          //  - fast enumeration variables
8310          else
8311            Diag = diag::err_typecheck_arr_assign_enumeration;
8312
8313          SourceRange Assign;
8314          if (Loc != OrigLoc)
8315            Assign = SourceRange(OrigLoc, OrigLoc);
8316          S.Diag(Loc, Diag) << E->getSourceRange() << Assign;
8317          // We need to preserve the AST regardless, so migration tool
8318          // can do its job.
8319          return false;
8320        }
8321      }
8322    }
8323
8324    break;
8325  case Expr::MLV_ArrayType:
8326  case Expr::MLV_ArrayTemporary:
8327    Diag = diag::err_typecheck_array_not_modifiable_lvalue;
8328    NeedType = true;
8329    break;
8330  case Expr::MLV_NotObjectType:
8331    Diag = diag::err_typecheck_non_object_not_modifiable_lvalue;
8332    NeedType = true;
8333    break;
8334  case Expr::MLV_LValueCast:
8335    Diag = diag::err_typecheck_lvalue_casts_not_supported;
8336    break;
8337  case Expr::MLV_Valid:
8338    llvm_unreachable("did not take early return for MLV_Valid");
8339  case Expr::MLV_InvalidExpression:
8340  case Expr::MLV_MemberFunction:
8341  case Expr::MLV_ClassTemporary:
8342    Diag = diag::err_typecheck_expression_not_modifiable_lvalue;
8343    break;
8344  case Expr::MLV_IncompleteType:
8345  case Expr::MLV_IncompleteVoidType:
8346    return S.RequireCompleteType(Loc, E->getType(),
8347             diag::err_typecheck_incomplete_type_not_modifiable_lvalue, E);
8348  case Expr::MLV_DuplicateVectorComponents:
8349    Diag = diag::err_typecheck_duplicate_vector_components_not_mlvalue;
8350    break;
8351  case Expr::MLV_NoSetterProperty:
8352    llvm_unreachable("readonly properties should be processed differently");
8353  case Expr::MLV_InvalidMessageExpression:
8354    Diag = diag::error_readonly_message_assignment;
8355    break;
8356  case Expr::MLV_SubObjCPropertySetting:
8357    Diag = diag::error_no_subobject_property_setting;
8358    break;
8359  }
8360
8361  SourceRange Assign;
8362  if (Loc != OrigLoc)
8363    Assign = SourceRange(OrigLoc, OrigLoc);
8364  if (NeedType)
8365    S.Diag(Loc, Diag) << E->getType() << E->getSourceRange() << Assign;
8366  else
8367    S.Diag(Loc, Diag) << E->getSourceRange() << Assign;
8368  return true;
8369}
8370
8371static void CheckIdentityFieldAssignment(Expr *LHSExpr, Expr *RHSExpr,
8372                                         SourceLocation Loc,
8373                                         Sema &Sema) {
8374  // C / C++ fields
8375  MemberExpr *ML = dyn_cast<MemberExpr>(LHSExpr);
8376  MemberExpr *MR = dyn_cast<MemberExpr>(RHSExpr);
8377  if (ML && MR && ML->getMemberDecl() == MR->getMemberDecl()) {
8378    if (isa<CXXThisExpr>(ML->getBase()) && isa<CXXThisExpr>(MR->getBase()))
8379      Sema.Diag(Loc, diag::warn_identity_field_assign) << 0;
8380  }
8381
8382  // Objective-C instance variables
8383  ObjCIvarRefExpr *OL = dyn_cast<ObjCIvarRefExpr>(LHSExpr);
8384  ObjCIvarRefExpr *OR = dyn_cast<ObjCIvarRefExpr>(RHSExpr);
8385  if (OL && OR && OL->getDecl() == OR->getDecl()) {
8386    DeclRefExpr *RL = dyn_cast<DeclRefExpr>(OL->getBase()->IgnoreImpCasts());
8387    DeclRefExpr *RR = dyn_cast<DeclRefExpr>(OR->getBase()->IgnoreImpCasts());
8388    if (RL && RR && RL->getDecl() == RR->getDecl())
8389      Sema.Diag(Loc, diag::warn_identity_field_assign) << 1;
8390  }
8391}
8392
8393// C99 6.5.16.1
8394QualType Sema::CheckAssignmentOperands(Expr *LHSExpr, ExprResult &RHS,
8395                                       SourceLocation Loc,
8396                                       QualType CompoundType) {
8397  assert(!LHSExpr->hasPlaceholderType(BuiltinType::PseudoObject));
8398
8399  // Verify that LHS is a modifiable lvalue, and emit error if not.
8400  if (CheckForModifiableLvalue(LHSExpr, Loc, *this))
8401    return QualType();
8402
8403  QualType LHSType = LHSExpr->getType();
8404  QualType RHSType = CompoundType.isNull() ? RHS.get()->getType() :
8405                                             CompoundType;
8406  AssignConvertType ConvTy;
8407  if (CompoundType.isNull()) {
8408    Expr *RHSCheck = RHS.get();
8409
8410    CheckIdentityFieldAssignment(LHSExpr, RHSCheck, Loc, *this);
8411
8412    QualType LHSTy(LHSType);
8413    ConvTy = CheckSingleAssignmentConstraints(LHSTy, RHS);
8414    if (RHS.isInvalid())
8415      return QualType();
8416    // Special case of NSObject attributes on c-style pointer types.
8417    if (ConvTy == IncompatiblePointer &&
8418        ((Context.isObjCNSObjectType(LHSType) &&
8419          RHSType->isObjCObjectPointerType()) ||
8420         (Context.isObjCNSObjectType(RHSType) &&
8421          LHSType->isObjCObjectPointerType())))
8422      ConvTy = Compatible;
8423
8424    if (ConvTy == Compatible &&
8425        LHSType->isObjCObjectType())
8426        Diag(Loc, diag::err_objc_object_assignment)
8427          << LHSType;
8428
8429    // If the RHS is a unary plus or minus, check to see if they = and + are
8430    // right next to each other.  If so, the user may have typo'd "x =+ 4"
8431    // instead of "x += 4".
8432    if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(RHSCheck))
8433      RHSCheck = ICE->getSubExpr();
8434    if (UnaryOperator *UO = dyn_cast<UnaryOperator>(RHSCheck)) {
8435      if ((UO->getOpcode() == UO_Plus ||
8436           UO->getOpcode() == UO_Minus) &&
8437          Loc.isFileID() && UO->getOperatorLoc().isFileID() &&
8438          // Only if the two operators are exactly adjacent.
8439          Loc.getLocWithOffset(1) == UO->getOperatorLoc() &&
8440          // And there is a space or other character before the subexpr of the
8441          // unary +/-.  We don't want to warn on "x=-1".
8442          Loc.getLocWithOffset(2) != UO->getSubExpr()->getLocStart() &&
8443          UO->getSubExpr()->getLocStart().isFileID()) {
8444        Diag(Loc, diag::warn_not_compound_assign)
8445          << (UO->getOpcode() == UO_Plus ? "+" : "-")
8446          << SourceRange(UO->getOperatorLoc(), UO->getOperatorLoc());
8447      }
8448    }
8449
8450    if (ConvTy == Compatible) {
8451      if (LHSType.getObjCLifetime() == Qualifiers::OCL_Strong) {
8452        // Warn about retain cycles where a block captures the LHS, but
8453        // not if the LHS is a simple variable into which the block is
8454        // being stored...unless that variable can be captured by reference!
8455        const Expr *InnerLHS = LHSExpr->IgnoreParenCasts();
8456        const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(InnerLHS);
8457        if (!DRE || DRE->getDecl()->hasAttr<BlocksAttr>())
8458          checkRetainCycles(LHSExpr, RHS.get());
8459
8460        // It is safe to assign a weak reference into a strong variable.
8461        // Although this code can still have problems:
8462        //   id x = self.weakProp;
8463        //   id y = self.weakProp;
8464        // we do not warn to warn spuriously when 'x' and 'y' are on separate
8465        // paths through the function. This should be revisited if
8466        // -Wrepeated-use-of-weak is made flow-sensitive.
8467        DiagnosticsEngine::Level Level =
8468          Diags.getDiagnosticLevel(diag::warn_arc_repeated_use_of_weak,
8469                                   RHS.get()->getLocStart());
8470        if (Level != DiagnosticsEngine::Ignored)
8471          getCurFunction()->markSafeWeakUse(RHS.get());
8472
8473      } else if (getLangOpts().ObjCAutoRefCount) {
8474        checkUnsafeExprAssigns(Loc, LHSExpr, RHS.get());
8475      }
8476    }
8477  } else {
8478    // Compound assignment "x += y"
8479    ConvTy = CheckAssignmentConstraints(Loc, LHSType, RHSType);
8480  }
8481
8482  if (DiagnoseAssignmentResult(ConvTy, Loc, LHSType, RHSType,
8483                               RHS.get(), AA_Assigning))
8484    return QualType();
8485
8486  CheckForNullPointerDereference(*this, LHSExpr);
8487
8488  // C99 6.5.16p3: The type of an assignment expression is the type of the
8489  // left operand unless the left operand has qualified type, in which case
8490  // it is the unqualified version of the type of the left operand.
8491  // C99 6.5.16.1p2: In simple assignment, the value of the right operand
8492  // is converted to the type of the assignment expression (above).
8493  // C++ 5.17p1: the type of the assignment expression is that of its left
8494  // operand.
8495  return (getLangOpts().CPlusPlus
8496          ? LHSType : LHSType.getUnqualifiedType());
8497}
8498
8499// C99 6.5.17
8500static QualType CheckCommaOperands(Sema &S, ExprResult &LHS, ExprResult &RHS,
8501                                   SourceLocation Loc) {
8502  LHS = S.CheckPlaceholderExpr(LHS.take());
8503  RHS = S.CheckPlaceholderExpr(RHS.take());
8504  if (LHS.isInvalid() || RHS.isInvalid())
8505    return QualType();
8506
8507  // C's comma performs lvalue conversion (C99 6.3.2.1) on both its
8508  // operands, but not unary promotions.
8509  // C++'s comma does not do any conversions at all (C++ [expr.comma]p1).
8510
8511  // So we treat the LHS as a ignored value, and in C++ we allow the
8512  // containing site to determine what should be done with the RHS.
8513  LHS = S.IgnoredValueConversions(LHS.take());
8514  if (LHS.isInvalid())
8515    return QualType();
8516
8517  S.DiagnoseUnusedExprResult(LHS.get());
8518
8519  if (!S.getLangOpts().CPlusPlus) {
8520    RHS = S.DefaultFunctionArrayLvalueConversion(RHS.take());
8521    if (RHS.isInvalid())
8522      return QualType();
8523    if (!RHS.get()->getType()->isVoidType())
8524      S.RequireCompleteType(Loc, RHS.get()->getType(),
8525                            diag::err_incomplete_type);
8526  }
8527
8528  return RHS.get()->getType();
8529}
8530
8531/// CheckIncrementDecrementOperand - unlike most "Check" methods, this routine
8532/// doesn't need to call UsualUnaryConversions or UsualArithmeticConversions.
8533static QualType CheckIncrementDecrementOperand(Sema &S, Expr *Op,
8534                                               ExprValueKind &VK,
8535                                               SourceLocation OpLoc,
8536                                               bool IsInc, bool IsPrefix) {
8537  if (Op->isTypeDependent())
8538    return S.Context.DependentTy;
8539
8540  QualType ResType = Op->getType();
8541  // Atomic types can be used for increment / decrement where the non-atomic
8542  // versions can, so ignore the _Atomic() specifier for the purpose of
8543  // checking.
8544  if (const AtomicType *ResAtomicType = ResType->getAs<AtomicType>())
8545    ResType = ResAtomicType->getValueType();
8546
8547  assert(!ResType.isNull() && "no type for increment/decrement expression");
8548
8549  if (S.getLangOpts().CPlusPlus && ResType->isBooleanType()) {
8550    // Decrement of bool is not allowed.
8551    if (!IsInc) {
8552      S.Diag(OpLoc, diag::err_decrement_bool) << Op->getSourceRange();
8553      return QualType();
8554    }
8555    // Increment of bool sets it to true, but is deprecated.
8556    S.Diag(OpLoc, diag::warn_increment_bool) << Op->getSourceRange();
8557  } else if (S.getLangOpts().CPlusPlus && ResType->isEnumeralType()) {
8558    // Error on enum increments and decrements in C++ mode
8559    S.Diag(OpLoc, diag::err_increment_decrement_enum) << IsInc << ResType;
8560    return QualType();
8561  } else if (ResType->isRealType()) {
8562    // OK!
8563  } else if (ResType->isPointerType()) {
8564    // C99 6.5.2.4p2, 6.5.6p2
8565    if (!checkArithmeticOpPointerOperand(S, OpLoc, Op))
8566      return QualType();
8567  } else if (ResType->isObjCObjectPointerType()) {
8568    // On modern runtimes, ObjC pointer arithmetic is forbidden.
8569    // Otherwise, we just need a complete type.
8570    if (checkArithmeticIncompletePointerType(S, OpLoc, Op) ||
8571        checkArithmeticOnObjCPointer(S, OpLoc, Op))
8572      return QualType();
8573  } else if (ResType->isAnyComplexType()) {
8574    // C99 does not support ++/-- on complex types, we allow as an extension.
8575    S.Diag(OpLoc, diag::ext_integer_increment_complex)
8576      << ResType << Op->getSourceRange();
8577  } else if (ResType->isPlaceholderType()) {
8578    ExprResult PR = S.CheckPlaceholderExpr(Op);
8579    if (PR.isInvalid()) return QualType();
8580    return CheckIncrementDecrementOperand(S, PR.take(), VK, OpLoc,
8581                                          IsInc, IsPrefix);
8582  } else if (S.getLangOpts().AltiVec && ResType->isVectorType()) {
8583    // OK! ( C/C++ Language Extensions for CBEA(Version 2.6) 10.3 )
8584  } else if(S.getLangOpts().OpenCL && ResType->isVectorType() &&
8585            ResType->getAs<VectorType>()->getElementType()->isIntegerType()) {
8586    // OpenCL V1.2 6.3 says dec/inc ops operate on integer vector types.
8587  } else {
8588    S.Diag(OpLoc, diag::err_typecheck_illegal_increment_decrement)
8589      << ResType << int(IsInc) << Op->getSourceRange();
8590    return QualType();
8591  }
8592  // At this point, we know we have a real, complex or pointer type.
8593  // Now make sure the operand is a modifiable lvalue.
8594  if (CheckForModifiableLvalue(Op, OpLoc, S))
8595    return QualType();
8596  // In C++, a prefix increment is the same type as the operand. Otherwise
8597  // (in C or with postfix), the increment is the unqualified type of the
8598  // operand.
8599  if (IsPrefix && S.getLangOpts().CPlusPlus) {
8600    VK = VK_LValue;
8601    return ResType;
8602  } else {
8603    VK = VK_RValue;
8604    return ResType.getUnqualifiedType();
8605  }
8606}
8607
8608
8609/// getPrimaryDecl - Helper function for CheckAddressOfOperand().
8610/// This routine allows us to typecheck complex/recursive expressions
8611/// where the declaration is needed for type checking. We only need to
8612/// handle cases when the expression references a function designator
8613/// or is an lvalue. Here are some examples:
8614///  - &(x) => x
8615///  - &*****f => f for f a function designator.
8616///  - &s.xx => s
8617///  - &s.zz[1].yy -> s, if zz is an array
8618///  - *(x + 1) -> x, if x is an array
8619///  - &"123"[2] -> 0
8620///  - & __real__ x -> x
8621static ValueDecl *getPrimaryDecl(Expr *E) {
8622  switch (E->getStmtClass()) {
8623  case Stmt::DeclRefExprClass:
8624    return cast<DeclRefExpr>(E)->getDecl();
8625  case Stmt::MemberExprClass:
8626    // If this is an arrow operator, the address is an offset from
8627    // the base's value, so the object the base refers to is
8628    // irrelevant.
8629    if (cast<MemberExpr>(E)->isArrow())
8630      return 0;
8631    // Otherwise, the expression refers to a part of the base
8632    return getPrimaryDecl(cast<MemberExpr>(E)->getBase());
8633  case Stmt::ArraySubscriptExprClass: {
8634    // FIXME: This code shouldn't be necessary!  We should catch the implicit
8635    // promotion of register arrays earlier.
8636    Expr* Base = cast<ArraySubscriptExpr>(E)->getBase();
8637    if (ImplicitCastExpr* ICE = dyn_cast<ImplicitCastExpr>(Base)) {
8638      if (ICE->getSubExpr()->getType()->isArrayType())
8639        return getPrimaryDecl(ICE->getSubExpr());
8640    }
8641    return 0;
8642  }
8643  case Stmt::UnaryOperatorClass: {
8644    UnaryOperator *UO = cast<UnaryOperator>(E);
8645
8646    switch(UO->getOpcode()) {
8647    case UO_Real:
8648    case UO_Imag:
8649    case UO_Extension:
8650      return getPrimaryDecl(UO->getSubExpr());
8651    default:
8652      return 0;
8653    }
8654  }
8655  case Stmt::ParenExprClass:
8656    return getPrimaryDecl(cast<ParenExpr>(E)->getSubExpr());
8657  case Stmt::ImplicitCastExprClass:
8658    // If the result of an implicit cast is an l-value, we care about
8659    // the sub-expression; otherwise, the result here doesn't matter.
8660    return getPrimaryDecl(cast<ImplicitCastExpr>(E)->getSubExpr());
8661  default:
8662    return 0;
8663  }
8664}
8665
8666namespace {
8667  enum {
8668    AO_Bit_Field = 0,
8669    AO_Vector_Element = 1,
8670    AO_Property_Expansion = 2,
8671    AO_Register_Variable = 3,
8672    AO_No_Error = 4
8673  };
8674}
8675/// \brief Diagnose invalid operand for address of operations.
8676///
8677/// \param Type The type of operand which cannot have its address taken.
8678static void diagnoseAddressOfInvalidType(Sema &S, SourceLocation Loc,
8679                                         Expr *E, unsigned Type) {
8680  S.Diag(Loc, diag::err_typecheck_address_of) << Type << E->getSourceRange();
8681}
8682
8683/// CheckAddressOfOperand - The operand of & must be either a function
8684/// designator or an lvalue designating an object. If it is an lvalue, the
8685/// object cannot be declared with storage class register or be a bit field.
8686/// Note: The usual conversions are *not* applied to the operand of the &
8687/// operator (C99 6.3.2.1p[2-4]), and its result is never an lvalue.
8688/// In C++, the operand might be an overloaded function name, in which case
8689/// we allow the '&' but retain the overloaded-function type.
8690QualType Sema::CheckAddressOfOperand(ExprResult &OrigOp, SourceLocation OpLoc) {
8691  if (const BuiltinType *PTy = OrigOp.get()->getType()->getAsPlaceholderType()){
8692    if (PTy->getKind() == BuiltinType::Overload) {
8693      Expr *E = OrigOp.get()->IgnoreParens();
8694      if (!isa<OverloadExpr>(E)) {
8695        assert(cast<UnaryOperator>(E)->getOpcode() == UO_AddrOf);
8696        Diag(OpLoc, diag::err_typecheck_invalid_lvalue_addrof_addrof_function)
8697          << OrigOp.get()->getSourceRange();
8698        return QualType();
8699      }
8700
8701      OverloadExpr *Ovl = cast<OverloadExpr>(E);
8702      if (isa<UnresolvedMemberExpr>(Ovl))
8703        if (!ResolveSingleFunctionTemplateSpecialization(Ovl)) {
8704          Diag(OpLoc, diag::err_invalid_form_pointer_member_function)
8705            << OrigOp.get()->getSourceRange();
8706          return QualType();
8707        }
8708
8709      return Context.OverloadTy;
8710    }
8711
8712    if (PTy->getKind() == BuiltinType::UnknownAny)
8713      return Context.UnknownAnyTy;
8714
8715    if (PTy->getKind() == BuiltinType::BoundMember) {
8716      Diag(OpLoc, diag::err_invalid_form_pointer_member_function)
8717        << OrigOp.get()->getSourceRange();
8718      return QualType();
8719    }
8720
8721    OrigOp = CheckPlaceholderExpr(OrigOp.take());
8722    if (OrigOp.isInvalid()) return QualType();
8723  }
8724
8725  if (OrigOp.get()->isTypeDependent())
8726    return Context.DependentTy;
8727
8728  assert(!OrigOp.get()->getType()->isPlaceholderType());
8729
8730  // Make sure to ignore parentheses in subsequent checks
8731  Expr *op = OrigOp.get()->IgnoreParens();
8732
8733  if (getLangOpts().C99) {
8734    // Implement C99-only parts of addressof rules.
8735    if (UnaryOperator* uOp = dyn_cast<UnaryOperator>(op)) {
8736      if (uOp->getOpcode() == UO_Deref)
8737        // Per C99 6.5.3.2, the address of a deref always returns a valid result
8738        // (assuming the deref expression is valid).
8739        return uOp->getSubExpr()->getType();
8740    }
8741    // Technically, there should be a check for array subscript
8742    // expressions here, but the result of one is always an lvalue anyway.
8743  }
8744  ValueDecl *dcl = getPrimaryDecl(op);
8745  Expr::LValueClassification lval = op->ClassifyLValue(Context);
8746  unsigned AddressOfError = AO_No_Error;
8747
8748  if (lval == Expr::LV_ClassTemporary || lval == Expr::LV_ArrayTemporary) {
8749    bool sfinae = (bool)isSFINAEContext();
8750    Diag(OpLoc, isSFINAEContext() ? diag::err_typecheck_addrof_temporary
8751                                  : diag::ext_typecheck_addrof_temporary)
8752      << op->getType() << op->getSourceRange();
8753    if (sfinae)
8754      return QualType();
8755    // Materialize the temporary as an lvalue so that we can take its address.
8756    OrigOp = op = new (Context)
8757        MaterializeTemporaryExpr(op->getType(), OrigOp.take(), true, 0);
8758  } else if (isa<ObjCSelectorExpr>(op)) {
8759    return Context.getPointerType(op->getType());
8760  } else if (lval == Expr::LV_MemberFunction) {
8761    // If it's an instance method, make a member pointer.
8762    // The expression must have exactly the form &A::foo.
8763
8764    // If the underlying expression isn't a decl ref, give up.
8765    if (!isa<DeclRefExpr>(op)) {
8766      Diag(OpLoc, diag::err_invalid_form_pointer_member_function)
8767        << OrigOp.get()->getSourceRange();
8768      return QualType();
8769    }
8770    DeclRefExpr *DRE = cast<DeclRefExpr>(op);
8771    CXXMethodDecl *MD = cast<CXXMethodDecl>(DRE->getDecl());
8772
8773    // The id-expression was parenthesized.
8774    if (OrigOp.get() != DRE) {
8775      Diag(OpLoc, diag::err_parens_pointer_member_function)
8776        << OrigOp.get()->getSourceRange();
8777
8778    // The method was named without a qualifier.
8779    } else if (!DRE->getQualifier()) {
8780      if (MD->getParent()->getName().empty())
8781        Diag(OpLoc, diag::err_unqualified_pointer_member_function)
8782          << op->getSourceRange();
8783      else {
8784        SmallString<32> Str;
8785        StringRef Qual = (MD->getParent()->getName() + "::").toStringRef(Str);
8786        Diag(OpLoc, diag::err_unqualified_pointer_member_function)
8787          << op->getSourceRange()
8788          << FixItHint::CreateInsertion(op->getSourceRange().getBegin(), Qual);
8789      }
8790    }
8791
8792    // Taking the address of a dtor is illegal per C++ [class.dtor]p2.
8793    if (isa<CXXDestructorDecl>(MD))
8794      Diag(OpLoc, diag::err_typecheck_addrof_dtor) << op->getSourceRange();
8795
8796    return Context.getMemberPointerType(op->getType(),
8797              Context.getTypeDeclType(MD->getParent()).getTypePtr());
8798  } else if (lval != Expr::LV_Valid && lval != Expr::LV_IncompleteVoidType) {
8799    // C99 6.5.3.2p1
8800    // The operand must be either an l-value or a function designator
8801    if (!op->getType()->isFunctionType()) {
8802      // Use a special diagnostic for loads from property references.
8803      if (isa<PseudoObjectExpr>(op)) {
8804        AddressOfError = AO_Property_Expansion;
8805      } else {
8806        Diag(OpLoc, diag::err_typecheck_invalid_lvalue_addrof)
8807          << op->getType() << op->getSourceRange();
8808        return QualType();
8809      }
8810    }
8811  } else if (op->getObjectKind() == OK_BitField) { // C99 6.5.3.2p1
8812    // The operand cannot be a bit-field
8813    AddressOfError = AO_Bit_Field;
8814  } else if (op->getObjectKind() == OK_VectorComponent) {
8815    // The operand cannot be an element of a vector
8816    AddressOfError = AO_Vector_Element;
8817  } else if (dcl) { // C99 6.5.3.2p1
8818    // We have an lvalue with a decl. Make sure the decl is not declared
8819    // with the register storage-class specifier.
8820    if (const VarDecl *vd = dyn_cast<VarDecl>(dcl)) {
8821      // in C++ it is not error to take address of a register
8822      // variable (c++03 7.1.1P3)
8823      if (vd->getStorageClass() == SC_Register &&
8824          !getLangOpts().CPlusPlus) {
8825        AddressOfError = AO_Register_Variable;
8826      }
8827    } else if (isa<FunctionTemplateDecl>(dcl)) {
8828      return Context.OverloadTy;
8829    } else if (isa<FieldDecl>(dcl) || isa<IndirectFieldDecl>(dcl)) {
8830      // Okay: we can take the address of a field.
8831      // Could be a pointer to member, though, if there is an explicit
8832      // scope qualifier for the class.
8833      if (isa<DeclRefExpr>(op) && cast<DeclRefExpr>(op)->getQualifier()) {
8834        DeclContext *Ctx = dcl->getDeclContext();
8835        if (Ctx && Ctx->isRecord()) {
8836          if (dcl->getType()->isReferenceType()) {
8837            Diag(OpLoc,
8838                 diag::err_cannot_form_pointer_to_member_of_reference_type)
8839              << dcl->getDeclName() << dcl->getType();
8840            return QualType();
8841          }
8842
8843          while (cast<RecordDecl>(Ctx)->isAnonymousStructOrUnion())
8844            Ctx = Ctx->getParent();
8845          return Context.getMemberPointerType(op->getType(),
8846                Context.getTypeDeclType(cast<RecordDecl>(Ctx)).getTypePtr());
8847        }
8848      }
8849    } else if (!isa<FunctionDecl>(dcl) && !isa<NonTypeTemplateParmDecl>(dcl))
8850      llvm_unreachable("Unknown/unexpected decl type");
8851  }
8852
8853  if (AddressOfError != AO_No_Error) {
8854    diagnoseAddressOfInvalidType(*this, OpLoc, op, AddressOfError);
8855    return QualType();
8856  }
8857
8858  if (lval == Expr::LV_IncompleteVoidType) {
8859    // Taking the address of a void variable is technically illegal, but we
8860    // allow it in cases which are otherwise valid.
8861    // Example: "extern void x; void* y = &x;".
8862    Diag(OpLoc, diag::ext_typecheck_addrof_void) << op->getSourceRange();
8863  }
8864
8865  // If the operand has type "type", the result has type "pointer to type".
8866  if (op->getType()->isObjCObjectType())
8867    return Context.getObjCObjectPointerType(op->getType());
8868  return Context.getPointerType(op->getType());
8869}
8870
8871/// CheckIndirectionOperand - Type check unary indirection (prefix '*').
8872static QualType CheckIndirectionOperand(Sema &S, Expr *Op, ExprValueKind &VK,
8873                                        SourceLocation OpLoc) {
8874  if (Op->isTypeDependent())
8875    return S.Context.DependentTy;
8876
8877  ExprResult ConvResult = S.UsualUnaryConversions(Op);
8878  if (ConvResult.isInvalid())
8879    return QualType();
8880  Op = ConvResult.take();
8881  QualType OpTy = Op->getType();
8882  QualType Result;
8883
8884  if (isa<CXXReinterpretCastExpr>(Op)) {
8885    QualType OpOrigType = Op->IgnoreParenCasts()->getType();
8886    S.CheckCompatibleReinterpretCast(OpOrigType, OpTy, /*IsDereference*/true,
8887                                     Op->getSourceRange());
8888  }
8889
8890  // Note that per both C89 and C99, indirection is always legal, even if OpTy
8891  // is an incomplete type or void.  It would be possible to warn about
8892  // dereferencing a void pointer, but it's completely well-defined, and such a
8893  // warning is unlikely to catch any mistakes.
8894  if (const PointerType *PT = OpTy->getAs<PointerType>())
8895    Result = PT->getPointeeType();
8896  else if (const ObjCObjectPointerType *OPT =
8897             OpTy->getAs<ObjCObjectPointerType>())
8898    Result = OPT->getPointeeType();
8899  else {
8900    ExprResult PR = S.CheckPlaceholderExpr(Op);
8901    if (PR.isInvalid()) return QualType();
8902    if (PR.take() != Op)
8903      return CheckIndirectionOperand(S, PR.take(), VK, OpLoc);
8904  }
8905
8906  if (Result.isNull()) {
8907    S.Diag(OpLoc, diag::err_typecheck_indirection_requires_pointer)
8908      << OpTy << Op->getSourceRange();
8909    return QualType();
8910  }
8911
8912  // Dereferences are usually l-values...
8913  VK = VK_LValue;
8914
8915  // ...except that certain expressions are never l-values in C.
8916  if (!S.getLangOpts().CPlusPlus && Result.isCForbiddenLValueType())
8917    VK = VK_RValue;
8918
8919  return Result;
8920}
8921
8922static inline BinaryOperatorKind ConvertTokenKindToBinaryOpcode(
8923  tok::TokenKind Kind) {
8924  BinaryOperatorKind Opc;
8925  switch (Kind) {
8926  default: llvm_unreachable("Unknown binop!");
8927  case tok::periodstar:           Opc = BO_PtrMemD; break;
8928  case tok::arrowstar:            Opc = BO_PtrMemI; break;
8929  case tok::star:                 Opc = BO_Mul; break;
8930  case tok::slash:                Opc = BO_Div; break;
8931  case tok::percent:              Opc = BO_Rem; break;
8932  case tok::plus:                 Opc = BO_Add; break;
8933  case tok::minus:                Opc = BO_Sub; break;
8934  case tok::lessless:             Opc = BO_Shl; break;
8935  case tok::greatergreater:       Opc = BO_Shr; break;
8936  case tok::lessequal:            Opc = BO_LE; break;
8937  case tok::less:                 Opc = BO_LT; break;
8938  case tok::greaterequal:         Opc = BO_GE; break;
8939  case tok::greater:              Opc = BO_GT; break;
8940  case tok::exclaimequal:         Opc = BO_NE; break;
8941  case tok::equalequal:           Opc = BO_EQ; break;
8942  case tok::amp:                  Opc = BO_And; break;
8943  case tok::caret:                Opc = BO_Xor; break;
8944  case tok::pipe:                 Opc = BO_Or; break;
8945  case tok::ampamp:               Opc = BO_LAnd; break;
8946  case tok::pipepipe:             Opc = BO_LOr; break;
8947  case tok::equal:                Opc = BO_Assign; break;
8948  case tok::starequal:            Opc = BO_MulAssign; break;
8949  case tok::slashequal:           Opc = BO_DivAssign; break;
8950  case tok::percentequal:         Opc = BO_RemAssign; break;
8951  case tok::plusequal:            Opc = BO_AddAssign; break;
8952  case tok::minusequal:           Opc = BO_SubAssign; break;
8953  case tok::lesslessequal:        Opc = BO_ShlAssign; break;
8954  case tok::greatergreaterequal:  Opc = BO_ShrAssign; break;
8955  case tok::ampequal:             Opc = BO_AndAssign; break;
8956  case tok::caretequal:           Opc = BO_XorAssign; break;
8957  case tok::pipeequal:            Opc = BO_OrAssign; break;
8958  case tok::comma:                Opc = BO_Comma; break;
8959  }
8960  return Opc;
8961}
8962
8963static inline UnaryOperatorKind ConvertTokenKindToUnaryOpcode(
8964  tok::TokenKind Kind) {
8965  UnaryOperatorKind Opc;
8966  switch (Kind) {
8967  default: llvm_unreachable("Unknown unary op!");
8968  case tok::plusplus:     Opc = UO_PreInc; break;
8969  case tok::minusminus:   Opc = UO_PreDec; break;
8970  case tok::amp:          Opc = UO_AddrOf; break;
8971  case tok::star:         Opc = UO_Deref; break;
8972  case tok::plus:         Opc = UO_Plus; break;
8973  case tok::minus:        Opc = UO_Minus; break;
8974  case tok::tilde:        Opc = UO_Not; break;
8975  case tok::exclaim:      Opc = UO_LNot; break;
8976  case tok::kw___real:    Opc = UO_Real; break;
8977  case tok::kw___imag:    Opc = UO_Imag; break;
8978  case tok::kw___extension__: Opc = UO_Extension; break;
8979  }
8980  return Opc;
8981}
8982
8983/// DiagnoseSelfAssignment - Emits a warning if a value is assigned to itself.
8984/// This warning is only emitted for builtin assignment operations. It is also
8985/// suppressed in the event of macro expansions.
8986static void DiagnoseSelfAssignment(Sema &S, Expr *LHSExpr, Expr *RHSExpr,
8987                                   SourceLocation OpLoc) {
8988  if (!S.ActiveTemplateInstantiations.empty())
8989    return;
8990  if (OpLoc.isInvalid() || OpLoc.isMacroID())
8991    return;
8992  LHSExpr = LHSExpr->IgnoreParenImpCasts();
8993  RHSExpr = RHSExpr->IgnoreParenImpCasts();
8994  const DeclRefExpr *LHSDeclRef = dyn_cast<DeclRefExpr>(LHSExpr);
8995  const DeclRefExpr *RHSDeclRef = dyn_cast<DeclRefExpr>(RHSExpr);
8996  if (!LHSDeclRef || !RHSDeclRef ||
8997      LHSDeclRef->getLocation().isMacroID() ||
8998      RHSDeclRef->getLocation().isMacroID())
8999    return;
9000  const ValueDecl *LHSDecl =
9001    cast<ValueDecl>(LHSDeclRef->getDecl()->getCanonicalDecl());
9002  const ValueDecl *RHSDecl =
9003    cast<ValueDecl>(RHSDeclRef->getDecl()->getCanonicalDecl());
9004  if (LHSDecl != RHSDecl)
9005    return;
9006  if (LHSDecl->getType().isVolatileQualified())
9007    return;
9008  if (const ReferenceType *RefTy = LHSDecl->getType()->getAs<ReferenceType>())
9009    if (RefTy->getPointeeType().isVolatileQualified())
9010      return;
9011
9012  S.Diag(OpLoc, diag::warn_self_assignment)
9013      << LHSDeclRef->getType()
9014      << LHSExpr->getSourceRange() << RHSExpr->getSourceRange();
9015}
9016
9017/// Check if a bitwise-& is performed on an Objective-C pointer.  This
9018/// is usually indicative of introspection within the Objective-C pointer.
9019static void checkObjCPointerIntrospection(Sema &S, ExprResult &L, ExprResult &R,
9020                                          SourceLocation OpLoc) {
9021  if (!S.getLangOpts().ObjC1)
9022    return;
9023
9024  const Expr *ObjCPointerExpr = 0, *OtherExpr = 0;
9025  const Expr *LHS = L.get();
9026  const Expr *RHS = R.get();
9027
9028  if (LHS->IgnoreParenCasts()->getType()->isObjCObjectPointerType()) {
9029    ObjCPointerExpr = LHS;
9030    OtherExpr = RHS;
9031  }
9032  else if (RHS->IgnoreParenCasts()->getType()->isObjCObjectPointerType()) {
9033    ObjCPointerExpr = RHS;
9034    OtherExpr = LHS;
9035  }
9036
9037  // This warning is deliberately made very specific to reduce false
9038  // positives with logic that uses '&' for hashing.  This logic mainly
9039  // looks for code trying to introspect into tagged pointers, which
9040  // code should generally never do.
9041  if (ObjCPointerExpr && isa<IntegerLiteral>(OtherExpr->IgnoreParenCasts())) {
9042    unsigned Diag = diag::warn_objc_pointer_masking;
9043    // Determine if we are introspecting the result of performSelectorXXX.
9044    const Expr *Ex = ObjCPointerExpr->IgnoreParenCasts();
9045    // Special case messages to -performSelector and friends, which
9046    // can return non-pointer values boxed in a pointer value.
9047    // Some clients may wish to silence warnings in this subcase.
9048    if (const ObjCMessageExpr *ME = dyn_cast<ObjCMessageExpr>(Ex)) {
9049      Selector S = ME->getSelector();
9050      StringRef SelArg0 = S.getNameForSlot(0);
9051      if (SelArg0.startswith("performSelector"))
9052        Diag = diag::warn_objc_pointer_masking_performSelector;
9053    }
9054
9055    S.Diag(OpLoc, Diag)
9056      << ObjCPointerExpr->getSourceRange();
9057  }
9058}
9059
9060/// CreateBuiltinBinOp - Creates a new built-in binary operation with
9061/// operator @p Opc at location @c TokLoc. This routine only supports
9062/// built-in operations; ActOnBinOp handles overloaded operators.
9063ExprResult Sema::CreateBuiltinBinOp(SourceLocation OpLoc,
9064                                    BinaryOperatorKind Opc,
9065                                    Expr *LHSExpr, Expr *RHSExpr) {
9066  if (getLangOpts().CPlusPlus11 && isa<InitListExpr>(RHSExpr)) {
9067    // The syntax only allows initializer lists on the RHS of assignment,
9068    // so we don't need to worry about accepting invalid code for
9069    // non-assignment operators.
9070    // C++11 5.17p9:
9071    //   The meaning of x = {v} [...] is that of x = T(v) [...]. The meaning
9072    //   of x = {} is x = T().
9073    InitializationKind Kind =
9074        InitializationKind::CreateDirectList(RHSExpr->getLocStart());
9075    InitializedEntity Entity =
9076        InitializedEntity::InitializeTemporary(LHSExpr->getType());
9077    InitializationSequence InitSeq(*this, Entity, Kind, RHSExpr);
9078    ExprResult Init = InitSeq.Perform(*this, Entity, Kind, RHSExpr);
9079    if (Init.isInvalid())
9080      return Init;
9081    RHSExpr = Init.take();
9082  }
9083
9084  ExprResult LHS = Owned(LHSExpr), RHS = Owned(RHSExpr);
9085  QualType ResultTy;     // Result type of the binary operator.
9086  // The following two variables are used for compound assignment operators
9087  QualType CompLHSTy;    // Type of LHS after promotions for computation
9088  QualType CompResultTy; // Type of computation result
9089  ExprValueKind VK = VK_RValue;
9090  ExprObjectKind OK = OK_Ordinary;
9091
9092  switch (Opc) {
9093  case BO_Assign:
9094    ResultTy = CheckAssignmentOperands(LHS.get(), RHS, OpLoc, QualType());
9095    if (getLangOpts().CPlusPlus &&
9096        LHS.get()->getObjectKind() != OK_ObjCProperty) {
9097      VK = LHS.get()->getValueKind();
9098      OK = LHS.get()->getObjectKind();
9099    }
9100    if (!ResultTy.isNull())
9101      DiagnoseSelfAssignment(*this, LHS.get(), RHS.get(), OpLoc);
9102    break;
9103  case BO_PtrMemD:
9104  case BO_PtrMemI:
9105    ResultTy = CheckPointerToMemberOperands(LHS, RHS, VK, OpLoc,
9106                                            Opc == BO_PtrMemI);
9107    break;
9108  case BO_Mul:
9109  case BO_Div:
9110    ResultTy = CheckMultiplyDivideOperands(LHS, RHS, OpLoc, false,
9111                                           Opc == BO_Div);
9112    break;
9113  case BO_Rem:
9114    ResultTy = CheckRemainderOperands(LHS, RHS, OpLoc);
9115    break;
9116  case BO_Add:
9117    ResultTy = CheckAdditionOperands(LHS, RHS, OpLoc, Opc);
9118    break;
9119  case BO_Sub:
9120    ResultTy = CheckSubtractionOperands(LHS, RHS, OpLoc);
9121    break;
9122  case BO_Shl:
9123  case BO_Shr:
9124    ResultTy = CheckShiftOperands(LHS, RHS, OpLoc, Opc);
9125    break;
9126  case BO_LE:
9127  case BO_LT:
9128  case BO_GE:
9129  case BO_GT:
9130    ResultTy = CheckCompareOperands(LHS, RHS, OpLoc, Opc, true);
9131    break;
9132  case BO_EQ:
9133  case BO_NE:
9134    ResultTy = CheckCompareOperands(LHS, RHS, OpLoc, Opc, false);
9135    break;
9136  case BO_And:
9137    checkObjCPointerIntrospection(*this, LHS, RHS, OpLoc);
9138  case BO_Xor:
9139  case BO_Or:
9140    ResultTy = CheckBitwiseOperands(LHS, RHS, OpLoc);
9141    break;
9142  case BO_LAnd:
9143  case BO_LOr:
9144    ResultTy = CheckLogicalOperands(LHS, RHS, OpLoc, Opc);
9145    break;
9146  case BO_MulAssign:
9147  case BO_DivAssign:
9148    CompResultTy = CheckMultiplyDivideOperands(LHS, RHS, OpLoc, true,
9149                                               Opc == BO_DivAssign);
9150    CompLHSTy = CompResultTy;
9151    if (!CompResultTy.isNull() && !LHS.isInvalid() && !RHS.isInvalid())
9152      ResultTy = CheckAssignmentOperands(LHS.get(), RHS, OpLoc, CompResultTy);
9153    break;
9154  case BO_RemAssign:
9155    CompResultTy = CheckRemainderOperands(LHS, RHS, OpLoc, true);
9156    CompLHSTy = CompResultTy;
9157    if (!CompResultTy.isNull() && !LHS.isInvalid() && !RHS.isInvalid())
9158      ResultTy = CheckAssignmentOperands(LHS.get(), RHS, OpLoc, CompResultTy);
9159    break;
9160  case BO_AddAssign:
9161    CompResultTy = CheckAdditionOperands(LHS, RHS, OpLoc, Opc, &CompLHSTy);
9162    if (!CompResultTy.isNull() && !LHS.isInvalid() && !RHS.isInvalid())
9163      ResultTy = CheckAssignmentOperands(LHS.get(), RHS, OpLoc, CompResultTy);
9164    break;
9165  case BO_SubAssign:
9166    CompResultTy = CheckSubtractionOperands(LHS, RHS, OpLoc, &CompLHSTy);
9167    if (!CompResultTy.isNull() && !LHS.isInvalid() && !RHS.isInvalid())
9168      ResultTy = CheckAssignmentOperands(LHS.get(), RHS, OpLoc, CompResultTy);
9169    break;
9170  case BO_ShlAssign:
9171  case BO_ShrAssign:
9172    CompResultTy = CheckShiftOperands(LHS, RHS, OpLoc, Opc, true);
9173    CompLHSTy = CompResultTy;
9174    if (!CompResultTy.isNull() && !LHS.isInvalid() && !RHS.isInvalid())
9175      ResultTy = CheckAssignmentOperands(LHS.get(), RHS, OpLoc, CompResultTy);
9176    break;
9177  case BO_AndAssign:
9178  case BO_XorAssign:
9179  case BO_OrAssign:
9180    CompResultTy = CheckBitwiseOperands(LHS, RHS, OpLoc, true);
9181    CompLHSTy = CompResultTy;
9182    if (!CompResultTy.isNull() && !LHS.isInvalid() && !RHS.isInvalid())
9183      ResultTy = CheckAssignmentOperands(LHS.get(), RHS, OpLoc, CompResultTy);
9184    break;
9185  case BO_Comma:
9186    ResultTy = CheckCommaOperands(*this, LHS, RHS, OpLoc);
9187    if (getLangOpts().CPlusPlus && !RHS.isInvalid()) {
9188      VK = RHS.get()->getValueKind();
9189      OK = RHS.get()->getObjectKind();
9190    }
9191    break;
9192  }
9193  if (ResultTy.isNull() || LHS.isInvalid() || RHS.isInvalid())
9194    return ExprError();
9195
9196  // Check for array bounds violations for both sides of the BinaryOperator
9197  CheckArrayAccess(LHS.get());
9198  CheckArrayAccess(RHS.get());
9199
9200  if (const ObjCIsaExpr *OISA = dyn_cast<ObjCIsaExpr>(LHS.get()->IgnoreParenCasts())) {
9201    NamedDecl *ObjectSetClass = LookupSingleName(TUScope,
9202                                                 &Context.Idents.get("object_setClass"),
9203                                                 SourceLocation(), LookupOrdinaryName);
9204    if (ObjectSetClass && isa<ObjCIsaExpr>(LHS.get())) {
9205      SourceLocation RHSLocEnd = PP.getLocForEndOfToken(RHS.get()->getLocEnd());
9206      Diag(LHS.get()->getExprLoc(), diag::warn_objc_isa_assign) <<
9207      FixItHint::CreateInsertion(LHS.get()->getLocStart(), "object_setClass(") <<
9208      FixItHint::CreateReplacement(SourceRange(OISA->getOpLoc(), OpLoc), ",") <<
9209      FixItHint::CreateInsertion(RHSLocEnd, ")");
9210    }
9211    else
9212      Diag(LHS.get()->getExprLoc(), diag::warn_objc_isa_assign);
9213  }
9214  else if (const ObjCIvarRefExpr *OIRE =
9215           dyn_cast<ObjCIvarRefExpr>(LHS.get()->IgnoreParenCasts()))
9216    DiagnoseDirectIsaAccess(*this, OIRE, OpLoc, RHS.get());
9217
9218  if (CompResultTy.isNull())
9219    return Owned(new (Context) BinaryOperator(LHS.take(), RHS.take(), Opc,
9220                                              ResultTy, VK, OK, OpLoc,
9221                                              FPFeatures.fp_contract));
9222  if (getLangOpts().CPlusPlus && LHS.get()->getObjectKind() !=
9223      OK_ObjCProperty) {
9224    VK = VK_LValue;
9225    OK = LHS.get()->getObjectKind();
9226  }
9227  return Owned(new (Context) CompoundAssignOperator(LHS.take(), RHS.take(), Opc,
9228                                                    ResultTy, VK, OK, CompLHSTy,
9229                                                    CompResultTy, OpLoc,
9230                                                    FPFeatures.fp_contract));
9231}
9232
9233/// DiagnoseBitwisePrecedence - Emit a warning when bitwise and comparison
9234/// operators are mixed in a way that suggests that the programmer forgot that
9235/// comparison operators have higher precedence. The most typical example of
9236/// such code is "flags & 0x0020 != 0", which is equivalent to "flags & 1".
9237static void DiagnoseBitwisePrecedence(Sema &Self, BinaryOperatorKind Opc,
9238                                      SourceLocation OpLoc, Expr *LHSExpr,
9239                                      Expr *RHSExpr) {
9240  BinaryOperator *LHSBO = dyn_cast<BinaryOperator>(LHSExpr);
9241  BinaryOperator *RHSBO = dyn_cast<BinaryOperator>(RHSExpr);
9242
9243  // Check that one of the sides is a comparison operator.
9244  bool isLeftComp = LHSBO && LHSBO->isComparisonOp();
9245  bool isRightComp = RHSBO && RHSBO->isComparisonOp();
9246  if (!isLeftComp && !isRightComp)
9247    return;
9248
9249  // Bitwise operations are sometimes used as eager logical ops.
9250  // Don't diagnose this.
9251  bool isLeftBitwise = LHSBO && LHSBO->isBitwiseOp();
9252  bool isRightBitwise = RHSBO && RHSBO->isBitwiseOp();
9253  if ((isLeftComp || isLeftBitwise) && (isRightComp || isRightBitwise))
9254    return;
9255
9256  SourceRange DiagRange = isLeftComp ? SourceRange(LHSExpr->getLocStart(),
9257                                                   OpLoc)
9258                                     : SourceRange(OpLoc, RHSExpr->getLocEnd());
9259  StringRef OpStr = isLeftComp ? LHSBO->getOpcodeStr() : RHSBO->getOpcodeStr();
9260  SourceRange ParensRange = isLeftComp ?
9261      SourceRange(LHSBO->getRHS()->getLocStart(), RHSExpr->getLocEnd())
9262    : SourceRange(LHSExpr->getLocStart(), RHSBO->getLHS()->getLocStart());
9263
9264  Self.Diag(OpLoc, diag::warn_precedence_bitwise_rel)
9265    << DiagRange << BinaryOperator::getOpcodeStr(Opc) << OpStr;
9266  SuggestParentheses(Self, OpLoc,
9267    Self.PDiag(diag::note_precedence_silence) << OpStr,
9268    (isLeftComp ? LHSExpr : RHSExpr)->getSourceRange());
9269  SuggestParentheses(Self, OpLoc,
9270    Self.PDiag(diag::note_precedence_bitwise_first)
9271      << BinaryOperator::getOpcodeStr(Opc),
9272    ParensRange);
9273}
9274
9275/// \brief It accepts a '&' expr that is inside a '|' one.
9276/// Emit a diagnostic together with a fixit hint that wraps the '&' expression
9277/// in parentheses.
9278static void
9279EmitDiagnosticForBitwiseAndInBitwiseOr(Sema &Self, SourceLocation OpLoc,
9280                                       BinaryOperator *Bop) {
9281  assert(Bop->getOpcode() == BO_And);
9282  Self.Diag(Bop->getOperatorLoc(), diag::warn_bitwise_and_in_bitwise_or)
9283      << Bop->getSourceRange() << OpLoc;
9284  SuggestParentheses(Self, Bop->getOperatorLoc(),
9285    Self.PDiag(diag::note_precedence_silence)
9286      << Bop->getOpcodeStr(),
9287    Bop->getSourceRange());
9288}
9289
9290/// \brief It accepts a '&&' expr that is inside a '||' one.
9291/// Emit a diagnostic together with a fixit hint that wraps the '&&' expression
9292/// in parentheses.
9293static void
9294EmitDiagnosticForLogicalAndInLogicalOr(Sema &Self, SourceLocation OpLoc,
9295                                       BinaryOperator *Bop) {
9296  assert(Bop->getOpcode() == BO_LAnd);
9297  Self.Diag(Bop->getOperatorLoc(), diag::warn_logical_and_in_logical_or)
9298      << Bop->getSourceRange() << OpLoc;
9299  SuggestParentheses(Self, Bop->getOperatorLoc(),
9300    Self.PDiag(diag::note_precedence_silence)
9301      << Bop->getOpcodeStr(),
9302    Bop->getSourceRange());
9303}
9304
9305/// \brief Returns true if the given expression can be evaluated as a constant
9306/// 'true'.
9307static bool EvaluatesAsTrue(Sema &S, Expr *E) {
9308  bool Res;
9309  return !E->isValueDependent() &&
9310         E->EvaluateAsBooleanCondition(Res, S.getASTContext()) && Res;
9311}
9312
9313/// \brief Returns true if the given expression can be evaluated as a constant
9314/// 'false'.
9315static bool EvaluatesAsFalse(Sema &S, Expr *E) {
9316  bool Res;
9317  return !E->isValueDependent() &&
9318         E->EvaluateAsBooleanCondition(Res, S.getASTContext()) && !Res;
9319}
9320
9321/// \brief Look for '&&' in the left hand of a '||' expr.
9322static void DiagnoseLogicalAndInLogicalOrLHS(Sema &S, SourceLocation OpLoc,
9323                                             Expr *LHSExpr, Expr *RHSExpr) {
9324  if (BinaryOperator *Bop = dyn_cast<BinaryOperator>(LHSExpr)) {
9325    if (Bop->getOpcode() == BO_LAnd) {
9326      // If it's "a && b || 0" don't warn since the precedence doesn't matter.
9327      if (EvaluatesAsFalse(S, RHSExpr))
9328        return;
9329      // If it's "1 && a || b" don't warn since the precedence doesn't matter.
9330      if (!EvaluatesAsTrue(S, Bop->getLHS()))
9331        return EmitDiagnosticForLogicalAndInLogicalOr(S, OpLoc, Bop);
9332    } else if (Bop->getOpcode() == BO_LOr) {
9333      if (BinaryOperator *RBop = dyn_cast<BinaryOperator>(Bop->getRHS())) {
9334        // If it's "a || b && 1 || c" we didn't warn earlier for
9335        // "a || b && 1", but warn now.
9336        if (RBop->getOpcode() == BO_LAnd && EvaluatesAsTrue(S, RBop->getRHS()))
9337          return EmitDiagnosticForLogicalAndInLogicalOr(S, OpLoc, RBop);
9338      }
9339    }
9340  }
9341}
9342
9343/// \brief Look for '&&' in the right hand of a '||' expr.
9344static void DiagnoseLogicalAndInLogicalOrRHS(Sema &S, SourceLocation OpLoc,
9345                                             Expr *LHSExpr, Expr *RHSExpr) {
9346  if (BinaryOperator *Bop = dyn_cast<BinaryOperator>(RHSExpr)) {
9347    if (Bop->getOpcode() == BO_LAnd) {
9348      // If it's "0 || a && b" don't warn since the precedence doesn't matter.
9349      if (EvaluatesAsFalse(S, LHSExpr))
9350        return;
9351      // If it's "a || b && 1" don't warn since the precedence doesn't matter.
9352      if (!EvaluatesAsTrue(S, Bop->getRHS()))
9353        return EmitDiagnosticForLogicalAndInLogicalOr(S, OpLoc, Bop);
9354    }
9355  }
9356}
9357
9358/// \brief Look for '&' in the left or right hand of a '|' expr.
9359static void DiagnoseBitwiseAndInBitwiseOr(Sema &S, SourceLocation OpLoc,
9360                                             Expr *OrArg) {
9361  if (BinaryOperator *Bop = dyn_cast<BinaryOperator>(OrArg)) {
9362    if (Bop->getOpcode() == BO_And)
9363      return EmitDiagnosticForBitwiseAndInBitwiseOr(S, OpLoc, Bop);
9364  }
9365}
9366
9367static void DiagnoseAdditionInShift(Sema &S, SourceLocation OpLoc,
9368                                    Expr *SubExpr, StringRef Shift) {
9369  if (BinaryOperator *Bop = dyn_cast<BinaryOperator>(SubExpr)) {
9370    if (Bop->getOpcode() == BO_Add || Bop->getOpcode() == BO_Sub) {
9371      StringRef Op = Bop->getOpcodeStr();
9372      S.Diag(Bop->getOperatorLoc(), diag::warn_addition_in_bitshift)
9373          << Bop->getSourceRange() << OpLoc << Shift << Op;
9374      SuggestParentheses(S, Bop->getOperatorLoc(),
9375          S.PDiag(diag::note_precedence_silence) << Op,
9376          Bop->getSourceRange());
9377    }
9378  }
9379}
9380
9381static void DiagnoseShiftCompare(Sema &S, SourceLocation OpLoc,
9382                                 Expr *LHSExpr, Expr *RHSExpr) {
9383  CXXOperatorCallExpr *OCE = dyn_cast<CXXOperatorCallExpr>(LHSExpr);
9384  if (!OCE)
9385    return;
9386
9387  FunctionDecl *FD = OCE->getDirectCallee();
9388  if (!FD || !FD->isOverloadedOperator())
9389    return;
9390
9391  OverloadedOperatorKind Kind = FD->getOverloadedOperator();
9392  if (Kind != OO_LessLess && Kind != OO_GreaterGreater)
9393    return;
9394
9395  S.Diag(OpLoc, diag::warn_overloaded_shift_in_comparison)
9396      << LHSExpr->getSourceRange() << RHSExpr->getSourceRange()
9397      << (Kind == OO_LessLess);
9398  SuggestParentheses(S, OCE->getOperatorLoc(),
9399                     S.PDiag(diag::note_precedence_silence)
9400                         << (Kind == OO_LessLess ? "<<" : ">>"),
9401                     OCE->getSourceRange());
9402  SuggestParentheses(S, OpLoc,
9403                     S.PDiag(diag::note_evaluate_comparison_first),
9404                     SourceRange(OCE->getArg(1)->getLocStart(),
9405                                 RHSExpr->getLocEnd()));
9406}
9407
9408/// DiagnoseBinOpPrecedence - Emit warnings for expressions with tricky
9409/// precedence.
9410static void DiagnoseBinOpPrecedence(Sema &Self, BinaryOperatorKind Opc,
9411                                    SourceLocation OpLoc, Expr *LHSExpr,
9412                                    Expr *RHSExpr){
9413  // Diagnose "arg1 'bitwise' arg2 'eq' arg3".
9414  if (BinaryOperator::isBitwiseOp(Opc))
9415    DiagnoseBitwisePrecedence(Self, Opc, OpLoc, LHSExpr, RHSExpr);
9416
9417  // Diagnose "arg1 & arg2 | arg3"
9418  if (Opc == BO_Or && !OpLoc.isMacroID()/* Don't warn in macros. */) {
9419    DiagnoseBitwiseAndInBitwiseOr(Self, OpLoc, LHSExpr);
9420    DiagnoseBitwiseAndInBitwiseOr(Self, OpLoc, RHSExpr);
9421  }
9422
9423  // Warn about arg1 || arg2 && arg3, as GCC 4.3+ does.
9424  // We don't warn for 'assert(a || b && "bad")' since this is safe.
9425  if (Opc == BO_LOr && !OpLoc.isMacroID()/* Don't warn in macros. */) {
9426    DiagnoseLogicalAndInLogicalOrLHS(Self, OpLoc, LHSExpr, RHSExpr);
9427    DiagnoseLogicalAndInLogicalOrRHS(Self, OpLoc, LHSExpr, RHSExpr);
9428  }
9429
9430  if ((Opc == BO_Shl && LHSExpr->getType()->isIntegralType(Self.getASTContext()))
9431      || Opc == BO_Shr) {
9432    StringRef Shift = BinaryOperator::getOpcodeStr(Opc);
9433    DiagnoseAdditionInShift(Self, OpLoc, LHSExpr, Shift);
9434    DiagnoseAdditionInShift(Self, OpLoc, RHSExpr, Shift);
9435  }
9436
9437  // Warn on overloaded shift operators and comparisons, such as:
9438  // cout << 5 == 4;
9439  if (BinaryOperator::isComparisonOp(Opc))
9440    DiagnoseShiftCompare(Self, OpLoc, LHSExpr, RHSExpr);
9441}
9442
9443// Binary Operators.  'Tok' is the token for the operator.
9444ExprResult Sema::ActOnBinOp(Scope *S, SourceLocation TokLoc,
9445                            tok::TokenKind Kind,
9446                            Expr *LHSExpr, Expr *RHSExpr) {
9447  BinaryOperatorKind Opc = ConvertTokenKindToBinaryOpcode(Kind);
9448  assert((LHSExpr != 0) && "ActOnBinOp(): missing left expression");
9449  assert((RHSExpr != 0) && "ActOnBinOp(): missing right expression");
9450
9451  // Emit warnings for tricky precedence issues, e.g. "bitfield & 0x4 == 0"
9452  DiagnoseBinOpPrecedence(*this, Opc, TokLoc, LHSExpr, RHSExpr);
9453
9454  return BuildBinOp(S, TokLoc, Opc, LHSExpr, RHSExpr);
9455}
9456
9457/// Build an overloaded binary operator expression in the given scope.
9458static ExprResult BuildOverloadedBinOp(Sema &S, Scope *Sc, SourceLocation OpLoc,
9459                                       BinaryOperatorKind Opc,
9460                                       Expr *LHS, Expr *RHS) {
9461  // Find all of the overloaded operators visible from this
9462  // point. We perform both an operator-name lookup from the local
9463  // scope and an argument-dependent lookup based on the types of
9464  // the arguments.
9465  UnresolvedSet<16> Functions;
9466  OverloadedOperatorKind OverOp
9467    = BinaryOperator::getOverloadedOperator(Opc);
9468  if (Sc && OverOp != OO_None)
9469    S.LookupOverloadedOperatorName(OverOp, Sc, LHS->getType(),
9470                                   RHS->getType(), Functions);
9471
9472  // Build the (potentially-overloaded, potentially-dependent)
9473  // binary operation.
9474  return S.CreateOverloadedBinOp(OpLoc, Opc, Functions, LHS, RHS);
9475}
9476
9477ExprResult Sema::BuildBinOp(Scope *S, SourceLocation OpLoc,
9478                            BinaryOperatorKind Opc,
9479                            Expr *LHSExpr, Expr *RHSExpr) {
9480  // We want to end up calling one of checkPseudoObjectAssignment
9481  // (if the LHS is a pseudo-object), BuildOverloadedBinOp (if
9482  // both expressions are overloadable or either is type-dependent),
9483  // or CreateBuiltinBinOp (in any other case).  We also want to get
9484  // any placeholder types out of the way.
9485
9486  // Handle pseudo-objects in the LHS.
9487  if (const BuiltinType *pty = LHSExpr->getType()->getAsPlaceholderType()) {
9488    // Assignments with a pseudo-object l-value need special analysis.
9489    if (pty->getKind() == BuiltinType::PseudoObject &&
9490        BinaryOperator::isAssignmentOp(Opc))
9491      return checkPseudoObjectAssignment(S, OpLoc, Opc, LHSExpr, RHSExpr);
9492
9493    // Don't resolve overloads if the other type is overloadable.
9494    if (pty->getKind() == BuiltinType::Overload) {
9495      // We can't actually test that if we still have a placeholder,
9496      // though.  Fortunately, none of the exceptions we see in that
9497      // code below are valid when the LHS is an overload set.  Note
9498      // that an overload set can be dependently-typed, but it never
9499      // instantiates to having an overloadable type.
9500      ExprResult resolvedRHS = CheckPlaceholderExpr(RHSExpr);
9501      if (resolvedRHS.isInvalid()) return ExprError();
9502      RHSExpr = resolvedRHS.take();
9503
9504      if (RHSExpr->isTypeDependent() ||
9505          RHSExpr->getType()->isOverloadableType())
9506        return BuildOverloadedBinOp(*this, S, OpLoc, Opc, LHSExpr, RHSExpr);
9507    }
9508
9509    ExprResult LHS = CheckPlaceholderExpr(LHSExpr);
9510    if (LHS.isInvalid()) return ExprError();
9511    LHSExpr = LHS.take();
9512  }
9513
9514  // Handle pseudo-objects in the RHS.
9515  if (const BuiltinType *pty = RHSExpr->getType()->getAsPlaceholderType()) {
9516    // An overload in the RHS can potentially be resolved by the type
9517    // being assigned to.
9518    if (Opc == BO_Assign && pty->getKind() == BuiltinType::Overload) {
9519      if (LHSExpr->isTypeDependent() || RHSExpr->isTypeDependent())
9520        return BuildOverloadedBinOp(*this, S, OpLoc, Opc, LHSExpr, RHSExpr);
9521
9522      if (LHSExpr->getType()->isOverloadableType())
9523        return BuildOverloadedBinOp(*this, S, OpLoc, Opc, LHSExpr, RHSExpr);
9524
9525      return CreateBuiltinBinOp(OpLoc, Opc, LHSExpr, RHSExpr);
9526    }
9527
9528    // Don't resolve overloads if the other type is overloadable.
9529    if (pty->getKind() == BuiltinType::Overload &&
9530        LHSExpr->getType()->isOverloadableType())
9531      return BuildOverloadedBinOp(*this, S, OpLoc, Opc, LHSExpr, RHSExpr);
9532
9533    ExprResult resolvedRHS = CheckPlaceholderExpr(RHSExpr);
9534    if (!resolvedRHS.isUsable()) return ExprError();
9535    RHSExpr = resolvedRHS.take();
9536  }
9537
9538  if (getLangOpts().CPlusPlus) {
9539    // If either expression is type-dependent, always build an
9540    // overloaded op.
9541    if (LHSExpr->isTypeDependent() || RHSExpr->isTypeDependent())
9542      return BuildOverloadedBinOp(*this, S, OpLoc, Opc, LHSExpr, RHSExpr);
9543
9544    // Otherwise, build an overloaded op if either expression has an
9545    // overloadable type.
9546    if (LHSExpr->getType()->isOverloadableType() ||
9547        RHSExpr->getType()->isOverloadableType())
9548      return BuildOverloadedBinOp(*this, S, OpLoc, Opc, LHSExpr, RHSExpr);
9549  }
9550
9551  // Build a built-in binary operation.
9552  return CreateBuiltinBinOp(OpLoc, Opc, LHSExpr, RHSExpr);
9553}
9554
9555ExprResult Sema::CreateBuiltinUnaryOp(SourceLocation OpLoc,
9556                                      UnaryOperatorKind Opc,
9557                                      Expr *InputExpr) {
9558  ExprResult Input = Owned(InputExpr);
9559  ExprValueKind VK = VK_RValue;
9560  ExprObjectKind OK = OK_Ordinary;
9561  QualType resultType;
9562  switch (Opc) {
9563  case UO_PreInc:
9564  case UO_PreDec:
9565  case UO_PostInc:
9566  case UO_PostDec:
9567    resultType = CheckIncrementDecrementOperand(*this, Input.get(), VK, OpLoc,
9568                                                Opc == UO_PreInc ||
9569                                                Opc == UO_PostInc,
9570                                                Opc == UO_PreInc ||
9571                                                Opc == UO_PreDec);
9572    break;
9573  case UO_AddrOf:
9574    resultType = CheckAddressOfOperand(Input, OpLoc);
9575    break;
9576  case UO_Deref: {
9577    Input = DefaultFunctionArrayLvalueConversion(Input.take());
9578    if (Input.isInvalid()) return ExprError();
9579    resultType = CheckIndirectionOperand(*this, Input.get(), VK, OpLoc);
9580    break;
9581  }
9582  case UO_Plus:
9583  case UO_Minus:
9584    Input = UsualUnaryConversions(Input.take());
9585    if (Input.isInvalid()) return ExprError();
9586    resultType = Input.get()->getType();
9587    if (resultType->isDependentType())
9588      break;
9589    if (resultType->isArithmeticType() || // C99 6.5.3.3p1
9590        resultType->isVectorType())
9591      break;
9592    else if (getLangOpts().CPlusPlus && // C++ [expr.unary.op]p6
9593             Opc == UO_Plus &&
9594             resultType->isPointerType())
9595      break;
9596
9597    return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr)
9598      << resultType << Input.get()->getSourceRange());
9599
9600  case UO_Not: // bitwise complement
9601    Input = UsualUnaryConversions(Input.take());
9602    if (Input.isInvalid())
9603      return ExprError();
9604    resultType = Input.get()->getType();
9605    if (resultType->isDependentType())
9606      break;
9607    // C99 6.5.3.3p1. We allow complex int and float as a GCC extension.
9608    if (resultType->isComplexType() || resultType->isComplexIntegerType())
9609      // C99 does not support '~' for complex conjugation.
9610      Diag(OpLoc, diag::ext_integer_complement_complex)
9611          << resultType << Input.get()->getSourceRange();
9612    else if (resultType->hasIntegerRepresentation())
9613      break;
9614    else if (resultType->isExtVectorType()) {
9615      if (Context.getLangOpts().OpenCL) {
9616        // OpenCL v1.1 s6.3.f: The bitwise operator not (~) does not operate
9617        // on vector float types.
9618        QualType T = resultType->getAs<ExtVectorType>()->getElementType();
9619        if (!T->isIntegerType())
9620          return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr)
9621                           << resultType << Input.get()->getSourceRange());
9622      }
9623      break;
9624    } else {
9625      return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr)
9626                       << resultType << Input.get()->getSourceRange());
9627    }
9628    break;
9629
9630  case UO_LNot: // logical negation
9631    // Unlike +/-/~, integer promotions aren't done here (C99 6.5.3.3p5).
9632    Input = DefaultFunctionArrayLvalueConversion(Input.take());
9633    if (Input.isInvalid()) return ExprError();
9634    resultType = Input.get()->getType();
9635
9636    // Though we still have to promote half FP to float...
9637    if (resultType->isHalfType() && !Context.getLangOpts().NativeHalfType) {
9638      Input = ImpCastExprToType(Input.take(), Context.FloatTy, CK_FloatingCast).take();
9639      resultType = Context.FloatTy;
9640    }
9641
9642    if (resultType->isDependentType())
9643      break;
9644    if (resultType->isScalarType()) {
9645      // C99 6.5.3.3p1: ok, fallthrough;
9646      if (Context.getLangOpts().CPlusPlus) {
9647        // C++03 [expr.unary.op]p8, C++0x [expr.unary.op]p9:
9648        // operand contextually converted to bool.
9649        Input = ImpCastExprToType(Input.take(), Context.BoolTy,
9650                                  ScalarTypeToBooleanCastKind(resultType));
9651      } else if (Context.getLangOpts().OpenCL &&
9652                 Context.getLangOpts().OpenCLVersion < 120) {
9653        // OpenCL v1.1 6.3.h: The logical operator not (!) does not
9654        // operate on scalar float types.
9655        if (!resultType->isIntegerType())
9656          return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr)
9657                           << resultType << Input.get()->getSourceRange());
9658      }
9659    } else if (resultType->isExtVectorType()) {
9660      if (Context.getLangOpts().OpenCL &&
9661          Context.getLangOpts().OpenCLVersion < 120) {
9662        // OpenCL v1.1 6.3.h: The logical operator not (!) does not
9663        // operate on vector float types.
9664        QualType T = resultType->getAs<ExtVectorType>()->getElementType();
9665        if (!T->isIntegerType())
9666          return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr)
9667                           << resultType << Input.get()->getSourceRange());
9668      }
9669      // Vector logical not returns the signed variant of the operand type.
9670      resultType = GetSignedVectorType(resultType);
9671      break;
9672    } else {
9673      return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr)
9674        << resultType << Input.get()->getSourceRange());
9675    }
9676
9677    // LNot always has type int. C99 6.5.3.3p5.
9678    // In C++, it's bool. C++ 5.3.1p8
9679    resultType = Context.getLogicalOperationType();
9680    break;
9681  case UO_Real:
9682  case UO_Imag:
9683    resultType = CheckRealImagOperand(*this, Input, OpLoc, Opc == UO_Real);
9684    // _Real maps ordinary l-values into ordinary l-values. _Imag maps ordinary
9685    // complex l-values to ordinary l-values and all other values to r-values.
9686    if (Input.isInvalid()) return ExprError();
9687    if (Opc == UO_Real || Input.get()->getType()->isAnyComplexType()) {
9688      if (Input.get()->getValueKind() != VK_RValue &&
9689          Input.get()->getObjectKind() == OK_Ordinary)
9690        VK = Input.get()->getValueKind();
9691    } else if (!getLangOpts().CPlusPlus) {
9692      // In C, a volatile scalar is read by __imag. In C++, it is not.
9693      Input = DefaultLvalueConversion(Input.take());
9694    }
9695    break;
9696  case UO_Extension:
9697    resultType = Input.get()->getType();
9698    VK = Input.get()->getValueKind();
9699    OK = Input.get()->getObjectKind();
9700    break;
9701  }
9702  if (resultType.isNull() || Input.isInvalid())
9703    return ExprError();
9704
9705  // Check for array bounds violations in the operand of the UnaryOperator,
9706  // except for the '*' and '&' operators that have to be handled specially
9707  // by CheckArrayAccess (as there are special cases like &array[arraysize]
9708  // that are explicitly defined as valid by the standard).
9709  if (Opc != UO_AddrOf && Opc != UO_Deref)
9710    CheckArrayAccess(Input.get());
9711
9712  return Owned(new (Context) UnaryOperator(Input.take(), Opc, resultType,
9713                                           VK, OK, OpLoc));
9714}
9715
9716/// \brief Determine whether the given expression is a qualified member
9717/// access expression, of a form that could be turned into a pointer to member
9718/// with the address-of operator.
9719static bool isQualifiedMemberAccess(Expr *E) {
9720  if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E)) {
9721    if (!DRE->getQualifier())
9722      return false;
9723
9724    ValueDecl *VD = DRE->getDecl();
9725    if (!VD->isCXXClassMember())
9726      return false;
9727
9728    if (isa<FieldDecl>(VD) || isa<IndirectFieldDecl>(VD))
9729      return true;
9730    if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(VD))
9731      return Method->isInstance();
9732
9733    return false;
9734  }
9735
9736  if (UnresolvedLookupExpr *ULE = dyn_cast<UnresolvedLookupExpr>(E)) {
9737    if (!ULE->getQualifier())
9738      return false;
9739
9740    for (UnresolvedLookupExpr::decls_iterator D = ULE->decls_begin(),
9741                                           DEnd = ULE->decls_end();
9742         D != DEnd; ++D) {
9743      if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(*D)) {
9744        if (Method->isInstance())
9745          return true;
9746      } else {
9747        // Overload set does not contain methods.
9748        break;
9749      }
9750    }
9751
9752    return false;
9753  }
9754
9755  return false;
9756}
9757
9758ExprResult Sema::BuildUnaryOp(Scope *S, SourceLocation OpLoc,
9759                              UnaryOperatorKind Opc, Expr *Input) {
9760  // First things first: handle placeholders so that the
9761  // overloaded-operator check considers the right type.
9762  if (const BuiltinType *pty = Input->getType()->getAsPlaceholderType()) {
9763    // Increment and decrement of pseudo-object references.
9764    if (pty->getKind() == BuiltinType::PseudoObject &&
9765        UnaryOperator::isIncrementDecrementOp(Opc))
9766      return checkPseudoObjectIncDec(S, OpLoc, Opc, Input);
9767
9768    // extension is always a builtin operator.
9769    if (Opc == UO_Extension)
9770      return CreateBuiltinUnaryOp(OpLoc, Opc, Input);
9771
9772    // & gets special logic for several kinds of placeholder.
9773    // The builtin code knows what to do.
9774    if (Opc == UO_AddrOf &&
9775        (pty->getKind() == BuiltinType::Overload ||
9776         pty->getKind() == BuiltinType::UnknownAny ||
9777         pty->getKind() == BuiltinType::BoundMember))
9778      return CreateBuiltinUnaryOp(OpLoc, Opc, Input);
9779
9780    // Anything else needs to be handled now.
9781    ExprResult Result = CheckPlaceholderExpr(Input);
9782    if (Result.isInvalid()) return ExprError();
9783    Input = Result.take();
9784  }
9785
9786  if (getLangOpts().CPlusPlus && Input->getType()->isOverloadableType() &&
9787      UnaryOperator::getOverloadedOperator(Opc) != OO_None &&
9788      !(Opc == UO_AddrOf && isQualifiedMemberAccess(Input))) {
9789    // Find all of the overloaded operators visible from this
9790    // point. We perform both an operator-name lookup from the local
9791    // scope and an argument-dependent lookup based on the types of
9792    // the arguments.
9793    UnresolvedSet<16> Functions;
9794    OverloadedOperatorKind OverOp = UnaryOperator::getOverloadedOperator(Opc);
9795    if (S && OverOp != OO_None)
9796      LookupOverloadedOperatorName(OverOp, S, Input->getType(), QualType(),
9797                                   Functions);
9798
9799    return CreateOverloadedUnaryOp(OpLoc, Opc, Functions, Input);
9800  }
9801
9802  return CreateBuiltinUnaryOp(OpLoc, Opc, Input);
9803}
9804
9805// Unary Operators.  'Tok' is the token for the operator.
9806ExprResult Sema::ActOnUnaryOp(Scope *S, SourceLocation OpLoc,
9807                              tok::TokenKind Op, Expr *Input) {
9808  return BuildUnaryOp(S, OpLoc, ConvertTokenKindToUnaryOpcode(Op), Input);
9809}
9810
9811/// ActOnAddrLabel - Parse the GNU address of label extension: "&&foo".
9812ExprResult Sema::ActOnAddrLabel(SourceLocation OpLoc, SourceLocation LabLoc,
9813                                LabelDecl *TheDecl) {
9814  TheDecl->markUsed(Context);
9815  // Create the AST node.  The address of a label always has type 'void*'.
9816  return Owned(new (Context) AddrLabelExpr(OpLoc, LabLoc, TheDecl,
9817                                       Context.getPointerType(Context.VoidTy)));
9818}
9819
9820/// Given the last statement in a statement-expression, check whether
9821/// the result is a producing expression (like a call to an
9822/// ns_returns_retained function) and, if so, rebuild it to hoist the
9823/// release out of the full-expression.  Otherwise, return null.
9824/// Cannot fail.
9825static Expr *maybeRebuildARCConsumingStmt(Stmt *Statement) {
9826  // Should always be wrapped with one of these.
9827  ExprWithCleanups *cleanups = dyn_cast<ExprWithCleanups>(Statement);
9828  if (!cleanups) return 0;
9829
9830  ImplicitCastExpr *cast = dyn_cast<ImplicitCastExpr>(cleanups->getSubExpr());
9831  if (!cast || cast->getCastKind() != CK_ARCConsumeObject)
9832    return 0;
9833
9834  // Splice out the cast.  This shouldn't modify any interesting
9835  // features of the statement.
9836  Expr *producer = cast->getSubExpr();
9837  assert(producer->getType() == cast->getType());
9838  assert(producer->getValueKind() == cast->getValueKind());
9839  cleanups->setSubExpr(producer);
9840  return cleanups;
9841}
9842
9843void Sema::ActOnStartStmtExpr() {
9844  PushExpressionEvaluationContext(ExprEvalContexts.back().Context);
9845}
9846
9847void Sema::ActOnStmtExprError() {
9848  // Note that function is also called by TreeTransform when leaving a
9849  // StmtExpr scope without rebuilding anything.
9850
9851  DiscardCleanupsInEvaluationContext();
9852  PopExpressionEvaluationContext();
9853}
9854
9855ExprResult
9856Sema::ActOnStmtExpr(SourceLocation LPLoc, Stmt *SubStmt,
9857                    SourceLocation RPLoc) { // "({..})"
9858  assert(SubStmt && isa<CompoundStmt>(SubStmt) && "Invalid action invocation!");
9859  CompoundStmt *Compound = cast<CompoundStmt>(SubStmt);
9860
9861  if (hasAnyUnrecoverableErrorsInThisFunction())
9862    DiscardCleanupsInEvaluationContext();
9863  assert(!ExprNeedsCleanups && "cleanups within StmtExpr not correctly bound!");
9864  PopExpressionEvaluationContext();
9865
9866  bool isFileScope
9867    = (getCurFunctionOrMethodDecl() == 0) && (getCurBlock() == 0);
9868  if (isFileScope)
9869    return ExprError(Diag(LPLoc, diag::err_stmtexpr_file_scope));
9870
9871  // FIXME: there are a variety of strange constraints to enforce here, for
9872  // example, it is not possible to goto into a stmt expression apparently.
9873  // More semantic analysis is needed.
9874
9875  // If there are sub stmts in the compound stmt, take the type of the last one
9876  // as the type of the stmtexpr.
9877  QualType Ty = Context.VoidTy;
9878  bool StmtExprMayBindToTemp = false;
9879  if (!Compound->body_empty()) {
9880    Stmt *LastStmt = Compound->body_back();
9881    LabelStmt *LastLabelStmt = 0;
9882    // If LastStmt is a label, skip down through into the body.
9883    while (LabelStmt *Label = dyn_cast<LabelStmt>(LastStmt)) {
9884      LastLabelStmt = Label;
9885      LastStmt = Label->getSubStmt();
9886    }
9887
9888    if (Expr *LastE = dyn_cast<Expr>(LastStmt)) {
9889      // Do function/array conversion on the last expression, but not
9890      // lvalue-to-rvalue.  However, initialize an unqualified type.
9891      ExprResult LastExpr = DefaultFunctionArrayConversion(LastE);
9892      if (LastExpr.isInvalid())
9893        return ExprError();
9894      Ty = LastExpr.get()->getType().getUnqualifiedType();
9895
9896      if (!Ty->isDependentType() && !LastExpr.get()->isTypeDependent()) {
9897        // In ARC, if the final expression ends in a consume, splice
9898        // the consume out and bind it later.  In the alternate case
9899        // (when dealing with a retainable type), the result
9900        // initialization will create a produce.  In both cases the
9901        // result will be +1, and we'll need to balance that out with
9902        // a bind.
9903        if (Expr *rebuiltLastStmt
9904              = maybeRebuildARCConsumingStmt(LastExpr.get())) {
9905          LastExpr = rebuiltLastStmt;
9906        } else {
9907          LastExpr = PerformCopyInitialization(
9908                            InitializedEntity::InitializeResult(LPLoc,
9909                                                                Ty,
9910                                                                false),
9911                                                   SourceLocation(),
9912                                               LastExpr);
9913        }
9914
9915        if (LastExpr.isInvalid())
9916          return ExprError();
9917        if (LastExpr.get() != 0) {
9918          if (!LastLabelStmt)
9919            Compound->setLastStmt(LastExpr.take());
9920          else
9921            LastLabelStmt->setSubStmt(LastExpr.take());
9922          StmtExprMayBindToTemp = true;
9923        }
9924      }
9925    }
9926  }
9927
9928  // FIXME: Check that expression type is complete/non-abstract; statement
9929  // expressions are not lvalues.
9930  Expr *ResStmtExpr = new (Context) StmtExpr(Compound, Ty, LPLoc, RPLoc);
9931  if (StmtExprMayBindToTemp)
9932    return MaybeBindToTemporary(ResStmtExpr);
9933  return Owned(ResStmtExpr);
9934}
9935
9936ExprResult Sema::BuildBuiltinOffsetOf(SourceLocation BuiltinLoc,
9937                                      TypeSourceInfo *TInfo,
9938                                      OffsetOfComponent *CompPtr,
9939                                      unsigned NumComponents,
9940                                      SourceLocation RParenLoc) {
9941  QualType ArgTy = TInfo->getType();
9942  bool Dependent = ArgTy->isDependentType();
9943  SourceRange TypeRange = TInfo->getTypeLoc().getLocalSourceRange();
9944
9945  // We must have at least one component that refers to the type, and the first
9946  // one is known to be a field designator.  Verify that the ArgTy represents
9947  // a struct/union/class.
9948  if (!Dependent && !ArgTy->isRecordType())
9949    return ExprError(Diag(BuiltinLoc, diag::err_offsetof_record_type)
9950                       << ArgTy << TypeRange);
9951
9952  // Type must be complete per C99 7.17p3 because a declaring a variable
9953  // with an incomplete type would be ill-formed.
9954  if (!Dependent
9955      && RequireCompleteType(BuiltinLoc, ArgTy,
9956                             diag::err_offsetof_incomplete_type, TypeRange))
9957    return ExprError();
9958
9959  // offsetof with non-identifier designators (e.g. "offsetof(x, a.b[c])") are a
9960  // GCC extension, diagnose them.
9961  // FIXME: This diagnostic isn't actually visible because the location is in
9962  // a system header!
9963  if (NumComponents != 1)
9964    Diag(BuiltinLoc, diag::ext_offsetof_extended_field_designator)
9965      << SourceRange(CompPtr[1].LocStart, CompPtr[NumComponents-1].LocEnd);
9966
9967  bool DidWarnAboutNonPOD = false;
9968  QualType CurrentType = ArgTy;
9969  typedef OffsetOfExpr::OffsetOfNode OffsetOfNode;
9970  SmallVector<OffsetOfNode, 4> Comps;
9971  SmallVector<Expr*, 4> Exprs;
9972  for (unsigned i = 0; i != NumComponents; ++i) {
9973    const OffsetOfComponent &OC = CompPtr[i];
9974    if (OC.isBrackets) {
9975      // Offset of an array sub-field.  TODO: Should we allow vector elements?
9976      if (!CurrentType->isDependentType()) {
9977        const ArrayType *AT = Context.getAsArrayType(CurrentType);
9978        if(!AT)
9979          return ExprError(Diag(OC.LocEnd, diag::err_offsetof_array_type)
9980                           << CurrentType);
9981        CurrentType = AT->getElementType();
9982      } else
9983        CurrentType = Context.DependentTy;
9984
9985      ExprResult IdxRval = DefaultLvalueConversion(static_cast<Expr*>(OC.U.E));
9986      if (IdxRval.isInvalid())
9987        return ExprError();
9988      Expr *Idx = IdxRval.take();
9989
9990      // The expression must be an integral expression.
9991      // FIXME: An integral constant expression?
9992      if (!Idx->isTypeDependent() && !Idx->isValueDependent() &&
9993          !Idx->getType()->isIntegerType())
9994        return ExprError(Diag(Idx->getLocStart(),
9995                              diag::err_typecheck_subscript_not_integer)
9996                         << Idx->getSourceRange());
9997
9998      // Record this array index.
9999      Comps.push_back(OffsetOfNode(OC.LocStart, Exprs.size(), OC.LocEnd));
10000      Exprs.push_back(Idx);
10001      continue;
10002    }
10003
10004    // Offset of a field.
10005    if (CurrentType->isDependentType()) {
10006      // We have the offset of a field, but we can't look into the dependent
10007      // type. Just record the identifier of the field.
10008      Comps.push_back(OffsetOfNode(OC.LocStart, OC.U.IdentInfo, OC.LocEnd));
10009      CurrentType = Context.DependentTy;
10010      continue;
10011    }
10012
10013    // We need to have a complete type to look into.
10014    if (RequireCompleteType(OC.LocStart, CurrentType,
10015                            diag::err_offsetof_incomplete_type))
10016      return ExprError();
10017
10018    // Look for the designated field.
10019    const RecordType *RC = CurrentType->getAs<RecordType>();
10020    if (!RC)
10021      return ExprError(Diag(OC.LocEnd, diag::err_offsetof_record_type)
10022                       << CurrentType);
10023    RecordDecl *RD = RC->getDecl();
10024
10025    // C++ [lib.support.types]p5:
10026    //   The macro offsetof accepts a restricted set of type arguments in this
10027    //   International Standard. type shall be a POD structure or a POD union
10028    //   (clause 9).
10029    // C++11 [support.types]p4:
10030    //   If type is not a standard-layout class (Clause 9), the results are
10031    //   undefined.
10032    if (CXXRecordDecl *CRD = dyn_cast<CXXRecordDecl>(RD)) {
10033      bool IsSafe = LangOpts.CPlusPlus11? CRD->isStandardLayout() : CRD->isPOD();
10034      unsigned DiagID =
10035        LangOpts.CPlusPlus11? diag::warn_offsetof_non_standardlayout_type
10036                            : diag::warn_offsetof_non_pod_type;
10037
10038      if (!IsSafe && !DidWarnAboutNonPOD &&
10039          DiagRuntimeBehavior(BuiltinLoc, 0,
10040                              PDiag(DiagID)
10041                              << SourceRange(CompPtr[0].LocStart, OC.LocEnd)
10042                              << CurrentType))
10043        DidWarnAboutNonPOD = true;
10044    }
10045
10046    // Look for the field.
10047    LookupResult R(*this, OC.U.IdentInfo, OC.LocStart, LookupMemberName);
10048    LookupQualifiedName(R, RD);
10049    FieldDecl *MemberDecl = R.getAsSingle<FieldDecl>();
10050    IndirectFieldDecl *IndirectMemberDecl = 0;
10051    if (!MemberDecl) {
10052      if ((IndirectMemberDecl = R.getAsSingle<IndirectFieldDecl>()))
10053        MemberDecl = IndirectMemberDecl->getAnonField();
10054    }
10055
10056    if (!MemberDecl)
10057      return ExprError(Diag(BuiltinLoc, diag::err_no_member)
10058                       << OC.U.IdentInfo << RD << SourceRange(OC.LocStart,
10059                                                              OC.LocEnd));
10060
10061    // C99 7.17p3:
10062    //   (If the specified member is a bit-field, the behavior is undefined.)
10063    //
10064    // We diagnose this as an error.
10065    if (MemberDecl->isBitField()) {
10066      Diag(OC.LocEnd, diag::err_offsetof_bitfield)
10067        << MemberDecl->getDeclName()
10068        << SourceRange(BuiltinLoc, RParenLoc);
10069      Diag(MemberDecl->getLocation(), diag::note_bitfield_decl);
10070      return ExprError();
10071    }
10072
10073    RecordDecl *Parent = MemberDecl->getParent();
10074    if (IndirectMemberDecl)
10075      Parent = cast<RecordDecl>(IndirectMemberDecl->getDeclContext());
10076
10077    // If the member was found in a base class, introduce OffsetOfNodes for
10078    // the base class indirections.
10079    CXXBasePaths Paths;
10080    if (IsDerivedFrom(CurrentType, Context.getTypeDeclType(Parent), Paths)) {
10081      if (Paths.getDetectedVirtual()) {
10082        Diag(OC.LocEnd, diag::err_offsetof_field_of_virtual_base)
10083          << MemberDecl->getDeclName()
10084          << SourceRange(BuiltinLoc, RParenLoc);
10085        return ExprError();
10086      }
10087
10088      CXXBasePath &Path = Paths.front();
10089      for (CXXBasePath::iterator B = Path.begin(), BEnd = Path.end();
10090           B != BEnd; ++B)
10091        Comps.push_back(OffsetOfNode(B->Base));
10092    }
10093
10094    if (IndirectMemberDecl) {
10095      for (IndirectFieldDecl::chain_iterator FI =
10096           IndirectMemberDecl->chain_begin(),
10097           FEnd = IndirectMemberDecl->chain_end(); FI != FEnd; FI++) {
10098        assert(isa<FieldDecl>(*FI));
10099        Comps.push_back(OffsetOfNode(OC.LocStart,
10100                                     cast<FieldDecl>(*FI), OC.LocEnd));
10101      }
10102    } else
10103      Comps.push_back(OffsetOfNode(OC.LocStart, MemberDecl, OC.LocEnd));
10104
10105    CurrentType = MemberDecl->getType().getNonReferenceType();
10106  }
10107
10108  return Owned(OffsetOfExpr::Create(Context, Context.getSizeType(), BuiltinLoc,
10109                                    TInfo, Comps, Exprs, RParenLoc));
10110}
10111
10112ExprResult Sema::ActOnBuiltinOffsetOf(Scope *S,
10113                                      SourceLocation BuiltinLoc,
10114                                      SourceLocation TypeLoc,
10115                                      ParsedType ParsedArgTy,
10116                                      OffsetOfComponent *CompPtr,
10117                                      unsigned NumComponents,
10118                                      SourceLocation RParenLoc) {
10119
10120  TypeSourceInfo *ArgTInfo;
10121  QualType ArgTy = GetTypeFromParser(ParsedArgTy, &ArgTInfo);
10122  if (ArgTy.isNull())
10123    return ExprError();
10124
10125  if (!ArgTInfo)
10126    ArgTInfo = Context.getTrivialTypeSourceInfo(ArgTy, TypeLoc);
10127
10128  return BuildBuiltinOffsetOf(BuiltinLoc, ArgTInfo, CompPtr, NumComponents,
10129                              RParenLoc);
10130}
10131
10132
10133ExprResult Sema::ActOnChooseExpr(SourceLocation BuiltinLoc,
10134                                 Expr *CondExpr,
10135                                 Expr *LHSExpr, Expr *RHSExpr,
10136                                 SourceLocation RPLoc) {
10137  assert((CondExpr && LHSExpr && RHSExpr) && "Missing type argument(s)");
10138
10139  ExprValueKind VK = VK_RValue;
10140  ExprObjectKind OK = OK_Ordinary;
10141  QualType resType;
10142  bool ValueDependent = false;
10143  bool CondIsTrue = false;
10144  if (CondExpr->isTypeDependent() || CondExpr->isValueDependent()) {
10145    resType = Context.DependentTy;
10146    ValueDependent = true;
10147  } else {
10148    // The conditional expression is required to be a constant expression.
10149    llvm::APSInt condEval(32);
10150    ExprResult CondICE
10151      = VerifyIntegerConstantExpression(CondExpr, &condEval,
10152          diag::err_typecheck_choose_expr_requires_constant, false);
10153    if (CondICE.isInvalid())
10154      return ExprError();
10155    CondExpr = CondICE.take();
10156    CondIsTrue = condEval.getZExtValue();
10157
10158    // If the condition is > zero, then the AST type is the same as the LSHExpr.
10159    Expr *ActiveExpr = CondIsTrue ? LHSExpr : RHSExpr;
10160
10161    resType = ActiveExpr->getType();
10162    ValueDependent = ActiveExpr->isValueDependent();
10163    VK = ActiveExpr->getValueKind();
10164    OK = ActiveExpr->getObjectKind();
10165  }
10166
10167  return Owned(new (Context) ChooseExpr(BuiltinLoc, CondExpr, LHSExpr, RHSExpr,
10168                                        resType, VK, OK, RPLoc, CondIsTrue,
10169                                        resType->isDependentType(),
10170                                        ValueDependent));
10171}
10172
10173//===----------------------------------------------------------------------===//
10174// Clang Extensions.
10175//===----------------------------------------------------------------------===//
10176
10177/// ActOnBlockStart - This callback is invoked when a block literal is started.
10178void Sema::ActOnBlockStart(SourceLocation CaretLoc, Scope *CurScope) {
10179  BlockDecl *Block = BlockDecl::Create(Context, CurContext, CaretLoc);
10180
10181  if (LangOpts.CPlusPlus) {
10182    Decl *ManglingContextDecl;
10183    if (MangleNumberingContext *MCtx =
10184            getCurrentMangleNumberContext(Block->getDeclContext(),
10185                                          ManglingContextDecl)) {
10186      unsigned ManglingNumber = MCtx->getManglingNumber(Block);
10187      Block->setBlockMangling(ManglingNumber, ManglingContextDecl);
10188    }
10189  }
10190
10191  PushBlockScope(CurScope, Block);
10192  CurContext->addDecl(Block);
10193  if (CurScope)
10194    PushDeclContext(CurScope, Block);
10195  else
10196    CurContext = Block;
10197
10198  getCurBlock()->HasImplicitReturnType = true;
10199
10200  // Enter a new evaluation context to insulate the block from any
10201  // cleanups from the enclosing full-expression.
10202  PushExpressionEvaluationContext(PotentiallyEvaluated);
10203}
10204
10205void Sema::ActOnBlockArguments(SourceLocation CaretLoc, Declarator &ParamInfo,
10206                               Scope *CurScope) {
10207  assert(ParamInfo.getIdentifier()==0 && "block-id should have no identifier!");
10208  assert(ParamInfo.getContext() == Declarator::BlockLiteralContext);
10209  BlockScopeInfo *CurBlock = getCurBlock();
10210
10211  TypeSourceInfo *Sig = GetTypeForDeclarator(ParamInfo, CurScope);
10212  QualType T = Sig->getType();
10213
10214  // FIXME: We should allow unexpanded parameter packs here, but that would,
10215  // in turn, make the block expression contain unexpanded parameter packs.
10216  if (DiagnoseUnexpandedParameterPack(CaretLoc, Sig, UPPC_Block)) {
10217    // Drop the parameters.
10218    FunctionProtoType::ExtProtoInfo EPI;
10219    EPI.HasTrailingReturn = false;
10220    EPI.TypeQuals |= DeclSpec::TQ_const;
10221    T = Context.getFunctionType(Context.DependentTy, None, EPI);
10222    Sig = Context.getTrivialTypeSourceInfo(T);
10223  }
10224
10225  // GetTypeForDeclarator always produces a function type for a block
10226  // literal signature.  Furthermore, it is always a FunctionProtoType
10227  // unless the function was written with a typedef.
10228  assert(T->isFunctionType() &&
10229         "GetTypeForDeclarator made a non-function block signature");
10230
10231  // Look for an explicit signature in that function type.
10232  FunctionProtoTypeLoc ExplicitSignature;
10233
10234  TypeLoc tmp = Sig->getTypeLoc().IgnoreParens();
10235  if ((ExplicitSignature = tmp.getAs<FunctionProtoTypeLoc>())) {
10236
10237    // Check whether that explicit signature was synthesized by
10238    // GetTypeForDeclarator.  If so, don't save that as part of the
10239    // written signature.
10240    if (ExplicitSignature.getLocalRangeBegin() ==
10241        ExplicitSignature.getLocalRangeEnd()) {
10242      // This would be much cheaper if we stored TypeLocs instead of
10243      // TypeSourceInfos.
10244      TypeLoc Result = ExplicitSignature.getResultLoc();
10245      unsigned Size = Result.getFullDataSize();
10246      Sig = Context.CreateTypeSourceInfo(Result.getType(), Size);
10247      Sig->getTypeLoc().initializeFullCopy(Result, Size);
10248
10249      ExplicitSignature = FunctionProtoTypeLoc();
10250    }
10251  }
10252
10253  CurBlock->TheDecl->setSignatureAsWritten(Sig);
10254  CurBlock->FunctionType = T;
10255
10256  const FunctionType *Fn = T->getAs<FunctionType>();
10257  QualType RetTy = Fn->getResultType();
10258  bool isVariadic =
10259    (isa<FunctionProtoType>(Fn) && cast<FunctionProtoType>(Fn)->isVariadic());
10260
10261  CurBlock->TheDecl->setIsVariadic(isVariadic);
10262
10263  // Context.DependentTy is used as a placeholder for a missing block
10264  // return type.  TODO:  what should we do with declarators like:
10265  //   ^ * { ... }
10266  // If the answer is "apply template argument deduction"....
10267  if (RetTy != Context.DependentTy) {
10268    CurBlock->ReturnType = RetTy;
10269    CurBlock->TheDecl->setBlockMissingReturnType(false);
10270    CurBlock->HasImplicitReturnType = false;
10271  }
10272
10273  // Push block parameters from the declarator if we had them.
10274  SmallVector<ParmVarDecl*, 8> Params;
10275  if (ExplicitSignature) {
10276    for (unsigned I = 0, E = ExplicitSignature.getNumArgs(); I != E; ++I) {
10277      ParmVarDecl *Param = ExplicitSignature.getArg(I);
10278      if (Param->getIdentifier() == 0 &&
10279          !Param->isImplicit() &&
10280          !Param->isInvalidDecl() &&
10281          !getLangOpts().CPlusPlus)
10282        Diag(Param->getLocation(), diag::err_parameter_name_omitted);
10283      Params.push_back(Param);
10284    }
10285
10286  // Fake up parameter variables if we have a typedef, like
10287  //   ^ fntype { ... }
10288  } else if (const FunctionProtoType *Fn = T->getAs<FunctionProtoType>()) {
10289    for (FunctionProtoType::arg_type_iterator
10290           I = Fn->arg_type_begin(), E = Fn->arg_type_end(); I != E; ++I) {
10291      ParmVarDecl *Param =
10292        BuildParmVarDeclForTypedef(CurBlock->TheDecl,
10293                                   ParamInfo.getLocStart(),
10294                                   *I);
10295      Params.push_back(Param);
10296    }
10297  }
10298
10299  // Set the parameters on the block decl.
10300  if (!Params.empty()) {
10301    CurBlock->TheDecl->setParams(Params);
10302    CheckParmsForFunctionDef(CurBlock->TheDecl->param_begin(),
10303                             CurBlock->TheDecl->param_end(),
10304                             /*CheckParameterNames=*/false);
10305  }
10306
10307  // Finally we can process decl attributes.
10308  ProcessDeclAttributes(CurScope, CurBlock->TheDecl, ParamInfo);
10309
10310  // Put the parameter variables in scope.
10311  for (BlockDecl::param_iterator AI = CurBlock->TheDecl->param_begin(),
10312         E = CurBlock->TheDecl->param_end(); AI != E; ++AI) {
10313    (*AI)->setOwningFunction(CurBlock->TheDecl);
10314
10315    // If this has an identifier, add it to the scope stack.
10316    if ((*AI)->getIdentifier()) {
10317      CheckShadow(CurBlock->TheScope, *AI);
10318
10319      PushOnScopeChains(*AI, CurBlock->TheScope);
10320    }
10321  }
10322}
10323
10324/// ActOnBlockError - If there is an error parsing a block, this callback
10325/// is invoked to pop the information about the block from the action impl.
10326void Sema::ActOnBlockError(SourceLocation CaretLoc, Scope *CurScope) {
10327  // Leave the expression-evaluation context.
10328  DiscardCleanupsInEvaluationContext();
10329  PopExpressionEvaluationContext();
10330
10331  // Pop off CurBlock, handle nested blocks.
10332  PopDeclContext();
10333  PopFunctionScopeInfo();
10334}
10335
10336/// ActOnBlockStmtExpr - This is called when the body of a block statement
10337/// literal was successfully completed.  ^(int x){...}
10338ExprResult Sema::ActOnBlockStmtExpr(SourceLocation CaretLoc,
10339                                    Stmt *Body, Scope *CurScope) {
10340  // If blocks are disabled, emit an error.
10341  if (!LangOpts.Blocks)
10342    Diag(CaretLoc, diag::err_blocks_disable);
10343
10344  // Leave the expression-evaluation context.
10345  if (hasAnyUnrecoverableErrorsInThisFunction())
10346    DiscardCleanupsInEvaluationContext();
10347  assert(!ExprNeedsCleanups && "cleanups within block not correctly bound!");
10348  PopExpressionEvaluationContext();
10349
10350  BlockScopeInfo *BSI = cast<BlockScopeInfo>(FunctionScopes.back());
10351
10352  if (BSI->HasImplicitReturnType)
10353    deduceClosureReturnType(*BSI);
10354
10355  PopDeclContext();
10356
10357  QualType RetTy = Context.VoidTy;
10358  if (!BSI->ReturnType.isNull())
10359    RetTy = BSI->ReturnType;
10360
10361  bool NoReturn = BSI->TheDecl->getAttr<NoReturnAttr>();
10362  QualType BlockTy;
10363
10364  // Set the captured variables on the block.
10365  // FIXME: Share capture structure between BlockDecl and CapturingScopeInfo!
10366  SmallVector<BlockDecl::Capture, 4> Captures;
10367  for (unsigned i = 0, e = BSI->Captures.size(); i != e; i++) {
10368    CapturingScopeInfo::Capture &Cap = BSI->Captures[i];
10369    if (Cap.isThisCapture())
10370      continue;
10371    BlockDecl::Capture NewCap(Cap.getVariable(), Cap.isBlockCapture(),
10372                              Cap.isNested(), Cap.getInitExpr());
10373    Captures.push_back(NewCap);
10374  }
10375  BSI->TheDecl->setCaptures(Context, Captures.begin(), Captures.end(),
10376                            BSI->CXXThisCaptureIndex != 0);
10377
10378  // If the user wrote a function type in some form, try to use that.
10379  if (!BSI->FunctionType.isNull()) {
10380    const FunctionType *FTy = BSI->FunctionType->getAs<FunctionType>();
10381
10382    FunctionType::ExtInfo Ext = FTy->getExtInfo();
10383    if (NoReturn && !Ext.getNoReturn()) Ext = Ext.withNoReturn(true);
10384
10385    // Turn protoless block types into nullary block types.
10386    if (isa<FunctionNoProtoType>(FTy)) {
10387      FunctionProtoType::ExtProtoInfo EPI;
10388      EPI.ExtInfo = Ext;
10389      BlockTy = Context.getFunctionType(RetTy, None, EPI);
10390
10391    // Otherwise, if we don't need to change anything about the function type,
10392    // preserve its sugar structure.
10393    } else if (FTy->getResultType() == RetTy &&
10394               (!NoReturn || FTy->getNoReturnAttr())) {
10395      BlockTy = BSI->FunctionType;
10396
10397    // Otherwise, make the minimal modifications to the function type.
10398    } else {
10399      const FunctionProtoType *FPT = cast<FunctionProtoType>(FTy);
10400      FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
10401      EPI.TypeQuals = 0; // FIXME: silently?
10402      EPI.ExtInfo = Ext;
10403      BlockTy = Context.getFunctionType(RetTy, FPT->getArgTypes(), EPI);
10404    }
10405
10406  // If we don't have a function type, just build one from nothing.
10407  } else {
10408    FunctionProtoType::ExtProtoInfo EPI;
10409    EPI.ExtInfo = FunctionType::ExtInfo().withNoReturn(NoReturn);
10410    BlockTy = Context.getFunctionType(RetTy, None, EPI);
10411  }
10412
10413  DiagnoseUnusedParameters(BSI->TheDecl->param_begin(),
10414                           BSI->TheDecl->param_end());
10415  BlockTy = Context.getBlockPointerType(BlockTy);
10416
10417  // If needed, diagnose invalid gotos and switches in the block.
10418  if (getCurFunction()->NeedsScopeChecking() &&
10419      !hasAnyUnrecoverableErrorsInThisFunction() &&
10420      !PP.isCodeCompletionEnabled())
10421    DiagnoseInvalidJumps(cast<CompoundStmt>(Body));
10422
10423  BSI->TheDecl->setBody(cast<CompoundStmt>(Body));
10424
10425  // Try to apply the named return value optimization. We have to check again
10426  // if we can do this, though, because blocks keep return statements around
10427  // to deduce an implicit return type.
10428  if (getLangOpts().CPlusPlus && RetTy->isRecordType() &&
10429      !BSI->TheDecl->isDependentContext())
10430    computeNRVO(Body, getCurBlock());
10431
10432  BlockExpr *Result = new (Context) BlockExpr(BSI->TheDecl, BlockTy);
10433  AnalysisBasedWarnings::Policy WP = AnalysisWarnings.getDefaultPolicy();
10434  PopFunctionScopeInfo(&WP, Result->getBlockDecl(), Result);
10435
10436  // If the block isn't obviously global, i.e. it captures anything at
10437  // all, then we need to do a few things in the surrounding context:
10438  if (Result->getBlockDecl()->hasCaptures()) {
10439    // First, this expression has a new cleanup object.
10440    ExprCleanupObjects.push_back(Result->getBlockDecl());
10441    ExprNeedsCleanups = true;
10442
10443    // It also gets a branch-protected scope if any of the captured
10444    // variables needs destruction.
10445    for (BlockDecl::capture_const_iterator
10446           ci = Result->getBlockDecl()->capture_begin(),
10447           ce = Result->getBlockDecl()->capture_end(); ci != ce; ++ci) {
10448      const VarDecl *var = ci->getVariable();
10449      if (var->getType().isDestructedType() != QualType::DK_none) {
10450        getCurFunction()->setHasBranchProtectedScope();
10451        break;
10452      }
10453    }
10454  }
10455
10456  return Owned(Result);
10457}
10458
10459ExprResult Sema::ActOnVAArg(SourceLocation BuiltinLoc,
10460                                        Expr *E, ParsedType Ty,
10461                                        SourceLocation RPLoc) {
10462  TypeSourceInfo *TInfo;
10463  GetTypeFromParser(Ty, &TInfo);
10464  return BuildVAArgExpr(BuiltinLoc, E, TInfo, RPLoc);
10465}
10466
10467ExprResult Sema::BuildVAArgExpr(SourceLocation BuiltinLoc,
10468                                Expr *E, TypeSourceInfo *TInfo,
10469                                SourceLocation RPLoc) {
10470  Expr *OrigExpr = E;
10471
10472  // Get the va_list type
10473  QualType VaListType = Context.getBuiltinVaListType();
10474  if (VaListType->isArrayType()) {
10475    // Deal with implicit array decay; for example, on x86-64,
10476    // va_list is an array, but it's supposed to decay to
10477    // a pointer for va_arg.
10478    VaListType = Context.getArrayDecayedType(VaListType);
10479    // Make sure the input expression also decays appropriately.
10480    ExprResult Result = UsualUnaryConversions(E);
10481    if (Result.isInvalid())
10482      return ExprError();
10483    E = Result.take();
10484  } else if (VaListType->isRecordType() && getLangOpts().CPlusPlus) {
10485    // If va_list is a record type and we are compiling in C++ mode,
10486    // check the argument using reference binding.
10487    InitializedEntity Entity
10488      = InitializedEntity::InitializeParameter(Context,
10489          Context.getLValueReferenceType(VaListType), false);
10490    ExprResult Init = PerformCopyInitialization(Entity, SourceLocation(), E);
10491    if (Init.isInvalid())
10492      return ExprError();
10493    E = Init.takeAs<Expr>();
10494  } else {
10495    // Otherwise, the va_list argument must be an l-value because
10496    // it is modified by va_arg.
10497    if (!E->isTypeDependent() &&
10498        CheckForModifiableLvalue(E, BuiltinLoc, *this))
10499      return ExprError();
10500  }
10501
10502  if (!E->isTypeDependent() &&
10503      !Context.hasSameType(VaListType, E->getType())) {
10504    return ExprError(Diag(E->getLocStart(),
10505                         diag::err_first_argument_to_va_arg_not_of_type_va_list)
10506      << OrigExpr->getType() << E->getSourceRange());
10507  }
10508
10509  if (!TInfo->getType()->isDependentType()) {
10510    if (RequireCompleteType(TInfo->getTypeLoc().getBeginLoc(), TInfo->getType(),
10511                            diag::err_second_parameter_to_va_arg_incomplete,
10512                            TInfo->getTypeLoc()))
10513      return ExprError();
10514
10515    if (RequireNonAbstractType(TInfo->getTypeLoc().getBeginLoc(),
10516                               TInfo->getType(),
10517                               diag::err_second_parameter_to_va_arg_abstract,
10518                               TInfo->getTypeLoc()))
10519      return ExprError();
10520
10521    if (!TInfo->getType().isPODType(Context)) {
10522      Diag(TInfo->getTypeLoc().getBeginLoc(),
10523           TInfo->getType()->isObjCLifetimeType()
10524             ? diag::warn_second_parameter_to_va_arg_ownership_qualified
10525             : diag::warn_second_parameter_to_va_arg_not_pod)
10526        << TInfo->getType()
10527        << TInfo->getTypeLoc().getSourceRange();
10528    }
10529
10530    // Check for va_arg where arguments of the given type will be promoted
10531    // (i.e. this va_arg is guaranteed to have undefined behavior).
10532    QualType PromoteType;
10533    if (TInfo->getType()->isPromotableIntegerType()) {
10534      PromoteType = Context.getPromotedIntegerType(TInfo->getType());
10535      if (Context.typesAreCompatible(PromoteType, TInfo->getType()))
10536        PromoteType = QualType();
10537    }
10538    if (TInfo->getType()->isSpecificBuiltinType(BuiltinType::Float))
10539      PromoteType = Context.DoubleTy;
10540    if (!PromoteType.isNull())
10541      DiagRuntimeBehavior(TInfo->getTypeLoc().getBeginLoc(), E,
10542                  PDiag(diag::warn_second_parameter_to_va_arg_never_compatible)
10543                          << TInfo->getType()
10544                          << PromoteType
10545                          << TInfo->getTypeLoc().getSourceRange());
10546  }
10547
10548  QualType T = TInfo->getType().getNonLValueExprType(Context);
10549  return Owned(new (Context) VAArgExpr(BuiltinLoc, E, TInfo, RPLoc, T));
10550}
10551
10552ExprResult Sema::ActOnGNUNullExpr(SourceLocation TokenLoc) {
10553  // The type of __null will be int or long, depending on the size of
10554  // pointers on the target.
10555  QualType Ty;
10556  unsigned pw = Context.getTargetInfo().getPointerWidth(0);
10557  if (pw == Context.getTargetInfo().getIntWidth())
10558    Ty = Context.IntTy;
10559  else if (pw == Context.getTargetInfo().getLongWidth())
10560    Ty = Context.LongTy;
10561  else if (pw == Context.getTargetInfo().getLongLongWidth())
10562    Ty = Context.LongLongTy;
10563  else {
10564    llvm_unreachable("I don't know size of pointer!");
10565  }
10566
10567  return Owned(new (Context) GNUNullExpr(Ty, TokenLoc));
10568}
10569
10570static void MakeObjCStringLiteralFixItHint(Sema& SemaRef, QualType DstType,
10571                                           Expr *SrcExpr, FixItHint &Hint,
10572                                           bool &IsNSString) {
10573  if (!SemaRef.getLangOpts().ObjC1)
10574    return;
10575
10576  const ObjCObjectPointerType *PT = DstType->getAs<ObjCObjectPointerType>();
10577  if (!PT)
10578    return;
10579
10580  // Check if the destination is of type 'id'.
10581  if (!PT->isObjCIdType()) {
10582    // Check if the destination is the 'NSString' interface.
10583    const ObjCInterfaceDecl *ID = PT->getInterfaceDecl();
10584    if (!ID || !ID->getIdentifier()->isStr("NSString"))
10585      return;
10586    IsNSString = true;
10587  }
10588
10589  // Ignore any parens, implicit casts (should only be
10590  // array-to-pointer decays), and not-so-opaque values.  The last is
10591  // important for making this trigger for property assignments.
10592  SrcExpr = SrcExpr->IgnoreParenImpCasts();
10593  if (OpaqueValueExpr *OV = dyn_cast<OpaqueValueExpr>(SrcExpr))
10594    if (OV->getSourceExpr())
10595      SrcExpr = OV->getSourceExpr()->IgnoreParenImpCasts();
10596
10597  StringLiteral *SL = dyn_cast<StringLiteral>(SrcExpr);
10598  if (!SL || !SL->isAscii())
10599    return;
10600
10601  Hint = FixItHint::CreateInsertion(SL->getLocStart(), "@");
10602}
10603
10604bool Sema::DiagnoseAssignmentResult(AssignConvertType ConvTy,
10605                                    SourceLocation Loc,
10606                                    QualType DstType, QualType SrcType,
10607                                    Expr *SrcExpr, AssignmentAction Action,
10608                                    bool *Complained) {
10609  if (Complained)
10610    *Complained = false;
10611
10612  // Decode the result (notice that AST's are still created for extensions).
10613  bool CheckInferredResultType = false;
10614  bool isInvalid = false;
10615  unsigned DiagKind = 0;
10616  FixItHint Hint;
10617  ConversionFixItGenerator ConvHints;
10618  bool MayHaveConvFixit = false;
10619  bool MayHaveFunctionDiff = false;
10620  bool IsNSString = false;
10621
10622  switch (ConvTy) {
10623  case Compatible:
10624      DiagnoseAssignmentEnum(DstType, SrcType, SrcExpr);
10625      return false;
10626
10627  case PointerToInt:
10628    DiagKind = diag::ext_typecheck_convert_pointer_int;
10629    ConvHints.tryToFixConversion(SrcExpr, SrcType, DstType, *this);
10630    MayHaveConvFixit = true;
10631    break;
10632  case IntToPointer:
10633    DiagKind = diag::ext_typecheck_convert_int_pointer;
10634    ConvHints.tryToFixConversion(SrcExpr, SrcType, DstType, *this);
10635    MayHaveConvFixit = true;
10636    break;
10637  case IncompatiblePointer:
10638    MakeObjCStringLiteralFixItHint(*this, DstType, SrcExpr, Hint, IsNSString);
10639      DiagKind =
10640        (Action == AA_Passing_CFAudited ?
10641          diag::err_arc_typecheck_convert_incompatible_pointer :
10642          diag::ext_typecheck_convert_incompatible_pointer);
10643    CheckInferredResultType = DstType->isObjCObjectPointerType() &&
10644      SrcType->isObjCObjectPointerType();
10645    if (Hint.isNull() && !CheckInferredResultType) {
10646      ConvHints.tryToFixConversion(SrcExpr, SrcType, DstType, *this);
10647    }
10648    else if (CheckInferredResultType) {
10649      SrcType = SrcType.getUnqualifiedType();
10650      DstType = DstType.getUnqualifiedType();
10651    }
10652    else if (IsNSString && !Hint.isNull())
10653      DiagKind = diag::warn_missing_atsign_prefix;
10654    MayHaveConvFixit = true;
10655    break;
10656  case IncompatiblePointerSign:
10657    DiagKind = diag::ext_typecheck_convert_incompatible_pointer_sign;
10658    break;
10659  case FunctionVoidPointer:
10660    DiagKind = diag::ext_typecheck_convert_pointer_void_func;
10661    break;
10662  case IncompatiblePointerDiscardsQualifiers: {
10663    // Perform array-to-pointer decay if necessary.
10664    if (SrcType->isArrayType()) SrcType = Context.getArrayDecayedType(SrcType);
10665
10666    Qualifiers lhq = SrcType->getPointeeType().getQualifiers();
10667    Qualifiers rhq = DstType->getPointeeType().getQualifiers();
10668    if (lhq.getAddressSpace() != rhq.getAddressSpace()) {
10669      DiagKind = diag::err_typecheck_incompatible_address_space;
10670      break;
10671
10672
10673    } else if (lhq.getObjCLifetime() != rhq.getObjCLifetime()) {
10674      DiagKind = diag::err_typecheck_incompatible_ownership;
10675      break;
10676    }
10677
10678    llvm_unreachable("unknown error case for discarding qualifiers!");
10679    // fallthrough
10680  }
10681  case CompatiblePointerDiscardsQualifiers:
10682    // If the qualifiers lost were because we were applying the
10683    // (deprecated) C++ conversion from a string literal to a char*
10684    // (or wchar_t*), then there was no error (C++ 4.2p2).  FIXME:
10685    // Ideally, this check would be performed in
10686    // checkPointerTypesForAssignment. However, that would require a
10687    // bit of refactoring (so that the second argument is an
10688    // expression, rather than a type), which should be done as part
10689    // of a larger effort to fix checkPointerTypesForAssignment for
10690    // C++ semantics.
10691    if (getLangOpts().CPlusPlus &&
10692        IsStringLiteralToNonConstPointerConversion(SrcExpr, DstType))
10693      return false;
10694    DiagKind = diag::ext_typecheck_convert_discards_qualifiers;
10695    break;
10696  case IncompatibleNestedPointerQualifiers:
10697    DiagKind = diag::ext_nested_pointer_qualifier_mismatch;
10698    break;
10699  case IntToBlockPointer:
10700    DiagKind = diag::err_int_to_block_pointer;
10701    break;
10702  case IncompatibleBlockPointer:
10703    DiagKind = diag::err_typecheck_convert_incompatible_block_pointer;
10704    break;
10705  case IncompatibleObjCQualifiedId:
10706    // FIXME: Diagnose the problem in ObjCQualifiedIdTypesAreCompatible, since
10707    // it can give a more specific diagnostic.
10708    DiagKind = diag::warn_incompatible_qualified_id;
10709    break;
10710  case IncompatibleVectors:
10711    DiagKind = diag::warn_incompatible_vectors;
10712    break;
10713  case IncompatibleObjCWeakRef:
10714    DiagKind = diag::err_arc_weak_unavailable_assign;
10715    break;
10716  case Incompatible:
10717    DiagKind = diag::err_typecheck_convert_incompatible;
10718    ConvHints.tryToFixConversion(SrcExpr, SrcType, DstType, *this);
10719    MayHaveConvFixit = true;
10720    isInvalid = true;
10721    MayHaveFunctionDiff = true;
10722    break;
10723  }
10724
10725  QualType FirstType, SecondType;
10726  switch (Action) {
10727  case AA_Assigning:
10728  case AA_Initializing:
10729    // The destination type comes first.
10730    FirstType = DstType;
10731    SecondType = SrcType;
10732    break;
10733
10734  case AA_Returning:
10735  case AA_Passing:
10736  case AA_Passing_CFAudited:
10737  case AA_Converting:
10738  case AA_Sending:
10739  case AA_Casting:
10740    // The source type comes first.
10741    FirstType = SrcType;
10742    SecondType = DstType;
10743    break;
10744  }
10745
10746  PartialDiagnostic FDiag = PDiag(DiagKind);
10747  if (Action == AA_Passing_CFAudited)
10748    FDiag << FirstType << SecondType << SrcExpr->getSourceRange();
10749  else
10750    FDiag << FirstType << SecondType << Action << SrcExpr->getSourceRange();
10751
10752  // If we can fix the conversion, suggest the FixIts.
10753  assert(ConvHints.isNull() || Hint.isNull());
10754  if (!ConvHints.isNull()) {
10755    for (std::vector<FixItHint>::iterator HI = ConvHints.Hints.begin(),
10756         HE = ConvHints.Hints.end(); HI != HE; ++HI)
10757      FDiag << *HI;
10758  } else {
10759    FDiag << Hint;
10760  }
10761  if (MayHaveConvFixit) { FDiag << (unsigned) (ConvHints.Kind); }
10762
10763  if (MayHaveFunctionDiff)
10764    HandleFunctionTypeMismatch(FDiag, SecondType, FirstType);
10765
10766  Diag(Loc, FDiag);
10767
10768  if (SecondType == Context.OverloadTy)
10769    NoteAllOverloadCandidates(OverloadExpr::find(SrcExpr).Expression,
10770                              FirstType);
10771
10772  if (CheckInferredResultType)
10773    EmitRelatedResultTypeNote(SrcExpr);
10774
10775  if (Action == AA_Returning && ConvTy == IncompatiblePointer)
10776    EmitRelatedResultTypeNoteForReturn(DstType);
10777
10778  if (Complained)
10779    *Complained = true;
10780  return isInvalid;
10781}
10782
10783ExprResult Sema::VerifyIntegerConstantExpression(Expr *E,
10784                                                 llvm::APSInt *Result) {
10785  class SimpleICEDiagnoser : public VerifyICEDiagnoser {
10786  public:
10787    virtual void diagnoseNotICE(Sema &S, SourceLocation Loc, SourceRange SR) {
10788      S.Diag(Loc, diag::err_expr_not_ice) << S.LangOpts.CPlusPlus << SR;
10789    }
10790  } Diagnoser;
10791
10792  return VerifyIntegerConstantExpression(E, Result, Diagnoser);
10793}
10794
10795ExprResult Sema::VerifyIntegerConstantExpression(Expr *E,
10796                                                 llvm::APSInt *Result,
10797                                                 unsigned DiagID,
10798                                                 bool AllowFold) {
10799  class IDDiagnoser : public VerifyICEDiagnoser {
10800    unsigned DiagID;
10801
10802  public:
10803    IDDiagnoser(unsigned DiagID)
10804      : VerifyICEDiagnoser(DiagID == 0), DiagID(DiagID) { }
10805
10806    virtual void diagnoseNotICE(Sema &S, SourceLocation Loc, SourceRange SR) {
10807      S.Diag(Loc, DiagID) << SR;
10808    }
10809  } Diagnoser(DiagID);
10810
10811  return VerifyIntegerConstantExpression(E, Result, Diagnoser, AllowFold);
10812}
10813
10814void Sema::VerifyICEDiagnoser::diagnoseFold(Sema &S, SourceLocation Loc,
10815                                            SourceRange SR) {
10816  S.Diag(Loc, diag::ext_expr_not_ice) << SR << S.LangOpts.CPlusPlus;
10817}
10818
10819ExprResult
10820Sema::VerifyIntegerConstantExpression(Expr *E, llvm::APSInt *Result,
10821                                      VerifyICEDiagnoser &Diagnoser,
10822                                      bool AllowFold) {
10823  SourceLocation DiagLoc = E->getLocStart();
10824
10825  if (getLangOpts().CPlusPlus11) {
10826    // C++11 [expr.const]p5:
10827    //   If an expression of literal class type is used in a context where an
10828    //   integral constant expression is required, then that class type shall
10829    //   have a single non-explicit conversion function to an integral or
10830    //   unscoped enumeration type
10831    ExprResult Converted;
10832    class CXX11ConvertDiagnoser : public ICEConvertDiagnoser {
10833    public:
10834      CXX11ConvertDiagnoser(bool Silent)
10835          : ICEConvertDiagnoser(/*AllowScopedEnumerations*/false,
10836                                Silent, true) {}
10837
10838      virtual SemaDiagnosticBuilder diagnoseNotInt(Sema &S, SourceLocation Loc,
10839                                                   QualType T) {
10840        return S.Diag(Loc, diag::err_ice_not_integral) << T;
10841      }
10842
10843      virtual SemaDiagnosticBuilder diagnoseIncomplete(
10844          Sema &S, SourceLocation Loc, QualType T) {
10845        return S.Diag(Loc, diag::err_ice_incomplete_type) << T;
10846      }
10847
10848      virtual SemaDiagnosticBuilder diagnoseExplicitConv(
10849          Sema &S, SourceLocation Loc, QualType T, QualType ConvTy) {
10850        return S.Diag(Loc, diag::err_ice_explicit_conversion) << T << ConvTy;
10851      }
10852
10853      virtual SemaDiagnosticBuilder noteExplicitConv(
10854          Sema &S, CXXConversionDecl *Conv, QualType ConvTy) {
10855        return S.Diag(Conv->getLocation(), diag::note_ice_conversion_here)
10856                 << ConvTy->isEnumeralType() << ConvTy;
10857      }
10858
10859      virtual SemaDiagnosticBuilder diagnoseAmbiguous(
10860          Sema &S, SourceLocation Loc, QualType T) {
10861        return S.Diag(Loc, diag::err_ice_ambiguous_conversion) << T;
10862      }
10863
10864      virtual SemaDiagnosticBuilder noteAmbiguous(
10865          Sema &S, CXXConversionDecl *Conv, QualType ConvTy) {
10866        return S.Diag(Conv->getLocation(), diag::note_ice_conversion_here)
10867                 << ConvTy->isEnumeralType() << ConvTy;
10868      }
10869
10870      virtual SemaDiagnosticBuilder diagnoseConversion(
10871          Sema &S, SourceLocation Loc, QualType T, QualType ConvTy) {
10872        llvm_unreachable("conversion functions are permitted");
10873      }
10874    } ConvertDiagnoser(Diagnoser.Suppress);
10875
10876    Converted = PerformContextualImplicitConversion(DiagLoc, E,
10877                                                    ConvertDiagnoser);
10878    if (Converted.isInvalid())
10879      return Converted;
10880    E = Converted.take();
10881    if (!E->getType()->isIntegralOrUnscopedEnumerationType())
10882      return ExprError();
10883  } else if (!E->getType()->isIntegralOrUnscopedEnumerationType()) {
10884    // An ICE must be of integral or unscoped enumeration type.
10885    if (!Diagnoser.Suppress)
10886      Diagnoser.diagnoseNotICE(*this, DiagLoc, E->getSourceRange());
10887    return ExprError();
10888  }
10889
10890  // Circumvent ICE checking in C++11 to avoid evaluating the expression twice
10891  // in the non-ICE case.
10892  if (!getLangOpts().CPlusPlus11 && E->isIntegerConstantExpr(Context)) {
10893    if (Result)
10894      *Result = E->EvaluateKnownConstInt(Context);
10895    return Owned(E);
10896  }
10897
10898  Expr::EvalResult EvalResult;
10899  SmallVector<PartialDiagnosticAt, 8> Notes;
10900  EvalResult.Diag = &Notes;
10901
10902  // Try to evaluate the expression, and produce diagnostics explaining why it's
10903  // not a constant expression as a side-effect.
10904  bool Folded = E->EvaluateAsRValue(EvalResult, Context) &&
10905                EvalResult.Val.isInt() && !EvalResult.HasSideEffects;
10906
10907  // In C++11, we can rely on diagnostics being produced for any expression
10908  // which is not a constant expression. If no diagnostics were produced, then
10909  // this is a constant expression.
10910  if (Folded && getLangOpts().CPlusPlus11 && Notes.empty()) {
10911    if (Result)
10912      *Result = EvalResult.Val.getInt();
10913    return Owned(E);
10914  }
10915
10916  // If our only note is the usual "invalid subexpression" note, just point
10917  // the caret at its location rather than producing an essentially
10918  // redundant note.
10919  if (Notes.size() == 1 && Notes[0].second.getDiagID() ==
10920        diag::note_invalid_subexpr_in_const_expr) {
10921    DiagLoc = Notes[0].first;
10922    Notes.clear();
10923  }
10924
10925  if (!Folded || !AllowFold) {
10926    if (!Diagnoser.Suppress) {
10927      Diagnoser.diagnoseNotICE(*this, DiagLoc, E->getSourceRange());
10928      for (unsigned I = 0, N = Notes.size(); I != N; ++I)
10929        Diag(Notes[I].first, Notes[I].second);
10930    }
10931
10932    return ExprError();
10933  }
10934
10935  Diagnoser.diagnoseFold(*this, DiagLoc, E->getSourceRange());
10936  for (unsigned I = 0, N = Notes.size(); I != N; ++I)
10937    Diag(Notes[I].first, Notes[I].second);
10938
10939  if (Result)
10940    *Result = EvalResult.Val.getInt();
10941  return Owned(E);
10942}
10943
10944namespace {
10945  // Handle the case where we conclude a expression which we speculatively
10946  // considered to be unevaluated is actually evaluated.
10947  class TransformToPE : public TreeTransform<TransformToPE> {
10948    typedef TreeTransform<TransformToPE> BaseTransform;
10949
10950  public:
10951    TransformToPE(Sema &SemaRef) : BaseTransform(SemaRef) { }
10952
10953    // Make sure we redo semantic analysis
10954    bool AlwaysRebuild() { return true; }
10955
10956    // Make sure we handle LabelStmts correctly.
10957    // FIXME: This does the right thing, but maybe we need a more general
10958    // fix to TreeTransform?
10959    StmtResult TransformLabelStmt(LabelStmt *S) {
10960      S->getDecl()->setStmt(0);
10961      return BaseTransform::TransformLabelStmt(S);
10962    }
10963
10964    // We need to special-case DeclRefExprs referring to FieldDecls which
10965    // are not part of a member pointer formation; normal TreeTransforming
10966    // doesn't catch this case because of the way we represent them in the AST.
10967    // FIXME: This is a bit ugly; is it really the best way to handle this
10968    // case?
10969    //
10970    // Error on DeclRefExprs referring to FieldDecls.
10971    ExprResult TransformDeclRefExpr(DeclRefExpr *E) {
10972      if (isa<FieldDecl>(E->getDecl()) &&
10973          !SemaRef.isUnevaluatedContext())
10974        return SemaRef.Diag(E->getLocation(),
10975                            diag::err_invalid_non_static_member_use)
10976            << E->getDecl() << E->getSourceRange();
10977
10978      return BaseTransform::TransformDeclRefExpr(E);
10979    }
10980
10981    // Exception: filter out member pointer formation
10982    ExprResult TransformUnaryOperator(UnaryOperator *E) {
10983      if (E->getOpcode() == UO_AddrOf && E->getType()->isMemberPointerType())
10984        return E;
10985
10986      return BaseTransform::TransformUnaryOperator(E);
10987    }
10988
10989    ExprResult TransformLambdaExpr(LambdaExpr *E) {
10990      // Lambdas never need to be transformed.
10991      return E;
10992    }
10993  };
10994}
10995
10996ExprResult Sema::TransformToPotentiallyEvaluated(Expr *E) {
10997  assert(isUnevaluatedContext() &&
10998         "Should only transform unevaluated expressions");
10999  ExprEvalContexts.back().Context =
11000      ExprEvalContexts[ExprEvalContexts.size()-2].Context;
11001  if (isUnevaluatedContext())
11002    return E;
11003  return TransformToPE(*this).TransformExpr(E);
11004}
11005
11006void
11007Sema::PushExpressionEvaluationContext(ExpressionEvaluationContext NewContext,
11008                                      Decl *LambdaContextDecl,
11009                                      bool IsDecltype) {
11010  ExprEvalContexts.push_back(
11011             ExpressionEvaluationContextRecord(NewContext,
11012                                               ExprCleanupObjects.size(),
11013                                               ExprNeedsCleanups,
11014                                               LambdaContextDecl,
11015                                               IsDecltype));
11016  ExprNeedsCleanups = false;
11017  if (!MaybeODRUseExprs.empty())
11018    std::swap(MaybeODRUseExprs, ExprEvalContexts.back().SavedMaybeODRUseExprs);
11019}
11020
11021void
11022Sema::PushExpressionEvaluationContext(ExpressionEvaluationContext NewContext,
11023                                      ReuseLambdaContextDecl_t,
11024                                      bool IsDecltype) {
11025  Decl *ClosureContextDecl = ExprEvalContexts.back().ManglingContextDecl;
11026  PushExpressionEvaluationContext(NewContext, ClosureContextDecl, IsDecltype);
11027}
11028
11029void Sema::PopExpressionEvaluationContext() {
11030  ExpressionEvaluationContextRecord& Rec = ExprEvalContexts.back();
11031
11032  if (!Rec.Lambdas.empty()) {
11033    if (Rec.isUnevaluated() || Rec.Context == ConstantEvaluated) {
11034      unsigned D;
11035      if (Rec.isUnevaluated()) {
11036        // C++11 [expr.prim.lambda]p2:
11037        //   A lambda-expression shall not appear in an unevaluated operand
11038        //   (Clause 5).
11039        D = diag::err_lambda_unevaluated_operand;
11040      } else {
11041        // C++1y [expr.const]p2:
11042        //   A conditional-expression e is a core constant expression unless the
11043        //   evaluation of e, following the rules of the abstract machine, would
11044        //   evaluate [...] a lambda-expression.
11045        D = diag::err_lambda_in_constant_expression;
11046      }
11047      for (unsigned I = 0, N = Rec.Lambdas.size(); I != N; ++I)
11048        Diag(Rec.Lambdas[I]->getLocStart(), D);
11049    } else {
11050      // Mark the capture expressions odr-used. This was deferred
11051      // during lambda expression creation.
11052      for (unsigned I = 0, N = Rec.Lambdas.size(); I != N; ++I) {
11053        LambdaExpr *Lambda = Rec.Lambdas[I];
11054        for (LambdaExpr::capture_init_iterator
11055                  C = Lambda->capture_init_begin(),
11056               CEnd = Lambda->capture_init_end();
11057             C != CEnd; ++C) {
11058          MarkDeclarationsReferencedInExpr(*C);
11059        }
11060      }
11061    }
11062  }
11063
11064  // When are coming out of an unevaluated context, clear out any
11065  // temporaries that we may have created as part of the evaluation of
11066  // the expression in that context: they aren't relevant because they
11067  // will never be constructed.
11068  if (Rec.isUnevaluated() || Rec.Context == ConstantEvaluated) {
11069    ExprCleanupObjects.erase(ExprCleanupObjects.begin() + Rec.NumCleanupObjects,
11070                             ExprCleanupObjects.end());
11071    ExprNeedsCleanups = Rec.ParentNeedsCleanups;
11072    CleanupVarDeclMarking();
11073    std::swap(MaybeODRUseExprs, Rec.SavedMaybeODRUseExprs);
11074  // Otherwise, merge the contexts together.
11075  } else {
11076    ExprNeedsCleanups |= Rec.ParentNeedsCleanups;
11077    MaybeODRUseExprs.insert(Rec.SavedMaybeODRUseExprs.begin(),
11078                            Rec.SavedMaybeODRUseExprs.end());
11079  }
11080
11081  // Pop the current expression evaluation context off the stack.
11082  ExprEvalContexts.pop_back();
11083}
11084
11085void Sema::DiscardCleanupsInEvaluationContext() {
11086  ExprCleanupObjects.erase(
11087         ExprCleanupObjects.begin() + ExprEvalContexts.back().NumCleanupObjects,
11088         ExprCleanupObjects.end());
11089  ExprNeedsCleanups = false;
11090  MaybeODRUseExprs.clear();
11091}
11092
11093ExprResult Sema::HandleExprEvaluationContextForTypeof(Expr *E) {
11094  if (!E->getType()->isVariablyModifiedType())
11095    return E;
11096  return TransformToPotentiallyEvaluated(E);
11097}
11098
11099static bool IsPotentiallyEvaluatedContext(Sema &SemaRef) {
11100  // Do not mark anything as "used" within a dependent context; wait for
11101  // an instantiation.
11102  if (SemaRef.CurContext->isDependentContext())
11103    return false;
11104
11105  switch (SemaRef.ExprEvalContexts.back().Context) {
11106    case Sema::Unevaluated:
11107    case Sema::UnevaluatedAbstract:
11108      // We are in an expression that is not potentially evaluated; do nothing.
11109      // (Depending on how you read the standard, we actually do need to do
11110      // something here for null pointer constants, but the standard's
11111      // definition of a null pointer constant is completely crazy.)
11112      return false;
11113
11114    case Sema::ConstantEvaluated:
11115    case Sema::PotentiallyEvaluated:
11116      // We are in a potentially evaluated expression (or a constant-expression
11117      // in C++03); we need to do implicit template instantiation, implicitly
11118      // define class members, and mark most declarations as used.
11119      return true;
11120
11121    case Sema::PotentiallyEvaluatedIfUsed:
11122      // Referenced declarations will only be used if the construct in the
11123      // containing expression is used.
11124      return false;
11125  }
11126  llvm_unreachable("Invalid context");
11127}
11128
11129/// \brief Mark a function referenced, and check whether it is odr-used
11130/// (C++ [basic.def.odr]p2, C99 6.9p3)
11131void Sema::MarkFunctionReferenced(SourceLocation Loc, FunctionDecl *Func) {
11132  assert(Func && "No function?");
11133
11134  Func->setReferenced();
11135
11136  // C++11 [basic.def.odr]p3:
11137  //   A function whose name appears as a potentially-evaluated expression is
11138  //   odr-used if it is the unique lookup result or the selected member of a
11139  //   set of overloaded functions [...].
11140  //
11141  // We (incorrectly) mark overload resolution as an unevaluated context, so we
11142  // can just check that here. Skip the rest of this function if we've already
11143  // marked the function as used.
11144  if (Func->isUsed(false) || !IsPotentiallyEvaluatedContext(*this)) {
11145    // C++11 [temp.inst]p3:
11146    //   Unless a function template specialization has been explicitly
11147    //   instantiated or explicitly specialized, the function template
11148    //   specialization is implicitly instantiated when the specialization is
11149    //   referenced in a context that requires a function definition to exist.
11150    //
11151    // We consider constexpr function templates to be referenced in a context
11152    // that requires a definition to exist whenever they are referenced.
11153    //
11154    // FIXME: This instantiates constexpr functions too frequently. If this is
11155    // really an unevaluated context (and we're not just in the definition of a
11156    // function template or overload resolution or other cases which we
11157    // incorrectly consider to be unevaluated contexts), and we're not in a
11158    // subexpression which we actually need to evaluate (for instance, a
11159    // template argument, array bound or an expression in a braced-init-list),
11160    // we are not permitted to instantiate this constexpr function definition.
11161    //
11162    // FIXME: This also implicitly defines special members too frequently. They
11163    // are only supposed to be implicitly defined if they are odr-used, but they
11164    // are not odr-used from constant expressions in unevaluated contexts.
11165    // However, they cannot be referenced if they are deleted, and they are
11166    // deleted whenever the implicit definition of the special member would
11167    // fail.
11168    if (!Func->isConstexpr() || Func->getBody())
11169      return;
11170    CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Func);
11171    if (!Func->isImplicitlyInstantiable() && (!MD || MD->isUserProvided()))
11172      return;
11173  }
11174
11175  // Note that this declaration has been used.
11176  if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(Func)) {
11177    if (Constructor->isDefaulted() && !Constructor->isDeleted()) {
11178      if (Constructor->isDefaultConstructor()) {
11179        if (Constructor->isTrivial())
11180          return;
11181        if (!Constructor->isUsed(false))
11182          DefineImplicitDefaultConstructor(Loc, Constructor);
11183      } else if (Constructor->isCopyConstructor()) {
11184        if (!Constructor->isUsed(false))
11185          DefineImplicitCopyConstructor(Loc, Constructor);
11186      } else if (Constructor->isMoveConstructor()) {
11187        if (!Constructor->isUsed(false))
11188          DefineImplicitMoveConstructor(Loc, Constructor);
11189      }
11190    } else if (Constructor->getInheritedConstructor()) {
11191      if (!Constructor->isUsed(false))
11192        DefineInheritingConstructor(Loc, Constructor);
11193    }
11194
11195    MarkVTableUsed(Loc, Constructor->getParent());
11196  } else if (CXXDestructorDecl *Destructor =
11197                 dyn_cast<CXXDestructorDecl>(Func)) {
11198    if (Destructor->isDefaulted() && !Destructor->isDeleted() &&
11199        !Destructor->isUsed(false))
11200      DefineImplicitDestructor(Loc, Destructor);
11201    if (Destructor->isVirtual())
11202      MarkVTableUsed(Loc, Destructor->getParent());
11203  } else if (CXXMethodDecl *MethodDecl = dyn_cast<CXXMethodDecl>(Func)) {
11204    if (MethodDecl->isDefaulted() && !MethodDecl->isDeleted() &&
11205        MethodDecl->isOverloadedOperator() &&
11206        MethodDecl->getOverloadedOperator() == OO_Equal) {
11207      if (!MethodDecl->isUsed(false)) {
11208        if (MethodDecl->isCopyAssignmentOperator())
11209          DefineImplicitCopyAssignment(Loc, MethodDecl);
11210        else
11211          DefineImplicitMoveAssignment(Loc, MethodDecl);
11212      }
11213    } else if (isa<CXXConversionDecl>(MethodDecl) &&
11214               MethodDecl->getParent()->isLambda()) {
11215      CXXConversionDecl *Conversion = cast<CXXConversionDecl>(MethodDecl);
11216      if (Conversion->isLambdaToBlockPointerConversion())
11217        DefineImplicitLambdaToBlockPointerConversion(Loc, Conversion);
11218      else
11219        DefineImplicitLambdaToFunctionPointerConversion(Loc, Conversion);
11220    } else if (MethodDecl->isVirtual())
11221      MarkVTableUsed(Loc, MethodDecl->getParent());
11222  }
11223
11224  // Recursive functions should be marked when used from another function.
11225  // FIXME: Is this really right?
11226  if (CurContext == Func) return;
11227
11228  // Resolve the exception specification for any function which is
11229  // used: CodeGen will need it.
11230  const FunctionProtoType *FPT = Func->getType()->getAs<FunctionProtoType>();
11231  if (FPT && isUnresolvedExceptionSpec(FPT->getExceptionSpecType()))
11232    ResolveExceptionSpec(Loc, FPT);
11233
11234  // Implicit instantiation of function templates and member functions of
11235  // class templates.
11236  if (Func->isImplicitlyInstantiable()) {
11237    bool AlreadyInstantiated = false;
11238    SourceLocation PointOfInstantiation = Loc;
11239    if (FunctionTemplateSpecializationInfo *SpecInfo
11240                              = Func->getTemplateSpecializationInfo()) {
11241      if (SpecInfo->getPointOfInstantiation().isInvalid())
11242        SpecInfo->setPointOfInstantiation(Loc);
11243      else if (SpecInfo->getTemplateSpecializationKind()
11244                 == TSK_ImplicitInstantiation) {
11245        AlreadyInstantiated = true;
11246        PointOfInstantiation = SpecInfo->getPointOfInstantiation();
11247      }
11248    } else if (MemberSpecializationInfo *MSInfo
11249                                = Func->getMemberSpecializationInfo()) {
11250      if (MSInfo->getPointOfInstantiation().isInvalid())
11251        MSInfo->setPointOfInstantiation(Loc);
11252      else if (MSInfo->getTemplateSpecializationKind()
11253                 == TSK_ImplicitInstantiation) {
11254        AlreadyInstantiated = true;
11255        PointOfInstantiation = MSInfo->getPointOfInstantiation();
11256      }
11257    }
11258
11259    if (!AlreadyInstantiated || Func->isConstexpr()) {
11260      if (isa<CXXRecordDecl>(Func->getDeclContext()) &&
11261          cast<CXXRecordDecl>(Func->getDeclContext())->isLocalClass() &&
11262          ActiveTemplateInstantiations.size())
11263        PendingLocalImplicitInstantiations.push_back(
11264            std::make_pair(Func, PointOfInstantiation));
11265      else if (Func->isConstexpr())
11266        // Do not defer instantiations of constexpr functions, to avoid the
11267        // expression evaluator needing to call back into Sema if it sees a
11268        // call to such a function.
11269        InstantiateFunctionDefinition(PointOfInstantiation, Func);
11270      else {
11271        PendingInstantiations.push_back(std::make_pair(Func,
11272                                                       PointOfInstantiation));
11273        // Notify the consumer that a function was implicitly instantiated.
11274        Consumer.HandleCXXImplicitFunctionInstantiation(Func);
11275      }
11276    }
11277  } else {
11278    // Walk redefinitions, as some of them may be instantiable.
11279    for (FunctionDecl::redecl_iterator i(Func->redecls_begin()),
11280         e(Func->redecls_end()); i != e; ++i) {
11281      if (!i->isUsed(false) && i->isImplicitlyInstantiable())
11282        MarkFunctionReferenced(Loc, *i);
11283    }
11284  }
11285
11286  // Keep track of used but undefined functions.
11287  if (!Func->isDefined()) {
11288    if (mightHaveNonExternalLinkage(Func))
11289      UndefinedButUsed.insert(std::make_pair(Func->getCanonicalDecl(), Loc));
11290    else if (Func->getMostRecentDecl()->isInlined() &&
11291             (LangOpts.CPlusPlus || !LangOpts.GNUInline) &&
11292             !Func->getMostRecentDecl()->hasAttr<GNUInlineAttr>())
11293      UndefinedButUsed.insert(std::make_pair(Func->getCanonicalDecl(), Loc));
11294  }
11295
11296  // Normally the most current decl is marked used while processing the use and
11297  // any subsequent decls are marked used by decl merging. This fails with
11298  // template instantiation since marking can happen at the end of the file
11299  // and, because of the two phase lookup, this function is called with at
11300  // decl in the middle of a decl chain. We loop to maintain the invariant
11301  // that once a decl is used, all decls after it are also used.
11302  for (FunctionDecl *F = Func->getMostRecentDecl();; F = F->getPreviousDecl()) {
11303    F->markUsed(Context);
11304    if (F == Func)
11305      break;
11306  }
11307}
11308
11309static void
11310diagnoseUncapturableValueReference(Sema &S, SourceLocation loc,
11311                                   VarDecl *var, DeclContext *DC) {
11312  DeclContext *VarDC = var->getDeclContext();
11313
11314  //  If the parameter still belongs to the translation unit, then
11315  //  we're actually just using one parameter in the declaration of
11316  //  the next.
11317  if (isa<ParmVarDecl>(var) &&
11318      isa<TranslationUnitDecl>(VarDC))
11319    return;
11320
11321  // For C code, don't diagnose about capture if we're not actually in code
11322  // right now; it's impossible to write a non-constant expression outside of
11323  // function context, so we'll get other (more useful) diagnostics later.
11324  //
11325  // For C++, things get a bit more nasty... it would be nice to suppress this
11326  // diagnostic for certain cases like using a local variable in an array bound
11327  // for a member of a local class, but the correct predicate is not obvious.
11328  if (!S.getLangOpts().CPlusPlus && !S.CurContext->isFunctionOrMethod())
11329    return;
11330
11331  if (isa<CXXMethodDecl>(VarDC) &&
11332      cast<CXXRecordDecl>(VarDC->getParent())->isLambda()) {
11333    S.Diag(loc, diag::err_reference_to_local_var_in_enclosing_lambda)
11334      << var->getIdentifier();
11335  } else if (FunctionDecl *fn = dyn_cast<FunctionDecl>(VarDC)) {
11336    S.Diag(loc, diag::err_reference_to_local_var_in_enclosing_function)
11337      << var->getIdentifier() << fn->getDeclName();
11338  } else if (isa<BlockDecl>(VarDC)) {
11339    S.Diag(loc, diag::err_reference_to_local_var_in_enclosing_block)
11340      << var->getIdentifier();
11341  } else {
11342    // FIXME: Is there any other context where a local variable can be
11343    // declared?
11344    S.Diag(loc, diag::err_reference_to_local_var_in_enclosing_context)
11345      << var->getIdentifier();
11346  }
11347
11348  S.Diag(var->getLocation(), diag::note_local_variable_declared_here)
11349    << var->getIdentifier();
11350
11351  // FIXME: Add additional diagnostic info about class etc. which prevents
11352  // capture.
11353}
11354
11355
11356static bool isVariableAlreadyCapturedInScopeInfo(CapturingScopeInfo *CSI, VarDecl *Var,
11357                                      bool &SubCapturesAreNested,
11358                                      QualType &CaptureType,
11359                                      QualType &DeclRefType) {
11360   // Check whether we've already captured it.
11361  if (CSI->CaptureMap.count(Var)) {
11362    // If we found a capture, any subcaptures are nested.
11363    SubCapturesAreNested = true;
11364
11365    // Retrieve the capture type for this variable.
11366    CaptureType = CSI->getCapture(Var).getCaptureType();
11367
11368    // Compute the type of an expression that refers to this variable.
11369    DeclRefType = CaptureType.getNonReferenceType();
11370
11371    const CapturingScopeInfo::Capture &Cap = CSI->getCapture(Var);
11372    if (Cap.isCopyCapture() &&
11373        !(isa<LambdaScopeInfo>(CSI) && cast<LambdaScopeInfo>(CSI)->Mutable))
11374      DeclRefType.addConst();
11375    return true;
11376  }
11377  return false;
11378}
11379
11380// Only block literals, captured statements, and lambda expressions can
11381// capture; other scopes don't work.
11382static DeclContext *getParentOfCapturingContextOrNull(DeclContext *DC, VarDecl *Var,
11383                                 SourceLocation Loc,
11384                                 const bool Diagnose, Sema &S) {
11385  if (isa<BlockDecl>(DC) || isa<CapturedDecl>(DC) || isLambdaCallOperator(DC))
11386    return getLambdaAwareParentOfDeclContext(DC);
11387  else {
11388    if (Diagnose)
11389       diagnoseUncapturableValueReference(S, Loc, Var, DC);
11390  }
11391  return 0;
11392}
11393
11394// Certain capturing entities (lambdas, blocks etc.) are not allowed to capture
11395// certain types of variables (unnamed, variably modified types etc.)
11396// so check for eligibility.
11397static bool isVariableCapturable(CapturingScopeInfo *CSI, VarDecl *Var,
11398                                 SourceLocation Loc,
11399                                 const bool Diagnose, Sema &S) {
11400
11401  bool IsBlock = isa<BlockScopeInfo>(CSI);
11402  bool IsLambda = isa<LambdaScopeInfo>(CSI);
11403
11404  // Lambdas are not allowed to capture unnamed variables
11405  // (e.g. anonymous unions).
11406  // FIXME: The C++11 rule don't actually state this explicitly, but I'm
11407  // assuming that's the intent.
11408  if (IsLambda && !Var->getDeclName()) {
11409    if (Diagnose) {
11410      S.Diag(Loc, diag::err_lambda_capture_anonymous_var);
11411      S.Diag(Var->getLocation(), diag::note_declared_at);
11412    }
11413    return false;
11414  }
11415
11416  // Prohibit variably-modified types; they're difficult to deal with.
11417  if (Var->getType()->isVariablyModifiedType()) {
11418    if (Diagnose) {
11419      if (IsBlock)
11420        S.Diag(Loc, diag::err_ref_vm_type);
11421      else
11422        S.Diag(Loc, diag::err_lambda_capture_vm_type) << Var->getDeclName();
11423      S.Diag(Var->getLocation(), diag::note_previous_decl)
11424        << Var->getDeclName();
11425    }
11426    return false;
11427  }
11428  // Prohibit structs with flexible array members too.
11429  // We cannot capture what is in the tail end of the struct.
11430  if (const RecordType *VTTy = Var->getType()->getAs<RecordType>()) {
11431    if (VTTy->getDecl()->hasFlexibleArrayMember()) {
11432      if (Diagnose) {
11433        if (IsBlock)
11434          S.Diag(Loc, diag::err_ref_flexarray_type);
11435        else
11436          S.Diag(Loc, diag::err_lambda_capture_flexarray_type)
11437            << Var->getDeclName();
11438        S.Diag(Var->getLocation(), diag::note_previous_decl)
11439          << Var->getDeclName();
11440      }
11441      return false;
11442    }
11443  }
11444  const bool HasBlocksAttr = Var->hasAttr<BlocksAttr>();
11445  // Lambdas and captured statements are not allowed to capture __block
11446  // variables; they don't support the expected semantics.
11447  if (HasBlocksAttr && (IsLambda || isa<CapturedRegionScopeInfo>(CSI))) {
11448    if (Diagnose) {
11449      S.Diag(Loc, diag::err_capture_block_variable)
11450        << Var->getDeclName() << !IsLambda;
11451      S.Diag(Var->getLocation(), diag::note_previous_decl)
11452        << Var->getDeclName();
11453    }
11454    return false;
11455  }
11456
11457  return true;
11458}
11459
11460// Returns true if the capture by block was successful.
11461static bool captureInBlock(BlockScopeInfo *BSI, VarDecl *Var,
11462                                 SourceLocation Loc,
11463                                 const bool BuildAndDiagnose,
11464                                 QualType &CaptureType,
11465                                 QualType &DeclRefType,
11466                                 const bool Nested,
11467                                 Sema &S) {
11468  Expr *CopyExpr = 0;
11469  bool ByRef = false;
11470
11471  // Blocks are not allowed to capture arrays.
11472  if (CaptureType->isArrayType()) {
11473    if (BuildAndDiagnose) {
11474      S.Diag(Loc, diag::err_ref_array_type);
11475      S.Diag(Var->getLocation(), diag::note_previous_decl)
11476      << Var->getDeclName();
11477    }
11478    return false;
11479  }
11480
11481  // Forbid the block-capture of autoreleasing variables.
11482  if (CaptureType.getObjCLifetime() == Qualifiers::OCL_Autoreleasing) {
11483    if (BuildAndDiagnose) {
11484      S.Diag(Loc, diag::err_arc_autoreleasing_capture)
11485        << /*block*/ 0;
11486      S.Diag(Var->getLocation(), diag::note_previous_decl)
11487        << Var->getDeclName();
11488    }
11489    return false;
11490  }
11491  const bool HasBlocksAttr = Var->hasAttr<BlocksAttr>();
11492  if (HasBlocksAttr || CaptureType->isReferenceType()) {
11493    // Block capture by reference does not change the capture or
11494    // declaration reference types.
11495    ByRef = true;
11496  } else {
11497    // Block capture by copy introduces 'const'.
11498    CaptureType = CaptureType.getNonReferenceType().withConst();
11499    DeclRefType = CaptureType;
11500
11501    if (S.getLangOpts().CPlusPlus && BuildAndDiagnose) {
11502      if (const RecordType *Record = DeclRefType->getAs<RecordType>()) {
11503        // The capture logic needs the destructor, so make sure we mark it.
11504        // Usually this is unnecessary because most local variables have
11505        // their destructors marked at declaration time, but parameters are
11506        // an exception because it's technically only the call site that
11507        // actually requires the destructor.
11508        if (isa<ParmVarDecl>(Var))
11509          S.FinalizeVarWithDestructor(Var, Record);
11510
11511        // Enter a new evaluation context to insulate the copy
11512        // full-expression.
11513        EnterExpressionEvaluationContext scope(S, S.PotentiallyEvaluated);
11514
11515        // According to the blocks spec, the capture of a variable from
11516        // the stack requires a const copy constructor.  This is not true
11517        // of the copy/move done to move a __block variable to the heap.
11518        Expr *DeclRef = new (S.Context) DeclRefExpr(Var, Nested,
11519                                                  DeclRefType.withConst(),
11520                                                  VK_LValue, Loc);
11521
11522        ExprResult Result
11523          = S.PerformCopyInitialization(
11524              InitializedEntity::InitializeBlock(Var->getLocation(),
11525                                                  CaptureType, false),
11526              Loc, S.Owned(DeclRef));
11527
11528        // Build a full-expression copy expression if initialization
11529        // succeeded and used a non-trivial constructor.  Recover from
11530        // errors by pretending that the copy isn't necessary.
11531        if (!Result.isInvalid() &&
11532            !cast<CXXConstructExpr>(Result.get())->getConstructor()
11533                ->isTrivial()) {
11534          Result = S.MaybeCreateExprWithCleanups(Result);
11535          CopyExpr = Result.take();
11536        }
11537      }
11538    }
11539  }
11540
11541  // Actually capture the variable.
11542  if (BuildAndDiagnose)
11543    BSI->addCapture(Var, HasBlocksAttr, ByRef, Nested, Loc,
11544                    SourceLocation(), CaptureType, CopyExpr);
11545
11546  return true;
11547
11548}
11549
11550
11551/// \brief Capture the given variable in the captured region.
11552static bool captureInCapturedRegion(CapturedRegionScopeInfo *RSI,
11553                                    VarDecl *Var,
11554                                    SourceLocation Loc,
11555                                    const bool BuildAndDiagnose,
11556                                    QualType &CaptureType,
11557                                    QualType &DeclRefType,
11558                                    const bool RefersToEnclosingLocal,
11559                                    Sema &S) {
11560
11561  // By default, capture variables by reference.
11562  bool ByRef = true;
11563  // Using an LValue reference type is consistent with Lambdas (see below).
11564  CaptureType = S.Context.getLValueReferenceType(DeclRefType);
11565  Expr *CopyExpr = 0;
11566  if (BuildAndDiagnose) {
11567    // The current implementation assumes that all variables are captured
11568    // by references. Since there is no capture by copy, no expression evaluation
11569    // will be needed.
11570    //
11571    RecordDecl *RD = RSI->TheRecordDecl;
11572
11573    FieldDecl *Field
11574      = FieldDecl::Create(S.Context, RD, Loc, Loc, 0, CaptureType,
11575                          S.Context.getTrivialTypeSourceInfo(CaptureType, Loc),
11576                          0, false, ICIS_NoInit);
11577    Field->setImplicit(true);
11578    Field->setAccess(AS_private);
11579    RD->addDecl(Field);
11580
11581    CopyExpr = new (S.Context) DeclRefExpr(Var, RefersToEnclosingLocal,
11582                                            DeclRefType, VK_LValue, Loc);
11583    Var->setReferenced(true);
11584    Var->markUsed(S.Context);
11585  }
11586
11587  // Actually capture the variable.
11588  if (BuildAndDiagnose)
11589    RSI->addCapture(Var, /*isBlock*/false, ByRef, RefersToEnclosingLocal, Loc,
11590                    SourceLocation(), CaptureType, CopyExpr);
11591
11592
11593  return true;
11594}
11595
11596/// \brief Create a field within the lambda class for the variable
11597///  being captured.  Handle Array captures.
11598static ExprResult addAsFieldToClosureType(Sema &S,
11599                                 LambdaScopeInfo *LSI,
11600                                  VarDecl *Var, QualType FieldType,
11601                                  QualType DeclRefType,
11602                                  SourceLocation Loc,
11603                                  bool RefersToEnclosingLocal) {
11604  CXXRecordDecl *Lambda = LSI->Lambda;
11605
11606  // Build the non-static data member.
11607  FieldDecl *Field
11608    = FieldDecl::Create(S.Context, Lambda, Loc, Loc, 0, FieldType,
11609                        S.Context.getTrivialTypeSourceInfo(FieldType, Loc),
11610                        0, false, ICIS_NoInit);
11611  Field->setImplicit(true);
11612  Field->setAccess(AS_private);
11613  Lambda->addDecl(Field);
11614
11615  // C++11 [expr.prim.lambda]p21:
11616  //   When the lambda-expression is evaluated, the entities that
11617  //   are captured by copy are used to direct-initialize each
11618  //   corresponding non-static data member of the resulting closure
11619  //   object. (For array members, the array elements are
11620  //   direct-initialized in increasing subscript order.) These
11621  //   initializations are performed in the (unspecified) order in
11622  //   which the non-static data members are declared.
11623
11624  // Introduce a new evaluation context for the initialization, so
11625  // that temporaries introduced as part of the capture are retained
11626  // to be re-"exported" from the lambda expression itself.
11627  EnterExpressionEvaluationContext scope(S, Sema::PotentiallyEvaluated);
11628
11629  // C++ [expr.prim.labda]p12:
11630  //   An entity captured by a lambda-expression is odr-used (3.2) in
11631  //   the scope containing the lambda-expression.
11632  Expr *Ref = new (S.Context) DeclRefExpr(Var, RefersToEnclosingLocal,
11633                                          DeclRefType, VK_LValue, Loc);
11634  Var->setReferenced(true);
11635  Var->markUsed(S.Context);
11636
11637  // When the field has array type, create index variables for each
11638  // dimension of the array. We use these index variables to subscript
11639  // the source array, and other clients (e.g., CodeGen) will perform
11640  // the necessary iteration with these index variables.
11641  SmallVector<VarDecl *, 4> IndexVariables;
11642  QualType BaseType = FieldType;
11643  QualType SizeType = S.Context.getSizeType();
11644  LSI->ArrayIndexStarts.push_back(LSI->ArrayIndexVars.size());
11645  while (const ConstantArrayType *Array
11646                        = S.Context.getAsConstantArrayType(BaseType)) {
11647    // Create the iteration variable for this array index.
11648    IdentifierInfo *IterationVarName = 0;
11649    {
11650      SmallString<8> Str;
11651      llvm::raw_svector_ostream OS(Str);
11652      OS << "__i" << IndexVariables.size();
11653      IterationVarName = &S.Context.Idents.get(OS.str());
11654    }
11655    VarDecl *IterationVar
11656      = VarDecl::Create(S.Context, S.CurContext, Loc, Loc,
11657                        IterationVarName, SizeType,
11658                        S.Context.getTrivialTypeSourceInfo(SizeType, Loc),
11659                        SC_None);
11660    IndexVariables.push_back(IterationVar);
11661    LSI->ArrayIndexVars.push_back(IterationVar);
11662
11663    // Create a reference to the iteration variable.
11664    ExprResult IterationVarRef
11665      = S.BuildDeclRefExpr(IterationVar, SizeType, VK_LValue, Loc);
11666    assert(!IterationVarRef.isInvalid() &&
11667           "Reference to invented variable cannot fail!");
11668    IterationVarRef = S.DefaultLvalueConversion(IterationVarRef.take());
11669    assert(!IterationVarRef.isInvalid() &&
11670           "Conversion of invented variable cannot fail!");
11671
11672    // Subscript the array with this iteration variable.
11673    ExprResult Subscript = S.CreateBuiltinArraySubscriptExpr(
11674                             Ref, Loc, IterationVarRef.take(), Loc);
11675    if (Subscript.isInvalid()) {
11676      S.CleanupVarDeclMarking();
11677      S.DiscardCleanupsInEvaluationContext();
11678      return ExprError();
11679    }
11680
11681    Ref = Subscript.take();
11682    BaseType = Array->getElementType();
11683  }
11684
11685  // Construct the entity that we will be initializing. For an array, this
11686  // will be first element in the array, which may require several levels
11687  // of array-subscript entities.
11688  SmallVector<InitializedEntity, 4> Entities;
11689  Entities.reserve(1 + IndexVariables.size());
11690  Entities.push_back(
11691    InitializedEntity::InitializeLambdaCapture(Var->getIdentifier(),
11692        Field->getType(), Loc));
11693  for (unsigned I = 0, N = IndexVariables.size(); I != N; ++I)
11694    Entities.push_back(InitializedEntity::InitializeElement(S.Context,
11695                                                            0,
11696                                                            Entities.back()));
11697
11698  InitializationKind InitKind
11699    = InitializationKind::CreateDirect(Loc, Loc, Loc);
11700  InitializationSequence Init(S, Entities.back(), InitKind, Ref);
11701  ExprResult Result(true);
11702  if (!Init.Diagnose(S, Entities.back(), InitKind, Ref))
11703    Result = Init.Perform(S, Entities.back(), InitKind, Ref);
11704
11705  // If this initialization requires any cleanups (e.g., due to a
11706  // default argument to a copy constructor), note that for the
11707  // lambda.
11708  if (S.ExprNeedsCleanups)
11709    LSI->ExprNeedsCleanups = true;
11710
11711  // Exit the expression evaluation context used for the capture.
11712  S.CleanupVarDeclMarking();
11713  S.DiscardCleanupsInEvaluationContext();
11714  return Result;
11715}
11716
11717
11718
11719/// \brief Capture the given variable in the lambda.
11720static bool captureInLambda(LambdaScopeInfo *LSI,
11721                            VarDecl *Var,
11722                            SourceLocation Loc,
11723                            const bool BuildAndDiagnose,
11724                            QualType &CaptureType,
11725                            QualType &DeclRefType,
11726                            const bool RefersToEnclosingLocal,
11727                            const Sema::TryCaptureKind Kind,
11728                            SourceLocation EllipsisLoc,
11729                            const bool IsTopScope,
11730                            Sema &S) {
11731
11732  // Determine whether we are capturing by reference or by value.
11733  bool ByRef = false;
11734  if (IsTopScope && Kind != Sema::TryCapture_Implicit) {
11735    ByRef = (Kind == Sema::TryCapture_ExplicitByRef);
11736  } else {
11737    ByRef = (LSI->ImpCaptureStyle == LambdaScopeInfo::ImpCap_LambdaByref);
11738  }
11739
11740  // Compute the type of the field that will capture this variable.
11741  if (ByRef) {
11742    // C++11 [expr.prim.lambda]p15:
11743    //   An entity is captured by reference if it is implicitly or
11744    //   explicitly captured but not captured by copy. It is
11745    //   unspecified whether additional unnamed non-static data
11746    //   members are declared in the closure type for entities
11747    //   captured by reference.
11748    //
11749    // FIXME: It is not clear whether we want to build an lvalue reference
11750    // to the DeclRefType or to CaptureType.getNonReferenceType(). GCC appears
11751    // to do the former, while EDG does the latter. Core issue 1249 will
11752    // clarify, but for now we follow GCC because it's a more permissive and
11753    // easily defensible position.
11754    CaptureType = S.Context.getLValueReferenceType(DeclRefType);
11755  } else {
11756    // C++11 [expr.prim.lambda]p14:
11757    //   For each entity captured by copy, an unnamed non-static
11758    //   data member is declared in the closure type. The
11759    //   declaration order of these members is unspecified. The type
11760    //   of such a data member is the type of the corresponding
11761    //   captured entity if the entity is not a reference to an
11762    //   object, or the referenced type otherwise. [Note: If the
11763    //   captured entity is a reference to a function, the
11764    //   corresponding data member is also a reference to a
11765    //   function. - end note ]
11766    if (const ReferenceType *RefType = CaptureType->getAs<ReferenceType>()){
11767      if (!RefType->getPointeeType()->isFunctionType())
11768        CaptureType = RefType->getPointeeType();
11769    }
11770
11771    // Forbid the lambda copy-capture of autoreleasing variables.
11772    if (CaptureType.getObjCLifetime() == Qualifiers::OCL_Autoreleasing) {
11773      if (BuildAndDiagnose) {
11774        S.Diag(Loc, diag::err_arc_autoreleasing_capture) << /*lambda*/ 1;
11775        S.Diag(Var->getLocation(), diag::note_previous_decl)
11776          << Var->getDeclName();
11777      }
11778      return false;
11779    }
11780
11781    if (S.RequireNonAbstractType(Loc, CaptureType,
11782                                 diag::err_capture_of_abstract_type))
11783      return false;
11784  }
11785
11786  // Capture this variable in the lambda.
11787  Expr *CopyExpr = 0;
11788  if (BuildAndDiagnose) {
11789    ExprResult Result = addAsFieldToClosureType(S, LSI, Var,
11790                                        CaptureType, DeclRefType, Loc,
11791                                        RefersToEnclosingLocal);
11792    if (!Result.isInvalid())
11793      CopyExpr = Result.take();
11794  }
11795
11796  // Compute the type of a reference to this captured variable.
11797  if (ByRef)
11798    DeclRefType = CaptureType.getNonReferenceType();
11799  else {
11800    // C++ [expr.prim.lambda]p5:
11801    //   The closure type for a lambda-expression has a public inline
11802    //   function call operator [...]. This function call operator is
11803    //   declared const (9.3.1) if and only if the lambda-expression���s
11804    //   parameter-declaration-clause is not followed by mutable.
11805    DeclRefType = CaptureType.getNonReferenceType();
11806    if (!LSI->Mutable && !CaptureType->isReferenceType())
11807      DeclRefType.addConst();
11808  }
11809
11810  // Add the capture.
11811  if (BuildAndDiagnose)
11812    LSI->addCapture(Var, /*IsBlock=*/false, ByRef, RefersToEnclosingLocal,
11813                    Loc, EllipsisLoc, CaptureType, CopyExpr);
11814
11815  return true;
11816}
11817
11818
11819bool Sema::tryCaptureVariable(VarDecl *Var, SourceLocation ExprLoc,
11820                              TryCaptureKind Kind, SourceLocation EllipsisLoc,
11821                              bool BuildAndDiagnose,
11822                              QualType &CaptureType,
11823                              QualType &DeclRefType,
11824						                const unsigned *const FunctionScopeIndexToStopAt) {
11825  bool Nested = false;
11826
11827  DeclContext *DC = CurContext;
11828  const unsigned MaxFunctionScopesIndex = FunctionScopeIndexToStopAt
11829      ? *FunctionScopeIndexToStopAt : FunctionScopes.size() - 1;
11830  // We need to sync up the Declaration Context with the
11831  // FunctionScopeIndexToStopAt
11832  if (FunctionScopeIndexToStopAt) {
11833    unsigned FSIndex = FunctionScopes.size() - 1;
11834    while (FSIndex != MaxFunctionScopesIndex) {
11835      DC = getLambdaAwareParentOfDeclContext(DC);
11836      --FSIndex;
11837    }
11838  }
11839
11840
11841  // If the variable is declared in the current context (and is not an
11842  // init-capture), there is no need to capture it.
11843  if (!Var->isInitCapture() && Var->getDeclContext() == DC) return true;
11844  if (!Var->hasLocalStorage()) return true;
11845
11846  // Walk up the stack to determine whether we can capture the variable,
11847  // performing the "simple" checks that don't depend on type. We stop when
11848  // we've either hit the declared scope of the variable or find an existing
11849  // capture of that variable.  We start from the innermost capturing-entity
11850  // (the DC) and ensure that all intervening capturing-entities
11851  // (blocks/lambdas etc.) between the innermost capturer and the variable`s
11852  // declcontext can either capture the variable or have already captured
11853  // the variable.
11854  CaptureType = Var->getType();
11855  DeclRefType = CaptureType.getNonReferenceType();
11856  bool Explicit = (Kind != TryCapture_Implicit);
11857  unsigned FunctionScopesIndex = MaxFunctionScopesIndex;
11858  do {
11859    // Only block literals, captured statements, and lambda expressions can
11860    // capture; other scopes don't work.
11861    DeclContext *ParentDC = getParentOfCapturingContextOrNull(DC, Var,
11862                                                              ExprLoc,
11863                                                              BuildAndDiagnose,
11864                                                              *this);
11865    if (!ParentDC) return true;
11866
11867    FunctionScopeInfo  *FSI = FunctionScopes[FunctionScopesIndex];
11868    CapturingScopeInfo *CSI = cast<CapturingScopeInfo>(FSI);
11869
11870
11871    // Check whether we've already captured it.
11872    if (isVariableAlreadyCapturedInScopeInfo(CSI, Var, Nested, CaptureType,
11873                                             DeclRefType))
11874      break;
11875    // If we are instantiating a generic lambda call operator body,
11876    // we do not want to capture new variables.  What was captured
11877    // during either a lambdas transformation or initial parsing
11878    // should be used.
11879    if (isGenericLambdaCallOperatorSpecialization(DC)) {
11880      if (BuildAndDiagnose) {
11881        LambdaScopeInfo *LSI = cast<LambdaScopeInfo>(CSI);
11882        if (LSI->ImpCaptureStyle == CapturingScopeInfo::ImpCap_None) {
11883          Diag(ExprLoc, diag::err_lambda_impcap) << Var->getDeclName();
11884          Diag(Var->getLocation(), diag::note_previous_decl)
11885             << Var->getDeclName();
11886          Diag(LSI->Lambda->getLocStart(), diag::note_lambda_decl);
11887        } else
11888          diagnoseUncapturableValueReference(*this, ExprLoc, Var, DC);
11889      }
11890      return true;
11891    }
11892    // Certain capturing entities (lambdas, blocks etc.) are not allowed to capture
11893    // certain types of variables (unnamed, variably modified types etc.)
11894    // so check for eligibility.
11895    if (!isVariableCapturable(CSI, Var, ExprLoc, BuildAndDiagnose, *this))
11896       return true;
11897
11898    if (CSI->ImpCaptureStyle == CapturingScopeInfo::ImpCap_None && !Explicit) {
11899      // No capture-default, and this is not an explicit capture
11900      // so cannot capture this variable.
11901      if (BuildAndDiagnose) {
11902        Diag(ExprLoc, diag::err_lambda_impcap) << Var->getDeclName();
11903        Diag(Var->getLocation(), diag::note_previous_decl)
11904          << Var->getDeclName();
11905        Diag(cast<LambdaScopeInfo>(CSI)->Lambda->getLocStart(),
11906             diag::note_lambda_decl);
11907        // FIXME: If we error out because an outer lambda can not implicitly
11908        // capture a variable that an inner lambda explicitly captures, we
11909        // should have the inner lambda do the explicit capture - because
11910        // it makes for cleaner diagnostics later.  This would purely be done
11911        // so that the diagnostic does not misleadingly claim that a variable
11912        // can not be captured by a lambda implicitly even though it is captured
11913        // explicitly.  Suggestion:
11914        //  - create const bool VariableCaptureWasInitiallyExplicit = Explicit
11915        //    at the function head
11916        //  - cache the StartingDeclContext - this must be a lambda
11917        //  - captureInLambda in the innermost lambda the variable.
11918      }
11919      return true;
11920    }
11921
11922    FunctionScopesIndex--;
11923    DC = ParentDC;
11924    Explicit = false;
11925  } while (!Var->getDeclContext()->Equals(DC));
11926
11927  // Walk back down the scope stack, (e.g. from outer lambda to inner lambda)
11928  // computing the type of the capture at each step, checking type-specific
11929  // requirements, and adding captures if requested.
11930  // If the variable had already been captured previously, we start capturing
11931  // at the lambda nested within that one.
11932  for (unsigned I = ++FunctionScopesIndex, N = MaxFunctionScopesIndex + 1; I != N;
11933       ++I) {
11934    CapturingScopeInfo *CSI = cast<CapturingScopeInfo>(FunctionScopes[I]);
11935
11936    if (BlockScopeInfo *BSI = dyn_cast<BlockScopeInfo>(CSI)) {
11937      if (!captureInBlock(BSI, Var, ExprLoc,
11938                          BuildAndDiagnose, CaptureType,
11939                          DeclRefType, Nested, *this))
11940        return true;
11941      Nested = true;
11942    } else if (CapturedRegionScopeInfo *RSI = dyn_cast<CapturedRegionScopeInfo>(CSI)) {
11943      if (!captureInCapturedRegion(RSI, Var, ExprLoc,
11944                                   BuildAndDiagnose, CaptureType,
11945                                   DeclRefType, Nested, *this))
11946        return true;
11947      Nested = true;
11948    } else {
11949      LambdaScopeInfo *LSI = cast<LambdaScopeInfo>(CSI);
11950      if (!captureInLambda(LSI, Var, ExprLoc,
11951                           BuildAndDiagnose, CaptureType,
11952                           DeclRefType, Nested, Kind, EllipsisLoc,
11953                            /*IsTopScope*/I == N - 1, *this))
11954        return true;
11955      Nested = true;
11956    }
11957  }
11958  return false;
11959}
11960
11961bool Sema::tryCaptureVariable(VarDecl *Var, SourceLocation Loc,
11962                              TryCaptureKind Kind, SourceLocation EllipsisLoc) {
11963  QualType CaptureType;
11964  QualType DeclRefType;
11965  return tryCaptureVariable(Var, Loc, Kind, EllipsisLoc,
11966                            /*BuildAndDiagnose=*/true, CaptureType,
11967                            DeclRefType, 0);
11968}
11969
11970QualType Sema::getCapturedDeclRefType(VarDecl *Var, SourceLocation Loc) {
11971  QualType CaptureType;
11972  QualType DeclRefType;
11973
11974  // Determine whether we can capture this variable.
11975  if (tryCaptureVariable(Var, Loc, TryCapture_Implicit, SourceLocation(),
11976                         /*BuildAndDiagnose=*/false, CaptureType,
11977                         DeclRefType, 0))
11978    return QualType();
11979
11980  return DeclRefType;
11981}
11982
11983
11984
11985// If either the type of the variable or the initializer is dependent,
11986// return false. Otherwise, determine whether the variable is a constant
11987// expression. Use this if you need to know if a variable that might or
11988// might not be dependent is truly a constant expression.
11989static inline bool IsVariableNonDependentAndAConstantExpression(VarDecl *Var,
11990    ASTContext &Context) {
11991
11992  if (Var->getType()->isDependentType())
11993    return false;
11994  const VarDecl *DefVD = 0;
11995  Var->getAnyInitializer(DefVD);
11996  if (!DefVD)
11997    return false;
11998  EvaluatedStmt *Eval = DefVD->ensureEvaluatedStmt();
11999  Expr *Init = cast<Expr>(Eval->Value);
12000  if (Init->isValueDependent())
12001    return false;
12002  return IsVariableAConstantExpression(Var, Context);
12003}
12004
12005
12006void Sema::UpdateMarkingForLValueToRValue(Expr *E) {
12007  // Per C++11 [basic.def.odr], a variable is odr-used "unless it is
12008  // an object that satisfies the requirements for appearing in a
12009  // constant expression (5.19) and the lvalue-to-rvalue conversion (4.1)
12010  // is immediately applied."  This function handles the lvalue-to-rvalue
12011  // conversion part.
12012  MaybeODRUseExprs.erase(E->IgnoreParens());
12013
12014  // If we are in a lambda, check if this DeclRefExpr or MemberExpr refers
12015  // to a variable that is a constant expression, and if so, identify it as
12016  // a reference to a variable that does not involve an odr-use of that
12017  // variable.
12018  if (LambdaScopeInfo *LSI = getCurLambda()) {
12019    Expr *SansParensExpr = E->IgnoreParens();
12020    VarDecl *Var = 0;
12021    if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(SansParensExpr))
12022      Var = dyn_cast<VarDecl>(DRE->getFoundDecl());
12023    else if (MemberExpr *ME = dyn_cast<MemberExpr>(SansParensExpr))
12024      Var = dyn_cast<VarDecl>(ME->getMemberDecl());
12025
12026    if (Var && IsVariableNonDependentAndAConstantExpression(Var, Context))
12027      LSI->markVariableExprAsNonODRUsed(SansParensExpr);
12028  }
12029}
12030
12031ExprResult Sema::ActOnConstantExpression(ExprResult Res) {
12032  if (!Res.isUsable())
12033    return Res;
12034
12035  // If a constant-expression is a reference to a variable where we delay
12036  // deciding whether it is an odr-use, just assume we will apply the
12037  // lvalue-to-rvalue conversion.  In the one case where this doesn't happen
12038  // (a non-type template argument), we have special handling anyway.
12039  UpdateMarkingForLValueToRValue(Res.get());
12040  return Res;
12041}
12042
12043void Sema::CleanupVarDeclMarking() {
12044  for (llvm::SmallPtrSetIterator<Expr*> i = MaybeODRUseExprs.begin(),
12045                                        e = MaybeODRUseExprs.end();
12046       i != e; ++i) {
12047    VarDecl *Var;
12048    SourceLocation Loc;
12049    if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(*i)) {
12050      Var = cast<VarDecl>(DRE->getDecl());
12051      Loc = DRE->getLocation();
12052    } else if (MemberExpr *ME = dyn_cast<MemberExpr>(*i)) {
12053      Var = cast<VarDecl>(ME->getMemberDecl());
12054      Loc = ME->getMemberLoc();
12055    } else {
12056      llvm_unreachable("Unexpcted expression");
12057    }
12058
12059    MarkVarDeclODRUsed(Var, Loc, *this, /*MaxFunctionScopeIndex Pointer*/ 0);
12060  }
12061
12062  MaybeODRUseExprs.clear();
12063}
12064
12065
12066static void DoMarkVarDeclReferenced(Sema &SemaRef, SourceLocation Loc,
12067                                    VarDecl *Var, Expr *E) {
12068  assert((!E || isa<DeclRefExpr>(E) || isa<MemberExpr>(E)) &&
12069         "Invalid Expr argument to DoMarkVarDeclReferenced");
12070  Var->setReferenced();
12071
12072  // If the context is not PotentiallyEvaluated and not Unevaluated
12073  // (i.e PotentiallyEvaluatedIfUsed) do not bother to consider variables
12074  // in this context for odr-use unless we are within a lambda.
12075  // If we don't know whether the context is potentially evaluated or not
12076  // (for e.g., if we're in a generic lambda), we want to add a potential
12077  // capture and eventually analyze for odr-use.
12078  // We should also be able to analyze certain constructs in a non-generic
12079  // lambda setting for potential odr-use and capture violation:
12080  // template<class T> void foo(T t) {
12081  //    auto L = [](int i) { return t; };
12082  // }
12083  //
12084  if (!IsPotentiallyEvaluatedContext(SemaRef)) {
12085
12086    if (SemaRef.isUnevaluatedContext()) return;
12087
12088    const bool refersToEnclosingScope =
12089      (SemaRef.CurContext != Var->getDeclContext() &&
12090           Var->getDeclContext()->isFunctionOrMethod());
12091    if (!refersToEnclosingScope) return;
12092
12093    if (LambdaScopeInfo *const LSI = SemaRef.getCurLambda()) {
12094      // If a variable could potentially be odr-used, defer marking it so
12095      // until we finish analyzing the full expression for any lvalue-to-rvalue
12096      // or discarded value conversions that would obviate odr-use.
12097      // Add it to the list of potential captures that will be analyzed
12098      // later (ActOnFinishFullExpr) for eventual capture and odr-use marking
12099      // unless the variable is a reference that was initialized by a constant
12100      // expression (this will never need to be captured or odr-used).
12101      const bool IsConstantExpr = IsVariableNonDependentAndAConstantExpression(
12102          Var, SemaRef.Context);
12103      assert(E && "Capture variable should be used in an expression.");
12104      if (!IsConstantExpr || !Var->getType()->isReferenceType())
12105        LSI->addPotentialCapture(E->IgnoreParens());
12106    }
12107    return;
12108  }
12109
12110  VarTemplateSpecializationDecl *VarSpec =
12111      dyn_cast<VarTemplateSpecializationDecl>(Var);
12112  assert(!isa<VarTemplatePartialSpecializationDecl>(Var) &&
12113         "Can't instantiate a partial template specialization.");
12114
12115  // Implicit instantiation of static data members, static data member
12116  // templates of class templates, and variable template specializations.
12117  // Delay instantiations of variable templates, except for those
12118  // that could be used in a constant expression.
12119  TemplateSpecializationKind TSK = Var->getTemplateSpecializationKind();
12120  if (isTemplateInstantiation(TSK)) {
12121    bool TryInstantiating = TSK == TSK_ImplicitInstantiation;
12122
12123    if (TryInstantiating && !isa<VarTemplateSpecializationDecl>(Var)) {
12124      if (Var->getPointOfInstantiation().isInvalid()) {
12125        // This is a modification of an existing AST node. Notify listeners.
12126        if (ASTMutationListener *L = SemaRef.getASTMutationListener())
12127          L->StaticDataMemberInstantiated(Var);
12128      } else if (!Var->isUsableInConstantExpressions(SemaRef.Context))
12129        // Don't bother trying to instantiate it again, unless we might need
12130        // its initializer before we get to the end of the TU.
12131        TryInstantiating = false;
12132    }
12133
12134    if (Var->getPointOfInstantiation().isInvalid())
12135      Var->setTemplateSpecializationKind(TSK, Loc);
12136
12137    if (TryInstantiating) {
12138      SourceLocation PointOfInstantiation = Var->getPointOfInstantiation();
12139      bool InstantiationDependent = false;
12140      bool IsNonDependent =
12141          VarSpec ? !TemplateSpecializationType::anyDependentTemplateArguments(
12142                        VarSpec->getTemplateArgsInfo(), InstantiationDependent)
12143                  : true;
12144
12145      // Do not instantiate specializations that are still type-dependent.
12146      if (IsNonDependent) {
12147        if (Var->isUsableInConstantExpressions(SemaRef.Context)) {
12148          // Do not defer instantiations of variables which could be used in a
12149          // constant expression.
12150          SemaRef.InstantiateVariableDefinition(PointOfInstantiation, Var);
12151        } else {
12152          SemaRef.PendingInstantiations
12153              .push_back(std::make_pair(Var, PointOfInstantiation));
12154        }
12155      }
12156    }
12157  }
12158  // Per C++11 [basic.def.odr], a variable is odr-used "unless it satisfies
12159  // the requirements for appearing in a constant expression (5.19) and, if
12160  // it is an object, the lvalue-to-rvalue conversion (4.1)
12161  // is immediately applied."  We check the first part here, and
12162  // Sema::UpdateMarkingForLValueToRValue deals with the second part.
12163  // Note that we use the C++11 definition everywhere because nothing in
12164  // C++03 depends on whether we get the C++03 version correct. The second
12165  // part does not apply to references, since they are not objects.
12166  if (E && IsVariableAConstantExpression(Var, SemaRef.Context)) {
12167    // A reference initialized by a constant expression can never be
12168    // odr-used, so simply ignore it.
12169    // But a non-reference might get odr-used if it doesn't undergo
12170    // an lvalue-to-rvalue or is discarded, so track it.
12171    if (!Var->getType()->isReferenceType())
12172      SemaRef.MaybeODRUseExprs.insert(E);
12173  }
12174  else
12175    MarkVarDeclODRUsed(Var, Loc, SemaRef, /*MaxFunctionScopeIndex ptr*/0);
12176}
12177
12178/// \brief Mark a variable referenced, and check whether it is odr-used
12179/// (C++ [basic.def.odr]p2, C99 6.9p3).  Note that this should not be
12180/// used directly for normal expressions referring to VarDecl.
12181void Sema::MarkVariableReferenced(SourceLocation Loc, VarDecl *Var) {
12182  DoMarkVarDeclReferenced(*this, Loc, Var, 0);
12183}
12184
12185static void MarkExprReferenced(Sema &SemaRef, SourceLocation Loc,
12186                               Decl *D, Expr *E, bool OdrUse) {
12187  if (VarDecl *Var = dyn_cast<VarDecl>(D)) {
12188    DoMarkVarDeclReferenced(SemaRef, Loc, Var, E);
12189    return;
12190  }
12191
12192  SemaRef.MarkAnyDeclReferenced(Loc, D, OdrUse);
12193
12194  // If this is a call to a method via a cast, also mark the method in the
12195  // derived class used in case codegen can devirtualize the call.
12196  const MemberExpr *ME = dyn_cast<MemberExpr>(E);
12197  if (!ME)
12198    return;
12199  CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(ME->getMemberDecl());
12200  if (!MD)
12201    return;
12202  const Expr *Base = ME->getBase();
12203  const CXXRecordDecl *MostDerivedClassDecl = Base->getBestDynamicClassType();
12204  if (!MostDerivedClassDecl)
12205    return;
12206  CXXMethodDecl *DM = MD->getCorrespondingMethodInClass(MostDerivedClassDecl);
12207  if (!DM || DM->isPure())
12208    return;
12209  SemaRef.MarkAnyDeclReferenced(Loc, DM, OdrUse);
12210}
12211
12212/// \brief Perform reference-marking and odr-use handling for a DeclRefExpr.
12213void Sema::MarkDeclRefReferenced(DeclRefExpr *E) {
12214  // TODO: update this with DR# once a defect report is filed.
12215  // C++11 defect. The address of a pure member should not be an ODR use, even
12216  // if it's a qualified reference.
12217  bool OdrUse = true;
12218  if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(E->getDecl()))
12219    if (Method->isVirtual())
12220      OdrUse = false;
12221  MarkExprReferenced(*this, E->getLocation(), E->getDecl(), E, OdrUse);
12222}
12223
12224/// \brief Perform reference-marking and odr-use handling for a MemberExpr.
12225void Sema::MarkMemberReferenced(MemberExpr *E) {
12226  // C++11 [basic.def.odr]p2:
12227  //   A non-overloaded function whose name appears as a potentially-evaluated
12228  //   expression or a member of a set of candidate functions, if selected by
12229  //   overload resolution when referred to from a potentially-evaluated
12230  //   expression, is odr-used, unless it is a pure virtual function and its
12231  //   name is not explicitly qualified.
12232  bool OdrUse = true;
12233  if (!E->hasQualifier()) {
12234    if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(E->getMemberDecl()))
12235      if (Method->isPure())
12236        OdrUse = false;
12237  }
12238  SourceLocation Loc = E->getMemberLoc().isValid() ?
12239                            E->getMemberLoc() : E->getLocStart();
12240  MarkExprReferenced(*this, Loc, E->getMemberDecl(), E, OdrUse);
12241}
12242
12243/// \brief Perform marking for a reference to an arbitrary declaration.  It
12244/// marks the declaration referenced, and performs odr-use checking for functions
12245/// and variables. This method should not be used when building an normal
12246/// expression which refers to a variable.
12247void Sema::MarkAnyDeclReferenced(SourceLocation Loc, Decl *D, bool OdrUse) {
12248  if (OdrUse) {
12249    if (VarDecl *VD = dyn_cast<VarDecl>(D)) {
12250      MarkVariableReferenced(Loc, VD);
12251      return;
12252    }
12253    if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
12254      MarkFunctionReferenced(Loc, FD);
12255      return;
12256    }
12257  }
12258  D->setReferenced();
12259}
12260
12261namespace {
12262  // Mark all of the declarations referenced
12263  // FIXME: Not fully implemented yet! We need to have a better understanding
12264  // of when we're entering
12265  class MarkReferencedDecls : public RecursiveASTVisitor<MarkReferencedDecls> {
12266    Sema &S;
12267    SourceLocation Loc;
12268
12269  public:
12270    typedef RecursiveASTVisitor<MarkReferencedDecls> Inherited;
12271
12272    MarkReferencedDecls(Sema &S, SourceLocation Loc) : S(S), Loc(Loc) { }
12273
12274    bool TraverseTemplateArgument(const TemplateArgument &Arg);
12275    bool TraverseRecordType(RecordType *T);
12276  };
12277}
12278
12279bool MarkReferencedDecls::TraverseTemplateArgument(
12280  const TemplateArgument &Arg) {
12281  if (Arg.getKind() == TemplateArgument::Declaration) {
12282    if (Decl *D = Arg.getAsDecl())
12283      S.MarkAnyDeclReferenced(Loc, D, true);
12284  }
12285
12286  return Inherited::TraverseTemplateArgument(Arg);
12287}
12288
12289bool MarkReferencedDecls::TraverseRecordType(RecordType *T) {
12290  if (ClassTemplateSpecializationDecl *Spec
12291                  = dyn_cast<ClassTemplateSpecializationDecl>(T->getDecl())) {
12292    const TemplateArgumentList &Args = Spec->getTemplateArgs();
12293    return TraverseTemplateArguments(Args.data(), Args.size());
12294  }
12295
12296  return true;
12297}
12298
12299void Sema::MarkDeclarationsReferencedInType(SourceLocation Loc, QualType T) {
12300  MarkReferencedDecls Marker(*this, Loc);
12301  Marker.TraverseType(Context.getCanonicalType(T));
12302}
12303
12304namespace {
12305  /// \brief Helper class that marks all of the declarations referenced by
12306  /// potentially-evaluated subexpressions as "referenced".
12307  class EvaluatedExprMarker : public EvaluatedExprVisitor<EvaluatedExprMarker> {
12308    Sema &S;
12309    bool SkipLocalVariables;
12310
12311  public:
12312    typedef EvaluatedExprVisitor<EvaluatedExprMarker> Inherited;
12313
12314    EvaluatedExprMarker(Sema &S, bool SkipLocalVariables)
12315      : Inherited(S.Context), S(S), SkipLocalVariables(SkipLocalVariables) { }
12316
12317    void VisitDeclRefExpr(DeclRefExpr *E) {
12318      // If we were asked not to visit local variables, don't.
12319      if (SkipLocalVariables) {
12320        if (VarDecl *VD = dyn_cast<VarDecl>(E->getDecl()))
12321          if (VD->hasLocalStorage())
12322            return;
12323      }
12324
12325      S.MarkDeclRefReferenced(E);
12326    }
12327
12328    void VisitMemberExpr(MemberExpr *E) {
12329      S.MarkMemberReferenced(E);
12330      Inherited::VisitMemberExpr(E);
12331    }
12332
12333    void VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E) {
12334      S.MarkFunctionReferenced(E->getLocStart(),
12335            const_cast<CXXDestructorDecl*>(E->getTemporary()->getDestructor()));
12336      Visit(E->getSubExpr());
12337    }
12338
12339    void VisitCXXNewExpr(CXXNewExpr *E) {
12340      if (E->getOperatorNew())
12341        S.MarkFunctionReferenced(E->getLocStart(), E->getOperatorNew());
12342      if (E->getOperatorDelete())
12343        S.MarkFunctionReferenced(E->getLocStart(), E->getOperatorDelete());
12344      Inherited::VisitCXXNewExpr(E);
12345    }
12346
12347    void VisitCXXDeleteExpr(CXXDeleteExpr *E) {
12348      if (E->getOperatorDelete())
12349        S.MarkFunctionReferenced(E->getLocStart(), E->getOperatorDelete());
12350      QualType Destroyed = S.Context.getBaseElementType(E->getDestroyedType());
12351      if (const RecordType *DestroyedRec = Destroyed->getAs<RecordType>()) {
12352        CXXRecordDecl *Record = cast<CXXRecordDecl>(DestroyedRec->getDecl());
12353        S.MarkFunctionReferenced(E->getLocStart(),
12354                                    S.LookupDestructor(Record));
12355      }
12356
12357      Inherited::VisitCXXDeleteExpr(E);
12358    }
12359
12360    void VisitCXXConstructExpr(CXXConstructExpr *E) {
12361      S.MarkFunctionReferenced(E->getLocStart(), E->getConstructor());
12362      Inherited::VisitCXXConstructExpr(E);
12363    }
12364
12365    void VisitCXXDefaultArgExpr(CXXDefaultArgExpr *E) {
12366      Visit(E->getExpr());
12367    }
12368
12369    void VisitImplicitCastExpr(ImplicitCastExpr *E) {
12370      Inherited::VisitImplicitCastExpr(E);
12371
12372      if (E->getCastKind() == CK_LValueToRValue)
12373        S.UpdateMarkingForLValueToRValue(E->getSubExpr());
12374    }
12375  };
12376}
12377
12378/// \brief Mark any declarations that appear within this expression or any
12379/// potentially-evaluated subexpressions as "referenced".
12380///
12381/// \param SkipLocalVariables If true, don't mark local variables as
12382/// 'referenced'.
12383void Sema::MarkDeclarationsReferencedInExpr(Expr *E,
12384                                            bool SkipLocalVariables) {
12385  EvaluatedExprMarker(*this, SkipLocalVariables).Visit(E);
12386}
12387
12388/// \brief Emit a diagnostic that describes an effect on the run-time behavior
12389/// of the program being compiled.
12390///
12391/// This routine emits the given diagnostic when the code currently being
12392/// type-checked is "potentially evaluated", meaning that there is a
12393/// possibility that the code will actually be executable. Code in sizeof()
12394/// expressions, code used only during overload resolution, etc., are not
12395/// potentially evaluated. This routine will suppress such diagnostics or,
12396/// in the absolutely nutty case of potentially potentially evaluated
12397/// expressions (C++ typeid), queue the diagnostic to potentially emit it
12398/// later.
12399///
12400/// This routine should be used for all diagnostics that describe the run-time
12401/// behavior of a program, such as passing a non-POD value through an ellipsis.
12402/// Failure to do so will likely result in spurious diagnostics or failures
12403/// during overload resolution or within sizeof/alignof/typeof/typeid.
12404bool Sema::DiagRuntimeBehavior(SourceLocation Loc, const Stmt *Statement,
12405                               const PartialDiagnostic &PD) {
12406  switch (ExprEvalContexts.back().Context) {
12407  case Unevaluated:
12408  case UnevaluatedAbstract:
12409    // The argument will never be evaluated, so don't complain.
12410    break;
12411
12412  case ConstantEvaluated:
12413    // Relevant diagnostics should be produced by constant evaluation.
12414    break;
12415
12416  case PotentiallyEvaluated:
12417  case PotentiallyEvaluatedIfUsed:
12418    if (Statement && getCurFunctionOrMethodDecl()) {
12419      FunctionScopes.back()->PossiblyUnreachableDiags.
12420        push_back(sema::PossiblyUnreachableDiag(PD, Loc, Statement));
12421    }
12422    else
12423      Diag(Loc, PD);
12424
12425    return true;
12426  }
12427
12428  return false;
12429}
12430
12431bool Sema::CheckCallReturnType(QualType ReturnType, SourceLocation Loc,
12432                               CallExpr *CE, FunctionDecl *FD) {
12433  if (ReturnType->isVoidType() || !ReturnType->isIncompleteType())
12434    return false;
12435
12436  // If we're inside a decltype's expression, don't check for a valid return
12437  // type or construct temporaries until we know whether this is the last call.
12438  if (ExprEvalContexts.back().IsDecltype) {
12439    ExprEvalContexts.back().DelayedDecltypeCalls.push_back(CE);
12440    return false;
12441  }
12442
12443  class CallReturnIncompleteDiagnoser : public TypeDiagnoser {
12444    FunctionDecl *FD;
12445    CallExpr *CE;
12446
12447  public:
12448    CallReturnIncompleteDiagnoser(FunctionDecl *FD, CallExpr *CE)
12449      : FD(FD), CE(CE) { }
12450
12451    virtual void diagnose(Sema &S, SourceLocation Loc, QualType T) {
12452      if (!FD) {
12453        S.Diag(Loc, diag::err_call_incomplete_return)
12454          << T << CE->getSourceRange();
12455        return;
12456      }
12457
12458      S.Diag(Loc, diag::err_call_function_incomplete_return)
12459        << CE->getSourceRange() << FD->getDeclName() << T;
12460      S.Diag(FD->getLocation(),
12461             diag::note_function_with_incomplete_return_type_declared_here)
12462        << FD->getDeclName();
12463    }
12464  } Diagnoser(FD, CE);
12465
12466  if (RequireCompleteType(Loc, ReturnType, Diagnoser))
12467    return true;
12468
12469  return false;
12470}
12471
12472// Diagnose the s/=/==/ and s/\|=/!=/ typos. Note that adding parentheses
12473// will prevent this condition from triggering, which is what we want.
12474void Sema::DiagnoseAssignmentAsCondition(Expr *E) {
12475  SourceLocation Loc;
12476
12477  unsigned diagnostic = diag::warn_condition_is_assignment;
12478  bool IsOrAssign = false;
12479
12480  if (BinaryOperator *Op = dyn_cast<BinaryOperator>(E)) {
12481    if (Op->getOpcode() != BO_Assign && Op->getOpcode() != BO_OrAssign)
12482      return;
12483
12484    IsOrAssign = Op->getOpcode() == BO_OrAssign;
12485
12486    // Greylist some idioms by putting them into a warning subcategory.
12487    if (ObjCMessageExpr *ME
12488          = dyn_cast<ObjCMessageExpr>(Op->getRHS()->IgnoreParenCasts())) {
12489      Selector Sel = ME->getSelector();
12490
12491      // self = [<foo> init...]
12492      if (isSelfExpr(Op->getLHS()) && ME->getMethodFamily() == OMF_init)
12493        diagnostic = diag::warn_condition_is_idiomatic_assignment;
12494
12495      // <foo> = [<bar> nextObject]
12496      else if (Sel.isUnarySelector() && Sel.getNameForSlot(0) == "nextObject")
12497        diagnostic = diag::warn_condition_is_idiomatic_assignment;
12498    }
12499
12500    Loc = Op->getOperatorLoc();
12501  } else if (CXXOperatorCallExpr *Op = dyn_cast<CXXOperatorCallExpr>(E)) {
12502    if (Op->getOperator() != OO_Equal && Op->getOperator() != OO_PipeEqual)
12503      return;
12504
12505    IsOrAssign = Op->getOperator() == OO_PipeEqual;
12506    Loc = Op->getOperatorLoc();
12507  } else if (PseudoObjectExpr *POE = dyn_cast<PseudoObjectExpr>(E))
12508    return DiagnoseAssignmentAsCondition(POE->getSyntacticForm());
12509  else {
12510    // Not an assignment.
12511    return;
12512  }
12513
12514  Diag(Loc, diagnostic) << E->getSourceRange();
12515
12516  SourceLocation Open = E->getLocStart();
12517  SourceLocation Close = PP.getLocForEndOfToken(E->getSourceRange().getEnd());
12518  Diag(Loc, diag::note_condition_assign_silence)
12519        << FixItHint::CreateInsertion(Open, "(")
12520        << FixItHint::CreateInsertion(Close, ")");
12521
12522  if (IsOrAssign)
12523    Diag(Loc, diag::note_condition_or_assign_to_comparison)
12524      << FixItHint::CreateReplacement(Loc, "!=");
12525  else
12526    Diag(Loc, diag::note_condition_assign_to_comparison)
12527      << FixItHint::CreateReplacement(Loc, "==");
12528}
12529
12530/// \brief Redundant parentheses over an equality comparison can indicate
12531/// that the user intended an assignment used as condition.
12532void Sema::DiagnoseEqualityWithExtraParens(ParenExpr *ParenE) {
12533  // Don't warn if the parens came from a macro.
12534  SourceLocation parenLoc = ParenE->getLocStart();
12535  if (parenLoc.isInvalid() || parenLoc.isMacroID())
12536    return;
12537  // Don't warn for dependent expressions.
12538  if (ParenE->isTypeDependent())
12539    return;
12540
12541  Expr *E = ParenE->IgnoreParens();
12542
12543  if (BinaryOperator *opE = dyn_cast<BinaryOperator>(E))
12544    if (opE->getOpcode() == BO_EQ &&
12545        opE->getLHS()->IgnoreParenImpCasts()->isModifiableLvalue(Context)
12546                                                           == Expr::MLV_Valid) {
12547      SourceLocation Loc = opE->getOperatorLoc();
12548
12549      Diag(Loc, diag::warn_equality_with_extra_parens) << E->getSourceRange();
12550      SourceRange ParenERange = ParenE->getSourceRange();
12551      Diag(Loc, diag::note_equality_comparison_silence)
12552        << FixItHint::CreateRemoval(ParenERange.getBegin())
12553        << FixItHint::CreateRemoval(ParenERange.getEnd());
12554      Diag(Loc, diag::note_equality_comparison_to_assign)
12555        << FixItHint::CreateReplacement(Loc, "=");
12556    }
12557}
12558
12559ExprResult Sema::CheckBooleanCondition(Expr *E, SourceLocation Loc) {
12560  DiagnoseAssignmentAsCondition(E);
12561  if (ParenExpr *parenE = dyn_cast<ParenExpr>(E))
12562    DiagnoseEqualityWithExtraParens(parenE);
12563
12564  ExprResult result = CheckPlaceholderExpr(E);
12565  if (result.isInvalid()) return ExprError();
12566  E = result.take();
12567
12568  if (!E->isTypeDependent()) {
12569    if (getLangOpts().CPlusPlus)
12570      return CheckCXXBooleanCondition(E); // C++ 6.4p4
12571
12572    ExprResult ERes = DefaultFunctionArrayLvalueConversion(E);
12573    if (ERes.isInvalid())
12574      return ExprError();
12575    E = ERes.take();
12576
12577    QualType T = E->getType();
12578    if (!T->isScalarType()) { // C99 6.8.4.1p1
12579      Diag(Loc, diag::err_typecheck_statement_requires_scalar)
12580        << T << E->getSourceRange();
12581      return ExprError();
12582    }
12583  }
12584
12585  return Owned(E);
12586}
12587
12588ExprResult Sema::ActOnBooleanCondition(Scope *S, SourceLocation Loc,
12589                                       Expr *SubExpr) {
12590  if (!SubExpr)
12591    return ExprError();
12592
12593  return CheckBooleanCondition(SubExpr, Loc);
12594}
12595
12596namespace {
12597  /// A visitor for rebuilding a call to an __unknown_any expression
12598  /// to have an appropriate type.
12599  struct RebuildUnknownAnyFunction
12600    : StmtVisitor<RebuildUnknownAnyFunction, ExprResult> {
12601
12602    Sema &S;
12603
12604    RebuildUnknownAnyFunction(Sema &S) : S(S) {}
12605
12606    ExprResult VisitStmt(Stmt *S) {
12607      llvm_unreachable("unexpected statement!");
12608    }
12609
12610    ExprResult VisitExpr(Expr *E) {
12611      S.Diag(E->getExprLoc(), diag::err_unsupported_unknown_any_call)
12612        << E->getSourceRange();
12613      return ExprError();
12614    }
12615
12616    /// Rebuild an expression which simply semantically wraps another
12617    /// expression which it shares the type and value kind of.
12618    template <class T> ExprResult rebuildSugarExpr(T *E) {
12619      ExprResult SubResult = Visit(E->getSubExpr());
12620      if (SubResult.isInvalid()) return ExprError();
12621
12622      Expr *SubExpr = SubResult.take();
12623      E->setSubExpr(SubExpr);
12624      E->setType(SubExpr->getType());
12625      E->setValueKind(SubExpr->getValueKind());
12626      assert(E->getObjectKind() == OK_Ordinary);
12627      return E;
12628    }
12629
12630    ExprResult VisitParenExpr(ParenExpr *E) {
12631      return rebuildSugarExpr(E);
12632    }
12633
12634    ExprResult VisitUnaryExtension(UnaryOperator *E) {
12635      return rebuildSugarExpr(E);
12636    }
12637
12638    ExprResult VisitUnaryAddrOf(UnaryOperator *E) {
12639      ExprResult SubResult = Visit(E->getSubExpr());
12640      if (SubResult.isInvalid()) return ExprError();
12641
12642      Expr *SubExpr = SubResult.take();
12643      E->setSubExpr(SubExpr);
12644      E->setType(S.Context.getPointerType(SubExpr->getType()));
12645      assert(E->getValueKind() == VK_RValue);
12646      assert(E->getObjectKind() == OK_Ordinary);
12647      return E;
12648    }
12649
12650    ExprResult resolveDecl(Expr *E, ValueDecl *VD) {
12651      if (!isa<FunctionDecl>(VD)) return VisitExpr(E);
12652
12653      E->setType(VD->getType());
12654
12655      assert(E->getValueKind() == VK_RValue);
12656      if (S.getLangOpts().CPlusPlus &&
12657          !(isa<CXXMethodDecl>(VD) &&
12658            cast<CXXMethodDecl>(VD)->isInstance()))
12659        E->setValueKind(VK_LValue);
12660
12661      return E;
12662    }
12663
12664    ExprResult VisitMemberExpr(MemberExpr *E) {
12665      return resolveDecl(E, E->getMemberDecl());
12666    }
12667
12668    ExprResult VisitDeclRefExpr(DeclRefExpr *E) {
12669      return resolveDecl(E, E->getDecl());
12670    }
12671  };
12672}
12673
12674/// Given a function expression of unknown-any type, try to rebuild it
12675/// to have a function type.
12676static ExprResult rebuildUnknownAnyFunction(Sema &S, Expr *FunctionExpr) {
12677  ExprResult Result = RebuildUnknownAnyFunction(S).Visit(FunctionExpr);
12678  if (Result.isInvalid()) return ExprError();
12679  return S.DefaultFunctionArrayConversion(Result.take());
12680}
12681
12682namespace {
12683  /// A visitor for rebuilding an expression of type __unknown_anytype
12684  /// into one which resolves the type directly on the referring
12685  /// expression.  Strict preservation of the original source
12686  /// structure is not a goal.
12687  struct RebuildUnknownAnyExpr
12688    : StmtVisitor<RebuildUnknownAnyExpr, ExprResult> {
12689
12690    Sema &S;
12691
12692    /// The current destination type.
12693    QualType DestType;
12694
12695    RebuildUnknownAnyExpr(Sema &S, QualType CastType)
12696      : S(S), DestType(CastType) {}
12697
12698    ExprResult VisitStmt(Stmt *S) {
12699      llvm_unreachable("unexpected statement!");
12700    }
12701
12702    ExprResult VisitExpr(Expr *E) {
12703      S.Diag(E->getExprLoc(), diag::err_unsupported_unknown_any_expr)
12704        << E->getSourceRange();
12705      return ExprError();
12706    }
12707
12708    ExprResult VisitCallExpr(CallExpr *E);
12709    ExprResult VisitObjCMessageExpr(ObjCMessageExpr *E);
12710
12711    /// Rebuild an expression which simply semantically wraps another
12712    /// expression which it shares the type and value kind of.
12713    template <class T> ExprResult rebuildSugarExpr(T *E) {
12714      ExprResult SubResult = Visit(E->getSubExpr());
12715      if (SubResult.isInvalid()) return ExprError();
12716      Expr *SubExpr = SubResult.take();
12717      E->setSubExpr(SubExpr);
12718      E->setType(SubExpr->getType());
12719      E->setValueKind(SubExpr->getValueKind());
12720      assert(E->getObjectKind() == OK_Ordinary);
12721      return E;
12722    }
12723
12724    ExprResult VisitParenExpr(ParenExpr *E) {
12725      return rebuildSugarExpr(E);
12726    }
12727
12728    ExprResult VisitUnaryExtension(UnaryOperator *E) {
12729      return rebuildSugarExpr(E);
12730    }
12731
12732    ExprResult VisitUnaryAddrOf(UnaryOperator *E) {
12733      const PointerType *Ptr = DestType->getAs<PointerType>();
12734      if (!Ptr) {
12735        S.Diag(E->getOperatorLoc(), diag::err_unknown_any_addrof)
12736          << E->getSourceRange();
12737        return ExprError();
12738      }
12739      assert(E->getValueKind() == VK_RValue);
12740      assert(E->getObjectKind() == OK_Ordinary);
12741      E->setType(DestType);
12742
12743      // Build the sub-expression as if it were an object of the pointee type.
12744      DestType = Ptr->getPointeeType();
12745      ExprResult SubResult = Visit(E->getSubExpr());
12746      if (SubResult.isInvalid()) return ExprError();
12747      E->setSubExpr(SubResult.take());
12748      return E;
12749    }
12750
12751    ExprResult VisitImplicitCastExpr(ImplicitCastExpr *E);
12752
12753    ExprResult resolveDecl(Expr *E, ValueDecl *VD);
12754
12755    ExprResult VisitMemberExpr(MemberExpr *E) {
12756      return resolveDecl(E, E->getMemberDecl());
12757    }
12758
12759    ExprResult VisitDeclRefExpr(DeclRefExpr *E) {
12760      return resolveDecl(E, E->getDecl());
12761    }
12762  };
12763}
12764
12765/// Rebuilds a call expression which yielded __unknown_anytype.
12766ExprResult RebuildUnknownAnyExpr::VisitCallExpr(CallExpr *E) {
12767  Expr *CalleeExpr = E->getCallee();
12768
12769  enum FnKind {
12770    FK_MemberFunction,
12771    FK_FunctionPointer,
12772    FK_BlockPointer
12773  };
12774
12775  FnKind Kind;
12776  QualType CalleeType = CalleeExpr->getType();
12777  if (CalleeType == S.Context.BoundMemberTy) {
12778    assert(isa<CXXMemberCallExpr>(E) || isa<CXXOperatorCallExpr>(E));
12779    Kind = FK_MemberFunction;
12780    CalleeType = Expr::findBoundMemberType(CalleeExpr);
12781  } else if (const PointerType *Ptr = CalleeType->getAs<PointerType>()) {
12782    CalleeType = Ptr->getPointeeType();
12783    Kind = FK_FunctionPointer;
12784  } else {
12785    CalleeType = CalleeType->castAs<BlockPointerType>()->getPointeeType();
12786    Kind = FK_BlockPointer;
12787  }
12788  const FunctionType *FnType = CalleeType->castAs<FunctionType>();
12789
12790  // Verify that this is a legal result type of a function.
12791  if (DestType->isArrayType() || DestType->isFunctionType()) {
12792    unsigned diagID = diag::err_func_returning_array_function;
12793    if (Kind == FK_BlockPointer)
12794      diagID = diag::err_block_returning_array_function;
12795
12796    S.Diag(E->getExprLoc(), diagID)
12797      << DestType->isFunctionType() << DestType;
12798    return ExprError();
12799  }
12800
12801  // Otherwise, go ahead and set DestType as the call's result.
12802  E->setType(DestType.getNonLValueExprType(S.Context));
12803  E->setValueKind(Expr::getValueKindForType(DestType));
12804  assert(E->getObjectKind() == OK_Ordinary);
12805
12806  // Rebuild the function type, replacing the result type with DestType.
12807  const FunctionProtoType *Proto = dyn_cast<FunctionProtoType>(FnType);
12808  if (Proto) {
12809    // __unknown_anytype(...) is a special case used by the debugger when
12810    // it has no idea what a function's signature is.
12811    //
12812    // We want to build this call essentially under the K&R
12813    // unprototyped rules, but making a FunctionNoProtoType in C++
12814    // would foul up all sorts of assumptions.  However, we cannot
12815    // simply pass all arguments as variadic arguments, nor can we
12816    // portably just call the function under a non-variadic type; see
12817    // the comment on IR-gen's TargetInfo::isNoProtoCallVariadic.
12818    // However, it turns out that in practice it is generally safe to
12819    // call a function declared as "A foo(B,C,D);" under the prototype
12820    // "A foo(B,C,D,...);".  The only known exception is with the
12821    // Windows ABI, where any variadic function is implicitly cdecl
12822    // regardless of its normal CC.  Therefore we change the parameter
12823    // types to match the types of the arguments.
12824    //
12825    // This is a hack, but it is far superior to moving the
12826    // corresponding target-specific code from IR-gen to Sema/AST.
12827
12828    ArrayRef<QualType> ParamTypes = Proto->getArgTypes();
12829    SmallVector<QualType, 8> ArgTypes;
12830    if (ParamTypes.empty() && Proto->isVariadic()) { // the special case
12831      ArgTypes.reserve(E->getNumArgs());
12832      for (unsigned i = 0, e = E->getNumArgs(); i != e; ++i) {
12833        Expr *Arg = E->getArg(i);
12834        QualType ArgType = Arg->getType();
12835        if (E->isLValue()) {
12836          ArgType = S.Context.getLValueReferenceType(ArgType);
12837        } else if (E->isXValue()) {
12838          ArgType = S.Context.getRValueReferenceType(ArgType);
12839        }
12840        ArgTypes.push_back(ArgType);
12841      }
12842      ParamTypes = ArgTypes;
12843    }
12844    DestType = S.Context.getFunctionType(DestType, ParamTypes,
12845                                         Proto->getExtProtoInfo());
12846  } else {
12847    DestType = S.Context.getFunctionNoProtoType(DestType,
12848                                                FnType->getExtInfo());
12849  }
12850
12851  // Rebuild the appropriate pointer-to-function type.
12852  switch (Kind) {
12853  case FK_MemberFunction:
12854    // Nothing to do.
12855    break;
12856
12857  case FK_FunctionPointer:
12858    DestType = S.Context.getPointerType(DestType);
12859    break;
12860
12861  case FK_BlockPointer:
12862    DestType = S.Context.getBlockPointerType(DestType);
12863    break;
12864  }
12865
12866  // Finally, we can recurse.
12867  ExprResult CalleeResult = Visit(CalleeExpr);
12868  if (!CalleeResult.isUsable()) return ExprError();
12869  E->setCallee(CalleeResult.take());
12870
12871  // Bind a temporary if necessary.
12872  return S.MaybeBindToTemporary(E);
12873}
12874
12875ExprResult RebuildUnknownAnyExpr::VisitObjCMessageExpr(ObjCMessageExpr *E) {
12876  // Verify that this is a legal result type of a call.
12877  if (DestType->isArrayType() || DestType->isFunctionType()) {
12878    S.Diag(E->getExprLoc(), diag::err_func_returning_array_function)
12879      << DestType->isFunctionType() << DestType;
12880    return ExprError();
12881  }
12882
12883  // Rewrite the method result type if available.
12884  if (ObjCMethodDecl *Method = E->getMethodDecl()) {
12885    assert(Method->getResultType() == S.Context.UnknownAnyTy);
12886    Method->setResultType(DestType);
12887  }
12888
12889  // Change the type of the message.
12890  E->setType(DestType.getNonReferenceType());
12891  E->setValueKind(Expr::getValueKindForType(DestType));
12892
12893  return S.MaybeBindToTemporary(E);
12894}
12895
12896ExprResult RebuildUnknownAnyExpr::VisitImplicitCastExpr(ImplicitCastExpr *E) {
12897  // The only case we should ever see here is a function-to-pointer decay.
12898  if (E->getCastKind() == CK_FunctionToPointerDecay) {
12899    assert(E->getValueKind() == VK_RValue);
12900    assert(E->getObjectKind() == OK_Ordinary);
12901
12902    E->setType(DestType);
12903
12904    // Rebuild the sub-expression as the pointee (function) type.
12905    DestType = DestType->castAs<PointerType>()->getPointeeType();
12906
12907    ExprResult Result = Visit(E->getSubExpr());
12908    if (!Result.isUsable()) return ExprError();
12909
12910    E->setSubExpr(Result.take());
12911    return S.Owned(E);
12912  } else if (E->getCastKind() == CK_LValueToRValue) {
12913    assert(E->getValueKind() == VK_RValue);
12914    assert(E->getObjectKind() == OK_Ordinary);
12915
12916    assert(isa<BlockPointerType>(E->getType()));
12917
12918    E->setType(DestType);
12919
12920    // The sub-expression has to be a lvalue reference, so rebuild it as such.
12921    DestType = S.Context.getLValueReferenceType(DestType);
12922
12923    ExprResult Result = Visit(E->getSubExpr());
12924    if (!Result.isUsable()) return ExprError();
12925
12926    E->setSubExpr(Result.take());
12927    return S.Owned(E);
12928  } else {
12929    llvm_unreachable("Unhandled cast type!");
12930  }
12931}
12932
12933ExprResult RebuildUnknownAnyExpr::resolveDecl(Expr *E, ValueDecl *VD) {
12934  ExprValueKind ValueKind = VK_LValue;
12935  QualType Type = DestType;
12936
12937  // We know how to make this work for certain kinds of decls:
12938
12939  //  - functions
12940  if (FunctionDecl *FD = dyn_cast<FunctionDecl>(VD)) {
12941    if (const PointerType *Ptr = Type->getAs<PointerType>()) {
12942      DestType = Ptr->getPointeeType();
12943      ExprResult Result = resolveDecl(E, VD);
12944      if (Result.isInvalid()) return ExprError();
12945      return S.ImpCastExprToType(Result.take(), Type,
12946                                 CK_FunctionToPointerDecay, VK_RValue);
12947    }
12948
12949    if (!Type->isFunctionType()) {
12950      S.Diag(E->getExprLoc(), diag::err_unknown_any_function)
12951        << VD << E->getSourceRange();
12952      return ExprError();
12953    }
12954
12955    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD))
12956      if (MD->isInstance()) {
12957        ValueKind = VK_RValue;
12958        Type = S.Context.BoundMemberTy;
12959      }
12960
12961    // Function references aren't l-values in C.
12962    if (!S.getLangOpts().CPlusPlus)
12963      ValueKind = VK_RValue;
12964
12965  //  - variables
12966  } else if (isa<VarDecl>(VD)) {
12967    if (const ReferenceType *RefTy = Type->getAs<ReferenceType>()) {
12968      Type = RefTy->getPointeeType();
12969    } else if (Type->isFunctionType()) {
12970      S.Diag(E->getExprLoc(), diag::err_unknown_any_var_function_type)
12971        << VD << E->getSourceRange();
12972      return ExprError();
12973    }
12974
12975  //  - nothing else
12976  } else {
12977    S.Diag(E->getExprLoc(), diag::err_unsupported_unknown_any_decl)
12978      << VD << E->getSourceRange();
12979    return ExprError();
12980  }
12981
12982  // Modifying the declaration like this is friendly to IR-gen but
12983  // also really dangerous.
12984  VD->setType(DestType);
12985  E->setType(Type);
12986  E->setValueKind(ValueKind);
12987  return S.Owned(E);
12988}
12989
12990/// Check a cast of an unknown-any type.  We intentionally only
12991/// trigger this for C-style casts.
12992ExprResult Sema::checkUnknownAnyCast(SourceRange TypeRange, QualType CastType,
12993                                     Expr *CastExpr, CastKind &CastKind,
12994                                     ExprValueKind &VK, CXXCastPath &Path) {
12995  // Rewrite the casted expression from scratch.
12996  ExprResult result = RebuildUnknownAnyExpr(*this, CastType).Visit(CastExpr);
12997  if (!result.isUsable()) return ExprError();
12998
12999  CastExpr = result.take();
13000  VK = CastExpr->getValueKind();
13001  CastKind = CK_NoOp;
13002
13003  return CastExpr;
13004}
13005
13006ExprResult Sema::forceUnknownAnyToType(Expr *E, QualType ToType) {
13007  return RebuildUnknownAnyExpr(*this, ToType).Visit(E);
13008}
13009
13010ExprResult Sema::checkUnknownAnyArg(SourceLocation callLoc,
13011                                    Expr *arg, QualType &paramType) {
13012  // If the syntactic form of the argument is not an explicit cast of
13013  // any sort, just do default argument promotion.
13014  ExplicitCastExpr *castArg = dyn_cast<ExplicitCastExpr>(arg->IgnoreParens());
13015  if (!castArg) {
13016    ExprResult result = DefaultArgumentPromotion(arg);
13017    if (result.isInvalid()) return ExprError();
13018    paramType = result.get()->getType();
13019    return result;
13020  }
13021
13022  // Otherwise, use the type that was written in the explicit cast.
13023  assert(!arg->hasPlaceholderType());
13024  paramType = castArg->getTypeAsWritten();
13025
13026  // Copy-initialize a parameter of that type.
13027  InitializedEntity entity =
13028    InitializedEntity::InitializeParameter(Context, paramType,
13029                                           /*consumed*/ false);
13030  return PerformCopyInitialization(entity, callLoc, Owned(arg));
13031}
13032
13033static ExprResult diagnoseUnknownAnyExpr(Sema &S, Expr *E) {
13034  Expr *orig = E;
13035  unsigned diagID = diag::err_uncasted_use_of_unknown_any;
13036  while (true) {
13037    E = E->IgnoreParenImpCasts();
13038    if (CallExpr *call = dyn_cast<CallExpr>(E)) {
13039      E = call->getCallee();
13040      diagID = diag::err_uncasted_call_of_unknown_any;
13041    } else {
13042      break;
13043    }
13044  }
13045
13046  SourceLocation loc;
13047  NamedDecl *d;
13048  if (DeclRefExpr *ref = dyn_cast<DeclRefExpr>(E)) {
13049    loc = ref->getLocation();
13050    d = ref->getDecl();
13051  } else if (MemberExpr *mem = dyn_cast<MemberExpr>(E)) {
13052    loc = mem->getMemberLoc();
13053    d = mem->getMemberDecl();
13054  } else if (ObjCMessageExpr *msg = dyn_cast<ObjCMessageExpr>(E)) {
13055    diagID = diag::err_uncasted_call_of_unknown_any;
13056    loc = msg->getSelectorStartLoc();
13057    d = msg->getMethodDecl();
13058    if (!d) {
13059      S.Diag(loc, diag::err_uncasted_send_to_unknown_any_method)
13060        << static_cast<unsigned>(msg->isClassMessage()) << msg->getSelector()
13061        << orig->getSourceRange();
13062      return ExprError();
13063    }
13064  } else {
13065    S.Diag(E->getExprLoc(), diag::err_unsupported_unknown_any_expr)
13066      << E->getSourceRange();
13067    return ExprError();
13068  }
13069
13070  S.Diag(loc, diagID) << d << orig->getSourceRange();
13071
13072  // Never recoverable.
13073  return ExprError();
13074}
13075
13076/// Check for operands with placeholder types and complain if found.
13077/// Returns true if there was an error and no recovery was possible.
13078ExprResult Sema::CheckPlaceholderExpr(Expr *E) {
13079  const BuiltinType *placeholderType = E->getType()->getAsPlaceholderType();
13080  if (!placeholderType) return Owned(E);
13081
13082  switch (placeholderType->getKind()) {
13083
13084  // Overloaded expressions.
13085  case BuiltinType::Overload: {
13086    // Try to resolve a single function template specialization.
13087    // This is obligatory.
13088    ExprResult result = Owned(E);
13089    if (ResolveAndFixSingleFunctionTemplateSpecialization(result, false)) {
13090      return result;
13091
13092    // If that failed, try to recover with a call.
13093    } else {
13094      tryToRecoverWithCall(result, PDiag(diag::err_ovl_unresolvable),
13095                           /*complain*/ true);
13096      return result;
13097    }
13098  }
13099
13100  // Bound member functions.
13101  case BuiltinType::BoundMember: {
13102    ExprResult result = Owned(E);
13103    tryToRecoverWithCall(result, PDiag(diag::err_bound_member_function),
13104                         /*complain*/ true);
13105    return result;
13106  }
13107
13108  // ARC unbridged casts.
13109  case BuiltinType::ARCUnbridgedCast: {
13110    Expr *realCast = stripARCUnbridgedCast(E);
13111    diagnoseARCUnbridgedCast(realCast);
13112    return Owned(realCast);
13113  }
13114
13115  // Expressions of unknown type.
13116  case BuiltinType::UnknownAny:
13117    return diagnoseUnknownAnyExpr(*this, E);
13118
13119  // Pseudo-objects.
13120  case BuiltinType::PseudoObject:
13121    return checkPseudoObjectRValue(E);
13122
13123  case BuiltinType::BuiltinFn:
13124    Diag(E->getLocStart(), diag::err_builtin_fn_use);
13125    return ExprError();
13126
13127  // Everything else should be impossible.
13128#define BUILTIN_TYPE(Id, SingletonId) \
13129  case BuiltinType::Id:
13130#define PLACEHOLDER_TYPE(Id, SingletonId)
13131#include "clang/AST/BuiltinTypes.def"
13132    break;
13133  }
13134
13135  llvm_unreachable("invalid placeholder type!");
13136}
13137
13138bool Sema::CheckCaseExpression(Expr *E) {
13139  if (E->isTypeDependent())
13140    return true;
13141  if (E->isValueDependent() || E->isIntegerConstantExpr(Context))
13142    return E->getType()->isIntegralOrEnumerationType();
13143  return false;
13144}
13145
13146/// ActOnObjCBoolLiteral - Parse {__objc_yes,__objc_no} literals.
13147ExprResult
13148Sema::ActOnObjCBoolLiteral(SourceLocation OpLoc, tok::TokenKind Kind) {
13149  assert((Kind == tok::kw___objc_yes || Kind == tok::kw___objc_no) &&
13150         "Unknown Objective-C Boolean value!");
13151  QualType BoolT = Context.ObjCBuiltinBoolTy;
13152  if (!Context.getBOOLDecl()) {
13153    LookupResult Result(*this, &Context.Idents.get("BOOL"), OpLoc,
13154                        Sema::LookupOrdinaryName);
13155    if (LookupName(Result, getCurScope()) && Result.isSingleResult()) {
13156      NamedDecl *ND = Result.getFoundDecl();
13157      if (TypedefDecl *TD = dyn_cast<TypedefDecl>(ND))
13158        Context.setBOOLDecl(TD);
13159    }
13160  }
13161  if (Context.getBOOLDecl())
13162    BoolT = Context.getBOOLType();
13163  return Owned(new (Context) ObjCBoolLiteralExpr(Kind == tok::kw___objc_yes,
13164                                        BoolT, OpLoc));
13165}
13166