TargetInfo.cpp revision 275872
1//===---- TargetInfo.cpp - Encapsulate target details -----------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// These classes wrap the information about a call or function
11// definition used to handle ABI compliancy.
12//
13//===----------------------------------------------------------------------===//
14
15#include "TargetInfo.h"
16#include "ABIInfo.h"
17#include "CGCXXABI.h"
18#include "CodeGenFunction.h"
19#include "clang/AST/RecordLayout.h"
20#include "clang/CodeGen/CGFunctionInfo.h"
21#include "clang/Frontend/CodeGenOptions.h"
22#include "llvm/ADT/Triple.h"
23#include "llvm/IR/DataLayout.h"
24#include "llvm/IR/Type.h"
25#include "llvm/Support/raw_ostream.h"
26using namespace clang;
27using namespace CodeGen;
28
29static void AssignToArrayRange(CodeGen::CGBuilderTy &Builder,
30                               llvm::Value *Array,
31                               llvm::Value *Value,
32                               unsigned FirstIndex,
33                               unsigned LastIndex) {
34  // Alternatively, we could emit this as a loop in the source.
35  for (unsigned I = FirstIndex; I <= LastIndex; ++I) {
36    llvm::Value *Cell = Builder.CreateConstInBoundsGEP1_32(Array, I);
37    Builder.CreateStore(Value, Cell);
38  }
39}
40
41static bool isAggregateTypeForABI(QualType T) {
42  return !CodeGenFunction::hasScalarEvaluationKind(T) ||
43         T->isMemberFunctionPointerType();
44}
45
46ABIInfo::~ABIInfo() {}
47
48static bool isRecordReturnIndirect(const RecordType *RT,
49                                   CGCXXABI &CXXABI) {
50  const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl());
51  if (!RD)
52    return false;
53  return CXXABI.isReturnTypeIndirect(RD);
54}
55
56
57static bool isRecordReturnIndirect(QualType T, CGCXXABI &CXXABI) {
58  const RecordType *RT = T->getAs<RecordType>();
59  if (!RT)
60    return false;
61  return isRecordReturnIndirect(RT, CXXABI);
62}
63
64static CGCXXABI::RecordArgABI getRecordArgABI(const RecordType *RT,
65                                              CGCXXABI &CXXABI) {
66  const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl());
67  if (!RD)
68    return CGCXXABI::RAA_Default;
69  return CXXABI.getRecordArgABI(RD);
70}
71
72static CGCXXABI::RecordArgABI getRecordArgABI(QualType T,
73                                              CGCXXABI &CXXABI) {
74  const RecordType *RT = T->getAs<RecordType>();
75  if (!RT)
76    return CGCXXABI::RAA_Default;
77  return getRecordArgABI(RT, CXXABI);
78}
79
80CGCXXABI &ABIInfo::getCXXABI() const {
81  return CGT.getCXXABI();
82}
83
84ASTContext &ABIInfo::getContext() const {
85  return CGT.getContext();
86}
87
88llvm::LLVMContext &ABIInfo::getVMContext() const {
89  return CGT.getLLVMContext();
90}
91
92const llvm::DataLayout &ABIInfo::getDataLayout() const {
93  return CGT.getDataLayout();
94}
95
96const TargetInfo &ABIInfo::getTarget() const {
97  return CGT.getTarget();
98}
99
100void ABIArgInfo::dump() const {
101  raw_ostream &OS = llvm::errs();
102  OS << "(ABIArgInfo Kind=";
103  switch (TheKind) {
104  case Direct:
105    OS << "Direct Type=";
106    if (llvm::Type *Ty = getCoerceToType())
107      Ty->print(OS);
108    else
109      OS << "null";
110    break;
111  case Extend:
112    OS << "Extend";
113    break;
114  case Ignore:
115    OS << "Ignore";
116    break;
117  case Indirect:
118    OS << "Indirect Align=" << getIndirectAlign()
119       << " ByVal=" << getIndirectByVal()
120       << " Realign=" << getIndirectRealign();
121    break;
122  case Expand:
123    OS << "Expand";
124    break;
125  }
126  OS << ")\n";
127}
128
129TargetCodeGenInfo::~TargetCodeGenInfo() { delete Info; }
130
131// If someone can figure out a general rule for this, that would be great.
132// It's probably just doomed to be platform-dependent, though.
133unsigned TargetCodeGenInfo::getSizeOfUnwindException() const {
134  // Verified for:
135  //   x86-64     FreeBSD, Linux, Darwin
136  //   x86-32     FreeBSD, Linux, Darwin
137  //   PowerPC    Linux, Darwin
138  //   ARM        Darwin (*not* EABI)
139  //   AArch64    Linux
140  return 32;
141}
142
143bool TargetCodeGenInfo::isNoProtoCallVariadic(const CallArgList &args,
144                                     const FunctionNoProtoType *fnType) const {
145  // The following conventions are known to require this to be false:
146  //   x86_stdcall
147  //   MIPS
148  // For everything else, we just prefer false unless we opt out.
149  return false;
150}
151
152void
153TargetCodeGenInfo::getDependentLibraryOption(llvm::StringRef Lib,
154                                             llvm::SmallString<24> &Opt) const {
155  // This assumes the user is passing a library name like "rt" instead of a
156  // filename like "librt.a/so", and that they don't care whether it's static or
157  // dynamic.
158  Opt = "-l";
159  Opt += Lib;
160}
161
162static bool isEmptyRecord(ASTContext &Context, QualType T, bool AllowArrays);
163
164/// isEmptyField - Return true iff a the field is "empty", that is it
165/// is an unnamed bit-field or an (array of) empty record(s).
166static bool isEmptyField(ASTContext &Context, const FieldDecl *FD,
167                         bool AllowArrays) {
168  if (FD->isUnnamedBitfield())
169    return true;
170
171  QualType FT = FD->getType();
172
173  // Constant arrays of empty records count as empty, strip them off.
174  // Constant arrays of zero length always count as empty.
175  if (AllowArrays)
176    while (const ConstantArrayType *AT = Context.getAsConstantArrayType(FT)) {
177      if (AT->getSize() == 0)
178        return true;
179      FT = AT->getElementType();
180    }
181
182  const RecordType *RT = FT->getAs<RecordType>();
183  if (!RT)
184    return false;
185
186  // C++ record fields are never empty, at least in the Itanium ABI.
187  //
188  // FIXME: We should use a predicate for whether this behavior is true in the
189  // current ABI.
190  if (isa<CXXRecordDecl>(RT->getDecl()))
191    return false;
192
193  return isEmptyRecord(Context, FT, AllowArrays);
194}
195
196/// isEmptyRecord - Return true iff a structure contains only empty
197/// fields. Note that a structure with a flexible array member is not
198/// considered empty.
199static bool isEmptyRecord(ASTContext &Context, QualType T, bool AllowArrays) {
200  const RecordType *RT = T->getAs<RecordType>();
201  if (!RT)
202    return 0;
203  const RecordDecl *RD = RT->getDecl();
204  if (RD->hasFlexibleArrayMember())
205    return false;
206
207  // If this is a C++ record, check the bases first.
208  if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD))
209    for (CXXRecordDecl::base_class_const_iterator i = CXXRD->bases_begin(),
210           e = CXXRD->bases_end(); i != e; ++i)
211      if (!isEmptyRecord(Context, i->getType(), true))
212        return false;
213
214  for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
215         i != e; ++i)
216    if (!isEmptyField(Context, *i, AllowArrays))
217      return false;
218  return true;
219}
220
221/// isSingleElementStruct - Determine if a structure is a "single
222/// element struct", i.e. it has exactly one non-empty field or
223/// exactly one field which is itself a single element
224/// struct. Structures with flexible array members are never
225/// considered single element structs.
226///
227/// \return The field declaration for the single non-empty field, if
228/// it exists.
229static const Type *isSingleElementStruct(QualType T, ASTContext &Context) {
230  const RecordType *RT = T->getAsStructureType();
231  if (!RT)
232    return 0;
233
234  const RecordDecl *RD = RT->getDecl();
235  if (RD->hasFlexibleArrayMember())
236    return 0;
237
238  const Type *Found = 0;
239
240  // If this is a C++ record, check the bases first.
241  if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
242    for (CXXRecordDecl::base_class_const_iterator i = CXXRD->bases_begin(),
243           e = CXXRD->bases_end(); i != e; ++i) {
244      // Ignore empty records.
245      if (isEmptyRecord(Context, i->getType(), true))
246        continue;
247
248      // If we already found an element then this isn't a single-element struct.
249      if (Found)
250        return 0;
251
252      // If this is non-empty and not a single element struct, the composite
253      // cannot be a single element struct.
254      Found = isSingleElementStruct(i->getType(), Context);
255      if (!Found)
256        return 0;
257    }
258  }
259
260  // Check for single element.
261  for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
262         i != e; ++i) {
263    const FieldDecl *FD = *i;
264    QualType FT = FD->getType();
265
266    // Ignore empty fields.
267    if (isEmptyField(Context, FD, true))
268      continue;
269
270    // If we already found an element then this isn't a single-element
271    // struct.
272    if (Found)
273      return 0;
274
275    // Treat single element arrays as the element.
276    while (const ConstantArrayType *AT = Context.getAsConstantArrayType(FT)) {
277      if (AT->getSize().getZExtValue() != 1)
278        break;
279      FT = AT->getElementType();
280    }
281
282    if (!isAggregateTypeForABI(FT)) {
283      Found = FT.getTypePtr();
284    } else {
285      Found = isSingleElementStruct(FT, Context);
286      if (!Found)
287        return 0;
288    }
289  }
290
291  // We don't consider a struct a single-element struct if it has
292  // padding beyond the element type.
293  if (Found && Context.getTypeSize(Found) != Context.getTypeSize(T))
294    return 0;
295
296  return Found;
297}
298
299static bool is32Or64BitBasicType(QualType Ty, ASTContext &Context) {
300  // Treat complex types as the element type.
301  if (const ComplexType *CTy = Ty->getAs<ComplexType>())
302    Ty = CTy->getElementType();
303
304  // Check for a type which we know has a simple scalar argument-passing
305  // convention without any padding.  (We're specifically looking for 32
306  // and 64-bit integer and integer-equivalents, float, and double.)
307  if (!Ty->getAs<BuiltinType>() && !Ty->hasPointerRepresentation() &&
308      !Ty->isEnumeralType() && !Ty->isBlockPointerType())
309    return false;
310
311  uint64_t Size = Context.getTypeSize(Ty);
312  return Size == 32 || Size == 64;
313}
314
315/// canExpandIndirectArgument - Test whether an argument type which is to be
316/// passed indirectly (on the stack) would have the equivalent layout if it was
317/// expanded into separate arguments. If so, we prefer to do the latter to avoid
318/// inhibiting optimizations.
319///
320// FIXME: This predicate is missing many cases, currently it just follows
321// llvm-gcc (checks that all fields are 32-bit or 64-bit primitive types). We
322// should probably make this smarter, or better yet make the LLVM backend
323// capable of handling it.
324static bool canExpandIndirectArgument(QualType Ty, ASTContext &Context) {
325  // We can only expand structure types.
326  const RecordType *RT = Ty->getAs<RecordType>();
327  if (!RT)
328    return false;
329
330  // We can only expand (C) structures.
331  //
332  // FIXME: This needs to be generalized to handle classes as well.
333  const RecordDecl *RD = RT->getDecl();
334  if (!RD->isStruct() || isa<CXXRecordDecl>(RD))
335    return false;
336
337  uint64_t Size = 0;
338
339  for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
340         i != e; ++i) {
341    const FieldDecl *FD = *i;
342
343    if (!is32Or64BitBasicType(FD->getType(), Context))
344      return false;
345
346    // FIXME: Reject bit-fields wholesale; there are two problems, we don't know
347    // how to expand them yet, and the predicate for telling if a bitfield still
348    // counts as "basic" is more complicated than what we were doing previously.
349    if (FD->isBitField())
350      return false;
351
352    Size += Context.getTypeSize(FD->getType());
353  }
354
355  // Make sure there are not any holes in the struct.
356  if (Size != Context.getTypeSize(Ty))
357    return false;
358
359  return true;
360}
361
362namespace {
363/// DefaultABIInfo - The default implementation for ABI specific
364/// details. This implementation provides information which results in
365/// self-consistent and sensible LLVM IR generation, but does not
366/// conform to any particular ABI.
367class DefaultABIInfo : public ABIInfo {
368public:
369  DefaultABIInfo(CodeGen::CodeGenTypes &CGT) : ABIInfo(CGT) {}
370
371  ABIArgInfo classifyReturnType(QualType RetTy) const;
372  ABIArgInfo classifyArgumentType(QualType RetTy) const;
373
374  virtual void computeInfo(CGFunctionInfo &FI) const {
375    FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
376    for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
377         it != ie; ++it)
378      it->info = classifyArgumentType(it->type);
379  }
380
381  virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
382                                 CodeGenFunction &CGF) const;
383};
384
385class DefaultTargetCodeGenInfo : public TargetCodeGenInfo {
386public:
387  DefaultTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT)
388    : TargetCodeGenInfo(new DefaultABIInfo(CGT)) {}
389};
390
391llvm::Value *DefaultABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
392                                       CodeGenFunction &CGF) const {
393  return 0;
394}
395
396ABIArgInfo DefaultABIInfo::classifyArgumentType(QualType Ty) const {
397  if (isAggregateTypeForABI(Ty)) {
398    // Records with non trivial destructors/constructors should not be passed
399    // by value.
400    if (isRecordReturnIndirect(Ty, getCXXABI()))
401      return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
402
403    return ABIArgInfo::getIndirect(0);
404  }
405
406  // Treat an enum type as its underlying type.
407  if (const EnumType *EnumTy = Ty->getAs<EnumType>())
408    Ty = EnumTy->getDecl()->getIntegerType();
409
410  return (Ty->isPromotableIntegerType() ?
411          ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
412}
413
414ABIArgInfo DefaultABIInfo::classifyReturnType(QualType RetTy) const {
415  if (RetTy->isVoidType())
416    return ABIArgInfo::getIgnore();
417
418  if (isAggregateTypeForABI(RetTy))
419    return ABIArgInfo::getIndirect(0);
420
421  // Treat an enum type as its underlying type.
422  if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
423    RetTy = EnumTy->getDecl()->getIntegerType();
424
425  return (RetTy->isPromotableIntegerType() ?
426          ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
427}
428
429//===----------------------------------------------------------------------===//
430// le32/PNaCl bitcode ABI Implementation
431//
432// This is a simplified version of the x86_32 ABI.  Arguments and return values
433// are always passed on the stack.
434//===----------------------------------------------------------------------===//
435
436class PNaClABIInfo : public ABIInfo {
437 public:
438  PNaClABIInfo(CodeGen::CodeGenTypes &CGT) : ABIInfo(CGT) {}
439
440  ABIArgInfo classifyReturnType(QualType RetTy) const;
441  ABIArgInfo classifyArgumentType(QualType RetTy) const;
442
443  virtual void computeInfo(CGFunctionInfo &FI) const;
444  virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
445                                 CodeGenFunction &CGF) const;
446};
447
448class PNaClTargetCodeGenInfo : public TargetCodeGenInfo {
449 public:
450  PNaClTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT)
451    : TargetCodeGenInfo(new PNaClABIInfo(CGT)) {}
452};
453
454void PNaClABIInfo::computeInfo(CGFunctionInfo &FI) const {
455    FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
456
457    for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
458         it != ie; ++it)
459      it->info = classifyArgumentType(it->type);
460  }
461
462llvm::Value *PNaClABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
463                                       CodeGenFunction &CGF) const {
464  return 0;
465}
466
467/// \brief Classify argument of given type \p Ty.
468ABIArgInfo PNaClABIInfo::classifyArgumentType(QualType Ty) const {
469  if (isAggregateTypeForABI(Ty)) {
470    if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
471      return ABIArgInfo::getIndirect(0, RAA == CGCXXABI::RAA_DirectInMemory);
472    return ABIArgInfo::getIndirect(0);
473  } else if (const EnumType *EnumTy = Ty->getAs<EnumType>()) {
474    // Treat an enum type as its underlying type.
475    Ty = EnumTy->getDecl()->getIntegerType();
476  } else if (Ty->isFloatingType()) {
477    // Floating-point types don't go inreg.
478    return ABIArgInfo::getDirect();
479  }
480
481  return (Ty->isPromotableIntegerType() ?
482          ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
483}
484
485ABIArgInfo PNaClABIInfo::classifyReturnType(QualType RetTy) const {
486  if (RetTy->isVoidType())
487    return ABIArgInfo::getIgnore();
488
489  // In the PNaCl ABI we always return records/structures on the stack.
490  if (isAggregateTypeForABI(RetTy))
491    return ABIArgInfo::getIndirect(0);
492
493  // Treat an enum type as its underlying type.
494  if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
495    RetTy = EnumTy->getDecl()->getIntegerType();
496
497  return (RetTy->isPromotableIntegerType() ?
498          ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
499}
500
501/// IsX86_MMXType - Return true if this is an MMX type.
502bool IsX86_MMXType(llvm::Type *IRType) {
503  // Return true if the type is an MMX type <2 x i32>, <4 x i16>, or <8 x i8>.
504  return IRType->isVectorTy() && IRType->getPrimitiveSizeInBits() == 64 &&
505    cast<llvm::VectorType>(IRType)->getElementType()->isIntegerTy() &&
506    IRType->getScalarSizeInBits() != 64;
507}
508
509static llvm::Type* X86AdjustInlineAsmType(CodeGen::CodeGenFunction &CGF,
510                                          StringRef Constraint,
511                                          llvm::Type* Ty) {
512  if ((Constraint == "y" || Constraint == "&y") && Ty->isVectorTy()) {
513    if (cast<llvm::VectorType>(Ty)->getBitWidth() != 64) {
514      // Invalid MMX constraint
515      return 0;
516    }
517
518    return llvm::Type::getX86_MMXTy(CGF.getLLVMContext());
519  }
520
521  // No operation needed
522  return Ty;
523}
524
525//===----------------------------------------------------------------------===//
526// X86-32 ABI Implementation
527//===----------------------------------------------------------------------===//
528
529/// X86_32ABIInfo - The X86-32 ABI information.
530class X86_32ABIInfo : public ABIInfo {
531  enum Class {
532    Integer,
533    Float
534  };
535
536  static const unsigned MinABIStackAlignInBytes = 4;
537
538  bool IsDarwinVectorABI;
539  bool IsSmallStructInRegABI;
540  bool IsWin32StructABI;
541  unsigned DefaultNumRegisterParameters;
542
543  static bool isRegisterSize(unsigned Size) {
544    return (Size == 8 || Size == 16 || Size == 32 || Size == 64);
545  }
546
547  static bool shouldReturnTypeInRegister(QualType Ty, ASTContext &Context,
548                                          unsigned callingConvention);
549
550  /// getIndirectResult - Give a source type \arg Ty, return a suitable result
551  /// such that the argument will be passed in memory.
552  ABIArgInfo getIndirectResult(QualType Ty, bool ByVal,
553                               unsigned &FreeRegs) const;
554
555  /// \brief Return the alignment to use for the given type on the stack.
556  unsigned getTypeStackAlignInBytes(QualType Ty, unsigned Align) const;
557
558  Class classify(QualType Ty) const;
559  ABIArgInfo classifyReturnType(QualType RetTy,
560                                unsigned callingConvention) const;
561  ABIArgInfo classifyArgumentType(QualType RetTy, unsigned &FreeRegs,
562                                  bool IsFastCall) const;
563  bool shouldUseInReg(QualType Ty, unsigned &FreeRegs,
564                      bool IsFastCall, bool &NeedsPadding) const;
565
566public:
567
568  virtual void computeInfo(CGFunctionInfo &FI) const;
569  virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
570                                 CodeGenFunction &CGF) const;
571
572  X86_32ABIInfo(CodeGen::CodeGenTypes &CGT, bool d, bool p, bool w,
573                unsigned r)
574    : ABIInfo(CGT), IsDarwinVectorABI(d), IsSmallStructInRegABI(p),
575      IsWin32StructABI(w), DefaultNumRegisterParameters(r) {}
576};
577
578class X86_32TargetCodeGenInfo : public TargetCodeGenInfo {
579public:
580  X86_32TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT,
581      bool d, bool p, bool w, unsigned r)
582    :TargetCodeGenInfo(new X86_32ABIInfo(CGT, d, p, w, r)) {}
583
584  static bool isStructReturnInRegABI(
585      const llvm::Triple &Triple, const CodeGenOptions &Opts);
586
587  void SetTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
588                           CodeGen::CodeGenModule &CGM) const;
589
590  int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const {
591    // Darwin uses different dwarf register numbers for EH.
592    if (CGM.getTarget().getTriple().isOSDarwin()) return 5;
593    return 4;
594  }
595
596  bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
597                               llvm::Value *Address) const;
598
599  llvm::Type* adjustInlineAsmType(CodeGen::CodeGenFunction &CGF,
600                                  StringRef Constraint,
601                                  llvm::Type* Ty) const {
602    return X86AdjustInlineAsmType(CGF, Constraint, Ty);
603  }
604
605  llvm::Constant *getUBSanFunctionSignature(CodeGen::CodeGenModule &CGM) const {
606    unsigned Sig = (0xeb << 0) |  // jmp rel8
607                   (0x06 << 8) |  //           .+0x08
608                   ('F' << 16) |
609                   ('T' << 24);
610    return llvm::ConstantInt::get(CGM.Int32Ty, Sig);
611  }
612
613};
614
615}
616
617/// shouldReturnTypeInRegister - Determine if the given type should be
618/// passed in a register (for the Darwin ABI).
619bool X86_32ABIInfo::shouldReturnTypeInRegister(QualType Ty,
620                                               ASTContext &Context,
621                                               unsigned callingConvention) {
622  uint64_t Size = Context.getTypeSize(Ty);
623
624  // Type must be register sized.
625  if (!isRegisterSize(Size))
626    return false;
627
628  if (Ty->isVectorType()) {
629    // 64- and 128- bit vectors inside structures are not returned in
630    // registers.
631    if (Size == 64 || Size == 128)
632      return false;
633
634    return true;
635  }
636
637  // If this is a builtin, pointer, enum, complex type, member pointer, or
638  // member function pointer it is ok.
639  if (Ty->getAs<BuiltinType>() || Ty->hasPointerRepresentation() ||
640      Ty->isAnyComplexType() || Ty->isEnumeralType() ||
641      Ty->isBlockPointerType() || Ty->isMemberPointerType())
642    return true;
643
644  // Arrays are treated like records.
645  if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty))
646    return shouldReturnTypeInRegister(AT->getElementType(), Context,
647                                      callingConvention);
648
649  // Otherwise, it must be a record type.
650  const RecordType *RT = Ty->getAs<RecordType>();
651  if (!RT) return false;
652
653  // FIXME: Traverse bases here too.
654
655  // For thiscall conventions, structures will never be returned in
656  // a register.  This is for compatibility with the MSVC ABI
657  if (callingConvention == llvm::CallingConv::X86_ThisCall &&
658      RT->isStructureType()) {
659    return false;
660  }
661
662  // Structure types are passed in register if all fields would be
663  // passed in a register.
664  for (RecordDecl::field_iterator i = RT->getDecl()->field_begin(),
665         e = RT->getDecl()->field_end(); i != e; ++i) {
666    const FieldDecl *FD = *i;
667
668    // Empty fields are ignored.
669    if (isEmptyField(Context, FD, true))
670      continue;
671
672    // Check fields recursively.
673    if (!shouldReturnTypeInRegister(FD->getType(), Context,
674                                    callingConvention))
675      return false;
676  }
677  return true;
678}
679
680ABIArgInfo X86_32ABIInfo::classifyReturnType(QualType RetTy,
681                                            unsigned callingConvention) const {
682  if (RetTy->isVoidType())
683    return ABIArgInfo::getIgnore();
684
685  if (const VectorType *VT = RetTy->getAs<VectorType>()) {
686    // On Darwin, some vectors are returned in registers.
687    if (IsDarwinVectorABI) {
688      uint64_t Size = getContext().getTypeSize(RetTy);
689
690      // 128-bit vectors are a special case; they are returned in
691      // registers and we need to make sure to pick a type the LLVM
692      // backend will like.
693      if (Size == 128)
694        return ABIArgInfo::getDirect(llvm::VectorType::get(
695                  llvm::Type::getInt64Ty(getVMContext()), 2));
696
697      // Always return in register if it fits in a general purpose
698      // register, or if it is 64 bits and has a single element.
699      if ((Size == 8 || Size == 16 || Size == 32) ||
700          (Size == 64 && VT->getNumElements() == 1))
701        return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),
702                                                            Size));
703
704      return ABIArgInfo::getIndirect(0);
705    }
706
707    return ABIArgInfo::getDirect();
708  }
709
710  if (isAggregateTypeForABI(RetTy)) {
711    if (const RecordType *RT = RetTy->getAs<RecordType>()) {
712      if (isRecordReturnIndirect(RT, getCXXABI()))
713        return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
714
715      // Structures with flexible arrays are always indirect.
716      if (RT->getDecl()->hasFlexibleArrayMember())
717        return ABIArgInfo::getIndirect(0);
718    }
719
720    // If specified, structs and unions are always indirect.
721    if (!IsSmallStructInRegABI && !RetTy->isAnyComplexType())
722      return ABIArgInfo::getIndirect(0);
723
724    // Small structures which are register sized are generally returned
725    // in a register.
726    if (X86_32ABIInfo::shouldReturnTypeInRegister(RetTy, getContext(),
727                                                  callingConvention)) {
728      uint64_t Size = getContext().getTypeSize(RetTy);
729
730      // As a special-case, if the struct is a "single-element" struct, and
731      // the field is of type "float" or "double", return it in a
732      // floating-point register. (MSVC does not apply this special case.)
733      // We apply a similar transformation for pointer types to improve the
734      // quality of the generated IR.
735      if (const Type *SeltTy = isSingleElementStruct(RetTy, getContext()))
736        if ((!IsWin32StructABI && SeltTy->isRealFloatingType())
737            || SeltTy->hasPointerRepresentation())
738          return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0)));
739
740      // FIXME: We should be able to narrow this integer in cases with dead
741      // padding.
742      return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),Size));
743    }
744
745    return ABIArgInfo::getIndirect(0);
746  }
747
748  // Treat an enum type as its underlying type.
749  if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
750    RetTy = EnumTy->getDecl()->getIntegerType();
751
752  return (RetTy->isPromotableIntegerType() ?
753          ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
754}
755
756static bool isSSEVectorType(ASTContext &Context, QualType Ty) {
757  return Ty->getAs<VectorType>() && Context.getTypeSize(Ty) == 128;
758}
759
760static bool isRecordWithSSEVectorType(ASTContext &Context, QualType Ty) {
761  const RecordType *RT = Ty->getAs<RecordType>();
762  if (!RT)
763    return 0;
764  const RecordDecl *RD = RT->getDecl();
765
766  // If this is a C++ record, check the bases first.
767  if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD))
768    for (CXXRecordDecl::base_class_const_iterator i = CXXRD->bases_begin(),
769           e = CXXRD->bases_end(); i != e; ++i)
770      if (!isRecordWithSSEVectorType(Context, i->getType()))
771        return false;
772
773  for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
774       i != e; ++i) {
775    QualType FT = i->getType();
776
777    if (isSSEVectorType(Context, FT))
778      return true;
779
780    if (isRecordWithSSEVectorType(Context, FT))
781      return true;
782  }
783
784  return false;
785}
786
787unsigned X86_32ABIInfo::getTypeStackAlignInBytes(QualType Ty,
788                                                 unsigned Align) const {
789  // Otherwise, if the alignment is less than or equal to the minimum ABI
790  // alignment, just use the default; the backend will handle this.
791  if (Align <= MinABIStackAlignInBytes)
792    return 0; // Use default alignment.
793
794  // On non-Darwin, the stack type alignment is always 4.
795  if (!IsDarwinVectorABI) {
796    // Set explicit alignment, since we may need to realign the top.
797    return MinABIStackAlignInBytes;
798  }
799
800  // Otherwise, if the type contains an SSE vector type, the alignment is 16.
801  if (Align >= 16 && (isSSEVectorType(getContext(), Ty) ||
802                      isRecordWithSSEVectorType(getContext(), Ty)))
803    return 16;
804
805  return MinABIStackAlignInBytes;
806}
807
808ABIArgInfo X86_32ABIInfo::getIndirectResult(QualType Ty, bool ByVal,
809                                            unsigned &FreeRegs) const {
810  if (!ByVal) {
811    if (FreeRegs) {
812      --FreeRegs; // Non byval indirects just use one pointer.
813      return ABIArgInfo::getIndirectInReg(0, false);
814    }
815    return ABIArgInfo::getIndirect(0, false);
816  }
817
818  // Compute the byval alignment.
819  unsigned TypeAlign = getContext().getTypeAlign(Ty) / 8;
820  unsigned StackAlign = getTypeStackAlignInBytes(Ty, TypeAlign);
821  if (StackAlign == 0)
822    return ABIArgInfo::getIndirect(4);
823
824  // If the stack alignment is less than the type alignment, realign the
825  // argument.
826  if (StackAlign < TypeAlign)
827    return ABIArgInfo::getIndirect(StackAlign, /*ByVal=*/true,
828                                   /*Realign=*/true);
829
830  return ABIArgInfo::getIndirect(StackAlign);
831}
832
833X86_32ABIInfo::Class X86_32ABIInfo::classify(QualType Ty) const {
834  const Type *T = isSingleElementStruct(Ty, getContext());
835  if (!T)
836    T = Ty.getTypePtr();
837
838  if (const BuiltinType *BT = T->getAs<BuiltinType>()) {
839    BuiltinType::Kind K = BT->getKind();
840    if (K == BuiltinType::Float || K == BuiltinType::Double)
841      return Float;
842  }
843  return Integer;
844}
845
846bool X86_32ABIInfo::shouldUseInReg(QualType Ty, unsigned &FreeRegs,
847                                   bool IsFastCall, bool &NeedsPadding) const {
848  NeedsPadding = false;
849  Class C = classify(Ty);
850  if (C == Float)
851    return false;
852
853  unsigned Size = getContext().getTypeSize(Ty);
854  unsigned SizeInRegs = (Size + 31) / 32;
855
856  if (SizeInRegs == 0)
857    return false;
858
859  if (SizeInRegs > FreeRegs) {
860    FreeRegs = 0;
861    return false;
862  }
863
864  FreeRegs -= SizeInRegs;
865
866  if (IsFastCall) {
867    if (Size > 32)
868      return false;
869
870    if (Ty->isIntegralOrEnumerationType())
871      return true;
872
873    if (Ty->isPointerType())
874      return true;
875
876    if (Ty->isReferenceType())
877      return true;
878
879    if (FreeRegs)
880      NeedsPadding = true;
881
882    return false;
883  }
884
885  return true;
886}
887
888ABIArgInfo X86_32ABIInfo::classifyArgumentType(QualType Ty,
889                                               unsigned &FreeRegs,
890                                               bool IsFastCall) const {
891  // FIXME: Set alignment on indirect arguments.
892  if (isAggregateTypeForABI(Ty)) {
893    if (const RecordType *RT = Ty->getAs<RecordType>()) {
894      if (IsWin32StructABI)
895        return getIndirectResult(Ty, true, FreeRegs);
896
897      if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(RT, getCXXABI()))
898        return getIndirectResult(Ty, RAA == CGCXXABI::RAA_DirectInMemory, FreeRegs);
899
900      // Structures with flexible arrays are always indirect.
901      if (RT->getDecl()->hasFlexibleArrayMember())
902        return getIndirectResult(Ty, true, FreeRegs);
903    }
904
905    // Ignore empty structs/unions.
906    if (isEmptyRecord(getContext(), Ty, true))
907      return ABIArgInfo::getIgnore();
908
909    llvm::LLVMContext &LLVMContext = getVMContext();
910    llvm::IntegerType *Int32 = llvm::Type::getInt32Ty(LLVMContext);
911    bool NeedsPadding;
912    if (shouldUseInReg(Ty, FreeRegs, IsFastCall, NeedsPadding)) {
913      unsigned SizeInRegs = (getContext().getTypeSize(Ty) + 31) / 32;
914      SmallVector<llvm::Type*, 3> Elements(SizeInRegs, Int32);
915      llvm::Type *Result = llvm::StructType::get(LLVMContext, Elements);
916      return ABIArgInfo::getDirectInReg(Result);
917    }
918    llvm::IntegerType *PaddingType = NeedsPadding ? Int32 : 0;
919
920    // Expand small (<= 128-bit) record types when we know that the stack layout
921    // of those arguments will match the struct. This is important because the
922    // LLVM backend isn't smart enough to remove byval, which inhibits many
923    // optimizations.
924    if (getContext().getTypeSize(Ty) <= 4*32 &&
925        canExpandIndirectArgument(Ty, getContext()))
926      return ABIArgInfo::getExpandWithPadding(IsFastCall, PaddingType);
927
928    return getIndirectResult(Ty, true, FreeRegs);
929  }
930
931  if (const VectorType *VT = Ty->getAs<VectorType>()) {
932    // On Darwin, some vectors are passed in memory, we handle this by passing
933    // it as an i8/i16/i32/i64.
934    if (IsDarwinVectorABI) {
935      uint64_t Size = getContext().getTypeSize(Ty);
936      if ((Size == 8 || Size == 16 || Size == 32) ||
937          (Size == 64 && VT->getNumElements() == 1))
938        return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),
939                                                            Size));
940    }
941
942    if (IsX86_MMXType(CGT.ConvertType(Ty)))
943      return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), 64));
944
945    return ABIArgInfo::getDirect();
946  }
947
948
949  if (const EnumType *EnumTy = Ty->getAs<EnumType>())
950    Ty = EnumTy->getDecl()->getIntegerType();
951
952  bool NeedsPadding;
953  bool InReg = shouldUseInReg(Ty, FreeRegs, IsFastCall, NeedsPadding);
954
955  if (Ty->isPromotableIntegerType()) {
956    if (InReg)
957      return ABIArgInfo::getExtendInReg();
958    return ABIArgInfo::getExtend();
959  }
960  if (InReg)
961    return ABIArgInfo::getDirectInReg();
962  return ABIArgInfo::getDirect();
963}
964
965void X86_32ABIInfo::computeInfo(CGFunctionInfo &FI) const {
966  FI.getReturnInfo() = classifyReturnType(FI.getReturnType(),
967                                          FI.getCallingConvention());
968
969  unsigned CC = FI.getCallingConvention();
970  bool IsFastCall = CC == llvm::CallingConv::X86_FastCall;
971  unsigned FreeRegs;
972  if (IsFastCall)
973    FreeRegs = 2;
974  else if (FI.getHasRegParm())
975    FreeRegs = FI.getRegParm();
976  else
977    FreeRegs = DefaultNumRegisterParameters;
978
979  // If the return value is indirect, then the hidden argument is consuming one
980  // integer register.
981  if (FI.getReturnInfo().isIndirect() && FreeRegs) {
982    --FreeRegs;
983    ABIArgInfo &Old = FI.getReturnInfo();
984    Old = ABIArgInfo::getIndirectInReg(Old.getIndirectAlign(),
985                                       Old.getIndirectByVal(),
986                                       Old.getIndirectRealign());
987  }
988
989  for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
990       it != ie; ++it)
991    it->info = classifyArgumentType(it->type, FreeRegs, IsFastCall);
992}
993
994llvm::Value *X86_32ABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
995                                      CodeGenFunction &CGF) const {
996  llvm::Type *BPP = CGF.Int8PtrPtrTy;
997
998  CGBuilderTy &Builder = CGF.Builder;
999  llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP,
1000                                                       "ap");
1001  llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur");
1002
1003  // Compute if the address needs to be aligned
1004  unsigned Align = CGF.getContext().getTypeAlignInChars(Ty).getQuantity();
1005  Align = getTypeStackAlignInBytes(Ty, Align);
1006  Align = std::max(Align, 4U);
1007  if (Align > 4) {
1008    // addr = (addr + align - 1) & -align;
1009    llvm::Value *Offset =
1010      llvm::ConstantInt::get(CGF.Int32Ty, Align - 1);
1011    Addr = CGF.Builder.CreateGEP(Addr, Offset);
1012    llvm::Value *AsInt = CGF.Builder.CreatePtrToInt(Addr,
1013                                                    CGF.Int32Ty);
1014    llvm::Value *Mask = llvm::ConstantInt::get(CGF.Int32Ty, -Align);
1015    Addr = CGF.Builder.CreateIntToPtr(CGF.Builder.CreateAnd(AsInt, Mask),
1016                                      Addr->getType(),
1017                                      "ap.cur.aligned");
1018  }
1019
1020  llvm::Type *PTy =
1021    llvm::PointerType::getUnqual(CGF.ConvertType(Ty));
1022  llvm::Value *AddrTyped = Builder.CreateBitCast(Addr, PTy);
1023
1024  uint64_t Offset =
1025    llvm::RoundUpToAlignment(CGF.getContext().getTypeSize(Ty) / 8, Align);
1026  llvm::Value *NextAddr =
1027    Builder.CreateGEP(Addr, llvm::ConstantInt::get(CGF.Int32Ty, Offset),
1028                      "ap.next");
1029  Builder.CreateStore(NextAddr, VAListAddrAsBPP);
1030
1031  return AddrTyped;
1032}
1033
1034void X86_32TargetCodeGenInfo::SetTargetAttributes(const Decl *D,
1035                                                  llvm::GlobalValue *GV,
1036                                            CodeGen::CodeGenModule &CGM) const {
1037  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
1038    if (FD->hasAttr<X86ForceAlignArgPointerAttr>()) {
1039      // Get the LLVM function.
1040      llvm::Function *Fn = cast<llvm::Function>(GV);
1041
1042      // Now add the 'alignstack' attribute with a value of 16.
1043      llvm::AttrBuilder B;
1044      B.addStackAlignmentAttr(16);
1045      Fn->addAttributes(llvm::AttributeSet::FunctionIndex,
1046                      llvm::AttributeSet::get(CGM.getLLVMContext(),
1047                                              llvm::AttributeSet::FunctionIndex,
1048                                              B));
1049    }
1050  }
1051}
1052
1053bool X86_32TargetCodeGenInfo::initDwarfEHRegSizeTable(
1054                                               CodeGen::CodeGenFunction &CGF,
1055                                               llvm::Value *Address) const {
1056  CodeGen::CGBuilderTy &Builder = CGF.Builder;
1057
1058  llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4);
1059
1060  // 0-7 are the eight integer registers;  the order is different
1061  //   on Darwin (for EH), but the range is the same.
1062  // 8 is %eip.
1063  AssignToArrayRange(Builder, Address, Four8, 0, 8);
1064
1065  if (CGF.CGM.getTarget().getTriple().isOSDarwin()) {
1066    // 12-16 are st(0..4).  Not sure why we stop at 4.
1067    // These have size 16, which is sizeof(long double) on
1068    // platforms with 8-byte alignment for that type.
1069    llvm::Value *Sixteen8 = llvm::ConstantInt::get(CGF.Int8Ty, 16);
1070    AssignToArrayRange(Builder, Address, Sixteen8, 12, 16);
1071
1072  } else {
1073    // 9 is %eflags, which doesn't get a size on Darwin for some
1074    // reason.
1075    Builder.CreateStore(Four8, Builder.CreateConstInBoundsGEP1_32(Address, 9));
1076
1077    // 11-16 are st(0..5).  Not sure why we stop at 5.
1078    // These have size 12, which is sizeof(long double) on
1079    // platforms with 4-byte alignment for that type.
1080    llvm::Value *Twelve8 = llvm::ConstantInt::get(CGF.Int8Ty, 12);
1081    AssignToArrayRange(Builder, Address, Twelve8, 11, 16);
1082  }
1083
1084  return false;
1085}
1086
1087//===----------------------------------------------------------------------===//
1088// X86-64 ABI Implementation
1089//===----------------------------------------------------------------------===//
1090
1091
1092namespace {
1093/// X86_64ABIInfo - The X86_64 ABI information.
1094class X86_64ABIInfo : public ABIInfo {
1095  enum Class {
1096    Integer = 0,
1097    SSE,
1098    SSEUp,
1099    X87,
1100    X87Up,
1101    ComplexX87,
1102    NoClass,
1103    Memory
1104  };
1105
1106  /// merge - Implement the X86_64 ABI merging algorithm.
1107  ///
1108  /// Merge an accumulating classification \arg Accum with a field
1109  /// classification \arg Field.
1110  ///
1111  /// \param Accum - The accumulating classification. This should
1112  /// always be either NoClass or the result of a previous merge
1113  /// call. In addition, this should never be Memory (the caller
1114  /// should just return Memory for the aggregate).
1115  static Class merge(Class Accum, Class Field);
1116
1117  /// postMerge - Implement the X86_64 ABI post merging algorithm.
1118  ///
1119  /// Post merger cleanup, reduces a malformed Hi and Lo pair to
1120  /// final MEMORY or SSE classes when necessary.
1121  ///
1122  /// \param AggregateSize - The size of the current aggregate in
1123  /// the classification process.
1124  ///
1125  /// \param Lo - The classification for the parts of the type
1126  /// residing in the low word of the containing object.
1127  ///
1128  /// \param Hi - The classification for the parts of the type
1129  /// residing in the higher words of the containing object.
1130  ///
1131  void postMerge(unsigned AggregateSize, Class &Lo, Class &Hi) const;
1132
1133  /// classify - Determine the x86_64 register classes in which the
1134  /// given type T should be passed.
1135  ///
1136  /// \param Lo - The classification for the parts of the type
1137  /// residing in the low word of the containing object.
1138  ///
1139  /// \param Hi - The classification for the parts of the type
1140  /// residing in the high word of the containing object.
1141  ///
1142  /// \param OffsetBase - The bit offset of this type in the
1143  /// containing object.  Some parameters are classified different
1144  /// depending on whether they straddle an eightbyte boundary.
1145  ///
1146  /// \param isNamedArg - Whether the argument in question is a "named"
1147  /// argument, as used in AMD64-ABI 3.5.7.
1148  ///
1149  /// If a word is unused its result will be NoClass; if a type should
1150  /// be passed in Memory then at least the classification of \arg Lo
1151  /// will be Memory.
1152  ///
1153  /// The \arg Lo class will be NoClass iff the argument is ignored.
1154  ///
1155  /// If the \arg Lo class is ComplexX87, then the \arg Hi class will
1156  /// also be ComplexX87.
1157  void classify(QualType T, uint64_t OffsetBase, Class &Lo, Class &Hi,
1158                bool isNamedArg) const;
1159
1160  llvm::Type *GetByteVectorType(QualType Ty) const;
1161  llvm::Type *GetSSETypeAtOffset(llvm::Type *IRType,
1162                                 unsigned IROffset, QualType SourceTy,
1163                                 unsigned SourceOffset) const;
1164  llvm::Type *GetINTEGERTypeAtOffset(llvm::Type *IRType,
1165                                     unsigned IROffset, QualType SourceTy,
1166                                     unsigned SourceOffset) const;
1167
1168  /// getIndirectResult - Give a source type \arg Ty, return a suitable result
1169  /// such that the argument will be returned in memory.
1170  ABIArgInfo getIndirectReturnResult(QualType Ty) const;
1171
1172  /// getIndirectResult - Give a source type \arg Ty, return a suitable result
1173  /// such that the argument will be passed in memory.
1174  ///
1175  /// \param freeIntRegs - The number of free integer registers remaining
1176  /// available.
1177  ABIArgInfo getIndirectResult(QualType Ty, unsigned freeIntRegs) const;
1178
1179  ABIArgInfo classifyReturnType(QualType RetTy) const;
1180
1181  ABIArgInfo classifyArgumentType(QualType Ty,
1182                                  unsigned freeIntRegs,
1183                                  unsigned &neededInt,
1184                                  unsigned &neededSSE,
1185                                  bool isNamedArg) const;
1186
1187  bool IsIllegalVectorType(QualType Ty) const;
1188
1189  /// The 0.98 ABI revision clarified a lot of ambiguities,
1190  /// unfortunately in ways that were not always consistent with
1191  /// certain previous compilers.  In particular, platforms which
1192  /// required strict binary compatibility with older versions of GCC
1193  /// may need to exempt themselves.
1194  bool honorsRevision0_98() const {
1195    return !getTarget().getTriple().isOSDarwin();
1196  }
1197
1198  bool HasAVX;
1199  // Some ABIs (e.g. X32 ABI and Native Client OS) use 32 bit pointers on
1200  // 64-bit hardware.
1201  bool Has64BitPointers;
1202
1203public:
1204  X86_64ABIInfo(CodeGen::CodeGenTypes &CGT, bool hasavx) :
1205      ABIInfo(CGT), HasAVX(hasavx),
1206      Has64BitPointers(CGT.getDataLayout().getPointerSize(0) == 8) {
1207  }
1208
1209  bool isPassedUsingAVXType(QualType type) const {
1210    unsigned neededInt, neededSSE;
1211    // The freeIntRegs argument doesn't matter here.
1212    ABIArgInfo info = classifyArgumentType(type, 0, neededInt, neededSSE,
1213                                           /*isNamedArg*/true);
1214    if (info.isDirect()) {
1215      llvm::Type *ty = info.getCoerceToType();
1216      if (llvm::VectorType *vectorTy = dyn_cast_or_null<llvm::VectorType>(ty))
1217        return (vectorTy->getBitWidth() > 128);
1218    }
1219    return false;
1220  }
1221
1222  virtual void computeInfo(CGFunctionInfo &FI) const;
1223
1224  virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
1225                                 CodeGenFunction &CGF) const;
1226};
1227
1228/// WinX86_64ABIInfo - The Windows X86_64 ABI information.
1229class WinX86_64ABIInfo : public ABIInfo {
1230
1231  ABIArgInfo classify(QualType Ty, bool IsReturnType) const;
1232
1233public:
1234  WinX86_64ABIInfo(CodeGen::CodeGenTypes &CGT) : ABIInfo(CGT) {}
1235
1236  virtual void computeInfo(CGFunctionInfo &FI) const;
1237
1238  virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
1239                                 CodeGenFunction &CGF) const;
1240};
1241
1242class X86_64TargetCodeGenInfo : public TargetCodeGenInfo {
1243public:
1244  X86_64TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, bool HasAVX)
1245      : TargetCodeGenInfo(new X86_64ABIInfo(CGT, HasAVX)) {}
1246
1247  const X86_64ABIInfo &getABIInfo() const {
1248    return static_cast<const X86_64ABIInfo&>(TargetCodeGenInfo::getABIInfo());
1249  }
1250
1251  int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const {
1252    return 7;
1253  }
1254
1255  bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
1256                               llvm::Value *Address) const {
1257    llvm::Value *Eight8 = llvm::ConstantInt::get(CGF.Int8Ty, 8);
1258
1259    // 0-15 are the 16 integer registers.
1260    // 16 is %rip.
1261    AssignToArrayRange(CGF.Builder, Address, Eight8, 0, 16);
1262    return false;
1263  }
1264
1265  llvm::Type* adjustInlineAsmType(CodeGen::CodeGenFunction &CGF,
1266                                  StringRef Constraint,
1267                                  llvm::Type* Ty) const {
1268    return X86AdjustInlineAsmType(CGF, Constraint, Ty);
1269  }
1270
1271  bool isNoProtoCallVariadic(const CallArgList &args,
1272                             const FunctionNoProtoType *fnType) const {
1273    // The default CC on x86-64 sets %al to the number of SSA
1274    // registers used, and GCC sets this when calling an unprototyped
1275    // function, so we override the default behavior.  However, don't do
1276    // that when AVX types are involved: the ABI explicitly states it is
1277    // undefined, and it doesn't work in practice because of how the ABI
1278    // defines varargs anyway.
1279    if (fnType->getCallConv() == CC_C) {
1280      bool HasAVXType = false;
1281      for (CallArgList::const_iterator
1282             it = args.begin(), ie = args.end(); it != ie; ++it) {
1283        if (getABIInfo().isPassedUsingAVXType(it->Ty)) {
1284          HasAVXType = true;
1285          break;
1286        }
1287      }
1288
1289      if (!HasAVXType)
1290        return true;
1291    }
1292
1293    return TargetCodeGenInfo::isNoProtoCallVariadic(args, fnType);
1294  }
1295
1296  llvm::Constant *getUBSanFunctionSignature(CodeGen::CodeGenModule &CGM) const {
1297    unsigned Sig = (0xeb << 0) |  // jmp rel8
1298                   (0x0a << 8) |  //           .+0x0c
1299                   ('F' << 16) |
1300                   ('T' << 24);
1301    return llvm::ConstantInt::get(CGM.Int32Ty, Sig);
1302  }
1303
1304};
1305
1306static std::string qualifyWindowsLibrary(llvm::StringRef Lib) {
1307  // If the argument does not end in .lib, automatically add the suffix. This
1308  // matches the behavior of MSVC.
1309  std::string ArgStr = Lib;
1310  if (!Lib.endswith_lower(".lib"))
1311    ArgStr += ".lib";
1312  return ArgStr;
1313}
1314
1315class WinX86_32TargetCodeGenInfo : public X86_32TargetCodeGenInfo {
1316public:
1317  WinX86_32TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT,
1318        bool d, bool p, bool w, unsigned RegParms)
1319    : X86_32TargetCodeGenInfo(CGT, d, p, w, RegParms) {}
1320
1321  void getDependentLibraryOption(llvm::StringRef Lib,
1322                                 llvm::SmallString<24> &Opt) const {
1323    Opt = "/DEFAULTLIB:";
1324    Opt += qualifyWindowsLibrary(Lib);
1325  }
1326
1327  void getDetectMismatchOption(llvm::StringRef Name,
1328                               llvm::StringRef Value,
1329                               llvm::SmallString<32> &Opt) const {
1330    Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\"";
1331  }
1332};
1333
1334class WinX86_64TargetCodeGenInfo : public TargetCodeGenInfo {
1335public:
1336  WinX86_64TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT)
1337    : TargetCodeGenInfo(new WinX86_64ABIInfo(CGT)) {}
1338
1339  int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const {
1340    return 7;
1341  }
1342
1343  bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
1344                               llvm::Value *Address) const {
1345    llvm::Value *Eight8 = llvm::ConstantInt::get(CGF.Int8Ty, 8);
1346
1347    // 0-15 are the 16 integer registers.
1348    // 16 is %rip.
1349    AssignToArrayRange(CGF.Builder, Address, Eight8, 0, 16);
1350    return false;
1351  }
1352
1353  void getDependentLibraryOption(llvm::StringRef Lib,
1354                                 llvm::SmallString<24> &Opt) const {
1355    Opt = "/DEFAULTLIB:";
1356    Opt += qualifyWindowsLibrary(Lib);
1357  }
1358
1359  void getDetectMismatchOption(llvm::StringRef Name,
1360                               llvm::StringRef Value,
1361                               llvm::SmallString<32> &Opt) const {
1362    Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\"";
1363  }
1364};
1365
1366}
1367
1368void X86_64ABIInfo::postMerge(unsigned AggregateSize, Class &Lo,
1369                              Class &Hi) const {
1370  // AMD64-ABI 3.2.3p2: Rule 5. Then a post merger cleanup is done:
1371  //
1372  // (a) If one of the classes is Memory, the whole argument is passed in
1373  //     memory.
1374  //
1375  // (b) If X87UP is not preceded by X87, the whole argument is passed in
1376  //     memory.
1377  //
1378  // (c) If the size of the aggregate exceeds two eightbytes and the first
1379  //     eightbyte isn't SSE or any other eightbyte isn't SSEUP, the whole
1380  //     argument is passed in memory. NOTE: This is necessary to keep the
1381  //     ABI working for processors that don't support the __m256 type.
1382  //
1383  // (d) If SSEUP is not preceded by SSE or SSEUP, it is converted to SSE.
1384  //
1385  // Some of these are enforced by the merging logic.  Others can arise
1386  // only with unions; for example:
1387  //   union { _Complex double; unsigned; }
1388  //
1389  // Note that clauses (b) and (c) were added in 0.98.
1390  //
1391  if (Hi == Memory)
1392    Lo = Memory;
1393  if (Hi == X87Up && Lo != X87 && honorsRevision0_98())
1394    Lo = Memory;
1395  if (AggregateSize > 128 && (Lo != SSE || Hi != SSEUp))
1396    Lo = Memory;
1397  if (Hi == SSEUp && Lo != SSE)
1398    Hi = SSE;
1399}
1400
1401X86_64ABIInfo::Class X86_64ABIInfo::merge(Class Accum, Class Field) {
1402  // AMD64-ABI 3.2.3p2: Rule 4. Each field of an object is
1403  // classified recursively so that always two fields are
1404  // considered. The resulting class is calculated according to
1405  // the classes of the fields in the eightbyte:
1406  //
1407  // (a) If both classes are equal, this is the resulting class.
1408  //
1409  // (b) If one of the classes is NO_CLASS, the resulting class is
1410  // the other class.
1411  //
1412  // (c) If one of the classes is MEMORY, the result is the MEMORY
1413  // class.
1414  //
1415  // (d) If one of the classes is INTEGER, the result is the
1416  // INTEGER.
1417  //
1418  // (e) If one of the classes is X87, X87UP, COMPLEX_X87 class,
1419  // MEMORY is used as class.
1420  //
1421  // (f) Otherwise class SSE is used.
1422
1423  // Accum should never be memory (we should have returned) or
1424  // ComplexX87 (because this cannot be passed in a structure).
1425  assert((Accum != Memory && Accum != ComplexX87) &&
1426         "Invalid accumulated classification during merge.");
1427  if (Accum == Field || Field == NoClass)
1428    return Accum;
1429  if (Field == Memory)
1430    return Memory;
1431  if (Accum == NoClass)
1432    return Field;
1433  if (Accum == Integer || Field == Integer)
1434    return Integer;
1435  if (Field == X87 || Field == X87Up || Field == ComplexX87 ||
1436      Accum == X87 || Accum == X87Up)
1437    return Memory;
1438  return SSE;
1439}
1440
1441void X86_64ABIInfo::classify(QualType Ty, uint64_t OffsetBase,
1442                             Class &Lo, Class &Hi, bool isNamedArg) const {
1443  // FIXME: This code can be simplified by introducing a simple value class for
1444  // Class pairs with appropriate constructor methods for the various
1445  // situations.
1446
1447  // FIXME: Some of the split computations are wrong; unaligned vectors
1448  // shouldn't be passed in registers for example, so there is no chance they
1449  // can straddle an eightbyte. Verify & simplify.
1450
1451  Lo = Hi = NoClass;
1452
1453  Class &Current = OffsetBase < 64 ? Lo : Hi;
1454  Current = Memory;
1455
1456  if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) {
1457    BuiltinType::Kind k = BT->getKind();
1458
1459    if (k == BuiltinType::Void) {
1460      Current = NoClass;
1461    } else if (k == BuiltinType::Int128 || k == BuiltinType::UInt128) {
1462      Lo = Integer;
1463      Hi = Integer;
1464    } else if (k >= BuiltinType::Bool && k <= BuiltinType::LongLong) {
1465      Current = Integer;
1466    } else if ((k == BuiltinType::Float || k == BuiltinType::Double) ||
1467               (k == BuiltinType::LongDouble &&
1468                getTarget().getTriple().isOSNaCl())) {
1469      Current = SSE;
1470    } else if (k == BuiltinType::LongDouble) {
1471      Lo = X87;
1472      Hi = X87Up;
1473    }
1474    // FIXME: _Decimal32 and _Decimal64 are SSE.
1475    // FIXME: _float128 and _Decimal128 are (SSE, SSEUp).
1476    return;
1477  }
1478
1479  if (const EnumType *ET = Ty->getAs<EnumType>()) {
1480    // Classify the underlying integer type.
1481    classify(ET->getDecl()->getIntegerType(), OffsetBase, Lo, Hi, isNamedArg);
1482    return;
1483  }
1484
1485  if (Ty->hasPointerRepresentation()) {
1486    Current = Integer;
1487    return;
1488  }
1489
1490  if (Ty->isMemberPointerType()) {
1491    if (Ty->isMemberFunctionPointerType() && Has64BitPointers)
1492      Lo = Hi = Integer;
1493    else
1494      Current = Integer;
1495    return;
1496  }
1497
1498  if (const VectorType *VT = Ty->getAs<VectorType>()) {
1499    uint64_t Size = getContext().getTypeSize(VT);
1500    if (Size == 32) {
1501      // gcc passes all <4 x char>, <2 x short>, <1 x int>, <1 x
1502      // float> as integer.
1503      Current = Integer;
1504
1505      // If this type crosses an eightbyte boundary, it should be
1506      // split.
1507      uint64_t EB_Real = (OffsetBase) / 64;
1508      uint64_t EB_Imag = (OffsetBase + Size - 1) / 64;
1509      if (EB_Real != EB_Imag)
1510        Hi = Lo;
1511    } else if (Size == 64) {
1512      // gcc passes <1 x double> in memory. :(
1513      if (VT->getElementType()->isSpecificBuiltinType(BuiltinType::Double))
1514        return;
1515
1516      // gcc passes <1 x long long> as INTEGER.
1517      if (VT->getElementType()->isSpecificBuiltinType(BuiltinType::LongLong) ||
1518          VT->getElementType()->isSpecificBuiltinType(BuiltinType::ULongLong) ||
1519          VT->getElementType()->isSpecificBuiltinType(BuiltinType::Long) ||
1520          VT->getElementType()->isSpecificBuiltinType(BuiltinType::ULong))
1521        Current = Integer;
1522      else
1523        Current = SSE;
1524
1525      // If this type crosses an eightbyte boundary, it should be
1526      // split.
1527      if (OffsetBase && OffsetBase != 64)
1528        Hi = Lo;
1529    } else if (Size == 128 || (HasAVX && isNamedArg && Size == 256)) {
1530      // Arguments of 256-bits are split into four eightbyte chunks. The
1531      // least significant one belongs to class SSE and all the others to class
1532      // SSEUP. The original Lo and Hi design considers that types can't be
1533      // greater than 128-bits, so a 64-bit split in Hi and Lo makes sense.
1534      // This design isn't correct for 256-bits, but since there're no cases
1535      // where the upper parts would need to be inspected, avoid adding
1536      // complexity and just consider Hi to match the 64-256 part.
1537      //
1538      // Note that per 3.5.7 of AMD64-ABI, 256-bit args are only passed in
1539      // registers if they are "named", i.e. not part of the "..." of a
1540      // variadic function.
1541      Lo = SSE;
1542      Hi = SSEUp;
1543    }
1544    return;
1545  }
1546
1547  if (const ComplexType *CT = Ty->getAs<ComplexType>()) {
1548    QualType ET = getContext().getCanonicalType(CT->getElementType());
1549
1550    uint64_t Size = getContext().getTypeSize(Ty);
1551    if (ET->isIntegralOrEnumerationType()) {
1552      if (Size <= 64)
1553        Current = Integer;
1554      else if (Size <= 128)
1555        Lo = Hi = Integer;
1556    } else if (ET == getContext().FloatTy)
1557      Current = SSE;
1558    else if (ET == getContext().DoubleTy ||
1559             (ET == getContext().LongDoubleTy &&
1560              getTarget().getTriple().isOSNaCl()))
1561      Lo = Hi = SSE;
1562    else if (ET == getContext().LongDoubleTy)
1563      Current = ComplexX87;
1564
1565    // If this complex type crosses an eightbyte boundary then it
1566    // should be split.
1567    uint64_t EB_Real = (OffsetBase) / 64;
1568    uint64_t EB_Imag = (OffsetBase + getContext().getTypeSize(ET)) / 64;
1569    if (Hi == NoClass && EB_Real != EB_Imag)
1570      Hi = Lo;
1571
1572    return;
1573  }
1574
1575  if (const ConstantArrayType *AT = getContext().getAsConstantArrayType(Ty)) {
1576    // Arrays are treated like structures.
1577
1578    uint64_t Size = getContext().getTypeSize(Ty);
1579
1580    // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger
1581    // than four eightbytes, ..., it has class MEMORY.
1582    if (Size > 256)
1583      return;
1584
1585    // AMD64-ABI 3.2.3p2: Rule 1. If ..., or it contains unaligned
1586    // fields, it has class MEMORY.
1587    //
1588    // Only need to check alignment of array base.
1589    if (OffsetBase % getContext().getTypeAlign(AT->getElementType()))
1590      return;
1591
1592    // Otherwise implement simplified merge. We could be smarter about
1593    // this, but it isn't worth it and would be harder to verify.
1594    Current = NoClass;
1595    uint64_t EltSize = getContext().getTypeSize(AT->getElementType());
1596    uint64_t ArraySize = AT->getSize().getZExtValue();
1597
1598    // The only case a 256-bit wide vector could be used is when the array
1599    // contains a single 256-bit element. Since Lo and Hi logic isn't extended
1600    // to work for sizes wider than 128, early check and fallback to memory.
1601    if (Size > 128 && EltSize != 256)
1602      return;
1603
1604    for (uint64_t i=0, Offset=OffsetBase; i<ArraySize; ++i, Offset += EltSize) {
1605      Class FieldLo, FieldHi;
1606      classify(AT->getElementType(), Offset, FieldLo, FieldHi, isNamedArg);
1607      Lo = merge(Lo, FieldLo);
1608      Hi = merge(Hi, FieldHi);
1609      if (Lo == Memory || Hi == Memory)
1610        break;
1611    }
1612
1613    postMerge(Size, Lo, Hi);
1614    assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp array classification.");
1615    return;
1616  }
1617
1618  if (const RecordType *RT = Ty->getAs<RecordType>()) {
1619    uint64_t Size = getContext().getTypeSize(Ty);
1620
1621    // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger
1622    // than four eightbytes, ..., it has class MEMORY.
1623    if (Size > 256)
1624      return;
1625
1626    // AMD64-ABI 3.2.3p2: Rule 2. If a C++ object has either a non-trivial
1627    // copy constructor or a non-trivial destructor, it is passed by invisible
1628    // reference.
1629    if (getRecordArgABI(RT, getCXXABI()))
1630      return;
1631
1632    const RecordDecl *RD = RT->getDecl();
1633
1634    // Assume variable sized types are passed in memory.
1635    if (RD->hasFlexibleArrayMember())
1636      return;
1637
1638    const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD);
1639
1640    // Reset Lo class, this will be recomputed.
1641    Current = NoClass;
1642
1643    // If this is a C++ record, classify the bases first.
1644    if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
1645      for (CXXRecordDecl::base_class_const_iterator i = CXXRD->bases_begin(),
1646             e = CXXRD->bases_end(); i != e; ++i) {
1647        assert(!i->isVirtual() && !i->getType()->isDependentType() &&
1648               "Unexpected base class!");
1649        const CXXRecordDecl *Base =
1650          cast<CXXRecordDecl>(i->getType()->getAs<RecordType>()->getDecl());
1651
1652        // Classify this field.
1653        //
1654        // AMD64-ABI 3.2.3p2: Rule 3. If the size of the aggregate exceeds a
1655        // single eightbyte, each is classified separately. Each eightbyte gets
1656        // initialized to class NO_CLASS.
1657        Class FieldLo, FieldHi;
1658        uint64_t Offset =
1659          OffsetBase + getContext().toBits(Layout.getBaseClassOffset(Base));
1660        classify(i->getType(), Offset, FieldLo, FieldHi, isNamedArg);
1661        Lo = merge(Lo, FieldLo);
1662        Hi = merge(Hi, FieldHi);
1663        if (Lo == Memory || Hi == Memory)
1664          break;
1665      }
1666    }
1667
1668    // Classify the fields one at a time, merging the results.
1669    unsigned idx = 0;
1670    for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
1671           i != e; ++i, ++idx) {
1672      uint64_t Offset = OffsetBase + Layout.getFieldOffset(idx);
1673      bool BitField = i->isBitField();
1674
1675      // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger than
1676      // four eightbytes, or it contains unaligned fields, it has class MEMORY.
1677      //
1678      // The only case a 256-bit wide vector could be used is when the struct
1679      // contains a single 256-bit element. Since Lo and Hi logic isn't extended
1680      // to work for sizes wider than 128, early check and fallback to memory.
1681      //
1682      if (Size > 128 && getContext().getTypeSize(i->getType()) != 256) {
1683        Lo = Memory;
1684        return;
1685      }
1686      // Note, skip this test for bit-fields, see below.
1687      if (!BitField && Offset % getContext().getTypeAlign(i->getType())) {
1688        Lo = Memory;
1689        return;
1690      }
1691
1692      // Classify this field.
1693      //
1694      // AMD64-ABI 3.2.3p2: Rule 3. If the size of the aggregate
1695      // exceeds a single eightbyte, each is classified
1696      // separately. Each eightbyte gets initialized to class
1697      // NO_CLASS.
1698      Class FieldLo, FieldHi;
1699
1700      // Bit-fields require special handling, they do not force the
1701      // structure to be passed in memory even if unaligned, and
1702      // therefore they can straddle an eightbyte.
1703      if (BitField) {
1704        // Ignore padding bit-fields.
1705        if (i->isUnnamedBitfield())
1706          continue;
1707
1708        uint64_t Offset = OffsetBase + Layout.getFieldOffset(idx);
1709        uint64_t Size = i->getBitWidthValue(getContext());
1710
1711        uint64_t EB_Lo = Offset / 64;
1712        uint64_t EB_Hi = (Offset + Size - 1) / 64;
1713
1714        if (EB_Lo) {
1715          assert(EB_Hi == EB_Lo && "Invalid classification, type > 16 bytes.");
1716          FieldLo = NoClass;
1717          FieldHi = Integer;
1718        } else {
1719          FieldLo = Integer;
1720          FieldHi = EB_Hi ? Integer : NoClass;
1721        }
1722      } else
1723        classify(i->getType(), Offset, FieldLo, FieldHi, isNamedArg);
1724      Lo = merge(Lo, FieldLo);
1725      Hi = merge(Hi, FieldHi);
1726      if (Lo == Memory || Hi == Memory)
1727        break;
1728    }
1729
1730    postMerge(Size, Lo, Hi);
1731  }
1732}
1733
1734ABIArgInfo X86_64ABIInfo::getIndirectReturnResult(QualType Ty) const {
1735  // If this is a scalar LLVM value then assume LLVM will pass it in the right
1736  // place naturally.
1737  if (!isAggregateTypeForABI(Ty)) {
1738    // Treat an enum type as its underlying type.
1739    if (const EnumType *EnumTy = Ty->getAs<EnumType>())
1740      Ty = EnumTy->getDecl()->getIntegerType();
1741
1742    return (Ty->isPromotableIntegerType() ?
1743            ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
1744  }
1745
1746  return ABIArgInfo::getIndirect(0);
1747}
1748
1749bool X86_64ABIInfo::IsIllegalVectorType(QualType Ty) const {
1750  if (const VectorType *VecTy = Ty->getAs<VectorType>()) {
1751    uint64_t Size = getContext().getTypeSize(VecTy);
1752    unsigned LargestVector = HasAVX ? 256 : 128;
1753    if (Size <= 64 || Size > LargestVector)
1754      return true;
1755  }
1756
1757  return false;
1758}
1759
1760ABIArgInfo X86_64ABIInfo::getIndirectResult(QualType Ty,
1761                                            unsigned freeIntRegs) const {
1762  // If this is a scalar LLVM value then assume LLVM will pass it in the right
1763  // place naturally.
1764  //
1765  // This assumption is optimistic, as there could be free registers available
1766  // when we need to pass this argument in memory, and LLVM could try to pass
1767  // the argument in the free register. This does not seem to happen currently,
1768  // but this code would be much safer if we could mark the argument with
1769  // 'onstack'. See PR12193.
1770  if (!isAggregateTypeForABI(Ty) && !IsIllegalVectorType(Ty)) {
1771    // Treat an enum type as its underlying type.
1772    if (const EnumType *EnumTy = Ty->getAs<EnumType>())
1773      Ty = EnumTy->getDecl()->getIntegerType();
1774
1775    return (Ty->isPromotableIntegerType() ?
1776            ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
1777  }
1778
1779  if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
1780    return ABIArgInfo::getIndirect(0, RAA == CGCXXABI::RAA_DirectInMemory);
1781
1782  // Compute the byval alignment. We specify the alignment of the byval in all
1783  // cases so that the mid-level optimizer knows the alignment of the byval.
1784  unsigned Align = std::max(getContext().getTypeAlign(Ty) / 8, 8U);
1785
1786  // Attempt to avoid passing indirect results using byval when possible. This
1787  // is important for good codegen.
1788  //
1789  // We do this by coercing the value into a scalar type which the backend can
1790  // handle naturally (i.e., without using byval).
1791  //
1792  // For simplicity, we currently only do this when we have exhausted all of the
1793  // free integer registers. Doing this when there are free integer registers
1794  // would require more care, as we would have to ensure that the coerced value
1795  // did not claim the unused register. That would require either reording the
1796  // arguments to the function (so that any subsequent inreg values came first),
1797  // or only doing this optimization when there were no following arguments that
1798  // might be inreg.
1799  //
1800  // We currently expect it to be rare (particularly in well written code) for
1801  // arguments to be passed on the stack when there are still free integer
1802  // registers available (this would typically imply large structs being passed
1803  // by value), so this seems like a fair tradeoff for now.
1804  //
1805  // We can revisit this if the backend grows support for 'onstack' parameter
1806  // attributes. See PR12193.
1807  if (freeIntRegs == 0) {
1808    uint64_t Size = getContext().getTypeSize(Ty);
1809
1810    // If this type fits in an eightbyte, coerce it into the matching integral
1811    // type, which will end up on the stack (with alignment 8).
1812    if (Align == 8 && Size <= 64)
1813      return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),
1814                                                          Size));
1815  }
1816
1817  return ABIArgInfo::getIndirect(Align);
1818}
1819
1820/// GetByteVectorType - The ABI specifies that a value should be passed in an
1821/// full vector XMM/YMM register.  Pick an LLVM IR type that will be passed as a
1822/// vector register.
1823llvm::Type *X86_64ABIInfo::GetByteVectorType(QualType Ty) const {
1824  llvm::Type *IRType = CGT.ConvertType(Ty);
1825
1826  // Wrapper structs that just contain vectors are passed just like vectors,
1827  // strip them off if present.
1828  llvm::StructType *STy = dyn_cast<llvm::StructType>(IRType);
1829  while (STy && STy->getNumElements() == 1) {
1830    IRType = STy->getElementType(0);
1831    STy = dyn_cast<llvm::StructType>(IRType);
1832  }
1833
1834  // If the preferred type is a 16-byte vector, prefer to pass it.
1835  if (llvm::VectorType *VT = dyn_cast<llvm::VectorType>(IRType)){
1836    llvm::Type *EltTy = VT->getElementType();
1837    unsigned BitWidth = VT->getBitWidth();
1838    if ((BitWidth >= 128 && BitWidth <= 256) &&
1839        (EltTy->isFloatTy() || EltTy->isDoubleTy() ||
1840         EltTy->isIntegerTy(8) || EltTy->isIntegerTy(16) ||
1841         EltTy->isIntegerTy(32) || EltTy->isIntegerTy(64) ||
1842         EltTy->isIntegerTy(128)))
1843      return VT;
1844  }
1845
1846  return llvm::VectorType::get(llvm::Type::getDoubleTy(getVMContext()), 2);
1847}
1848
1849/// BitsContainNoUserData - Return true if the specified [start,end) bit range
1850/// is known to either be off the end of the specified type or being in
1851/// alignment padding.  The user type specified is known to be at most 128 bits
1852/// in size, and have passed through X86_64ABIInfo::classify with a successful
1853/// classification that put one of the two halves in the INTEGER class.
1854///
1855/// It is conservatively correct to return false.
1856static bool BitsContainNoUserData(QualType Ty, unsigned StartBit,
1857                                  unsigned EndBit, ASTContext &Context) {
1858  // If the bytes being queried are off the end of the type, there is no user
1859  // data hiding here.  This handles analysis of builtins, vectors and other
1860  // types that don't contain interesting padding.
1861  unsigned TySize = (unsigned)Context.getTypeSize(Ty);
1862  if (TySize <= StartBit)
1863    return true;
1864
1865  if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty)) {
1866    unsigned EltSize = (unsigned)Context.getTypeSize(AT->getElementType());
1867    unsigned NumElts = (unsigned)AT->getSize().getZExtValue();
1868
1869    // Check each element to see if the element overlaps with the queried range.
1870    for (unsigned i = 0; i != NumElts; ++i) {
1871      // If the element is after the span we care about, then we're done..
1872      unsigned EltOffset = i*EltSize;
1873      if (EltOffset >= EndBit) break;
1874
1875      unsigned EltStart = EltOffset < StartBit ? StartBit-EltOffset :0;
1876      if (!BitsContainNoUserData(AT->getElementType(), EltStart,
1877                                 EndBit-EltOffset, Context))
1878        return false;
1879    }
1880    // If it overlaps no elements, then it is safe to process as padding.
1881    return true;
1882  }
1883
1884  if (const RecordType *RT = Ty->getAs<RecordType>()) {
1885    const RecordDecl *RD = RT->getDecl();
1886    const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
1887
1888    // If this is a C++ record, check the bases first.
1889    if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
1890      for (CXXRecordDecl::base_class_const_iterator i = CXXRD->bases_begin(),
1891           e = CXXRD->bases_end(); i != e; ++i) {
1892        assert(!i->isVirtual() && !i->getType()->isDependentType() &&
1893               "Unexpected base class!");
1894        const CXXRecordDecl *Base =
1895          cast<CXXRecordDecl>(i->getType()->getAs<RecordType>()->getDecl());
1896
1897        // If the base is after the span we care about, ignore it.
1898        unsigned BaseOffset = Context.toBits(Layout.getBaseClassOffset(Base));
1899        if (BaseOffset >= EndBit) continue;
1900
1901        unsigned BaseStart = BaseOffset < StartBit ? StartBit-BaseOffset :0;
1902        if (!BitsContainNoUserData(i->getType(), BaseStart,
1903                                   EndBit-BaseOffset, Context))
1904          return false;
1905      }
1906    }
1907
1908    // Verify that no field has data that overlaps the region of interest.  Yes
1909    // this could be sped up a lot by being smarter about queried fields,
1910    // however we're only looking at structs up to 16 bytes, so we don't care
1911    // much.
1912    unsigned idx = 0;
1913    for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
1914         i != e; ++i, ++idx) {
1915      unsigned FieldOffset = (unsigned)Layout.getFieldOffset(idx);
1916
1917      // If we found a field after the region we care about, then we're done.
1918      if (FieldOffset >= EndBit) break;
1919
1920      unsigned FieldStart = FieldOffset < StartBit ? StartBit-FieldOffset :0;
1921      if (!BitsContainNoUserData(i->getType(), FieldStart, EndBit-FieldOffset,
1922                                 Context))
1923        return false;
1924    }
1925
1926    // If nothing in this record overlapped the area of interest, then we're
1927    // clean.
1928    return true;
1929  }
1930
1931  return false;
1932}
1933
1934/// ContainsFloatAtOffset - Return true if the specified LLVM IR type has a
1935/// float member at the specified offset.  For example, {int,{float}} has a
1936/// float at offset 4.  It is conservatively correct for this routine to return
1937/// false.
1938static bool ContainsFloatAtOffset(llvm::Type *IRType, unsigned IROffset,
1939                                  const llvm::DataLayout &TD) {
1940  // Base case if we find a float.
1941  if (IROffset == 0 && IRType->isFloatTy())
1942    return true;
1943
1944  // If this is a struct, recurse into the field at the specified offset.
1945  if (llvm::StructType *STy = dyn_cast<llvm::StructType>(IRType)) {
1946    const llvm::StructLayout *SL = TD.getStructLayout(STy);
1947    unsigned Elt = SL->getElementContainingOffset(IROffset);
1948    IROffset -= SL->getElementOffset(Elt);
1949    return ContainsFloatAtOffset(STy->getElementType(Elt), IROffset, TD);
1950  }
1951
1952  // If this is an array, recurse into the field at the specified offset.
1953  if (llvm::ArrayType *ATy = dyn_cast<llvm::ArrayType>(IRType)) {
1954    llvm::Type *EltTy = ATy->getElementType();
1955    unsigned EltSize = TD.getTypeAllocSize(EltTy);
1956    IROffset -= IROffset/EltSize*EltSize;
1957    return ContainsFloatAtOffset(EltTy, IROffset, TD);
1958  }
1959
1960  return false;
1961}
1962
1963
1964/// GetSSETypeAtOffset - Return a type that will be passed by the backend in the
1965/// low 8 bytes of an XMM register, corresponding to the SSE class.
1966llvm::Type *X86_64ABIInfo::
1967GetSSETypeAtOffset(llvm::Type *IRType, unsigned IROffset,
1968                   QualType SourceTy, unsigned SourceOffset) const {
1969  // The only three choices we have are either double, <2 x float>, or float. We
1970  // pass as float if the last 4 bytes is just padding.  This happens for
1971  // structs that contain 3 floats.
1972  if (BitsContainNoUserData(SourceTy, SourceOffset*8+32,
1973                            SourceOffset*8+64, getContext()))
1974    return llvm::Type::getFloatTy(getVMContext());
1975
1976  // We want to pass as <2 x float> if the LLVM IR type contains a float at
1977  // offset+0 and offset+4.  Walk the LLVM IR type to find out if this is the
1978  // case.
1979  if (ContainsFloatAtOffset(IRType, IROffset, getDataLayout()) &&
1980      ContainsFloatAtOffset(IRType, IROffset+4, getDataLayout()))
1981    return llvm::VectorType::get(llvm::Type::getFloatTy(getVMContext()), 2);
1982
1983  return llvm::Type::getDoubleTy(getVMContext());
1984}
1985
1986
1987/// GetINTEGERTypeAtOffset - The ABI specifies that a value should be passed in
1988/// an 8-byte GPR.  This means that we either have a scalar or we are talking
1989/// about the high or low part of an up-to-16-byte struct.  This routine picks
1990/// the best LLVM IR type to represent this, which may be i64 or may be anything
1991/// else that the backend will pass in a GPR that works better (e.g. i8, %foo*,
1992/// etc).
1993///
1994/// PrefType is an LLVM IR type that corresponds to (part of) the IR type for
1995/// the source type.  IROffset is an offset in bytes into the LLVM IR type that
1996/// the 8-byte value references.  PrefType may be null.
1997///
1998/// SourceTy is the source level type for the entire argument.  SourceOffset is
1999/// an offset into this that we're processing (which is always either 0 or 8).
2000///
2001llvm::Type *X86_64ABIInfo::
2002GetINTEGERTypeAtOffset(llvm::Type *IRType, unsigned IROffset,
2003                       QualType SourceTy, unsigned SourceOffset) const {
2004  // If we're dealing with an un-offset LLVM IR type, then it means that we're
2005  // returning an 8-byte unit starting with it.  See if we can safely use it.
2006  if (IROffset == 0) {
2007    // Pointers and int64's always fill the 8-byte unit.
2008    if ((isa<llvm::PointerType>(IRType) && Has64BitPointers) ||
2009        IRType->isIntegerTy(64))
2010      return IRType;
2011
2012    // If we have a 1/2/4-byte integer, we can use it only if the rest of the
2013    // goodness in the source type is just tail padding.  This is allowed to
2014    // kick in for struct {double,int} on the int, but not on
2015    // struct{double,int,int} because we wouldn't return the second int.  We
2016    // have to do this analysis on the source type because we can't depend on
2017    // unions being lowered a specific way etc.
2018    if (IRType->isIntegerTy(8) || IRType->isIntegerTy(16) ||
2019        IRType->isIntegerTy(32) ||
2020        (isa<llvm::PointerType>(IRType) && !Has64BitPointers)) {
2021      unsigned BitWidth = isa<llvm::PointerType>(IRType) ? 32 :
2022          cast<llvm::IntegerType>(IRType)->getBitWidth();
2023
2024      if (BitsContainNoUserData(SourceTy, SourceOffset*8+BitWidth,
2025                                SourceOffset*8+64, getContext()))
2026        return IRType;
2027    }
2028  }
2029
2030  if (llvm::StructType *STy = dyn_cast<llvm::StructType>(IRType)) {
2031    // If this is a struct, recurse into the field at the specified offset.
2032    const llvm::StructLayout *SL = getDataLayout().getStructLayout(STy);
2033    if (IROffset < SL->getSizeInBytes()) {
2034      unsigned FieldIdx = SL->getElementContainingOffset(IROffset);
2035      IROffset -= SL->getElementOffset(FieldIdx);
2036
2037      return GetINTEGERTypeAtOffset(STy->getElementType(FieldIdx), IROffset,
2038                                    SourceTy, SourceOffset);
2039    }
2040  }
2041
2042  if (llvm::ArrayType *ATy = dyn_cast<llvm::ArrayType>(IRType)) {
2043    llvm::Type *EltTy = ATy->getElementType();
2044    unsigned EltSize = getDataLayout().getTypeAllocSize(EltTy);
2045    unsigned EltOffset = IROffset/EltSize*EltSize;
2046    return GetINTEGERTypeAtOffset(EltTy, IROffset-EltOffset, SourceTy,
2047                                  SourceOffset);
2048  }
2049
2050  // Okay, we don't have any better idea of what to pass, so we pass this in an
2051  // integer register that isn't too big to fit the rest of the struct.
2052  unsigned TySizeInBytes =
2053    (unsigned)getContext().getTypeSizeInChars(SourceTy).getQuantity();
2054
2055  assert(TySizeInBytes != SourceOffset && "Empty field?");
2056
2057  // It is always safe to classify this as an integer type up to i64 that
2058  // isn't larger than the structure.
2059  return llvm::IntegerType::get(getVMContext(),
2060                                std::min(TySizeInBytes-SourceOffset, 8U)*8);
2061}
2062
2063
2064/// GetX86_64ByValArgumentPair - Given a high and low type that can ideally
2065/// be used as elements of a two register pair to pass or return, return a
2066/// first class aggregate to represent them.  For example, if the low part of
2067/// a by-value argument should be passed as i32* and the high part as float,
2068/// return {i32*, float}.
2069static llvm::Type *
2070GetX86_64ByValArgumentPair(llvm::Type *Lo, llvm::Type *Hi,
2071                           const llvm::DataLayout &TD) {
2072  // In order to correctly satisfy the ABI, we need to the high part to start
2073  // at offset 8.  If the high and low parts we inferred are both 4-byte types
2074  // (e.g. i32 and i32) then the resultant struct type ({i32,i32}) won't have
2075  // the second element at offset 8.  Check for this:
2076  unsigned LoSize = (unsigned)TD.getTypeAllocSize(Lo);
2077  unsigned HiAlign = TD.getABITypeAlignment(Hi);
2078  unsigned HiStart = llvm::DataLayout::RoundUpAlignment(LoSize, HiAlign);
2079  assert(HiStart != 0 && HiStart <= 8 && "Invalid x86-64 argument pair!");
2080
2081  // To handle this, we have to increase the size of the low part so that the
2082  // second element will start at an 8 byte offset.  We can't increase the size
2083  // of the second element because it might make us access off the end of the
2084  // struct.
2085  if (HiStart != 8) {
2086    // There are only two sorts of types the ABI generation code can produce for
2087    // the low part of a pair that aren't 8 bytes in size: float or i8/i16/i32.
2088    // Promote these to a larger type.
2089    if (Lo->isFloatTy())
2090      Lo = llvm::Type::getDoubleTy(Lo->getContext());
2091    else {
2092      assert(Lo->isIntegerTy() && "Invalid/unknown lo type");
2093      Lo = llvm::Type::getInt64Ty(Lo->getContext());
2094    }
2095  }
2096
2097  llvm::StructType *Result = llvm::StructType::get(Lo, Hi, NULL);
2098
2099
2100  // Verify that the second element is at an 8-byte offset.
2101  assert(TD.getStructLayout(Result)->getElementOffset(1) == 8 &&
2102         "Invalid x86-64 argument pair!");
2103  return Result;
2104}
2105
2106ABIArgInfo X86_64ABIInfo::
2107classifyReturnType(QualType RetTy) const {
2108  // AMD64-ABI 3.2.3p4: Rule 1. Classify the return type with the
2109  // classification algorithm.
2110  X86_64ABIInfo::Class Lo, Hi;
2111  classify(RetTy, 0, Lo, Hi, /*isNamedArg*/ true);
2112
2113  // Check some invariants.
2114  assert((Hi != Memory || Lo == Memory) && "Invalid memory classification.");
2115  assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp classification.");
2116
2117  llvm::Type *ResType = 0;
2118  switch (Lo) {
2119  case NoClass:
2120    if (Hi == NoClass)
2121      return ABIArgInfo::getIgnore();
2122    // If the low part is just padding, it takes no register, leave ResType
2123    // null.
2124    assert((Hi == SSE || Hi == Integer || Hi == X87Up) &&
2125           "Unknown missing lo part");
2126    break;
2127
2128  case SSEUp:
2129  case X87Up:
2130    llvm_unreachable("Invalid classification for lo word.");
2131
2132    // AMD64-ABI 3.2.3p4: Rule 2. Types of class memory are returned via
2133    // hidden argument.
2134  case Memory:
2135    return getIndirectReturnResult(RetTy);
2136
2137    // AMD64-ABI 3.2.3p4: Rule 3. If the class is INTEGER, the next
2138    // available register of the sequence %rax, %rdx is used.
2139  case Integer:
2140    ResType = GetINTEGERTypeAtOffset(CGT.ConvertType(RetTy), 0, RetTy, 0);
2141
2142    // If we have a sign or zero extended integer, make sure to return Extend
2143    // so that the parameter gets the right LLVM IR attributes.
2144    if (Hi == NoClass && isa<llvm::IntegerType>(ResType)) {
2145      // Treat an enum type as its underlying type.
2146      if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
2147        RetTy = EnumTy->getDecl()->getIntegerType();
2148
2149      if (RetTy->isIntegralOrEnumerationType() &&
2150          RetTy->isPromotableIntegerType())
2151        return ABIArgInfo::getExtend();
2152    }
2153    break;
2154
2155    // AMD64-ABI 3.2.3p4: Rule 4. If the class is SSE, the next
2156    // available SSE register of the sequence %xmm0, %xmm1 is used.
2157  case SSE:
2158    ResType = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 0, RetTy, 0);
2159    break;
2160
2161    // AMD64-ABI 3.2.3p4: Rule 6. If the class is X87, the value is
2162    // returned on the X87 stack in %st0 as 80-bit x87 number.
2163  case X87:
2164    ResType = llvm::Type::getX86_FP80Ty(getVMContext());
2165    break;
2166
2167    // AMD64-ABI 3.2.3p4: Rule 8. If the class is COMPLEX_X87, the real
2168    // part of the value is returned in %st0 and the imaginary part in
2169    // %st1.
2170  case ComplexX87:
2171    assert(Hi == ComplexX87 && "Unexpected ComplexX87 classification.");
2172    ResType = llvm::StructType::get(llvm::Type::getX86_FP80Ty(getVMContext()),
2173                                    llvm::Type::getX86_FP80Ty(getVMContext()),
2174                                    NULL);
2175    break;
2176  }
2177
2178  llvm::Type *HighPart = 0;
2179  switch (Hi) {
2180    // Memory was handled previously and X87 should
2181    // never occur as a hi class.
2182  case Memory:
2183  case X87:
2184    llvm_unreachable("Invalid classification for hi word.");
2185
2186  case ComplexX87: // Previously handled.
2187  case NoClass:
2188    break;
2189
2190  case Integer:
2191    HighPart = GetINTEGERTypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8);
2192    if (Lo == NoClass)  // Return HighPart at offset 8 in memory.
2193      return ABIArgInfo::getDirect(HighPart, 8);
2194    break;
2195  case SSE:
2196    HighPart = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8);
2197    if (Lo == NoClass)  // Return HighPart at offset 8 in memory.
2198      return ABIArgInfo::getDirect(HighPart, 8);
2199    break;
2200
2201    // AMD64-ABI 3.2.3p4: Rule 5. If the class is SSEUP, the eightbyte
2202    // is passed in the next available eightbyte chunk if the last used
2203    // vector register.
2204    //
2205    // SSEUP should always be preceded by SSE, just widen.
2206  case SSEUp:
2207    assert(Lo == SSE && "Unexpected SSEUp classification.");
2208    ResType = GetByteVectorType(RetTy);
2209    break;
2210
2211    // AMD64-ABI 3.2.3p4: Rule 7. If the class is X87UP, the value is
2212    // returned together with the previous X87 value in %st0.
2213  case X87Up:
2214    // If X87Up is preceded by X87, we don't need to do
2215    // anything. However, in some cases with unions it may not be
2216    // preceded by X87. In such situations we follow gcc and pass the
2217    // extra bits in an SSE reg.
2218    if (Lo != X87) {
2219      HighPart = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8);
2220      if (Lo == NoClass)  // Return HighPart at offset 8 in memory.
2221        return ABIArgInfo::getDirect(HighPart, 8);
2222    }
2223    break;
2224  }
2225
2226  // If a high part was specified, merge it together with the low part.  It is
2227  // known to pass in the high eightbyte of the result.  We do this by forming a
2228  // first class struct aggregate with the high and low part: {low, high}
2229  if (HighPart)
2230    ResType = GetX86_64ByValArgumentPair(ResType, HighPart, getDataLayout());
2231
2232  return ABIArgInfo::getDirect(ResType);
2233}
2234
2235ABIArgInfo X86_64ABIInfo::classifyArgumentType(
2236  QualType Ty, unsigned freeIntRegs, unsigned &neededInt, unsigned &neededSSE,
2237  bool isNamedArg)
2238  const
2239{
2240  X86_64ABIInfo::Class Lo, Hi;
2241  classify(Ty, 0, Lo, Hi, isNamedArg);
2242
2243  // Check some invariants.
2244  // FIXME: Enforce these by construction.
2245  assert((Hi != Memory || Lo == Memory) && "Invalid memory classification.");
2246  assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp classification.");
2247
2248  neededInt = 0;
2249  neededSSE = 0;
2250  llvm::Type *ResType = 0;
2251  switch (Lo) {
2252  case NoClass:
2253    if (Hi == NoClass)
2254      return ABIArgInfo::getIgnore();
2255    // If the low part is just padding, it takes no register, leave ResType
2256    // null.
2257    assert((Hi == SSE || Hi == Integer || Hi == X87Up) &&
2258           "Unknown missing lo part");
2259    break;
2260
2261    // AMD64-ABI 3.2.3p3: Rule 1. If the class is MEMORY, pass the argument
2262    // on the stack.
2263  case Memory:
2264
2265    // AMD64-ABI 3.2.3p3: Rule 5. If the class is X87, X87UP or
2266    // COMPLEX_X87, it is passed in memory.
2267  case X87:
2268  case ComplexX87:
2269    if (getRecordArgABI(Ty, getCXXABI()) == CGCXXABI::RAA_Indirect)
2270      ++neededInt;
2271    return getIndirectResult(Ty, freeIntRegs);
2272
2273  case SSEUp:
2274  case X87Up:
2275    llvm_unreachable("Invalid classification for lo word.");
2276
2277    // AMD64-ABI 3.2.3p3: Rule 2. If the class is INTEGER, the next
2278    // available register of the sequence %rdi, %rsi, %rdx, %rcx, %r8
2279    // and %r9 is used.
2280  case Integer:
2281    ++neededInt;
2282
2283    // Pick an 8-byte type based on the preferred type.
2284    ResType = GetINTEGERTypeAtOffset(CGT.ConvertType(Ty), 0, Ty, 0);
2285
2286    // If we have a sign or zero extended integer, make sure to return Extend
2287    // so that the parameter gets the right LLVM IR attributes.
2288    if (Hi == NoClass && isa<llvm::IntegerType>(ResType)) {
2289      // Treat an enum type as its underlying type.
2290      if (const EnumType *EnumTy = Ty->getAs<EnumType>())
2291        Ty = EnumTy->getDecl()->getIntegerType();
2292
2293      if (Ty->isIntegralOrEnumerationType() &&
2294          Ty->isPromotableIntegerType())
2295        return ABIArgInfo::getExtend();
2296    }
2297
2298    break;
2299
2300    // AMD64-ABI 3.2.3p3: Rule 3. If the class is SSE, the next
2301    // available SSE register is used, the registers are taken in the
2302    // order from %xmm0 to %xmm7.
2303  case SSE: {
2304    llvm::Type *IRType = CGT.ConvertType(Ty);
2305    ResType = GetSSETypeAtOffset(IRType, 0, Ty, 0);
2306    ++neededSSE;
2307    break;
2308  }
2309  }
2310
2311  llvm::Type *HighPart = 0;
2312  switch (Hi) {
2313    // Memory was handled previously, ComplexX87 and X87 should
2314    // never occur as hi classes, and X87Up must be preceded by X87,
2315    // which is passed in memory.
2316  case Memory:
2317  case X87:
2318  case ComplexX87:
2319    llvm_unreachable("Invalid classification for hi word.");
2320
2321  case NoClass: break;
2322
2323  case Integer:
2324    ++neededInt;
2325    // Pick an 8-byte type based on the preferred type.
2326    HighPart = GetINTEGERTypeAtOffset(CGT.ConvertType(Ty), 8, Ty, 8);
2327
2328    if (Lo == NoClass)  // Pass HighPart at offset 8 in memory.
2329      return ABIArgInfo::getDirect(HighPart, 8);
2330    break;
2331
2332    // X87Up generally doesn't occur here (long double is passed in
2333    // memory), except in situations involving unions.
2334  case X87Up:
2335  case SSE:
2336    HighPart = GetSSETypeAtOffset(CGT.ConvertType(Ty), 8, Ty, 8);
2337
2338    if (Lo == NoClass)  // Pass HighPart at offset 8 in memory.
2339      return ABIArgInfo::getDirect(HighPart, 8);
2340
2341    ++neededSSE;
2342    break;
2343
2344    // AMD64-ABI 3.2.3p3: Rule 4. If the class is SSEUP, the
2345    // eightbyte is passed in the upper half of the last used SSE
2346    // register.  This only happens when 128-bit vectors are passed.
2347  case SSEUp:
2348    assert(Lo == SSE && "Unexpected SSEUp classification");
2349    ResType = GetByteVectorType(Ty);
2350    break;
2351  }
2352
2353  // If a high part was specified, merge it together with the low part.  It is
2354  // known to pass in the high eightbyte of the result.  We do this by forming a
2355  // first class struct aggregate with the high and low part: {low, high}
2356  if (HighPart)
2357    ResType = GetX86_64ByValArgumentPair(ResType, HighPart, getDataLayout());
2358
2359  return ABIArgInfo::getDirect(ResType);
2360}
2361
2362void X86_64ABIInfo::computeInfo(CGFunctionInfo &FI) const {
2363
2364  FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
2365
2366  // Keep track of the number of assigned registers.
2367  unsigned freeIntRegs = 6, freeSSERegs = 8;
2368
2369  // If the return value is indirect, then the hidden argument is consuming one
2370  // integer register.
2371  if (FI.getReturnInfo().isIndirect())
2372    --freeIntRegs;
2373
2374  bool isVariadic = FI.isVariadic();
2375  unsigned numRequiredArgs = 0;
2376  if (isVariadic)
2377    numRequiredArgs = FI.getRequiredArgs().getNumRequiredArgs();
2378
2379  // AMD64-ABI 3.2.3p3: Once arguments are classified, the registers
2380  // get assigned (in left-to-right order) for passing as follows...
2381  for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
2382       it != ie; ++it) {
2383    bool isNamedArg = true;
2384    if (isVariadic)
2385      isNamedArg = (it - FI.arg_begin()) <
2386                    static_cast<signed>(numRequiredArgs);
2387
2388    unsigned neededInt, neededSSE;
2389    it->info = classifyArgumentType(it->type, freeIntRegs, neededInt,
2390                                    neededSSE, isNamedArg);
2391
2392    // AMD64-ABI 3.2.3p3: If there are no registers available for any
2393    // eightbyte of an argument, the whole argument is passed on the
2394    // stack. If registers have already been assigned for some
2395    // eightbytes of such an argument, the assignments get reverted.
2396    if (freeIntRegs >= neededInt && freeSSERegs >= neededSSE) {
2397      freeIntRegs -= neededInt;
2398      freeSSERegs -= neededSSE;
2399    } else {
2400      it->info = getIndirectResult(it->type, freeIntRegs);
2401    }
2402  }
2403}
2404
2405static llvm::Value *EmitVAArgFromMemory(llvm::Value *VAListAddr,
2406                                        QualType Ty,
2407                                        CodeGenFunction &CGF) {
2408  llvm::Value *overflow_arg_area_p =
2409    CGF.Builder.CreateStructGEP(VAListAddr, 2, "overflow_arg_area_p");
2410  llvm::Value *overflow_arg_area =
2411    CGF.Builder.CreateLoad(overflow_arg_area_p, "overflow_arg_area");
2412
2413  // AMD64-ABI 3.5.7p5: Step 7. Align l->overflow_arg_area upwards to a 16
2414  // byte boundary if alignment needed by type exceeds 8 byte boundary.
2415  // It isn't stated explicitly in the standard, but in practice we use
2416  // alignment greater than 16 where necessary.
2417  uint64_t Align = CGF.getContext().getTypeAlign(Ty) / 8;
2418  if (Align > 8) {
2419    // overflow_arg_area = (overflow_arg_area + align - 1) & -align;
2420    llvm::Value *Offset =
2421      llvm::ConstantInt::get(CGF.Int64Ty, Align - 1);
2422    overflow_arg_area = CGF.Builder.CreateGEP(overflow_arg_area, Offset);
2423    llvm::Value *AsInt = CGF.Builder.CreatePtrToInt(overflow_arg_area,
2424                                                    CGF.Int64Ty);
2425    llvm::Value *Mask = llvm::ConstantInt::get(CGF.Int64Ty, -(uint64_t)Align);
2426    overflow_arg_area =
2427      CGF.Builder.CreateIntToPtr(CGF.Builder.CreateAnd(AsInt, Mask),
2428                                 overflow_arg_area->getType(),
2429                                 "overflow_arg_area.align");
2430  }
2431
2432  // AMD64-ABI 3.5.7p5: Step 8. Fetch type from l->overflow_arg_area.
2433  llvm::Type *LTy = CGF.ConvertTypeForMem(Ty);
2434  llvm::Value *Res =
2435    CGF.Builder.CreateBitCast(overflow_arg_area,
2436                              llvm::PointerType::getUnqual(LTy));
2437
2438  // AMD64-ABI 3.5.7p5: Step 9. Set l->overflow_arg_area to:
2439  // l->overflow_arg_area + sizeof(type).
2440  // AMD64-ABI 3.5.7p5: Step 10. Align l->overflow_arg_area upwards to
2441  // an 8 byte boundary.
2442
2443  uint64_t SizeInBytes = (CGF.getContext().getTypeSize(Ty) + 7) / 8;
2444  llvm::Value *Offset =
2445      llvm::ConstantInt::get(CGF.Int32Ty, (SizeInBytes + 7)  & ~7);
2446  overflow_arg_area = CGF.Builder.CreateGEP(overflow_arg_area, Offset,
2447                                            "overflow_arg_area.next");
2448  CGF.Builder.CreateStore(overflow_arg_area, overflow_arg_area_p);
2449
2450  // AMD64-ABI 3.5.7p5: Step 11. Return the fetched type.
2451  return Res;
2452}
2453
2454llvm::Value *X86_64ABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
2455                                      CodeGenFunction &CGF) const {
2456  // Assume that va_list type is correct; should be pointer to LLVM type:
2457  // struct {
2458  //   i32 gp_offset;
2459  //   i32 fp_offset;
2460  //   i8* overflow_arg_area;
2461  //   i8* reg_save_area;
2462  // };
2463  unsigned neededInt, neededSSE;
2464
2465  Ty = CGF.getContext().getCanonicalType(Ty);
2466  ABIArgInfo AI = classifyArgumentType(Ty, 0, neededInt, neededSSE,
2467                                       /*isNamedArg*/false);
2468
2469  // AMD64-ABI 3.5.7p5: Step 1. Determine whether type may be passed
2470  // in the registers. If not go to step 7.
2471  if (!neededInt && !neededSSE)
2472    return EmitVAArgFromMemory(VAListAddr, Ty, CGF);
2473
2474  // AMD64-ABI 3.5.7p5: Step 2. Compute num_gp to hold the number of
2475  // general purpose registers needed to pass type and num_fp to hold
2476  // the number of floating point registers needed.
2477
2478  // AMD64-ABI 3.5.7p5: Step 3. Verify whether arguments fit into
2479  // registers. In the case: l->gp_offset > 48 - num_gp * 8 or
2480  // l->fp_offset > 304 - num_fp * 16 go to step 7.
2481  //
2482  // NOTE: 304 is a typo, there are (6 * 8 + 8 * 16) = 176 bytes of
2483  // register save space).
2484
2485  llvm::Value *InRegs = 0;
2486  llvm::Value *gp_offset_p = 0, *gp_offset = 0;
2487  llvm::Value *fp_offset_p = 0, *fp_offset = 0;
2488  if (neededInt) {
2489    gp_offset_p = CGF.Builder.CreateStructGEP(VAListAddr, 0, "gp_offset_p");
2490    gp_offset = CGF.Builder.CreateLoad(gp_offset_p, "gp_offset");
2491    InRegs = llvm::ConstantInt::get(CGF.Int32Ty, 48 - neededInt * 8);
2492    InRegs = CGF.Builder.CreateICmpULE(gp_offset, InRegs, "fits_in_gp");
2493  }
2494
2495  if (neededSSE) {
2496    fp_offset_p = CGF.Builder.CreateStructGEP(VAListAddr, 1, "fp_offset_p");
2497    fp_offset = CGF.Builder.CreateLoad(fp_offset_p, "fp_offset");
2498    llvm::Value *FitsInFP =
2499      llvm::ConstantInt::get(CGF.Int32Ty, 176 - neededSSE * 16);
2500    FitsInFP = CGF.Builder.CreateICmpULE(fp_offset, FitsInFP, "fits_in_fp");
2501    InRegs = InRegs ? CGF.Builder.CreateAnd(InRegs, FitsInFP) : FitsInFP;
2502  }
2503
2504  llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg");
2505  llvm::BasicBlock *InMemBlock = CGF.createBasicBlock("vaarg.in_mem");
2506  llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end");
2507  CGF.Builder.CreateCondBr(InRegs, InRegBlock, InMemBlock);
2508
2509  // Emit code to load the value if it was passed in registers.
2510
2511  CGF.EmitBlock(InRegBlock);
2512
2513  // AMD64-ABI 3.5.7p5: Step 4. Fetch type from l->reg_save_area with
2514  // an offset of l->gp_offset and/or l->fp_offset. This may require
2515  // copying to a temporary location in case the parameter is passed
2516  // in different register classes or requires an alignment greater
2517  // than 8 for general purpose registers and 16 for XMM registers.
2518  //
2519  // FIXME: This really results in shameful code when we end up needing to
2520  // collect arguments from different places; often what should result in a
2521  // simple assembling of a structure from scattered addresses has many more
2522  // loads than necessary. Can we clean this up?
2523  llvm::Type *LTy = CGF.ConvertTypeForMem(Ty);
2524  llvm::Value *RegAddr =
2525    CGF.Builder.CreateLoad(CGF.Builder.CreateStructGEP(VAListAddr, 3),
2526                           "reg_save_area");
2527  if (neededInt && neededSSE) {
2528    // FIXME: Cleanup.
2529    assert(AI.isDirect() && "Unexpected ABI info for mixed regs");
2530    llvm::StructType *ST = cast<llvm::StructType>(AI.getCoerceToType());
2531    llvm::Value *Tmp = CGF.CreateMemTemp(Ty);
2532    Tmp = CGF.Builder.CreateBitCast(Tmp, ST->getPointerTo());
2533    assert(ST->getNumElements() == 2 && "Unexpected ABI info for mixed regs");
2534    llvm::Type *TyLo = ST->getElementType(0);
2535    llvm::Type *TyHi = ST->getElementType(1);
2536    assert((TyLo->isFPOrFPVectorTy() ^ TyHi->isFPOrFPVectorTy()) &&
2537           "Unexpected ABI info for mixed regs");
2538    llvm::Type *PTyLo = llvm::PointerType::getUnqual(TyLo);
2539    llvm::Type *PTyHi = llvm::PointerType::getUnqual(TyHi);
2540    llvm::Value *GPAddr = CGF.Builder.CreateGEP(RegAddr, gp_offset);
2541    llvm::Value *FPAddr = CGF.Builder.CreateGEP(RegAddr, fp_offset);
2542    llvm::Value *RegLoAddr = TyLo->isFloatingPointTy() ? FPAddr : GPAddr;
2543    llvm::Value *RegHiAddr = TyLo->isFloatingPointTy() ? GPAddr : FPAddr;
2544    llvm::Value *V =
2545      CGF.Builder.CreateLoad(CGF.Builder.CreateBitCast(RegLoAddr, PTyLo));
2546    CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 0));
2547    V = CGF.Builder.CreateLoad(CGF.Builder.CreateBitCast(RegHiAddr, PTyHi));
2548    CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 1));
2549
2550    RegAddr = CGF.Builder.CreateBitCast(Tmp,
2551                                        llvm::PointerType::getUnqual(LTy));
2552  } else if (neededInt) {
2553    RegAddr = CGF.Builder.CreateGEP(RegAddr, gp_offset);
2554    RegAddr = CGF.Builder.CreateBitCast(RegAddr,
2555                                        llvm::PointerType::getUnqual(LTy));
2556
2557    // Copy to a temporary if necessary to ensure the appropriate alignment.
2558    std::pair<CharUnits, CharUnits> SizeAlign =
2559        CGF.getContext().getTypeInfoInChars(Ty);
2560    uint64_t TySize = SizeAlign.first.getQuantity();
2561    unsigned TyAlign = SizeAlign.second.getQuantity();
2562    if (TyAlign > 8) {
2563      llvm::Value *Tmp = CGF.CreateMemTemp(Ty);
2564      CGF.Builder.CreateMemCpy(Tmp, RegAddr, TySize, 8, false);
2565      RegAddr = Tmp;
2566    }
2567  } else if (neededSSE == 1) {
2568    RegAddr = CGF.Builder.CreateGEP(RegAddr, fp_offset);
2569    RegAddr = CGF.Builder.CreateBitCast(RegAddr,
2570                                        llvm::PointerType::getUnqual(LTy));
2571  } else {
2572    assert(neededSSE == 2 && "Invalid number of needed registers!");
2573    // SSE registers are spaced 16 bytes apart in the register save
2574    // area, we need to collect the two eightbytes together.
2575    llvm::Value *RegAddrLo = CGF.Builder.CreateGEP(RegAddr, fp_offset);
2576    llvm::Value *RegAddrHi = CGF.Builder.CreateConstGEP1_32(RegAddrLo, 16);
2577    llvm::Type *DoubleTy = CGF.DoubleTy;
2578    llvm::Type *DblPtrTy =
2579      llvm::PointerType::getUnqual(DoubleTy);
2580    llvm::StructType *ST = llvm::StructType::get(DoubleTy, DoubleTy, NULL);
2581    llvm::Value *V, *Tmp = CGF.CreateMemTemp(Ty);
2582    Tmp = CGF.Builder.CreateBitCast(Tmp, ST->getPointerTo());
2583    V = CGF.Builder.CreateLoad(CGF.Builder.CreateBitCast(RegAddrLo,
2584                                                         DblPtrTy));
2585    CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 0));
2586    V = CGF.Builder.CreateLoad(CGF.Builder.CreateBitCast(RegAddrHi,
2587                                                         DblPtrTy));
2588    CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 1));
2589    RegAddr = CGF.Builder.CreateBitCast(Tmp,
2590                                        llvm::PointerType::getUnqual(LTy));
2591  }
2592
2593  // AMD64-ABI 3.5.7p5: Step 5. Set:
2594  // l->gp_offset = l->gp_offset + num_gp * 8
2595  // l->fp_offset = l->fp_offset + num_fp * 16.
2596  if (neededInt) {
2597    llvm::Value *Offset = llvm::ConstantInt::get(CGF.Int32Ty, neededInt * 8);
2598    CGF.Builder.CreateStore(CGF.Builder.CreateAdd(gp_offset, Offset),
2599                            gp_offset_p);
2600  }
2601  if (neededSSE) {
2602    llvm::Value *Offset = llvm::ConstantInt::get(CGF.Int32Ty, neededSSE * 16);
2603    CGF.Builder.CreateStore(CGF.Builder.CreateAdd(fp_offset, Offset),
2604                            fp_offset_p);
2605  }
2606  CGF.EmitBranch(ContBlock);
2607
2608  // Emit code to load the value if it was passed in memory.
2609
2610  CGF.EmitBlock(InMemBlock);
2611  llvm::Value *MemAddr = EmitVAArgFromMemory(VAListAddr, Ty, CGF);
2612
2613  // Return the appropriate result.
2614
2615  CGF.EmitBlock(ContBlock);
2616  llvm::PHINode *ResAddr = CGF.Builder.CreatePHI(RegAddr->getType(), 2,
2617                                                 "vaarg.addr");
2618  ResAddr->addIncoming(RegAddr, InRegBlock);
2619  ResAddr->addIncoming(MemAddr, InMemBlock);
2620  return ResAddr;
2621}
2622
2623ABIArgInfo WinX86_64ABIInfo::classify(QualType Ty, bool IsReturnType) const {
2624
2625  if (Ty->isVoidType())
2626    return ABIArgInfo::getIgnore();
2627
2628  if (const EnumType *EnumTy = Ty->getAs<EnumType>())
2629    Ty = EnumTy->getDecl()->getIntegerType();
2630
2631  uint64_t Size = getContext().getTypeSize(Ty);
2632
2633  if (const RecordType *RT = Ty->getAs<RecordType>()) {
2634    if (IsReturnType) {
2635      if (isRecordReturnIndirect(RT, getCXXABI()))
2636        return ABIArgInfo::getIndirect(0, false);
2637    } else {
2638      if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(RT, getCXXABI()))
2639        return ABIArgInfo::getIndirect(0, RAA == CGCXXABI::RAA_DirectInMemory);
2640    }
2641
2642    if (RT->getDecl()->hasFlexibleArrayMember())
2643      return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
2644
2645    // FIXME: mingw-w64-gcc emits 128-bit struct as i128
2646    if (Size == 128 && getTarget().getTriple().getOS() == llvm::Triple::MinGW32)
2647      return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),
2648                                                          Size));
2649
2650    // MS x64 ABI requirement: "Any argument that doesn't fit in 8 bytes, or is
2651    // not 1, 2, 4, or 8 bytes, must be passed by reference."
2652    if (Size <= 64 &&
2653        (Size & (Size - 1)) == 0)
2654      return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),
2655                                                          Size));
2656
2657    return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
2658  }
2659
2660  if (Ty->isPromotableIntegerType())
2661    return ABIArgInfo::getExtend();
2662
2663  return ABIArgInfo::getDirect();
2664}
2665
2666void WinX86_64ABIInfo::computeInfo(CGFunctionInfo &FI) const {
2667
2668  QualType RetTy = FI.getReturnType();
2669  FI.getReturnInfo() = classify(RetTy, true);
2670
2671  for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
2672       it != ie; ++it)
2673    it->info = classify(it->type, false);
2674}
2675
2676llvm::Value *WinX86_64ABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
2677                                      CodeGenFunction &CGF) const {
2678  llvm::Type *BPP = CGF.Int8PtrPtrTy;
2679
2680  CGBuilderTy &Builder = CGF.Builder;
2681  llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP,
2682                                                       "ap");
2683  llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur");
2684  llvm::Type *PTy =
2685    llvm::PointerType::getUnqual(CGF.ConvertType(Ty));
2686  llvm::Value *AddrTyped = Builder.CreateBitCast(Addr, PTy);
2687
2688  uint64_t Offset =
2689    llvm::RoundUpToAlignment(CGF.getContext().getTypeSize(Ty) / 8, 8);
2690  llvm::Value *NextAddr =
2691    Builder.CreateGEP(Addr, llvm::ConstantInt::get(CGF.Int32Ty, Offset),
2692                      "ap.next");
2693  Builder.CreateStore(NextAddr, VAListAddrAsBPP);
2694
2695  return AddrTyped;
2696}
2697
2698namespace {
2699
2700class NaClX86_64ABIInfo : public ABIInfo {
2701 public:
2702  NaClX86_64ABIInfo(CodeGen::CodeGenTypes &CGT, bool HasAVX)
2703      : ABIInfo(CGT), PInfo(CGT), NInfo(CGT, HasAVX) {}
2704  virtual void computeInfo(CGFunctionInfo &FI) const;
2705  virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
2706                                 CodeGenFunction &CGF) const;
2707 private:
2708  PNaClABIInfo PInfo;  // Used for generating calls with pnaclcall callingconv.
2709  X86_64ABIInfo NInfo; // Used for everything else.
2710};
2711
2712class NaClX86_64TargetCodeGenInfo : public TargetCodeGenInfo  {
2713 public:
2714  NaClX86_64TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, bool HasAVX)
2715      : TargetCodeGenInfo(new NaClX86_64ABIInfo(CGT, HasAVX)) {}
2716};
2717
2718}
2719
2720void NaClX86_64ABIInfo::computeInfo(CGFunctionInfo &FI) const {
2721  if (FI.getASTCallingConvention() == CC_PnaclCall)
2722    PInfo.computeInfo(FI);
2723  else
2724    NInfo.computeInfo(FI);
2725}
2726
2727llvm::Value *NaClX86_64ABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
2728                                          CodeGenFunction &CGF) const {
2729  // Always use the native convention; calling pnacl-style varargs functions
2730  // is unuspported.
2731  return NInfo.EmitVAArg(VAListAddr, Ty, CGF);
2732}
2733
2734
2735// PowerPC-32
2736namespace {
2737/// PPC32_SVR4_ABIInfo - The 32-bit PowerPC ELF (SVR4) ABI information.
2738class PPC32_SVR4_ABIInfo : public DefaultABIInfo {
2739public:
2740  PPC32_SVR4_ABIInfo(CodeGen::CodeGenTypes &CGT) : DefaultABIInfo(CGT) {}
2741
2742  llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
2743                         CodeGenFunction &CGF) const;
2744};
2745
2746class PPC32TargetCodeGenInfo : public TargetCodeGenInfo {
2747public:
2748  PPC32TargetCodeGenInfo(CodeGenTypes &CGT) : TargetCodeGenInfo(new PPC32_SVR4_ABIInfo(CGT)) {}
2749
2750  int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const {
2751    // This is recovered from gcc output.
2752    return 1; // r1 is the dedicated stack pointer
2753  }
2754
2755  bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
2756                               llvm::Value *Address) const;
2757};
2758
2759}
2760
2761llvm::Value *PPC32_SVR4_ABIInfo::EmitVAArg(llvm::Value *VAListAddr,
2762                                           QualType Ty,
2763                                           CodeGenFunction &CGF) const {
2764  if (const ComplexType *CTy = Ty->getAs<ComplexType>()) {
2765    // TODO: Implement this. For now ignore.
2766    (void)CTy;
2767    return NULL;
2768  }
2769
2770  bool isI64 = Ty->isIntegerType() && getContext().getTypeSize(Ty) == 64;
2771  bool isInt = Ty->isIntegerType() || Ty->isPointerType() || Ty->isAggregateType();
2772  llvm::Type *CharPtr = CGF.Int8PtrTy;
2773  llvm::Type *CharPtrPtr = CGF.Int8PtrPtrTy;
2774
2775  CGBuilderTy &Builder = CGF.Builder;
2776  llvm::Value *GPRPtr = Builder.CreateBitCast(VAListAddr, CharPtr, "gprptr");
2777  llvm::Value *GPRPtrAsInt = Builder.CreatePtrToInt(GPRPtr, CGF.Int32Ty);
2778  llvm::Value *FPRPtrAsInt = Builder.CreateAdd(GPRPtrAsInt, Builder.getInt32(1));
2779  llvm::Value *FPRPtr = Builder.CreateIntToPtr(FPRPtrAsInt, CharPtr);
2780  llvm::Value *OverflowAreaPtrAsInt = Builder.CreateAdd(FPRPtrAsInt, Builder.getInt32(3));
2781  llvm::Value *OverflowAreaPtr = Builder.CreateIntToPtr(OverflowAreaPtrAsInt, CharPtrPtr);
2782  llvm::Value *RegsaveAreaPtrAsInt = Builder.CreateAdd(OverflowAreaPtrAsInt, Builder.getInt32(4));
2783  llvm::Value *RegsaveAreaPtr = Builder.CreateIntToPtr(RegsaveAreaPtrAsInt, CharPtrPtr);
2784  llvm::Value *GPR = Builder.CreateLoad(GPRPtr, false, "gpr");
2785  // Align GPR when TY is i64.
2786  if (isI64) {
2787    llvm::Value *GPRAnd = Builder.CreateAnd(GPR, Builder.getInt8(1));
2788    llvm::Value *CC64 = Builder.CreateICmpEQ(GPRAnd, Builder.getInt8(1));
2789    llvm::Value *GPRPlusOne = Builder.CreateAdd(GPR, Builder.getInt8(1));
2790    GPR = Builder.CreateSelect(CC64, GPRPlusOne, GPR);
2791  }
2792  llvm::Value *FPR = Builder.CreateLoad(FPRPtr, false, "fpr");
2793  llvm::Value *OverflowArea = Builder.CreateLoad(OverflowAreaPtr, false, "overflow_area");
2794  llvm::Value *OverflowAreaAsInt = Builder.CreatePtrToInt(OverflowArea, CGF.Int32Ty);
2795  llvm::Value *RegsaveArea = Builder.CreateLoad(RegsaveAreaPtr, false, "regsave_area");
2796  llvm::Value *RegsaveAreaAsInt = Builder.CreatePtrToInt(RegsaveArea, CGF.Int32Ty);
2797
2798  llvm::Value *CC = Builder.CreateICmpULT(isInt ? GPR : FPR,
2799                                          Builder.getInt8(8), "cond");
2800
2801  llvm::Value *RegConstant = Builder.CreateMul(isInt ? GPR : FPR,
2802                                               Builder.getInt8(isInt ? 4 : 8));
2803
2804  llvm::Value *OurReg = Builder.CreateAdd(RegsaveAreaAsInt, Builder.CreateSExt(RegConstant, CGF.Int32Ty));
2805
2806  if (Ty->isFloatingType())
2807    OurReg = Builder.CreateAdd(OurReg, Builder.getInt32(32));
2808
2809  llvm::BasicBlock *UsingRegs = CGF.createBasicBlock("using_regs");
2810  llvm::BasicBlock *UsingOverflow = CGF.createBasicBlock("using_overflow");
2811  llvm::BasicBlock *Cont = CGF.createBasicBlock("cont");
2812
2813  Builder.CreateCondBr(CC, UsingRegs, UsingOverflow);
2814
2815  CGF.EmitBlock(UsingRegs);
2816
2817  llvm::Type *PTy = llvm::PointerType::getUnqual(CGF.ConvertType(Ty));
2818  llvm::Value *Result1 = Builder.CreateIntToPtr(OurReg, PTy);
2819  // Increase the GPR/FPR indexes.
2820  if (isInt) {
2821    GPR = Builder.CreateAdd(GPR, Builder.getInt8(isI64 ? 2 : 1));
2822    Builder.CreateStore(GPR, GPRPtr);
2823  } else {
2824    FPR = Builder.CreateAdd(FPR, Builder.getInt8(1));
2825    Builder.CreateStore(FPR, FPRPtr);
2826  }
2827  CGF.EmitBranch(Cont);
2828
2829  CGF.EmitBlock(UsingOverflow);
2830
2831  // Increase the overflow area.
2832  llvm::Value *Result2 = Builder.CreateIntToPtr(OverflowAreaAsInt, PTy);
2833  OverflowAreaAsInt = Builder.CreateAdd(OverflowAreaAsInt, Builder.getInt32(isInt ? 4 : 8));
2834  Builder.CreateStore(Builder.CreateIntToPtr(OverflowAreaAsInt, CharPtr), OverflowAreaPtr);
2835  CGF.EmitBranch(Cont);
2836
2837  CGF.EmitBlock(Cont);
2838
2839  llvm::PHINode *Result = CGF.Builder.CreatePHI(PTy, 2, "vaarg.addr");
2840  Result->addIncoming(Result1, UsingRegs);
2841  Result->addIncoming(Result2, UsingOverflow);
2842
2843  if (Ty->isAggregateType()) {
2844    llvm::Value *AGGPtr = Builder.CreateBitCast(Result, CharPtrPtr, "aggrptr")  ;
2845    return Builder.CreateLoad(AGGPtr, false, "aggr");
2846  }
2847
2848  return Result;
2849}
2850
2851bool
2852PPC32TargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
2853                                                llvm::Value *Address) const {
2854  // This is calculated from the LLVM and GCC tables and verified
2855  // against gcc output.  AFAIK all ABIs use the same encoding.
2856
2857  CodeGen::CGBuilderTy &Builder = CGF.Builder;
2858
2859  llvm::IntegerType *i8 = CGF.Int8Ty;
2860  llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4);
2861  llvm::Value *Eight8 = llvm::ConstantInt::get(i8, 8);
2862  llvm::Value *Sixteen8 = llvm::ConstantInt::get(i8, 16);
2863
2864  // 0-31: r0-31, the 4-byte general-purpose registers
2865  AssignToArrayRange(Builder, Address, Four8, 0, 31);
2866
2867  // 32-63: fp0-31, the 8-byte floating-point registers
2868  AssignToArrayRange(Builder, Address, Eight8, 32, 63);
2869
2870  // 64-76 are various 4-byte special-purpose registers:
2871  // 64: mq
2872  // 65: lr
2873  // 66: ctr
2874  // 67: ap
2875  // 68-75 cr0-7
2876  // 76: xer
2877  AssignToArrayRange(Builder, Address, Four8, 64, 76);
2878
2879  // 77-108: v0-31, the 16-byte vector registers
2880  AssignToArrayRange(Builder, Address, Sixteen8, 77, 108);
2881
2882  // 109: vrsave
2883  // 110: vscr
2884  // 111: spe_acc
2885  // 112: spefscr
2886  // 113: sfp
2887  AssignToArrayRange(Builder, Address, Four8, 109, 113);
2888
2889  return false;
2890}
2891
2892// PowerPC-64
2893
2894namespace {
2895/// PPC64_SVR4_ABIInfo - The 64-bit PowerPC ELF (SVR4) ABI information.
2896class PPC64_SVR4_ABIInfo : public DefaultABIInfo {
2897
2898public:
2899  PPC64_SVR4_ABIInfo(CodeGen::CodeGenTypes &CGT) : DefaultABIInfo(CGT) {}
2900
2901  bool isPromotableTypeForABI(QualType Ty) const;
2902
2903  ABIArgInfo classifyReturnType(QualType RetTy) const;
2904  ABIArgInfo classifyArgumentType(QualType Ty) const;
2905
2906  // TODO: We can add more logic to computeInfo to improve performance.
2907  // Example: For aggregate arguments that fit in a register, we could
2908  // use getDirectInReg (as is done below for structs containing a single
2909  // floating-point value) to avoid pushing them to memory on function
2910  // entry.  This would require changing the logic in PPCISelLowering
2911  // when lowering the parameters in the caller and args in the callee.
2912  virtual void computeInfo(CGFunctionInfo &FI) const {
2913    FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
2914    for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
2915         it != ie; ++it) {
2916      // We rely on the default argument classification for the most part.
2917      // One exception:  An aggregate containing a single floating-point
2918      // or vector item must be passed in a register if one is available.
2919      const Type *T = isSingleElementStruct(it->type, getContext());
2920      if (T) {
2921        const BuiltinType *BT = T->getAs<BuiltinType>();
2922        if (T->isVectorType() || (BT && BT->isFloatingPoint())) {
2923          QualType QT(T, 0);
2924          it->info = ABIArgInfo::getDirectInReg(CGT.ConvertType(QT));
2925          continue;
2926        }
2927      }
2928      it->info = classifyArgumentType(it->type);
2929    }
2930  }
2931
2932  virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr,
2933                                 QualType Ty,
2934                                 CodeGenFunction &CGF) const;
2935};
2936
2937class PPC64_SVR4_TargetCodeGenInfo : public TargetCodeGenInfo {
2938public:
2939  PPC64_SVR4_TargetCodeGenInfo(CodeGenTypes &CGT)
2940    : TargetCodeGenInfo(new PPC64_SVR4_ABIInfo(CGT)) {}
2941
2942  int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const {
2943    // This is recovered from gcc output.
2944    return 1; // r1 is the dedicated stack pointer
2945  }
2946
2947  bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
2948                               llvm::Value *Address) const;
2949};
2950
2951class PPC64TargetCodeGenInfo : public DefaultTargetCodeGenInfo {
2952public:
2953  PPC64TargetCodeGenInfo(CodeGenTypes &CGT) : DefaultTargetCodeGenInfo(CGT) {}
2954
2955  int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const {
2956    // This is recovered from gcc output.
2957    return 1; // r1 is the dedicated stack pointer
2958  }
2959
2960  bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
2961                               llvm::Value *Address) const;
2962};
2963
2964}
2965
2966// Return true if the ABI requires Ty to be passed sign- or zero-
2967// extended to 64 bits.
2968bool
2969PPC64_SVR4_ABIInfo::isPromotableTypeForABI(QualType Ty) const {
2970  // Treat an enum type as its underlying type.
2971  if (const EnumType *EnumTy = Ty->getAs<EnumType>())
2972    Ty = EnumTy->getDecl()->getIntegerType();
2973
2974  // Promotable integer types are required to be promoted by the ABI.
2975  if (Ty->isPromotableIntegerType())
2976    return true;
2977
2978  // In addition to the usual promotable integer types, we also need to
2979  // extend all 32-bit types, since the ABI requires promotion to 64 bits.
2980  if (const BuiltinType *BT = Ty->getAs<BuiltinType>())
2981    switch (BT->getKind()) {
2982    case BuiltinType::Int:
2983    case BuiltinType::UInt:
2984      return true;
2985    default:
2986      break;
2987    }
2988
2989  return false;
2990}
2991
2992ABIArgInfo
2993PPC64_SVR4_ABIInfo::classifyArgumentType(QualType Ty) const {
2994  if (Ty->isAnyComplexType())
2995    return ABIArgInfo::getDirect();
2996
2997  if (isAggregateTypeForABI(Ty)) {
2998    if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
2999      return ABIArgInfo::getIndirect(0, RAA == CGCXXABI::RAA_DirectInMemory);
3000
3001    return ABIArgInfo::getIndirect(0);
3002  }
3003
3004  return (isPromotableTypeForABI(Ty) ?
3005          ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
3006}
3007
3008ABIArgInfo
3009PPC64_SVR4_ABIInfo::classifyReturnType(QualType RetTy) const {
3010  if (RetTy->isVoidType())
3011    return ABIArgInfo::getIgnore();
3012
3013  if (RetTy->isAnyComplexType())
3014    return ABIArgInfo::getDirect();
3015
3016  if (isAggregateTypeForABI(RetTy))
3017    return ABIArgInfo::getIndirect(0);
3018
3019  return (isPromotableTypeForABI(RetTy) ?
3020          ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
3021}
3022
3023// Based on ARMABIInfo::EmitVAArg, adjusted for 64-bit machine.
3024llvm::Value *PPC64_SVR4_ABIInfo::EmitVAArg(llvm::Value *VAListAddr,
3025                                           QualType Ty,
3026                                           CodeGenFunction &CGF) const {
3027  llvm::Type *BP = CGF.Int8PtrTy;
3028  llvm::Type *BPP = CGF.Int8PtrPtrTy;
3029
3030  CGBuilderTy &Builder = CGF.Builder;
3031  llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP, "ap");
3032  llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur");
3033
3034  // Update the va_list pointer.  The pointer should be bumped by the
3035  // size of the object.  We can trust getTypeSize() except for a complex
3036  // type whose base type is smaller than a doubleword.  For these, the
3037  // size of the object is 16 bytes; see below for further explanation.
3038  unsigned SizeInBytes = CGF.getContext().getTypeSize(Ty) / 8;
3039  QualType BaseTy;
3040  unsigned CplxBaseSize = 0;
3041
3042  if (const ComplexType *CTy = Ty->getAs<ComplexType>()) {
3043    BaseTy = CTy->getElementType();
3044    CplxBaseSize = CGF.getContext().getTypeSize(BaseTy) / 8;
3045    if (CplxBaseSize < 8)
3046      SizeInBytes = 16;
3047  }
3048
3049  unsigned Offset = llvm::RoundUpToAlignment(SizeInBytes, 8);
3050  llvm::Value *NextAddr =
3051    Builder.CreateGEP(Addr, llvm::ConstantInt::get(CGF.Int64Ty, Offset),
3052                      "ap.next");
3053  Builder.CreateStore(NextAddr, VAListAddrAsBPP);
3054
3055  // If we have a complex type and the base type is smaller than 8 bytes,
3056  // the ABI calls for the real and imaginary parts to be right-adjusted
3057  // in separate doublewords.  However, Clang expects us to produce a
3058  // pointer to a structure with the two parts packed tightly.  So generate
3059  // loads of the real and imaginary parts relative to the va_list pointer,
3060  // and store them to a temporary structure.
3061  if (CplxBaseSize && CplxBaseSize < 8) {
3062    llvm::Value *RealAddr = Builder.CreatePtrToInt(Addr, CGF.Int64Ty);
3063    llvm::Value *ImagAddr = RealAddr;
3064    RealAddr = Builder.CreateAdd(RealAddr, Builder.getInt64(8 - CplxBaseSize));
3065    ImagAddr = Builder.CreateAdd(ImagAddr, Builder.getInt64(16 - CplxBaseSize));
3066    llvm::Type *PBaseTy = llvm::PointerType::getUnqual(CGF.ConvertType(BaseTy));
3067    RealAddr = Builder.CreateIntToPtr(RealAddr, PBaseTy);
3068    ImagAddr = Builder.CreateIntToPtr(ImagAddr, PBaseTy);
3069    llvm::Value *Real = Builder.CreateLoad(RealAddr, false, ".vareal");
3070    llvm::Value *Imag = Builder.CreateLoad(ImagAddr, false, ".vaimag");
3071    llvm::Value *Ptr = CGF.CreateTempAlloca(CGT.ConvertTypeForMem(Ty),
3072                                            "vacplx");
3073    llvm::Value *RealPtr = Builder.CreateStructGEP(Ptr, 0, ".real");
3074    llvm::Value *ImagPtr = Builder.CreateStructGEP(Ptr, 1, ".imag");
3075    Builder.CreateStore(Real, RealPtr, false);
3076    Builder.CreateStore(Imag, ImagPtr, false);
3077    return Ptr;
3078  }
3079
3080  // If the argument is smaller than 8 bytes, it is right-adjusted in
3081  // its doubleword slot.  Adjust the pointer to pick it up from the
3082  // correct offset.
3083  if (SizeInBytes < 8) {
3084    llvm::Value *AddrAsInt = Builder.CreatePtrToInt(Addr, CGF.Int64Ty);
3085    AddrAsInt = Builder.CreateAdd(AddrAsInt, Builder.getInt64(8 - SizeInBytes));
3086    Addr = Builder.CreateIntToPtr(AddrAsInt, BP);
3087  }
3088
3089  llvm::Type *PTy = llvm::PointerType::getUnqual(CGF.ConvertType(Ty));
3090  return Builder.CreateBitCast(Addr, PTy);
3091}
3092
3093static bool
3094PPC64_initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
3095                              llvm::Value *Address) {
3096  // This is calculated from the LLVM and GCC tables and verified
3097  // against gcc output.  AFAIK all ABIs use the same encoding.
3098
3099  CodeGen::CGBuilderTy &Builder = CGF.Builder;
3100
3101  llvm::IntegerType *i8 = CGF.Int8Ty;
3102  llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4);
3103  llvm::Value *Eight8 = llvm::ConstantInt::get(i8, 8);
3104  llvm::Value *Sixteen8 = llvm::ConstantInt::get(i8, 16);
3105
3106  // 0-31: r0-31, the 8-byte general-purpose registers
3107  AssignToArrayRange(Builder, Address, Eight8, 0, 31);
3108
3109  // 32-63: fp0-31, the 8-byte floating-point registers
3110  AssignToArrayRange(Builder, Address, Eight8, 32, 63);
3111
3112  // 64-76 are various 4-byte special-purpose registers:
3113  // 64: mq
3114  // 65: lr
3115  // 66: ctr
3116  // 67: ap
3117  // 68-75 cr0-7
3118  // 76: xer
3119  AssignToArrayRange(Builder, Address, Four8, 64, 76);
3120
3121  // 77-108: v0-31, the 16-byte vector registers
3122  AssignToArrayRange(Builder, Address, Sixteen8, 77, 108);
3123
3124  // 109: vrsave
3125  // 110: vscr
3126  // 111: spe_acc
3127  // 112: spefscr
3128  // 113: sfp
3129  AssignToArrayRange(Builder, Address, Four8, 109, 113);
3130
3131  return false;
3132}
3133
3134bool
3135PPC64_SVR4_TargetCodeGenInfo::initDwarfEHRegSizeTable(
3136  CodeGen::CodeGenFunction &CGF,
3137  llvm::Value *Address) const {
3138
3139  return PPC64_initDwarfEHRegSizeTable(CGF, Address);
3140}
3141
3142bool
3143PPC64TargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
3144                                                llvm::Value *Address) const {
3145
3146  return PPC64_initDwarfEHRegSizeTable(CGF, Address);
3147}
3148
3149//===----------------------------------------------------------------------===//
3150// ARM ABI Implementation
3151//===----------------------------------------------------------------------===//
3152
3153namespace {
3154
3155class ARMABIInfo : public ABIInfo {
3156public:
3157  enum ABIKind {
3158    APCS = 0,
3159    AAPCS = 1,
3160    AAPCS_VFP
3161  };
3162
3163private:
3164  ABIKind Kind;
3165
3166public:
3167  ARMABIInfo(CodeGenTypes &CGT, ABIKind _Kind) : ABIInfo(CGT), Kind(_Kind) {
3168    setRuntimeCC();
3169  }
3170
3171  bool isEABI() const {
3172    StringRef Env = getTarget().getTriple().getEnvironmentName();
3173    return (Env == "gnueabi" || Env == "eabi" ||
3174            Env == "android" || Env == "androideabi");
3175  }
3176
3177  ABIKind getABIKind() const { return Kind; }
3178
3179private:
3180  ABIArgInfo classifyReturnType(QualType RetTy) const;
3181  ABIArgInfo classifyArgumentType(QualType RetTy, int *VFPRegs,
3182                                  unsigned &AllocatedVFP,
3183                                  bool &IsHA) const;
3184  bool isIllegalVectorType(QualType Ty) const;
3185
3186  virtual void computeInfo(CGFunctionInfo &FI) const;
3187
3188  virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
3189                                 CodeGenFunction &CGF) const;
3190
3191  llvm::CallingConv::ID getLLVMDefaultCC() const;
3192  llvm::CallingConv::ID getABIDefaultCC() const;
3193  void setRuntimeCC();
3194};
3195
3196class ARMTargetCodeGenInfo : public TargetCodeGenInfo {
3197public:
3198  ARMTargetCodeGenInfo(CodeGenTypes &CGT, ARMABIInfo::ABIKind K)
3199    :TargetCodeGenInfo(new ARMABIInfo(CGT, K)) {}
3200
3201  const ARMABIInfo &getABIInfo() const {
3202    return static_cast<const ARMABIInfo&>(TargetCodeGenInfo::getABIInfo());
3203  }
3204
3205  int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const {
3206    return 13;
3207  }
3208
3209  StringRef getARCRetainAutoreleasedReturnValueMarker() const {
3210    return "mov\tr7, r7\t\t@ marker for objc_retainAutoreleaseReturnValue";
3211  }
3212
3213  bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
3214                               llvm::Value *Address) const {
3215    llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4);
3216
3217    // 0-15 are the 16 integer registers.
3218    AssignToArrayRange(CGF.Builder, Address, Four8, 0, 15);
3219    return false;
3220  }
3221
3222  unsigned getSizeOfUnwindException() const {
3223    if (getABIInfo().isEABI()) return 88;
3224    return TargetCodeGenInfo::getSizeOfUnwindException();
3225  }
3226
3227  void SetTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
3228                           CodeGen::CodeGenModule &CGM) const {
3229    const FunctionDecl *FD = dyn_cast<FunctionDecl>(D);
3230    if (!FD)
3231      return;
3232
3233    const ARMInterruptAttr *Attr = FD->getAttr<ARMInterruptAttr>();
3234    if (!Attr)
3235      return;
3236
3237    const char *Kind;
3238    switch (Attr->getInterrupt()) {
3239    case ARMInterruptAttr::Generic: Kind = ""; break;
3240    case ARMInterruptAttr::IRQ:     Kind = "IRQ"; break;
3241    case ARMInterruptAttr::FIQ:     Kind = "FIQ"; break;
3242    case ARMInterruptAttr::SWI:     Kind = "SWI"; break;
3243    case ARMInterruptAttr::ABORT:   Kind = "ABORT"; break;
3244    case ARMInterruptAttr::UNDEF:   Kind = "UNDEF"; break;
3245    }
3246
3247    llvm::Function *Fn = cast<llvm::Function>(GV);
3248
3249    Fn->addFnAttr("interrupt", Kind);
3250
3251    if (cast<ARMABIInfo>(getABIInfo()).getABIKind() == ARMABIInfo::APCS)
3252      return;
3253
3254    // AAPCS guarantees that sp will be 8-byte aligned on any public interface,
3255    // however this is not necessarily true on taking any interrupt. Instruct
3256    // the backend to perform a realignment as part of the function prologue.
3257    llvm::AttrBuilder B;
3258    B.addStackAlignmentAttr(8);
3259    Fn->addAttributes(llvm::AttributeSet::FunctionIndex,
3260                      llvm::AttributeSet::get(CGM.getLLVMContext(),
3261                                              llvm::AttributeSet::FunctionIndex,
3262                                              B));
3263  }
3264
3265};
3266
3267}
3268
3269void ARMABIInfo::computeInfo(CGFunctionInfo &FI) const {
3270  // To correctly handle Homogeneous Aggregate, we need to keep track of the
3271  // VFP registers allocated so far.
3272  // C.1.vfp If the argument is a VFP CPRC and there are sufficient consecutive
3273  // VFP registers of the appropriate type unallocated then the argument is
3274  // allocated to the lowest-numbered sequence of such registers.
3275  // C.2.vfp If the argument is a VFP CPRC then any VFP registers that are
3276  // unallocated are marked as unavailable.
3277  unsigned AllocatedVFP = 0;
3278  int VFPRegs[16] = { 0 };
3279  FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
3280  for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
3281       it != ie; ++it) {
3282    unsigned PreAllocation = AllocatedVFP;
3283    bool IsHA = false;
3284    // 6.1.2.3 There is one VFP co-processor register class using registers
3285    // s0-s15 (d0-d7) for passing arguments.
3286    const unsigned NumVFPs = 16;
3287    it->info = classifyArgumentType(it->type, VFPRegs, AllocatedVFP, IsHA);
3288    // If we do not have enough VFP registers for the HA, any VFP registers
3289    // that are unallocated are marked as unavailable. To achieve this, we add
3290    // padding of (NumVFPs - PreAllocation) floats.
3291    if (IsHA && AllocatedVFP > NumVFPs && PreAllocation < NumVFPs) {
3292      llvm::Type *PaddingTy = llvm::ArrayType::get(
3293          llvm::Type::getFloatTy(getVMContext()), NumVFPs - PreAllocation);
3294      it->info = ABIArgInfo::getExpandWithPadding(false, PaddingTy);
3295    }
3296  }
3297
3298  // Always honor user-specified calling convention.
3299  if (FI.getCallingConvention() != llvm::CallingConv::C)
3300    return;
3301
3302  llvm::CallingConv::ID cc = getRuntimeCC();
3303  if (cc != llvm::CallingConv::C)
3304    FI.setEffectiveCallingConvention(cc);
3305}
3306
3307/// Return the default calling convention that LLVM will use.
3308llvm::CallingConv::ID ARMABIInfo::getLLVMDefaultCC() const {
3309  // The default calling convention that LLVM will infer.
3310  if (getTarget().getTriple().getEnvironmentName()=="gnueabihf")
3311    return llvm::CallingConv::ARM_AAPCS_VFP;
3312  else if (isEABI())
3313    return llvm::CallingConv::ARM_AAPCS;
3314  else
3315    return llvm::CallingConv::ARM_APCS;
3316}
3317
3318/// Return the calling convention that our ABI would like us to use
3319/// as the C calling convention.
3320llvm::CallingConv::ID ARMABIInfo::getABIDefaultCC() const {
3321  switch (getABIKind()) {
3322  case APCS: return llvm::CallingConv::ARM_APCS;
3323  case AAPCS: return llvm::CallingConv::ARM_AAPCS;
3324  case AAPCS_VFP: return llvm::CallingConv::ARM_AAPCS_VFP;
3325  }
3326  llvm_unreachable("bad ABI kind");
3327}
3328
3329void ARMABIInfo::setRuntimeCC() {
3330  assert(getRuntimeCC() == llvm::CallingConv::C);
3331
3332  // Don't muddy up the IR with a ton of explicit annotations if
3333  // they'd just match what LLVM will infer from the triple.
3334  llvm::CallingConv::ID abiCC = getABIDefaultCC();
3335  if (abiCC != getLLVMDefaultCC())
3336    RuntimeCC = abiCC;
3337}
3338
3339/// isHomogeneousAggregate - Return true if a type is an AAPCS-VFP homogeneous
3340/// aggregate.  If HAMembers is non-null, the number of base elements
3341/// contained in the type is returned through it; this is used for the
3342/// recursive calls that check aggregate component types.
3343static bool isHomogeneousAggregate(QualType Ty, const Type *&Base,
3344                                   ASTContext &Context,
3345                                   uint64_t *HAMembers = 0) {
3346  uint64_t Members = 0;
3347  if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty)) {
3348    if (!isHomogeneousAggregate(AT->getElementType(), Base, Context, &Members))
3349      return false;
3350    Members *= AT->getSize().getZExtValue();
3351  } else if (const RecordType *RT = Ty->getAs<RecordType>()) {
3352    const RecordDecl *RD = RT->getDecl();
3353    if (RD->hasFlexibleArrayMember())
3354      return false;
3355
3356    Members = 0;
3357    for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
3358         i != e; ++i) {
3359      const FieldDecl *FD = *i;
3360      uint64_t FldMembers;
3361      if (!isHomogeneousAggregate(FD->getType(), Base, Context, &FldMembers))
3362        return false;
3363
3364      Members = (RD->isUnion() ?
3365                 std::max(Members, FldMembers) : Members + FldMembers);
3366    }
3367  } else {
3368    Members = 1;
3369    if (const ComplexType *CT = Ty->getAs<ComplexType>()) {
3370      Members = 2;
3371      Ty = CT->getElementType();
3372    }
3373
3374    // Homogeneous aggregates for AAPCS-VFP must have base types of float,
3375    // double, or 64-bit or 128-bit vectors.
3376    if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) {
3377      if (BT->getKind() != BuiltinType::Float &&
3378          BT->getKind() != BuiltinType::Double &&
3379          BT->getKind() != BuiltinType::LongDouble)
3380        return false;
3381    } else if (const VectorType *VT = Ty->getAs<VectorType>()) {
3382      unsigned VecSize = Context.getTypeSize(VT);
3383      if (VecSize != 64 && VecSize != 128)
3384        return false;
3385    } else {
3386      return false;
3387    }
3388
3389    // The base type must be the same for all members.  Vector types of the
3390    // same total size are treated as being equivalent here.
3391    const Type *TyPtr = Ty.getTypePtr();
3392    if (!Base)
3393      Base = TyPtr;
3394    if (Base != TyPtr &&
3395        (!Base->isVectorType() || !TyPtr->isVectorType() ||
3396         Context.getTypeSize(Base) != Context.getTypeSize(TyPtr)))
3397      return false;
3398  }
3399
3400  // Homogeneous Aggregates can have at most 4 members of the base type.
3401  if (HAMembers)
3402    *HAMembers = Members;
3403
3404  return (Members > 0 && Members <= 4);
3405}
3406
3407/// markAllocatedVFPs - update VFPRegs according to the alignment and
3408/// number of VFP registers (unit is S register) requested.
3409static void markAllocatedVFPs(int *VFPRegs, unsigned &AllocatedVFP,
3410                              unsigned Alignment,
3411                              unsigned NumRequired) {
3412  // Early Exit.
3413  if (AllocatedVFP >= 16)
3414    return;
3415  // C.1.vfp If the argument is a VFP CPRC and there are sufficient consecutive
3416  // VFP registers of the appropriate type unallocated then the argument is
3417  // allocated to the lowest-numbered sequence of such registers.
3418  for (unsigned I = 0; I < 16; I += Alignment) {
3419    bool FoundSlot = true;
3420    for (unsigned J = I, JEnd = I + NumRequired; J < JEnd; J++)
3421      if (J >= 16 || VFPRegs[J]) {
3422         FoundSlot = false;
3423         break;
3424      }
3425    if (FoundSlot) {
3426      for (unsigned J = I, JEnd = I + NumRequired; J < JEnd; J++)
3427        VFPRegs[J] = 1;
3428      AllocatedVFP += NumRequired;
3429      return;
3430    }
3431  }
3432  // C.2.vfp If the argument is a VFP CPRC then any VFP registers that are
3433  // unallocated are marked as unavailable.
3434  for (unsigned I = 0; I < 16; I++)
3435    VFPRegs[I] = 1;
3436  AllocatedVFP = 17; // We do not have enough VFP registers.
3437}
3438
3439ABIArgInfo ARMABIInfo::classifyArgumentType(QualType Ty, int *VFPRegs,
3440                                            unsigned &AllocatedVFP,
3441                                            bool &IsHA) const {
3442  // We update number of allocated VFPs according to
3443  // 6.1.2.1 The following argument types are VFP CPRCs:
3444  //   A single-precision floating-point type (including promoted
3445  //   half-precision types); A double-precision floating-point type;
3446  //   A 64-bit or 128-bit containerized vector type; Homogeneous Aggregate
3447  //   with a Base Type of a single- or double-precision floating-point type,
3448  //   64-bit containerized vectors or 128-bit containerized vectors with one
3449  //   to four Elements.
3450
3451  // Handle illegal vector types here.
3452  if (isIllegalVectorType(Ty)) {
3453    uint64_t Size = getContext().getTypeSize(Ty);
3454    if (Size <= 32) {
3455      llvm::Type *ResType =
3456          llvm::Type::getInt32Ty(getVMContext());
3457      return ABIArgInfo::getDirect(ResType);
3458    }
3459    if (Size == 64) {
3460      llvm::Type *ResType = llvm::VectorType::get(
3461          llvm::Type::getInt32Ty(getVMContext()), 2);
3462      markAllocatedVFPs(VFPRegs, AllocatedVFP, 2, 2);
3463      return ABIArgInfo::getDirect(ResType);
3464    }
3465    if (Size == 128) {
3466      llvm::Type *ResType = llvm::VectorType::get(
3467          llvm::Type::getInt32Ty(getVMContext()), 4);
3468      markAllocatedVFPs(VFPRegs, AllocatedVFP, 4, 4);
3469      return ABIArgInfo::getDirect(ResType);
3470    }
3471    return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
3472  }
3473  // Update VFPRegs for legal vector types.
3474  if (const VectorType *VT = Ty->getAs<VectorType>()) {
3475    uint64_t Size = getContext().getTypeSize(VT);
3476    // Size of a legal vector should be power of 2 and above 64.
3477    markAllocatedVFPs(VFPRegs, AllocatedVFP, Size >= 128 ? 4 : 2, Size / 32);
3478  }
3479  // Update VFPRegs for floating point types.
3480  if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) {
3481    if (BT->getKind() == BuiltinType::Half ||
3482        BT->getKind() == BuiltinType::Float)
3483      markAllocatedVFPs(VFPRegs, AllocatedVFP, 1, 1);
3484    if (BT->getKind() == BuiltinType::Double ||
3485        BT->getKind() == BuiltinType::LongDouble)
3486      markAllocatedVFPs(VFPRegs, AllocatedVFP, 2, 2);
3487  }
3488
3489  if (!isAggregateTypeForABI(Ty)) {
3490    // Treat an enum type as its underlying type.
3491    if (const EnumType *EnumTy = Ty->getAs<EnumType>())
3492      Ty = EnumTy->getDecl()->getIntegerType();
3493
3494    return (Ty->isPromotableIntegerType() ?
3495            ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
3496  }
3497
3498  if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
3499    return ABIArgInfo::getIndirect(0, RAA == CGCXXABI::RAA_DirectInMemory);
3500
3501  // Ignore empty records.
3502  if (isEmptyRecord(getContext(), Ty, true))
3503    return ABIArgInfo::getIgnore();
3504
3505  if (getABIKind() == ARMABIInfo::AAPCS_VFP) {
3506    // Homogeneous Aggregates need to be expanded when we can fit the aggregate
3507    // into VFP registers.
3508    const Type *Base = 0;
3509    uint64_t Members = 0;
3510    if (isHomogeneousAggregate(Ty, Base, getContext(), &Members)) {
3511      assert(Base && "Base class should be set for homogeneous aggregate");
3512      // Base can be a floating-point or a vector.
3513      if (Base->isVectorType()) {
3514        // ElementSize is in number of floats.
3515        unsigned ElementSize = getContext().getTypeSize(Base) == 64 ? 2 : 4;
3516        markAllocatedVFPs(VFPRegs, AllocatedVFP, ElementSize,
3517                          Members * ElementSize);
3518      } else if (Base->isSpecificBuiltinType(BuiltinType::Float))
3519        markAllocatedVFPs(VFPRegs, AllocatedVFP, 1, Members);
3520      else {
3521        assert(Base->isSpecificBuiltinType(BuiltinType::Double) ||
3522               Base->isSpecificBuiltinType(BuiltinType::LongDouble));
3523        markAllocatedVFPs(VFPRegs, AllocatedVFP, 2, Members * 2);
3524      }
3525      IsHA = true;
3526      return ABIArgInfo::getExpand();
3527    }
3528  }
3529
3530  // Support byval for ARM.
3531  // The ABI alignment for APCS is 4-byte and for AAPCS at least 4-byte and at
3532  // most 8-byte. We realign the indirect argument if type alignment is bigger
3533  // than ABI alignment.
3534  uint64_t ABIAlign = 4;
3535  uint64_t TyAlign = getContext().getTypeAlign(Ty) / 8;
3536  if (getABIKind() == ARMABIInfo::AAPCS_VFP ||
3537      getABIKind() == ARMABIInfo::AAPCS)
3538    ABIAlign = std::min(std::max(TyAlign, (uint64_t)4), (uint64_t)8);
3539  if (getContext().getTypeSizeInChars(Ty) > CharUnits::fromQuantity(64)) {
3540    return ABIArgInfo::getIndirect(0, /*ByVal=*/true,
3541           /*Realign=*/TyAlign > ABIAlign);
3542  }
3543
3544  // Otherwise, pass by coercing to a structure of the appropriate size.
3545  llvm::Type* ElemTy;
3546  unsigned SizeRegs;
3547  // FIXME: Try to match the types of the arguments more accurately where
3548  // we can.
3549  if (getContext().getTypeAlign(Ty) <= 32) {
3550    ElemTy = llvm::Type::getInt32Ty(getVMContext());
3551    SizeRegs = (getContext().getTypeSize(Ty) + 31) / 32;
3552  } else {
3553    ElemTy = llvm::Type::getInt64Ty(getVMContext());
3554    SizeRegs = (getContext().getTypeSize(Ty) + 63) / 64;
3555  }
3556
3557  llvm::Type *STy =
3558    llvm::StructType::get(llvm::ArrayType::get(ElemTy, SizeRegs), NULL);
3559  return ABIArgInfo::getDirect(STy);
3560}
3561
3562static bool isIntegerLikeType(QualType Ty, ASTContext &Context,
3563                              llvm::LLVMContext &VMContext) {
3564  // APCS, C Language Calling Conventions, Non-Simple Return Values: A structure
3565  // is called integer-like if its size is less than or equal to one word, and
3566  // the offset of each of its addressable sub-fields is zero.
3567
3568  uint64_t Size = Context.getTypeSize(Ty);
3569
3570  // Check that the type fits in a word.
3571  if (Size > 32)
3572    return false;
3573
3574  // FIXME: Handle vector types!
3575  if (Ty->isVectorType())
3576    return false;
3577
3578  // Float types are never treated as "integer like".
3579  if (Ty->isRealFloatingType())
3580    return false;
3581
3582  // If this is a builtin or pointer type then it is ok.
3583  if (Ty->getAs<BuiltinType>() || Ty->isPointerType())
3584    return true;
3585
3586  // Small complex integer types are "integer like".
3587  if (const ComplexType *CT = Ty->getAs<ComplexType>())
3588    return isIntegerLikeType(CT->getElementType(), Context, VMContext);
3589
3590  // Single element and zero sized arrays should be allowed, by the definition
3591  // above, but they are not.
3592
3593  // Otherwise, it must be a record type.
3594  const RecordType *RT = Ty->getAs<RecordType>();
3595  if (!RT) return false;
3596
3597  // Ignore records with flexible arrays.
3598  const RecordDecl *RD = RT->getDecl();
3599  if (RD->hasFlexibleArrayMember())
3600    return false;
3601
3602  // Check that all sub-fields are at offset 0, and are themselves "integer
3603  // like".
3604  const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
3605
3606  bool HadField = false;
3607  unsigned idx = 0;
3608  for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
3609       i != e; ++i, ++idx) {
3610    const FieldDecl *FD = *i;
3611
3612    // Bit-fields are not addressable, we only need to verify they are "integer
3613    // like". We still have to disallow a subsequent non-bitfield, for example:
3614    //   struct { int : 0; int x }
3615    // is non-integer like according to gcc.
3616    if (FD->isBitField()) {
3617      if (!RD->isUnion())
3618        HadField = true;
3619
3620      if (!isIntegerLikeType(FD->getType(), Context, VMContext))
3621        return false;
3622
3623      continue;
3624    }
3625
3626    // Check if this field is at offset 0.
3627    if (Layout.getFieldOffset(idx) != 0)
3628      return false;
3629
3630    if (!isIntegerLikeType(FD->getType(), Context, VMContext))
3631      return false;
3632
3633    // Only allow at most one field in a structure. This doesn't match the
3634    // wording above, but follows gcc in situations with a field following an
3635    // empty structure.
3636    if (!RD->isUnion()) {
3637      if (HadField)
3638        return false;
3639
3640      HadField = true;
3641    }
3642  }
3643
3644  return true;
3645}
3646
3647ABIArgInfo ARMABIInfo::classifyReturnType(QualType RetTy) const {
3648  if (RetTy->isVoidType())
3649    return ABIArgInfo::getIgnore();
3650
3651  // Large vector types should be returned via memory.
3652  if (RetTy->isVectorType() && getContext().getTypeSize(RetTy) > 128)
3653    return ABIArgInfo::getIndirect(0);
3654
3655  if (!isAggregateTypeForABI(RetTy)) {
3656    // Treat an enum type as its underlying type.
3657    if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
3658      RetTy = EnumTy->getDecl()->getIntegerType();
3659
3660    return (RetTy->isPromotableIntegerType() ?
3661            ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
3662  }
3663
3664  // Structures with either a non-trivial destructor or a non-trivial
3665  // copy constructor are always indirect.
3666  if (isRecordReturnIndirect(RetTy, getCXXABI()))
3667    return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
3668
3669  // Are we following APCS?
3670  if (getABIKind() == APCS) {
3671    if (isEmptyRecord(getContext(), RetTy, false))
3672      return ABIArgInfo::getIgnore();
3673
3674    // Complex types are all returned as packed integers.
3675    //
3676    // FIXME: Consider using 2 x vector types if the back end handles them
3677    // correctly.
3678    if (RetTy->isAnyComplexType())
3679      return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),
3680                                              getContext().getTypeSize(RetTy)));
3681
3682    // Integer like structures are returned in r0.
3683    if (isIntegerLikeType(RetTy, getContext(), getVMContext())) {
3684      // Return in the smallest viable integer type.
3685      uint64_t Size = getContext().getTypeSize(RetTy);
3686      if (Size <= 8)
3687        return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext()));
3688      if (Size <= 16)
3689        return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext()));
3690      return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext()));
3691    }
3692
3693    // Otherwise return in memory.
3694    return ABIArgInfo::getIndirect(0);
3695  }
3696
3697  // Otherwise this is an AAPCS variant.
3698
3699  if (isEmptyRecord(getContext(), RetTy, true))
3700    return ABIArgInfo::getIgnore();
3701
3702  // Check for homogeneous aggregates with AAPCS-VFP.
3703  if (getABIKind() == AAPCS_VFP) {
3704    const Type *Base = 0;
3705    if (isHomogeneousAggregate(RetTy, Base, getContext())) {
3706      assert(Base && "Base class should be set for homogeneous aggregate");
3707      // Homogeneous Aggregates are returned directly.
3708      return ABIArgInfo::getDirect();
3709    }
3710  }
3711
3712  // Aggregates <= 4 bytes are returned in r0; other aggregates
3713  // are returned indirectly.
3714  uint64_t Size = getContext().getTypeSize(RetTy);
3715  if (Size <= 32) {
3716    // Return in the smallest viable integer type.
3717    if (Size <= 8)
3718      return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext()));
3719    if (Size <= 16)
3720      return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext()));
3721    return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext()));
3722  }
3723
3724  return ABIArgInfo::getIndirect(0);
3725}
3726
3727/// isIllegalVector - check whether Ty is an illegal vector type.
3728bool ARMABIInfo::isIllegalVectorType(QualType Ty) const {
3729  if (const VectorType *VT = Ty->getAs<VectorType>()) {
3730    // Check whether VT is legal.
3731    unsigned NumElements = VT->getNumElements();
3732    uint64_t Size = getContext().getTypeSize(VT);
3733    // NumElements should be power of 2.
3734    if ((NumElements & (NumElements - 1)) != 0)
3735      return true;
3736    // Size should be greater than 32 bits.
3737    return Size <= 32;
3738  }
3739  return false;
3740}
3741
3742llvm::Value *ARMABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
3743                                   CodeGenFunction &CGF) const {
3744  llvm::Type *BP = CGF.Int8PtrTy;
3745  llvm::Type *BPP = CGF.Int8PtrPtrTy;
3746
3747  CGBuilderTy &Builder = CGF.Builder;
3748  llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP, "ap");
3749  llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur");
3750
3751  if (isEmptyRecord(getContext(), Ty, true)) {
3752    // These are ignored for parameter passing purposes.
3753    llvm::Type *PTy = llvm::PointerType::getUnqual(CGF.ConvertType(Ty));
3754    return Builder.CreateBitCast(Addr, PTy);
3755  }
3756
3757  uint64_t Size = CGF.getContext().getTypeSize(Ty) / 8;
3758  uint64_t TyAlign = CGF.getContext().getTypeAlign(Ty) / 8;
3759  bool IsIndirect = false;
3760
3761  // The ABI alignment for 64-bit or 128-bit vectors is 8 for AAPCS and 4 for
3762  // APCS. For AAPCS, the ABI alignment is at least 4-byte and at most 8-byte.
3763  if (getABIKind() == ARMABIInfo::AAPCS_VFP ||
3764      getABIKind() == ARMABIInfo::AAPCS)
3765    TyAlign = std::min(std::max(TyAlign, (uint64_t)4), (uint64_t)8);
3766  else
3767    TyAlign = 4;
3768  // Use indirect if size of the illegal vector is bigger than 16 bytes.
3769  if (isIllegalVectorType(Ty) && Size > 16) {
3770    IsIndirect = true;
3771    Size = 4;
3772    TyAlign = 4;
3773  }
3774
3775  // Handle address alignment for ABI alignment > 4 bytes.
3776  if (TyAlign > 4) {
3777    assert((TyAlign & (TyAlign - 1)) == 0 &&
3778           "Alignment is not power of 2!");
3779    llvm::Value *AddrAsInt = Builder.CreatePtrToInt(Addr, CGF.Int32Ty);
3780    AddrAsInt = Builder.CreateAdd(AddrAsInt, Builder.getInt32(TyAlign - 1));
3781    AddrAsInt = Builder.CreateAnd(AddrAsInt, Builder.getInt32(~(TyAlign - 1)));
3782    Addr = Builder.CreateIntToPtr(AddrAsInt, BP, "ap.align");
3783  }
3784
3785  uint64_t Offset =
3786    llvm::RoundUpToAlignment(Size, 4);
3787  llvm::Value *NextAddr =
3788    Builder.CreateGEP(Addr, llvm::ConstantInt::get(CGF.Int32Ty, Offset),
3789                      "ap.next");
3790  Builder.CreateStore(NextAddr, VAListAddrAsBPP);
3791
3792  if (IsIndirect)
3793    Addr = Builder.CreateLoad(Builder.CreateBitCast(Addr, BPP));
3794  else if (TyAlign < CGF.getContext().getTypeAlign(Ty) / 8) {
3795    // We can't directly cast ap.cur to pointer to a vector type, since ap.cur
3796    // may not be correctly aligned for the vector type. We create an aligned
3797    // temporary space and copy the content over from ap.cur to the temporary
3798    // space. This is necessary if the natural alignment of the type is greater
3799    // than the ABI alignment.
3800    llvm::Type *I8PtrTy = Builder.getInt8PtrTy();
3801    CharUnits CharSize = getContext().getTypeSizeInChars(Ty);
3802    llvm::Value *AlignedTemp = CGF.CreateTempAlloca(CGF.ConvertType(Ty),
3803                                                    "var.align");
3804    llvm::Value *Dst = Builder.CreateBitCast(AlignedTemp, I8PtrTy);
3805    llvm::Value *Src = Builder.CreateBitCast(Addr, I8PtrTy);
3806    Builder.CreateMemCpy(Dst, Src,
3807        llvm::ConstantInt::get(CGF.IntPtrTy, CharSize.getQuantity()),
3808        TyAlign, false);
3809    Addr = AlignedTemp; //The content is in aligned location.
3810  }
3811  llvm::Type *PTy =
3812    llvm::PointerType::getUnqual(CGF.ConvertType(Ty));
3813  llvm::Value *AddrTyped = Builder.CreateBitCast(Addr, PTy);
3814
3815  return AddrTyped;
3816}
3817
3818namespace {
3819
3820class NaClARMABIInfo : public ABIInfo {
3821 public:
3822  NaClARMABIInfo(CodeGen::CodeGenTypes &CGT, ARMABIInfo::ABIKind Kind)
3823      : ABIInfo(CGT), PInfo(CGT), NInfo(CGT, Kind) {}
3824  virtual void computeInfo(CGFunctionInfo &FI) const;
3825  virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
3826                                 CodeGenFunction &CGF) const;
3827 private:
3828  PNaClABIInfo PInfo; // Used for generating calls with pnaclcall callingconv.
3829  ARMABIInfo NInfo; // Used for everything else.
3830};
3831
3832class NaClARMTargetCodeGenInfo : public TargetCodeGenInfo  {
3833 public:
3834  NaClARMTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, ARMABIInfo::ABIKind Kind)
3835      : TargetCodeGenInfo(new NaClARMABIInfo(CGT, Kind)) {}
3836};
3837
3838}
3839
3840void NaClARMABIInfo::computeInfo(CGFunctionInfo &FI) const {
3841  if (FI.getASTCallingConvention() == CC_PnaclCall)
3842    PInfo.computeInfo(FI);
3843  else
3844    static_cast<const ABIInfo&>(NInfo).computeInfo(FI);
3845}
3846
3847llvm::Value *NaClARMABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
3848                                       CodeGenFunction &CGF) const {
3849  // Always use the native convention; calling pnacl-style varargs functions
3850  // is unsupported.
3851  return static_cast<const ABIInfo&>(NInfo).EmitVAArg(VAListAddr, Ty, CGF);
3852}
3853
3854//===----------------------------------------------------------------------===//
3855// AArch64 ABI Implementation
3856//===----------------------------------------------------------------------===//
3857
3858namespace {
3859
3860class AArch64ABIInfo : public ABIInfo {
3861public:
3862  AArch64ABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {}
3863
3864private:
3865  // The AArch64 PCS is explicit about return types and argument types being
3866  // handled identically, so we don't need to draw a distinction between
3867  // Argument and Return classification.
3868  ABIArgInfo classifyGenericType(QualType Ty, int &FreeIntRegs,
3869                                 int &FreeVFPRegs) const;
3870
3871  ABIArgInfo tryUseRegs(QualType Ty, int &FreeRegs, int RegsNeeded, bool IsInt,
3872                        llvm::Type *DirectTy = 0) const;
3873
3874  virtual void computeInfo(CGFunctionInfo &FI) const;
3875
3876  virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
3877                                 CodeGenFunction &CGF) const;
3878};
3879
3880class AArch64TargetCodeGenInfo : public TargetCodeGenInfo {
3881public:
3882  AArch64TargetCodeGenInfo(CodeGenTypes &CGT)
3883    :TargetCodeGenInfo(new AArch64ABIInfo(CGT)) {}
3884
3885  const AArch64ABIInfo &getABIInfo() const {
3886    return static_cast<const AArch64ABIInfo&>(TargetCodeGenInfo::getABIInfo());
3887  }
3888
3889  int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const {
3890    return 31;
3891  }
3892
3893  bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
3894                               llvm::Value *Address) const {
3895    // 0-31 are x0-x30 and sp: 8 bytes each
3896    llvm::Value *Eight8 = llvm::ConstantInt::get(CGF.Int8Ty, 8);
3897    AssignToArrayRange(CGF.Builder, Address, Eight8, 0, 31);
3898
3899    // 64-95 are v0-v31: 16 bytes each
3900    llvm::Value *Sixteen8 = llvm::ConstantInt::get(CGF.Int8Ty, 16);
3901    AssignToArrayRange(CGF.Builder, Address, Sixteen8, 64, 95);
3902
3903    return false;
3904  }
3905
3906};
3907
3908}
3909
3910void AArch64ABIInfo::computeInfo(CGFunctionInfo &FI) const {
3911  int FreeIntRegs = 8, FreeVFPRegs = 8;
3912
3913  FI.getReturnInfo() = classifyGenericType(FI.getReturnType(),
3914                                           FreeIntRegs, FreeVFPRegs);
3915
3916  FreeIntRegs = FreeVFPRegs = 8;
3917  for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
3918       it != ie; ++it) {
3919    it->info = classifyGenericType(it->type, FreeIntRegs, FreeVFPRegs);
3920
3921  }
3922}
3923
3924ABIArgInfo
3925AArch64ABIInfo::tryUseRegs(QualType Ty, int &FreeRegs, int RegsNeeded,
3926                           bool IsInt, llvm::Type *DirectTy) const {
3927  if (FreeRegs >= RegsNeeded) {
3928    FreeRegs -= RegsNeeded;
3929    return ABIArgInfo::getDirect(DirectTy);
3930  }
3931
3932  llvm::Type *Padding = 0;
3933
3934  // We need padding so that later arguments don't get filled in anyway. That
3935  // wouldn't happen if only ByVal arguments followed in the same category, but
3936  // a large structure will simply seem to be a pointer as far as LLVM is
3937  // concerned.
3938  if (FreeRegs > 0) {
3939    if (IsInt)
3940      Padding = llvm::Type::getInt64Ty(getVMContext());
3941    else
3942      Padding = llvm::Type::getFloatTy(getVMContext());
3943
3944    // Either [N x i64] or [N x float].
3945    Padding = llvm::ArrayType::get(Padding, FreeRegs);
3946    FreeRegs = 0;
3947  }
3948
3949  return ABIArgInfo::getIndirect(getContext().getTypeAlign(Ty) / 8,
3950                                 /*IsByVal=*/ true, /*Realign=*/ false,
3951                                 Padding);
3952}
3953
3954
3955ABIArgInfo AArch64ABIInfo::classifyGenericType(QualType Ty,
3956                                               int &FreeIntRegs,
3957                                               int &FreeVFPRegs) const {
3958  // Can only occurs for return, but harmless otherwise.
3959  if (Ty->isVoidType())
3960    return ABIArgInfo::getIgnore();
3961
3962  // Large vector types should be returned via memory. There's no such concept
3963  // in the ABI, but they'd be over 16 bytes anyway so no matter how they're
3964  // classified they'd go into memory (see B.3).
3965  if (Ty->isVectorType() && getContext().getTypeSize(Ty) > 128) {
3966    if (FreeIntRegs > 0)
3967      --FreeIntRegs;
3968    return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
3969  }
3970
3971  // All non-aggregate LLVM types have a concrete ABI representation so they can
3972  // be passed directly. After this block we're guaranteed to be in a
3973  // complicated case.
3974  if (!isAggregateTypeForABI(Ty)) {
3975    // Treat an enum type as its underlying type.
3976    if (const EnumType *EnumTy = Ty->getAs<EnumType>())
3977      Ty = EnumTy->getDecl()->getIntegerType();
3978
3979    if (Ty->isFloatingType() || Ty->isVectorType())
3980      return tryUseRegs(Ty, FreeVFPRegs, /*RegsNeeded=*/ 1, /*IsInt=*/ false);
3981
3982    assert(getContext().getTypeSize(Ty) <= 128 &&
3983           "unexpectedly large scalar type");
3984
3985    int RegsNeeded = getContext().getTypeSize(Ty) > 64 ? 2 : 1;
3986
3987    // If the type may need padding registers to ensure "alignment", we must be
3988    // careful when this is accounted for. Increasing the effective size covers
3989    // all cases.
3990    if (getContext().getTypeAlign(Ty) == 128)
3991      RegsNeeded += FreeIntRegs % 2 != 0;
3992
3993    return tryUseRegs(Ty, FreeIntRegs, RegsNeeded, /*IsInt=*/ true);
3994  }
3995
3996  if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) {
3997    if (FreeIntRegs > 0 && RAA == CGCXXABI::RAA_Indirect)
3998      --FreeIntRegs;
3999    return ABIArgInfo::getIndirect(0, RAA == CGCXXABI::RAA_DirectInMemory);
4000  }
4001
4002  if (isEmptyRecord(getContext(), Ty, true)) {
4003    if (!getContext().getLangOpts().CPlusPlus) {
4004      // Empty structs outside C++ mode are a GNU extension, so no ABI can
4005      // possibly tell us what to do. It turns out (I believe) that GCC ignores
4006      // the object for parameter-passsing purposes.
4007      return ABIArgInfo::getIgnore();
4008    }
4009
4010    // The combination of C++98 9p5 (sizeof(struct) != 0) and the pseudocode
4011    // description of va_arg in the PCS require that an empty struct does
4012    // actually occupy space for parameter-passing. I'm hoping for a
4013    // clarification giving an explicit paragraph to point to in future.
4014    return tryUseRegs(Ty, FreeIntRegs, /*RegsNeeded=*/ 1, /*IsInt=*/ true,
4015                      llvm::Type::getInt8Ty(getVMContext()));
4016  }
4017
4018  // Homogeneous vector aggregates get passed in registers or on the stack.
4019  const Type *Base = 0;
4020  uint64_t NumMembers = 0;
4021  if (isHomogeneousAggregate(Ty, Base, getContext(), &NumMembers)) {
4022    assert(Base && "Base class should be set for homogeneous aggregate");
4023    // Homogeneous aggregates are passed and returned directly.
4024    return tryUseRegs(Ty, FreeVFPRegs, /*RegsNeeded=*/ NumMembers,
4025                      /*IsInt=*/ false);
4026  }
4027
4028  uint64_t Size = getContext().getTypeSize(Ty);
4029  if (Size <= 128) {
4030    // Small structs can use the same direct type whether they're in registers
4031    // or on the stack.
4032    llvm::Type *BaseTy;
4033    unsigned NumBases;
4034    int SizeInRegs = (Size + 63) / 64;
4035
4036    if (getContext().getTypeAlign(Ty) == 128) {
4037      BaseTy = llvm::Type::getIntNTy(getVMContext(), 128);
4038      NumBases = 1;
4039
4040      // If the type may need padding registers to ensure "alignment", we must
4041      // be careful when this is accounted for. Increasing the effective size
4042      // covers all cases.
4043      SizeInRegs += FreeIntRegs % 2 != 0;
4044    } else {
4045      BaseTy = llvm::Type::getInt64Ty(getVMContext());
4046      NumBases = SizeInRegs;
4047    }
4048    llvm::Type *DirectTy = llvm::ArrayType::get(BaseTy, NumBases);
4049
4050    return tryUseRegs(Ty, FreeIntRegs, /*RegsNeeded=*/ SizeInRegs,
4051                      /*IsInt=*/ true, DirectTy);
4052  }
4053
4054  // If the aggregate is > 16 bytes, it's passed and returned indirectly. In
4055  // LLVM terms the return uses an "sret" pointer, but that's handled elsewhere.
4056  --FreeIntRegs;
4057  return ABIArgInfo::getIndirect(0, /* byVal = */ false);
4058}
4059
4060llvm::Value *AArch64ABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
4061                                       CodeGenFunction &CGF) const {
4062  // The AArch64 va_list type and handling is specified in the Procedure Call
4063  // Standard, section B.4:
4064  //
4065  // struct {
4066  //   void *__stack;
4067  //   void *__gr_top;
4068  //   void *__vr_top;
4069  //   int __gr_offs;
4070  //   int __vr_offs;
4071  // };
4072
4073  assert(!CGF.CGM.getDataLayout().isBigEndian()
4074         && "va_arg not implemented for big-endian AArch64");
4075
4076  int FreeIntRegs = 8, FreeVFPRegs = 8;
4077  Ty = CGF.getContext().getCanonicalType(Ty);
4078  ABIArgInfo AI = classifyGenericType(Ty, FreeIntRegs, FreeVFPRegs);
4079
4080  llvm::BasicBlock *MaybeRegBlock = CGF.createBasicBlock("vaarg.maybe_reg");
4081  llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg");
4082  llvm::BasicBlock *OnStackBlock = CGF.createBasicBlock("vaarg.on_stack");
4083  llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end");
4084
4085  llvm::Value *reg_offs_p = 0, *reg_offs = 0;
4086  int reg_top_index;
4087  int RegSize;
4088  if (FreeIntRegs < 8) {
4089    assert(FreeVFPRegs == 8 && "Arguments never split between int & VFP regs");
4090    // 3 is the field number of __gr_offs
4091    reg_offs_p = CGF.Builder.CreateStructGEP(VAListAddr, 3, "gr_offs_p");
4092    reg_offs = CGF.Builder.CreateLoad(reg_offs_p, "gr_offs");
4093    reg_top_index = 1; // field number for __gr_top
4094    RegSize = 8 * (8 - FreeIntRegs);
4095  } else {
4096    assert(FreeVFPRegs < 8 && "Argument must go in VFP or int regs");
4097    // 4 is the field number of __vr_offs.
4098    reg_offs_p = CGF.Builder.CreateStructGEP(VAListAddr, 4, "vr_offs_p");
4099    reg_offs = CGF.Builder.CreateLoad(reg_offs_p, "vr_offs");
4100    reg_top_index = 2; // field number for __vr_top
4101    RegSize = 16 * (8 - FreeVFPRegs);
4102  }
4103
4104  //=======================================
4105  // Find out where argument was passed
4106  //=======================================
4107
4108  // If reg_offs >= 0 we're already using the stack for this type of
4109  // argument. We don't want to keep updating reg_offs (in case it overflows,
4110  // though anyone passing 2GB of arguments, each at most 16 bytes, deserves
4111  // whatever they get).
4112  llvm::Value *UsingStack = 0;
4113  UsingStack = CGF.Builder.CreateICmpSGE(reg_offs,
4114                                         llvm::ConstantInt::get(CGF.Int32Ty, 0));
4115
4116  CGF.Builder.CreateCondBr(UsingStack, OnStackBlock, MaybeRegBlock);
4117
4118  // Otherwise, at least some kind of argument could go in these registers, the
4119  // quesiton is whether this particular type is too big.
4120  CGF.EmitBlock(MaybeRegBlock);
4121
4122  // Integer arguments may need to correct register alignment (for example a
4123  // "struct { __int128 a; };" gets passed in x_2N, x_{2N+1}). In this case we
4124  // align __gr_offs to calculate the potential address.
4125  if (FreeIntRegs < 8 && AI.isDirect() && getContext().getTypeAlign(Ty) > 64) {
4126    int Align = getContext().getTypeAlign(Ty) / 8;
4127
4128    reg_offs = CGF.Builder.CreateAdd(reg_offs,
4129                                 llvm::ConstantInt::get(CGF.Int32Ty, Align - 1),
4130                                 "align_regoffs");
4131    reg_offs = CGF.Builder.CreateAnd(reg_offs,
4132                                    llvm::ConstantInt::get(CGF.Int32Ty, -Align),
4133                                    "aligned_regoffs");
4134  }
4135
4136  // Update the gr_offs/vr_offs pointer for next call to va_arg on this va_list.
4137  llvm::Value *NewOffset = 0;
4138  NewOffset = CGF.Builder.CreateAdd(reg_offs,
4139                                    llvm::ConstantInt::get(CGF.Int32Ty, RegSize),
4140                                    "new_reg_offs");
4141  CGF.Builder.CreateStore(NewOffset, reg_offs_p);
4142
4143  // Now we're in a position to decide whether this argument really was in
4144  // registers or not.
4145  llvm::Value *InRegs = 0;
4146  InRegs = CGF.Builder.CreateICmpSLE(NewOffset,
4147                                     llvm::ConstantInt::get(CGF.Int32Ty, 0),
4148                                     "inreg");
4149
4150  CGF.Builder.CreateCondBr(InRegs, InRegBlock, OnStackBlock);
4151
4152  //=======================================
4153  // Argument was in registers
4154  //=======================================
4155
4156  // Now we emit the code for if the argument was originally passed in
4157  // registers. First start the appropriate block:
4158  CGF.EmitBlock(InRegBlock);
4159
4160  llvm::Value *reg_top_p = 0, *reg_top = 0;
4161  reg_top_p = CGF.Builder.CreateStructGEP(VAListAddr, reg_top_index, "reg_top_p");
4162  reg_top = CGF.Builder.CreateLoad(reg_top_p, "reg_top");
4163  llvm::Value *BaseAddr = CGF.Builder.CreateGEP(reg_top, reg_offs);
4164  llvm::Value *RegAddr = 0;
4165  llvm::Type *MemTy = llvm::PointerType::getUnqual(CGF.ConvertTypeForMem(Ty));
4166
4167  if (!AI.isDirect()) {
4168    // If it's been passed indirectly (actually a struct), whatever we find from
4169    // stored registers or on the stack will actually be a struct **.
4170    MemTy = llvm::PointerType::getUnqual(MemTy);
4171  }
4172
4173  const Type *Base = 0;
4174  uint64_t NumMembers;
4175  if (isHomogeneousAggregate(Ty, Base, getContext(), &NumMembers)
4176      && NumMembers > 1) {
4177    // Homogeneous aggregates passed in registers will have their elements split
4178    // and stored 16-bytes apart regardless of size (they're notionally in qN,
4179    // qN+1, ...). We reload and store into a temporary local variable
4180    // contiguously.
4181    assert(AI.isDirect() && "Homogeneous aggregates should be passed directly");
4182    llvm::Type *BaseTy = CGF.ConvertType(QualType(Base, 0));
4183    llvm::Type *HFATy = llvm::ArrayType::get(BaseTy, NumMembers);
4184    llvm::Value *Tmp = CGF.CreateTempAlloca(HFATy);
4185
4186    for (unsigned i = 0; i < NumMembers; ++i) {
4187      llvm::Value *BaseOffset = llvm::ConstantInt::get(CGF.Int32Ty, 16 * i);
4188      llvm::Value *LoadAddr = CGF.Builder.CreateGEP(BaseAddr, BaseOffset);
4189      LoadAddr = CGF.Builder.CreateBitCast(LoadAddr,
4190                                           llvm::PointerType::getUnqual(BaseTy));
4191      llvm::Value *StoreAddr = CGF.Builder.CreateStructGEP(Tmp, i);
4192
4193      llvm::Value *Elem = CGF.Builder.CreateLoad(LoadAddr);
4194      CGF.Builder.CreateStore(Elem, StoreAddr);
4195    }
4196
4197    RegAddr = CGF.Builder.CreateBitCast(Tmp, MemTy);
4198  } else {
4199    // Otherwise the object is contiguous in memory
4200    RegAddr = CGF.Builder.CreateBitCast(BaseAddr, MemTy);
4201  }
4202
4203  CGF.EmitBranch(ContBlock);
4204
4205  //=======================================
4206  // Argument was on the stack
4207  //=======================================
4208  CGF.EmitBlock(OnStackBlock);
4209
4210  llvm::Value *stack_p = 0, *OnStackAddr = 0;
4211  stack_p = CGF.Builder.CreateStructGEP(VAListAddr, 0, "stack_p");
4212  OnStackAddr = CGF.Builder.CreateLoad(stack_p, "stack");
4213
4214  // Again, stack arguments may need realigmnent. In this case both integer and
4215  // floating-point ones might be affected.
4216  if (AI.isDirect() && getContext().getTypeAlign(Ty) > 64) {
4217    int Align = getContext().getTypeAlign(Ty) / 8;
4218
4219    OnStackAddr = CGF.Builder.CreatePtrToInt(OnStackAddr, CGF.Int64Ty);
4220
4221    OnStackAddr = CGF.Builder.CreateAdd(OnStackAddr,
4222                                 llvm::ConstantInt::get(CGF.Int64Ty, Align - 1),
4223                                 "align_stack");
4224    OnStackAddr = CGF.Builder.CreateAnd(OnStackAddr,
4225                                    llvm::ConstantInt::get(CGF.Int64Ty, -Align),
4226                                    "align_stack");
4227
4228    OnStackAddr = CGF.Builder.CreateIntToPtr(OnStackAddr, CGF.Int8PtrTy);
4229  }
4230
4231  uint64_t StackSize;
4232  if (AI.isDirect())
4233    StackSize = getContext().getTypeSize(Ty) / 8;
4234  else
4235    StackSize = 8;
4236
4237  // All stack slots are 8 bytes
4238  StackSize = llvm::RoundUpToAlignment(StackSize, 8);
4239
4240  llvm::Value *StackSizeC = llvm::ConstantInt::get(CGF.Int32Ty, StackSize);
4241  llvm::Value *NewStack = CGF.Builder.CreateGEP(OnStackAddr, StackSizeC,
4242                                                "new_stack");
4243
4244  // Write the new value of __stack for the next call to va_arg
4245  CGF.Builder.CreateStore(NewStack, stack_p);
4246
4247  OnStackAddr = CGF.Builder.CreateBitCast(OnStackAddr, MemTy);
4248
4249  CGF.EmitBranch(ContBlock);
4250
4251  //=======================================
4252  // Tidy up
4253  //=======================================
4254  CGF.EmitBlock(ContBlock);
4255
4256  llvm::PHINode *ResAddr = CGF.Builder.CreatePHI(MemTy, 2, "vaarg.addr");
4257  ResAddr->addIncoming(RegAddr, InRegBlock);
4258  ResAddr->addIncoming(OnStackAddr, OnStackBlock);
4259
4260  if (AI.isDirect())
4261    return ResAddr;
4262
4263  return CGF.Builder.CreateLoad(ResAddr, "vaarg.addr");
4264}
4265
4266//===----------------------------------------------------------------------===//
4267// NVPTX ABI Implementation
4268//===----------------------------------------------------------------------===//
4269
4270namespace {
4271
4272class NVPTXABIInfo : public ABIInfo {
4273public:
4274  NVPTXABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {}
4275
4276  ABIArgInfo classifyReturnType(QualType RetTy) const;
4277  ABIArgInfo classifyArgumentType(QualType Ty) const;
4278
4279  virtual void computeInfo(CGFunctionInfo &FI) const;
4280  virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
4281                                 CodeGenFunction &CFG) const;
4282};
4283
4284class NVPTXTargetCodeGenInfo : public TargetCodeGenInfo {
4285public:
4286  NVPTXTargetCodeGenInfo(CodeGenTypes &CGT)
4287    : TargetCodeGenInfo(new NVPTXABIInfo(CGT)) {}
4288
4289  virtual void SetTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
4290                                   CodeGen::CodeGenModule &M) const;
4291private:
4292  static void addKernelMetadata(llvm::Function *F);
4293};
4294
4295ABIArgInfo NVPTXABIInfo::classifyReturnType(QualType RetTy) const {
4296  if (RetTy->isVoidType())
4297    return ABIArgInfo::getIgnore();
4298
4299  // note: this is different from default ABI
4300  if (!RetTy->isScalarType())
4301    return ABIArgInfo::getDirect();
4302
4303  // Treat an enum type as its underlying type.
4304  if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
4305    RetTy = EnumTy->getDecl()->getIntegerType();
4306
4307  return (RetTy->isPromotableIntegerType() ?
4308          ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
4309}
4310
4311ABIArgInfo NVPTXABIInfo::classifyArgumentType(QualType Ty) const {
4312  // Treat an enum type as its underlying type.
4313  if (const EnumType *EnumTy = Ty->getAs<EnumType>())
4314    Ty = EnumTy->getDecl()->getIntegerType();
4315
4316  return (Ty->isPromotableIntegerType() ?
4317          ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
4318}
4319
4320void NVPTXABIInfo::computeInfo(CGFunctionInfo &FI) const {
4321  FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
4322  for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
4323       it != ie; ++it)
4324    it->info = classifyArgumentType(it->type);
4325
4326  // Always honor user-specified calling convention.
4327  if (FI.getCallingConvention() != llvm::CallingConv::C)
4328    return;
4329
4330  FI.setEffectiveCallingConvention(getRuntimeCC());
4331}
4332
4333llvm::Value *NVPTXABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
4334                                     CodeGenFunction &CFG) const {
4335  llvm_unreachable("NVPTX does not support varargs");
4336}
4337
4338void NVPTXTargetCodeGenInfo::
4339SetTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
4340                    CodeGen::CodeGenModule &M) const{
4341  const FunctionDecl *FD = dyn_cast<FunctionDecl>(D);
4342  if (!FD) return;
4343
4344  llvm::Function *F = cast<llvm::Function>(GV);
4345
4346  // Perform special handling in OpenCL mode
4347  if (M.getLangOpts().OpenCL) {
4348    // Use OpenCL function attributes to check for kernel functions
4349    // By default, all functions are device functions
4350    if (FD->hasAttr<OpenCLKernelAttr>()) {
4351      // OpenCL __kernel functions get kernel metadata
4352      addKernelMetadata(F);
4353      // And kernel functions are not subject to inlining
4354      F->addFnAttr(llvm::Attribute::NoInline);
4355    }
4356  }
4357
4358  // Perform special handling in CUDA mode.
4359  if (M.getLangOpts().CUDA) {
4360    // CUDA __global__ functions get a kernel metadata entry.  Since
4361    // __global__ functions cannot be called from the device, we do not
4362    // need to set the noinline attribute.
4363    if (FD->getAttr<CUDAGlobalAttr>())
4364      addKernelMetadata(F);
4365  }
4366}
4367
4368void NVPTXTargetCodeGenInfo::addKernelMetadata(llvm::Function *F) {
4369  llvm::Module *M = F->getParent();
4370  llvm::LLVMContext &Ctx = M->getContext();
4371
4372  // Get "nvvm.annotations" metadata node
4373  llvm::NamedMDNode *MD = M->getOrInsertNamedMetadata("nvvm.annotations");
4374
4375  // Create !{<func-ref>, metadata !"kernel", i32 1} node
4376  llvm::SmallVector<llvm::Value *, 3> MDVals;
4377  MDVals.push_back(F);
4378  MDVals.push_back(llvm::MDString::get(Ctx, "kernel"));
4379  MDVals.push_back(llvm::ConstantInt::get(llvm::Type::getInt32Ty(Ctx), 1));
4380
4381  // Append metadata to nvvm.annotations
4382  MD->addOperand(llvm::MDNode::get(Ctx, MDVals));
4383}
4384
4385}
4386
4387//===----------------------------------------------------------------------===//
4388// SystemZ ABI Implementation
4389//===----------------------------------------------------------------------===//
4390
4391namespace {
4392
4393class SystemZABIInfo : public ABIInfo {
4394public:
4395  SystemZABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {}
4396
4397  bool isPromotableIntegerType(QualType Ty) const;
4398  bool isCompoundType(QualType Ty) const;
4399  bool isFPArgumentType(QualType Ty) const;
4400
4401  ABIArgInfo classifyReturnType(QualType RetTy) const;
4402  ABIArgInfo classifyArgumentType(QualType ArgTy) const;
4403
4404  virtual void computeInfo(CGFunctionInfo &FI) const {
4405    FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
4406    for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
4407         it != ie; ++it)
4408      it->info = classifyArgumentType(it->type);
4409  }
4410
4411  virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
4412                                 CodeGenFunction &CGF) const;
4413};
4414
4415class SystemZTargetCodeGenInfo : public TargetCodeGenInfo {
4416public:
4417  SystemZTargetCodeGenInfo(CodeGenTypes &CGT)
4418    : TargetCodeGenInfo(new SystemZABIInfo(CGT)) {}
4419};
4420
4421}
4422
4423bool SystemZABIInfo::isPromotableIntegerType(QualType Ty) const {
4424  // Treat an enum type as its underlying type.
4425  if (const EnumType *EnumTy = Ty->getAs<EnumType>())
4426    Ty = EnumTy->getDecl()->getIntegerType();
4427
4428  // Promotable integer types are required to be promoted by the ABI.
4429  if (Ty->isPromotableIntegerType())
4430    return true;
4431
4432  // 32-bit values must also be promoted.
4433  if (const BuiltinType *BT = Ty->getAs<BuiltinType>())
4434    switch (BT->getKind()) {
4435    case BuiltinType::Int:
4436    case BuiltinType::UInt:
4437      return true;
4438    default:
4439      return false;
4440    }
4441  return false;
4442}
4443
4444bool SystemZABIInfo::isCompoundType(QualType Ty) const {
4445  return Ty->isAnyComplexType() || isAggregateTypeForABI(Ty);
4446}
4447
4448bool SystemZABIInfo::isFPArgumentType(QualType Ty) const {
4449  if (const BuiltinType *BT = Ty->getAs<BuiltinType>())
4450    switch (BT->getKind()) {
4451    case BuiltinType::Float:
4452    case BuiltinType::Double:
4453      return true;
4454    default:
4455      return false;
4456    }
4457
4458  if (const RecordType *RT = Ty->getAsStructureType()) {
4459    const RecordDecl *RD = RT->getDecl();
4460    bool Found = false;
4461
4462    // If this is a C++ record, check the bases first.
4463    if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD))
4464      for (CXXRecordDecl::base_class_const_iterator I = CXXRD->bases_begin(),
4465             E = CXXRD->bases_end(); I != E; ++I) {
4466        QualType Base = I->getType();
4467
4468        // Empty bases don't affect things either way.
4469        if (isEmptyRecord(getContext(), Base, true))
4470          continue;
4471
4472        if (Found)
4473          return false;
4474        Found = isFPArgumentType(Base);
4475        if (!Found)
4476          return false;
4477      }
4478
4479    // Check the fields.
4480    for (RecordDecl::field_iterator I = RD->field_begin(),
4481           E = RD->field_end(); I != E; ++I) {
4482      const FieldDecl *FD = *I;
4483
4484      // Empty bitfields don't affect things either way.
4485      // Unlike isSingleElementStruct(), empty structure and array fields
4486      // do count.  So do anonymous bitfields that aren't zero-sized.
4487      if (FD->isBitField() && FD->getBitWidthValue(getContext()) == 0)
4488        return true;
4489
4490      // Unlike isSingleElementStruct(), arrays do not count.
4491      // Nested isFPArgumentType structures still do though.
4492      if (Found)
4493        return false;
4494      Found = isFPArgumentType(FD->getType());
4495      if (!Found)
4496        return false;
4497    }
4498
4499    // Unlike isSingleElementStruct(), trailing padding is allowed.
4500    // An 8-byte aligned struct s { float f; } is passed as a double.
4501    return Found;
4502  }
4503
4504  return false;
4505}
4506
4507llvm::Value *SystemZABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
4508                                       CodeGenFunction &CGF) const {
4509  // Assume that va_list type is correct; should be pointer to LLVM type:
4510  // struct {
4511  //   i64 __gpr;
4512  //   i64 __fpr;
4513  //   i8 *__overflow_arg_area;
4514  //   i8 *__reg_save_area;
4515  // };
4516
4517  // Every argument occupies 8 bytes and is passed by preference in either
4518  // GPRs or FPRs.
4519  Ty = CGF.getContext().getCanonicalType(Ty);
4520  ABIArgInfo AI = classifyArgumentType(Ty);
4521  bool InFPRs = isFPArgumentType(Ty);
4522
4523  llvm::Type *APTy = llvm::PointerType::getUnqual(CGF.ConvertTypeForMem(Ty));
4524  bool IsIndirect = AI.isIndirect();
4525  unsigned UnpaddedBitSize;
4526  if (IsIndirect) {
4527    APTy = llvm::PointerType::getUnqual(APTy);
4528    UnpaddedBitSize = 64;
4529  } else
4530    UnpaddedBitSize = getContext().getTypeSize(Ty);
4531  unsigned PaddedBitSize = 64;
4532  assert((UnpaddedBitSize <= PaddedBitSize) && "Invalid argument size.");
4533
4534  unsigned PaddedSize = PaddedBitSize / 8;
4535  unsigned Padding = (PaddedBitSize - UnpaddedBitSize) / 8;
4536
4537  unsigned MaxRegs, RegCountField, RegSaveIndex, RegPadding;
4538  if (InFPRs) {
4539    MaxRegs = 4; // Maximum of 4 FPR arguments
4540    RegCountField = 1; // __fpr
4541    RegSaveIndex = 16; // save offset for f0
4542    RegPadding = 0; // floats are passed in the high bits of an FPR
4543  } else {
4544    MaxRegs = 5; // Maximum of 5 GPR arguments
4545    RegCountField = 0; // __gpr
4546    RegSaveIndex = 2; // save offset for r2
4547    RegPadding = Padding; // values are passed in the low bits of a GPR
4548  }
4549
4550  llvm::Value *RegCountPtr =
4551    CGF.Builder.CreateStructGEP(VAListAddr, RegCountField, "reg_count_ptr");
4552  llvm::Value *RegCount = CGF.Builder.CreateLoad(RegCountPtr, "reg_count");
4553  llvm::Type *IndexTy = RegCount->getType();
4554  llvm::Value *MaxRegsV = llvm::ConstantInt::get(IndexTy, MaxRegs);
4555  llvm::Value *InRegs = CGF.Builder.CreateICmpULT(RegCount, MaxRegsV,
4556						  "fits_in_regs");
4557
4558  llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg");
4559  llvm::BasicBlock *InMemBlock = CGF.createBasicBlock("vaarg.in_mem");
4560  llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end");
4561  CGF.Builder.CreateCondBr(InRegs, InRegBlock, InMemBlock);
4562
4563  // Emit code to load the value if it was passed in registers.
4564  CGF.EmitBlock(InRegBlock);
4565
4566  // Work out the address of an argument register.
4567  llvm::Value *PaddedSizeV = llvm::ConstantInt::get(IndexTy, PaddedSize);
4568  llvm::Value *ScaledRegCount =
4569    CGF.Builder.CreateMul(RegCount, PaddedSizeV, "scaled_reg_count");
4570  llvm::Value *RegBase =
4571    llvm::ConstantInt::get(IndexTy, RegSaveIndex * PaddedSize + RegPadding);
4572  llvm::Value *RegOffset =
4573    CGF.Builder.CreateAdd(ScaledRegCount, RegBase, "reg_offset");
4574  llvm::Value *RegSaveAreaPtr =
4575    CGF.Builder.CreateStructGEP(VAListAddr, 3, "reg_save_area_ptr");
4576  llvm::Value *RegSaveArea =
4577    CGF.Builder.CreateLoad(RegSaveAreaPtr, "reg_save_area");
4578  llvm::Value *RawRegAddr =
4579    CGF.Builder.CreateGEP(RegSaveArea, RegOffset, "raw_reg_addr");
4580  llvm::Value *RegAddr =
4581    CGF.Builder.CreateBitCast(RawRegAddr, APTy, "reg_addr");
4582
4583  // Update the register count
4584  llvm::Value *One = llvm::ConstantInt::get(IndexTy, 1);
4585  llvm::Value *NewRegCount =
4586    CGF.Builder.CreateAdd(RegCount, One, "reg_count");
4587  CGF.Builder.CreateStore(NewRegCount, RegCountPtr);
4588  CGF.EmitBranch(ContBlock);
4589
4590  // Emit code to load the value if it was passed in memory.
4591  CGF.EmitBlock(InMemBlock);
4592
4593  // Work out the address of a stack argument.
4594  llvm::Value *OverflowArgAreaPtr =
4595    CGF.Builder.CreateStructGEP(VAListAddr, 2, "overflow_arg_area_ptr");
4596  llvm::Value *OverflowArgArea =
4597    CGF.Builder.CreateLoad(OverflowArgAreaPtr, "overflow_arg_area");
4598  llvm::Value *PaddingV = llvm::ConstantInt::get(IndexTy, Padding);
4599  llvm::Value *RawMemAddr =
4600    CGF.Builder.CreateGEP(OverflowArgArea, PaddingV, "raw_mem_addr");
4601  llvm::Value *MemAddr =
4602    CGF.Builder.CreateBitCast(RawMemAddr, APTy, "mem_addr");
4603
4604  // Update overflow_arg_area_ptr pointer
4605  llvm::Value *NewOverflowArgArea =
4606    CGF.Builder.CreateGEP(OverflowArgArea, PaddedSizeV, "overflow_arg_area");
4607  CGF.Builder.CreateStore(NewOverflowArgArea, OverflowArgAreaPtr);
4608  CGF.EmitBranch(ContBlock);
4609
4610  // Return the appropriate result.
4611  CGF.EmitBlock(ContBlock);
4612  llvm::PHINode *ResAddr = CGF.Builder.CreatePHI(APTy, 2, "va_arg.addr");
4613  ResAddr->addIncoming(RegAddr, InRegBlock);
4614  ResAddr->addIncoming(MemAddr, InMemBlock);
4615
4616  if (IsIndirect)
4617    return CGF.Builder.CreateLoad(ResAddr, "indirect_arg");
4618
4619  return ResAddr;
4620}
4621
4622bool X86_32TargetCodeGenInfo::isStructReturnInRegABI(
4623    const llvm::Triple &Triple, const CodeGenOptions &Opts) {
4624  assert(Triple.getArch() == llvm::Triple::x86);
4625
4626  switch (Opts.getStructReturnConvention()) {
4627  case CodeGenOptions::SRCK_Default:
4628    break;
4629  case CodeGenOptions::SRCK_OnStack:  // -fpcc-struct-return
4630    return false;
4631  case CodeGenOptions::SRCK_InRegs:  // -freg-struct-return
4632    return true;
4633  }
4634
4635  if (Triple.isOSDarwin())
4636    return true;
4637
4638  switch (Triple.getOS()) {
4639  case llvm::Triple::Cygwin:
4640  case llvm::Triple::MinGW32:
4641  case llvm::Triple::AuroraUX:
4642  case llvm::Triple::DragonFly:
4643  case llvm::Triple::FreeBSD:
4644  case llvm::Triple::OpenBSD:
4645  case llvm::Triple::Bitrig:
4646  case llvm::Triple::Win32:
4647    return true;
4648  default:
4649    return false;
4650  }
4651}
4652
4653ABIArgInfo SystemZABIInfo::classifyReturnType(QualType RetTy) const {
4654  if (RetTy->isVoidType())
4655    return ABIArgInfo::getIgnore();
4656  if (isCompoundType(RetTy) || getContext().getTypeSize(RetTy) > 64)
4657    return ABIArgInfo::getIndirect(0);
4658  return (isPromotableIntegerType(RetTy) ?
4659          ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
4660}
4661
4662ABIArgInfo SystemZABIInfo::classifyArgumentType(QualType Ty) const {
4663  // Handle the generic C++ ABI.
4664  if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
4665    return ABIArgInfo::getIndirect(0, RAA == CGCXXABI::RAA_DirectInMemory);
4666
4667  // Integers and enums are extended to full register width.
4668  if (isPromotableIntegerType(Ty))
4669    return ABIArgInfo::getExtend();
4670
4671  // Values that are not 1, 2, 4 or 8 bytes in size are passed indirectly.
4672  uint64_t Size = getContext().getTypeSize(Ty);
4673  if (Size != 8 && Size != 16 && Size != 32 && Size != 64)
4674    return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
4675
4676  // Handle small structures.
4677  if (const RecordType *RT = Ty->getAs<RecordType>()) {
4678    // Structures with flexible arrays have variable length, so really
4679    // fail the size test above.
4680    const RecordDecl *RD = RT->getDecl();
4681    if (RD->hasFlexibleArrayMember())
4682      return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
4683
4684    // The structure is passed as an unextended integer, a float, or a double.
4685    llvm::Type *PassTy;
4686    if (isFPArgumentType(Ty)) {
4687      assert(Size == 32 || Size == 64);
4688      if (Size == 32)
4689        PassTy = llvm::Type::getFloatTy(getVMContext());
4690      else
4691        PassTy = llvm::Type::getDoubleTy(getVMContext());
4692    } else
4693      PassTy = llvm::IntegerType::get(getVMContext(), Size);
4694    return ABIArgInfo::getDirect(PassTy);
4695  }
4696
4697  // Non-structure compounds are passed indirectly.
4698  if (isCompoundType(Ty))
4699    return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
4700
4701  return ABIArgInfo::getDirect(0);
4702}
4703
4704//===----------------------------------------------------------------------===//
4705// MSP430 ABI Implementation
4706//===----------------------------------------------------------------------===//
4707
4708namespace {
4709
4710class MSP430TargetCodeGenInfo : public TargetCodeGenInfo {
4711public:
4712  MSP430TargetCodeGenInfo(CodeGenTypes &CGT)
4713    : TargetCodeGenInfo(new DefaultABIInfo(CGT)) {}
4714  void SetTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
4715                           CodeGen::CodeGenModule &M) const;
4716};
4717
4718}
4719
4720void MSP430TargetCodeGenInfo::SetTargetAttributes(const Decl *D,
4721                                                  llvm::GlobalValue *GV,
4722                                             CodeGen::CodeGenModule &M) const {
4723  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
4724    if (const MSP430InterruptAttr *attr = FD->getAttr<MSP430InterruptAttr>()) {
4725      // Handle 'interrupt' attribute:
4726      llvm::Function *F = cast<llvm::Function>(GV);
4727
4728      // Step 1: Set ISR calling convention.
4729      F->setCallingConv(llvm::CallingConv::MSP430_INTR);
4730
4731      // Step 2: Add attributes goodness.
4732      F->addFnAttr(llvm::Attribute::NoInline);
4733
4734      // Step 3: Emit ISR vector alias.
4735      unsigned Num = attr->getNumber() / 2;
4736      new llvm::GlobalAlias(GV->getType(), llvm::Function::ExternalLinkage,
4737                            "__isr_" + Twine(Num),
4738                            GV, &M.getModule());
4739    }
4740  }
4741}
4742
4743//===----------------------------------------------------------------------===//
4744// MIPS ABI Implementation.  This works for both little-endian and
4745// big-endian variants.
4746//===----------------------------------------------------------------------===//
4747
4748namespace {
4749class MipsABIInfo : public ABIInfo {
4750  bool IsO32;
4751  unsigned MinABIStackAlignInBytes, StackAlignInBytes;
4752  void CoerceToIntArgs(uint64_t TySize,
4753                       SmallVectorImpl<llvm::Type *> &ArgList) const;
4754  llvm::Type* HandleAggregates(QualType Ty, uint64_t TySize) const;
4755  llvm::Type* returnAggregateInRegs(QualType RetTy, uint64_t Size) const;
4756  llvm::Type* getPaddingType(uint64_t Align, uint64_t Offset) const;
4757public:
4758  MipsABIInfo(CodeGenTypes &CGT, bool _IsO32) :
4759    ABIInfo(CGT), IsO32(_IsO32), MinABIStackAlignInBytes(IsO32 ? 4 : 8),
4760    StackAlignInBytes(IsO32 ? 8 : 16) {}
4761
4762  ABIArgInfo classifyReturnType(QualType RetTy) const;
4763  ABIArgInfo classifyArgumentType(QualType RetTy, uint64_t &Offset) const;
4764  virtual void computeInfo(CGFunctionInfo &FI) const;
4765  virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
4766                                 CodeGenFunction &CGF) const;
4767};
4768
4769class MIPSTargetCodeGenInfo : public TargetCodeGenInfo {
4770  unsigned SizeOfUnwindException;
4771public:
4772  MIPSTargetCodeGenInfo(CodeGenTypes &CGT, bool IsO32)
4773    : TargetCodeGenInfo(new MipsABIInfo(CGT, IsO32)),
4774      SizeOfUnwindException(IsO32 ? 24 : 32) {}
4775
4776  int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const {
4777    return 29;
4778  }
4779
4780  void SetTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
4781                           CodeGen::CodeGenModule &CGM) const {
4782    const FunctionDecl *FD = dyn_cast<FunctionDecl>(D);
4783    if (!FD) return;
4784    llvm::Function *Fn = cast<llvm::Function>(GV);
4785    if (FD->hasAttr<Mips16Attr>()) {
4786      Fn->addFnAttr("mips16");
4787    }
4788    else if (FD->hasAttr<NoMips16Attr>()) {
4789      Fn->addFnAttr("nomips16");
4790    }
4791  }
4792
4793  bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
4794                               llvm::Value *Address) const;
4795
4796  unsigned getSizeOfUnwindException() const {
4797    return SizeOfUnwindException;
4798  }
4799};
4800}
4801
4802void MipsABIInfo::CoerceToIntArgs(uint64_t TySize,
4803                                  SmallVectorImpl<llvm::Type *> &ArgList) const {
4804  llvm::IntegerType *IntTy =
4805    llvm::IntegerType::get(getVMContext(), MinABIStackAlignInBytes * 8);
4806
4807  // Add (TySize / MinABIStackAlignInBytes) args of IntTy.
4808  for (unsigned N = TySize / (MinABIStackAlignInBytes * 8); N; --N)
4809    ArgList.push_back(IntTy);
4810
4811  // If necessary, add one more integer type to ArgList.
4812  unsigned R = TySize % (MinABIStackAlignInBytes * 8);
4813
4814  if (R)
4815    ArgList.push_back(llvm::IntegerType::get(getVMContext(), R));
4816}
4817
4818// In N32/64, an aligned double precision floating point field is passed in
4819// a register.
4820llvm::Type* MipsABIInfo::HandleAggregates(QualType Ty, uint64_t TySize) const {
4821  SmallVector<llvm::Type*, 8> ArgList, IntArgList;
4822
4823  if (IsO32) {
4824    CoerceToIntArgs(TySize, ArgList);
4825    return llvm::StructType::get(getVMContext(), ArgList);
4826  }
4827
4828  if (Ty->isComplexType())
4829    return CGT.ConvertType(Ty);
4830
4831  const RecordType *RT = Ty->getAs<RecordType>();
4832
4833  // Unions/vectors are passed in integer registers.
4834  if (!RT || !RT->isStructureOrClassType()) {
4835    CoerceToIntArgs(TySize, ArgList);
4836    return llvm::StructType::get(getVMContext(), ArgList);
4837  }
4838
4839  const RecordDecl *RD = RT->getDecl();
4840  const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD);
4841  assert(!(TySize % 8) && "Size of structure must be multiple of 8.");
4842
4843  uint64_t LastOffset = 0;
4844  unsigned idx = 0;
4845  llvm::IntegerType *I64 = llvm::IntegerType::get(getVMContext(), 64);
4846
4847  // Iterate over fields in the struct/class and check if there are any aligned
4848  // double fields.
4849  for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
4850       i != e; ++i, ++idx) {
4851    const QualType Ty = i->getType();
4852    const BuiltinType *BT = Ty->getAs<BuiltinType>();
4853
4854    if (!BT || BT->getKind() != BuiltinType::Double)
4855      continue;
4856
4857    uint64_t Offset = Layout.getFieldOffset(idx);
4858    if (Offset % 64) // Ignore doubles that are not aligned.
4859      continue;
4860
4861    // Add ((Offset - LastOffset) / 64) args of type i64.
4862    for (unsigned j = (Offset - LastOffset) / 64; j > 0; --j)
4863      ArgList.push_back(I64);
4864
4865    // Add double type.
4866    ArgList.push_back(llvm::Type::getDoubleTy(getVMContext()));
4867    LastOffset = Offset + 64;
4868  }
4869
4870  CoerceToIntArgs(TySize - LastOffset, IntArgList);
4871  ArgList.append(IntArgList.begin(), IntArgList.end());
4872
4873  return llvm::StructType::get(getVMContext(), ArgList);
4874}
4875
4876llvm::Type *MipsABIInfo::getPaddingType(uint64_t OrigOffset,
4877                                        uint64_t Offset) const {
4878  if (OrigOffset + MinABIStackAlignInBytes > Offset)
4879    return 0;
4880
4881  return llvm::IntegerType::get(getVMContext(), (Offset - OrigOffset) * 8);
4882}
4883
4884ABIArgInfo
4885MipsABIInfo::classifyArgumentType(QualType Ty, uint64_t &Offset) const {
4886  uint64_t OrigOffset = Offset;
4887  uint64_t TySize = getContext().getTypeSize(Ty);
4888  uint64_t Align = getContext().getTypeAlign(Ty) / 8;
4889
4890  Align = std::min(std::max(Align, (uint64_t)MinABIStackAlignInBytes),
4891                   (uint64_t)StackAlignInBytes);
4892  unsigned CurrOffset = llvm::RoundUpToAlignment(Offset, Align);
4893  Offset = CurrOffset + llvm::RoundUpToAlignment(TySize, Align * 8) / 8;
4894
4895  if (isAggregateTypeForABI(Ty) || Ty->isVectorType()) {
4896    // Ignore empty aggregates.
4897    if (TySize == 0)
4898      return ABIArgInfo::getIgnore();
4899
4900    if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) {
4901      Offset = OrigOffset + MinABIStackAlignInBytes;
4902      return ABIArgInfo::getIndirect(0, RAA == CGCXXABI::RAA_DirectInMemory);
4903    }
4904
4905    // If we have reached here, aggregates are passed directly by coercing to
4906    // another structure type. Padding is inserted if the offset of the
4907    // aggregate is unaligned.
4908    return ABIArgInfo::getDirect(HandleAggregates(Ty, TySize), 0,
4909                                 getPaddingType(OrigOffset, CurrOffset));
4910  }
4911
4912  // Treat an enum type as its underlying type.
4913  if (const EnumType *EnumTy = Ty->getAs<EnumType>())
4914    Ty = EnumTy->getDecl()->getIntegerType();
4915
4916  if (Ty->isPromotableIntegerType())
4917    return ABIArgInfo::getExtend();
4918
4919  return ABIArgInfo::getDirect(
4920      0, 0, IsO32 ? 0 : getPaddingType(OrigOffset, CurrOffset));
4921}
4922
4923llvm::Type*
4924MipsABIInfo::returnAggregateInRegs(QualType RetTy, uint64_t Size) const {
4925  const RecordType *RT = RetTy->getAs<RecordType>();
4926  SmallVector<llvm::Type*, 8> RTList;
4927
4928  if (RT && RT->isStructureOrClassType()) {
4929    const RecordDecl *RD = RT->getDecl();
4930    const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD);
4931    unsigned FieldCnt = Layout.getFieldCount();
4932
4933    // N32/64 returns struct/classes in floating point registers if the
4934    // following conditions are met:
4935    // 1. The size of the struct/class is no larger than 128-bit.
4936    // 2. The struct/class has one or two fields all of which are floating
4937    //    point types.
4938    // 3. The offset of the first field is zero (this follows what gcc does).
4939    //
4940    // Any other composite results are returned in integer registers.
4941    //
4942    if (FieldCnt && (FieldCnt <= 2) && !Layout.getFieldOffset(0)) {
4943      RecordDecl::field_iterator b = RD->field_begin(), e = RD->field_end();
4944      for (; b != e; ++b) {
4945        const BuiltinType *BT = b->getType()->getAs<BuiltinType>();
4946
4947        if (!BT || !BT->isFloatingPoint())
4948          break;
4949
4950        RTList.push_back(CGT.ConvertType(b->getType()));
4951      }
4952
4953      if (b == e)
4954        return llvm::StructType::get(getVMContext(), RTList,
4955                                     RD->hasAttr<PackedAttr>());
4956
4957      RTList.clear();
4958    }
4959  }
4960
4961  CoerceToIntArgs(Size, RTList);
4962  return llvm::StructType::get(getVMContext(), RTList);
4963}
4964
4965ABIArgInfo MipsABIInfo::classifyReturnType(QualType RetTy) const {
4966  uint64_t Size = getContext().getTypeSize(RetTy);
4967
4968  if (RetTy->isVoidType() || Size == 0)
4969    return ABIArgInfo::getIgnore();
4970
4971  if (isAggregateTypeForABI(RetTy) || RetTy->isVectorType()) {
4972    if (isRecordReturnIndirect(RetTy, getCXXABI()))
4973      return ABIArgInfo::getIndirect(0);
4974
4975    if (Size <= 128) {
4976      if (RetTy->isAnyComplexType())
4977        return ABIArgInfo::getDirect();
4978
4979      // O32 returns integer vectors in registers.
4980      if (IsO32 && RetTy->isVectorType() && !RetTy->hasFloatingRepresentation())
4981        return ABIArgInfo::getDirect(returnAggregateInRegs(RetTy, Size));
4982
4983      if (!IsO32)
4984        return ABIArgInfo::getDirect(returnAggregateInRegs(RetTy, Size));
4985    }
4986
4987    return ABIArgInfo::getIndirect(0);
4988  }
4989
4990  // Treat an enum type as its underlying type.
4991  if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
4992    RetTy = EnumTy->getDecl()->getIntegerType();
4993
4994  return (RetTy->isPromotableIntegerType() ?
4995          ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
4996}
4997
4998void MipsABIInfo::computeInfo(CGFunctionInfo &FI) const {
4999  ABIArgInfo &RetInfo = FI.getReturnInfo();
5000  RetInfo = classifyReturnType(FI.getReturnType());
5001
5002  // Check if a pointer to an aggregate is passed as a hidden argument.
5003  uint64_t Offset = RetInfo.isIndirect() ? MinABIStackAlignInBytes : 0;
5004
5005  for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
5006       it != ie; ++it)
5007    it->info = classifyArgumentType(it->type, Offset);
5008}
5009
5010llvm::Value* MipsABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
5011                                    CodeGenFunction &CGF) const {
5012  llvm::Type *BP = CGF.Int8PtrTy;
5013  llvm::Type *BPP = CGF.Int8PtrPtrTy;
5014
5015  CGBuilderTy &Builder = CGF.Builder;
5016  llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP, "ap");
5017  llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur");
5018  int64_t TypeAlign = getContext().getTypeAlign(Ty) / 8;
5019  llvm::Type *PTy = llvm::PointerType::getUnqual(CGF.ConvertType(Ty));
5020  llvm::Value *AddrTyped;
5021  unsigned PtrWidth = getTarget().getPointerWidth(0);
5022  llvm::IntegerType *IntTy = (PtrWidth == 32) ? CGF.Int32Ty : CGF.Int64Ty;
5023
5024  if (TypeAlign > MinABIStackAlignInBytes) {
5025    llvm::Value *AddrAsInt = CGF.Builder.CreatePtrToInt(Addr, IntTy);
5026    llvm::Value *Inc = llvm::ConstantInt::get(IntTy, TypeAlign - 1);
5027    llvm::Value *Mask = llvm::ConstantInt::get(IntTy, -TypeAlign);
5028    llvm::Value *Add = CGF.Builder.CreateAdd(AddrAsInt, Inc);
5029    llvm::Value *And = CGF.Builder.CreateAnd(Add, Mask);
5030    AddrTyped = CGF.Builder.CreateIntToPtr(And, PTy);
5031  }
5032  else
5033    AddrTyped = Builder.CreateBitCast(Addr, PTy);
5034
5035  llvm::Value *AlignedAddr = Builder.CreateBitCast(AddrTyped, BP);
5036  TypeAlign = std::max((unsigned)TypeAlign, MinABIStackAlignInBytes);
5037  uint64_t Offset =
5038    llvm::RoundUpToAlignment(CGF.getContext().getTypeSize(Ty) / 8, TypeAlign);
5039  llvm::Value *NextAddr =
5040    Builder.CreateGEP(AlignedAddr, llvm::ConstantInt::get(IntTy, Offset),
5041                      "ap.next");
5042  Builder.CreateStore(NextAddr, VAListAddrAsBPP);
5043
5044  return AddrTyped;
5045}
5046
5047bool
5048MIPSTargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
5049                                               llvm::Value *Address) const {
5050  // This information comes from gcc's implementation, which seems to
5051  // as canonical as it gets.
5052
5053  // Everything on MIPS is 4 bytes.  Double-precision FP registers
5054  // are aliased to pairs of single-precision FP registers.
5055  llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4);
5056
5057  // 0-31 are the general purpose registers, $0 - $31.
5058  // 32-63 are the floating-point registers, $f0 - $f31.
5059  // 64 and 65 are the multiply/divide registers, $hi and $lo.
5060  // 66 is the (notional, I think) register for signal-handler return.
5061  AssignToArrayRange(CGF.Builder, Address, Four8, 0, 65);
5062
5063  // 67-74 are the floating-point status registers, $fcc0 - $fcc7.
5064  // They are one bit wide and ignored here.
5065
5066  // 80-111 are the coprocessor 0 registers, $c0r0 - $c0r31.
5067  // (coprocessor 1 is the FP unit)
5068  // 112-143 are the coprocessor 2 registers, $c2r0 - $c2r31.
5069  // 144-175 are the coprocessor 3 registers, $c3r0 - $c3r31.
5070  // 176-181 are the DSP accumulator registers.
5071  AssignToArrayRange(CGF.Builder, Address, Four8, 80, 181);
5072  return false;
5073}
5074
5075//===----------------------------------------------------------------------===//
5076// TCE ABI Implementation (see http://tce.cs.tut.fi). Uses mostly the defaults.
5077// Currently subclassed only to implement custom OpenCL C function attribute
5078// handling.
5079//===----------------------------------------------------------------------===//
5080
5081namespace {
5082
5083class TCETargetCodeGenInfo : public DefaultTargetCodeGenInfo {
5084public:
5085  TCETargetCodeGenInfo(CodeGenTypes &CGT)
5086    : DefaultTargetCodeGenInfo(CGT) {}
5087
5088  virtual void SetTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
5089                                   CodeGen::CodeGenModule &M) const;
5090};
5091
5092void TCETargetCodeGenInfo::SetTargetAttributes(const Decl *D,
5093                                               llvm::GlobalValue *GV,
5094                                               CodeGen::CodeGenModule &M) const {
5095  const FunctionDecl *FD = dyn_cast<FunctionDecl>(D);
5096  if (!FD) return;
5097
5098  llvm::Function *F = cast<llvm::Function>(GV);
5099
5100  if (M.getLangOpts().OpenCL) {
5101    if (FD->hasAttr<OpenCLKernelAttr>()) {
5102      // OpenCL C Kernel functions are not subject to inlining
5103      F->addFnAttr(llvm::Attribute::NoInline);
5104
5105      if (FD->hasAttr<ReqdWorkGroupSizeAttr>()) {
5106
5107        // Convert the reqd_work_group_size() attributes to metadata.
5108        llvm::LLVMContext &Context = F->getContext();
5109        llvm::NamedMDNode *OpenCLMetadata =
5110            M.getModule().getOrInsertNamedMetadata("opencl.kernel_wg_size_info");
5111
5112        SmallVector<llvm::Value*, 5> Operands;
5113        Operands.push_back(F);
5114
5115        Operands.push_back(llvm::Constant::getIntegerValue(M.Int32Ty,
5116                             llvm::APInt(32,
5117                             FD->getAttr<ReqdWorkGroupSizeAttr>()->getXDim())));
5118        Operands.push_back(llvm::Constant::getIntegerValue(M.Int32Ty,
5119                             llvm::APInt(32,
5120                               FD->getAttr<ReqdWorkGroupSizeAttr>()->getYDim())));
5121        Operands.push_back(llvm::Constant::getIntegerValue(M.Int32Ty,
5122                             llvm::APInt(32,
5123                               FD->getAttr<ReqdWorkGroupSizeAttr>()->getZDim())));
5124
5125        // Add a boolean constant operand for "required" (true) or "hint" (false)
5126        // for implementing the work_group_size_hint attr later. Currently
5127        // always true as the hint is not yet implemented.
5128        Operands.push_back(llvm::ConstantInt::getTrue(Context));
5129        OpenCLMetadata->addOperand(llvm::MDNode::get(Context, Operands));
5130      }
5131    }
5132  }
5133}
5134
5135}
5136
5137//===----------------------------------------------------------------------===//
5138// Hexagon ABI Implementation
5139//===----------------------------------------------------------------------===//
5140
5141namespace {
5142
5143class HexagonABIInfo : public ABIInfo {
5144
5145
5146public:
5147  HexagonABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {}
5148
5149private:
5150
5151  ABIArgInfo classifyReturnType(QualType RetTy) const;
5152  ABIArgInfo classifyArgumentType(QualType RetTy) const;
5153
5154  virtual void computeInfo(CGFunctionInfo &FI) const;
5155
5156  virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
5157                                 CodeGenFunction &CGF) const;
5158};
5159
5160class HexagonTargetCodeGenInfo : public TargetCodeGenInfo {
5161public:
5162  HexagonTargetCodeGenInfo(CodeGenTypes &CGT)
5163    :TargetCodeGenInfo(new HexagonABIInfo(CGT)) {}
5164
5165  int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const {
5166    return 29;
5167  }
5168};
5169
5170}
5171
5172void HexagonABIInfo::computeInfo(CGFunctionInfo &FI) const {
5173  FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
5174  for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
5175       it != ie; ++it)
5176    it->info = classifyArgumentType(it->type);
5177}
5178
5179ABIArgInfo HexagonABIInfo::classifyArgumentType(QualType Ty) const {
5180  if (!isAggregateTypeForABI(Ty)) {
5181    // Treat an enum type as its underlying type.
5182    if (const EnumType *EnumTy = Ty->getAs<EnumType>())
5183      Ty = EnumTy->getDecl()->getIntegerType();
5184
5185    return (Ty->isPromotableIntegerType() ?
5186            ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
5187  }
5188
5189  // Ignore empty records.
5190  if (isEmptyRecord(getContext(), Ty, true))
5191    return ABIArgInfo::getIgnore();
5192
5193  if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
5194    return ABIArgInfo::getIndirect(0, RAA == CGCXXABI::RAA_DirectInMemory);
5195
5196  uint64_t Size = getContext().getTypeSize(Ty);
5197  if (Size > 64)
5198    return ABIArgInfo::getIndirect(0, /*ByVal=*/true);
5199    // Pass in the smallest viable integer type.
5200  else if (Size > 32)
5201      return ABIArgInfo::getDirect(llvm::Type::getInt64Ty(getVMContext()));
5202  else if (Size > 16)
5203      return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext()));
5204  else if (Size > 8)
5205      return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext()));
5206  else
5207      return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext()));
5208}
5209
5210ABIArgInfo HexagonABIInfo::classifyReturnType(QualType RetTy) const {
5211  if (RetTy->isVoidType())
5212    return ABIArgInfo::getIgnore();
5213
5214  // Large vector types should be returned via memory.
5215  if (RetTy->isVectorType() && getContext().getTypeSize(RetTy) > 64)
5216    return ABIArgInfo::getIndirect(0);
5217
5218  if (!isAggregateTypeForABI(RetTy)) {
5219    // Treat an enum type as its underlying type.
5220    if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
5221      RetTy = EnumTy->getDecl()->getIntegerType();
5222
5223    return (RetTy->isPromotableIntegerType() ?
5224            ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
5225  }
5226
5227  // Structures with either a non-trivial destructor or a non-trivial
5228  // copy constructor are always indirect.
5229  if (isRecordReturnIndirect(RetTy, getCXXABI()))
5230    return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
5231
5232  if (isEmptyRecord(getContext(), RetTy, true))
5233    return ABIArgInfo::getIgnore();
5234
5235  // Aggregates <= 8 bytes are returned in r0; other aggregates
5236  // are returned indirectly.
5237  uint64_t Size = getContext().getTypeSize(RetTy);
5238  if (Size <= 64) {
5239    // Return in the smallest viable integer type.
5240    if (Size <= 8)
5241      return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext()));
5242    if (Size <= 16)
5243      return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext()));
5244    if (Size <= 32)
5245      return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext()));
5246    return ABIArgInfo::getDirect(llvm::Type::getInt64Ty(getVMContext()));
5247  }
5248
5249  return ABIArgInfo::getIndirect(0, /*ByVal=*/true);
5250}
5251
5252llvm::Value *HexagonABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
5253                                       CodeGenFunction &CGF) const {
5254  // FIXME: Need to handle alignment
5255  llvm::Type *BPP = CGF.Int8PtrPtrTy;
5256
5257  CGBuilderTy &Builder = CGF.Builder;
5258  llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP,
5259                                                       "ap");
5260  llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur");
5261  llvm::Type *PTy =
5262    llvm::PointerType::getUnqual(CGF.ConvertType(Ty));
5263  llvm::Value *AddrTyped = Builder.CreateBitCast(Addr, PTy);
5264
5265  uint64_t Offset =
5266    llvm::RoundUpToAlignment(CGF.getContext().getTypeSize(Ty) / 8, 4);
5267  llvm::Value *NextAddr =
5268    Builder.CreateGEP(Addr, llvm::ConstantInt::get(CGF.Int32Ty, Offset),
5269                      "ap.next");
5270  Builder.CreateStore(NextAddr, VAListAddrAsBPP);
5271
5272  return AddrTyped;
5273}
5274
5275
5276//===----------------------------------------------------------------------===//
5277// SPARC v9 ABI Implementation.
5278// Based on the SPARC Compliance Definition version 2.4.1.
5279//
5280// Function arguments a mapped to a nominal "parameter array" and promoted to
5281// registers depending on their type. Each argument occupies 8 or 16 bytes in
5282// the array, structs larger than 16 bytes are passed indirectly.
5283//
5284// One case requires special care:
5285//
5286//   struct mixed {
5287//     int i;
5288//     float f;
5289//   };
5290//
5291// When a struct mixed is passed by value, it only occupies 8 bytes in the
5292// parameter array, but the int is passed in an integer register, and the float
5293// is passed in a floating point register. This is represented as two arguments
5294// with the LLVM IR inreg attribute:
5295//
5296//   declare void f(i32 inreg %i, float inreg %f)
5297//
5298// The code generator will only allocate 4 bytes from the parameter array for
5299// the inreg arguments. All other arguments are allocated a multiple of 8
5300// bytes.
5301//
5302namespace {
5303class SparcV9ABIInfo : public ABIInfo {
5304public:
5305  SparcV9ABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {}
5306
5307private:
5308  ABIArgInfo classifyType(QualType RetTy, unsigned SizeLimit) const;
5309  virtual void computeInfo(CGFunctionInfo &FI) const;
5310  virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
5311                                 CodeGenFunction &CGF) const;
5312
5313  // Coercion type builder for structs passed in registers. The coercion type
5314  // serves two purposes:
5315  //
5316  // 1. Pad structs to a multiple of 64 bits, so they are passed 'left-aligned'
5317  //    in registers.
5318  // 2. Expose aligned floating point elements as first-level elements, so the
5319  //    code generator knows to pass them in floating point registers.
5320  //
5321  // We also compute the InReg flag which indicates that the struct contains
5322  // aligned 32-bit floats.
5323  //
5324  struct CoerceBuilder {
5325    llvm::LLVMContext &Context;
5326    const llvm::DataLayout &DL;
5327    SmallVector<llvm::Type*, 8> Elems;
5328    uint64_t Size;
5329    bool InReg;
5330
5331    CoerceBuilder(llvm::LLVMContext &c, const llvm::DataLayout &dl)
5332      : Context(c), DL(dl), Size(0), InReg(false) {}
5333
5334    // Pad Elems with integers until Size is ToSize.
5335    void pad(uint64_t ToSize) {
5336      assert(ToSize >= Size && "Cannot remove elements");
5337      if (ToSize == Size)
5338        return;
5339
5340      // Finish the current 64-bit word.
5341      uint64_t Aligned = llvm::RoundUpToAlignment(Size, 64);
5342      if (Aligned > Size && Aligned <= ToSize) {
5343        Elems.push_back(llvm::IntegerType::get(Context, Aligned - Size));
5344        Size = Aligned;
5345      }
5346
5347      // Add whole 64-bit words.
5348      while (Size + 64 <= ToSize) {
5349        Elems.push_back(llvm::Type::getInt64Ty(Context));
5350        Size += 64;
5351      }
5352
5353      // Final in-word padding.
5354      if (Size < ToSize) {
5355        Elems.push_back(llvm::IntegerType::get(Context, ToSize - Size));
5356        Size = ToSize;
5357      }
5358    }
5359
5360    // Add a floating point element at Offset.
5361    void addFloat(uint64_t Offset, llvm::Type *Ty, unsigned Bits) {
5362      // Unaligned floats are treated as integers.
5363      if (Offset % Bits)
5364        return;
5365      // The InReg flag is only required if there are any floats < 64 bits.
5366      if (Bits < 64)
5367        InReg = true;
5368      pad(Offset);
5369      Elems.push_back(Ty);
5370      Size = Offset + Bits;
5371    }
5372
5373    // Add a struct type to the coercion type, starting at Offset (in bits).
5374    void addStruct(uint64_t Offset, llvm::StructType *StrTy) {
5375      const llvm::StructLayout *Layout = DL.getStructLayout(StrTy);
5376      for (unsigned i = 0, e = StrTy->getNumElements(); i != e; ++i) {
5377        llvm::Type *ElemTy = StrTy->getElementType(i);
5378        uint64_t ElemOffset = Offset + Layout->getElementOffsetInBits(i);
5379        switch (ElemTy->getTypeID()) {
5380        case llvm::Type::StructTyID:
5381          addStruct(ElemOffset, cast<llvm::StructType>(ElemTy));
5382          break;
5383        case llvm::Type::FloatTyID:
5384          addFloat(ElemOffset, ElemTy, 32);
5385          break;
5386        case llvm::Type::DoubleTyID:
5387          addFloat(ElemOffset, ElemTy, 64);
5388          break;
5389        case llvm::Type::FP128TyID:
5390          addFloat(ElemOffset, ElemTy, 128);
5391          break;
5392        case llvm::Type::PointerTyID:
5393          if (ElemOffset % 64 == 0) {
5394            pad(ElemOffset);
5395            Elems.push_back(ElemTy);
5396            Size += 64;
5397          }
5398          break;
5399        default:
5400          break;
5401        }
5402      }
5403    }
5404
5405    // Check if Ty is a usable substitute for the coercion type.
5406    bool isUsableType(llvm::StructType *Ty) const {
5407      if (Ty->getNumElements() != Elems.size())
5408        return false;
5409      for (unsigned i = 0, e = Elems.size(); i != e; ++i)
5410        if (Elems[i] != Ty->getElementType(i))
5411          return false;
5412      return true;
5413    }
5414
5415    // Get the coercion type as a literal struct type.
5416    llvm::Type *getType() const {
5417      if (Elems.size() == 1)
5418        return Elems.front();
5419      else
5420        return llvm::StructType::get(Context, Elems);
5421    }
5422  };
5423};
5424} // end anonymous namespace
5425
5426ABIArgInfo
5427SparcV9ABIInfo::classifyType(QualType Ty, unsigned SizeLimit) const {
5428  if (Ty->isVoidType())
5429    return ABIArgInfo::getIgnore();
5430
5431  uint64_t Size = getContext().getTypeSize(Ty);
5432
5433  // Anything too big to fit in registers is passed with an explicit indirect
5434  // pointer / sret pointer.
5435  if (Size > SizeLimit)
5436    return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
5437
5438  // Treat an enum type as its underlying type.
5439  if (const EnumType *EnumTy = Ty->getAs<EnumType>())
5440    Ty = EnumTy->getDecl()->getIntegerType();
5441
5442  // Integer types smaller than a register are extended.
5443  if (Size < 64 && Ty->isIntegerType())
5444    return ABIArgInfo::getExtend();
5445
5446  // Other non-aggregates go in registers.
5447  if (!isAggregateTypeForABI(Ty))
5448    return ABIArgInfo::getDirect();
5449
5450  // If a C++ object has either a non-trivial copy constructor or a non-trivial
5451  // destructor, it is passed with an explicit indirect pointer / sret pointer.
5452  if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
5453    return ABIArgInfo::getIndirect(0, RAA == CGCXXABI::RAA_DirectInMemory);
5454
5455  // This is a small aggregate type that should be passed in registers.
5456  // Build a coercion type from the LLVM struct type.
5457  llvm::StructType *StrTy = dyn_cast<llvm::StructType>(CGT.ConvertType(Ty));
5458  if (!StrTy)
5459    return ABIArgInfo::getDirect();
5460
5461  CoerceBuilder CB(getVMContext(), getDataLayout());
5462  CB.addStruct(0, StrTy);
5463  CB.pad(llvm::RoundUpToAlignment(CB.DL.getTypeSizeInBits(StrTy), 64));
5464
5465  // Try to use the original type for coercion.
5466  llvm::Type *CoerceTy = CB.isUsableType(StrTy) ? StrTy : CB.getType();
5467
5468  if (CB.InReg)
5469    return ABIArgInfo::getDirectInReg(CoerceTy);
5470  else
5471    return ABIArgInfo::getDirect(CoerceTy);
5472}
5473
5474llvm::Value *SparcV9ABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
5475                                       CodeGenFunction &CGF) const {
5476  ABIArgInfo AI = classifyType(Ty, 16 * 8);
5477  llvm::Type *ArgTy = CGT.ConvertType(Ty);
5478  if (AI.canHaveCoerceToType() && !AI.getCoerceToType())
5479    AI.setCoerceToType(ArgTy);
5480
5481  llvm::Type *BPP = CGF.Int8PtrPtrTy;
5482  CGBuilderTy &Builder = CGF.Builder;
5483  llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP, "ap");
5484  llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur");
5485  llvm::Type *ArgPtrTy = llvm::PointerType::getUnqual(ArgTy);
5486  llvm::Value *ArgAddr;
5487  unsigned Stride;
5488
5489  switch (AI.getKind()) {
5490  case ABIArgInfo::Expand:
5491    llvm_unreachable("Unsupported ABI kind for va_arg");
5492
5493  case ABIArgInfo::Extend:
5494    Stride = 8;
5495    ArgAddr = Builder
5496      .CreateConstGEP1_32(Addr, 8 - getDataLayout().getTypeAllocSize(ArgTy),
5497                          "extend");
5498    break;
5499
5500  case ABIArgInfo::Direct:
5501    Stride = getDataLayout().getTypeAllocSize(AI.getCoerceToType());
5502    ArgAddr = Addr;
5503    break;
5504
5505  case ABIArgInfo::Indirect:
5506    Stride = 8;
5507    ArgAddr = Builder.CreateBitCast(Addr,
5508                                    llvm::PointerType::getUnqual(ArgPtrTy),
5509                                    "indirect");
5510    ArgAddr = Builder.CreateLoad(ArgAddr, "indirect.arg");
5511    break;
5512
5513  case ABIArgInfo::Ignore:
5514    return llvm::UndefValue::get(ArgPtrTy);
5515  }
5516
5517  // Update VAList.
5518  Addr = Builder.CreateConstGEP1_32(Addr, Stride, "ap.next");
5519  Builder.CreateStore(Addr, VAListAddrAsBPP);
5520
5521  return Builder.CreatePointerCast(ArgAddr, ArgPtrTy, "arg.addr");
5522}
5523
5524void SparcV9ABIInfo::computeInfo(CGFunctionInfo &FI) const {
5525  FI.getReturnInfo() = classifyType(FI.getReturnType(), 32 * 8);
5526  for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
5527       it != ie; ++it)
5528    it->info = classifyType(it->type, 16 * 8);
5529}
5530
5531namespace {
5532class SparcV9TargetCodeGenInfo : public TargetCodeGenInfo {
5533public:
5534  SparcV9TargetCodeGenInfo(CodeGenTypes &CGT)
5535    : TargetCodeGenInfo(new SparcV9ABIInfo(CGT)) {}
5536
5537  int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const {
5538    return 14;
5539  }
5540
5541  bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
5542                               llvm::Value *Address) const;
5543};
5544} // end anonymous namespace
5545
5546bool
5547SparcV9TargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
5548                                                llvm::Value *Address) const {
5549  // This is calculated from the LLVM and GCC tables and verified
5550  // against gcc output.  AFAIK all ABIs use the same encoding.
5551
5552  CodeGen::CGBuilderTy &Builder = CGF.Builder;
5553
5554  llvm::IntegerType *i8 = CGF.Int8Ty;
5555  llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4);
5556  llvm::Value *Eight8 = llvm::ConstantInt::get(i8, 8);
5557
5558  // 0-31: the 8-byte general-purpose registers
5559  AssignToArrayRange(Builder, Address, Eight8, 0, 31);
5560
5561  // 32-63: f0-31, the 4-byte floating-point registers
5562  AssignToArrayRange(Builder, Address, Four8, 32, 63);
5563
5564  //   Y   = 64
5565  //   PSR = 65
5566  //   WIM = 66
5567  //   TBR = 67
5568  //   PC  = 68
5569  //   NPC = 69
5570  //   FSR = 70
5571  //   CSR = 71
5572  AssignToArrayRange(Builder, Address, Eight8, 64, 71);
5573
5574  // 72-87: d0-15, the 8-byte floating-point registers
5575  AssignToArrayRange(Builder, Address, Eight8, 72, 87);
5576
5577  return false;
5578}
5579
5580
5581//===----------------------------------------------------------------------===//
5582// Xcore ABI Implementation
5583//===----------------------------------------------------------------------===//
5584namespace {
5585class XCoreABIInfo : public DefaultABIInfo {
5586public:
5587  XCoreABIInfo(CodeGen::CodeGenTypes &CGT) : DefaultABIInfo(CGT) {}
5588  virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
5589                                 CodeGenFunction &CGF) const;
5590};
5591
5592class XcoreTargetCodeGenInfo : public TargetCodeGenInfo {
5593public:
5594  XcoreTargetCodeGenInfo(CodeGenTypes &CGT)
5595    :TargetCodeGenInfo(new XCoreABIInfo(CGT)) {}
5596};
5597} // End anonymous namespace.
5598
5599llvm::Value *XCoreABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
5600                                     CodeGenFunction &CGF) const {
5601  CGBuilderTy &Builder = CGF.Builder;
5602
5603  // Get the VAList.
5604  llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr,
5605                                                       CGF.Int8PtrPtrTy);
5606  llvm::Value *AP = Builder.CreateLoad(VAListAddrAsBPP);
5607
5608  // Handle the argument.
5609  ABIArgInfo AI = classifyArgumentType(Ty);
5610  llvm::Type *ArgTy = CGT.ConvertType(Ty);
5611  if (AI.canHaveCoerceToType() && !AI.getCoerceToType())
5612    AI.setCoerceToType(ArgTy);
5613  llvm::Type *ArgPtrTy = llvm::PointerType::getUnqual(ArgTy);
5614  llvm::Value *Val;
5615  uint64_t ArgSize = 0;
5616  switch (AI.getKind()) {
5617  case ABIArgInfo::Expand:
5618    llvm_unreachable("Unsupported ABI kind for va_arg");
5619  case ABIArgInfo::Ignore:
5620    Val = llvm::UndefValue::get(ArgPtrTy);
5621    ArgSize = 0;
5622    break;
5623  case ABIArgInfo::Extend:
5624  case ABIArgInfo::Direct:
5625    Val = Builder.CreatePointerCast(AP, ArgPtrTy);
5626    ArgSize = getDataLayout().getTypeAllocSize(AI.getCoerceToType());
5627    if (ArgSize < 4)
5628      ArgSize = 4;
5629    break;
5630  case ABIArgInfo::Indirect:
5631    llvm::Value *ArgAddr;
5632    ArgAddr = Builder.CreateBitCast(AP, llvm::PointerType::getUnqual(ArgPtrTy));
5633    ArgAddr = Builder.CreateLoad(ArgAddr);
5634    Val = Builder.CreatePointerCast(ArgAddr, ArgPtrTy);
5635    ArgSize = 4;
5636    break;
5637  }
5638
5639  // Increment the VAList.
5640  if (ArgSize) {
5641    llvm::Value *APN = Builder.CreateConstGEP1_32(AP, ArgSize);
5642    Builder.CreateStore(APN, VAListAddrAsBPP);
5643  }
5644  return Val;
5645}
5646
5647//===----------------------------------------------------------------------===//
5648// Driver code
5649//===----------------------------------------------------------------------===//
5650
5651const TargetCodeGenInfo &CodeGenModule::getTargetCodeGenInfo() {
5652  if (TheTargetCodeGenInfo)
5653    return *TheTargetCodeGenInfo;
5654
5655  const llvm::Triple &Triple = getTarget().getTriple();
5656  switch (Triple.getArch()) {
5657  default:
5658    return *(TheTargetCodeGenInfo = new DefaultTargetCodeGenInfo(Types));
5659
5660  case llvm::Triple::le32:
5661    return *(TheTargetCodeGenInfo = new PNaClTargetCodeGenInfo(Types));
5662  case llvm::Triple::mips:
5663  case llvm::Triple::mipsel:
5664    return *(TheTargetCodeGenInfo = new MIPSTargetCodeGenInfo(Types, true));
5665
5666  case llvm::Triple::mips64:
5667  case llvm::Triple::mips64el:
5668    return *(TheTargetCodeGenInfo = new MIPSTargetCodeGenInfo(Types, false));
5669
5670  case llvm::Triple::aarch64:
5671    return *(TheTargetCodeGenInfo = new AArch64TargetCodeGenInfo(Types));
5672
5673  case llvm::Triple::arm:
5674  case llvm::Triple::thumb:
5675    {
5676      ARMABIInfo::ABIKind Kind = ARMABIInfo::AAPCS;
5677      if (strcmp(getTarget().getABI(), "apcs-gnu") == 0)
5678        Kind = ARMABIInfo::APCS;
5679      else if (CodeGenOpts.FloatABI == "hard" ||
5680               (CodeGenOpts.FloatABI != "soft" &&
5681                Triple.getEnvironment() == llvm::Triple::GNUEABIHF))
5682        Kind = ARMABIInfo::AAPCS_VFP;
5683
5684      switch (Triple.getOS()) {
5685        case llvm::Triple::NaCl:
5686          return *(TheTargetCodeGenInfo =
5687                   new NaClARMTargetCodeGenInfo(Types, Kind));
5688        default:
5689          return *(TheTargetCodeGenInfo =
5690                   new ARMTargetCodeGenInfo(Types, Kind));
5691      }
5692    }
5693
5694  case llvm::Triple::ppc:
5695    return *(TheTargetCodeGenInfo = new PPC32TargetCodeGenInfo(Types));
5696  case llvm::Triple::ppc64:
5697    if (Triple.isOSBinFormatELF())
5698      return *(TheTargetCodeGenInfo = new PPC64_SVR4_TargetCodeGenInfo(Types));
5699    else
5700      return *(TheTargetCodeGenInfo = new PPC64TargetCodeGenInfo(Types));
5701  case llvm::Triple::ppc64le:
5702    assert(Triple.isOSBinFormatELF() && "PPC64 LE non-ELF not supported!");
5703    return *(TheTargetCodeGenInfo = new PPC64_SVR4_TargetCodeGenInfo(Types));
5704
5705  case llvm::Triple::nvptx:
5706  case llvm::Triple::nvptx64:
5707    return *(TheTargetCodeGenInfo = new NVPTXTargetCodeGenInfo(Types));
5708
5709  case llvm::Triple::msp430:
5710    return *(TheTargetCodeGenInfo = new MSP430TargetCodeGenInfo(Types));
5711
5712  case llvm::Triple::systemz:
5713    return *(TheTargetCodeGenInfo = new SystemZTargetCodeGenInfo(Types));
5714
5715  case llvm::Triple::tce:
5716    return *(TheTargetCodeGenInfo = new TCETargetCodeGenInfo(Types));
5717
5718  case llvm::Triple::x86: {
5719    bool IsDarwinVectorABI = Triple.isOSDarwin();
5720    bool IsSmallStructInRegABI =
5721        X86_32TargetCodeGenInfo::isStructReturnInRegABI(Triple, CodeGenOpts);
5722    bool IsWin32FloatStructABI = (Triple.getOS() == llvm::Triple::Win32);
5723
5724    if (Triple.getOS() == llvm::Triple::Win32) {
5725      return *(TheTargetCodeGenInfo =
5726               new WinX86_32TargetCodeGenInfo(Types,
5727                                              IsDarwinVectorABI, IsSmallStructInRegABI,
5728                                              IsWin32FloatStructABI,
5729                                              CodeGenOpts.NumRegisterParameters));
5730    } else {
5731      return *(TheTargetCodeGenInfo =
5732               new X86_32TargetCodeGenInfo(Types,
5733                                           IsDarwinVectorABI, IsSmallStructInRegABI,
5734                                           IsWin32FloatStructABI,
5735                                           CodeGenOpts.NumRegisterParameters));
5736    }
5737  }
5738
5739  case llvm::Triple::x86_64: {
5740    bool HasAVX = strcmp(getTarget().getABI(), "avx") == 0;
5741
5742    switch (Triple.getOS()) {
5743    case llvm::Triple::Win32:
5744    case llvm::Triple::MinGW32:
5745    case llvm::Triple::Cygwin:
5746      return *(TheTargetCodeGenInfo = new WinX86_64TargetCodeGenInfo(Types));
5747    case llvm::Triple::NaCl:
5748      return *(TheTargetCodeGenInfo = new NaClX86_64TargetCodeGenInfo(Types,
5749                                                                      HasAVX));
5750    default:
5751      return *(TheTargetCodeGenInfo = new X86_64TargetCodeGenInfo(Types,
5752                                                                  HasAVX));
5753    }
5754  }
5755  case llvm::Triple::hexagon:
5756    return *(TheTargetCodeGenInfo = new HexagonTargetCodeGenInfo(Types));
5757  case llvm::Triple::sparcv9:
5758    return *(TheTargetCodeGenInfo = new SparcV9TargetCodeGenInfo(Types));
5759  case llvm::Triple::xcore:
5760    return *(TheTargetCodeGenInfo = new XcoreTargetCodeGenInfo(Types));
5761
5762  }
5763}
5764