CodeGenFunction.cpp revision 263508
1//===--- CodeGenFunction.cpp - Emit LLVM Code from ASTs for a Function ----===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This coordinates the per-function state used while generating code.
11//
12//===----------------------------------------------------------------------===//
13
14#include "CodeGenFunction.h"
15#include "CGCUDARuntime.h"
16#include "CGCXXABI.h"
17#include "CGDebugInfo.h"
18#include "CodeGenModule.h"
19#include "TargetInfo.h"
20#include "clang/AST/ASTContext.h"
21#include "clang/AST/Decl.h"
22#include "clang/AST/DeclCXX.h"
23#include "clang/AST/StmtCXX.h"
24#include "clang/Basic/OpenCL.h"
25#include "clang/Basic/TargetInfo.h"
26#include "clang/CodeGen/CGFunctionInfo.h"
27#include "clang/Frontend/CodeGenOptions.h"
28#include "llvm/IR/DataLayout.h"
29#include "llvm/IR/Intrinsics.h"
30#include "llvm/IR/MDBuilder.h"
31#include "llvm/IR/Operator.h"
32using namespace clang;
33using namespace CodeGen;
34
35CodeGenFunction::CodeGenFunction(CodeGenModule &cgm, bool suppressNewContext)
36    : CodeGenTypeCache(cgm), CGM(cgm), Target(cgm.getTarget()),
37      Builder(cgm.getModule().getContext()), CapturedStmtInfo(0),
38      SanitizePerformTypeCheck(CGM.getSanOpts().Null |
39                               CGM.getSanOpts().Alignment |
40                               CGM.getSanOpts().ObjectSize |
41                               CGM.getSanOpts().Vptr),
42      SanOpts(&CGM.getSanOpts()), AutoreleaseResult(false), BlockInfo(0),
43      BlockPointer(0), LambdaThisCaptureField(0), NormalCleanupDest(0),
44      NextCleanupDestIndex(1), FirstBlockInfo(0), EHResumeBlock(0),
45      ExceptionSlot(0), EHSelectorSlot(0), DebugInfo(CGM.getModuleDebugInfo()),
46      DisableDebugInfo(false), DidCallStackSave(false), IndirectBranch(0),
47      SwitchInsn(0), CaseRangeBlock(0), UnreachableBlock(0), NumReturnExprs(0),
48      NumSimpleReturnExprs(0), CXXABIThisDecl(0), CXXABIThisValue(0),
49      CXXThisValue(0), CXXDefaultInitExprThis(0),
50      CXXStructorImplicitParamDecl(0), CXXStructorImplicitParamValue(0),
51      OutermostConditional(0), CurLexicalScope(0), TerminateLandingPad(0),
52      TerminateHandler(0), TrapBB(0) {
53  if (!suppressNewContext)
54    CGM.getCXXABI().getMangleContext().startNewFunction();
55
56  llvm::FastMathFlags FMF;
57  if (CGM.getLangOpts().FastMath)
58    FMF.setUnsafeAlgebra();
59  if (CGM.getLangOpts().FiniteMathOnly) {
60    FMF.setNoNaNs();
61    FMF.setNoInfs();
62  }
63  Builder.SetFastMathFlags(FMF);
64}
65
66CodeGenFunction::~CodeGenFunction() {
67  assert(LifetimeExtendedCleanupStack.empty() && "failed to emit a cleanup");
68
69  // If there are any unclaimed block infos, go ahead and destroy them
70  // now.  This can happen if IR-gen gets clever and skips evaluating
71  // something.
72  if (FirstBlockInfo)
73    destroyBlockInfos(FirstBlockInfo);
74}
75
76
77llvm::Type *CodeGenFunction::ConvertTypeForMem(QualType T) {
78  return CGM.getTypes().ConvertTypeForMem(T);
79}
80
81llvm::Type *CodeGenFunction::ConvertType(QualType T) {
82  return CGM.getTypes().ConvertType(T);
83}
84
85TypeEvaluationKind CodeGenFunction::getEvaluationKind(QualType type) {
86  type = type.getCanonicalType();
87  while (true) {
88    switch (type->getTypeClass()) {
89#define TYPE(name, parent)
90#define ABSTRACT_TYPE(name, parent)
91#define NON_CANONICAL_TYPE(name, parent) case Type::name:
92#define DEPENDENT_TYPE(name, parent) case Type::name:
93#define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(name, parent) case Type::name:
94#include "clang/AST/TypeNodes.def"
95      llvm_unreachable("non-canonical or dependent type in IR-generation");
96
97    case Type::Auto:
98      llvm_unreachable("undeduced auto type in IR-generation");
99
100    // Various scalar types.
101    case Type::Builtin:
102    case Type::Pointer:
103    case Type::BlockPointer:
104    case Type::LValueReference:
105    case Type::RValueReference:
106    case Type::MemberPointer:
107    case Type::Vector:
108    case Type::ExtVector:
109    case Type::FunctionProto:
110    case Type::FunctionNoProto:
111    case Type::Enum:
112    case Type::ObjCObjectPointer:
113      return TEK_Scalar;
114
115    // Complexes.
116    case Type::Complex:
117      return TEK_Complex;
118
119    // Arrays, records, and Objective-C objects.
120    case Type::ConstantArray:
121    case Type::IncompleteArray:
122    case Type::VariableArray:
123    case Type::Record:
124    case Type::ObjCObject:
125    case Type::ObjCInterface:
126      return TEK_Aggregate;
127
128    // We operate on atomic values according to their underlying type.
129    case Type::Atomic:
130      type = cast<AtomicType>(type)->getValueType();
131      continue;
132    }
133    llvm_unreachable("unknown type kind!");
134  }
135}
136
137void CodeGenFunction::EmitReturnBlock() {
138  // For cleanliness, we try to avoid emitting the return block for
139  // simple cases.
140  llvm::BasicBlock *CurBB = Builder.GetInsertBlock();
141
142  if (CurBB) {
143    assert(!CurBB->getTerminator() && "Unexpected terminated block.");
144
145    // We have a valid insert point, reuse it if it is empty or there are no
146    // explicit jumps to the return block.
147    if (CurBB->empty() || ReturnBlock.getBlock()->use_empty()) {
148      ReturnBlock.getBlock()->replaceAllUsesWith(CurBB);
149      delete ReturnBlock.getBlock();
150    } else
151      EmitBlock(ReturnBlock.getBlock());
152    return;
153  }
154
155  // Otherwise, if the return block is the target of a single direct
156  // branch then we can just put the code in that block instead. This
157  // cleans up functions which started with a unified return block.
158  if (ReturnBlock.getBlock()->hasOneUse()) {
159    llvm::BranchInst *BI =
160      dyn_cast<llvm::BranchInst>(*ReturnBlock.getBlock()->use_begin());
161    if (BI && BI->isUnconditional() &&
162        BI->getSuccessor(0) == ReturnBlock.getBlock()) {
163      // Reset insertion point, including debug location, and delete the
164      // branch.  This is really subtle and only works because the next change
165      // in location will hit the caching in CGDebugInfo::EmitLocation and not
166      // override this.
167      Builder.SetCurrentDebugLocation(BI->getDebugLoc());
168      Builder.SetInsertPoint(BI->getParent());
169      BI->eraseFromParent();
170      delete ReturnBlock.getBlock();
171      return;
172    }
173  }
174
175  // FIXME: We are at an unreachable point, there is no reason to emit the block
176  // unless it has uses. However, we still need a place to put the debug
177  // region.end for now.
178
179  EmitBlock(ReturnBlock.getBlock());
180}
181
182static void EmitIfUsed(CodeGenFunction &CGF, llvm::BasicBlock *BB) {
183  if (!BB) return;
184  if (!BB->use_empty())
185    return CGF.CurFn->getBasicBlockList().push_back(BB);
186  delete BB;
187}
188
189void CodeGenFunction::FinishFunction(SourceLocation EndLoc) {
190  assert(BreakContinueStack.empty() &&
191         "mismatched push/pop in break/continue stack!");
192
193  bool OnlySimpleReturnStmts = NumSimpleReturnExprs > 0
194    && NumSimpleReturnExprs == NumReturnExprs
195    && ReturnBlock.getBlock()->use_empty();
196  // Usually the return expression is evaluated before the cleanup
197  // code.  If the function contains only a simple return statement,
198  // such as a constant, the location before the cleanup code becomes
199  // the last useful breakpoint in the function, because the simple
200  // return expression will be evaluated after the cleanup code. To be
201  // safe, set the debug location for cleanup code to the location of
202  // the return statement.  Otherwise the cleanup code should be at the
203  // end of the function's lexical scope.
204  //
205  // If there are multiple branches to the return block, the branch
206  // instructions will get the location of the return statements and
207  // all will be fine.
208  if (CGDebugInfo *DI = getDebugInfo()) {
209    if (OnlySimpleReturnStmts)
210      DI->EmitLocation(Builder, LastStopPoint);
211    else
212      DI->EmitLocation(Builder, EndLoc);
213  }
214
215  // Pop any cleanups that might have been associated with the
216  // parameters.  Do this in whatever block we're currently in; it's
217  // important to do this before we enter the return block or return
218  // edges will be *really* confused.
219  bool EmitRetDbgLoc = true;
220  if (EHStack.stable_begin() != PrologueCleanupDepth) {
221    PopCleanupBlocks(PrologueCleanupDepth);
222
223    // Make sure the line table doesn't jump back into the body for
224    // the ret after it's been at EndLoc.
225    EmitRetDbgLoc = false;
226
227    if (CGDebugInfo *DI = getDebugInfo())
228      if (OnlySimpleReturnStmts)
229        DI->EmitLocation(Builder, EndLoc);
230  }
231
232  // Emit function epilog (to return).
233  EmitReturnBlock();
234
235  if (ShouldInstrumentFunction())
236    EmitFunctionInstrumentation("__cyg_profile_func_exit");
237
238  // Emit debug descriptor for function end.
239  if (CGDebugInfo *DI = getDebugInfo()) {
240    DI->EmitFunctionEnd(Builder);
241  }
242
243  EmitFunctionEpilog(*CurFnInfo, EmitRetDbgLoc, EndLoc);
244  EmitEndEHSpec(CurCodeDecl);
245
246  assert(EHStack.empty() &&
247         "did not remove all scopes from cleanup stack!");
248
249  // If someone did an indirect goto, emit the indirect goto block at the end of
250  // the function.
251  if (IndirectBranch) {
252    EmitBlock(IndirectBranch->getParent());
253    Builder.ClearInsertionPoint();
254  }
255
256  // Remove the AllocaInsertPt instruction, which is just a convenience for us.
257  llvm::Instruction *Ptr = AllocaInsertPt;
258  AllocaInsertPt = 0;
259  Ptr->eraseFromParent();
260
261  // If someone took the address of a label but never did an indirect goto, we
262  // made a zero entry PHI node, which is illegal, zap it now.
263  if (IndirectBranch) {
264    llvm::PHINode *PN = cast<llvm::PHINode>(IndirectBranch->getAddress());
265    if (PN->getNumIncomingValues() == 0) {
266      PN->replaceAllUsesWith(llvm::UndefValue::get(PN->getType()));
267      PN->eraseFromParent();
268    }
269  }
270
271  EmitIfUsed(*this, EHResumeBlock);
272  EmitIfUsed(*this, TerminateLandingPad);
273  EmitIfUsed(*this, TerminateHandler);
274  EmitIfUsed(*this, UnreachableBlock);
275
276  if (CGM.getCodeGenOpts().EmitDeclMetadata)
277    EmitDeclMetadata();
278}
279
280/// ShouldInstrumentFunction - Return true if the current function should be
281/// instrumented with __cyg_profile_func_* calls
282bool CodeGenFunction::ShouldInstrumentFunction() {
283  if (!CGM.getCodeGenOpts().InstrumentFunctions)
284    return false;
285  if (!CurFuncDecl || CurFuncDecl->hasAttr<NoInstrumentFunctionAttr>())
286    return false;
287  return true;
288}
289
290/// EmitFunctionInstrumentation - Emit LLVM code to call the specified
291/// instrumentation function with the current function and the call site, if
292/// function instrumentation is enabled.
293void CodeGenFunction::EmitFunctionInstrumentation(const char *Fn) {
294  // void __cyg_profile_func_{enter,exit} (void *this_fn, void *call_site);
295  llvm::PointerType *PointerTy = Int8PtrTy;
296  llvm::Type *ProfileFuncArgs[] = { PointerTy, PointerTy };
297  llvm::FunctionType *FunctionTy =
298    llvm::FunctionType::get(VoidTy, ProfileFuncArgs, false);
299
300  llvm::Constant *F = CGM.CreateRuntimeFunction(FunctionTy, Fn);
301  llvm::CallInst *CallSite = Builder.CreateCall(
302    CGM.getIntrinsic(llvm::Intrinsic::returnaddress),
303    llvm::ConstantInt::get(Int32Ty, 0),
304    "callsite");
305
306  llvm::Value *args[] = {
307    llvm::ConstantExpr::getBitCast(CurFn, PointerTy),
308    CallSite
309  };
310
311  EmitNounwindRuntimeCall(F, args);
312}
313
314void CodeGenFunction::EmitMCountInstrumentation() {
315  llvm::FunctionType *FTy = llvm::FunctionType::get(VoidTy, false);
316
317  llvm::Constant *MCountFn =
318    CGM.CreateRuntimeFunction(FTy, getTarget().getMCountName());
319  EmitNounwindRuntimeCall(MCountFn);
320}
321
322// OpenCL v1.2 s5.6.4.6 allows the compiler to store kernel argument
323// information in the program executable. The argument information stored
324// includes the argument name, its type, the address and access qualifiers used.
325static void GenOpenCLArgMetadata(const FunctionDecl *FD, llvm::Function *Fn,
326                                 CodeGenModule &CGM,llvm::LLVMContext &Context,
327                                 SmallVector <llvm::Value*, 5> &kernelMDArgs,
328                                 CGBuilderTy& Builder, ASTContext &ASTCtx) {
329  // Create MDNodes that represent the kernel arg metadata.
330  // Each MDNode is a list in the form of "key", N number of values which is
331  // the same number of values as their are kernel arguments.
332
333  // MDNode for the kernel argument address space qualifiers.
334  SmallVector<llvm::Value*, 8> addressQuals;
335  addressQuals.push_back(llvm::MDString::get(Context, "kernel_arg_addr_space"));
336
337  // MDNode for the kernel argument access qualifiers (images only).
338  SmallVector<llvm::Value*, 8> accessQuals;
339  accessQuals.push_back(llvm::MDString::get(Context, "kernel_arg_access_qual"));
340
341  // MDNode for the kernel argument type names.
342  SmallVector<llvm::Value*, 8> argTypeNames;
343  argTypeNames.push_back(llvm::MDString::get(Context, "kernel_arg_type"));
344
345  // MDNode for the kernel argument type qualifiers.
346  SmallVector<llvm::Value*, 8> argTypeQuals;
347  argTypeQuals.push_back(llvm::MDString::get(Context, "kernel_arg_type_qual"));
348
349  // MDNode for the kernel argument names.
350  SmallVector<llvm::Value*, 8> argNames;
351  argNames.push_back(llvm::MDString::get(Context, "kernel_arg_name"));
352
353  for (unsigned i = 0, e = FD->getNumParams(); i != e; ++i) {
354    const ParmVarDecl *parm = FD->getParamDecl(i);
355    QualType ty = parm->getType();
356    std::string typeQuals;
357
358    if (ty->isPointerType()) {
359      QualType pointeeTy = ty->getPointeeType();
360
361      // Get address qualifier.
362      addressQuals.push_back(Builder.getInt32(ASTCtx.getTargetAddressSpace(
363        pointeeTy.getAddressSpace())));
364
365      // Get argument type name.
366      std::string typeName = pointeeTy.getUnqualifiedType().getAsString() + "*";
367
368      // Turn "unsigned type" to "utype"
369      std::string::size_type pos = typeName.find("unsigned");
370      if (pos != std::string::npos)
371        typeName.erase(pos+1, 8);
372
373      argTypeNames.push_back(llvm::MDString::get(Context, typeName));
374
375      // Get argument type qualifiers:
376      if (ty.isRestrictQualified())
377        typeQuals = "restrict";
378      if (pointeeTy.isConstQualified() ||
379          (pointeeTy.getAddressSpace() == LangAS::opencl_constant))
380        typeQuals += typeQuals.empty() ? "const" : " const";
381      if (pointeeTy.isVolatileQualified())
382        typeQuals += typeQuals.empty() ? "volatile" : " volatile";
383    } else {
384      addressQuals.push_back(Builder.getInt32(0));
385
386      // Get argument type name.
387      std::string typeName = ty.getUnqualifiedType().getAsString();
388
389      // Turn "unsigned type" to "utype"
390      std::string::size_type pos = typeName.find("unsigned");
391      if (pos != std::string::npos)
392        typeName.erase(pos+1, 8);
393
394      argTypeNames.push_back(llvm::MDString::get(Context, typeName));
395
396      // Get argument type qualifiers:
397      if (ty.isConstQualified())
398        typeQuals = "const";
399      if (ty.isVolatileQualified())
400        typeQuals += typeQuals.empty() ? "volatile" : " volatile";
401    }
402
403    argTypeQuals.push_back(llvm::MDString::get(Context, typeQuals));
404
405    // Get image access qualifier:
406    if (ty->isImageType()) {
407      if (parm->hasAttr<OpenCLImageAccessAttr>() &&
408          parm->getAttr<OpenCLImageAccessAttr>()->getAccess() == CLIA_write_only)
409        accessQuals.push_back(llvm::MDString::get(Context, "write_only"));
410      else
411        accessQuals.push_back(llvm::MDString::get(Context, "read_only"));
412    } else
413      accessQuals.push_back(llvm::MDString::get(Context, "none"));
414
415    // Get argument name.
416    argNames.push_back(llvm::MDString::get(Context, parm->getName()));
417  }
418
419  kernelMDArgs.push_back(llvm::MDNode::get(Context, addressQuals));
420  kernelMDArgs.push_back(llvm::MDNode::get(Context, accessQuals));
421  kernelMDArgs.push_back(llvm::MDNode::get(Context, argTypeNames));
422  kernelMDArgs.push_back(llvm::MDNode::get(Context, argTypeQuals));
423  kernelMDArgs.push_back(llvm::MDNode::get(Context, argNames));
424}
425
426void CodeGenFunction::EmitOpenCLKernelMetadata(const FunctionDecl *FD,
427                                               llvm::Function *Fn)
428{
429  if (!FD->hasAttr<OpenCLKernelAttr>())
430    return;
431
432  llvm::LLVMContext &Context = getLLVMContext();
433
434  SmallVector <llvm::Value*, 5> kernelMDArgs;
435  kernelMDArgs.push_back(Fn);
436
437  if (CGM.getCodeGenOpts().EmitOpenCLArgMetadata)
438    GenOpenCLArgMetadata(FD, Fn, CGM, Context, kernelMDArgs,
439                         Builder, getContext());
440
441  if (FD->hasAttr<VecTypeHintAttr>()) {
442    VecTypeHintAttr *attr = FD->getAttr<VecTypeHintAttr>();
443    QualType hintQTy = attr->getTypeHint();
444    const ExtVectorType *hintEltQTy = hintQTy->getAs<ExtVectorType>();
445    bool isSignedInteger =
446        hintQTy->isSignedIntegerType() ||
447        (hintEltQTy && hintEltQTy->getElementType()->isSignedIntegerType());
448    llvm::Value *attrMDArgs[] = {
449      llvm::MDString::get(Context, "vec_type_hint"),
450      llvm::UndefValue::get(CGM.getTypes().ConvertType(attr->getTypeHint())),
451      llvm::ConstantInt::get(
452          llvm::IntegerType::get(Context, 32),
453          llvm::APInt(32, (uint64_t)(isSignedInteger ? 1 : 0)))
454    };
455    kernelMDArgs.push_back(llvm::MDNode::get(Context, attrMDArgs));
456  }
457
458  if (FD->hasAttr<WorkGroupSizeHintAttr>()) {
459    WorkGroupSizeHintAttr *attr = FD->getAttr<WorkGroupSizeHintAttr>();
460    llvm::Value *attrMDArgs[] = {
461      llvm::MDString::get(Context, "work_group_size_hint"),
462      Builder.getInt32(attr->getXDim()),
463      Builder.getInt32(attr->getYDim()),
464      Builder.getInt32(attr->getZDim())
465    };
466    kernelMDArgs.push_back(llvm::MDNode::get(Context, attrMDArgs));
467  }
468
469  if (FD->hasAttr<ReqdWorkGroupSizeAttr>()) {
470    ReqdWorkGroupSizeAttr *attr = FD->getAttr<ReqdWorkGroupSizeAttr>();
471    llvm::Value *attrMDArgs[] = {
472      llvm::MDString::get(Context, "reqd_work_group_size"),
473      Builder.getInt32(attr->getXDim()),
474      Builder.getInt32(attr->getYDim()),
475      Builder.getInt32(attr->getZDim())
476    };
477    kernelMDArgs.push_back(llvm::MDNode::get(Context, attrMDArgs));
478  }
479
480  llvm::MDNode *kernelMDNode = llvm::MDNode::get(Context, kernelMDArgs);
481  llvm::NamedMDNode *OpenCLKernelMetadata =
482    CGM.getModule().getOrInsertNamedMetadata("opencl.kernels");
483  OpenCLKernelMetadata->addOperand(kernelMDNode);
484}
485
486void CodeGenFunction::StartFunction(GlobalDecl GD,
487                                    QualType RetTy,
488                                    llvm::Function *Fn,
489                                    const CGFunctionInfo &FnInfo,
490                                    const FunctionArgList &Args,
491                                    SourceLocation StartLoc) {
492  const Decl *D = GD.getDecl();
493
494  DidCallStackSave = false;
495  CurCodeDecl = D;
496  CurFuncDecl = (D ? D->getNonClosureContext() : 0);
497  FnRetTy = RetTy;
498  CurFn = Fn;
499  CurFnInfo = &FnInfo;
500  assert(CurFn->isDeclaration() && "Function already has body?");
501
502  if (CGM.getSanitizerBlacklist().isIn(*Fn)) {
503    SanOpts = &SanitizerOptions::Disabled;
504    SanitizePerformTypeCheck = false;
505  }
506
507  // Pass inline keyword to optimizer if it appears explicitly on any
508  // declaration.
509  if (!CGM.getCodeGenOpts().NoInline)
510    if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D))
511      for (FunctionDecl::redecl_iterator RI = FD->redecls_begin(),
512             RE = FD->redecls_end(); RI != RE; ++RI)
513        if (RI->isInlineSpecified()) {
514          Fn->addFnAttr(llvm::Attribute::InlineHint);
515          break;
516        }
517
518  if (getLangOpts().OpenCL) {
519    // Add metadata for a kernel function.
520    if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D))
521      EmitOpenCLKernelMetadata(FD, Fn);
522  }
523
524  // If we are checking function types, emit a function type signature as
525  // prefix data.
526  if (getLangOpts().CPlusPlus && SanOpts->Function) {
527    if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) {
528      if (llvm::Constant *PrefixSig =
529              CGM.getTargetCodeGenInfo().getUBSanFunctionSignature(CGM)) {
530        llvm::Constant *FTRTTIConst =
531            CGM.GetAddrOfRTTIDescriptor(FD->getType(), /*ForEH=*/true);
532        llvm::Constant *PrefixStructElems[] = { PrefixSig, FTRTTIConst };
533        llvm::Constant *PrefixStructConst =
534            llvm::ConstantStruct::getAnon(PrefixStructElems, /*Packed=*/true);
535        Fn->setPrefixData(PrefixStructConst);
536      }
537    }
538  }
539
540  llvm::BasicBlock *EntryBB = createBasicBlock("entry", CurFn);
541
542  // Create a marker to make it easy to insert allocas into the entryblock
543  // later.  Don't create this with the builder, because we don't want it
544  // folded.
545  llvm::Value *Undef = llvm::UndefValue::get(Int32Ty);
546  AllocaInsertPt = new llvm::BitCastInst(Undef, Int32Ty, "", EntryBB);
547  if (Builder.isNamePreserving())
548    AllocaInsertPt->setName("allocapt");
549
550  ReturnBlock = getJumpDestInCurrentScope("return");
551
552  Builder.SetInsertPoint(EntryBB);
553
554  // Emit subprogram debug descriptor.
555  if (CGDebugInfo *DI = getDebugInfo()) {
556    SmallVector<QualType, 16> ArgTypes;
557    for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end();
558	 i != e; ++i) {
559      ArgTypes.push_back((*i)->getType());
560    }
561
562    QualType FnType =
563      getContext().getFunctionType(RetTy, ArgTypes,
564                                   FunctionProtoType::ExtProtoInfo());
565
566    DI->setLocation(StartLoc);
567    DI->EmitFunctionStart(GD, FnType, CurFn, Builder);
568  }
569
570  if (ShouldInstrumentFunction())
571    EmitFunctionInstrumentation("__cyg_profile_func_enter");
572
573  if (CGM.getCodeGenOpts().InstrumentForProfiling)
574    EmitMCountInstrumentation();
575
576  if (RetTy->isVoidType()) {
577    // Void type; nothing to return.
578    ReturnValue = 0;
579  } else if (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::Indirect &&
580             !hasScalarEvaluationKind(CurFnInfo->getReturnType())) {
581    // Indirect aggregate return; emit returned value directly into sret slot.
582    // This reduces code size, and affects correctness in C++.
583    ReturnValue = CurFn->arg_begin();
584  } else {
585    ReturnValue = CreateIRTemp(RetTy, "retval");
586
587    // Tell the epilog emitter to autorelease the result.  We do this
588    // now so that various specialized functions can suppress it
589    // during their IR-generation.
590    if (getLangOpts().ObjCAutoRefCount &&
591        !CurFnInfo->isReturnsRetained() &&
592        RetTy->isObjCRetainableType())
593      AutoreleaseResult = true;
594  }
595
596  EmitStartEHSpec(CurCodeDecl);
597
598  PrologueCleanupDepth = EHStack.stable_begin();
599  EmitFunctionProlog(*CurFnInfo, CurFn, Args);
600
601  if (D && isa<CXXMethodDecl>(D) && cast<CXXMethodDecl>(D)->isInstance()) {
602    CGM.getCXXABI().EmitInstanceFunctionProlog(*this);
603    const CXXMethodDecl *MD = cast<CXXMethodDecl>(D);
604    if (MD->getParent()->isLambda() &&
605        MD->getOverloadedOperator() == OO_Call) {
606      // We're in a lambda; figure out the captures.
607      MD->getParent()->getCaptureFields(LambdaCaptureFields,
608                                        LambdaThisCaptureField);
609      if (LambdaThisCaptureField) {
610        // If this lambda captures this, load it.
611        LValue ThisLValue = EmitLValueForLambdaField(LambdaThisCaptureField);
612        CXXThisValue = EmitLoadOfLValue(ThisLValue,
613                                        SourceLocation()).getScalarVal();
614      }
615    } else {
616      // Not in a lambda; just use 'this' from the method.
617      // FIXME: Should we generate a new load for each use of 'this'?  The
618      // fast register allocator would be happier...
619      CXXThisValue = CXXABIThisValue;
620    }
621  }
622
623  // If any of the arguments have a variably modified type, make sure to
624  // emit the type size.
625  for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end();
626       i != e; ++i) {
627    const VarDecl *VD = *i;
628
629    // Dig out the type as written from ParmVarDecls; it's unclear whether
630    // the standard (C99 6.9.1p10) requires this, but we're following the
631    // precedent set by gcc.
632    QualType Ty;
633    if (const ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(VD))
634      Ty = PVD->getOriginalType();
635    else
636      Ty = VD->getType();
637
638    if (Ty->isVariablyModifiedType())
639      EmitVariablyModifiedType(Ty);
640  }
641  // Emit a location at the end of the prologue.
642  if (CGDebugInfo *DI = getDebugInfo())
643    DI->EmitLocation(Builder, StartLoc);
644}
645
646void CodeGenFunction::EmitFunctionBody(FunctionArgList &Args,
647                                       const Stmt *Body) {
648  if (const CompoundStmt *S = dyn_cast<CompoundStmt>(Body))
649    EmitCompoundStmtWithoutScope(*S);
650  else
651    EmitStmt(Body);
652}
653
654/// Tries to mark the given function nounwind based on the
655/// non-existence of any throwing calls within it.  We believe this is
656/// lightweight enough to do at -O0.
657static void TryMarkNoThrow(llvm::Function *F) {
658  // LLVM treats 'nounwind' on a function as part of the type, so we
659  // can't do this on functions that can be overwritten.
660  if (F->mayBeOverridden()) return;
661
662  for (llvm::Function::iterator FI = F->begin(), FE = F->end(); FI != FE; ++FI)
663    for (llvm::BasicBlock::iterator
664           BI = FI->begin(), BE = FI->end(); BI != BE; ++BI)
665      if (llvm::CallInst *Call = dyn_cast<llvm::CallInst>(&*BI)) {
666        if (!Call->doesNotThrow())
667          return;
668      } else if (isa<llvm::ResumeInst>(&*BI)) {
669        return;
670      }
671  F->setDoesNotThrow();
672}
673
674static void EmitSizedDeallocationFunction(CodeGenFunction &CGF,
675                                          const FunctionDecl *UnsizedDealloc) {
676  // This is a weak discardable definition of the sized deallocation function.
677  CGF.CurFn->setLinkage(llvm::Function::LinkOnceAnyLinkage);
678
679  // Call the unsized deallocation function and forward the first argument
680  // unchanged.
681  llvm::Constant *Unsized = CGF.CGM.GetAddrOfFunction(UnsizedDealloc);
682  CGF.Builder.CreateCall(Unsized, &*CGF.CurFn->arg_begin());
683}
684
685void CodeGenFunction::GenerateCode(GlobalDecl GD, llvm::Function *Fn,
686                                   const CGFunctionInfo &FnInfo) {
687  const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
688
689  // Check if we should generate debug info for this function.
690  if (FD->hasAttr<NoDebugAttr>())
691    DebugInfo = NULL; // disable debug info indefinitely for this function
692
693  FunctionArgList Args;
694  QualType ResTy = FD->getResultType();
695
696  CurGD = GD;
697  const CXXMethodDecl *MD;
698  if ((MD = dyn_cast<CXXMethodDecl>(FD)) && MD->isInstance()) {
699    if (CGM.getCXXABI().HasThisReturn(GD))
700      ResTy = MD->getThisType(getContext());
701    CGM.getCXXABI().BuildInstanceFunctionParams(*this, ResTy, Args);
702  }
703
704  for (unsigned i = 0, e = FD->getNumParams(); i != e; ++i)
705    Args.push_back(FD->getParamDecl(i));
706
707  SourceRange BodyRange;
708  if (Stmt *Body = FD->getBody()) BodyRange = Body->getSourceRange();
709  CurEHLocation = BodyRange.getEnd();
710
711  // Emit the standard function prologue.
712  StartFunction(GD, ResTy, Fn, FnInfo, Args, BodyRange.getBegin());
713
714  // Generate the body of the function.
715  if (isa<CXXDestructorDecl>(FD))
716    EmitDestructorBody(Args);
717  else if (isa<CXXConstructorDecl>(FD))
718    EmitConstructorBody(Args);
719  else if (getLangOpts().CUDA &&
720           !CGM.getCodeGenOpts().CUDAIsDevice &&
721           FD->hasAttr<CUDAGlobalAttr>())
722    CGM.getCUDARuntime().EmitDeviceStubBody(*this, Args);
723  else if (isa<CXXConversionDecl>(FD) &&
724           cast<CXXConversionDecl>(FD)->isLambdaToBlockPointerConversion()) {
725    // The lambda conversion to block pointer is special; the semantics can't be
726    // expressed in the AST, so IRGen needs to special-case it.
727    EmitLambdaToBlockPointerBody(Args);
728  } else if (isa<CXXMethodDecl>(FD) &&
729             cast<CXXMethodDecl>(FD)->isLambdaStaticInvoker()) {
730    // The lambda static invoker function is special, because it forwards or
731    // clones the body of the function call operator (but is actually static).
732    EmitLambdaStaticInvokeFunction(cast<CXXMethodDecl>(FD));
733  } else if (FD->isDefaulted() && isa<CXXMethodDecl>(FD) &&
734             (cast<CXXMethodDecl>(FD)->isCopyAssignmentOperator() ||
735              cast<CXXMethodDecl>(FD)->isMoveAssignmentOperator())) {
736    // Implicit copy-assignment gets the same special treatment as implicit
737    // copy-constructors.
738    emitImplicitAssignmentOperatorBody(Args);
739  } else if (Stmt *Body = FD->getBody()) {
740    EmitFunctionBody(Args, Body);
741  } else if (FunctionDecl *UnsizedDealloc =
742                 FD->getCorrespondingUnsizedGlobalDeallocationFunction()) {
743    // Global sized deallocation functions get an implicit weak definition if
744    // they don't have an explicit definition.
745    EmitSizedDeallocationFunction(*this, UnsizedDealloc);
746  } else
747    llvm_unreachable("no definition for emitted function");
748
749  // C++11 [stmt.return]p2:
750  //   Flowing off the end of a function [...] results in undefined behavior in
751  //   a value-returning function.
752  // C11 6.9.1p12:
753  //   If the '}' that terminates a function is reached, and the value of the
754  //   function call is used by the caller, the behavior is undefined.
755  if (getLangOpts().CPlusPlus && !FD->hasImplicitReturnZero() &&
756      !FD->getResultType()->isVoidType() && Builder.GetInsertBlock()) {
757    if (SanOpts->Return)
758      EmitCheck(Builder.getFalse(), "missing_return",
759                EmitCheckSourceLocation(FD->getLocation()),
760                ArrayRef<llvm::Value *>(), CRK_Unrecoverable);
761    else if (CGM.getCodeGenOpts().OptimizationLevel == 0)
762      Builder.CreateCall(CGM.getIntrinsic(llvm::Intrinsic::trap));
763    Builder.CreateUnreachable();
764    Builder.ClearInsertionPoint();
765  }
766
767  // Emit the standard function epilogue.
768  FinishFunction(BodyRange.getEnd());
769
770  // If we haven't marked the function nothrow through other means, do
771  // a quick pass now to see if we can.
772  if (!CurFn->doesNotThrow())
773    TryMarkNoThrow(CurFn);
774}
775
776/// ContainsLabel - Return true if the statement contains a label in it.  If
777/// this statement is not executed normally, it not containing a label means
778/// that we can just remove the code.
779bool CodeGenFunction::ContainsLabel(const Stmt *S, bool IgnoreCaseStmts) {
780  // Null statement, not a label!
781  if (S == 0) return false;
782
783  // If this is a label, we have to emit the code, consider something like:
784  // if (0) {  ...  foo:  bar(); }  goto foo;
785  //
786  // TODO: If anyone cared, we could track __label__'s, since we know that you
787  // can't jump to one from outside their declared region.
788  if (isa<LabelStmt>(S))
789    return true;
790
791  // If this is a case/default statement, and we haven't seen a switch, we have
792  // to emit the code.
793  if (isa<SwitchCase>(S) && !IgnoreCaseStmts)
794    return true;
795
796  // If this is a switch statement, we want to ignore cases below it.
797  if (isa<SwitchStmt>(S))
798    IgnoreCaseStmts = true;
799
800  // Scan subexpressions for verboten labels.
801  for (Stmt::const_child_range I = S->children(); I; ++I)
802    if (ContainsLabel(*I, IgnoreCaseStmts))
803      return true;
804
805  return false;
806}
807
808/// containsBreak - Return true if the statement contains a break out of it.
809/// If the statement (recursively) contains a switch or loop with a break
810/// inside of it, this is fine.
811bool CodeGenFunction::containsBreak(const Stmt *S) {
812  // Null statement, not a label!
813  if (S == 0) return false;
814
815  // If this is a switch or loop that defines its own break scope, then we can
816  // include it and anything inside of it.
817  if (isa<SwitchStmt>(S) || isa<WhileStmt>(S) || isa<DoStmt>(S) ||
818      isa<ForStmt>(S))
819    return false;
820
821  if (isa<BreakStmt>(S))
822    return true;
823
824  // Scan subexpressions for verboten breaks.
825  for (Stmt::const_child_range I = S->children(); I; ++I)
826    if (containsBreak(*I))
827      return true;
828
829  return false;
830}
831
832
833/// ConstantFoldsToSimpleInteger - If the specified expression does not fold
834/// to a constant, or if it does but contains a label, return false.  If it
835/// constant folds return true and set the boolean result in Result.
836bool CodeGenFunction::ConstantFoldsToSimpleInteger(const Expr *Cond,
837                                                   bool &ResultBool) {
838  llvm::APSInt ResultInt;
839  if (!ConstantFoldsToSimpleInteger(Cond, ResultInt))
840    return false;
841
842  ResultBool = ResultInt.getBoolValue();
843  return true;
844}
845
846/// ConstantFoldsToSimpleInteger - If the specified expression does not fold
847/// to a constant, or if it does but contains a label, return false.  If it
848/// constant folds return true and set the folded value.
849bool CodeGenFunction::
850ConstantFoldsToSimpleInteger(const Expr *Cond, llvm::APSInt &ResultInt) {
851  // FIXME: Rename and handle conversion of other evaluatable things
852  // to bool.
853  llvm::APSInt Int;
854  if (!Cond->EvaluateAsInt(Int, getContext()))
855    return false;  // Not foldable, not integer or not fully evaluatable.
856
857  if (CodeGenFunction::ContainsLabel(Cond))
858    return false;  // Contains a label.
859
860  ResultInt = Int;
861  return true;
862}
863
864
865
866/// EmitBranchOnBoolExpr - Emit a branch on a boolean condition (e.g. for an if
867/// statement) to the specified blocks.  Based on the condition, this might try
868/// to simplify the codegen of the conditional based on the branch.
869///
870void CodeGenFunction::EmitBranchOnBoolExpr(const Expr *Cond,
871                                           llvm::BasicBlock *TrueBlock,
872                                           llvm::BasicBlock *FalseBlock) {
873  Cond = Cond->IgnoreParens();
874
875  if (const BinaryOperator *CondBOp = dyn_cast<BinaryOperator>(Cond)) {
876    // Handle X && Y in a condition.
877    if (CondBOp->getOpcode() == BO_LAnd) {
878      // If we have "1 && X", simplify the code.  "0 && X" would have constant
879      // folded if the case was simple enough.
880      bool ConstantBool = false;
881      if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) &&
882          ConstantBool) {
883        // br(1 && X) -> br(X).
884        return EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock);
885      }
886
887      // If we have "X && 1", simplify the code to use an uncond branch.
888      // "X && 0" would have been constant folded to 0.
889      if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) &&
890          ConstantBool) {
891        // br(X && 1) -> br(X).
892        return EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, FalseBlock);
893      }
894
895      // Emit the LHS as a conditional.  If the LHS conditional is false, we
896      // want to jump to the FalseBlock.
897      llvm::BasicBlock *LHSTrue = createBasicBlock("land.lhs.true");
898
899      ConditionalEvaluation eval(*this);
900      EmitBranchOnBoolExpr(CondBOp->getLHS(), LHSTrue, FalseBlock);
901      EmitBlock(LHSTrue);
902
903      // Any temporaries created here are conditional.
904      eval.begin(*this);
905      EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock);
906      eval.end(*this);
907
908      return;
909    }
910
911    if (CondBOp->getOpcode() == BO_LOr) {
912      // If we have "0 || X", simplify the code.  "1 || X" would have constant
913      // folded if the case was simple enough.
914      bool ConstantBool = false;
915      if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) &&
916          !ConstantBool) {
917        // br(0 || X) -> br(X).
918        return EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock);
919      }
920
921      // If we have "X || 0", simplify the code to use an uncond branch.
922      // "X || 1" would have been constant folded to 1.
923      if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) &&
924          !ConstantBool) {
925        // br(X || 0) -> br(X).
926        return EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, FalseBlock);
927      }
928
929      // Emit the LHS as a conditional.  If the LHS conditional is true, we
930      // want to jump to the TrueBlock.
931      llvm::BasicBlock *LHSFalse = createBasicBlock("lor.lhs.false");
932
933      ConditionalEvaluation eval(*this);
934      EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, LHSFalse);
935      EmitBlock(LHSFalse);
936
937      // Any temporaries created here are conditional.
938      eval.begin(*this);
939      EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock);
940      eval.end(*this);
941
942      return;
943    }
944  }
945
946  if (const UnaryOperator *CondUOp = dyn_cast<UnaryOperator>(Cond)) {
947    // br(!x, t, f) -> br(x, f, t)
948    if (CondUOp->getOpcode() == UO_LNot)
949      return EmitBranchOnBoolExpr(CondUOp->getSubExpr(), FalseBlock, TrueBlock);
950  }
951
952  if (const ConditionalOperator *CondOp = dyn_cast<ConditionalOperator>(Cond)) {
953    // br(c ? x : y, t, f) -> br(c, br(x, t, f), br(y, t, f))
954    llvm::BasicBlock *LHSBlock = createBasicBlock("cond.true");
955    llvm::BasicBlock *RHSBlock = createBasicBlock("cond.false");
956
957    ConditionalEvaluation cond(*this);
958    EmitBranchOnBoolExpr(CondOp->getCond(), LHSBlock, RHSBlock);
959
960    cond.begin(*this);
961    EmitBlock(LHSBlock);
962    EmitBranchOnBoolExpr(CondOp->getLHS(), TrueBlock, FalseBlock);
963    cond.end(*this);
964
965    cond.begin(*this);
966    EmitBlock(RHSBlock);
967    EmitBranchOnBoolExpr(CondOp->getRHS(), TrueBlock, FalseBlock);
968    cond.end(*this);
969
970    return;
971  }
972
973  if (const CXXThrowExpr *Throw = dyn_cast<CXXThrowExpr>(Cond)) {
974    // Conditional operator handling can give us a throw expression as a
975    // condition for a case like:
976    //   br(c ? throw x : y, t, f) -> br(c, br(throw x, t, f), br(y, t, f)
977    // Fold this to:
978    //   br(c, throw x, br(y, t, f))
979    EmitCXXThrowExpr(Throw, /*KeepInsertionPoint*/false);
980    return;
981  }
982
983  // Emit the code with the fully general case.
984  llvm::Value *CondV = EvaluateExprAsBool(Cond);
985  Builder.CreateCondBr(CondV, TrueBlock, FalseBlock);
986}
987
988/// ErrorUnsupported - Print out an error that codegen doesn't support the
989/// specified stmt yet.
990void CodeGenFunction::ErrorUnsupported(const Stmt *S, const char *Type) {
991  CGM.ErrorUnsupported(S, Type);
992}
993
994/// emitNonZeroVLAInit - Emit the "zero" initialization of a
995/// variable-length array whose elements have a non-zero bit-pattern.
996///
997/// \param baseType the inner-most element type of the array
998/// \param src - a char* pointing to the bit-pattern for a single
999/// base element of the array
1000/// \param sizeInChars - the total size of the VLA, in chars
1001static void emitNonZeroVLAInit(CodeGenFunction &CGF, QualType baseType,
1002                               llvm::Value *dest, llvm::Value *src,
1003                               llvm::Value *sizeInChars) {
1004  std::pair<CharUnits,CharUnits> baseSizeAndAlign
1005    = CGF.getContext().getTypeInfoInChars(baseType);
1006
1007  CGBuilderTy &Builder = CGF.Builder;
1008
1009  llvm::Value *baseSizeInChars
1010    = llvm::ConstantInt::get(CGF.IntPtrTy, baseSizeAndAlign.first.getQuantity());
1011
1012  llvm::Type *i8p = Builder.getInt8PtrTy();
1013
1014  llvm::Value *begin = Builder.CreateBitCast(dest, i8p, "vla.begin");
1015  llvm::Value *end = Builder.CreateInBoundsGEP(dest, sizeInChars, "vla.end");
1016
1017  llvm::BasicBlock *originBB = CGF.Builder.GetInsertBlock();
1018  llvm::BasicBlock *loopBB = CGF.createBasicBlock("vla-init.loop");
1019  llvm::BasicBlock *contBB = CGF.createBasicBlock("vla-init.cont");
1020
1021  // Make a loop over the VLA.  C99 guarantees that the VLA element
1022  // count must be nonzero.
1023  CGF.EmitBlock(loopBB);
1024
1025  llvm::PHINode *cur = Builder.CreatePHI(i8p, 2, "vla.cur");
1026  cur->addIncoming(begin, originBB);
1027
1028  // memcpy the individual element bit-pattern.
1029  Builder.CreateMemCpy(cur, src, baseSizeInChars,
1030                       baseSizeAndAlign.second.getQuantity(),
1031                       /*volatile*/ false);
1032
1033  // Go to the next element.
1034  llvm::Value *next = Builder.CreateConstInBoundsGEP1_32(cur, 1, "vla.next");
1035
1036  // Leave if that's the end of the VLA.
1037  llvm::Value *done = Builder.CreateICmpEQ(next, end, "vla-init.isdone");
1038  Builder.CreateCondBr(done, contBB, loopBB);
1039  cur->addIncoming(next, loopBB);
1040
1041  CGF.EmitBlock(contBB);
1042}
1043
1044void
1045CodeGenFunction::EmitNullInitialization(llvm::Value *DestPtr, QualType Ty) {
1046  // Ignore empty classes in C++.
1047  if (getLangOpts().CPlusPlus) {
1048    if (const RecordType *RT = Ty->getAs<RecordType>()) {
1049      if (cast<CXXRecordDecl>(RT->getDecl())->isEmpty())
1050        return;
1051    }
1052  }
1053
1054  // Cast the dest ptr to the appropriate i8 pointer type.
1055  unsigned DestAS =
1056    cast<llvm::PointerType>(DestPtr->getType())->getAddressSpace();
1057  llvm::Type *BP = Builder.getInt8PtrTy(DestAS);
1058  if (DestPtr->getType() != BP)
1059    DestPtr = Builder.CreateBitCast(DestPtr, BP);
1060
1061  // Get size and alignment info for this aggregate.
1062  std::pair<CharUnits, CharUnits> TypeInfo =
1063    getContext().getTypeInfoInChars(Ty);
1064  CharUnits Size = TypeInfo.first;
1065  CharUnits Align = TypeInfo.second;
1066
1067  llvm::Value *SizeVal;
1068  const VariableArrayType *vla;
1069
1070  // Don't bother emitting a zero-byte memset.
1071  if (Size.isZero()) {
1072    // But note that getTypeInfo returns 0 for a VLA.
1073    if (const VariableArrayType *vlaType =
1074          dyn_cast_or_null<VariableArrayType>(
1075                                          getContext().getAsArrayType(Ty))) {
1076      QualType eltType;
1077      llvm::Value *numElts;
1078      llvm::tie(numElts, eltType) = getVLASize(vlaType);
1079
1080      SizeVal = numElts;
1081      CharUnits eltSize = getContext().getTypeSizeInChars(eltType);
1082      if (!eltSize.isOne())
1083        SizeVal = Builder.CreateNUWMul(SizeVal, CGM.getSize(eltSize));
1084      vla = vlaType;
1085    } else {
1086      return;
1087    }
1088  } else {
1089    SizeVal = CGM.getSize(Size);
1090    vla = 0;
1091  }
1092
1093  // If the type contains a pointer to data member we can't memset it to zero.
1094  // Instead, create a null constant and copy it to the destination.
1095  // TODO: there are other patterns besides zero that we can usefully memset,
1096  // like -1, which happens to be the pattern used by member-pointers.
1097  if (!CGM.getTypes().isZeroInitializable(Ty)) {
1098    // For a VLA, emit a single element, then splat that over the VLA.
1099    if (vla) Ty = getContext().getBaseElementType(vla);
1100
1101    llvm::Constant *NullConstant = CGM.EmitNullConstant(Ty);
1102
1103    llvm::GlobalVariable *NullVariable =
1104      new llvm::GlobalVariable(CGM.getModule(), NullConstant->getType(),
1105                               /*isConstant=*/true,
1106                               llvm::GlobalVariable::PrivateLinkage,
1107                               NullConstant, Twine());
1108    llvm::Value *SrcPtr =
1109      Builder.CreateBitCast(NullVariable, Builder.getInt8PtrTy());
1110
1111    if (vla) return emitNonZeroVLAInit(*this, Ty, DestPtr, SrcPtr, SizeVal);
1112
1113    // Get and call the appropriate llvm.memcpy overload.
1114    Builder.CreateMemCpy(DestPtr, SrcPtr, SizeVal, Align.getQuantity(), false);
1115    return;
1116  }
1117
1118  // Otherwise, just memset the whole thing to zero.  This is legal
1119  // because in LLVM, all default initializers (other than the ones we just
1120  // handled above) are guaranteed to have a bit pattern of all zeros.
1121  Builder.CreateMemSet(DestPtr, Builder.getInt8(0), SizeVal,
1122                       Align.getQuantity(), false);
1123}
1124
1125llvm::BlockAddress *CodeGenFunction::GetAddrOfLabel(const LabelDecl *L) {
1126  // Make sure that there is a block for the indirect goto.
1127  if (IndirectBranch == 0)
1128    GetIndirectGotoBlock();
1129
1130  llvm::BasicBlock *BB = getJumpDestForLabel(L).getBlock();
1131
1132  // Make sure the indirect branch includes all of the address-taken blocks.
1133  IndirectBranch->addDestination(BB);
1134  return llvm::BlockAddress::get(CurFn, BB);
1135}
1136
1137llvm::BasicBlock *CodeGenFunction::GetIndirectGotoBlock() {
1138  // If we already made the indirect branch for indirect goto, return its block.
1139  if (IndirectBranch) return IndirectBranch->getParent();
1140
1141  CGBuilderTy TmpBuilder(createBasicBlock("indirectgoto"));
1142
1143  // Create the PHI node that indirect gotos will add entries to.
1144  llvm::Value *DestVal = TmpBuilder.CreatePHI(Int8PtrTy, 0,
1145                                              "indirect.goto.dest");
1146
1147  // Create the indirect branch instruction.
1148  IndirectBranch = TmpBuilder.CreateIndirectBr(DestVal);
1149  return IndirectBranch->getParent();
1150}
1151
1152/// Computes the length of an array in elements, as well as the base
1153/// element type and a properly-typed first element pointer.
1154llvm::Value *CodeGenFunction::emitArrayLength(const ArrayType *origArrayType,
1155                                              QualType &baseType,
1156                                              llvm::Value *&addr) {
1157  const ArrayType *arrayType = origArrayType;
1158
1159  // If it's a VLA, we have to load the stored size.  Note that
1160  // this is the size of the VLA in bytes, not its size in elements.
1161  llvm::Value *numVLAElements = 0;
1162  if (isa<VariableArrayType>(arrayType)) {
1163    numVLAElements = getVLASize(cast<VariableArrayType>(arrayType)).first;
1164
1165    // Walk into all VLAs.  This doesn't require changes to addr,
1166    // which has type T* where T is the first non-VLA element type.
1167    do {
1168      QualType elementType = arrayType->getElementType();
1169      arrayType = getContext().getAsArrayType(elementType);
1170
1171      // If we only have VLA components, 'addr' requires no adjustment.
1172      if (!arrayType) {
1173        baseType = elementType;
1174        return numVLAElements;
1175      }
1176    } while (isa<VariableArrayType>(arrayType));
1177
1178    // We get out here only if we find a constant array type
1179    // inside the VLA.
1180  }
1181
1182  // We have some number of constant-length arrays, so addr should
1183  // have LLVM type [M x [N x [...]]]*.  Build a GEP that walks
1184  // down to the first element of addr.
1185  SmallVector<llvm::Value*, 8> gepIndices;
1186
1187  // GEP down to the array type.
1188  llvm::ConstantInt *zero = Builder.getInt32(0);
1189  gepIndices.push_back(zero);
1190
1191  uint64_t countFromCLAs = 1;
1192  QualType eltType;
1193
1194  llvm::ArrayType *llvmArrayType =
1195    dyn_cast<llvm::ArrayType>(
1196      cast<llvm::PointerType>(addr->getType())->getElementType());
1197  while (llvmArrayType) {
1198    assert(isa<ConstantArrayType>(arrayType));
1199    assert(cast<ConstantArrayType>(arrayType)->getSize().getZExtValue()
1200             == llvmArrayType->getNumElements());
1201
1202    gepIndices.push_back(zero);
1203    countFromCLAs *= llvmArrayType->getNumElements();
1204    eltType = arrayType->getElementType();
1205
1206    llvmArrayType =
1207      dyn_cast<llvm::ArrayType>(llvmArrayType->getElementType());
1208    arrayType = getContext().getAsArrayType(arrayType->getElementType());
1209    assert((!llvmArrayType || arrayType) &&
1210           "LLVM and Clang types are out-of-synch");
1211  }
1212
1213  if (arrayType) {
1214    // From this point onwards, the Clang array type has been emitted
1215    // as some other type (probably a packed struct). Compute the array
1216    // size, and just emit the 'begin' expression as a bitcast.
1217    while (arrayType) {
1218      countFromCLAs *=
1219          cast<ConstantArrayType>(arrayType)->getSize().getZExtValue();
1220      eltType = arrayType->getElementType();
1221      arrayType = getContext().getAsArrayType(eltType);
1222    }
1223
1224    unsigned AddressSpace = addr->getType()->getPointerAddressSpace();
1225    llvm::Type *BaseType = ConvertType(eltType)->getPointerTo(AddressSpace);
1226    addr = Builder.CreateBitCast(addr, BaseType, "array.begin");
1227  } else {
1228    // Create the actual GEP.
1229    addr = Builder.CreateInBoundsGEP(addr, gepIndices, "array.begin");
1230  }
1231
1232  baseType = eltType;
1233
1234  llvm::Value *numElements
1235    = llvm::ConstantInt::get(SizeTy, countFromCLAs);
1236
1237  // If we had any VLA dimensions, factor them in.
1238  if (numVLAElements)
1239    numElements = Builder.CreateNUWMul(numVLAElements, numElements);
1240
1241  return numElements;
1242}
1243
1244std::pair<llvm::Value*, QualType>
1245CodeGenFunction::getVLASize(QualType type) {
1246  const VariableArrayType *vla = getContext().getAsVariableArrayType(type);
1247  assert(vla && "type was not a variable array type!");
1248  return getVLASize(vla);
1249}
1250
1251std::pair<llvm::Value*, QualType>
1252CodeGenFunction::getVLASize(const VariableArrayType *type) {
1253  // The number of elements so far; always size_t.
1254  llvm::Value *numElements = 0;
1255
1256  QualType elementType;
1257  do {
1258    elementType = type->getElementType();
1259    llvm::Value *vlaSize = VLASizeMap[type->getSizeExpr()];
1260    assert(vlaSize && "no size for VLA!");
1261    assert(vlaSize->getType() == SizeTy);
1262
1263    if (!numElements) {
1264      numElements = vlaSize;
1265    } else {
1266      // It's undefined behavior if this wraps around, so mark it that way.
1267      // FIXME: Teach -fcatch-undefined-behavior to trap this.
1268      numElements = Builder.CreateNUWMul(numElements, vlaSize);
1269    }
1270  } while ((type = getContext().getAsVariableArrayType(elementType)));
1271
1272  return std::pair<llvm::Value*,QualType>(numElements, elementType);
1273}
1274
1275void CodeGenFunction::EmitVariablyModifiedType(QualType type) {
1276  assert(type->isVariablyModifiedType() &&
1277         "Must pass variably modified type to EmitVLASizes!");
1278
1279  EnsureInsertPoint();
1280
1281  // We're going to walk down into the type and look for VLA
1282  // expressions.
1283  do {
1284    assert(type->isVariablyModifiedType());
1285
1286    const Type *ty = type.getTypePtr();
1287    switch (ty->getTypeClass()) {
1288
1289#define TYPE(Class, Base)
1290#define ABSTRACT_TYPE(Class, Base)
1291#define NON_CANONICAL_TYPE(Class, Base)
1292#define DEPENDENT_TYPE(Class, Base) case Type::Class:
1293#define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base)
1294#include "clang/AST/TypeNodes.def"
1295      llvm_unreachable("unexpected dependent type!");
1296
1297    // These types are never variably-modified.
1298    case Type::Builtin:
1299    case Type::Complex:
1300    case Type::Vector:
1301    case Type::ExtVector:
1302    case Type::Record:
1303    case Type::Enum:
1304    case Type::Elaborated:
1305    case Type::TemplateSpecialization:
1306    case Type::ObjCObject:
1307    case Type::ObjCInterface:
1308    case Type::ObjCObjectPointer:
1309      llvm_unreachable("type class is never variably-modified!");
1310
1311    case Type::Decayed:
1312      type = cast<DecayedType>(ty)->getPointeeType();
1313      break;
1314
1315    case Type::Pointer:
1316      type = cast<PointerType>(ty)->getPointeeType();
1317      break;
1318
1319    case Type::BlockPointer:
1320      type = cast<BlockPointerType>(ty)->getPointeeType();
1321      break;
1322
1323    case Type::LValueReference:
1324    case Type::RValueReference:
1325      type = cast<ReferenceType>(ty)->getPointeeType();
1326      break;
1327
1328    case Type::MemberPointer:
1329      type = cast<MemberPointerType>(ty)->getPointeeType();
1330      break;
1331
1332    case Type::ConstantArray:
1333    case Type::IncompleteArray:
1334      // Losing element qualification here is fine.
1335      type = cast<ArrayType>(ty)->getElementType();
1336      break;
1337
1338    case Type::VariableArray: {
1339      // Losing element qualification here is fine.
1340      const VariableArrayType *vat = cast<VariableArrayType>(ty);
1341
1342      // Unknown size indication requires no size computation.
1343      // Otherwise, evaluate and record it.
1344      if (const Expr *size = vat->getSizeExpr()) {
1345        // It's possible that we might have emitted this already,
1346        // e.g. with a typedef and a pointer to it.
1347        llvm::Value *&entry = VLASizeMap[size];
1348        if (!entry) {
1349          llvm::Value *Size = EmitScalarExpr(size);
1350
1351          // C11 6.7.6.2p5:
1352          //   If the size is an expression that is not an integer constant
1353          //   expression [...] each time it is evaluated it shall have a value
1354          //   greater than zero.
1355          if (SanOpts->VLABound &&
1356              size->getType()->isSignedIntegerType()) {
1357            llvm::Value *Zero = llvm::Constant::getNullValue(Size->getType());
1358            llvm::Constant *StaticArgs[] = {
1359              EmitCheckSourceLocation(size->getLocStart()),
1360              EmitCheckTypeDescriptor(size->getType())
1361            };
1362            EmitCheck(Builder.CreateICmpSGT(Size, Zero),
1363                      "vla_bound_not_positive", StaticArgs, Size,
1364                      CRK_Recoverable);
1365          }
1366
1367          // Always zexting here would be wrong if it weren't
1368          // undefined behavior to have a negative bound.
1369          entry = Builder.CreateIntCast(Size, SizeTy, /*signed*/ false);
1370        }
1371      }
1372      type = vat->getElementType();
1373      break;
1374    }
1375
1376    case Type::FunctionProto:
1377    case Type::FunctionNoProto:
1378      type = cast<FunctionType>(ty)->getResultType();
1379      break;
1380
1381    case Type::Paren:
1382    case Type::TypeOf:
1383    case Type::UnaryTransform:
1384    case Type::Attributed:
1385    case Type::SubstTemplateTypeParm:
1386    case Type::PackExpansion:
1387      // Keep walking after single level desugaring.
1388      type = type.getSingleStepDesugaredType(getContext());
1389      break;
1390
1391    case Type::Typedef:
1392    case Type::Decltype:
1393    case Type::Auto:
1394      // Stop walking: nothing to do.
1395      return;
1396
1397    case Type::TypeOfExpr:
1398      // Stop walking: emit typeof expression.
1399      EmitIgnoredExpr(cast<TypeOfExprType>(ty)->getUnderlyingExpr());
1400      return;
1401
1402    case Type::Atomic:
1403      type = cast<AtomicType>(ty)->getValueType();
1404      break;
1405    }
1406  } while (type->isVariablyModifiedType());
1407}
1408
1409llvm::Value* CodeGenFunction::EmitVAListRef(const Expr* E) {
1410  if (getContext().getBuiltinVaListType()->isArrayType())
1411    return EmitScalarExpr(E);
1412  return EmitLValue(E).getAddress();
1413}
1414
1415void CodeGenFunction::EmitDeclRefExprDbgValue(const DeclRefExpr *E,
1416                                              llvm::Constant *Init) {
1417  assert (Init && "Invalid DeclRefExpr initializer!");
1418  if (CGDebugInfo *Dbg = getDebugInfo())
1419    if (CGM.getCodeGenOpts().getDebugInfo() >= CodeGenOptions::LimitedDebugInfo)
1420      Dbg->EmitGlobalVariable(E->getDecl(), Init);
1421}
1422
1423CodeGenFunction::PeepholeProtection
1424CodeGenFunction::protectFromPeepholes(RValue rvalue) {
1425  // At the moment, the only aggressive peephole we do in IR gen
1426  // is trunc(zext) folding, but if we add more, we can easily
1427  // extend this protection.
1428
1429  if (!rvalue.isScalar()) return PeepholeProtection();
1430  llvm::Value *value = rvalue.getScalarVal();
1431  if (!isa<llvm::ZExtInst>(value)) return PeepholeProtection();
1432
1433  // Just make an extra bitcast.
1434  assert(HaveInsertPoint());
1435  llvm::Instruction *inst = new llvm::BitCastInst(value, value->getType(), "",
1436                                                  Builder.GetInsertBlock());
1437
1438  PeepholeProtection protection;
1439  protection.Inst = inst;
1440  return protection;
1441}
1442
1443void CodeGenFunction::unprotectFromPeepholes(PeepholeProtection protection) {
1444  if (!protection.Inst) return;
1445
1446  // In theory, we could try to duplicate the peepholes now, but whatever.
1447  protection.Inst->eraseFromParent();
1448}
1449
1450llvm::Value *CodeGenFunction::EmitAnnotationCall(llvm::Value *AnnotationFn,
1451                                                 llvm::Value *AnnotatedVal,
1452                                                 StringRef AnnotationStr,
1453                                                 SourceLocation Location) {
1454  llvm::Value *Args[4] = {
1455    AnnotatedVal,
1456    Builder.CreateBitCast(CGM.EmitAnnotationString(AnnotationStr), Int8PtrTy),
1457    Builder.CreateBitCast(CGM.EmitAnnotationUnit(Location), Int8PtrTy),
1458    CGM.EmitAnnotationLineNo(Location)
1459  };
1460  return Builder.CreateCall(AnnotationFn, Args);
1461}
1462
1463void CodeGenFunction::EmitVarAnnotations(const VarDecl *D, llvm::Value *V) {
1464  assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
1465  // FIXME We create a new bitcast for every annotation because that's what
1466  // llvm-gcc was doing.
1467  for (specific_attr_iterator<AnnotateAttr>
1468       ai = D->specific_attr_begin<AnnotateAttr>(),
1469       ae = D->specific_attr_end<AnnotateAttr>(); ai != ae; ++ai)
1470    EmitAnnotationCall(CGM.getIntrinsic(llvm::Intrinsic::var_annotation),
1471                       Builder.CreateBitCast(V, CGM.Int8PtrTy, V->getName()),
1472                       (*ai)->getAnnotation(), D->getLocation());
1473}
1474
1475llvm::Value *CodeGenFunction::EmitFieldAnnotations(const FieldDecl *D,
1476                                                   llvm::Value *V) {
1477  assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
1478  llvm::Type *VTy = V->getType();
1479  llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::ptr_annotation,
1480                                    CGM.Int8PtrTy);
1481
1482  for (specific_attr_iterator<AnnotateAttr>
1483       ai = D->specific_attr_begin<AnnotateAttr>(),
1484       ae = D->specific_attr_end<AnnotateAttr>(); ai != ae; ++ai) {
1485    // FIXME Always emit the cast inst so we can differentiate between
1486    // annotation on the first field of a struct and annotation on the struct
1487    // itself.
1488    if (VTy != CGM.Int8PtrTy)
1489      V = Builder.Insert(new llvm::BitCastInst(V, CGM.Int8PtrTy));
1490    V = EmitAnnotationCall(F, V, (*ai)->getAnnotation(), D->getLocation());
1491    V = Builder.CreateBitCast(V, VTy);
1492  }
1493
1494  return V;
1495}
1496
1497CodeGenFunction::CGCapturedStmtInfo::~CGCapturedStmtInfo() { }
1498