CGStmt.cpp revision 263508
1//===--- CGStmt.cpp - Emit LLVM Code from Statements ----------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This contains code to emit Stmt nodes as LLVM code.
11//
12//===----------------------------------------------------------------------===//
13
14#include "CodeGenFunction.h"
15#include "CGDebugInfo.h"
16#include "CodeGenModule.h"
17#include "TargetInfo.h"
18#include "clang/AST/StmtVisitor.h"
19#include "clang/Sema/SemaDiagnostic.h"
20#include "clang/Basic/PrettyStackTrace.h"
21#include "clang/Basic/TargetInfo.h"
22#include "llvm/ADT/StringExtras.h"
23#include "llvm/IR/DataLayout.h"
24#include "llvm/IR/InlineAsm.h"
25#include "llvm/IR/Intrinsics.h"
26#include "llvm/Support/CallSite.h"
27using namespace clang;
28using namespace CodeGen;
29
30//===----------------------------------------------------------------------===//
31//                              Statement Emission
32//===----------------------------------------------------------------------===//
33
34void CodeGenFunction::EmitStopPoint(const Stmt *S) {
35  if (CGDebugInfo *DI = getDebugInfo()) {
36    SourceLocation Loc;
37    Loc = S->getLocStart();
38    DI->EmitLocation(Builder, Loc);
39
40    LastStopPoint = Loc;
41  }
42}
43
44void CodeGenFunction::EmitStmt(const Stmt *S) {
45  assert(S && "Null statement?");
46
47  // These statements have their own debug info handling.
48  if (EmitSimpleStmt(S))
49    return;
50
51  // Check if we are generating unreachable code.
52  if (!HaveInsertPoint()) {
53    // If so, and the statement doesn't contain a label, then we do not need to
54    // generate actual code. This is safe because (1) the current point is
55    // unreachable, so we don't need to execute the code, and (2) we've already
56    // handled the statements which update internal data structures (like the
57    // local variable map) which could be used by subsequent statements.
58    if (!ContainsLabel(S)) {
59      // Verify that any decl statements were handled as simple, they may be in
60      // scope of subsequent reachable statements.
61      assert(!isa<DeclStmt>(*S) && "Unexpected DeclStmt!");
62      return;
63    }
64
65    // Otherwise, make a new block to hold the code.
66    EnsureInsertPoint();
67  }
68
69  // Generate a stoppoint if we are emitting debug info.
70  EmitStopPoint(S);
71
72  switch (S->getStmtClass()) {
73  case Stmt::NoStmtClass:
74  case Stmt::CXXCatchStmtClass:
75  case Stmt::SEHExceptStmtClass:
76  case Stmt::SEHFinallyStmtClass:
77  case Stmt::MSDependentExistsStmtClass:
78  case Stmt::OMPParallelDirectiveClass:
79    llvm_unreachable("invalid statement class to emit generically");
80  case Stmt::NullStmtClass:
81  case Stmt::CompoundStmtClass:
82  case Stmt::DeclStmtClass:
83  case Stmt::LabelStmtClass:
84  case Stmt::AttributedStmtClass:
85  case Stmt::GotoStmtClass:
86  case Stmt::BreakStmtClass:
87  case Stmt::ContinueStmtClass:
88  case Stmt::DefaultStmtClass:
89  case Stmt::CaseStmtClass:
90    llvm_unreachable("should have emitted these statements as simple");
91
92#define STMT(Type, Base)
93#define ABSTRACT_STMT(Op)
94#define EXPR(Type, Base) \
95  case Stmt::Type##Class:
96#include "clang/AST/StmtNodes.inc"
97  {
98    // Remember the block we came in on.
99    llvm::BasicBlock *incoming = Builder.GetInsertBlock();
100    assert(incoming && "expression emission must have an insertion point");
101
102    EmitIgnoredExpr(cast<Expr>(S));
103
104    llvm::BasicBlock *outgoing = Builder.GetInsertBlock();
105    assert(outgoing && "expression emission cleared block!");
106
107    // The expression emitters assume (reasonably!) that the insertion
108    // point is always set.  To maintain that, the call-emission code
109    // for noreturn functions has to enter a new block with no
110    // predecessors.  We want to kill that block and mark the current
111    // insertion point unreachable in the common case of a call like
112    // "exit();".  Since expression emission doesn't otherwise create
113    // blocks with no predecessors, we can just test for that.
114    // However, we must be careful not to do this to our incoming
115    // block, because *statement* emission does sometimes create
116    // reachable blocks which will have no predecessors until later in
117    // the function.  This occurs with, e.g., labels that are not
118    // reachable by fallthrough.
119    if (incoming != outgoing && outgoing->use_empty()) {
120      outgoing->eraseFromParent();
121      Builder.ClearInsertionPoint();
122    }
123    break;
124  }
125
126  case Stmt::IndirectGotoStmtClass:
127    EmitIndirectGotoStmt(cast<IndirectGotoStmt>(*S)); break;
128
129  case Stmt::IfStmtClass:       EmitIfStmt(cast<IfStmt>(*S));             break;
130  case Stmt::WhileStmtClass:    EmitWhileStmt(cast<WhileStmt>(*S));       break;
131  case Stmt::DoStmtClass:       EmitDoStmt(cast<DoStmt>(*S));             break;
132  case Stmt::ForStmtClass:      EmitForStmt(cast<ForStmt>(*S));           break;
133
134  case Stmt::ReturnStmtClass:   EmitReturnStmt(cast<ReturnStmt>(*S));     break;
135
136  case Stmt::SwitchStmtClass:   EmitSwitchStmt(cast<SwitchStmt>(*S));     break;
137  case Stmt::GCCAsmStmtClass:   // Intentional fall-through.
138  case Stmt::MSAsmStmtClass:    EmitAsmStmt(cast<AsmStmt>(*S));           break;
139  case Stmt::CapturedStmtClass: {
140    const CapturedStmt *CS = cast<CapturedStmt>(S);
141    EmitCapturedStmt(*CS, CS->getCapturedRegionKind());
142    }
143    break;
144  case Stmt::ObjCAtTryStmtClass:
145    EmitObjCAtTryStmt(cast<ObjCAtTryStmt>(*S));
146    break;
147  case Stmt::ObjCAtCatchStmtClass:
148    llvm_unreachable(
149                    "@catch statements should be handled by EmitObjCAtTryStmt");
150  case Stmt::ObjCAtFinallyStmtClass:
151    llvm_unreachable(
152                  "@finally statements should be handled by EmitObjCAtTryStmt");
153  case Stmt::ObjCAtThrowStmtClass:
154    EmitObjCAtThrowStmt(cast<ObjCAtThrowStmt>(*S));
155    break;
156  case Stmt::ObjCAtSynchronizedStmtClass:
157    EmitObjCAtSynchronizedStmt(cast<ObjCAtSynchronizedStmt>(*S));
158    break;
159  case Stmt::ObjCForCollectionStmtClass:
160    EmitObjCForCollectionStmt(cast<ObjCForCollectionStmt>(*S));
161    break;
162  case Stmt::ObjCAutoreleasePoolStmtClass:
163    EmitObjCAutoreleasePoolStmt(cast<ObjCAutoreleasePoolStmt>(*S));
164    break;
165
166  case Stmt::CXXTryStmtClass:
167    EmitCXXTryStmt(cast<CXXTryStmt>(*S));
168    break;
169  case Stmt::CXXForRangeStmtClass:
170    EmitCXXForRangeStmt(cast<CXXForRangeStmt>(*S));
171    break;
172  case Stmt::SEHTryStmtClass:
173    EmitSEHTryStmt(cast<SEHTryStmt>(*S));
174    break;
175  }
176}
177
178bool CodeGenFunction::EmitSimpleStmt(const Stmt *S) {
179  switch (S->getStmtClass()) {
180  default: return false;
181  case Stmt::NullStmtClass: break;
182  case Stmt::CompoundStmtClass: EmitCompoundStmt(cast<CompoundStmt>(*S)); break;
183  case Stmt::DeclStmtClass:     EmitDeclStmt(cast<DeclStmt>(*S));         break;
184  case Stmt::LabelStmtClass:    EmitLabelStmt(cast<LabelStmt>(*S));       break;
185  case Stmt::AttributedStmtClass:
186                            EmitAttributedStmt(cast<AttributedStmt>(*S)); break;
187  case Stmt::GotoStmtClass:     EmitGotoStmt(cast<GotoStmt>(*S));         break;
188  case Stmt::BreakStmtClass:    EmitBreakStmt(cast<BreakStmt>(*S));       break;
189  case Stmt::ContinueStmtClass: EmitContinueStmt(cast<ContinueStmt>(*S)); break;
190  case Stmt::DefaultStmtClass:  EmitDefaultStmt(cast<DefaultStmt>(*S));   break;
191  case Stmt::CaseStmtClass:     EmitCaseStmt(cast<CaseStmt>(*S));         break;
192  }
193
194  return true;
195}
196
197/// EmitCompoundStmt - Emit a compound statement {..} node.  If GetLast is true,
198/// this captures the expression result of the last sub-statement and returns it
199/// (for use by the statement expression extension).
200llvm::Value* CodeGenFunction::EmitCompoundStmt(const CompoundStmt &S, bool GetLast,
201                                               AggValueSlot AggSlot) {
202  PrettyStackTraceLoc CrashInfo(getContext().getSourceManager(),S.getLBracLoc(),
203                             "LLVM IR generation of compound statement ('{}')");
204
205  // Keep track of the current cleanup stack depth, including debug scopes.
206  LexicalScope Scope(*this, S.getSourceRange());
207
208  return EmitCompoundStmtWithoutScope(S, GetLast, AggSlot);
209}
210
211llvm::Value*
212CodeGenFunction::EmitCompoundStmtWithoutScope(const CompoundStmt &S,
213                                              bool GetLast,
214                                              AggValueSlot AggSlot) {
215
216  for (CompoundStmt::const_body_iterator I = S.body_begin(),
217       E = S.body_end()-GetLast; I != E; ++I)
218    EmitStmt(*I);
219
220  llvm::Value *RetAlloca = 0;
221  if (GetLast) {
222    // We have to special case labels here.  They are statements, but when put
223    // at the end of a statement expression, they yield the value of their
224    // subexpression.  Handle this by walking through all labels we encounter,
225    // emitting them before we evaluate the subexpr.
226    const Stmt *LastStmt = S.body_back();
227    while (const LabelStmt *LS = dyn_cast<LabelStmt>(LastStmt)) {
228      EmitLabel(LS->getDecl());
229      LastStmt = LS->getSubStmt();
230    }
231
232    EnsureInsertPoint();
233
234    QualType ExprTy = cast<Expr>(LastStmt)->getType();
235    if (hasAggregateEvaluationKind(ExprTy)) {
236      EmitAggExpr(cast<Expr>(LastStmt), AggSlot);
237    } else {
238      // We can't return an RValue here because there might be cleanups at
239      // the end of the StmtExpr.  Because of that, we have to emit the result
240      // here into a temporary alloca.
241      RetAlloca = CreateMemTemp(ExprTy);
242      EmitAnyExprToMem(cast<Expr>(LastStmt), RetAlloca, Qualifiers(),
243                       /*IsInit*/false);
244    }
245
246  }
247
248  return RetAlloca;
249}
250
251void CodeGenFunction::SimplifyForwardingBlocks(llvm::BasicBlock *BB) {
252  llvm::BranchInst *BI = dyn_cast<llvm::BranchInst>(BB->getTerminator());
253
254  // If there is a cleanup stack, then we it isn't worth trying to
255  // simplify this block (we would need to remove it from the scope map
256  // and cleanup entry).
257  if (!EHStack.empty())
258    return;
259
260  // Can only simplify direct branches.
261  if (!BI || !BI->isUnconditional())
262    return;
263
264  // Can only simplify empty blocks.
265  if (BI != BB->begin())
266    return;
267
268  BB->replaceAllUsesWith(BI->getSuccessor(0));
269  BI->eraseFromParent();
270  BB->eraseFromParent();
271}
272
273void CodeGenFunction::EmitBlock(llvm::BasicBlock *BB, bool IsFinished) {
274  llvm::BasicBlock *CurBB = Builder.GetInsertBlock();
275
276  // Fall out of the current block (if necessary).
277  EmitBranch(BB);
278
279  if (IsFinished && BB->use_empty()) {
280    delete BB;
281    return;
282  }
283
284  // Place the block after the current block, if possible, or else at
285  // the end of the function.
286  if (CurBB && CurBB->getParent())
287    CurFn->getBasicBlockList().insertAfter(CurBB, BB);
288  else
289    CurFn->getBasicBlockList().push_back(BB);
290  Builder.SetInsertPoint(BB);
291}
292
293void CodeGenFunction::EmitBranch(llvm::BasicBlock *Target) {
294  // Emit a branch from the current block to the target one if this
295  // was a real block.  If this was just a fall-through block after a
296  // terminator, don't emit it.
297  llvm::BasicBlock *CurBB = Builder.GetInsertBlock();
298
299  if (!CurBB || CurBB->getTerminator()) {
300    // If there is no insert point or the previous block is already
301    // terminated, don't touch it.
302  } else {
303    // Otherwise, create a fall-through branch.
304    Builder.CreateBr(Target);
305  }
306
307  Builder.ClearInsertionPoint();
308}
309
310void CodeGenFunction::EmitBlockAfterUses(llvm::BasicBlock *block) {
311  bool inserted = false;
312  for (llvm::BasicBlock::use_iterator
313         i = block->use_begin(), e = block->use_end(); i != e; ++i) {
314    if (llvm::Instruction *insn = dyn_cast<llvm::Instruction>(*i)) {
315      CurFn->getBasicBlockList().insertAfter(insn->getParent(), block);
316      inserted = true;
317      break;
318    }
319  }
320
321  if (!inserted)
322    CurFn->getBasicBlockList().push_back(block);
323
324  Builder.SetInsertPoint(block);
325}
326
327CodeGenFunction::JumpDest
328CodeGenFunction::getJumpDestForLabel(const LabelDecl *D) {
329  JumpDest &Dest = LabelMap[D];
330  if (Dest.isValid()) return Dest;
331
332  // Create, but don't insert, the new block.
333  Dest = JumpDest(createBasicBlock(D->getName()),
334                  EHScopeStack::stable_iterator::invalid(),
335                  NextCleanupDestIndex++);
336  return Dest;
337}
338
339void CodeGenFunction::EmitLabel(const LabelDecl *D) {
340  // Add this label to the current lexical scope if we're within any
341  // normal cleanups.  Jumps "in" to this label --- when permitted by
342  // the language --- may need to be routed around such cleanups.
343  if (EHStack.hasNormalCleanups() && CurLexicalScope)
344    CurLexicalScope->addLabel(D);
345
346  JumpDest &Dest = LabelMap[D];
347
348  // If we didn't need a forward reference to this label, just go
349  // ahead and create a destination at the current scope.
350  if (!Dest.isValid()) {
351    Dest = getJumpDestInCurrentScope(D->getName());
352
353  // Otherwise, we need to give this label a target depth and remove
354  // it from the branch-fixups list.
355  } else {
356    assert(!Dest.getScopeDepth().isValid() && "already emitted label!");
357    Dest.setScopeDepth(EHStack.stable_begin());
358    ResolveBranchFixups(Dest.getBlock());
359  }
360
361  EmitBlock(Dest.getBlock());
362}
363
364/// Change the cleanup scope of the labels in this lexical scope to
365/// match the scope of the enclosing context.
366void CodeGenFunction::LexicalScope::rescopeLabels() {
367  assert(!Labels.empty());
368  EHScopeStack::stable_iterator innermostScope
369    = CGF.EHStack.getInnermostNormalCleanup();
370
371  // Change the scope depth of all the labels.
372  for (SmallVectorImpl<const LabelDecl*>::const_iterator
373         i = Labels.begin(), e = Labels.end(); i != e; ++i) {
374    assert(CGF.LabelMap.count(*i));
375    JumpDest &dest = CGF.LabelMap.find(*i)->second;
376    assert(dest.getScopeDepth().isValid());
377    assert(innermostScope.encloses(dest.getScopeDepth()));
378    dest.setScopeDepth(innermostScope);
379  }
380
381  // Reparent the labels if the new scope also has cleanups.
382  if (innermostScope != EHScopeStack::stable_end() && ParentScope) {
383    ParentScope->Labels.append(Labels.begin(), Labels.end());
384  }
385}
386
387
388void CodeGenFunction::EmitLabelStmt(const LabelStmt &S) {
389  EmitLabel(S.getDecl());
390  EmitStmt(S.getSubStmt());
391}
392
393void CodeGenFunction::EmitAttributedStmt(const AttributedStmt &S) {
394  EmitStmt(S.getSubStmt());
395}
396
397void CodeGenFunction::EmitGotoStmt(const GotoStmt &S) {
398  // If this code is reachable then emit a stop point (if generating
399  // debug info). We have to do this ourselves because we are on the
400  // "simple" statement path.
401  if (HaveInsertPoint())
402    EmitStopPoint(&S);
403
404  EmitBranchThroughCleanup(getJumpDestForLabel(S.getLabel()));
405}
406
407
408void CodeGenFunction::EmitIndirectGotoStmt(const IndirectGotoStmt &S) {
409  if (const LabelDecl *Target = S.getConstantTarget()) {
410    EmitBranchThroughCleanup(getJumpDestForLabel(Target));
411    return;
412  }
413
414  // Ensure that we have an i8* for our PHI node.
415  llvm::Value *V = Builder.CreateBitCast(EmitScalarExpr(S.getTarget()),
416                                         Int8PtrTy, "addr");
417  llvm::BasicBlock *CurBB = Builder.GetInsertBlock();
418
419  // Get the basic block for the indirect goto.
420  llvm::BasicBlock *IndGotoBB = GetIndirectGotoBlock();
421
422  // The first instruction in the block has to be the PHI for the switch dest,
423  // add an entry for this branch.
424  cast<llvm::PHINode>(IndGotoBB->begin())->addIncoming(V, CurBB);
425
426  EmitBranch(IndGotoBB);
427}
428
429void CodeGenFunction::EmitIfStmt(const IfStmt &S) {
430  // C99 6.8.4.1: The first substatement is executed if the expression compares
431  // unequal to 0.  The condition must be a scalar type.
432  LexicalScope ConditionScope(*this, S.getSourceRange());
433
434  if (S.getConditionVariable())
435    EmitAutoVarDecl(*S.getConditionVariable());
436
437  // If the condition constant folds and can be elided, try to avoid emitting
438  // the condition and the dead arm of the if/else.
439  bool CondConstant;
440  if (ConstantFoldsToSimpleInteger(S.getCond(), CondConstant)) {
441    // Figure out which block (then or else) is executed.
442    const Stmt *Executed = S.getThen();
443    const Stmt *Skipped  = S.getElse();
444    if (!CondConstant)  // Condition false?
445      std::swap(Executed, Skipped);
446
447    // If the skipped block has no labels in it, just emit the executed block.
448    // This avoids emitting dead code and simplifies the CFG substantially.
449    if (!ContainsLabel(Skipped)) {
450      if (Executed) {
451        RunCleanupsScope ExecutedScope(*this);
452        EmitStmt(Executed);
453      }
454      return;
455    }
456  }
457
458  // Otherwise, the condition did not fold, or we couldn't elide it.  Just emit
459  // the conditional branch.
460  llvm::BasicBlock *ThenBlock = createBasicBlock("if.then");
461  llvm::BasicBlock *ContBlock = createBasicBlock("if.end");
462  llvm::BasicBlock *ElseBlock = ContBlock;
463  if (S.getElse())
464    ElseBlock = createBasicBlock("if.else");
465  EmitBranchOnBoolExpr(S.getCond(), ThenBlock, ElseBlock);
466
467  // Emit the 'then' code.
468  EmitBlock(ThenBlock);
469  {
470    RunCleanupsScope ThenScope(*this);
471    EmitStmt(S.getThen());
472  }
473  EmitBranch(ContBlock);
474
475  // Emit the 'else' code if present.
476  if (const Stmt *Else = S.getElse()) {
477    // There is no need to emit line number for unconditional branch.
478    if (getDebugInfo())
479      Builder.SetCurrentDebugLocation(llvm::DebugLoc());
480    EmitBlock(ElseBlock);
481    {
482      RunCleanupsScope ElseScope(*this);
483      EmitStmt(Else);
484    }
485    // There is no need to emit line number for unconditional branch.
486    if (getDebugInfo())
487      Builder.SetCurrentDebugLocation(llvm::DebugLoc());
488    EmitBranch(ContBlock);
489  }
490
491  // Emit the continuation block for code after the if.
492  EmitBlock(ContBlock, true);
493}
494
495void CodeGenFunction::EmitWhileStmt(const WhileStmt &S) {
496  // Emit the header for the loop, which will also become
497  // the continue target.
498  JumpDest LoopHeader = getJumpDestInCurrentScope("while.cond");
499  EmitBlock(LoopHeader.getBlock());
500
501  // Create an exit block for when the condition fails, which will
502  // also become the break target.
503  JumpDest LoopExit = getJumpDestInCurrentScope("while.end");
504
505  // Store the blocks to use for break and continue.
506  BreakContinueStack.push_back(BreakContinue(LoopExit, LoopHeader));
507
508  // C++ [stmt.while]p2:
509  //   When the condition of a while statement is a declaration, the
510  //   scope of the variable that is declared extends from its point
511  //   of declaration (3.3.2) to the end of the while statement.
512  //   [...]
513  //   The object created in a condition is destroyed and created
514  //   with each iteration of the loop.
515  RunCleanupsScope ConditionScope(*this);
516
517  if (S.getConditionVariable())
518    EmitAutoVarDecl(*S.getConditionVariable());
519
520  // Evaluate the conditional in the while header.  C99 6.8.5.1: The
521  // evaluation of the controlling expression takes place before each
522  // execution of the loop body.
523  llvm::Value *BoolCondVal = EvaluateExprAsBool(S.getCond());
524
525  // while(1) is common, avoid extra exit blocks.  Be sure
526  // to correctly handle break/continue though.
527  bool EmitBoolCondBranch = true;
528  if (llvm::ConstantInt *C = dyn_cast<llvm::ConstantInt>(BoolCondVal))
529    if (C->isOne())
530      EmitBoolCondBranch = false;
531
532  // As long as the condition is true, go to the loop body.
533  llvm::BasicBlock *LoopBody = createBasicBlock("while.body");
534  if (EmitBoolCondBranch) {
535    llvm::BasicBlock *ExitBlock = LoopExit.getBlock();
536    if (ConditionScope.requiresCleanups())
537      ExitBlock = createBasicBlock("while.exit");
538
539    Builder.CreateCondBr(BoolCondVal, LoopBody, ExitBlock);
540
541    if (ExitBlock != LoopExit.getBlock()) {
542      EmitBlock(ExitBlock);
543      EmitBranchThroughCleanup(LoopExit);
544    }
545  }
546
547  // Emit the loop body.  We have to emit this in a cleanup scope
548  // because it might be a singleton DeclStmt.
549  {
550    RunCleanupsScope BodyScope(*this);
551    EmitBlock(LoopBody);
552    EmitStmt(S.getBody());
553  }
554
555  BreakContinueStack.pop_back();
556
557  // Immediately force cleanup.
558  ConditionScope.ForceCleanup();
559
560  // Branch to the loop header again.
561  EmitBranch(LoopHeader.getBlock());
562
563  // Emit the exit block.
564  EmitBlock(LoopExit.getBlock(), true);
565
566  // The LoopHeader typically is just a branch if we skipped emitting
567  // a branch, try to erase it.
568  if (!EmitBoolCondBranch)
569    SimplifyForwardingBlocks(LoopHeader.getBlock());
570}
571
572void CodeGenFunction::EmitDoStmt(const DoStmt &S) {
573  JumpDest LoopExit = getJumpDestInCurrentScope("do.end");
574  JumpDest LoopCond = getJumpDestInCurrentScope("do.cond");
575
576  // Store the blocks to use for break and continue.
577  BreakContinueStack.push_back(BreakContinue(LoopExit, LoopCond));
578
579  // Emit the body of the loop.
580  llvm::BasicBlock *LoopBody = createBasicBlock("do.body");
581  EmitBlock(LoopBody);
582  {
583    RunCleanupsScope BodyScope(*this);
584    EmitStmt(S.getBody());
585  }
586
587  BreakContinueStack.pop_back();
588
589  EmitBlock(LoopCond.getBlock());
590
591  // C99 6.8.5.2: "The evaluation of the controlling expression takes place
592  // after each execution of the loop body."
593
594  // Evaluate the conditional in the while header.
595  // C99 6.8.5p2/p4: The first substatement is executed if the expression
596  // compares unequal to 0.  The condition must be a scalar type.
597  llvm::Value *BoolCondVal = EvaluateExprAsBool(S.getCond());
598
599  // "do {} while (0)" is common in macros, avoid extra blocks.  Be sure
600  // to correctly handle break/continue though.
601  bool EmitBoolCondBranch = true;
602  if (llvm::ConstantInt *C = dyn_cast<llvm::ConstantInt>(BoolCondVal))
603    if (C->isZero())
604      EmitBoolCondBranch = false;
605
606  // As long as the condition is true, iterate the loop.
607  if (EmitBoolCondBranch)
608    Builder.CreateCondBr(BoolCondVal, LoopBody, LoopExit.getBlock());
609
610  // Emit the exit block.
611  EmitBlock(LoopExit.getBlock());
612
613  // The DoCond block typically is just a branch if we skipped
614  // emitting a branch, try to erase it.
615  if (!EmitBoolCondBranch)
616    SimplifyForwardingBlocks(LoopCond.getBlock());
617}
618
619void CodeGenFunction::EmitForStmt(const ForStmt &S) {
620  JumpDest LoopExit = getJumpDestInCurrentScope("for.end");
621
622  RunCleanupsScope ForScope(*this);
623
624  CGDebugInfo *DI = getDebugInfo();
625  if (DI)
626    DI->EmitLexicalBlockStart(Builder, S.getSourceRange().getBegin());
627
628  // Evaluate the first part before the loop.
629  if (S.getInit())
630    EmitStmt(S.getInit());
631
632  // Start the loop with a block that tests the condition.
633  // If there's an increment, the continue scope will be overwritten
634  // later.
635  JumpDest Continue = getJumpDestInCurrentScope("for.cond");
636  llvm::BasicBlock *CondBlock = Continue.getBlock();
637  EmitBlock(CondBlock);
638
639  // Create a cleanup scope for the condition variable cleanups.
640  RunCleanupsScope ConditionScope(*this);
641
642  if (S.getCond()) {
643    // If the for statement has a condition scope, emit the local variable
644    // declaration.
645    if (S.getConditionVariable()) {
646      EmitAutoVarDecl(*S.getConditionVariable());
647    }
648
649    llvm::BasicBlock *ExitBlock = LoopExit.getBlock();
650    // If there are any cleanups between here and the loop-exit scope,
651    // create a block to stage a loop exit along.
652    if (ForScope.requiresCleanups())
653      ExitBlock = createBasicBlock("for.cond.cleanup");
654
655    // As long as the condition is true, iterate the loop.
656    llvm::BasicBlock *ForBody = createBasicBlock("for.body");
657
658    // C99 6.8.5p2/p4: The first substatement is executed if the expression
659    // compares unequal to 0.  The condition must be a scalar type.
660    EmitBranchOnBoolExpr(S.getCond(), ForBody, ExitBlock);
661
662    if (ExitBlock != LoopExit.getBlock()) {
663      EmitBlock(ExitBlock);
664      EmitBranchThroughCleanup(LoopExit);
665    }
666
667    EmitBlock(ForBody);
668  } else {
669    // Treat it as a non-zero constant.  Don't even create a new block for the
670    // body, just fall into it.
671  }
672
673  // If the for loop doesn't have an increment we can just use the
674  // condition as the continue block.  Otherwise we'll need to create
675  // a block for it (in the current scope, i.e. in the scope of the
676  // condition), and that we will become our continue block.
677  if (S.getInc())
678    Continue = getJumpDestInCurrentScope("for.inc");
679
680  // Store the blocks to use for break and continue.
681  BreakContinueStack.push_back(BreakContinue(LoopExit, Continue));
682
683  {
684    // Create a separate cleanup scope for the body, in case it is not
685    // a compound statement.
686    RunCleanupsScope BodyScope(*this);
687    EmitStmt(S.getBody());
688  }
689
690  // If there is an increment, emit it next.
691  if (S.getInc()) {
692    EmitBlock(Continue.getBlock());
693    EmitStmt(S.getInc());
694  }
695
696  BreakContinueStack.pop_back();
697
698  ConditionScope.ForceCleanup();
699  EmitBranch(CondBlock);
700
701  ForScope.ForceCleanup();
702
703  if (DI)
704    DI->EmitLexicalBlockEnd(Builder, S.getSourceRange().getEnd());
705
706  // Emit the fall-through block.
707  EmitBlock(LoopExit.getBlock(), true);
708}
709
710void CodeGenFunction::EmitCXXForRangeStmt(const CXXForRangeStmt &S) {
711  JumpDest LoopExit = getJumpDestInCurrentScope("for.end");
712
713  RunCleanupsScope ForScope(*this);
714
715  CGDebugInfo *DI = getDebugInfo();
716  if (DI)
717    DI->EmitLexicalBlockStart(Builder, S.getSourceRange().getBegin());
718
719  // Evaluate the first pieces before the loop.
720  EmitStmt(S.getRangeStmt());
721  EmitStmt(S.getBeginEndStmt());
722
723  // Start the loop with a block that tests the condition.
724  // If there's an increment, the continue scope will be overwritten
725  // later.
726  llvm::BasicBlock *CondBlock = createBasicBlock("for.cond");
727  EmitBlock(CondBlock);
728
729  // If there are any cleanups between here and the loop-exit scope,
730  // create a block to stage a loop exit along.
731  llvm::BasicBlock *ExitBlock = LoopExit.getBlock();
732  if (ForScope.requiresCleanups())
733    ExitBlock = createBasicBlock("for.cond.cleanup");
734
735  // The loop body, consisting of the specified body and the loop variable.
736  llvm::BasicBlock *ForBody = createBasicBlock("for.body");
737
738  // The body is executed if the expression, contextually converted
739  // to bool, is true.
740  EmitBranchOnBoolExpr(S.getCond(), ForBody, ExitBlock);
741
742  if (ExitBlock != LoopExit.getBlock()) {
743    EmitBlock(ExitBlock);
744    EmitBranchThroughCleanup(LoopExit);
745  }
746
747  EmitBlock(ForBody);
748
749  // Create a block for the increment. In case of a 'continue', we jump there.
750  JumpDest Continue = getJumpDestInCurrentScope("for.inc");
751
752  // Store the blocks to use for break and continue.
753  BreakContinueStack.push_back(BreakContinue(LoopExit, Continue));
754
755  {
756    // Create a separate cleanup scope for the loop variable and body.
757    RunCleanupsScope BodyScope(*this);
758    EmitStmt(S.getLoopVarStmt());
759    EmitStmt(S.getBody());
760  }
761
762  // If there is an increment, emit it next.
763  EmitBlock(Continue.getBlock());
764  EmitStmt(S.getInc());
765
766  BreakContinueStack.pop_back();
767
768  EmitBranch(CondBlock);
769
770  ForScope.ForceCleanup();
771
772  if (DI)
773    DI->EmitLexicalBlockEnd(Builder, S.getSourceRange().getEnd());
774
775  // Emit the fall-through block.
776  EmitBlock(LoopExit.getBlock(), true);
777}
778
779void CodeGenFunction::EmitReturnOfRValue(RValue RV, QualType Ty) {
780  if (RV.isScalar()) {
781    Builder.CreateStore(RV.getScalarVal(), ReturnValue);
782  } else if (RV.isAggregate()) {
783    EmitAggregateCopy(ReturnValue, RV.getAggregateAddr(), Ty);
784  } else {
785    EmitStoreOfComplex(RV.getComplexVal(),
786                       MakeNaturalAlignAddrLValue(ReturnValue, Ty),
787                       /*init*/ true);
788  }
789  EmitBranchThroughCleanup(ReturnBlock);
790}
791
792/// EmitReturnStmt - Note that due to GCC extensions, this can have an operand
793/// if the function returns void, or may be missing one if the function returns
794/// non-void.  Fun stuff :).
795void CodeGenFunction::EmitReturnStmt(const ReturnStmt &S) {
796  // Emit the result value, even if unused, to evalute the side effects.
797  const Expr *RV = S.getRetValue();
798
799  // Treat block literals in a return expression as if they appeared
800  // in their own scope.  This permits a small, easily-implemented
801  // exception to our over-conservative rules about not jumping to
802  // statements following block literals with non-trivial cleanups.
803  RunCleanupsScope cleanupScope(*this);
804  if (const ExprWithCleanups *cleanups =
805        dyn_cast_or_null<ExprWithCleanups>(RV)) {
806    enterFullExpression(cleanups);
807    RV = cleanups->getSubExpr();
808  }
809
810  // FIXME: Clean this up by using an LValue for ReturnTemp,
811  // EmitStoreThroughLValue, and EmitAnyExpr.
812  if (S.getNRVOCandidate() && S.getNRVOCandidate()->isNRVOVariable()) {
813    // Apply the named return value optimization for this return statement,
814    // which means doing nothing: the appropriate result has already been
815    // constructed into the NRVO variable.
816
817    // If there is an NRVO flag for this variable, set it to 1 into indicate
818    // that the cleanup code should not destroy the variable.
819    if (llvm::Value *NRVOFlag = NRVOFlags[S.getNRVOCandidate()])
820      Builder.CreateStore(Builder.getTrue(), NRVOFlag);
821  } else if (!ReturnValue) {
822    // Make sure not to return anything, but evaluate the expression
823    // for side effects.
824    if (RV)
825      EmitAnyExpr(RV);
826  } else if (RV == 0) {
827    // Do nothing (return value is left uninitialized)
828  } else if (FnRetTy->isReferenceType()) {
829    // If this function returns a reference, take the address of the expression
830    // rather than the value.
831    RValue Result = EmitReferenceBindingToExpr(RV);
832    Builder.CreateStore(Result.getScalarVal(), ReturnValue);
833  } else {
834    switch (getEvaluationKind(RV->getType())) {
835    case TEK_Scalar:
836      Builder.CreateStore(EmitScalarExpr(RV), ReturnValue);
837      break;
838    case TEK_Complex:
839      EmitComplexExprIntoLValue(RV,
840                     MakeNaturalAlignAddrLValue(ReturnValue, RV->getType()),
841                                /*isInit*/ true);
842      break;
843    case TEK_Aggregate: {
844      CharUnits Alignment = getContext().getTypeAlignInChars(RV->getType());
845      EmitAggExpr(RV, AggValueSlot::forAddr(ReturnValue, Alignment,
846                                            Qualifiers(),
847                                            AggValueSlot::IsDestructed,
848                                            AggValueSlot::DoesNotNeedGCBarriers,
849                                            AggValueSlot::IsNotAliased));
850      break;
851    }
852    }
853  }
854
855  ++NumReturnExprs;
856  if (RV == 0 || RV->isEvaluatable(getContext()))
857    ++NumSimpleReturnExprs;
858
859  cleanupScope.ForceCleanup();
860  EmitBranchThroughCleanup(ReturnBlock);
861}
862
863void CodeGenFunction::EmitDeclStmt(const DeclStmt &S) {
864  // As long as debug info is modeled with instructions, we have to ensure we
865  // have a place to insert here and write the stop point here.
866  if (HaveInsertPoint())
867    EmitStopPoint(&S);
868
869  for (DeclStmt::const_decl_iterator I = S.decl_begin(), E = S.decl_end();
870       I != E; ++I)
871    EmitDecl(**I);
872}
873
874void CodeGenFunction::EmitBreakStmt(const BreakStmt &S) {
875  assert(!BreakContinueStack.empty() && "break stmt not in a loop or switch!");
876
877  // If this code is reachable then emit a stop point (if generating
878  // debug info). We have to do this ourselves because we are on the
879  // "simple" statement path.
880  if (HaveInsertPoint())
881    EmitStopPoint(&S);
882
883  JumpDest Block = BreakContinueStack.back().BreakBlock;
884  EmitBranchThroughCleanup(Block);
885}
886
887void CodeGenFunction::EmitContinueStmt(const ContinueStmt &S) {
888  assert(!BreakContinueStack.empty() && "continue stmt not in a loop!");
889
890  // If this code is reachable then emit a stop point (if generating
891  // debug info). We have to do this ourselves because we are on the
892  // "simple" statement path.
893  if (HaveInsertPoint())
894    EmitStopPoint(&S);
895
896  JumpDest Block = BreakContinueStack.back().ContinueBlock;
897  EmitBranchThroughCleanup(Block);
898}
899
900/// EmitCaseStmtRange - If case statement range is not too big then
901/// add multiple cases to switch instruction, one for each value within
902/// the range. If range is too big then emit "if" condition check.
903void CodeGenFunction::EmitCaseStmtRange(const CaseStmt &S) {
904  assert(S.getRHS() && "Expected RHS value in CaseStmt");
905
906  llvm::APSInt LHS = S.getLHS()->EvaluateKnownConstInt(getContext());
907  llvm::APSInt RHS = S.getRHS()->EvaluateKnownConstInt(getContext());
908
909  // Emit the code for this case. We do this first to make sure it is
910  // properly chained from our predecessor before generating the
911  // switch machinery to enter this block.
912  EmitBlock(createBasicBlock("sw.bb"));
913  llvm::BasicBlock *CaseDest = Builder.GetInsertBlock();
914  EmitStmt(S.getSubStmt());
915
916  // If range is empty, do nothing.
917  if (LHS.isSigned() ? RHS.slt(LHS) : RHS.ult(LHS))
918    return;
919
920  llvm::APInt Range = RHS - LHS;
921  // FIXME: parameters such as this should not be hardcoded.
922  if (Range.ult(llvm::APInt(Range.getBitWidth(), 64))) {
923    // Range is small enough to add multiple switch instruction cases.
924    for (unsigned i = 0, e = Range.getZExtValue() + 1; i != e; ++i) {
925      SwitchInsn->addCase(Builder.getInt(LHS), CaseDest);
926      LHS++;
927    }
928    return;
929  }
930
931  // The range is too big. Emit "if" condition into a new block,
932  // making sure to save and restore the current insertion point.
933  llvm::BasicBlock *RestoreBB = Builder.GetInsertBlock();
934
935  // Push this test onto the chain of range checks (which terminates
936  // in the default basic block). The switch's default will be changed
937  // to the top of this chain after switch emission is complete.
938  llvm::BasicBlock *FalseDest = CaseRangeBlock;
939  CaseRangeBlock = createBasicBlock("sw.caserange");
940
941  CurFn->getBasicBlockList().push_back(CaseRangeBlock);
942  Builder.SetInsertPoint(CaseRangeBlock);
943
944  // Emit range check.
945  llvm::Value *Diff =
946    Builder.CreateSub(SwitchInsn->getCondition(), Builder.getInt(LHS));
947  llvm::Value *Cond =
948    Builder.CreateICmpULE(Diff, Builder.getInt(Range), "inbounds");
949  Builder.CreateCondBr(Cond, CaseDest, FalseDest);
950
951  // Restore the appropriate insertion point.
952  if (RestoreBB)
953    Builder.SetInsertPoint(RestoreBB);
954  else
955    Builder.ClearInsertionPoint();
956}
957
958void CodeGenFunction::EmitCaseStmt(const CaseStmt &S) {
959  // If there is no enclosing switch instance that we're aware of, then this
960  // case statement and its block can be elided.  This situation only happens
961  // when we've constant-folded the switch, are emitting the constant case,
962  // and part of the constant case includes another case statement.  For
963  // instance: switch (4) { case 4: do { case 5: } while (1); }
964  if (!SwitchInsn) {
965    EmitStmt(S.getSubStmt());
966    return;
967  }
968
969  // Handle case ranges.
970  if (S.getRHS()) {
971    EmitCaseStmtRange(S);
972    return;
973  }
974
975  llvm::ConstantInt *CaseVal =
976    Builder.getInt(S.getLHS()->EvaluateKnownConstInt(getContext()));
977
978  // If the body of the case is just a 'break', and if there was no fallthrough,
979  // try to not emit an empty block.
980  if ((CGM.getCodeGenOpts().OptimizationLevel > 0) &&
981      isa<BreakStmt>(S.getSubStmt())) {
982    JumpDest Block = BreakContinueStack.back().BreakBlock;
983
984    // Only do this optimization if there are no cleanups that need emitting.
985    if (isObviouslyBranchWithoutCleanups(Block)) {
986      SwitchInsn->addCase(CaseVal, Block.getBlock());
987
988      // If there was a fallthrough into this case, make sure to redirect it to
989      // the end of the switch as well.
990      if (Builder.GetInsertBlock()) {
991        Builder.CreateBr(Block.getBlock());
992        Builder.ClearInsertionPoint();
993      }
994      return;
995    }
996  }
997
998  EmitBlock(createBasicBlock("sw.bb"));
999  llvm::BasicBlock *CaseDest = Builder.GetInsertBlock();
1000  SwitchInsn->addCase(CaseVal, CaseDest);
1001
1002  // Recursively emitting the statement is acceptable, but is not wonderful for
1003  // code where we have many case statements nested together, i.e.:
1004  //  case 1:
1005  //    case 2:
1006  //      case 3: etc.
1007  // Handling this recursively will create a new block for each case statement
1008  // that falls through to the next case which is IR intensive.  It also causes
1009  // deep recursion which can run into stack depth limitations.  Handle
1010  // sequential non-range case statements specially.
1011  const CaseStmt *CurCase = &S;
1012  const CaseStmt *NextCase = dyn_cast<CaseStmt>(S.getSubStmt());
1013
1014  // Otherwise, iteratively add consecutive cases to this switch stmt.
1015  while (NextCase && NextCase->getRHS() == 0) {
1016    CurCase = NextCase;
1017    llvm::ConstantInt *CaseVal =
1018      Builder.getInt(CurCase->getLHS()->EvaluateKnownConstInt(getContext()));
1019    SwitchInsn->addCase(CaseVal, CaseDest);
1020    NextCase = dyn_cast<CaseStmt>(CurCase->getSubStmt());
1021  }
1022
1023  // Normal default recursion for non-cases.
1024  EmitStmt(CurCase->getSubStmt());
1025}
1026
1027void CodeGenFunction::EmitDefaultStmt(const DefaultStmt &S) {
1028  llvm::BasicBlock *DefaultBlock = SwitchInsn->getDefaultDest();
1029  assert(DefaultBlock->empty() &&
1030         "EmitDefaultStmt: Default block already defined?");
1031  EmitBlock(DefaultBlock);
1032  EmitStmt(S.getSubStmt());
1033}
1034
1035/// CollectStatementsForCase - Given the body of a 'switch' statement and a
1036/// constant value that is being switched on, see if we can dead code eliminate
1037/// the body of the switch to a simple series of statements to emit.  Basically,
1038/// on a switch (5) we want to find these statements:
1039///    case 5:
1040///      printf(...);    <--
1041///      ++i;            <--
1042///      break;
1043///
1044/// and add them to the ResultStmts vector.  If it is unsafe to do this
1045/// transformation (for example, one of the elided statements contains a label
1046/// that might be jumped to), return CSFC_Failure.  If we handled it and 'S'
1047/// should include statements after it (e.g. the printf() line is a substmt of
1048/// the case) then return CSFC_FallThrough.  If we handled it and found a break
1049/// statement, then return CSFC_Success.
1050///
1051/// If Case is non-null, then we are looking for the specified case, checking
1052/// that nothing we jump over contains labels.  If Case is null, then we found
1053/// the case and are looking for the break.
1054///
1055/// If the recursive walk actually finds our Case, then we set FoundCase to
1056/// true.
1057///
1058enum CSFC_Result { CSFC_Failure, CSFC_FallThrough, CSFC_Success };
1059static CSFC_Result CollectStatementsForCase(const Stmt *S,
1060                                            const SwitchCase *Case,
1061                                            bool &FoundCase,
1062                              SmallVectorImpl<const Stmt*> &ResultStmts) {
1063  // If this is a null statement, just succeed.
1064  if (S == 0)
1065    return Case ? CSFC_Success : CSFC_FallThrough;
1066
1067  // If this is the switchcase (case 4: or default) that we're looking for, then
1068  // we're in business.  Just add the substatement.
1069  if (const SwitchCase *SC = dyn_cast<SwitchCase>(S)) {
1070    if (S == Case) {
1071      FoundCase = true;
1072      return CollectStatementsForCase(SC->getSubStmt(), 0, FoundCase,
1073                                      ResultStmts);
1074    }
1075
1076    // Otherwise, this is some other case or default statement, just ignore it.
1077    return CollectStatementsForCase(SC->getSubStmt(), Case, FoundCase,
1078                                    ResultStmts);
1079  }
1080
1081  // If we are in the live part of the code and we found our break statement,
1082  // return a success!
1083  if (Case == 0 && isa<BreakStmt>(S))
1084    return CSFC_Success;
1085
1086  // If this is a switch statement, then it might contain the SwitchCase, the
1087  // break, or neither.
1088  if (const CompoundStmt *CS = dyn_cast<CompoundStmt>(S)) {
1089    // Handle this as two cases: we might be looking for the SwitchCase (if so
1090    // the skipped statements must be skippable) or we might already have it.
1091    CompoundStmt::const_body_iterator I = CS->body_begin(), E = CS->body_end();
1092    if (Case) {
1093      // Keep track of whether we see a skipped declaration.  The code could be
1094      // using the declaration even if it is skipped, so we can't optimize out
1095      // the decl if the kept statements might refer to it.
1096      bool HadSkippedDecl = false;
1097
1098      // If we're looking for the case, just see if we can skip each of the
1099      // substatements.
1100      for (; Case && I != E; ++I) {
1101        HadSkippedDecl |= isa<DeclStmt>(*I);
1102
1103        switch (CollectStatementsForCase(*I, Case, FoundCase, ResultStmts)) {
1104        case CSFC_Failure: return CSFC_Failure;
1105        case CSFC_Success:
1106          // A successful result means that either 1) that the statement doesn't
1107          // have the case and is skippable, or 2) does contain the case value
1108          // and also contains the break to exit the switch.  In the later case,
1109          // we just verify the rest of the statements are elidable.
1110          if (FoundCase) {
1111            // If we found the case and skipped declarations, we can't do the
1112            // optimization.
1113            if (HadSkippedDecl)
1114              return CSFC_Failure;
1115
1116            for (++I; I != E; ++I)
1117              if (CodeGenFunction::ContainsLabel(*I, true))
1118                return CSFC_Failure;
1119            return CSFC_Success;
1120          }
1121          break;
1122        case CSFC_FallThrough:
1123          // If we have a fallthrough condition, then we must have found the
1124          // case started to include statements.  Consider the rest of the
1125          // statements in the compound statement as candidates for inclusion.
1126          assert(FoundCase && "Didn't find case but returned fallthrough?");
1127          // We recursively found Case, so we're not looking for it anymore.
1128          Case = 0;
1129
1130          // If we found the case and skipped declarations, we can't do the
1131          // optimization.
1132          if (HadSkippedDecl)
1133            return CSFC_Failure;
1134          break;
1135        }
1136      }
1137    }
1138
1139    // If we have statements in our range, then we know that the statements are
1140    // live and need to be added to the set of statements we're tracking.
1141    for (; I != E; ++I) {
1142      switch (CollectStatementsForCase(*I, 0, FoundCase, ResultStmts)) {
1143      case CSFC_Failure: return CSFC_Failure;
1144      case CSFC_FallThrough:
1145        // A fallthrough result means that the statement was simple and just
1146        // included in ResultStmt, keep adding them afterwards.
1147        break;
1148      case CSFC_Success:
1149        // A successful result means that we found the break statement and
1150        // stopped statement inclusion.  We just ensure that any leftover stmts
1151        // are skippable and return success ourselves.
1152        for (++I; I != E; ++I)
1153          if (CodeGenFunction::ContainsLabel(*I, true))
1154            return CSFC_Failure;
1155        return CSFC_Success;
1156      }
1157    }
1158
1159    return Case ? CSFC_Success : CSFC_FallThrough;
1160  }
1161
1162  // Okay, this is some other statement that we don't handle explicitly, like a
1163  // for statement or increment etc.  If we are skipping over this statement,
1164  // just verify it doesn't have labels, which would make it invalid to elide.
1165  if (Case) {
1166    if (CodeGenFunction::ContainsLabel(S, true))
1167      return CSFC_Failure;
1168    return CSFC_Success;
1169  }
1170
1171  // Otherwise, we want to include this statement.  Everything is cool with that
1172  // so long as it doesn't contain a break out of the switch we're in.
1173  if (CodeGenFunction::containsBreak(S)) return CSFC_Failure;
1174
1175  // Otherwise, everything is great.  Include the statement and tell the caller
1176  // that we fall through and include the next statement as well.
1177  ResultStmts.push_back(S);
1178  return CSFC_FallThrough;
1179}
1180
1181/// FindCaseStatementsForValue - Find the case statement being jumped to and
1182/// then invoke CollectStatementsForCase to find the list of statements to emit
1183/// for a switch on constant.  See the comment above CollectStatementsForCase
1184/// for more details.
1185static bool FindCaseStatementsForValue(const SwitchStmt &S,
1186                                       const llvm::APSInt &ConstantCondValue,
1187                                SmallVectorImpl<const Stmt*> &ResultStmts,
1188                                       ASTContext &C) {
1189  // First step, find the switch case that is being branched to.  We can do this
1190  // efficiently by scanning the SwitchCase list.
1191  const SwitchCase *Case = S.getSwitchCaseList();
1192  const DefaultStmt *DefaultCase = 0;
1193
1194  for (; Case; Case = Case->getNextSwitchCase()) {
1195    // It's either a default or case.  Just remember the default statement in
1196    // case we're not jumping to any numbered cases.
1197    if (const DefaultStmt *DS = dyn_cast<DefaultStmt>(Case)) {
1198      DefaultCase = DS;
1199      continue;
1200    }
1201
1202    // Check to see if this case is the one we're looking for.
1203    const CaseStmt *CS = cast<CaseStmt>(Case);
1204    // Don't handle case ranges yet.
1205    if (CS->getRHS()) return false;
1206
1207    // If we found our case, remember it as 'case'.
1208    if (CS->getLHS()->EvaluateKnownConstInt(C) == ConstantCondValue)
1209      break;
1210  }
1211
1212  // If we didn't find a matching case, we use a default if it exists, or we
1213  // elide the whole switch body!
1214  if (Case == 0) {
1215    // It is safe to elide the body of the switch if it doesn't contain labels
1216    // etc.  If it is safe, return successfully with an empty ResultStmts list.
1217    if (DefaultCase == 0)
1218      return !CodeGenFunction::ContainsLabel(&S);
1219    Case = DefaultCase;
1220  }
1221
1222  // Ok, we know which case is being jumped to, try to collect all the
1223  // statements that follow it.  This can fail for a variety of reasons.  Also,
1224  // check to see that the recursive walk actually found our case statement.
1225  // Insane cases like this can fail to find it in the recursive walk since we
1226  // don't handle every stmt kind:
1227  // switch (4) {
1228  //   while (1) {
1229  //     case 4: ...
1230  bool FoundCase = false;
1231  return CollectStatementsForCase(S.getBody(), Case, FoundCase,
1232                                  ResultStmts) != CSFC_Failure &&
1233         FoundCase;
1234}
1235
1236void CodeGenFunction::EmitSwitchStmt(const SwitchStmt &S) {
1237  JumpDest SwitchExit = getJumpDestInCurrentScope("sw.epilog");
1238
1239  RunCleanupsScope ConditionScope(*this);
1240
1241  if (S.getConditionVariable())
1242    EmitAutoVarDecl(*S.getConditionVariable());
1243
1244  // Handle nested switch statements.
1245  llvm::SwitchInst *SavedSwitchInsn = SwitchInsn;
1246  llvm::BasicBlock *SavedCRBlock = CaseRangeBlock;
1247
1248  // See if we can constant fold the condition of the switch and therefore only
1249  // emit the live case statement (if any) of the switch.
1250  llvm::APSInt ConstantCondValue;
1251  if (ConstantFoldsToSimpleInteger(S.getCond(), ConstantCondValue)) {
1252    SmallVector<const Stmt*, 4> CaseStmts;
1253    if (FindCaseStatementsForValue(S, ConstantCondValue, CaseStmts,
1254                                   getContext())) {
1255      RunCleanupsScope ExecutedScope(*this);
1256
1257      // At this point, we are no longer "within" a switch instance, so
1258      // we can temporarily enforce this to ensure that any embedded case
1259      // statements are not emitted.
1260      SwitchInsn = 0;
1261
1262      // Okay, we can dead code eliminate everything except this case.  Emit the
1263      // specified series of statements and we're good.
1264      for (unsigned i = 0, e = CaseStmts.size(); i != e; ++i)
1265        EmitStmt(CaseStmts[i]);
1266
1267      // Now we want to restore the saved switch instance so that nested
1268      // switches continue to function properly
1269      SwitchInsn = SavedSwitchInsn;
1270
1271      return;
1272    }
1273  }
1274
1275  llvm::Value *CondV = EmitScalarExpr(S.getCond());
1276
1277  // Create basic block to hold stuff that comes after switch
1278  // statement. We also need to create a default block now so that
1279  // explicit case ranges tests can have a place to jump to on
1280  // failure.
1281  llvm::BasicBlock *DefaultBlock = createBasicBlock("sw.default");
1282  SwitchInsn = Builder.CreateSwitch(CondV, DefaultBlock);
1283  CaseRangeBlock = DefaultBlock;
1284
1285  // Clear the insertion point to indicate we are in unreachable code.
1286  Builder.ClearInsertionPoint();
1287
1288  // All break statements jump to NextBlock. If BreakContinueStack is non empty
1289  // then reuse last ContinueBlock.
1290  JumpDest OuterContinue;
1291  if (!BreakContinueStack.empty())
1292    OuterContinue = BreakContinueStack.back().ContinueBlock;
1293
1294  BreakContinueStack.push_back(BreakContinue(SwitchExit, OuterContinue));
1295
1296  // Emit switch body.
1297  EmitStmt(S.getBody());
1298
1299  BreakContinueStack.pop_back();
1300
1301  // Update the default block in case explicit case range tests have
1302  // been chained on top.
1303  SwitchInsn->setDefaultDest(CaseRangeBlock);
1304
1305  // If a default was never emitted:
1306  if (!DefaultBlock->getParent()) {
1307    // If we have cleanups, emit the default block so that there's a
1308    // place to jump through the cleanups from.
1309    if (ConditionScope.requiresCleanups()) {
1310      EmitBlock(DefaultBlock);
1311
1312    // Otherwise, just forward the default block to the switch end.
1313    } else {
1314      DefaultBlock->replaceAllUsesWith(SwitchExit.getBlock());
1315      delete DefaultBlock;
1316    }
1317  }
1318
1319  ConditionScope.ForceCleanup();
1320
1321  // Emit continuation.
1322  EmitBlock(SwitchExit.getBlock(), true);
1323
1324  SwitchInsn = SavedSwitchInsn;
1325  CaseRangeBlock = SavedCRBlock;
1326}
1327
1328static std::string
1329SimplifyConstraint(const char *Constraint, const TargetInfo &Target,
1330                 SmallVectorImpl<TargetInfo::ConstraintInfo> *OutCons=0) {
1331  std::string Result;
1332
1333  while (*Constraint) {
1334    switch (*Constraint) {
1335    default:
1336      Result += Target.convertConstraint(Constraint);
1337      break;
1338    // Ignore these
1339    case '*':
1340    case '?':
1341    case '!':
1342    case '=': // Will see this and the following in mult-alt constraints.
1343    case '+':
1344      break;
1345    case '#': // Ignore the rest of the constraint alternative.
1346      while (Constraint[1] && Constraint[1] != ',')
1347        Constraint++;
1348      break;
1349    case ',':
1350      Result += "|";
1351      break;
1352    case 'g':
1353      Result += "imr";
1354      break;
1355    case '[': {
1356      assert(OutCons &&
1357             "Must pass output names to constraints with a symbolic name");
1358      unsigned Index;
1359      bool result = Target.resolveSymbolicName(Constraint,
1360                                               &(*OutCons)[0],
1361                                               OutCons->size(), Index);
1362      assert(result && "Could not resolve symbolic name"); (void)result;
1363      Result += llvm::utostr(Index);
1364      break;
1365    }
1366    }
1367
1368    Constraint++;
1369  }
1370
1371  return Result;
1372}
1373
1374/// AddVariableConstraints - Look at AsmExpr and if it is a variable declared
1375/// as using a particular register add that as a constraint that will be used
1376/// in this asm stmt.
1377static std::string
1378AddVariableConstraints(const std::string &Constraint, const Expr &AsmExpr,
1379                       const TargetInfo &Target, CodeGenModule &CGM,
1380                       const AsmStmt &Stmt) {
1381  const DeclRefExpr *AsmDeclRef = dyn_cast<DeclRefExpr>(&AsmExpr);
1382  if (!AsmDeclRef)
1383    return Constraint;
1384  const ValueDecl &Value = *AsmDeclRef->getDecl();
1385  const VarDecl *Variable = dyn_cast<VarDecl>(&Value);
1386  if (!Variable)
1387    return Constraint;
1388  if (Variable->getStorageClass() != SC_Register)
1389    return Constraint;
1390  AsmLabelAttr *Attr = Variable->getAttr<AsmLabelAttr>();
1391  if (!Attr)
1392    return Constraint;
1393  StringRef Register = Attr->getLabel();
1394  assert(Target.isValidGCCRegisterName(Register));
1395  // We're using validateOutputConstraint here because we only care if
1396  // this is a register constraint.
1397  TargetInfo::ConstraintInfo Info(Constraint, "");
1398  if (Target.validateOutputConstraint(Info) &&
1399      !Info.allowsRegister()) {
1400    CGM.ErrorUnsupported(&Stmt, "__asm__");
1401    return Constraint;
1402  }
1403  // Canonicalize the register here before returning it.
1404  Register = Target.getNormalizedGCCRegisterName(Register);
1405  return "{" + Register.str() + "}";
1406}
1407
1408llvm::Value*
1409CodeGenFunction::EmitAsmInputLValue(const TargetInfo::ConstraintInfo &Info,
1410                                    LValue InputValue, QualType InputType,
1411                                    std::string &ConstraintStr,
1412                                    SourceLocation Loc) {
1413  llvm::Value *Arg;
1414  if (Info.allowsRegister() || !Info.allowsMemory()) {
1415    if (CodeGenFunction::hasScalarEvaluationKind(InputType)) {
1416      Arg = EmitLoadOfLValue(InputValue, Loc).getScalarVal();
1417    } else {
1418      llvm::Type *Ty = ConvertType(InputType);
1419      uint64_t Size = CGM.getDataLayout().getTypeSizeInBits(Ty);
1420      if (Size <= 64 && llvm::isPowerOf2_64(Size)) {
1421        Ty = llvm::IntegerType::get(getLLVMContext(), Size);
1422        Ty = llvm::PointerType::getUnqual(Ty);
1423
1424        Arg = Builder.CreateLoad(Builder.CreateBitCast(InputValue.getAddress(),
1425                                                       Ty));
1426      } else {
1427        Arg = InputValue.getAddress();
1428        ConstraintStr += '*';
1429      }
1430    }
1431  } else {
1432    Arg = InputValue.getAddress();
1433    ConstraintStr += '*';
1434  }
1435
1436  return Arg;
1437}
1438
1439llvm::Value* CodeGenFunction::EmitAsmInput(
1440                                         const TargetInfo::ConstraintInfo &Info,
1441                                           const Expr *InputExpr,
1442                                           std::string &ConstraintStr) {
1443  if (Info.allowsRegister() || !Info.allowsMemory())
1444    if (CodeGenFunction::hasScalarEvaluationKind(InputExpr->getType()))
1445      return EmitScalarExpr(InputExpr);
1446
1447  InputExpr = InputExpr->IgnoreParenNoopCasts(getContext());
1448  LValue Dest = EmitLValue(InputExpr);
1449  return EmitAsmInputLValue(Info, Dest, InputExpr->getType(), ConstraintStr,
1450                            InputExpr->getExprLoc());
1451}
1452
1453/// getAsmSrcLocInfo - Return the !srcloc metadata node to attach to an inline
1454/// asm call instruction.  The !srcloc MDNode contains a list of constant
1455/// integers which are the source locations of the start of each line in the
1456/// asm.
1457static llvm::MDNode *getAsmSrcLocInfo(const StringLiteral *Str,
1458                                      CodeGenFunction &CGF) {
1459  SmallVector<llvm::Value *, 8> Locs;
1460  // Add the location of the first line to the MDNode.
1461  Locs.push_back(llvm::ConstantInt::get(CGF.Int32Ty,
1462                                        Str->getLocStart().getRawEncoding()));
1463  StringRef StrVal = Str->getString();
1464  if (!StrVal.empty()) {
1465    const SourceManager &SM = CGF.CGM.getContext().getSourceManager();
1466    const LangOptions &LangOpts = CGF.CGM.getLangOpts();
1467
1468    // Add the location of the start of each subsequent line of the asm to the
1469    // MDNode.
1470    for (unsigned i = 0, e = StrVal.size()-1; i != e; ++i) {
1471      if (StrVal[i] != '\n') continue;
1472      SourceLocation LineLoc = Str->getLocationOfByte(i+1, SM, LangOpts,
1473                                                      CGF.getTarget());
1474      Locs.push_back(llvm::ConstantInt::get(CGF.Int32Ty,
1475                                            LineLoc.getRawEncoding()));
1476    }
1477  }
1478
1479  return llvm::MDNode::get(CGF.getLLVMContext(), Locs);
1480}
1481
1482void CodeGenFunction::EmitAsmStmt(const AsmStmt &S) {
1483  // Assemble the final asm string.
1484  std::string AsmString = S.generateAsmString(getContext());
1485
1486  // Get all the output and input constraints together.
1487  SmallVector<TargetInfo::ConstraintInfo, 4> OutputConstraintInfos;
1488  SmallVector<TargetInfo::ConstraintInfo, 4> InputConstraintInfos;
1489
1490  for (unsigned i = 0, e = S.getNumOutputs(); i != e; i++) {
1491    StringRef Name;
1492    if (const GCCAsmStmt *GAS = dyn_cast<GCCAsmStmt>(&S))
1493      Name = GAS->getOutputName(i);
1494    TargetInfo::ConstraintInfo Info(S.getOutputConstraint(i), Name);
1495    bool IsValid = getTarget().validateOutputConstraint(Info); (void)IsValid;
1496    assert(IsValid && "Failed to parse output constraint");
1497    OutputConstraintInfos.push_back(Info);
1498  }
1499
1500  for (unsigned i = 0, e = S.getNumInputs(); i != e; i++) {
1501    StringRef Name;
1502    if (const GCCAsmStmt *GAS = dyn_cast<GCCAsmStmt>(&S))
1503      Name = GAS->getInputName(i);
1504    TargetInfo::ConstraintInfo Info(S.getInputConstraint(i), Name);
1505    bool IsValid =
1506      getTarget().validateInputConstraint(OutputConstraintInfos.data(),
1507                                          S.getNumOutputs(), Info);
1508    assert(IsValid && "Failed to parse input constraint"); (void)IsValid;
1509    InputConstraintInfos.push_back(Info);
1510  }
1511
1512  std::string Constraints;
1513
1514  std::vector<LValue> ResultRegDests;
1515  std::vector<QualType> ResultRegQualTys;
1516  std::vector<llvm::Type *> ResultRegTypes;
1517  std::vector<llvm::Type *> ResultTruncRegTypes;
1518  std::vector<llvm::Type *> ArgTypes;
1519  std::vector<llvm::Value*> Args;
1520
1521  // Keep track of inout constraints.
1522  std::string InOutConstraints;
1523  std::vector<llvm::Value*> InOutArgs;
1524  std::vector<llvm::Type*> InOutArgTypes;
1525
1526  for (unsigned i = 0, e = S.getNumOutputs(); i != e; i++) {
1527    TargetInfo::ConstraintInfo &Info = OutputConstraintInfos[i];
1528
1529    // Simplify the output constraint.
1530    std::string OutputConstraint(S.getOutputConstraint(i));
1531    OutputConstraint = SimplifyConstraint(OutputConstraint.c_str() + 1,
1532                                          getTarget());
1533
1534    const Expr *OutExpr = S.getOutputExpr(i);
1535    OutExpr = OutExpr->IgnoreParenNoopCasts(getContext());
1536
1537    OutputConstraint = AddVariableConstraints(OutputConstraint, *OutExpr,
1538                                              getTarget(), CGM, S);
1539
1540    LValue Dest = EmitLValue(OutExpr);
1541    if (!Constraints.empty())
1542      Constraints += ',';
1543
1544    // If this is a register output, then make the inline asm return it
1545    // by-value.  If this is a memory result, return the value by-reference.
1546    if (!Info.allowsMemory() && hasScalarEvaluationKind(OutExpr->getType())) {
1547      Constraints += "=" + OutputConstraint;
1548      ResultRegQualTys.push_back(OutExpr->getType());
1549      ResultRegDests.push_back(Dest);
1550      ResultRegTypes.push_back(ConvertTypeForMem(OutExpr->getType()));
1551      ResultTruncRegTypes.push_back(ResultRegTypes.back());
1552
1553      // If this output is tied to an input, and if the input is larger, then
1554      // we need to set the actual result type of the inline asm node to be the
1555      // same as the input type.
1556      if (Info.hasMatchingInput()) {
1557        unsigned InputNo;
1558        for (InputNo = 0; InputNo != S.getNumInputs(); ++InputNo) {
1559          TargetInfo::ConstraintInfo &Input = InputConstraintInfos[InputNo];
1560          if (Input.hasTiedOperand() && Input.getTiedOperand() == i)
1561            break;
1562        }
1563        assert(InputNo != S.getNumInputs() && "Didn't find matching input!");
1564
1565        QualType InputTy = S.getInputExpr(InputNo)->getType();
1566        QualType OutputType = OutExpr->getType();
1567
1568        uint64_t InputSize = getContext().getTypeSize(InputTy);
1569        if (getContext().getTypeSize(OutputType) < InputSize) {
1570          // Form the asm to return the value as a larger integer or fp type.
1571          ResultRegTypes.back() = ConvertType(InputTy);
1572        }
1573      }
1574      if (llvm::Type* AdjTy =
1575            getTargetHooks().adjustInlineAsmType(*this, OutputConstraint,
1576                                                 ResultRegTypes.back()))
1577        ResultRegTypes.back() = AdjTy;
1578      else {
1579        CGM.getDiags().Report(S.getAsmLoc(),
1580                              diag::err_asm_invalid_type_in_input)
1581            << OutExpr->getType() << OutputConstraint;
1582      }
1583    } else {
1584      ArgTypes.push_back(Dest.getAddress()->getType());
1585      Args.push_back(Dest.getAddress());
1586      Constraints += "=*";
1587      Constraints += OutputConstraint;
1588    }
1589
1590    if (Info.isReadWrite()) {
1591      InOutConstraints += ',';
1592
1593      const Expr *InputExpr = S.getOutputExpr(i);
1594      llvm::Value *Arg = EmitAsmInputLValue(Info, Dest, InputExpr->getType(),
1595                                            InOutConstraints,
1596                                            InputExpr->getExprLoc());
1597
1598      if (llvm::Type* AdjTy =
1599          getTargetHooks().adjustInlineAsmType(*this, OutputConstraint,
1600                                               Arg->getType()))
1601        Arg = Builder.CreateBitCast(Arg, AdjTy);
1602
1603      if (Info.allowsRegister())
1604        InOutConstraints += llvm::utostr(i);
1605      else
1606        InOutConstraints += OutputConstraint;
1607
1608      InOutArgTypes.push_back(Arg->getType());
1609      InOutArgs.push_back(Arg);
1610    }
1611  }
1612
1613  unsigned NumConstraints = S.getNumOutputs() + S.getNumInputs();
1614
1615  for (unsigned i = 0, e = S.getNumInputs(); i != e; i++) {
1616    const Expr *InputExpr = S.getInputExpr(i);
1617
1618    TargetInfo::ConstraintInfo &Info = InputConstraintInfos[i];
1619
1620    if (!Constraints.empty())
1621      Constraints += ',';
1622
1623    // Simplify the input constraint.
1624    std::string InputConstraint(S.getInputConstraint(i));
1625    InputConstraint = SimplifyConstraint(InputConstraint.c_str(), getTarget(),
1626                                         &OutputConstraintInfos);
1627
1628    InputConstraint =
1629      AddVariableConstraints(InputConstraint,
1630                            *InputExpr->IgnoreParenNoopCasts(getContext()),
1631                            getTarget(), CGM, S);
1632
1633    llvm::Value *Arg = EmitAsmInput(Info, InputExpr, Constraints);
1634
1635    // If this input argument is tied to a larger output result, extend the
1636    // input to be the same size as the output.  The LLVM backend wants to see
1637    // the input and output of a matching constraint be the same size.  Note
1638    // that GCC does not define what the top bits are here.  We use zext because
1639    // that is usually cheaper, but LLVM IR should really get an anyext someday.
1640    if (Info.hasTiedOperand()) {
1641      unsigned Output = Info.getTiedOperand();
1642      QualType OutputType = S.getOutputExpr(Output)->getType();
1643      QualType InputTy = InputExpr->getType();
1644
1645      if (getContext().getTypeSize(OutputType) >
1646          getContext().getTypeSize(InputTy)) {
1647        // Use ptrtoint as appropriate so that we can do our extension.
1648        if (isa<llvm::PointerType>(Arg->getType()))
1649          Arg = Builder.CreatePtrToInt(Arg, IntPtrTy);
1650        llvm::Type *OutputTy = ConvertType(OutputType);
1651        if (isa<llvm::IntegerType>(OutputTy))
1652          Arg = Builder.CreateZExt(Arg, OutputTy);
1653        else if (isa<llvm::PointerType>(OutputTy))
1654          Arg = Builder.CreateZExt(Arg, IntPtrTy);
1655        else {
1656          assert(OutputTy->isFloatingPointTy() && "Unexpected output type");
1657          Arg = Builder.CreateFPExt(Arg, OutputTy);
1658        }
1659      }
1660    }
1661    if (llvm::Type* AdjTy =
1662              getTargetHooks().adjustInlineAsmType(*this, InputConstraint,
1663                                                   Arg->getType()))
1664      Arg = Builder.CreateBitCast(Arg, AdjTy);
1665    else
1666      CGM.getDiags().Report(S.getAsmLoc(), diag::err_asm_invalid_type_in_input)
1667          << InputExpr->getType() << InputConstraint;
1668
1669    ArgTypes.push_back(Arg->getType());
1670    Args.push_back(Arg);
1671    Constraints += InputConstraint;
1672  }
1673
1674  // Append the "input" part of inout constraints last.
1675  for (unsigned i = 0, e = InOutArgs.size(); i != e; i++) {
1676    ArgTypes.push_back(InOutArgTypes[i]);
1677    Args.push_back(InOutArgs[i]);
1678  }
1679  Constraints += InOutConstraints;
1680
1681  // Clobbers
1682  for (unsigned i = 0, e = S.getNumClobbers(); i != e; i++) {
1683    StringRef Clobber = S.getClobber(i);
1684
1685    if (Clobber != "memory" && Clobber != "cc")
1686    Clobber = getTarget().getNormalizedGCCRegisterName(Clobber);
1687
1688    if (i != 0 || NumConstraints != 0)
1689      Constraints += ',';
1690
1691    Constraints += "~{";
1692    Constraints += Clobber;
1693    Constraints += '}';
1694  }
1695
1696  // Add machine specific clobbers
1697  std::string MachineClobbers = getTarget().getClobbers();
1698  if (!MachineClobbers.empty()) {
1699    if (!Constraints.empty())
1700      Constraints += ',';
1701    Constraints += MachineClobbers;
1702  }
1703
1704  llvm::Type *ResultType;
1705  if (ResultRegTypes.empty())
1706    ResultType = VoidTy;
1707  else if (ResultRegTypes.size() == 1)
1708    ResultType = ResultRegTypes[0];
1709  else
1710    ResultType = llvm::StructType::get(getLLVMContext(), ResultRegTypes);
1711
1712  llvm::FunctionType *FTy =
1713    llvm::FunctionType::get(ResultType, ArgTypes, false);
1714
1715  bool HasSideEffect = S.isVolatile() || S.getNumOutputs() == 0;
1716  llvm::InlineAsm::AsmDialect AsmDialect = isa<MSAsmStmt>(&S) ?
1717    llvm::InlineAsm::AD_Intel : llvm::InlineAsm::AD_ATT;
1718  llvm::InlineAsm *IA =
1719    llvm::InlineAsm::get(FTy, AsmString, Constraints, HasSideEffect,
1720                         /* IsAlignStack */ false, AsmDialect);
1721  llvm::CallInst *Result = Builder.CreateCall(IA, Args);
1722  Result->addAttribute(llvm::AttributeSet::FunctionIndex,
1723                       llvm::Attribute::NoUnwind);
1724
1725  // Slap the source location of the inline asm into a !srcloc metadata on the
1726  // call.  FIXME: Handle metadata for MS-style inline asms.
1727  if (const GCCAsmStmt *gccAsmStmt = dyn_cast<GCCAsmStmt>(&S))
1728    Result->setMetadata("srcloc", getAsmSrcLocInfo(gccAsmStmt->getAsmString(),
1729                                                   *this));
1730
1731  // Extract all of the register value results from the asm.
1732  std::vector<llvm::Value*> RegResults;
1733  if (ResultRegTypes.size() == 1) {
1734    RegResults.push_back(Result);
1735  } else {
1736    for (unsigned i = 0, e = ResultRegTypes.size(); i != e; ++i) {
1737      llvm::Value *Tmp = Builder.CreateExtractValue(Result, i, "asmresult");
1738      RegResults.push_back(Tmp);
1739    }
1740  }
1741
1742  for (unsigned i = 0, e = RegResults.size(); i != e; ++i) {
1743    llvm::Value *Tmp = RegResults[i];
1744
1745    // If the result type of the LLVM IR asm doesn't match the result type of
1746    // the expression, do the conversion.
1747    if (ResultRegTypes[i] != ResultTruncRegTypes[i]) {
1748      llvm::Type *TruncTy = ResultTruncRegTypes[i];
1749
1750      // Truncate the integer result to the right size, note that TruncTy can be
1751      // a pointer.
1752      if (TruncTy->isFloatingPointTy())
1753        Tmp = Builder.CreateFPTrunc(Tmp, TruncTy);
1754      else if (TruncTy->isPointerTy() && Tmp->getType()->isIntegerTy()) {
1755        uint64_t ResSize = CGM.getDataLayout().getTypeSizeInBits(TruncTy);
1756        Tmp = Builder.CreateTrunc(Tmp,
1757                   llvm::IntegerType::get(getLLVMContext(), (unsigned)ResSize));
1758        Tmp = Builder.CreateIntToPtr(Tmp, TruncTy);
1759      } else if (Tmp->getType()->isPointerTy() && TruncTy->isIntegerTy()) {
1760        uint64_t TmpSize =CGM.getDataLayout().getTypeSizeInBits(Tmp->getType());
1761        Tmp = Builder.CreatePtrToInt(Tmp,
1762                   llvm::IntegerType::get(getLLVMContext(), (unsigned)TmpSize));
1763        Tmp = Builder.CreateTrunc(Tmp, TruncTy);
1764      } else if (TruncTy->isIntegerTy()) {
1765        Tmp = Builder.CreateTrunc(Tmp, TruncTy);
1766      } else if (TruncTy->isVectorTy()) {
1767        Tmp = Builder.CreateBitCast(Tmp, TruncTy);
1768      }
1769    }
1770
1771    EmitStoreThroughLValue(RValue::get(Tmp), ResultRegDests[i]);
1772  }
1773}
1774
1775static LValue InitCapturedStruct(CodeGenFunction &CGF, const CapturedStmt &S) {
1776  const RecordDecl *RD = S.getCapturedRecordDecl();
1777  QualType RecordTy = CGF.getContext().getRecordType(RD);
1778
1779  // Initialize the captured struct.
1780  LValue SlotLV = CGF.MakeNaturalAlignAddrLValue(
1781                    CGF.CreateMemTemp(RecordTy, "agg.captured"), RecordTy);
1782
1783  RecordDecl::field_iterator CurField = RD->field_begin();
1784  for (CapturedStmt::capture_init_iterator I = S.capture_init_begin(),
1785                                           E = S.capture_init_end();
1786       I != E; ++I, ++CurField) {
1787    LValue LV = CGF.EmitLValueForFieldInitialization(SlotLV, *CurField);
1788    CGF.EmitInitializerForField(*CurField, LV, *I, ArrayRef<VarDecl *>());
1789  }
1790
1791  return SlotLV;
1792}
1793
1794/// Generate an outlined function for the body of a CapturedStmt, store any
1795/// captured variables into the captured struct, and call the outlined function.
1796llvm::Function *
1797CodeGenFunction::EmitCapturedStmt(const CapturedStmt &S, CapturedRegionKind K) {
1798  const CapturedDecl *CD = S.getCapturedDecl();
1799  const RecordDecl *RD = S.getCapturedRecordDecl();
1800  assert(CD->hasBody() && "missing CapturedDecl body");
1801
1802  LValue CapStruct = InitCapturedStruct(*this, S);
1803
1804  // Emit the CapturedDecl
1805  CodeGenFunction CGF(CGM, true);
1806  CGF.CapturedStmtInfo = new CGCapturedStmtInfo(S, K);
1807  llvm::Function *F = CGF.GenerateCapturedStmtFunction(CD, RD, S.getLocStart());
1808  delete CGF.CapturedStmtInfo;
1809
1810  // Emit call to the helper function.
1811  EmitCallOrInvoke(F, CapStruct.getAddress());
1812
1813  return F;
1814}
1815
1816/// Creates the outlined function for a CapturedStmt.
1817llvm::Function *
1818CodeGenFunction::GenerateCapturedStmtFunction(const CapturedDecl *CD,
1819                                              const RecordDecl *RD,
1820                                              SourceLocation Loc) {
1821  assert(CapturedStmtInfo &&
1822    "CapturedStmtInfo should be set when generating the captured function");
1823
1824  // Build the argument list.
1825  ASTContext &Ctx = CGM.getContext();
1826  FunctionArgList Args;
1827  Args.append(CD->param_begin(), CD->param_end());
1828
1829  // Create the function declaration.
1830  FunctionType::ExtInfo ExtInfo;
1831  const CGFunctionInfo &FuncInfo =
1832    CGM.getTypes().arrangeFunctionDeclaration(Ctx.VoidTy, Args, ExtInfo,
1833                                              /*IsVariadic=*/false);
1834  llvm::FunctionType *FuncLLVMTy = CGM.getTypes().GetFunctionType(FuncInfo);
1835
1836  llvm::Function *F =
1837    llvm::Function::Create(FuncLLVMTy, llvm::GlobalValue::InternalLinkage,
1838                           CapturedStmtInfo->getHelperName(), &CGM.getModule());
1839  CGM.SetInternalFunctionAttributes(CD, F, FuncInfo);
1840
1841  // Generate the function.
1842  StartFunction(CD, Ctx.VoidTy, F, FuncInfo, Args, CD->getBody()->getLocStart());
1843
1844  // Set the context parameter in CapturedStmtInfo.
1845  llvm::Value *DeclPtr = LocalDeclMap[CD->getContextParam()];
1846  assert(DeclPtr && "missing context parameter for CapturedStmt");
1847  CapturedStmtInfo->setContextValue(Builder.CreateLoad(DeclPtr));
1848
1849  // If 'this' is captured, load it into CXXThisValue.
1850  if (CapturedStmtInfo->isCXXThisExprCaptured()) {
1851    FieldDecl *FD = CapturedStmtInfo->getThisFieldDecl();
1852    LValue LV = MakeNaturalAlignAddrLValue(CapturedStmtInfo->getContextValue(),
1853                                           Ctx.getTagDeclType(RD));
1854    LValue ThisLValue = EmitLValueForField(LV, FD);
1855    CXXThisValue = EmitLoadOfLValue(ThisLValue, Loc).getScalarVal();
1856  }
1857
1858  CapturedStmtInfo->EmitBody(*this, CD->getBody());
1859  FinishFunction(CD->getBodyRBrace());
1860
1861  return F;
1862}
1863