CGExprCXX.cpp revision 263508
1//===--- CGExprCXX.cpp - Emit LLVM Code for C++ expressions ---------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This contains code dealing with code generation of C++ expressions
11//
12//===----------------------------------------------------------------------===//
13
14#include "CodeGenFunction.h"
15#include "CGCUDARuntime.h"
16#include "CGCXXABI.h"
17#include "CGDebugInfo.h"
18#include "CGObjCRuntime.h"
19#include "clang/CodeGen/CGFunctionInfo.h"
20#include "clang/Frontend/CodeGenOptions.h"
21#include "llvm/IR/Intrinsics.h"
22#include "llvm/Support/CallSite.h"
23
24using namespace clang;
25using namespace CodeGen;
26
27RValue CodeGenFunction::EmitCXXMemberCall(const CXXMethodDecl *MD,
28                                          SourceLocation CallLoc,
29                                          llvm::Value *Callee,
30                                          ReturnValueSlot ReturnValue,
31                                          llvm::Value *This,
32                                          llvm::Value *ImplicitParam,
33                                          QualType ImplicitParamTy,
34                                          CallExpr::const_arg_iterator ArgBeg,
35                                          CallExpr::const_arg_iterator ArgEnd) {
36  assert(MD->isInstance() &&
37         "Trying to emit a member call expr on a static method!");
38
39  // C++11 [class.mfct.non-static]p2:
40  //   If a non-static member function of a class X is called for an object that
41  //   is not of type X, or of a type derived from X, the behavior is undefined.
42  EmitTypeCheck(isa<CXXConstructorDecl>(MD) ? TCK_ConstructorCall
43                                            : TCK_MemberCall,
44                CallLoc, This, getContext().getRecordType(MD->getParent()));
45
46  CallArgList Args;
47
48  // Push the this ptr.
49  Args.add(RValue::get(This), MD->getThisType(getContext()));
50
51  // If there is an implicit parameter (e.g. VTT), emit it.
52  if (ImplicitParam) {
53    Args.add(RValue::get(ImplicitParam), ImplicitParamTy);
54  }
55
56  const FunctionProtoType *FPT = MD->getType()->castAs<FunctionProtoType>();
57  RequiredArgs required = RequiredArgs::forPrototypePlus(FPT, Args.size());
58
59  // And the rest of the call args.
60  EmitCallArgs(Args, FPT, ArgBeg, ArgEnd);
61
62  return EmitCall(CGM.getTypes().arrangeCXXMethodCall(Args, FPT, required),
63                  Callee, ReturnValue, Args, MD);
64}
65
66static CXXRecordDecl *getCXXRecord(const Expr *E) {
67  QualType T = E->getType();
68  if (const PointerType *PTy = T->getAs<PointerType>())
69    T = PTy->getPointeeType();
70  const RecordType *Ty = T->castAs<RecordType>();
71  return cast<CXXRecordDecl>(Ty->getDecl());
72}
73
74// Note: This function also emit constructor calls to support a MSVC
75// extensions allowing explicit constructor function call.
76RValue CodeGenFunction::EmitCXXMemberCallExpr(const CXXMemberCallExpr *CE,
77                                              ReturnValueSlot ReturnValue) {
78  const Expr *callee = CE->getCallee()->IgnoreParens();
79
80  if (isa<BinaryOperator>(callee))
81    return EmitCXXMemberPointerCallExpr(CE, ReturnValue);
82
83  const MemberExpr *ME = cast<MemberExpr>(callee);
84  const CXXMethodDecl *MD = cast<CXXMethodDecl>(ME->getMemberDecl());
85
86  if (MD->isStatic()) {
87    // The method is static, emit it as we would a regular call.
88    llvm::Value *Callee = CGM.GetAddrOfFunction(MD);
89    return EmitCall(getContext().getPointerType(MD->getType()), Callee,
90                    CE->getLocStart(), ReturnValue, CE->arg_begin(),
91                    CE->arg_end());
92  }
93
94  // Compute the object pointer.
95  const Expr *Base = ME->getBase();
96  bool CanUseVirtualCall = MD->isVirtual() && !ME->hasQualifier();
97
98  const CXXMethodDecl *DevirtualizedMethod = NULL;
99  if (CanUseVirtualCall && CanDevirtualizeMemberFunctionCall(Base, MD)) {
100    const CXXRecordDecl *BestDynamicDecl = Base->getBestDynamicClassType();
101    DevirtualizedMethod = MD->getCorrespondingMethodInClass(BestDynamicDecl);
102    assert(DevirtualizedMethod);
103    const CXXRecordDecl *DevirtualizedClass = DevirtualizedMethod->getParent();
104    const Expr *Inner = Base->ignoreParenBaseCasts();
105    if (getCXXRecord(Inner) == DevirtualizedClass)
106      // If the class of the Inner expression is where the dynamic method
107      // is defined, build the this pointer from it.
108      Base = Inner;
109    else if (getCXXRecord(Base) != DevirtualizedClass) {
110      // If the method is defined in a class that is not the best dynamic
111      // one or the one of the full expression, we would have to build
112      // a derived-to-base cast to compute the correct this pointer, but
113      // we don't have support for that yet, so do a virtual call.
114      DevirtualizedMethod = NULL;
115    }
116    // If the return types are not the same, this might be a case where more
117    // code needs to run to compensate for it. For example, the derived
118    // method might return a type that inherits form from the return
119    // type of MD and has a prefix.
120    // For now we just avoid devirtualizing these covariant cases.
121    if (DevirtualizedMethod &&
122        DevirtualizedMethod->getResultType().getCanonicalType() !=
123        MD->getResultType().getCanonicalType())
124      DevirtualizedMethod = NULL;
125  }
126
127  llvm::Value *This;
128  if (ME->isArrow())
129    This = EmitScalarExpr(Base);
130  else
131    This = EmitLValue(Base).getAddress();
132
133
134  if (MD->isTrivial()) {
135    if (isa<CXXDestructorDecl>(MD)) return RValue::get(0);
136    if (isa<CXXConstructorDecl>(MD) &&
137        cast<CXXConstructorDecl>(MD)->isDefaultConstructor())
138      return RValue::get(0);
139
140    if (MD->isCopyAssignmentOperator() || MD->isMoveAssignmentOperator()) {
141      // We don't like to generate the trivial copy/move assignment operator
142      // when it isn't necessary; just produce the proper effect here.
143      llvm::Value *RHS = EmitLValue(*CE->arg_begin()).getAddress();
144      EmitAggregateAssign(This, RHS, CE->getType());
145      return RValue::get(This);
146    }
147
148    if (isa<CXXConstructorDecl>(MD) &&
149        cast<CXXConstructorDecl>(MD)->isCopyOrMoveConstructor()) {
150      // Trivial move and copy ctor are the same.
151      llvm::Value *RHS = EmitLValue(*CE->arg_begin()).getAddress();
152      EmitSynthesizedCXXCopyCtorCall(cast<CXXConstructorDecl>(MD), This, RHS,
153                                     CE->arg_begin(), CE->arg_end());
154      return RValue::get(This);
155    }
156    llvm_unreachable("unknown trivial member function");
157  }
158
159  // Compute the function type we're calling.
160  const CXXMethodDecl *CalleeDecl = DevirtualizedMethod ? DevirtualizedMethod : MD;
161  const CGFunctionInfo *FInfo = 0;
162  if (const CXXDestructorDecl *Dtor = dyn_cast<CXXDestructorDecl>(CalleeDecl))
163    FInfo = &CGM.getTypes().arrangeCXXDestructor(Dtor,
164                                                 Dtor_Complete);
165  else if (const CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(CalleeDecl))
166    FInfo = &CGM.getTypes().arrangeCXXConstructorDeclaration(Ctor,
167                                                             Ctor_Complete);
168  else
169    FInfo = &CGM.getTypes().arrangeCXXMethodDeclaration(CalleeDecl);
170
171  llvm::FunctionType *Ty = CGM.getTypes().GetFunctionType(*FInfo);
172
173  // C++ [class.virtual]p12:
174  //   Explicit qualification with the scope operator (5.1) suppresses the
175  //   virtual call mechanism.
176  //
177  // We also don't emit a virtual call if the base expression has a record type
178  // because then we know what the type is.
179  bool UseVirtualCall = CanUseVirtualCall && !DevirtualizedMethod;
180  llvm::Value *Callee;
181
182  if (const CXXDestructorDecl *Dtor = dyn_cast<CXXDestructorDecl>(MD)) {
183    assert(CE->arg_begin() == CE->arg_end() &&
184           "Destructor shouldn't have explicit parameters");
185    assert(ReturnValue.isNull() && "Destructor shouldn't have return value");
186    if (UseVirtualCall) {
187      CGM.getCXXABI().EmitVirtualDestructorCall(*this, Dtor, Dtor_Complete,
188                                                CE->getExprLoc(), This);
189    } else {
190      if (getLangOpts().AppleKext &&
191          MD->isVirtual() &&
192          ME->hasQualifier())
193        Callee = BuildAppleKextVirtualCall(MD, ME->getQualifier(), Ty);
194      else if (!DevirtualizedMethod)
195        Callee = CGM.GetAddrOfCXXDestructor(Dtor, Dtor_Complete, FInfo, Ty);
196      else {
197        const CXXDestructorDecl *DDtor =
198          cast<CXXDestructorDecl>(DevirtualizedMethod);
199        Callee = CGM.GetAddrOfFunction(GlobalDecl(DDtor, Dtor_Complete), Ty);
200      }
201      EmitCXXMemberCall(MD, CE->getExprLoc(), Callee, ReturnValue, This,
202                        /*ImplicitParam=*/0, QualType(), 0, 0);
203    }
204    return RValue::get(0);
205  }
206
207  if (const CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(MD)) {
208    Callee = CGM.GetAddrOfFunction(GlobalDecl(Ctor, Ctor_Complete), Ty);
209  } else if (UseVirtualCall) {
210    Callee = CGM.getCXXABI().getVirtualFunctionPointer(*this, MD, This, Ty);
211  } else {
212    if (getLangOpts().AppleKext &&
213        MD->isVirtual() &&
214        ME->hasQualifier())
215      Callee = BuildAppleKextVirtualCall(MD, ME->getQualifier(), Ty);
216    else if (!DevirtualizedMethod)
217      Callee = CGM.GetAddrOfFunction(MD, Ty);
218    else {
219      Callee = CGM.GetAddrOfFunction(DevirtualizedMethod, Ty);
220    }
221  }
222
223  if (MD->isVirtual())
224    This = CGM.getCXXABI().adjustThisArgumentForVirtualCall(*this, MD, This);
225
226  return EmitCXXMemberCall(MD, CE->getExprLoc(), Callee, ReturnValue, This,
227                           /*ImplicitParam=*/0, QualType(),
228                           CE->arg_begin(), CE->arg_end());
229}
230
231RValue
232CodeGenFunction::EmitCXXMemberPointerCallExpr(const CXXMemberCallExpr *E,
233                                              ReturnValueSlot ReturnValue) {
234  const BinaryOperator *BO =
235      cast<BinaryOperator>(E->getCallee()->IgnoreParens());
236  const Expr *BaseExpr = BO->getLHS();
237  const Expr *MemFnExpr = BO->getRHS();
238
239  const MemberPointerType *MPT =
240    MemFnExpr->getType()->castAs<MemberPointerType>();
241
242  const FunctionProtoType *FPT =
243    MPT->getPointeeType()->castAs<FunctionProtoType>();
244  const CXXRecordDecl *RD =
245    cast<CXXRecordDecl>(MPT->getClass()->getAs<RecordType>()->getDecl());
246
247  // Get the member function pointer.
248  llvm::Value *MemFnPtr = EmitScalarExpr(MemFnExpr);
249
250  // Emit the 'this' pointer.
251  llvm::Value *This;
252
253  if (BO->getOpcode() == BO_PtrMemI)
254    This = EmitScalarExpr(BaseExpr);
255  else
256    This = EmitLValue(BaseExpr).getAddress();
257
258  EmitTypeCheck(TCK_MemberCall, E->getExprLoc(), This,
259                QualType(MPT->getClass(), 0));
260
261  // Ask the ABI to load the callee.  Note that This is modified.
262  llvm::Value *Callee =
263    CGM.getCXXABI().EmitLoadOfMemberFunctionPointer(*this, This, MemFnPtr, MPT);
264
265  CallArgList Args;
266
267  QualType ThisType =
268    getContext().getPointerType(getContext().getTagDeclType(RD));
269
270  // Push the this ptr.
271  Args.add(RValue::get(This), ThisType);
272
273  RequiredArgs required = RequiredArgs::forPrototypePlus(FPT, 1);
274
275  // And the rest of the call args
276  EmitCallArgs(Args, FPT, E->arg_begin(), E->arg_end());
277  return EmitCall(CGM.getTypes().arrangeCXXMethodCall(Args, FPT, required),
278                  Callee, ReturnValue, Args);
279}
280
281RValue
282CodeGenFunction::EmitCXXOperatorMemberCallExpr(const CXXOperatorCallExpr *E,
283                                               const CXXMethodDecl *MD,
284                                               ReturnValueSlot ReturnValue) {
285  assert(MD->isInstance() &&
286         "Trying to emit a member call expr on a static method!");
287  LValue LV = EmitLValue(E->getArg(0));
288  llvm::Value *This = LV.getAddress();
289
290  if ((MD->isCopyAssignmentOperator() || MD->isMoveAssignmentOperator()) &&
291      MD->isTrivial()) {
292    llvm::Value *Src = EmitLValue(E->getArg(1)).getAddress();
293    QualType Ty = E->getType();
294    EmitAggregateAssign(This, Src, Ty);
295    return RValue::get(This);
296  }
297
298  llvm::Value *Callee = EmitCXXOperatorMemberCallee(E, MD, This);
299  return EmitCXXMemberCall(MD, E->getExprLoc(), Callee, ReturnValue, This,
300                           /*ImplicitParam=*/0, QualType(),
301                           E->arg_begin() + 1, E->arg_end());
302}
303
304RValue CodeGenFunction::EmitCUDAKernelCallExpr(const CUDAKernelCallExpr *E,
305                                               ReturnValueSlot ReturnValue) {
306  return CGM.getCUDARuntime().EmitCUDAKernelCallExpr(*this, E, ReturnValue);
307}
308
309static void EmitNullBaseClassInitialization(CodeGenFunction &CGF,
310                                            llvm::Value *DestPtr,
311                                            const CXXRecordDecl *Base) {
312  if (Base->isEmpty())
313    return;
314
315  DestPtr = CGF.EmitCastToVoidPtr(DestPtr);
316
317  const ASTRecordLayout &Layout = CGF.getContext().getASTRecordLayout(Base);
318  CharUnits Size = Layout.getNonVirtualSize();
319  CharUnits Align = Layout.getNonVirtualAlign();
320
321  llvm::Value *SizeVal = CGF.CGM.getSize(Size);
322
323  // If the type contains a pointer to data member we can't memset it to zero.
324  // Instead, create a null constant and copy it to the destination.
325  // TODO: there are other patterns besides zero that we can usefully memset,
326  // like -1, which happens to be the pattern used by member-pointers.
327  // TODO: isZeroInitializable can be over-conservative in the case where a
328  // virtual base contains a member pointer.
329  if (!CGF.CGM.getTypes().isZeroInitializable(Base)) {
330    llvm::Constant *NullConstant = CGF.CGM.EmitNullConstantForBase(Base);
331
332    llvm::GlobalVariable *NullVariable =
333      new llvm::GlobalVariable(CGF.CGM.getModule(), NullConstant->getType(),
334                               /*isConstant=*/true,
335                               llvm::GlobalVariable::PrivateLinkage,
336                               NullConstant, Twine());
337    NullVariable->setAlignment(Align.getQuantity());
338    llvm::Value *SrcPtr = CGF.EmitCastToVoidPtr(NullVariable);
339
340    // Get and call the appropriate llvm.memcpy overload.
341    CGF.Builder.CreateMemCpy(DestPtr, SrcPtr, SizeVal, Align.getQuantity());
342    return;
343  }
344
345  // Otherwise, just memset the whole thing to zero.  This is legal
346  // because in LLVM, all default initializers (other than the ones we just
347  // handled above) are guaranteed to have a bit pattern of all zeros.
348  CGF.Builder.CreateMemSet(DestPtr, CGF.Builder.getInt8(0), SizeVal,
349                           Align.getQuantity());
350}
351
352void
353CodeGenFunction::EmitCXXConstructExpr(const CXXConstructExpr *E,
354                                      AggValueSlot Dest) {
355  assert(!Dest.isIgnored() && "Must have a destination!");
356  const CXXConstructorDecl *CD = E->getConstructor();
357
358  // If we require zero initialization before (or instead of) calling the
359  // constructor, as can be the case with a non-user-provided default
360  // constructor, emit the zero initialization now, unless destination is
361  // already zeroed.
362  if (E->requiresZeroInitialization() && !Dest.isZeroed()) {
363    switch (E->getConstructionKind()) {
364    case CXXConstructExpr::CK_Delegating:
365    case CXXConstructExpr::CK_Complete:
366      EmitNullInitialization(Dest.getAddr(), E->getType());
367      break;
368    case CXXConstructExpr::CK_VirtualBase:
369    case CXXConstructExpr::CK_NonVirtualBase:
370      EmitNullBaseClassInitialization(*this, Dest.getAddr(), CD->getParent());
371      break;
372    }
373  }
374
375  // If this is a call to a trivial default constructor, do nothing.
376  if (CD->isTrivial() && CD->isDefaultConstructor())
377    return;
378
379  // Elide the constructor if we're constructing from a temporary.
380  // The temporary check is required because Sema sets this on NRVO
381  // returns.
382  if (getLangOpts().ElideConstructors && E->isElidable()) {
383    assert(getContext().hasSameUnqualifiedType(E->getType(),
384                                               E->getArg(0)->getType()));
385    if (E->getArg(0)->isTemporaryObject(getContext(), CD->getParent())) {
386      EmitAggExpr(E->getArg(0), Dest);
387      return;
388    }
389  }
390
391  if (const ConstantArrayType *arrayType
392        = getContext().getAsConstantArrayType(E->getType())) {
393    EmitCXXAggrConstructorCall(CD, arrayType, Dest.getAddr(),
394                               E->arg_begin(), E->arg_end());
395  } else {
396    CXXCtorType Type = Ctor_Complete;
397    bool ForVirtualBase = false;
398    bool Delegating = false;
399
400    switch (E->getConstructionKind()) {
401     case CXXConstructExpr::CK_Delegating:
402      // We should be emitting a constructor; GlobalDecl will assert this
403      Type = CurGD.getCtorType();
404      Delegating = true;
405      break;
406
407     case CXXConstructExpr::CK_Complete:
408      Type = Ctor_Complete;
409      break;
410
411     case CXXConstructExpr::CK_VirtualBase:
412      ForVirtualBase = true;
413      // fall-through
414
415     case CXXConstructExpr::CK_NonVirtualBase:
416      Type = Ctor_Base;
417    }
418
419    // Call the constructor.
420    EmitCXXConstructorCall(CD, Type, ForVirtualBase, Delegating, Dest.getAddr(),
421                           E->arg_begin(), E->arg_end());
422  }
423}
424
425void
426CodeGenFunction::EmitSynthesizedCXXCopyCtor(llvm::Value *Dest,
427                                            llvm::Value *Src,
428                                            const Expr *Exp) {
429  if (const ExprWithCleanups *E = dyn_cast<ExprWithCleanups>(Exp))
430    Exp = E->getSubExpr();
431  assert(isa<CXXConstructExpr>(Exp) &&
432         "EmitSynthesizedCXXCopyCtor - unknown copy ctor expr");
433  const CXXConstructExpr* E = cast<CXXConstructExpr>(Exp);
434  const CXXConstructorDecl *CD = E->getConstructor();
435  RunCleanupsScope Scope(*this);
436
437  // If we require zero initialization before (or instead of) calling the
438  // constructor, as can be the case with a non-user-provided default
439  // constructor, emit the zero initialization now.
440  // FIXME. Do I still need this for a copy ctor synthesis?
441  if (E->requiresZeroInitialization())
442    EmitNullInitialization(Dest, E->getType());
443
444  assert(!getContext().getAsConstantArrayType(E->getType())
445         && "EmitSynthesizedCXXCopyCtor - Copied-in Array");
446  EmitSynthesizedCXXCopyCtorCall(CD, Dest, Src, E->arg_begin(), E->arg_end());
447}
448
449static CharUnits CalculateCookiePadding(CodeGenFunction &CGF,
450                                        const CXXNewExpr *E) {
451  if (!E->isArray())
452    return CharUnits::Zero();
453
454  // No cookie is required if the operator new[] being used is the
455  // reserved placement operator new[].
456  if (E->getOperatorNew()->isReservedGlobalPlacementOperator())
457    return CharUnits::Zero();
458
459  return CGF.CGM.getCXXABI().GetArrayCookieSize(E);
460}
461
462static llvm::Value *EmitCXXNewAllocSize(CodeGenFunction &CGF,
463                                        const CXXNewExpr *e,
464                                        unsigned minElements,
465                                        llvm::Value *&numElements,
466                                        llvm::Value *&sizeWithoutCookie) {
467  QualType type = e->getAllocatedType();
468
469  if (!e->isArray()) {
470    CharUnits typeSize = CGF.getContext().getTypeSizeInChars(type);
471    sizeWithoutCookie
472      = llvm::ConstantInt::get(CGF.SizeTy, typeSize.getQuantity());
473    return sizeWithoutCookie;
474  }
475
476  // The width of size_t.
477  unsigned sizeWidth = CGF.SizeTy->getBitWidth();
478
479  // Figure out the cookie size.
480  llvm::APInt cookieSize(sizeWidth,
481                         CalculateCookiePadding(CGF, e).getQuantity());
482
483  // Emit the array size expression.
484  // We multiply the size of all dimensions for NumElements.
485  // e.g for 'int[2][3]', ElemType is 'int' and NumElements is 6.
486  numElements = CGF.EmitScalarExpr(e->getArraySize());
487  assert(isa<llvm::IntegerType>(numElements->getType()));
488
489  // The number of elements can be have an arbitrary integer type;
490  // essentially, we need to multiply it by a constant factor, add a
491  // cookie size, and verify that the result is representable as a
492  // size_t.  That's just a gloss, though, and it's wrong in one
493  // important way: if the count is negative, it's an error even if
494  // the cookie size would bring the total size >= 0.
495  bool isSigned
496    = e->getArraySize()->getType()->isSignedIntegerOrEnumerationType();
497  llvm::IntegerType *numElementsType
498    = cast<llvm::IntegerType>(numElements->getType());
499  unsigned numElementsWidth = numElementsType->getBitWidth();
500
501  // Compute the constant factor.
502  llvm::APInt arraySizeMultiplier(sizeWidth, 1);
503  while (const ConstantArrayType *CAT
504             = CGF.getContext().getAsConstantArrayType(type)) {
505    type = CAT->getElementType();
506    arraySizeMultiplier *= CAT->getSize();
507  }
508
509  CharUnits typeSize = CGF.getContext().getTypeSizeInChars(type);
510  llvm::APInt typeSizeMultiplier(sizeWidth, typeSize.getQuantity());
511  typeSizeMultiplier *= arraySizeMultiplier;
512
513  // This will be a size_t.
514  llvm::Value *size;
515
516  // If someone is doing 'new int[42]' there is no need to do a dynamic check.
517  // Don't bloat the -O0 code.
518  if (llvm::ConstantInt *numElementsC =
519        dyn_cast<llvm::ConstantInt>(numElements)) {
520    const llvm::APInt &count = numElementsC->getValue();
521
522    bool hasAnyOverflow = false;
523
524    // If 'count' was a negative number, it's an overflow.
525    if (isSigned && count.isNegative())
526      hasAnyOverflow = true;
527
528    // We want to do all this arithmetic in size_t.  If numElements is
529    // wider than that, check whether it's already too big, and if so,
530    // overflow.
531    else if (numElementsWidth > sizeWidth &&
532             numElementsWidth - sizeWidth > count.countLeadingZeros())
533      hasAnyOverflow = true;
534
535    // Okay, compute a count at the right width.
536    llvm::APInt adjustedCount = count.zextOrTrunc(sizeWidth);
537
538    // If there is a brace-initializer, we cannot allocate fewer elements than
539    // there are initializers. If we do, that's treated like an overflow.
540    if (adjustedCount.ult(minElements))
541      hasAnyOverflow = true;
542
543    // Scale numElements by that.  This might overflow, but we don't
544    // care because it only overflows if allocationSize does, too, and
545    // if that overflows then we shouldn't use this.
546    numElements = llvm::ConstantInt::get(CGF.SizeTy,
547                                         adjustedCount * arraySizeMultiplier);
548
549    // Compute the size before cookie, and track whether it overflowed.
550    bool overflow;
551    llvm::APInt allocationSize
552      = adjustedCount.umul_ov(typeSizeMultiplier, overflow);
553    hasAnyOverflow |= overflow;
554
555    // Add in the cookie, and check whether it's overflowed.
556    if (cookieSize != 0) {
557      // Save the current size without a cookie.  This shouldn't be
558      // used if there was overflow.
559      sizeWithoutCookie = llvm::ConstantInt::get(CGF.SizeTy, allocationSize);
560
561      allocationSize = allocationSize.uadd_ov(cookieSize, overflow);
562      hasAnyOverflow |= overflow;
563    }
564
565    // On overflow, produce a -1 so operator new will fail.
566    if (hasAnyOverflow) {
567      size = llvm::Constant::getAllOnesValue(CGF.SizeTy);
568    } else {
569      size = llvm::ConstantInt::get(CGF.SizeTy, allocationSize);
570    }
571
572  // Otherwise, we might need to use the overflow intrinsics.
573  } else {
574    // There are up to five conditions we need to test for:
575    // 1) if isSigned, we need to check whether numElements is negative;
576    // 2) if numElementsWidth > sizeWidth, we need to check whether
577    //   numElements is larger than something representable in size_t;
578    // 3) if minElements > 0, we need to check whether numElements is smaller
579    //    than that.
580    // 4) we need to compute
581    //      sizeWithoutCookie := numElements * typeSizeMultiplier
582    //    and check whether it overflows; and
583    // 5) if we need a cookie, we need to compute
584    //      size := sizeWithoutCookie + cookieSize
585    //    and check whether it overflows.
586
587    llvm::Value *hasOverflow = 0;
588
589    // If numElementsWidth > sizeWidth, then one way or another, we're
590    // going to have to do a comparison for (2), and this happens to
591    // take care of (1), too.
592    if (numElementsWidth > sizeWidth) {
593      llvm::APInt threshold(numElementsWidth, 1);
594      threshold <<= sizeWidth;
595
596      llvm::Value *thresholdV
597        = llvm::ConstantInt::get(numElementsType, threshold);
598
599      hasOverflow = CGF.Builder.CreateICmpUGE(numElements, thresholdV);
600      numElements = CGF.Builder.CreateTrunc(numElements, CGF.SizeTy);
601
602    // Otherwise, if we're signed, we want to sext up to size_t.
603    } else if (isSigned) {
604      if (numElementsWidth < sizeWidth)
605        numElements = CGF.Builder.CreateSExt(numElements, CGF.SizeTy);
606
607      // If there's a non-1 type size multiplier, then we can do the
608      // signedness check at the same time as we do the multiply
609      // because a negative number times anything will cause an
610      // unsigned overflow.  Otherwise, we have to do it here. But at least
611      // in this case, we can subsume the >= minElements check.
612      if (typeSizeMultiplier == 1)
613        hasOverflow = CGF.Builder.CreateICmpSLT(numElements,
614                              llvm::ConstantInt::get(CGF.SizeTy, minElements));
615
616    // Otherwise, zext up to size_t if necessary.
617    } else if (numElementsWidth < sizeWidth) {
618      numElements = CGF.Builder.CreateZExt(numElements, CGF.SizeTy);
619    }
620
621    assert(numElements->getType() == CGF.SizeTy);
622
623    if (minElements) {
624      // Don't allow allocation of fewer elements than we have initializers.
625      if (!hasOverflow) {
626        hasOverflow = CGF.Builder.CreateICmpULT(numElements,
627                              llvm::ConstantInt::get(CGF.SizeTy, minElements));
628      } else if (numElementsWidth > sizeWidth) {
629        // The other existing overflow subsumes this check.
630        // We do an unsigned comparison, since any signed value < -1 is
631        // taken care of either above or below.
632        hasOverflow = CGF.Builder.CreateOr(hasOverflow,
633                          CGF.Builder.CreateICmpULT(numElements,
634                              llvm::ConstantInt::get(CGF.SizeTy, minElements)));
635      }
636    }
637
638    size = numElements;
639
640    // Multiply by the type size if necessary.  This multiplier
641    // includes all the factors for nested arrays.
642    //
643    // This step also causes numElements to be scaled up by the
644    // nested-array factor if necessary.  Overflow on this computation
645    // can be ignored because the result shouldn't be used if
646    // allocation fails.
647    if (typeSizeMultiplier != 1) {
648      llvm::Value *umul_with_overflow
649        = CGF.CGM.getIntrinsic(llvm::Intrinsic::umul_with_overflow, CGF.SizeTy);
650
651      llvm::Value *tsmV =
652        llvm::ConstantInt::get(CGF.SizeTy, typeSizeMultiplier);
653      llvm::Value *result =
654        CGF.Builder.CreateCall2(umul_with_overflow, size, tsmV);
655
656      llvm::Value *overflowed = CGF.Builder.CreateExtractValue(result, 1);
657      if (hasOverflow)
658        hasOverflow = CGF.Builder.CreateOr(hasOverflow, overflowed);
659      else
660        hasOverflow = overflowed;
661
662      size = CGF.Builder.CreateExtractValue(result, 0);
663
664      // Also scale up numElements by the array size multiplier.
665      if (arraySizeMultiplier != 1) {
666        // If the base element type size is 1, then we can re-use the
667        // multiply we just did.
668        if (typeSize.isOne()) {
669          assert(arraySizeMultiplier == typeSizeMultiplier);
670          numElements = size;
671
672        // Otherwise we need a separate multiply.
673        } else {
674          llvm::Value *asmV =
675            llvm::ConstantInt::get(CGF.SizeTy, arraySizeMultiplier);
676          numElements = CGF.Builder.CreateMul(numElements, asmV);
677        }
678      }
679    } else {
680      // numElements doesn't need to be scaled.
681      assert(arraySizeMultiplier == 1);
682    }
683
684    // Add in the cookie size if necessary.
685    if (cookieSize != 0) {
686      sizeWithoutCookie = size;
687
688      llvm::Value *uadd_with_overflow
689        = CGF.CGM.getIntrinsic(llvm::Intrinsic::uadd_with_overflow, CGF.SizeTy);
690
691      llvm::Value *cookieSizeV = llvm::ConstantInt::get(CGF.SizeTy, cookieSize);
692      llvm::Value *result =
693        CGF.Builder.CreateCall2(uadd_with_overflow, size, cookieSizeV);
694
695      llvm::Value *overflowed = CGF.Builder.CreateExtractValue(result, 1);
696      if (hasOverflow)
697        hasOverflow = CGF.Builder.CreateOr(hasOverflow, overflowed);
698      else
699        hasOverflow = overflowed;
700
701      size = CGF.Builder.CreateExtractValue(result, 0);
702    }
703
704    // If we had any possibility of dynamic overflow, make a select to
705    // overwrite 'size' with an all-ones value, which should cause
706    // operator new to throw.
707    if (hasOverflow)
708      size = CGF.Builder.CreateSelect(hasOverflow,
709                                 llvm::Constant::getAllOnesValue(CGF.SizeTy),
710                                      size);
711  }
712
713  if (cookieSize == 0)
714    sizeWithoutCookie = size;
715  else
716    assert(sizeWithoutCookie && "didn't set sizeWithoutCookie?");
717
718  return size;
719}
720
721static void StoreAnyExprIntoOneUnit(CodeGenFunction &CGF, const Expr *Init,
722                                    QualType AllocType, llvm::Value *NewPtr) {
723  // FIXME: Refactor with EmitExprAsInit.
724  CharUnits Alignment = CGF.getContext().getTypeAlignInChars(AllocType);
725  switch (CGF.getEvaluationKind(AllocType)) {
726  case TEK_Scalar:
727    CGF.EmitScalarInit(Init, 0, CGF.MakeAddrLValue(NewPtr, AllocType,
728                                                   Alignment),
729                       false);
730    return;
731  case TEK_Complex:
732    CGF.EmitComplexExprIntoLValue(Init, CGF.MakeAddrLValue(NewPtr, AllocType,
733                                                           Alignment),
734                                  /*isInit*/ true);
735    return;
736  case TEK_Aggregate: {
737    AggValueSlot Slot
738      = AggValueSlot::forAddr(NewPtr, Alignment, AllocType.getQualifiers(),
739                              AggValueSlot::IsDestructed,
740                              AggValueSlot::DoesNotNeedGCBarriers,
741                              AggValueSlot::IsNotAliased);
742    CGF.EmitAggExpr(Init, Slot);
743    return;
744  }
745  }
746  llvm_unreachable("bad evaluation kind");
747}
748
749void
750CodeGenFunction::EmitNewArrayInitializer(const CXXNewExpr *E,
751                                         QualType elementType,
752                                         llvm::Value *beginPtr,
753                                         llvm::Value *numElements) {
754  if (!E->hasInitializer())
755    return; // We have a POD type.
756
757  llvm::Value *explicitPtr = beginPtr;
758  // Find the end of the array, hoisted out of the loop.
759  llvm::Value *endPtr =
760    Builder.CreateInBoundsGEP(beginPtr, numElements, "array.end");
761
762  unsigned initializerElements = 0;
763
764  const Expr *Init = E->getInitializer();
765  llvm::AllocaInst *endOfInit = 0;
766  QualType::DestructionKind dtorKind = elementType.isDestructedType();
767  EHScopeStack::stable_iterator cleanup;
768  llvm::Instruction *cleanupDominator = 0;
769
770  // If the initializer is an initializer list, first do the explicit elements.
771  if (const InitListExpr *ILE = dyn_cast<InitListExpr>(Init)) {
772    initializerElements = ILE->getNumInits();
773
774    // If this is a multi-dimensional array new, we will initialize multiple
775    // elements with each init list element.
776    QualType AllocType = E->getAllocatedType();
777    if (const ConstantArrayType *CAT = dyn_cast_or_null<ConstantArrayType>(
778            AllocType->getAsArrayTypeUnsafe())) {
779      unsigned AS = explicitPtr->getType()->getPointerAddressSpace();
780      llvm::Type *AllocPtrTy = ConvertTypeForMem(AllocType)->getPointerTo(AS);
781      explicitPtr = Builder.CreateBitCast(explicitPtr, AllocPtrTy);
782      initializerElements *= getContext().getConstantArrayElementCount(CAT);
783    }
784
785    // Enter a partial-destruction cleanup if necessary.
786    if (needsEHCleanup(dtorKind)) {
787      // In principle we could tell the cleanup where we are more
788      // directly, but the control flow can get so varied here that it
789      // would actually be quite complex.  Therefore we go through an
790      // alloca.
791      endOfInit = CreateTempAlloca(beginPtr->getType(), "array.endOfInit");
792      cleanupDominator = Builder.CreateStore(beginPtr, endOfInit);
793      pushIrregularPartialArrayCleanup(beginPtr, endOfInit, elementType,
794                                       getDestroyer(dtorKind));
795      cleanup = EHStack.stable_begin();
796    }
797
798    for (unsigned i = 0, e = ILE->getNumInits(); i != e; ++i) {
799      // Tell the cleanup that it needs to destroy up to this
800      // element.  TODO: some of these stores can be trivially
801      // observed to be unnecessary.
802      if (endOfInit) Builder.CreateStore(explicitPtr, endOfInit);
803      StoreAnyExprIntoOneUnit(*this, ILE->getInit(i),
804                              ILE->getInit(i)->getType(), explicitPtr);
805      explicitPtr = Builder.CreateConstGEP1_32(explicitPtr, 1,
806                                               "array.exp.next");
807    }
808
809    // The remaining elements are filled with the array filler expression.
810    Init = ILE->getArrayFiller();
811
812    explicitPtr = Builder.CreateBitCast(explicitPtr, beginPtr->getType());
813  }
814
815  // Create the continuation block.
816  llvm::BasicBlock *contBB = createBasicBlock("new.loop.end");
817
818  // If the number of elements isn't constant, we have to now check if there is
819  // anything left to initialize.
820  if (llvm::ConstantInt *constNum = dyn_cast<llvm::ConstantInt>(numElements)) {
821    // If all elements have already been initialized, skip the whole loop.
822    if (constNum->getZExtValue() <= initializerElements) {
823      // If there was a cleanup, deactivate it.
824      if (cleanupDominator)
825        DeactivateCleanupBlock(cleanup, cleanupDominator);
826      return;
827    }
828  } else {
829    llvm::BasicBlock *nonEmptyBB = createBasicBlock("new.loop.nonempty");
830    llvm::Value *isEmpty = Builder.CreateICmpEQ(explicitPtr, endPtr,
831                                                "array.isempty");
832    Builder.CreateCondBr(isEmpty, contBB, nonEmptyBB);
833    EmitBlock(nonEmptyBB);
834  }
835
836  // Enter the loop.
837  llvm::BasicBlock *entryBB = Builder.GetInsertBlock();
838  llvm::BasicBlock *loopBB = createBasicBlock("new.loop");
839
840  EmitBlock(loopBB);
841
842  // Set up the current-element phi.
843  llvm::PHINode *curPtr =
844    Builder.CreatePHI(explicitPtr->getType(), 2, "array.cur");
845  curPtr->addIncoming(explicitPtr, entryBB);
846
847  // Store the new cleanup position for irregular cleanups.
848  if (endOfInit) Builder.CreateStore(curPtr, endOfInit);
849
850  // Enter a partial-destruction cleanup if necessary.
851  if (!cleanupDominator && needsEHCleanup(dtorKind)) {
852    pushRegularPartialArrayCleanup(beginPtr, curPtr, elementType,
853                                   getDestroyer(dtorKind));
854    cleanup = EHStack.stable_begin();
855    cleanupDominator = Builder.CreateUnreachable();
856  }
857
858  // Emit the initializer into this element.
859  StoreAnyExprIntoOneUnit(*this, Init, E->getAllocatedType(), curPtr);
860
861  // Leave the cleanup if we entered one.
862  if (cleanupDominator) {
863    DeactivateCleanupBlock(cleanup, cleanupDominator);
864    cleanupDominator->eraseFromParent();
865  }
866
867  // Advance to the next element.
868  llvm::Value *nextPtr = Builder.CreateConstGEP1_32(curPtr, 1, "array.next");
869
870  // Check whether we've gotten to the end of the array and, if so,
871  // exit the loop.
872  llvm::Value *isEnd = Builder.CreateICmpEQ(nextPtr, endPtr, "array.atend");
873  Builder.CreateCondBr(isEnd, contBB, loopBB);
874  curPtr->addIncoming(nextPtr, Builder.GetInsertBlock());
875
876  EmitBlock(contBB);
877}
878
879static void EmitZeroMemSet(CodeGenFunction &CGF, QualType T,
880                           llvm::Value *NewPtr, llvm::Value *Size) {
881  CGF.EmitCastToVoidPtr(NewPtr);
882  CharUnits Alignment = CGF.getContext().getTypeAlignInChars(T);
883  CGF.Builder.CreateMemSet(NewPtr, CGF.Builder.getInt8(0), Size,
884                           Alignment.getQuantity(), false);
885}
886
887static void EmitNewInitializer(CodeGenFunction &CGF, const CXXNewExpr *E,
888                               QualType ElementType,
889                               llvm::Value *NewPtr,
890                               llvm::Value *NumElements,
891                               llvm::Value *AllocSizeWithoutCookie) {
892  const Expr *Init = E->getInitializer();
893  if (E->isArray()) {
894    if (const CXXConstructExpr *CCE = dyn_cast_or_null<CXXConstructExpr>(Init)){
895      CXXConstructorDecl *Ctor = CCE->getConstructor();
896      if (Ctor->isTrivial()) {
897        // If new expression did not specify value-initialization, then there
898        // is no initialization.
899        if (!CCE->requiresZeroInitialization() || Ctor->getParent()->isEmpty())
900          return;
901
902        if (CGF.CGM.getTypes().isZeroInitializable(ElementType)) {
903          // Optimization: since zero initialization will just set the memory
904          // to all zeroes, generate a single memset to do it in one shot.
905          EmitZeroMemSet(CGF, ElementType, NewPtr, AllocSizeWithoutCookie);
906          return;
907        }
908      }
909
910      CGF.EmitCXXAggrConstructorCall(Ctor, NumElements, NewPtr,
911                                     CCE->arg_begin(),  CCE->arg_end(),
912                                     CCE->requiresZeroInitialization());
913      return;
914    } else if (Init && isa<ImplicitValueInitExpr>(Init) &&
915               CGF.CGM.getTypes().isZeroInitializable(ElementType)) {
916      // Optimization: since zero initialization will just set the memory
917      // to all zeroes, generate a single memset to do it in one shot.
918      EmitZeroMemSet(CGF, ElementType, NewPtr, AllocSizeWithoutCookie);
919      return;
920    }
921    CGF.EmitNewArrayInitializer(E, ElementType, NewPtr, NumElements);
922    return;
923  }
924
925  if (!Init)
926    return;
927
928  StoreAnyExprIntoOneUnit(CGF, Init, E->getAllocatedType(), NewPtr);
929}
930
931/// Emit a call to an operator new or operator delete function, as implicitly
932/// created by new-expressions and delete-expressions.
933static RValue EmitNewDeleteCall(CodeGenFunction &CGF,
934                                const FunctionDecl *Callee,
935                                const FunctionProtoType *CalleeType,
936                                const CallArgList &Args) {
937  llvm::Instruction *CallOrInvoke;
938  llvm::Value *CalleeAddr = CGF.CGM.GetAddrOfFunction(Callee);
939  RValue RV =
940      CGF.EmitCall(CGF.CGM.getTypes().arrangeFreeFunctionCall(Args, CalleeType),
941                   CalleeAddr, ReturnValueSlot(), Args,
942                   Callee, &CallOrInvoke);
943
944  /// C++1y [expr.new]p10:
945  ///   [In a new-expression,] an implementation is allowed to omit a call
946  ///   to a replaceable global allocation function.
947  ///
948  /// We model such elidable calls with the 'builtin' attribute.
949  llvm::Function *Fn = dyn_cast<llvm::Function>(CalleeAddr);
950  if (Callee->isReplaceableGlobalAllocationFunction() &&
951      Fn && Fn->hasFnAttribute(llvm::Attribute::NoBuiltin)) {
952    // FIXME: Add addAttribute to CallSite.
953    if (llvm::CallInst *CI = dyn_cast<llvm::CallInst>(CallOrInvoke))
954      CI->addAttribute(llvm::AttributeSet::FunctionIndex,
955                       llvm::Attribute::Builtin);
956    else if (llvm::InvokeInst *II = dyn_cast<llvm::InvokeInst>(CallOrInvoke))
957      II->addAttribute(llvm::AttributeSet::FunctionIndex,
958                       llvm::Attribute::Builtin);
959    else
960      llvm_unreachable("unexpected kind of call instruction");
961  }
962
963  return RV;
964}
965
966namespace {
967  /// A cleanup to call the given 'operator delete' function upon
968  /// abnormal exit from a new expression.
969  class CallDeleteDuringNew : public EHScopeStack::Cleanup {
970    size_t NumPlacementArgs;
971    const FunctionDecl *OperatorDelete;
972    llvm::Value *Ptr;
973    llvm::Value *AllocSize;
974
975    RValue *getPlacementArgs() { return reinterpret_cast<RValue*>(this+1); }
976
977  public:
978    static size_t getExtraSize(size_t NumPlacementArgs) {
979      return NumPlacementArgs * sizeof(RValue);
980    }
981
982    CallDeleteDuringNew(size_t NumPlacementArgs,
983                        const FunctionDecl *OperatorDelete,
984                        llvm::Value *Ptr,
985                        llvm::Value *AllocSize)
986      : NumPlacementArgs(NumPlacementArgs), OperatorDelete(OperatorDelete),
987        Ptr(Ptr), AllocSize(AllocSize) {}
988
989    void setPlacementArg(unsigned I, RValue Arg) {
990      assert(I < NumPlacementArgs && "index out of range");
991      getPlacementArgs()[I] = Arg;
992    }
993
994    void Emit(CodeGenFunction &CGF, Flags flags) {
995      const FunctionProtoType *FPT
996        = OperatorDelete->getType()->getAs<FunctionProtoType>();
997      assert(FPT->getNumArgs() == NumPlacementArgs + 1 ||
998             (FPT->getNumArgs() == 2 && NumPlacementArgs == 0));
999
1000      CallArgList DeleteArgs;
1001
1002      // The first argument is always a void*.
1003      FunctionProtoType::arg_type_iterator AI = FPT->arg_type_begin();
1004      DeleteArgs.add(RValue::get(Ptr), *AI++);
1005
1006      // A member 'operator delete' can take an extra 'size_t' argument.
1007      if (FPT->getNumArgs() == NumPlacementArgs + 2)
1008        DeleteArgs.add(RValue::get(AllocSize), *AI++);
1009
1010      // Pass the rest of the arguments, which must match exactly.
1011      for (unsigned I = 0; I != NumPlacementArgs; ++I)
1012        DeleteArgs.add(getPlacementArgs()[I], *AI++);
1013
1014      // Call 'operator delete'.
1015      EmitNewDeleteCall(CGF, OperatorDelete, FPT, DeleteArgs);
1016    }
1017  };
1018
1019  /// A cleanup to call the given 'operator delete' function upon
1020  /// abnormal exit from a new expression when the new expression is
1021  /// conditional.
1022  class CallDeleteDuringConditionalNew : public EHScopeStack::Cleanup {
1023    size_t NumPlacementArgs;
1024    const FunctionDecl *OperatorDelete;
1025    DominatingValue<RValue>::saved_type Ptr;
1026    DominatingValue<RValue>::saved_type AllocSize;
1027
1028    DominatingValue<RValue>::saved_type *getPlacementArgs() {
1029      return reinterpret_cast<DominatingValue<RValue>::saved_type*>(this+1);
1030    }
1031
1032  public:
1033    static size_t getExtraSize(size_t NumPlacementArgs) {
1034      return NumPlacementArgs * sizeof(DominatingValue<RValue>::saved_type);
1035    }
1036
1037    CallDeleteDuringConditionalNew(size_t NumPlacementArgs,
1038                                   const FunctionDecl *OperatorDelete,
1039                                   DominatingValue<RValue>::saved_type Ptr,
1040                              DominatingValue<RValue>::saved_type AllocSize)
1041      : NumPlacementArgs(NumPlacementArgs), OperatorDelete(OperatorDelete),
1042        Ptr(Ptr), AllocSize(AllocSize) {}
1043
1044    void setPlacementArg(unsigned I, DominatingValue<RValue>::saved_type Arg) {
1045      assert(I < NumPlacementArgs && "index out of range");
1046      getPlacementArgs()[I] = Arg;
1047    }
1048
1049    void Emit(CodeGenFunction &CGF, Flags flags) {
1050      const FunctionProtoType *FPT
1051        = OperatorDelete->getType()->getAs<FunctionProtoType>();
1052      assert(FPT->getNumArgs() == NumPlacementArgs + 1 ||
1053             (FPT->getNumArgs() == 2 && NumPlacementArgs == 0));
1054
1055      CallArgList DeleteArgs;
1056
1057      // The first argument is always a void*.
1058      FunctionProtoType::arg_type_iterator AI = FPT->arg_type_begin();
1059      DeleteArgs.add(Ptr.restore(CGF), *AI++);
1060
1061      // A member 'operator delete' can take an extra 'size_t' argument.
1062      if (FPT->getNumArgs() == NumPlacementArgs + 2) {
1063        RValue RV = AllocSize.restore(CGF);
1064        DeleteArgs.add(RV, *AI++);
1065      }
1066
1067      // Pass the rest of the arguments, which must match exactly.
1068      for (unsigned I = 0; I != NumPlacementArgs; ++I) {
1069        RValue RV = getPlacementArgs()[I].restore(CGF);
1070        DeleteArgs.add(RV, *AI++);
1071      }
1072
1073      // Call 'operator delete'.
1074      EmitNewDeleteCall(CGF, OperatorDelete, FPT, DeleteArgs);
1075    }
1076  };
1077}
1078
1079/// Enter a cleanup to call 'operator delete' if the initializer in a
1080/// new-expression throws.
1081static void EnterNewDeleteCleanup(CodeGenFunction &CGF,
1082                                  const CXXNewExpr *E,
1083                                  llvm::Value *NewPtr,
1084                                  llvm::Value *AllocSize,
1085                                  const CallArgList &NewArgs) {
1086  // If we're not inside a conditional branch, then the cleanup will
1087  // dominate and we can do the easier (and more efficient) thing.
1088  if (!CGF.isInConditionalBranch()) {
1089    CallDeleteDuringNew *Cleanup = CGF.EHStack
1090      .pushCleanupWithExtra<CallDeleteDuringNew>(EHCleanup,
1091                                                 E->getNumPlacementArgs(),
1092                                                 E->getOperatorDelete(),
1093                                                 NewPtr, AllocSize);
1094    for (unsigned I = 0, N = E->getNumPlacementArgs(); I != N; ++I)
1095      Cleanup->setPlacementArg(I, NewArgs[I+1].RV);
1096
1097    return;
1098  }
1099
1100  // Otherwise, we need to save all this stuff.
1101  DominatingValue<RValue>::saved_type SavedNewPtr =
1102    DominatingValue<RValue>::save(CGF, RValue::get(NewPtr));
1103  DominatingValue<RValue>::saved_type SavedAllocSize =
1104    DominatingValue<RValue>::save(CGF, RValue::get(AllocSize));
1105
1106  CallDeleteDuringConditionalNew *Cleanup = CGF.EHStack
1107    .pushCleanupWithExtra<CallDeleteDuringConditionalNew>(EHCleanup,
1108                                                 E->getNumPlacementArgs(),
1109                                                 E->getOperatorDelete(),
1110                                                 SavedNewPtr,
1111                                                 SavedAllocSize);
1112  for (unsigned I = 0, N = E->getNumPlacementArgs(); I != N; ++I)
1113    Cleanup->setPlacementArg(I,
1114                     DominatingValue<RValue>::save(CGF, NewArgs[I+1].RV));
1115
1116  CGF.initFullExprCleanup();
1117}
1118
1119llvm::Value *CodeGenFunction::EmitCXXNewExpr(const CXXNewExpr *E) {
1120  // The element type being allocated.
1121  QualType allocType = getContext().getBaseElementType(E->getAllocatedType());
1122
1123  // 1. Build a call to the allocation function.
1124  FunctionDecl *allocator = E->getOperatorNew();
1125  const FunctionProtoType *allocatorType =
1126    allocator->getType()->castAs<FunctionProtoType>();
1127
1128  CallArgList allocatorArgs;
1129
1130  // The allocation size is the first argument.
1131  QualType sizeType = getContext().getSizeType();
1132
1133  // If there is a brace-initializer, cannot allocate fewer elements than inits.
1134  unsigned minElements = 0;
1135  if (E->isArray() && E->hasInitializer()) {
1136    if (const InitListExpr *ILE = dyn_cast<InitListExpr>(E->getInitializer()))
1137      minElements = ILE->getNumInits();
1138  }
1139
1140  llvm::Value *numElements = 0;
1141  llvm::Value *allocSizeWithoutCookie = 0;
1142  llvm::Value *allocSize =
1143    EmitCXXNewAllocSize(*this, E, minElements, numElements,
1144                        allocSizeWithoutCookie);
1145
1146  allocatorArgs.add(RValue::get(allocSize), sizeType);
1147
1148  // Emit the rest of the arguments.
1149  // FIXME: Ideally, this should just use EmitCallArgs.
1150  CXXNewExpr::const_arg_iterator placementArg = E->placement_arg_begin();
1151
1152  // First, use the types from the function type.
1153  // We start at 1 here because the first argument (the allocation size)
1154  // has already been emitted.
1155  for (unsigned i = 1, e = allocatorType->getNumArgs(); i != e;
1156       ++i, ++placementArg) {
1157    QualType argType = allocatorType->getArgType(i);
1158
1159    assert(getContext().hasSameUnqualifiedType(argType.getNonReferenceType(),
1160                                               placementArg->getType()) &&
1161           "type mismatch in call argument!");
1162
1163    EmitCallArg(allocatorArgs, *placementArg, argType);
1164  }
1165
1166  // Either we've emitted all the call args, or we have a call to a
1167  // variadic function.
1168  assert((placementArg == E->placement_arg_end() ||
1169          allocatorType->isVariadic()) &&
1170         "Extra arguments to non-variadic function!");
1171
1172  // If we still have any arguments, emit them using the type of the argument.
1173  for (CXXNewExpr::const_arg_iterator placementArgsEnd = E->placement_arg_end();
1174       placementArg != placementArgsEnd; ++placementArg) {
1175    EmitCallArg(allocatorArgs, *placementArg, placementArg->getType());
1176  }
1177
1178  // Emit the allocation call.  If the allocator is a global placement
1179  // operator, just "inline" it directly.
1180  RValue RV;
1181  if (allocator->isReservedGlobalPlacementOperator()) {
1182    assert(allocatorArgs.size() == 2);
1183    RV = allocatorArgs[1].RV;
1184    // TODO: kill any unnecessary computations done for the size
1185    // argument.
1186  } else {
1187    RV = EmitNewDeleteCall(*this, allocator, allocatorType, allocatorArgs);
1188  }
1189
1190  // Emit a null check on the allocation result if the allocation
1191  // function is allowed to return null (because it has a non-throwing
1192  // exception spec; for this part, we inline
1193  // CXXNewExpr::shouldNullCheckAllocation()) and we have an
1194  // interesting initializer.
1195  bool nullCheck = allocatorType->isNothrow(getContext()) &&
1196    (!allocType.isPODType(getContext()) || E->hasInitializer());
1197
1198  llvm::BasicBlock *nullCheckBB = 0;
1199  llvm::BasicBlock *contBB = 0;
1200
1201  llvm::Value *allocation = RV.getScalarVal();
1202  unsigned AS = allocation->getType()->getPointerAddressSpace();
1203
1204  // The null-check means that the initializer is conditionally
1205  // evaluated.
1206  ConditionalEvaluation conditional(*this);
1207
1208  if (nullCheck) {
1209    conditional.begin(*this);
1210
1211    nullCheckBB = Builder.GetInsertBlock();
1212    llvm::BasicBlock *notNullBB = createBasicBlock("new.notnull");
1213    contBB = createBasicBlock("new.cont");
1214
1215    llvm::Value *isNull = Builder.CreateIsNull(allocation, "new.isnull");
1216    Builder.CreateCondBr(isNull, contBB, notNullBB);
1217    EmitBlock(notNullBB);
1218  }
1219
1220  // If there's an operator delete, enter a cleanup to call it if an
1221  // exception is thrown.
1222  EHScopeStack::stable_iterator operatorDeleteCleanup;
1223  llvm::Instruction *cleanupDominator = 0;
1224  if (E->getOperatorDelete() &&
1225      !E->getOperatorDelete()->isReservedGlobalPlacementOperator()) {
1226    EnterNewDeleteCleanup(*this, E, allocation, allocSize, allocatorArgs);
1227    operatorDeleteCleanup = EHStack.stable_begin();
1228    cleanupDominator = Builder.CreateUnreachable();
1229  }
1230
1231  assert((allocSize == allocSizeWithoutCookie) ==
1232         CalculateCookiePadding(*this, E).isZero());
1233  if (allocSize != allocSizeWithoutCookie) {
1234    assert(E->isArray());
1235    allocation = CGM.getCXXABI().InitializeArrayCookie(*this, allocation,
1236                                                       numElements,
1237                                                       E, allocType);
1238  }
1239
1240  llvm::Type *elementPtrTy
1241    = ConvertTypeForMem(allocType)->getPointerTo(AS);
1242  llvm::Value *result = Builder.CreateBitCast(allocation, elementPtrTy);
1243
1244  EmitNewInitializer(*this, E, allocType, result, numElements,
1245                     allocSizeWithoutCookie);
1246  if (E->isArray()) {
1247    // NewPtr is a pointer to the base element type.  If we're
1248    // allocating an array of arrays, we'll need to cast back to the
1249    // array pointer type.
1250    llvm::Type *resultType = ConvertTypeForMem(E->getType());
1251    if (result->getType() != resultType)
1252      result = Builder.CreateBitCast(result, resultType);
1253  }
1254
1255  // Deactivate the 'operator delete' cleanup if we finished
1256  // initialization.
1257  if (operatorDeleteCleanup.isValid()) {
1258    DeactivateCleanupBlock(operatorDeleteCleanup, cleanupDominator);
1259    cleanupDominator->eraseFromParent();
1260  }
1261
1262  if (nullCheck) {
1263    conditional.end(*this);
1264
1265    llvm::BasicBlock *notNullBB = Builder.GetInsertBlock();
1266    EmitBlock(contBB);
1267
1268    llvm::PHINode *PHI = Builder.CreatePHI(result->getType(), 2);
1269    PHI->addIncoming(result, notNullBB);
1270    PHI->addIncoming(llvm::Constant::getNullValue(result->getType()),
1271                     nullCheckBB);
1272
1273    result = PHI;
1274  }
1275
1276  return result;
1277}
1278
1279void CodeGenFunction::EmitDeleteCall(const FunctionDecl *DeleteFD,
1280                                     llvm::Value *Ptr,
1281                                     QualType DeleteTy) {
1282  assert(DeleteFD->getOverloadedOperator() == OO_Delete);
1283
1284  const FunctionProtoType *DeleteFTy =
1285    DeleteFD->getType()->getAs<FunctionProtoType>();
1286
1287  CallArgList DeleteArgs;
1288
1289  // Check if we need to pass the size to the delete operator.
1290  llvm::Value *Size = 0;
1291  QualType SizeTy;
1292  if (DeleteFTy->getNumArgs() == 2) {
1293    SizeTy = DeleteFTy->getArgType(1);
1294    CharUnits DeleteTypeSize = getContext().getTypeSizeInChars(DeleteTy);
1295    Size = llvm::ConstantInt::get(ConvertType(SizeTy),
1296                                  DeleteTypeSize.getQuantity());
1297  }
1298
1299  QualType ArgTy = DeleteFTy->getArgType(0);
1300  llvm::Value *DeletePtr = Builder.CreateBitCast(Ptr, ConvertType(ArgTy));
1301  DeleteArgs.add(RValue::get(DeletePtr), ArgTy);
1302
1303  if (Size)
1304    DeleteArgs.add(RValue::get(Size), SizeTy);
1305
1306  // Emit the call to delete.
1307  EmitNewDeleteCall(*this, DeleteFD, DeleteFTy, DeleteArgs);
1308}
1309
1310namespace {
1311  /// Calls the given 'operator delete' on a single object.
1312  struct CallObjectDelete : EHScopeStack::Cleanup {
1313    llvm::Value *Ptr;
1314    const FunctionDecl *OperatorDelete;
1315    QualType ElementType;
1316
1317    CallObjectDelete(llvm::Value *Ptr,
1318                     const FunctionDecl *OperatorDelete,
1319                     QualType ElementType)
1320      : Ptr(Ptr), OperatorDelete(OperatorDelete), ElementType(ElementType) {}
1321
1322    void Emit(CodeGenFunction &CGF, Flags flags) {
1323      CGF.EmitDeleteCall(OperatorDelete, Ptr, ElementType);
1324    }
1325  };
1326}
1327
1328/// Emit the code for deleting a single object.
1329static void EmitObjectDelete(CodeGenFunction &CGF,
1330                             const FunctionDecl *OperatorDelete,
1331                             llvm::Value *Ptr,
1332                             QualType ElementType,
1333                             bool UseGlobalDelete) {
1334  // Find the destructor for the type, if applicable.  If the
1335  // destructor is virtual, we'll just emit the vcall and return.
1336  const CXXDestructorDecl *Dtor = 0;
1337  if (const RecordType *RT = ElementType->getAs<RecordType>()) {
1338    CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
1339    if (RD->hasDefinition() && !RD->hasTrivialDestructor()) {
1340      Dtor = RD->getDestructor();
1341
1342      if (Dtor->isVirtual()) {
1343        if (UseGlobalDelete) {
1344          // If we're supposed to call the global delete, make sure we do so
1345          // even if the destructor throws.
1346
1347          // Derive the complete-object pointer, which is what we need
1348          // to pass to the deallocation function.
1349          llvm::Value *completePtr =
1350            CGF.CGM.getCXXABI().adjustToCompleteObject(CGF, Ptr, ElementType);
1351
1352          CGF.EHStack.pushCleanup<CallObjectDelete>(NormalAndEHCleanup,
1353                                                    completePtr, OperatorDelete,
1354                                                    ElementType);
1355        }
1356
1357        // FIXME: Provide a source location here.
1358        CXXDtorType DtorType = UseGlobalDelete ? Dtor_Complete : Dtor_Deleting;
1359        CGF.CGM.getCXXABI().EmitVirtualDestructorCall(CGF, Dtor, DtorType,
1360                                                      SourceLocation(), Ptr);
1361
1362        if (UseGlobalDelete) {
1363          CGF.PopCleanupBlock();
1364        }
1365
1366        return;
1367      }
1368    }
1369  }
1370
1371  // Make sure that we call delete even if the dtor throws.
1372  // This doesn't have to a conditional cleanup because we're going
1373  // to pop it off in a second.
1374  CGF.EHStack.pushCleanup<CallObjectDelete>(NormalAndEHCleanup,
1375                                            Ptr, OperatorDelete, ElementType);
1376
1377  if (Dtor)
1378    CGF.EmitCXXDestructorCall(Dtor, Dtor_Complete,
1379                              /*ForVirtualBase=*/false,
1380                              /*Delegating=*/false,
1381                              Ptr);
1382  else if (CGF.getLangOpts().ObjCAutoRefCount &&
1383           ElementType->isObjCLifetimeType()) {
1384    switch (ElementType.getObjCLifetime()) {
1385    case Qualifiers::OCL_None:
1386    case Qualifiers::OCL_ExplicitNone:
1387    case Qualifiers::OCL_Autoreleasing:
1388      break;
1389
1390    case Qualifiers::OCL_Strong: {
1391      // Load the pointer value.
1392      llvm::Value *PtrValue = CGF.Builder.CreateLoad(Ptr,
1393                                             ElementType.isVolatileQualified());
1394
1395      CGF.EmitARCRelease(PtrValue, ARCPreciseLifetime);
1396      break;
1397    }
1398
1399    case Qualifiers::OCL_Weak:
1400      CGF.EmitARCDestroyWeak(Ptr);
1401      break;
1402    }
1403  }
1404
1405  CGF.PopCleanupBlock();
1406}
1407
1408namespace {
1409  /// Calls the given 'operator delete' on an array of objects.
1410  struct CallArrayDelete : EHScopeStack::Cleanup {
1411    llvm::Value *Ptr;
1412    const FunctionDecl *OperatorDelete;
1413    llvm::Value *NumElements;
1414    QualType ElementType;
1415    CharUnits CookieSize;
1416
1417    CallArrayDelete(llvm::Value *Ptr,
1418                    const FunctionDecl *OperatorDelete,
1419                    llvm::Value *NumElements,
1420                    QualType ElementType,
1421                    CharUnits CookieSize)
1422      : Ptr(Ptr), OperatorDelete(OperatorDelete), NumElements(NumElements),
1423        ElementType(ElementType), CookieSize(CookieSize) {}
1424
1425    void Emit(CodeGenFunction &CGF, Flags flags) {
1426      const FunctionProtoType *DeleteFTy =
1427        OperatorDelete->getType()->getAs<FunctionProtoType>();
1428      assert(DeleteFTy->getNumArgs() == 1 || DeleteFTy->getNumArgs() == 2);
1429
1430      CallArgList Args;
1431
1432      // Pass the pointer as the first argument.
1433      QualType VoidPtrTy = DeleteFTy->getArgType(0);
1434      llvm::Value *DeletePtr
1435        = CGF.Builder.CreateBitCast(Ptr, CGF.ConvertType(VoidPtrTy));
1436      Args.add(RValue::get(DeletePtr), VoidPtrTy);
1437
1438      // Pass the original requested size as the second argument.
1439      if (DeleteFTy->getNumArgs() == 2) {
1440        QualType size_t = DeleteFTy->getArgType(1);
1441        llvm::IntegerType *SizeTy
1442          = cast<llvm::IntegerType>(CGF.ConvertType(size_t));
1443
1444        CharUnits ElementTypeSize =
1445          CGF.CGM.getContext().getTypeSizeInChars(ElementType);
1446
1447        // The size of an element, multiplied by the number of elements.
1448        llvm::Value *Size
1449          = llvm::ConstantInt::get(SizeTy, ElementTypeSize.getQuantity());
1450        Size = CGF.Builder.CreateMul(Size, NumElements);
1451
1452        // Plus the size of the cookie if applicable.
1453        if (!CookieSize.isZero()) {
1454          llvm::Value *CookieSizeV
1455            = llvm::ConstantInt::get(SizeTy, CookieSize.getQuantity());
1456          Size = CGF.Builder.CreateAdd(Size, CookieSizeV);
1457        }
1458
1459        Args.add(RValue::get(Size), size_t);
1460      }
1461
1462      // Emit the call to delete.
1463      EmitNewDeleteCall(CGF, OperatorDelete, DeleteFTy, Args);
1464    }
1465  };
1466}
1467
1468/// Emit the code for deleting an array of objects.
1469static void EmitArrayDelete(CodeGenFunction &CGF,
1470                            const CXXDeleteExpr *E,
1471                            llvm::Value *deletedPtr,
1472                            QualType elementType) {
1473  llvm::Value *numElements = 0;
1474  llvm::Value *allocatedPtr = 0;
1475  CharUnits cookieSize;
1476  CGF.CGM.getCXXABI().ReadArrayCookie(CGF, deletedPtr, E, elementType,
1477                                      numElements, allocatedPtr, cookieSize);
1478
1479  assert(allocatedPtr && "ReadArrayCookie didn't set allocated pointer");
1480
1481  // Make sure that we call delete even if one of the dtors throws.
1482  const FunctionDecl *operatorDelete = E->getOperatorDelete();
1483  CGF.EHStack.pushCleanup<CallArrayDelete>(NormalAndEHCleanup,
1484                                           allocatedPtr, operatorDelete,
1485                                           numElements, elementType,
1486                                           cookieSize);
1487
1488  // Destroy the elements.
1489  if (QualType::DestructionKind dtorKind = elementType.isDestructedType()) {
1490    assert(numElements && "no element count for a type with a destructor!");
1491
1492    llvm::Value *arrayEnd =
1493      CGF.Builder.CreateInBoundsGEP(deletedPtr, numElements, "delete.end");
1494
1495    // Note that it is legal to allocate a zero-length array, and we
1496    // can never fold the check away because the length should always
1497    // come from a cookie.
1498    CGF.emitArrayDestroy(deletedPtr, arrayEnd, elementType,
1499                         CGF.getDestroyer(dtorKind),
1500                         /*checkZeroLength*/ true,
1501                         CGF.needsEHCleanup(dtorKind));
1502  }
1503
1504  // Pop the cleanup block.
1505  CGF.PopCleanupBlock();
1506}
1507
1508void CodeGenFunction::EmitCXXDeleteExpr(const CXXDeleteExpr *E) {
1509  const Expr *Arg = E->getArgument();
1510  llvm::Value *Ptr = EmitScalarExpr(Arg);
1511
1512  // Null check the pointer.
1513  llvm::BasicBlock *DeleteNotNull = createBasicBlock("delete.notnull");
1514  llvm::BasicBlock *DeleteEnd = createBasicBlock("delete.end");
1515
1516  llvm::Value *IsNull = Builder.CreateIsNull(Ptr, "isnull");
1517
1518  Builder.CreateCondBr(IsNull, DeleteEnd, DeleteNotNull);
1519  EmitBlock(DeleteNotNull);
1520
1521  // We might be deleting a pointer to array.  If so, GEP down to the
1522  // first non-array element.
1523  // (this assumes that A(*)[3][7] is converted to [3 x [7 x %A]]*)
1524  QualType DeleteTy = Arg->getType()->getAs<PointerType>()->getPointeeType();
1525  if (DeleteTy->isConstantArrayType()) {
1526    llvm::Value *Zero = Builder.getInt32(0);
1527    SmallVector<llvm::Value*,8> GEP;
1528
1529    GEP.push_back(Zero); // point at the outermost array
1530
1531    // For each layer of array type we're pointing at:
1532    while (const ConstantArrayType *Arr
1533             = getContext().getAsConstantArrayType(DeleteTy)) {
1534      // 1. Unpeel the array type.
1535      DeleteTy = Arr->getElementType();
1536
1537      // 2. GEP to the first element of the array.
1538      GEP.push_back(Zero);
1539    }
1540
1541    Ptr = Builder.CreateInBoundsGEP(Ptr, GEP, "del.first");
1542  }
1543
1544  assert(ConvertTypeForMem(DeleteTy) ==
1545         cast<llvm::PointerType>(Ptr->getType())->getElementType());
1546
1547  if (E->isArrayForm()) {
1548    EmitArrayDelete(*this, E, Ptr, DeleteTy);
1549  } else {
1550    EmitObjectDelete(*this, E->getOperatorDelete(), Ptr, DeleteTy,
1551                     E->isGlobalDelete());
1552  }
1553
1554  EmitBlock(DeleteEnd);
1555}
1556
1557static llvm::Constant *getBadTypeidFn(CodeGenFunction &CGF) {
1558  // void __cxa_bad_typeid();
1559  llvm::FunctionType *FTy = llvm::FunctionType::get(CGF.VoidTy, false);
1560
1561  return CGF.CGM.CreateRuntimeFunction(FTy, "__cxa_bad_typeid");
1562}
1563
1564static void EmitBadTypeidCall(CodeGenFunction &CGF) {
1565  llvm::Value *Fn = getBadTypeidFn(CGF);
1566  CGF.EmitRuntimeCallOrInvoke(Fn).setDoesNotReturn();
1567  CGF.Builder.CreateUnreachable();
1568}
1569
1570static llvm::Value *EmitTypeidFromVTable(CodeGenFunction &CGF,
1571                                         const Expr *E,
1572                                         llvm::Type *StdTypeInfoPtrTy) {
1573  // Get the vtable pointer.
1574  llvm::Value *ThisPtr = CGF.EmitLValue(E).getAddress();
1575
1576  // C++ [expr.typeid]p2:
1577  //   If the glvalue expression is obtained by applying the unary * operator to
1578  //   a pointer and the pointer is a null pointer value, the typeid expression
1579  //   throws the std::bad_typeid exception.
1580  if (const UnaryOperator *UO = dyn_cast<UnaryOperator>(E->IgnoreParens())) {
1581    if (UO->getOpcode() == UO_Deref) {
1582      llvm::BasicBlock *BadTypeidBlock =
1583        CGF.createBasicBlock("typeid.bad_typeid");
1584      llvm::BasicBlock *EndBlock =
1585        CGF.createBasicBlock("typeid.end");
1586
1587      llvm::Value *IsNull = CGF.Builder.CreateIsNull(ThisPtr);
1588      CGF.Builder.CreateCondBr(IsNull, BadTypeidBlock, EndBlock);
1589
1590      CGF.EmitBlock(BadTypeidBlock);
1591      EmitBadTypeidCall(CGF);
1592      CGF.EmitBlock(EndBlock);
1593    }
1594  }
1595
1596  llvm::Value *Value = CGF.GetVTablePtr(ThisPtr,
1597                                        StdTypeInfoPtrTy->getPointerTo());
1598
1599  // Load the type info.
1600  Value = CGF.Builder.CreateConstInBoundsGEP1_64(Value, -1ULL);
1601  return CGF.Builder.CreateLoad(Value);
1602}
1603
1604llvm::Value *CodeGenFunction::EmitCXXTypeidExpr(const CXXTypeidExpr *E) {
1605  llvm::Type *StdTypeInfoPtrTy =
1606    ConvertType(E->getType())->getPointerTo();
1607
1608  if (E->isTypeOperand()) {
1609    llvm::Constant *TypeInfo =
1610        CGM.GetAddrOfRTTIDescriptor(E->getTypeOperand(getContext()));
1611    return Builder.CreateBitCast(TypeInfo, StdTypeInfoPtrTy);
1612  }
1613
1614  // C++ [expr.typeid]p2:
1615  //   When typeid is applied to a glvalue expression whose type is a
1616  //   polymorphic class type, the result refers to a std::type_info object
1617  //   representing the type of the most derived object (that is, the dynamic
1618  //   type) to which the glvalue refers.
1619  if (E->isPotentiallyEvaluated())
1620    return EmitTypeidFromVTable(*this, E->getExprOperand(),
1621                                StdTypeInfoPtrTy);
1622
1623  QualType OperandTy = E->getExprOperand()->getType();
1624  return Builder.CreateBitCast(CGM.GetAddrOfRTTIDescriptor(OperandTy),
1625                               StdTypeInfoPtrTy);
1626}
1627
1628static llvm::Constant *getDynamicCastFn(CodeGenFunction &CGF) {
1629  // void *__dynamic_cast(const void *sub,
1630  //                      const abi::__class_type_info *src,
1631  //                      const abi::__class_type_info *dst,
1632  //                      std::ptrdiff_t src2dst_offset);
1633
1634  llvm::Type *Int8PtrTy = CGF.Int8PtrTy;
1635  llvm::Type *PtrDiffTy =
1636    CGF.ConvertType(CGF.getContext().getPointerDiffType());
1637
1638  llvm::Type *Args[4] = { Int8PtrTy, Int8PtrTy, Int8PtrTy, PtrDiffTy };
1639
1640  llvm::FunctionType *FTy = llvm::FunctionType::get(Int8PtrTy, Args, false);
1641
1642  // Mark the function as nounwind readonly.
1643  llvm::Attribute::AttrKind FuncAttrs[] = { llvm::Attribute::NoUnwind,
1644                                            llvm::Attribute::ReadOnly };
1645  llvm::AttributeSet Attrs = llvm::AttributeSet::get(
1646      CGF.getLLVMContext(), llvm::AttributeSet::FunctionIndex, FuncAttrs);
1647
1648  return CGF.CGM.CreateRuntimeFunction(FTy, "__dynamic_cast", Attrs);
1649}
1650
1651static llvm::Constant *getBadCastFn(CodeGenFunction &CGF) {
1652  // void __cxa_bad_cast();
1653  llvm::FunctionType *FTy = llvm::FunctionType::get(CGF.VoidTy, false);
1654  return CGF.CGM.CreateRuntimeFunction(FTy, "__cxa_bad_cast");
1655}
1656
1657static void EmitBadCastCall(CodeGenFunction &CGF) {
1658  llvm::Value *Fn = getBadCastFn(CGF);
1659  CGF.EmitRuntimeCallOrInvoke(Fn).setDoesNotReturn();
1660  CGF.Builder.CreateUnreachable();
1661}
1662
1663/// \brief Compute the src2dst_offset hint as described in the
1664/// Itanium C++ ABI [2.9.7]
1665static CharUnits computeOffsetHint(ASTContext &Context,
1666                                   const CXXRecordDecl *Src,
1667                                   const CXXRecordDecl *Dst) {
1668  CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
1669                     /*DetectVirtual=*/false);
1670
1671  // If Dst is not derived from Src we can skip the whole computation below and
1672  // return that Src is not a public base of Dst.  Record all inheritance paths.
1673  if (!Dst->isDerivedFrom(Src, Paths))
1674    return CharUnits::fromQuantity(-2ULL);
1675
1676  unsigned NumPublicPaths = 0;
1677  CharUnits Offset;
1678
1679  // Now walk all possible inheritance paths.
1680  for (CXXBasePaths::paths_iterator I = Paths.begin(), E = Paths.end();
1681       I != E; ++I) {
1682    if (I->Access != AS_public) // Ignore non-public inheritance.
1683      continue;
1684
1685    ++NumPublicPaths;
1686
1687    for (CXXBasePath::iterator J = I->begin(), JE = I->end(); J != JE; ++J) {
1688      // If the path contains a virtual base class we can't give any hint.
1689      // -1: no hint.
1690      if (J->Base->isVirtual())
1691        return CharUnits::fromQuantity(-1ULL);
1692
1693      if (NumPublicPaths > 1) // Won't use offsets, skip computation.
1694        continue;
1695
1696      // Accumulate the base class offsets.
1697      const ASTRecordLayout &L = Context.getASTRecordLayout(J->Class);
1698      Offset += L.getBaseClassOffset(J->Base->getType()->getAsCXXRecordDecl());
1699    }
1700  }
1701
1702  // -2: Src is not a public base of Dst.
1703  if (NumPublicPaths == 0)
1704    return CharUnits::fromQuantity(-2ULL);
1705
1706  // -3: Src is a multiple public base type but never a virtual base type.
1707  if (NumPublicPaths > 1)
1708    return CharUnits::fromQuantity(-3ULL);
1709
1710  // Otherwise, the Src type is a unique public nonvirtual base type of Dst.
1711  // Return the offset of Src from the origin of Dst.
1712  return Offset;
1713}
1714
1715static llvm::Value *
1716EmitDynamicCastCall(CodeGenFunction &CGF, llvm::Value *Value,
1717                    QualType SrcTy, QualType DestTy,
1718                    llvm::BasicBlock *CastEnd) {
1719  llvm::Type *PtrDiffLTy =
1720    CGF.ConvertType(CGF.getContext().getPointerDiffType());
1721  llvm::Type *DestLTy = CGF.ConvertType(DestTy);
1722
1723  if (const PointerType *PTy = DestTy->getAs<PointerType>()) {
1724    if (PTy->getPointeeType()->isVoidType()) {
1725      // C++ [expr.dynamic.cast]p7:
1726      //   If T is "pointer to cv void," then the result is a pointer to the
1727      //   most derived object pointed to by v.
1728
1729      // Get the vtable pointer.
1730      llvm::Value *VTable = CGF.GetVTablePtr(Value, PtrDiffLTy->getPointerTo());
1731
1732      // Get the offset-to-top from the vtable.
1733      llvm::Value *OffsetToTop =
1734        CGF.Builder.CreateConstInBoundsGEP1_64(VTable, -2ULL);
1735      OffsetToTop = CGF.Builder.CreateLoad(OffsetToTop, "offset.to.top");
1736
1737      // Finally, add the offset to the pointer.
1738      Value = CGF.EmitCastToVoidPtr(Value);
1739      Value = CGF.Builder.CreateInBoundsGEP(Value, OffsetToTop);
1740
1741      return CGF.Builder.CreateBitCast(Value, DestLTy);
1742    }
1743  }
1744
1745  QualType SrcRecordTy;
1746  QualType DestRecordTy;
1747
1748  if (const PointerType *DestPTy = DestTy->getAs<PointerType>()) {
1749    SrcRecordTy = SrcTy->castAs<PointerType>()->getPointeeType();
1750    DestRecordTy = DestPTy->getPointeeType();
1751  } else {
1752    SrcRecordTy = SrcTy;
1753    DestRecordTy = DestTy->castAs<ReferenceType>()->getPointeeType();
1754  }
1755
1756  assert(SrcRecordTy->isRecordType() && "source type must be a record type!");
1757  assert(DestRecordTy->isRecordType() && "dest type must be a record type!");
1758
1759  llvm::Value *SrcRTTI =
1760    CGF.CGM.GetAddrOfRTTIDescriptor(SrcRecordTy.getUnqualifiedType());
1761  llvm::Value *DestRTTI =
1762    CGF.CGM.GetAddrOfRTTIDescriptor(DestRecordTy.getUnqualifiedType());
1763
1764  // Compute the offset hint.
1765  const CXXRecordDecl *SrcDecl = SrcRecordTy->getAsCXXRecordDecl();
1766  const CXXRecordDecl *DestDecl = DestRecordTy->getAsCXXRecordDecl();
1767  llvm::Value *OffsetHint =
1768    llvm::ConstantInt::get(PtrDiffLTy,
1769                           computeOffsetHint(CGF.getContext(), SrcDecl,
1770                                             DestDecl).getQuantity());
1771
1772  // Emit the call to __dynamic_cast.
1773  Value = CGF.EmitCastToVoidPtr(Value);
1774
1775  llvm::Value *args[] = { Value, SrcRTTI, DestRTTI, OffsetHint };
1776  Value = CGF.EmitNounwindRuntimeCall(getDynamicCastFn(CGF), args);
1777  Value = CGF.Builder.CreateBitCast(Value, DestLTy);
1778
1779  /// C++ [expr.dynamic.cast]p9:
1780  ///   A failed cast to reference type throws std::bad_cast
1781  if (DestTy->isReferenceType()) {
1782    llvm::BasicBlock *BadCastBlock =
1783      CGF.createBasicBlock("dynamic_cast.bad_cast");
1784
1785    llvm::Value *IsNull = CGF.Builder.CreateIsNull(Value);
1786    CGF.Builder.CreateCondBr(IsNull, BadCastBlock, CastEnd);
1787
1788    CGF.EmitBlock(BadCastBlock);
1789    EmitBadCastCall(CGF);
1790  }
1791
1792  return Value;
1793}
1794
1795static llvm::Value *EmitDynamicCastToNull(CodeGenFunction &CGF,
1796                                          QualType DestTy) {
1797  llvm::Type *DestLTy = CGF.ConvertType(DestTy);
1798  if (DestTy->isPointerType())
1799    return llvm::Constant::getNullValue(DestLTy);
1800
1801  /// C++ [expr.dynamic.cast]p9:
1802  ///   A failed cast to reference type throws std::bad_cast
1803  EmitBadCastCall(CGF);
1804
1805  CGF.EmitBlock(CGF.createBasicBlock("dynamic_cast.end"));
1806  return llvm::UndefValue::get(DestLTy);
1807}
1808
1809llvm::Value *CodeGenFunction::EmitDynamicCast(llvm::Value *Value,
1810                                              const CXXDynamicCastExpr *DCE) {
1811  QualType DestTy = DCE->getTypeAsWritten();
1812
1813  if (DCE->isAlwaysNull())
1814    return EmitDynamicCastToNull(*this, DestTy);
1815
1816  QualType SrcTy = DCE->getSubExpr()->getType();
1817
1818  // C++ [expr.dynamic.cast]p4:
1819  //   If the value of v is a null pointer value in the pointer case, the result
1820  //   is the null pointer value of type T.
1821  bool ShouldNullCheckSrcValue = SrcTy->isPointerType();
1822
1823  llvm::BasicBlock *CastNull = 0;
1824  llvm::BasicBlock *CastNotNull = 0;
1825  llvm::BasicBlock *CastEnd = createBasicBlock("dynamic_cast.end");
1826
1827  if (ShouldNullCheckSrcValue) {
1828    CastNull = createBasicBlock("dynamic_cast.null");
1829    CastNotNull = createBasicBlock("dynamic_cast.notnull");
1830
1831    llvm::Value *IsNull = Builder.CreateIsNull(Value);
1832    Builder.CreateCondBr(IsNull, CastNull, CastNotNull);
1833    EmitBlock(CastNotNull);
1834  }
1835
1836  Value = EmitDynamicCastCall(*this, Value, SrcTy, DestTy, CastEnd);
1837
1838  if (ShouldNullCheckSrcValue) {
1839    EmitBranch(CastEnd);
1840
1841    EmitBlock(CastNull);
1842    EmitBranch(CastEnd);
1843  }
1844
1845  EmitBlock(CastEnd);
1846
1847  if (ShouldNullCheckSrcValue) {
1848    llvm::PHINode *PHI = Builder.CreatePHI(Value->getType(), 2);
1849    PHI->addIncoming(Value, CastNotNull);
1850    PHI->addIncoming(llvm::Constant::getNullValue(Value->getType()), CastNull);
1851
1852    Value = PHI;
1853  }
1854
1855  return Value;
1856}
1857
1858void CodeGenFunction::EmitLambdaExpr(const LambdaExpr *E, AggValueSlot Slot) {
1859  RunCleanupsScope Scope(*this);
1860  LValue SlotLV = MakeAddrLValue(Slot.getAddr(), E->getType(),
1861                                 Slot.getAlignment());
1862
1863  CXXRecordDecl::field_iterator CurField = E->getLambdaClass()->field_begin();
1864  for (LambdaExpr::capture_init_iterator i = E->capture_init_begin(),
1865                                         e = E->capture_init_end();
1866       i != e; ++i, ++CurField) {
1867    // Emit initialization
1868
1869    LValue LV = EmitLValueForFieldInitialization(SlotLV, *CurField);
1870    ArrayRef<VarDecl *> ArrayIndexes;
1871    if (CurField->getType()->isArrayType())
1872      ArrayIndexes = E->getCaptureInitIndexVars(i);
1873    EmitInitializerForField(*CurField, LV, *i, ArrayIndexes);
1874  }
1875}
1876