TargetInfo.h revision 263508
150476Speter//===--- TargetInfo.h - Expose information about the target -----*- C++ -*-===//
218450Swosch//
318450Swosch//                     The LLVM Compiler Infrastructure
418450Swosch//
518450Swosch// This file is distributed under the University of Illinois Open Source
618450Swosch// License. See LICENSE.TXT for details.
71638Srgrimes//
818450Swosch//===----------------------------------------------------------------------===//
918450Swosch///
10/// \file
11/// \brief Defines the clang::TargetInfo interface.
12///
13//===----------------------------------------------------------------------===//
14
15#ifndef LLVM_CLANG_BASIC_TARGETINFO_H
16#define LLVM_CLANG_BASIC_TARGETINFO_H
17
18#include "clang/Basic/AddressSpaces.h"
19#include "clang/Basic/TargetCXXABI.h"
20#include "clang/Basic/LLVM.h"
21#include "clang/Basic/Specifiers.h"
22#include "clang/Basic/TargetOptions.h"
23#include "clang/Basic/VersionTuple.h"
24#include "llvm/ADT/IntrusiveRefCntPtr.h"
25#include "llvm/ADT/StringMap.h"
26#include "llvm/ADT/StringRef.h"
27#include "llvm/ADT/StringSwitch.h"
28#include "llvm/ADT/Triple.h"
29#include "llvm/Support/DataTypes.h"
30#include <cassert>
31#include <string>
32#include <vector>
33
34namespace llvm {
35struct fltSemantics;
36}
37
38namespace clang {
39class DiagnosticsEngine;
40class LangOptions;
41class MacroBuilder;
42class SourceLocation;
43class SourceManager;
44
45namespace Builtin { struct Info; }
46
47/// \brief Exposes information about the current target.
48///
49class TargetInfo : public RefCountedBase<TargetInfo> {
50  IntrusiveRefCntPtr<TargetOptions> TargetOpts;
51  llvm::Triple Triple;
52protected:
53  // Target values set by the ctor of the actual target implementation.  Default
54  // values are specified by the TargetInfo constructor.
55  bool BigEndian;
56  bool TLSSupported;
57  bool NoAsmVariants;  // True if {|} are normal characters.
58  unsigned char PointerWidth, PointerAlign;
59  unsigned char BoolWidth, BoolAlign;
60  unsigned char IntWidth, IntAlign;
61  unsigned char HalfWidth, HalfAlign;
62  unsigned char FloatWidth, FloatAlign;
63  unsigned char DoubleWidth, DoubleAlign;
64  unsigned char LongDoubleWidth, LongDoubleAlign;
65  unsigned char LargeArrayMinWidth, LargeArrayAlign;
66  unsigned char LongWidth, LongAlign;
67  unsigned char LongLongWidth, LongLongAlign;
68  unsigned char SuitableAlign;
69  unsigned char MinGlobalAlign;
70  unsigned char MaxAtomicPromoteWidth, MaxAtomicInlineWidth;
71  unsigned short MaxVectorAlign;
72  const char *DescriptionString;
73  const char *UserLabelPrefix;
74  const char *MCountName;
75  const llvm::fltSemantics *HalfFormat, *FloatFormat, *DoubleFormat,
76    *LongDoubleFormat;
77  unsigned char RegParmMax, SSERegParmMax;
78  TargetCXXABI TheCXXABI;
79  const LangAS::Map *AddrSpaceMap;
80
81  mutable StringRef PlatformName;
82  mutable VersionTuple PlatformMinVersion;
83
84  unsigned HasAlignMac68kSupport : 1;
85  unsigned RealTypeUsesObjCFPRet : 3;
86  unsigned ComplexLongDoubleUsesFP2Ret : 1;
87
88  // TargetInfo Constructor.  Default initializes all fields.
89  TargetInfo(const llvm::Triple &T);
90
91public:
92  /// \brief Construct a target for the given options.
93  ///
94  /// \param Opts - The options to use to initialize the target. The target may
95  /// modify the options to canonicalize the target feature information to match
96  /// what the backend expects.
97  static TargetInfo* CreateTargetInfo(DiagnosticsEngine &Diags,
98                                      TargetOptions *Opts);
99
100  virtual ~TargetInfo();
101
102  /// \brief Retrieve the target options.
103  TargetOptions &getTargetOpts() const {
104    assert(TargetOpts && "Missing target options");
105    return *TargetOpts;
106  }
107
108  void setTargetOpts(TargetOptions *TargetOpts) {
109    this->TargetOpts = TargetOpts;
110  }
111
112  ///===---- Target Data Type Query Methods -------------------------------===//
113  enum IntType {
114    NoInt = 0,
115    SignedChar,
116    UnsignedChar,
117    SignedShort,
118    UnsignedShort,
119    SignedInt,
120    UnsignedInt,
121    SignedLong,
122    UnsignedLong,
123    SignedLongLong,
124    UnsignedLongLong
125  };
126
127  enum RealType {
128    NoFloat = 255,
129    Float = 0,
130    Double,
131    LongDouble
132  };
133
134  /// \brief The different kinds of __builtin_va_list types defined by
135  /// the target implementation.
136  enum BuiltinVaListKind {
137    /// typedef char* __builtin_va_list;
138    CharPtrBuiltinVaList = 0,
139
140    /// typedef void* __builtin_va_list;
141    VoidPtrBuiltinVaList,
142
143    /// __builtin_va_list as defind by the AArch64 ABI
144    /// http://infocenter.arm.com/help/topic/com.arm.doc.ihi0055a/IHI0055A_aapcs64.pdf
145    AArch64ABIBuiltinVaList,
146
147    /// __builtin_va_list as defined by the PNaCl ABI:
148    /// http://www.chromium.org/nativeclient/pnacl/bitcode-abi#TOC-Machine-Types
149    PNaClABIBuiltinVaList,
150
151    /// __builtin_va_list as defined by the Power ABI:
152    /// https://www.power.org
153    ///        /resources/downloads/Power-Arch-32-bit-ABI-supp-1.0-Embedded.pdf
154    PowerABIBuiltinVaList,
155
156    /// __builtin_va_list as defined by the x86-64 ABI:
157    /// http://www.x86-64.org/documentation/abi.pdf
158    X86_64ABIBuiltinVaList,
159
160    /// __builtin_va_list as defined by ARM AAPCS ABI
161    /// http://infocenter.arm.com
162    //        /help/topic/com.arm.doc.ihi0042d/IHI0042D_aapcs.pdf
163    AAPCSABIBuiltinVaList,
164
165    // typedef struct __va_list_tag
166    //   {
167    //     long __gpr;
168    //     long __fpr;
169    //     void *__overflow_arg_area;
170    //     void *__reg_save_area;
171    //   } va_list[1];
172    SystemZBuiltinVaList
173  };
174
175protected:
176  IntType SizeType, IntMaxType, UIntMaxType, PtrDiffType, IntPtrType, WCharType,
177          WIntType, Char16Type, Char32Type, Int64Type, SigAtomicType,
178          ProcessIDType;
179
180  /// \brief Whether Objective-C's built-in boolean type should be signed char.
181  ///
182  /// Otherwise, when this flag is not set, the normal built-in boolean type is
183  /// used.
184  unsigned UseSignedCharForObjCBool : 1;
185
186  /// Control whether the alignment of bit-field types is respected when laying
187  /// out structures. If true, then the alignment of the bit-field type will be
188  /// used to (a) impact the alignment of the containing structure, and (b)
189  /// ensure that the individual bit-field will not straddle an alignment
190  /// boundary.
191  unsigned UseBitFieldTypeAlignment : 1;
192
193  /// \brief Whether zero length bitfields (e.g., int : 0;) force alignment of
194  /// the next bitfield.
195  ///
196  /// If the alignment of the zero length bitfield is greater than the member
197  /// that follows it, `bar', `bar' will be aligned as the type of the
198  /// zero-length bitfield.
199  unsigned UseZeroLengthBitfieldAlignment : 1;
200
201  /// If non-zero, specifies a fixed alignment value for bitfields that follow
202  /// zero length bitfield, regardless of the zero length bitfield type.
203  unsigned ZeroLengthBitfieldBoundary;
204
205  /// \brief Specify if mangling based on address space map should be used or
206  /// not for language specific address spaces
207  bool UseAddrSpaceMapMangling;
208
209public:
210  IntType getSizeType() const { return SizeType; }
211  IntType getIntMaxType() const { return IntMaxType; }
212  IntType getUIntMaxType() const { return UIntMaxType; }
213  IntType getPtrDiffType(unsigned AddrSpace) const {
214    return AddrSpace == 0 ? PtrDiffType : getPtrDiffTypeV(AddrSpace);
215  }
216  IntType getIntPtrType() const { return IntPtrType; }
217  IntType getWCharType() const { return WCharType; }
218  IntType getWIntType() const { return WIntType; }
219  IntType getChar16Type() const { return Char16Type; }
220  IntType getChar32Type() const { return Char32Type; }
221  IntType getInt64Type() const { return Int64Type; }
222  IntType getSigAtomicType() const { return SigAtomicType; }
223  IntType getProcessIDType() const { return ProcessIDType; }
224
225  /// \brief Return the width (in bits) of the specified integer type enum.
226  ///
227  /// For example, SignedInt -> getIntWidth().
228  unsigned getTypeWidth(IntType T) const;
229
230  /// \brief Return integer type with specified width.
231  IntType getIntTypeByWidth(unsigned BitWidth, bool IsSigned) const;
232
233  /// \brief Return floating point type with specified width.
234  RealType getRealTypeByWidth(unsigned BitWidth) const;
235
236  /// \brief Return the alignment (in bits) of the specified integer type enum.
237  ///
238  /// For example, SignedInt -> getIntAlign().
239  unsigned getTypeAlign(IntType T) const;
240
241  /// \brief Returns true if the type is signed; false otherwise.
242  static bool isTypeSigned(IntType T);
243
244  /// \brief Return the width of pointers on this target, for the
245  /// specified address space.
246  uint64_t getPointerWidth(unsigned AddrSpace) const {
247    return AddrSpace == 0 ? PointerWidth : getPointerWidthV(AddrSpace);
248  }
249  uint64_t getPointerAlign(unsigned AddrSpace) const {
250    return AddrSpace == 0 ? PointerAlign : getPointerAlignV(AddrSpace);
251  }
252
253  /// \brief Return the size of '_Bool' and C++ 'bool' for this target, in bits.
254  unsigned getBoolWidth() const { return BoolWidth; }
255
256  /// \brief Return the alignment of '_Bool' and C++ 'bool' for this target.
257  unsigned getBoolAlign() const { return BoolAlign; }
258
259  unsigned getCharWidth() const { return 8; } // FIXME
260  unsigned getCharAlign() const { return 8; } // FIXME
261
262  /// \brief Return the size of 'signed short' and 'unsigned short' for this
263  /// target, in bits.
264  unsigned getShortWidth() const { return 16; } // FIXME
265
266  /// \brief Return the alignment of 'signed short' and 'unsigned short' for
267  /// this target.
268  unsigned getShortAlign() const { return 16; } // FIXME
269
270  /// getIntWidth/Align - Return the size of 'signed int' and 'unsigned int' for
271  /// this target, in bits.
272  unsigned getIntWidth() const { return IntWidth; }
273  unsigned getIntAlign() const { return IntAlign; }
274
275  /// getLongWidth/Align - Return the size of 'signed long' and 'unsigned long'
276  /// for this target, in bits.
277  unsigned getLongWidth() const { return LongWidth; }
278  unsigned getLongAlign() const { return LongAlign; }
279
280  /// getLongLongWidth/Align - Return the size of 'signed long long' and
281  /// 'unsigned long long' for this target, in bits.
282  unsigned getLongLongWidth() const { return LongLongWidth; }
283  unsigned getLongLongAlign() const { return LongLongAlign; }
284
285  /// \brief Determine whether the __int128 type is supported on this target.
286  bool hasInt128Type() const { return getPointerWidth(0) >= 64; } // FIXME
287
288  /// \brief Return the alignment that is suitable for storing any
289  /// object with a fundamental alignment requirement.
290  unsigned getSuitableAlign() const { return SuitableAlign; }
291
292  /// getMinGlobalAlign - Return the minimum alignment of a global variable,
293  /// unless its alignment is explicitly reduced via attributes.
294  unsigned getMinGlobalAlign() const { return MinGlobalAlign; }
295
296  /// getWCharWidth/Align - Return the size of 'wchar_t' for this target, in
297  /// bits.
298  unsigned getWCharWidth() const { return getTypeWidth(WCharType); }
299  unsigned getWCharAlign() const { return getTypeAlign(WCharType); }
300
301  /// getChar16Width/Align - Return the size of 'char16_t' for this target, in
302  /// bits.
303  unsigned getChar16Width() const { return getTypeWidth(Char16Type); }
304  unsigned getChar16Align() const { return getTypeAlign(Char16Type); }
305
306  /// getChar32Width/Align - Return the size of 'char32_t' for this target, in
307  /// bits.
308  unsigned getChar32Width() const { return getTypeWidth(Char32Type); }
309  unsigned getChar32Align() const { return getTypeAlign(Char32Type); }
310
311  /// getHalfWidth/Align/Format - Return the size/align/format of 'half'.
312  unsigned getHalfWidth() const { return HalfWidth; }
313  unsigned getHalfAlign() const { return HalfAlign; }
314  const llvm::fltSemantics &getHalfFormat() const { return *HalfFormat; }
315
316  /// getFloatWidth/Align/Format - Return the size/align/format of 'float'.
317  unsigned getFloatWidth() const { return FloatWidth; }
318  unsigned getFloatAlign() const { return FloatAlign; }
319  const llvm::fltSemantics &getFloatFormat() const { return *FloatFormat; }
320
321  /// getDoubleWidth/Align/Format - Return the size/align/format of 'double'.
322  unsigned getDoubleWidth() const { return DoubleWidth; }
323  unsigned getDoubleAlign() const { return DoubleAlign; }
324  const llvm::fltSemantics &getDoubleFormat() const { return *DoubleFormat; }
325
326  /// getLongDoubleWidth/Align/Format - Return the size/align/format of 'long
327  /// double'.
328  unsigned getLongDoubleWidth() const { return LongDoubleWidth; }
329  unsigned getLongDoubleAlign() const { return LongDoubleAlign; }
330  const llvm::fltSemantics &getLongDoubleFormat() const {
331    return *LongDoubleFormat;
332  }
333
334  /// \brief Return the value for the C99 FLT_EVAL_METHOD macro.
335  virtual unsigned getFloatEvalMethod() const { return 0; }
336
337  // getLargeArrayMinWidth/Align - Return the minimum array size that is
338  // 'large' and its alignment.
339  unsigned getLargeArrayMinWidth() const { return LargeArrayMinWidth; }
340  unsigned getLargeArrayAlign() const { return LargeArrayAlign; }
341
342  /// \brief Return the maximum width lock-free atomic operation which will
343  /// ever be supported for the given target
344  unsigned getMaxAtomicPromoteWidth() const { return MaxAtomicPromoteWidth; }
345  /// \brief Return the maximum width lock-free atomic operation which can be
346  /// inlined given the supported features of the given target.
347  unsigned getMaxAtomicInlineWidth() const { return MaxAtomicInlineWidth; }
348
349  /// \brief Return the maximum vector alignment supported for the given target.
350  unsigned getMaxVectorAlign() const { return MaxVectorAlign; }
351
352  /// \brief Return the size of intmax_t and uintmax_t for this target, in bits.
353  unsigned getIntMaxTWidth() const {
354    return getTypeWidth(IntMaxType);
355  }
356
357  // Return the size of unwind_word for this target.
358  unsigned getUnwindWordWidth() const { return getPointerWidth(0); }
359
360  /// \brief Return the "preferred" register width on this target.
361  unsigned getRegisterWidth() const {
362    // Currently we assume the register width on the target matches the pointer
363    // width, we can introduce a new variable for this if/when some target wants
364    // it.
365    return PointerWidth;
366  }
367
368  /// \brief Returns the default value of the __USER_LABEL_PREFIX__ macro,
369  /// which is the prefix given to user symbols by default.
370  ///
371  /// On most platforms this is "_", but it is "" on some, and "." on others.
372  const char *getUserLabelPrefix() const {
373    return UserLabelPrefix;
374  }
375
376  /// \brief Returns the name of the mcount instrumentation function.
377  const char *getMCountName() const {
378    return MCountName;
379  }
380
381  /// \brief Check if the Objective-C built-in boolean type should be signed
382  /// char.
383  ///
384  /// Otherwise, if this returns false, the normal built-in boolean type
385  /// should also be used for Objective-C.
386  bool useSignedCharForObjCBool() const {
387    return UseSignedCharForObjCBool;
388  }
389  void noSignedCharForObjCBool() {
390    UseSignedCharForObjCBool = false;
391  }
392
393  /// \brief Check whether the alignment of bit-field types is respected
394  /// when laying out structures.
395  bool useBitFieldTypeAlignment() const {
396    return UseBitFieldTypeAlignment;
397  }
398
399  /// \brief Check whether zero length bitfields should force alignment of
400  /// the next member.
401  bool useZeroLengthBitfieldAlignment() const {
402    return UseZeroLengthBitfieldAlignment;
403  }
404
405  /// \brief Get the fixed alignment value in bits for a member that follows
406  /// a zero length bitfield.
407  unsigned getZeroLengthBitfieldBoundary() const {
408    return ZeroLengthBitfieldBoundary;
409  }
410
411  /// \brief Check whether this target support '\#pragma options align=mac68k'.
412  bool hasAlignMac68kSupport() const {
413    return HasAlignMac68kSupport;
414  }
415
416  /// \brief Return the user string for the specified integer type enum.
417  ///
418  /// For example, SignedShort -> "short".
419  static const char *getTypeName(IntType T);
420
421  /// \brief Return the constant suffix for the specified integer type enum.
422  ///
423  /// For example, SignedLong -> "L".
424  static const char *getTypeConstantSuffix(IntType T);
425
426  /// \brief Check whether the given real type should use the "fpret" flavor of
427  /// Objective-C message passing on this target.
428  bool useObjCFPRetForRealType(RealType T) const {
429    return RealTypeUsesObjCFPRet & (1 << T);
430  }
431
432  /// \brief Check whether _Complex long double should use the "fp2ret" flavor
433  /// of Objective-C message passing on this target.
434  bool useObjCFP2RetForComplexLongDouble() const {
435    return ComplexLongDoubleUsesFP2Ret;
436  }
437
438  /// \brief Specify if mangling based on address space map should be used or
439  /// not for language specific address spaces
440  bool useAddressSpaceMapMangling() const {
441    return UseAddrSpaceMapMangling;
442  }
443
444  ///===---- Other target property query methods --------------------------===//
445
446  /// \brief Appends the target-specific \#define values for this
447  /// target set to the specified buffer.
448  virtual void getTargetDefines(const LangOptions &Opts,
449                                MacroBuilder &Builder) const = 0;
450
451
452  /// Return information about target-specific builtins for
453  /// the current primary target, and info about which builtins are non-portable
454  /// across the current set of primary and secondary targets.
455  virtual void getTargetBuiltins(const Builtin::Info *&Records,
456                                 unsigned &NumRecords) const = 0;
457
458  /// The __builtin_clz* and __builtin_ctz* built-in
459  /// functions are specified to have undefined results for zero inputs, but
460  /// on targets that support these operations in a way that provides
461  /// well-defined results for zero without loss of performance, it is a good
462  /// idea to avoid optimizing based on that undef behavior.
463  virtual bool isCLZForZeroUndef() const { return true; }
464
465  /// \brief Returns the kind of __builtin_va_list type that should be used
466  /// with this target.
467  virtual BuiltinVaListKind getBuiltinVaListKind() const = 0;
468
469  /// \brief Returns whether the passed in string is a valid clobber in an
470  /// inline asm statement.
471  ///
472  /// This is used by Sema.
473  bool isValidClobber(StringRef Name) const;
474
475  /// \brief Returns whether the passed in string is a valid register name
476  /// according to GCC.
477  ///
478  /// This is used by Sema for inline asm statements.
479  bool isValidGCCRegisterName(StringRef Name) const;
480
481  /// \brief Returns the "normalized" GCC register name.
482  ///
483  /// For example, on x86 it will return "ax" when "eax" is passed in.
484  StringRef getNormalizedGCCRegisterName(StringRef Name) const;
485
486  struct ConstraintInfo {
487    enum {
488      CI_None = 0x00,
489      CI_AllowsMemory = 0x01,
490      CI_AllowsRegister = 0x02,
491      CI_ReadWrite = 0x04,       // "+r" output constraint (read and write).
492      CI_HasMatchingInput = 0x08 // This output operand has a matching input.
493    };
494    unsigned Flags;
495    int TiedOperand;
496
497    std::string ConstraintStr;  // constraint: "=rm"
498    std::string Name;           // Operand name: [foo] with no []'s.
499  public:
500    ConstraintInfo(StringRef ConstraintStr, StringRef Name)
501      : Flags(0), TiedOperand(-1), ConstraintStr(ConstraintStr.str()),
502      Name(Name.str()) {}
503
504    const std::string &getConstraintStr() const { return ConstraintStr; }
505    const std::string &getName() const { return Name; }
506    bool isReadWrite() const { return (Flags & CI_ReadWrite) != 0; }
507    bool allowsRegister() const { return (Flags & CI_AllowsRegister) != 0; }
508    bool allowsMemory() const { return (Flags & CI_AllowsMemory) != 0; }
509
510    /// \brief Return true if this output operand has a matching
511    /// (tied) input operand.
512    bool hasMatchingInput() const { return (Flags & CI_HasMatchingInput) != 0; }
513
514    /// \brief Return true if this input operand is a matching
515    /// constraint that ties it to an output operand.
516    ///
517    /// If this returns true then getTiedOperand will indicate which output
518    /// operand this is tied to.
519    bool hasTiedOperand() const { return TiedOperand != -1; }
520    unsigned getTiedOperand() const {
521      assert(hasTiedOperand() && "Has no tied operand!");
522      return (unsigned)TiedOperand;
523    }
524
525    void setIsReadWrite() { Flags |= CI_ReadWrite; }
526    void setAllowsMemory() { Flags |= CI_AllowsMemory; }
527    void setAllowsRegister() { Flags |= CI_AllowsRegister; }
528    void setHasMatchingInput() { Flags |= CI_HasMatchingInput; }
529
530    /// \brief Indicate that this is an input operand that is tied to
531    /// the specified output operand.
532    ///
533    /// Copy over the various constraint information from the output.
534    void setTiedOperand(unsigned N, ConstraintInfo &Output) {
535      Output.setHasMatchingInput();
536      Flags = Output.Flags;
537      TiedOperand = N;
538      // Don't copy Name or constraint string.
539    }
540  };
541
542  // validateOutputConstraint, validateInputConstraint - Checks that
543  // a constraint is valid and provides information about it.
544  // FIXME: These should return a real error instead of just true/false.
545  bool validateOutputConstraint(ConstraintInfo &Info) const;
546  bool validateInputConstraint(ConstraintInfo *OutputConstraints,
547                               unsigned NumOutputs,
548                               ConstraintInfo &info) const;
549  virtual bool validateInputSize(StringRef /*Constraint*/,
550                                 unsigned /*Size*/) const {
551    return true;
552  }
553  virtual bool validateConstraintModifier(StringRef /*Constraint*/,
554                                          const char /*Modifier*/,
555                                          unsigned /*Size*/) const {
556    return true;
557  }
558  bool resolveSymbolicName(const char *&Name,
559                           ConstraintInfo *OutputConstraints,
560                           unsigned NumOutputs, unsigned &Index) const;
561
562  // Constraint parm will be left pointing at the last character of
563  // the constraint.  In practice, it won't be changed unless the
564  // constraint is longer than one character.
565  virtual std::string convertConstraint(const char *&Constraint) const {
566    // 'p' defaults to 'r', but can be overridden by targets.
567    if (*Constraint == 'p')
568      return std::string("r");
569    return std::string(1, *Constraint);
570  }
571
572  /// \brief Returns a string of target-specific clobbers, in LLVM format.
573  virtual const char *getClobbers() const = 0;
574
575
576  /// \brief Returns the target triple of the primary target.
577  const llvm::Triple &getTriple() const {
578    return Triple;
579  }
580
581  const char *getTargetDescription() const {
582    return DescriptionString;
583  }
584
585  struct GCCRegAlias {
586    const char * const Aliases[5];
587    const char * const Register;
588  };
589
590  struct AddlRegName {
591    const char * const Names[5];
592    const unsigned RegNum;
593  };
594
595  /// \brief Does this target support "protected" visibility?
596  ///
597  /// Any target which dynamic libraries will naturally support
598  /// something like "default" (meaning that the symbol is visible
599  /// outside this shared object) and "hidden" (meaning that it isn't)
600  /// visibilities, but "protected" is really an ELF-specific concept
601  /// with weird semantics designed around the convenience of dynamic
602  /// linker implementations.  Which is not to suggest that there's
603  /// consistent target-independent semantics for "default" visibility
604  /// either; the entire thing is pretty badly mangled.
605  virtual bool hasProtectedVisibility() const { return true; }
606
607  /// \brief Return the section to use for CFString literals, or 0 if no
608  /// special section is used.
609  virtual const char *getCFStringSection() const {
610    return "__DATA,__cfstring";
611  }
612
613  /// \brief Return the section to use for NSString literals, or 0 if no
614  /// special section is used.
615  virtual const char *getNSStringSection() const {
616    return "__OBJC,__cstring_object,regular,no_dead_strip";
617  }
618
619  /// \brief Return the section to use for NSString literals, or 0 if no
620  /// special section is used (NonFragile ABI).
621  virtual const char *getNSStringNonFragileABISection() const {
622    return "__DATA, __objc_stringobj, regular, no_dead_strip";
623  }
624
625  /// \brief An optional hook that targets can implement to perform semantic
626  /// checking on attribute((section("foo"))) specifiers.
627  ///
628  /// In this case, "foo" is passed in to be checked.  If the section
629  /// specifier is invalid, the backend should return a non-empty string
630  /// that indicates the problem.
631  ///
632  /// This hook is a simple quality of implementation feature to catch errors
633  /// and give good diagnostics in cases when the assembler or code generator
634  /// would otherwise reject the section specifier.
635  ///
636  virtual std::string isValidSectionSpecifier(StringRef SR) const {
637    return "";
638  }
639
640  /// \brief Set forced language options.
641  ///
642  /// Apply changes to the target information with respect to certain
643  /// language options which change the target configuration.
644  virtual void setForcedLangOptions(LangOptions &Opts);
645
646  /// \brief Get the default set of target features for the CPU;
647  /// this should include all legal feature strings on the target.
648  virtual void getDefaultFeatures(llvm::StringMap<bool> &Features) const {
649  }
650
651  /// \brief Get the ABI currently in use.
652  virtual const char *getABI() const {
653    return "";
654  }
655
656  /// \brief Get the C++ ABI currently in use.
657  TargetCXXABI getCXXABI() const {
658    return TheCXXABI;
659  }
660
661  /// \brief Target the specified CPU.
662  ///
663  /// \return  False on error (invalid CPU name).
664  virtual bool setCPU(const std::string &Name) {
665    return false;
666  }
667
668  /// \brief Use the specified ABI.
669  ///
670  /// \return False on error (invalid ABI name).
671  virtual bool setABI(const std::string &Name) {
672    return false;
673  }
674
675  /// \brief Use the specified unit for FP math.
676  ///
677  /// \return False on error (invalid unit name).
678  virtual bool setFPMath(StringRef Name) {
679    return false;
680  }
681
682  /// \brief Use this specified C++ ABI.
683  ///
684  /// \return False on error (invalid C++ ABI name).
685  bool setCXXABI(llvm::StringRef name) {
686    TargetCXXABI ABI;
687    if (!ABI.tryParse(name)) return false;
688    return setCXXABI(ABI);
689  }
690
691  /// \brief Set the C++ ABI to be used by this implementation.
692  ///
693  /// \return False on error (ABI not valid on this target)
694  virtual bool setCXXABI(TargetCXXABI ABI) {
695    TheCXXABI = ABI;
696    return true;
697  }
698
699  /// \brief Enable or disable a specific target feature;
700  /// the feature name must be valid.
701  virtual void setFeatureEnabled(llvm::StringMap<bool> &Features,
702                                 StringRef Name,
703                                 bool Enabled) const {
704    Features[Name] = Enabled;
705  }
706
707  /// \brief Perform initialization based on the user configured
708  /// set of features (e.g., +sse4).
709  ///
710  /// The list is guaranteed to have at most one entry per feature.
711  ///
712  /// The target may modify the features list, to change which options are
713  /// passed onwards to the backend.
714  ///
715  /// \return  False on error.
716  virtual bool handleTargetFeatures(std::vector<std::string> &Features,
717                                    DiagnosticsEngine &Diags) {
718    return true;
719  }
720
721  /// \brief Determine whether the given target has the given feature.
722  virtual bool hasFeature(StringRef Feature) const {
723    return false;
724  }
725
726  // \brief Returns maximal number of args passed in registers.
727  unsigned getRegParmMax() const {
728    assert(RegParmMax < 7 && "RegParmMax value is larger than AST can handle");
729    return RegParmMax;
730  }
731
732  /// \brief Whether the target supports thread-local storage.
733  bool isTLSSupported() const {
734    return TLSSupported;
735  }
736
737  /// \brief Return true if {|} are normal characters in the asm string.
738  ///
739  /// If this returns false (the default), then {abc|xyz} is syntax
740  /// that says that when compiling for asm variant #0, "abc" should be
741  /// generated, but when compiling for asm variant #1, "xyz" should be
742  /// generated.
743  bool hasNoAsmVariants() const {
744    return NoAsmVariants;
745  }
746
747  /// \brief Return the register number that __builtin_eh_return_regno would
748  /// return with the specified argument.
749  virtual int getEHDataRegisterNumber(unsigned RegNo) const {
750    return -1;
751  }
752
753  /// \brief Return the section to use for C++ static initialization functions.
754  virtual const char *getStaticInitSectionSpecifier() const {
755    return 0;
756  }
757
758  const LangAS::Map &getAddressSpaceMap() const {
759    return *AddrSpaceMap;
760  }
761
762  /// \brief Retrieve the name of the platform as it is used in the
763  /// availability attribute.
764  StringRef getPlatformName() const { return PlatformName; }
765
766  /// \brief Retrieve the minimum desired version of the platform, to
767  /// which the program should be compiled.
768  VersionTuple getPlatformMinVersion() const { return PlatformMinVersion; }
769
770  bool isBigEndian() const { return BigEndian; }
771
772  enum CallingConvMethodType {
773    CCMT_Unknown,
774    CCMT_Member,
775    CCMT_NonMember
776  };
777
778  /// \brief Gets the default calling convention for the given target and
779  /// declaration context.
780  virtual CallingConv getDefaultCallingConv(CallingConvMethodType MT) const {
781    // Not all targets will specify an explicit calling convention that we can
782    // express.  This will always do the right thing, even though it's not
783    // an explicit calling convention.
784    return CC_C;
785  }
786
787  enum CallingConvCheckResult {
788    CCCR_OK,
789    CCCR_Warning
790  };
791
792  /// \brief Determines whether a given calling convention is valid for the
793  /// target. A calling convention can either be accepted, produce a warning
794  /// and be substituted with the default calling convention, or (someday)
795  /// produce an error (such as using thiscall on a non-instance function).
796  virtual CallingConvCheckResult checkCallingConvention(CallingConv CC) const {
797    switch (CC) {
798      default:
799        return CCCR_Warning;
800      case CC_C:
801        return CCCR_OK;
802    }
803  }
804
805protected:
806  virtual uint64_t getPointerWidthV(unsigned AddrSpace) const {
807    return PointerWidth;
808  }
809  virtual uint64_t getPointerAlignV(unsigned AddrSpace) const {
810    return PointerAlign;
811  }
812  virtual enum IntType getPtrDiffTypeV(unsigned AddrSpace) const {
813    return PtrDiffType;
814  }
815  virtual void getGCCRegNames(const char * const *&Names,
816                              unsigned &NumNames) const = 0;
817  virtual void getGCCRegAliases(const GCCRegAlias *&Aliases,
818                                unsigned &NumAliases) const = 0;
819  virtual void getGCCAddlRegNames(const AddlRegName *&Addl,
820                                  unsigned &NumAddl) const {
821    Addl = 0;
822    NumAddl = 0;
823  }
824  virtual bool validateAsmConstraint(const char *&Name,
825                                     TargetInfo::ConstraintInfo &info) const= 0;
826};
827
828}  // end namespace clang
829
830#endif
831