LoopVectorize.cpp revision 263508
1//===- LoopVectorize.cpp - A Loop Vectorizer ------------------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This is the LLVM loop vectorizer. This pass modifies 'vectorizable' loops
11// and generates target-independent LLVM-IR.
12// The vectorizer uses the TargetTransformInfo analysis to estimate the costs
13// of instructions in order to estimate the profitability of vectorization.
14//
15// The loop vectorizer combines consecutive loop iterations into a single
16// 'wide' iteration. After this transformation the index is incremented
17// by the SIMD vector width, and not by one.
18//
19// This pass has three parts:
20// 1. The main loop pass that drives the different parts.
21// 2. LoopVectorizationLegality - A unit that checks for the legality
22//    of the vectorization.
23// 3. InnerLoopVectorizer - A unit that performs the actual
24//    widening of instructions.
25// 4. LoopVectorizationCostModel - A unit that checks for the profitability
26//    of vectorization. It decides on the optimal vector width, which
27//    can be one, if vectorization is not profitable.
28//
29//===----------------------------------------------------------------------===//
30//
31// The reduction-variable vectorization is based on the paper:
32//  D. Nuzman and R. Henderson. Multi-platform Auto-vectorization.
33//
34// Variable uniformity checks are inspired by:
35//  Karrenberg, R. and Hack, S. Whole Function Vectorization.
36//
37// Other ideas/concepts are from:
38//  A. Zaks and D. Nuzman. Autovectorization in GCC-two years later.
39//
40//  S. Maleki, Y. Gao, M. Garzaran, T. Wong and D. Padua.  An Evaluation of
41//  Vectorizing Compilers.
42//
43//===----------------------------------------------------------------------===//
44
45#define LV_NAME "loop-vectorize"
46#define DEBUG_TYPE LV_NAME
47
48#include "llvm/Transforms/Vectorize.h"
49#include "llvm/ADT/DenseMap.h"
50#include "llvm/ADT/EquivalenceClasses.h"
51#include "llvm/ADT/Hashing.h"
52#include "llvm/ADT/MapVector.h"
53#include "llvm/ADT/SetVector.h"
54#include "llvm/ADT/SmallPtrSet.h"
55#include "llvm/ADT/SmallSet.h"
56#include "llvm/ADT/SmallVector.h"
57#include "llvm/ADT/StringExtras.h"
58#include "llvm/Analysis/AliasAnalysis.h"
59#include "llvm/Analysis/Dominators.h"
60#include "llvm/Analysis/LoopInfo.h"
61#include "llvm/Analysis/LoopIterator.h"
62#include "llvm/Analysis/LoopPass.h"
63#include "llvm/Analysis/ScalarEvolution.h"
64#include "llvm/Analysis/ScalarEvolutionExpander.h"
65#include "llvm/Analysis/ScalarEvolutionExpressions.h"
66#include "llvm/Analysis/TargetTransformInfo.h"
67#include "llvm/Analysis/ValueTracking.h"
68#include "llvm/Analysis/Verifier.h"
69#include "llvm/IR/Constants.h"
70#include "llvm/IR/DataLayout.h"
71#include "llvm/IR/DerivedTypes.h"
72#include "llvm/IR/Function.h"
73#include "llvm/IR/IRBuilder.h"
74#include "llvm/IR/Instructions.h"
75#include "llvm/IR/IntrinsicInst.h"
76#include "llvm/IR/LLVMContext.h"
77#include "llvm/IR/Module.h"
78#include "llvm/IR/Type.h"
79#include "llvm/IR/Value.h"
80#include "llvm/Pass.h"
81#include "llvm/Support/CommandLine.h"
82#include "llvm/Support/Debug.h"
83#include "llvm/Support/PatternMatch.h"
84#include "llvm/Support/raw_ostream.h"
85#include "llvm/Support/ValueHandle.h"
86#include "llvm/Target/TargetLibraryInfo.h"
87#include "llvm/Transforms/Scalar.h"
88#include "llvm/Transforms/Utils/BasicBlockUtils.h"
89#include "llvm/Transforms/Utils/Local.h"
90#include <algorithm>
91#include <map>
92
93using namespace llvm;
94using namespace llvm::PatternMatch;
95
96static cl::opt<unsigned>
97VectorizationFactor("force-vector-width", cl::init(0), cl::Hidden,
98                    cl::desc("Sets the SIMD width. Zero is autoselect."));
99
100static cl::opt<unsigned>
101VectorizationUnroll("force-vector-unroll", cl::init(0), cl::Hidden,
102                    cl::desc("Sets the vectorization unroll count. "
103                             "Zero is autoselect."));
104
105static cl::opt<bool>
106EnableIfConversion("enable-if-conversion", cl::init(true), cl::Hidden,
107                   cl::desc("Enable if-conversion during vectorization."));
108
109/// We don't vectorize loops with a known constant trip count below this number.
110static cl::opt<unsigned>
111TinyTripCountVectorThreshold("vectorizer-min-trip-count", cl::init(16),
112                             cl::Hidden,
113                             cl::desc("Don't vectorize loops with a constant "
114                                      "trip count that is smaller than this "
115                                      "value."));
116
117/// We don't unroll loops with a known constant trip count below this number.
118static const unsigned TinyTripCountUnrollThreshold = 128;
119
120/// When performing memory disambiguation checks at runtime do not make more
121/// than this number of comparisons.
122static const unsigned RuntimeMemoryCheckThreshold = 8;
123
124/// Maximum simd width.
125static const unsigned MaxVectorWidth = 64;
126
127/// Maximum vectorization unroll count.
128static const unsigned MaxUnrollFactor = 16;
129
130/// The cost of a loop that is considered 'small' by the unroller.
131static const unsigned SmallLoopCost = 20;
132
133namespace {
134
135// Forward declarations.
136class LoopVectorizationLegality;
137class LoopVectorizationCostModel;
138
139/// InnerLoopVectorizer vectorizes loops which contain only one basic
140/// block to a specified vectorization factor (VF).
141/// This class performs the widening of scalars into vectors, or multiple
142/// scalars. This class also implements the following features:
143/// * It inserts an epilogue loop for handling loops that don't have iteration
144///   counts that are known to be a multiple of the vectorization factor.
145/// * It handles the code generation for reduction variables.
146/// * Scalarization (implementation using scalars) of un-vectorizable
147///   instructions.
148/// InnerLoopVectorizer does not perform any vectorization-legality
149/// checks, and relies on the caller to check for the different legality
150/// aspects. The InnerLoopVectorizer relies on the
151/// LoopVectorizationLegality class to provide information about the induction
152/// and reduction variables that were found to a given vectorization factor.
153class InnerLoopVectorizer {
154public:
155  InnerLoopVectorizer(Loop *OrigLoop, ScalarEvolution *SE, LoopInfo *LI,
156                      DominatorTree *DT, DataLayout *DL,
157                      const TargetLibraryInfo *TLI, unsigned VecWidth,
158                      unsigned UnrollFactor)
159      : OrigLoop(OrigLoop), SE(SE), LI(LI), DT(DT), DL(DL), TLI(TLI),
160        VF(VecWidth), UF(UnrollFactor), Builder(SE->getContext()), Induction(0),
161        OldInduction(0), WidenMap(UnrollFactor) {}
162
163  // Perform the actual loop widening (vectorization).
164  void vectorize(LoopVectorizationLegality *Legal) {
165    // Create a new empty loop. Unlink the old loop and connect the new one.
166    createEmptyLoop(Legal);
167    // Widen each instruction in the old loop to a new one in the new loop.
168    // Use the Legality module to find the induction and reduction variables.
169    vectorizeLoop(Legal);
170    // Register the new loop and update the analysis passes.
171    updateAnalysis();
172  }
173
174  virtual ~InnerLoopVectorizer() {}
175
176protected:
177  /// A small list of PHINodes.
178  typedef SmallVector<PHINode*, 4> PhiVector;
179  /// When we unroll loops we have multiple vector values for each scalar.
180  /// This data structure holds the unrolled and vectorized values that
181  /// originated from one scalar instruction.
182  typedef SmallVector<Value*, 2> VectorParts;
183
184  // When we if-convert we need create edge masks. We have to cache values so
185  // that we don't end up with exponential recursion/IR.
186  typedef DenseMap<std::pair<BasicBlock*, BasicBlock*>,
187                   VectorParts> EdgeMaskCache;
188
189  /// Add code that checks at runtime if the accessed arrays overlap.
190  /// Returns the comparator value or NULL if no check is needed.
191  Instruction *addRuntimeCheck(LoopVectorizationLegality *Legal,
192                               Instruction *Loc);
193  /// Create an empty loop, based on the loop ranges of the old loop.
194  void createEmptyLoop(LoopVectorizationLegality *Legal);
195  /// Copy and widen the instructions from the old loop.
196  virtual void vectorizeLoop(LoopVectorizationLegality *Legal);
197
198  /// \brief The Loop exit block may have single value PHI nodes where the
199  /// incoming value is 'Undef'. While vectorizing we only handled real values
200  /// that were defined inside the loop. Here we fix the 'undef case'.
201  /// See PR14725.
202  void fixLCSSAPHIs();
203
204  /// A helper function that computes the predicate of the block BB, assuming
205  /// that the header block of the loop is set to True. It returns the *entry*
206  /// mask for the block BB.
207  VectorParts createBlockInMask(BasicBlock *BB);
208  /// A helper function that computes the predicate of the edge between SRC
209  /// and DST.
210  VectorParts createEdgeMask(BasicBlock *Src, BasicBlock *Dst);
211
212  /// A helper function to vectorize a single BB within the innermost loop.
213  void vectorizeBlockInLoop(LoopVectorizationLegality *Legal, BasicBlock *BB,
214                            PhiVector *PV);
215
216  /// Vectorize a single PHINode in a block. This method handles the induction
217  /// variable canonicalization. It supports both VF = 1 for unrolled loops and
218  /// arbitrary length vectors.
219  void widenPHIInstruction(Instruction *PN, VectorParts &Entry,
220                           LoopVectorizationLegality *Legal,
221                           unsigned UF, unsigned VF, PhiVector *PV);
222
223  /// Insert the new loop to the loop hierarchy and pass manager
224  /// and update the analysis passes.
225  void updateAnalysis();
226
227  /// This instruction is un-vectorizable. Implement it as a sequence
228  /// of scalars.
229  virtual void scalarizeInstruction(Instruction *Instr);
230
231  /// Vectorize Load and Store instructions,
232  virtual void vectorizeMemoryInstruction(Instruction *Instr,
233                                  LoopVectorizationLegality *Legal);
234
235  /// Create a broadcast instruction. This method generates a broadcast
236  /// instruction (shuffle) for loop invariant values and for the induction
237  /// value. If this is the induction variable then we extend it to N, N+1, ...
238  /// this is needed because each iteration in the loop corresponds to a SIMD
239  /// element.
240  virtual Value *getBroadcastInstrs(Value *V);
241
242  /// This function adds 0, 1, 2 ... to each vector element, starting at zero.
243  /// If Negate is set then negative numbers are added e.g. (0, -1, -2, ...).
244  /// The sequence starts at StartIndex.
245  virtual Value *getConsecutiveVector(Value* Val, int StartIdx, bool Negate);
246
247  /// When we go over instructions in the basic block we rely on previous
248  /// values within the current basic block or on loop invariant values.
249  /// When we widen (vectorize) values we place them in the map. If the values
250  /// are not within the map, they have to be loop invariant, so we simply
251  /// broadcast them into a vector.
252  VectorParts &getVectorValue(Value *V);
253
254  /// Generate a shuffle sequence that will reverse the vector Vec.
255  virtual Value *reverseVector(Value *Vec);
256
257  /// This is a helper class that holds the vectorizer state. It maps scalar
258  /// instructions to vector instructions. When the code is 'unrolled' then
259  /// then a single scalar value is mapped to multiple vector parts. The parts
260  /// are stored in the VectorPart type.
261  struct ValueMap {
262    /// C'tor.  UnrollFactor controls the number of vectors ('parts') that
263    /// are mapped.
264    ValueMap(unsigned UnrollFactor) : UF(UnrollFactor) {}
265
266    /// \return True if 'Key' is saved in the Value Map.
267    bool has(Value *Key) const { return MapStorage.count(Key); }
268
269    /// Initializes a new entry in the map. Sets all of the vector parts to the
270    /// save value in 'Val'.
271    /// \return A reference to a vector with splat values.
272    VectorParts &splat(Value *Key, Value *Val) {
273      VectorParts &Entry = MapStorage[Key];
274      Entry.assign(UF, Val);
275      return Entry;
276    }
277
278    ///\return A reference to the value that is stored at 'Key'.
279    VectorParts &get(Value *Key) {
280      VectorParts &Entry = MapStorage[Key];
281      if (Entry.empty())
282        Entry.resize(UF);
283      assert(Entry.size() == UF);
284      return Entry;
285    }
286
287  private:
288    /// The unroll factor. Each entry in the map stores this number of vector
289    /// elements.
290    unsigned UF;
291
292    /// Map storage. We use std::map and not DenseMap because insertions to a
293    /// dense map invalidates its iterators.
294    std::map<Value *, VectorParts> MapStorage;
295  };
296
297  /// The original loop.
298  Loop *OrigLoop;
299  /// Scev analysis to use.
300  ScalarEvolution *SE;
301  /// Loop Info.
302  LoopInfo *LI;
303  /// Dominator Tree.
304  DominatorTree *DT;
305  /// Data Layout.
306  DataLayout *DL;
307  /// Target Library Info.
308  const TargetLibraryInfo *TLI;
309
310  /// The vectorization SIMD factor to use. Each vector will have this many
311  /// vector elements.
312  unsigned VF;
313
314protected:
315  /// The vectorization unroll factor to use. Each scalar is vectorized to this
316  /// many different vector instructions.
317  unsigned UF;
318
319  /// The builder that we use
320  IRBuilder<> Builder;
321
322  // --- Vectorization state ---
323
324  /// The vector-loop preheader.
325  BasicBlock *LoopVectorPreHeader;
326  /// The scalar-loop preheader.
327  BasicBlock *LoopScalarPreHeader;
328  /// Middle Block between the vector and the scalar.
329  BasicBlock *LoopMiddleBlock;
330  ///The ExitBlock of the scalar loop.
331  BasicBlock *LoopExitBlock;
332  ///The vector loop body.
333  BasicBlock *LoopVectorBody;
334  ///The scalar loop body.
335  BasicBlock *LoopScalarBody;
336  /// A list of all bypass blocks. The first block is the entry of the loop.
337  SmallVector<BasicBlock *, 4> LoopBypassBlocks;
338
339  /// The new Induction variable which was added to the new block.
340  PHINode *Induction;
341  /// The induction variable of the old basic block.
342  PHINode *OldInduction;
343  /// Holds the extended (to the widest induction type) start index.
344  Value *ExtendedIdx;
345  /// Maps scalars to widened vectors.
346  ValueMap WidenMap;
347  EdgeMaskCache MaskCache;
348};
349
350class InnerLoopUnroller : public InnerLoopVectorizer {
351public:
352  InnerLoopUnroller(Loop *OrigLoop, ScalarEvolution *SE, LoopInfo *LI,
353                    DominatorTree *DT, DataLayout *DL,
354                    const TargetLibraryInfo *TLI, unsigned UnrollFactor) :
355    InnerLoopVectorizer(OrigLoop, SE, LI, DT, DL, TLI, 1, UnrollFactor) { }
356
357private:
358  virtual void scalarizeInstruction(Instruction *Instr);
359  virtual void vectorizeMemoryInstruction(Instruction *Instr,
360                                          LoopVectorizationLegality *Legal);
361  virtual Value *getBroadcastInstrs(Value *V);
362  virtual Value *getConsecutiveVector(Value* Val, int StartIdx, bool Negate);
363  virtual Value *reverseVector(Value *Vec);
364};
365
366/// \brief Look for a meaningful debug location on the instruction or it's
367/// operands.
368static Instruction *getDebugLocFromInstOrOperands(Instruction *I) {
369  if (!I)
370    return I;
371
372  DebugLoc Empty;
373  if (I->getDebugLoc() != Empty)
374    return I;
375
376  for (User::op_iterator OI = I->op_begin(), OE = I->op_end(); OI != OE; ++OI) {
377    if (Instruction *OpInst = dyn_cast<Instruction>(*OI))
378      if (OpInst->getDebugLoc() != Empty)
379        return OpInst;
380  }
381
382  return I;
383}
384
385/// \brief Set the debug location in the builder using the debug location in the
386/// instruction.
387static void setDebugLocFromInst(IRBuilder<> &B, const Value *Ptr) {
388  if (const Instruction *Inst = dyn_cast_or_null<Instruction>(Ptr))
389    B.SetCurrentDebugLocation(Inst->getDebugLoc());
390  else
391    B.SetCurrentDebugLocation(DebugLoc());
392}
393
394/// LoopVectorizationLegality checks if it is legal to vectorize a loop, and
395/// to what vectorization factor.
396/// This class does not look at the profitability of vectorization, only the
397/// legality. This class has two main kinds of checks:
398/// * Memory checks - The code in canVectorizeMemory checks if vectorization
399///   will change the order of memory accesses in a way that will change the
400///   correctness of the program.
401/// * Scalars checks - The code in canVectorizeInstrs and canVectorizeMemory
402/// checks for a number of different conditions, such as the availability of a
403/// single induction variable, that all types are supported and vectorize-able,
404/// etc. This code reflects the capabilities of InnerLoopVectorizer.
405/// This class is also used by InnerLoopVectorizer for identifying
406/// induction variable and the different reduction variables.
407class LoopVectorizationLegality {
408public:
409  LoopVectorizationLegality(Loop *L, ScalarEvolution *SE, DataLayout *DL,
410                            DominatorTree *DT, TargetLibraryInfo *TLI)
411      : TheLoop(L), SE(SE), DL(DL), DT(DT), TLI(TLI),
412        Induction(0), WidestIndTy(0), HasFunNoNaNAttr(false),
413        MaxSafeDepDistBytes(-1U) {}
414
415  /// This enum represents the kinds of reductions that we support.
416  enum ReductionKind {
417    RK_NoReduction, ///< Not a reduction.
418    RK_IntegerAdd,  ///< Sum of integers.
419    RK_IntegerMult, ///< Product of integers.
420    RK_IntegerOr,   ///< Bitwise or logical OR of numbers.
421    RK_IntegerAnd,  ///< Bitwise or logical AND of numbers.
422    RK_IntegerXor,  ///< Bitwise or logical XOR of numbers.
423    RK_IntegerMinMax, ///< Min/max implemented in terms of select(cmp()).
424    RK_FloatAdd,    ///< Sum of floats.
425    RK_FloatMult,   ///< Product of floats.
426    RK_FloatMinMax  ///< Min/max implemented in terms of select(cmp()).
427  };
428
429  /// This enum represents the kinds of inductions that we support.
430  enum InductionKind {
431    IK_NoInduction,         ///< Not an induction variable.
432    IK_IntInduction,        ///< Integer induction variable. Step = 1.
433    IK_ReverseIntInduction, ///< Reverse int induction variable. Step = -1.
434    IK_PtrInduction,        ///< Pointer induction var. Step = sizeof(elem).
435    IK_ReversePtrInduction  ///< Reverse ptr indvar. Step = - sizeof(elem).
436  };
437
438  // This enum represents the kind of minmax reduction.
439  enum MinMaxReductionKind {
440    MRK_Invalid,
441    MRK_UIntMin,
442    MRK_UIntMax,
443    MRK_SIntMin,
444    MRK_SIntMax,
445    MRK_FloatMin,
446    MRK_FloatMax
447  };
448
449  /// This struct holds information about reduction variables.
450  struct ReductionDescriptor {
451    ReductionDescriptor() : StartValue(0), LoopExitInstr(0),
452      Kind(RK_NoReduction), MinMaxKind(MRK_Invalid) {}
453
454    ReductionDescriptor(Value *Start, Instruction *Exit, ReductionKind K,
455                        MinMaxReductionKind MK)
456        : StartValue(Start), LoopExitInstr(Exit), Kind(K), MinMaxKind(MK) {}
457
458    // The starting value of the reduction.
459    // It does not have to be zero!
460    TrackingVH<Value> StartValue;
461    // The instruction who's value is used outside the loop.
462    Instruction *LoopExitInstr;
463    // The kind of the reduction.
464    ReductionKind Kind;
465    // If this a min/max reduction the kind of reduction.
466    MinMaxReductionKind MinMaxKind;
467  };
468
469  /// This POD struct holds information about a potential reduction operation.
470  struct ReductionInstDesc {
471    ReductionInstDesc(bool IsRedux, Instruction *I) :
472      IsReduction(IsRedux), PatternLastInst(I), MinMaxKind(MRK_Invalid) {}
473
474    ReductionInstDesc(Instruction *I, MinMaxReductionKind K) :
475      IsReduction(true), PatternLastInst(I), MinMaxKind(K) {}
476
477    // Is this instruction a reduction candidate.
478    bool IsReduction;
479    // The last instruction in a min/max pattern (select of the select(icmp())
480    // pattern), or the current reduction instruction otherwise.
481    Instruction *PatternLastInst;
482    // If this is a min/max pattern the comparison predicate.
483    MinMaxReductionKind MinMaxKind;
484  };
485
486  /// This struct holds information about the memory runtime legality
487  /// check that a group of pointers do not overlap.
488  struct RuntimePointerCheck {
489    RuntimePointerCheck() : Need(false) {}
490
491    /// Reset the state of the pointer runtime information.
492    void reset() {
493      Need = false;
494      Pointers.clear();
495      Starts.clear();
496      Ends.clear();
497      IsWritePtr.clear();
498      DependencySetId.clear();
499    }
500
501    /// Insert a pointer and calculate the start and end SCEVs.
502    void insert(ScalarEvolution *SE, Loop *Lp, Value *Ptr, bool WritePtr,
503                unsigned DepSetId);
504
505    /// This flag indicates if we need to add the runtime check.
506    bool Need;
507    /// Holds the pointers that we need to check.
508    SmallVector<TrackingVH<Value>, 2> Pointers;
509    /// Holds the pointer value at the beginning of the loop.
510    SmallVector<const SCEV*, 2> Starts;
511    /// Holds the pointer value at the end of the loop.
512    SmallVector<const SCEV*, 2> Ends;
513    /// Holds the information if this pointer is used for writing to memory.
514    SmallVector<bool, 2> IsWritePtr;
515    /// Holds the id of the set of pointers that could be dependent because of a
516    /// shared underlying object.
517    SmallVector<unsigned, 2> DependencySetId;
518  };
519
520  /// A struct for saving information about induction variables.
521  struct InductionInfo {
522    InductionInfo(Value *Start, InductionKind K) : StartValue(Start), IK(K) {}
523    InductionInfo() : StartValue(0), IK(IK_NoInduction) {}
524    /// Start value.
525    TrackingVH<Value> StartValue;
526    /// Induction kind.
527    InductionKind IK;
528  };
529
530  /// ReductionList contains the reduction descriptors for all
531  /// of the reductions that were found in the loop.
532  typedef DenseMap<PHINode*, ReductionDescriptor> ReductionList;
533
534  /// InductionList saves induction variables and maps them to the
535  /// induction descriptor.
536  typedef MapVector<PHINode*, InductionInfo> InductionList;
537
538  /// Returns true if it is legal to vectorize this loop.
539  /// This does not mean that it is profitable to vectorize this
540  /// loop, only that it is legal to do so.
541  bool canVectorize();
542
543  /// Returns the Induction variable.
544  PHINode *getInduction() { return Induction; }
545
546  /// Returns the reduction variables found in the loop.
547  ReductionList *getReductionVars() { return &Reductions; }
548
549  /// Returns the induction variables found in the loop.
550  InductionList *getInductionVars() { return &Inductions; }
551
552  /// Returns the widest induction type.
553  Type *getWidestInductionType() { return WidestIndTy; }
554
555  /// Returns True if V is an induction variable in this loop.
556  bool isInductionVariable(const Value *V);
557
558  /// Return true if the block BB needs to be predicated in order for the loop
559  /// to be vectorized.
560  bool blockNeedsPredication(BasicBlock *BB);
561
562  /// Check if this  pointer is consecutive when vectorizing. This happens
563  /// when the last index of the GEP is the induction variable, or that the
564  /// pointer itself is an induction variable.
565  /// This check allows us to vectorize A[idx] into a wide load/store.
566  /// Returns:
567  /// 0 - Stride is unknown or non consecutive.
568  /// 1 - Address is consecutive.
569  /// -1 - Address is consecutive, and decreasing.
570  int isConsecutivePtr(Value *Ptr);
571
572  /// Returns true if the value V is uniform within the loop.
573  bool isUniform(Value *V);
574
575  /// Returns true if this instruction will remain scalar after vectorization.
576  bool isUniformAfterVectorization(Instruction* I) { return Uniforms.count(I); }
577
578  /// Returns the information that we collected about runtime memory check.
579  RuntimePointerCheck *getRuntimePointerCheck() { return &PtrRtCheck; }
580
581  /// This function returns the identity element (or neutral element) for
582  /// the operation K.
583  static Constant *getReductionIdentity(ReductionKind K, Type *Tp);
584
585  unsigned getMaxSafeDepDistBytes() { return MaxSafeDepDistBytes; }
586
587private:
588  /// Check if a single basic block loop is vectorizable.
589  /// At this point we know that this is a loop with a constant trip count
590  /// and we only need to check individual instructions.
591  bool canVectorizeInstrs();
592
593  /// When we vectorize loops we may change the order in which
594  /// we read and write from memory. This method checks if it is
595  /// legal to vectorize the code, considering only memory constrains.
596  /// Returns true if the loop is vectorizable
597  bool canVectorizeMemory();
598
599  /// Return true if we can vectorize this loop using the IF-conversion
600  /// transformation.
601  bool canVectorizeWithIfConvert();
602
603  /// Collect the variables that need to stay uniform after vectorization.
604  void collectLoopUniforms();
605
606  /// Return true if all of the instructions in the block can be speculatively
607  /// executed. \p SafePtrs is a list of addresses that are known to be legal
608  /// and we know that we can read from them without segfault.
609  bool blockCanBePredicated(BasicBlock *BB, SmallPtrSet<Value *, 8>& SafePtrs);
610
611  /// Returns True, if 'Phi' is the kind of reduction variable for type
612  /// 'Kind'. If this is a reduction variable, it adds it to ReductionList.
613  bool AddReductionVar(PHINode *Phi, ReductionKind Kind);
614  /// Returns a struct describing if the instruction 'I' can be a reduction
615  /// variable of type 'Kind'. If the reduction is a min/max pattern of
616  /// select(icmp()) this function advances the instruction pointer 'I' from the
617  /// compare instruction to the select instruction and stores this pointer in
618  /// 'PatternLastInst' member of the returned struct.
619  ReductionInstDesc isReductionInstr(Instruction *I, ReductionKind Kind,
620                                     ReductionInstDesc &Desc);
621  /// Returns true if the instruction is a Select(ICmp(X, Y), X, Y) instruction
622  /// pattern corresponding to a min(X, Y) or max(X, Y).
623  static ReductionInstDesc isMinMaxSelectCmpPattern(Instruction *I,
624                                                    ReductionInstDesc &Prev);
625  /// Returns the induction kind of Phi. This function may return NoInduction
626  /// if the PHI is not an induction variable.
627  InductionKind isInductionVariable(PHINode *Phi);
628
629  /// The loop that we evaluate.
630  Loop *TheLoop;
631  /// Scev analysis.
632  ScalarEvolution *SE;
633  /// DataLayout analysis.
634  DataLayout *DL;
635  /// Dominators.
636  DominatorTree *DT;
637  /// Target Library Info.
638  TargetLibraryInfo *TLI;
639
640  //  ---  vectorization state --- //
641
642  /// Holds the integer induction variable. This is the counter of the
643  /// loop.
644  PHINode *Induction;
645  /// Holds the reduction variables.
646  ReductionList Reductions;
647  /// Holds all of the induction variables that we found in the loop.
648  /// Notice that inductions don't need to start at zero and that induction
649  /// variables can be pointers.
650  InductionList Inductions;
651  /// Holds the widest induction type encountered.
652  Type *WidestIndTy;
653
654  /// Allowed outside users. This holds the reduction
655  /// vars which can be accessed from outside the loop.
656  SmallPtrSet<Value*, 4> AllowedExit;
657  /// This set holds the variables which are known to be uniform after
658  /// vectorization.
659  SmallPtrSet<Instruction*, 4> Uniforms;
660  /// We need to check that all of the pointers in this list are disjoint
661  /// at runtime.
662  RuntimePointerCheck PtrRtCheck;
663  /// Can we assume the absence of NaNs.
664  bool HasFunNoNaNAttr;
665
666  unsigned MaxSafeDepDistBytes;
667};
668
669/// LoopVectorizationCostModel - estimates the expected speedups due to
670/// vectorization.
671/// In many cases vectorization is not profitable. This can happen because of
672/// a number of reasons. In this class we mainly attempt to predict the
673/// expected speedup/slowdowns due to the supported instruction set. We use the
674/// TargetTransformInfo to query the different backends for the cost of
675/// different operations.
676class LoopVectorizationCostModel {
677public:
678  LoopVectorizationCostModel(Loop *L, ScalarEvolution *SE, LoopInfo *LI,
679                             LoopVectorizationLegality *Legal,
680                             const TargetTransformInfo &TTI,
681                             DataLayout *DL, const TargetLibraryInfo *TLI)
682      : TheLoop(L), SE(SE), LI(LI), Legal(Legal), TTI(TTI), DL(DL), TLI(TLI) {}
683
684  /// Information about vectorization costs
685  struct VectorizationFactor {
686    unsigned Width; // Vector width with best cost
687    unsigned Cost; // Cost of the loop with that width
688  };
689  /// \return The most profitable vectorization factor and the cost of that VF.
690  /// This method checks every power of two up to VF. If UserVF is not ZERO
691  /// then this vectorization factor will be selected if vectorization is
692  /// possible.
693  VectorizationFactor selectVectorizationFactor(bool OptForSize,
694                                                unsigned UserVF);
695
696  /// \return The size (in bits) of the widest type in the code that
697  /// needs to be vectorized. We ignore values that remain scalar such as
698  /// 64 bit loop indices.
699  unsigned getWidestType();
700
701  /// \return The most profitable unroll factor.
702  /// If UserUF is non-zero then this method finds the best unroll-factor
703  /// based on register pressure and other parameters.
704  /// VF and LoopCost are the selected vectorization factor and the cost of the
705  /// selected VF.
706  unsigned selectUnrollFactor(bool OptForSize, unsigned UserUF, unsigned VF,
707                              unsigned LoopCost);
708
709  /// \brief A struct that represents some properties of the register usage
710  /// of a loop.
711  struct RegisterUsage {
712    /// Holds the number of loop invariant values that are used in the loop.
713    unsigned LoopInvariantRegs;
714    /// Holds the maximum number of concurrent live intervals in the loop.
715    unsigned MaxLocalUsers;
716    /// Holds the number of instructions in the loop.
717    unsigned NumInstructions;
718  };
719
720  /// \return  information about the register usage of the loop.
721  RegisterUsage calculateRegisterUsage();
722
723private:
724  /// Returns the expected execution cost. The unit of the cost does
725  /// not matter because we use the 'cost' units to compare different
726  /// vector widths. The cost that is returned is *not* normalized by
727  /// the factor width.
728  unsigned expectedCost(unsigned VF);
729
730  /// Returns the execution time cost of an instruction for a given vector
731  /// width. Vector width of one means scalar.
732  unsigned getInstructionCost(Instruction *I, unsigned VF);
733
734  /// A helper function for converting Scalar types to vector types.
735  /// If the incoming type is void, we return void. If the VF is 1, we return
736  /// the scalar type.
737  static Type* ToVectorTy(Type *Scalar, unsigned VF);
738
739  /// Returns whether the instruction is a load or store and will be a emitted
740  /// as a vector operation.
741  bool isConsecutiveLoadOrStore(Instruction *I);
742
743  /// The loop that we evaluate.
744  Loop *TheLoop;
745  /// Scev analysis.
746  ScalarEvolution *SE;
747  /// Loop Info analysis.
748  LoopInfo *LI;
749  /// Vectorization legality.
750  LoopVectorizationLegality *Legal;
751  /// Vector target information.
752  const TargetTransformInfo &TTI;
753  /// Target data layout information.
754  DataLayout *DL;
755  /// Target Library Info.
756  const TargetLibraryInfo *TLI;
757};
758
759/// Utility class for getting and setting loop vectorizer hints in the form
760/// of loop metadata.
761struct LoopVectorizeHints {
762  /// Vectorization width.
763  unsigned Width;
764  /// Vectorization unroll factor.
765  unsigned Unroll;
766
767  LoopVectorizeHints(const Loop *L, bool DisableUnrolling)
768  : Width(VectorizationFactor)
769  , Unroll(DisableUnrolling ? 1 : VectorizationUnroll)
770  , LoopID(L->getLoopID()) {
771    getHints(L);
772    // The command line options override any loop metadata except for when
773    // width == 1 which is used to indicate the loop is already vectorized.
774    if (VectorizationFactor.getNumOccurrences() > 0 && Width != 1)
775      Width = VectorizationFactor;
776    if (VectorizationUnroll.getNumOccurrences() > 0)
777      Unroll = VectorizationUnroll;
778
779    DEBUG(if (DisableUnrolling && Unroll == 1)
780            dbgs() << "LV: Unrolling disabled by the pass manager\n");
781  }
782
783  /// Return the loop vectorizer metadata prefix.
784  static StringRef Prefix() { return "llvm.vectorizer."; }
785
786  MDNode *createHint(LLVMContext &Context, StringRef Name, unsigned V) {
787    SmallVector<Value*, 2> Vals;
788    Vals.push_back(MDString::get(Context, Name));
789    Vals.push_back(ConstantInt::get(Type::getInt32Ty(Context), V));
790    return MDNode::get(Context, Vals);
791  }
792
793  /// Mark the loop L as already vectorized by setting the width to 1.
794  void setAlreadyVectorized(Loop *L) {
795    LLVMContext &Context = L->getHeader()->getContext();
796
797    Width = 1;
798
799    // Create a new loop id with one more operand for the already_vectorized
800    // hint. If the loop already has a loop id then copy the existing operands.
801    SmallVector<Value*, 4> Vals(1);
802    if (LoopID)
803      for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i)
804        Vals.push_back(LoopID->getOperand(i));
805
806    Vals.push_back(createHint(Context, Twine(Prefix(), "width").str(), Width));
807    Vals.push_back(createHint(Context, Twine(Prefix(), "unroll").str(), 1));
808
809    MDNode *NewLoopID = MDNode::get(Context, Vals);
810    // Set operand 0 to refer to the loop id itself.
811    NewLoopID->replaceOperandWith(0, NewLoopID);
812
813    L->setLoopID(NewLoopID);
814    if (LoopID)
815      LoopID->replaceAllUsesWith(NewLoopID);
816
817    LoopID = NewLoopID;
818  }
819
820private:
821  MDNode *LoopID;
822
823  /// Find hints specified in the loop metadata.
824  void getHints(const Loop *L) {
825    if (!LoopID)
826      return;
827
828    // First operand should refer to the loop id itself.
829    assert(LoopID->getNumOperands() > 0 && "requires at least one operand");
830    assert(LoopID->getOperand(0) == LoopID && "invalid loop id");
831
832    for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) {
833      const MDString *S = 0;
834      SmallVector<Value*, 4> Args;
835
836      // The expected hint is either a MDString or a MDNode with the first
837      // operand a MDString.
838      if (const MDNode *MD = dyn_cast<MDNode>(LoopID->getOperand(i))) {
839        if (!MD || MD->getNumOperands() == 0)
840          continue;
841        S = dyn_cast<MDString>(MD->getOperand(0));
842        for (unsigned i = 1, ie = MD->getNumOperands(); i < ie; ++i)
843          Args.push_back(MD->getOperand(i));
844      } else {
845        S = dyn_cast<MDString>(LoopID->getOperand(i));
846        assert(Args.size() == 0 && "too many arguments for MDString");
847      }
848
849      if (!S)
850        continue;
851
852      // Check if the hint starts with the vectorizer prefix.
853      StringRef Hint = S->getString();
854      if (!Hint.startswith(Prefix()))
855        continue;
856      // Remove the prefix.
857      Hint = Hint.substr(Prefix().size(), StringRef::npos);
858
859      if (Args.size() == 1)
860        getHint(Hint, Args[0]);
861    }
862  }
863
864  // Check string hint with one operand.
865  void getHint(StringRef Hint, Value *Arg) {
866    const ConstantInt *C = dyn_cast<ConstantInt>(Arg);
867    if (!C) return;
868    unsigned Val = C->getZExtValue();
869
870    if (Hint == "width") {
871      if (isPowerOf2_32(Val) && Val <= MaxVectorWidth)
872        Width = Val;
873      else
874        DEBUG(dbgs() << "LV: ignoring invalid width hint metadata\n");
875    } else if (Hint == "unroll") {
876      if (isPowerOf2_32(Val) && Val <= MaxUnrollFactor)
877        Unroll = Val;
878      else
879        DEBUG(dbgs() << "LV: ignoring invalid unroll hint metadata\n");
880    } else {
881      DEBUG(dbgs() << "LV: ignoring unknown hint " << Hint << '\n');
882    }
883  }
884};
885
886/// The LoopVectorize Pass.
887struct LoopVectorize : public LoopPass {
888  /// Pass identification, replacement for typeid
889  static char ID;
890
891  explicit LoopVectorize(bool NoUnrolling = false)
892    : LoopPass(ID), DisableUnrolling(NoUnrolling) {
893    initializeLoopVectorizePass(*PassRegistry::getPassRegistry());
894  }
895
896  ScalarEvolution *SE;
897  DataLayout *DL;
898  LoopInfo *LI;
899  TargetTransformInfo *TTI;
900  DominatorTree *DT;
901  TargetLibraryInfo *TLI;
902  bool DisableUnrolling;
903
904  virtual bool runOnLoop(Loop *L, LPPassManager &LPM) {
905    // We only vectorize innermost loops.
906    if (!L->empty())
907      return false;
908
909    SE = &getAnalysis<ScalarEvolution>();
910    DL = getAnalysisIfAvailable<DataLayout>();
911    LI = &getAnalysis<LoopInfo>();
912    TTI = &getAnalysis<TargetTransformInfo>();
913    DT = &getAnalysis<DominatorTree>();
914    TLI = getAnalysisIfAvailable<TargetLibraryInfo>();
915
916    // If the target claims to have no vector registers don't attempt
917    // vectorization.
918    if (!TTI->getNumberOfRegisters(true))
919      return false;
920
921    if (DL == NULL) {
922      DEBUG(dbgs() << "LV: Not vectorizing because of missing data layout\n");
923      return false;
924    }
925
926    DEBUG(dbgs() << "LV: Checking a loop in \"" <<
927          L->getHeader()->getParent()->getName() << "\"\n");
928
929    LoopVectorizeHints Hints(L, DisableUnrolling);
930
931    if (Hints.Width == 1 && Hints.Unroll == 1) {
932      DEBUG(dbgs() << "LV: Not vectorizing.\n");
933      return false;
934    }
935
936    // Check if it is legal to vectorize the loop.
937    LoopVectorizationLegality LVL(L, SE, DL, DT, TLI);
938    if (!LVL.canVectorize()) {
939      DEBUG(dbgs() << "LV: Not vectorizing.\n");
940      return false;
941    }
942
943    // Use the cost model.
944    LoopVectorizationCostModel CM(L, SE, LI, &LVL, *TTI, DL, TLI);
945
946    // Check the function attributes to find out if this function should be
947    // optimized for size.
948    Function *F = L->getHeader()->getParent();
949    Attribute::AttrKind SzAttr = Attribute::OptimizeForSize;
950    Attribute::AttrKind FlAttr = Attribute::NoImplicitFloat;
951    unsigned FnIndex = AttributeSet::FunctionIndex;
952    bool OptForSize = F->getAttributes().hasAttribute(FnIndex, SzAttr);
953    bool NoFloat = F->getAttributes().hasAttribute(FnIndex, FlAttr);
954
955    if (NoFloat) {
956      DEBUG(dbgs() << "LV: Can't vectorize when the NoImplicitFloat"
957            "attribute is used.\n");
958      return false;
959    }
960
961    // Select the optimal vectorization factor.
962    LoopVectorizationCostModel::VectorizationFactor VF;
963    VF = CM.selectVectorizationFactor(OptForSize, Hints.Width);
964    // Select the unroll factor.
965    unsigned UF = CM.selectUnrollFactor(OptForSize, Hints.Unroll, VF.Width,
966                                        VF.Cost);
967
968    DEBUG(dbgs() << "LV: Found a vectorizable loop ("<< VF.Width << ") in "<<
969          F->getParent()->getModuleIdentifier() << '\n');
970    DEBUG(dbgs() << "LV: Unroll Factor is " << UF << '\n');
971
972    if (VF.Width == 1) {
973      DEBUG(dbgs() << "LV: Vectorization is possible but not beneficial.\n");
974      if (UF == 1)
975        return false;
976      // We decided not to vectorize, but we may want to unroll.
977      InnerLoopUnroller Unroller(L, SE, LI, DT, DL, TLI, UF);
978      Unroller.vectorize(&LVL);
979    } else {
980      // If we decided that it is *legal* to vectorize the loop then do it.
981      InnerLoopVectorizer LB(L, SE, LI, DT, DL, TLI, VF.Width, UF);
982      LB.vectorize(&LVL);
983    }
984
985    // Mark the loop as already vectorized to avoid vectorizing again.
986    Hints.setAlreadyVectorized(L);
987
988    DEBUG(verifyFunction(*L->getHeader()->getParent()));
989    return true;
990  }
991
992  virtual void getAnalysisUsage(AnalysisUsage &AU) const {
993    LoopPass::getAnalysisUsage(AU);
994    AU.addRequiredID(LoopSimplifyID);
995    AU.addRequiredID(LCSSAID);
996    AU.addRequired<DominatorTree>();
997    AU.addRequired<LoopInfo>();
998    AU.addRequired<ScalarEvolution>();
999    AU.addRequired<TargetTransformInfo>();
1000    AU.addPreserved<LoopInfo>();
1001    AU.addPreserved<DominatorTree>();
1002  }
1003
1004};
1005
1006} // end anonymous namespace
1007
1008//===----------------------------------------------------------------------===//
1009// Implementation of LoopVectorizationLegality, InnerLoopVectorizer and
1010// LoopVectorizationCostModel.
1011//===----------------------------------------------------------------------===//
1012
1013void
1014LoopVectorizationLegality::RuntimePointerCheck::insert(ScalarEvolution *SE,
1015                                                       Loop *Lp, Value *Ptr,
1016                                                       bool WritePtr,
1017                                                       unsigned DepSetId) {
1018  const SCEV *Sc = SE->getSCEV(Ptr);
1019  const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Sc);
1020  assert(AR && "Invalid addrec expression");
1021  const SCEV *Ex = SE->getBackedgeTakenCount(Lp);
1022  const SCEV *ScEnd = AR->evaluateAtIteration(Ex, *SE);
1023  Pointers.push_back(Ptr);
1024  Starts.push_back(AR->getStart());
1025  Ends.push_back(ScEnd);
1026  IsWritePtr.push_back(WritePtr);
1027  DependencySetId.push_back(DepSetId);
1028}
1029
1030Value *InnerLoopVectorizer::getBroadcastInstrs(Value *V) {
1031  // We need to place the broadcast of invariant variables outside the loop.
1032  Instruction *Instr = dyn_cast<Instruction>(V);
1033  bool NewInstr = (Instr && Instr->getParent() == LoopVectorBody);
1034  bool Invariant = OrigLoop->isLoopInvariant(V) && !NewInstr;
1035
1036  // Place the code for broadcasting invariant variables in the new preheader.
1037  IRBuilder<>::InsertPointGuard Guard(Builder);
1038  if (Invariant)
1039    Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator());
1040
1041  // Broadcast the scalar into all locations in the vector.
1042  Value *Shuf = Builder.CreateVectorSplat(VF, V, "broadcast");
1043
1044  return Shuf;
1045}
1046
1047Value *InnerLoopVectorizer::getConsecutiveVector(Value* Val, int StartIdx,
1048                                                 bool Negate) {
1049  assert(Val->getType()->isVectorTy() && "Must be a vector");
1050  assert(Val->getType()->getScalarType()->isIntegerTy() &&
1051         "Elem must be an integer");
1052  // Create the types.
1053  Type *ITy = Val->getType()->getScalarType();
1054  VectorType *Ty = cast<VectorType>(Val->getType());
1055  int VLen = Ty->getNumElements();
1056  SmallVector<Constant*, 8> Indices;
1057
1058  // Create a vector of consecutive numbers from zero to VF.
1059  for (int i = 0; i < VLen; ++i) {
1060    int64_t Idx = Negate ? (-i) : i;
1061    Indices.push_back(ConstantInt::get(ITy, StartIdx + Idx, Negate));
1062  }
1063
1064  // Add the consecutive indices to the vector value.
1065  Constant *Cv = ConstantVector::get(Indices);
1066  assert(Cv->getType() == Val->getType() && "Invalid consecutive vec");
1067  return Builder.CreateAdd(Val, Cv, "induction");
1068}
1069
1070/// \brief Find the operand of the GEP that should be checked for consecutive
1071/// stores. This ignores trailing indices that have no effect on the final
1072/// pointer.
1073static unsigned getGEPInductionOperand(DataLayout *DL,
1074                                       const GetElementPtrInst *Gep) {
1075  unsigned LastOperand = Gep->getNumOperands() - 1;
1076  unsigned GEPAllocSize = DL->getTypeAllocSize(
1077      cast<PointerType>(Gep->getType()->getScalarType())->getElementType());
1078
1079  // Walk backwards and try to peel off zeros.
1080  while (LastOperand > 1 && match(Gep->getOperand(LastOperand), m_Zero())) {
1081    // Find the type we're currently indexing into.
1082    gep_type_iterator GEPTI = gep_type_begin(Gep);
1083    std::advance(GEPTI, LastOperand - 1);
1084
1085    // If it's a type with the same allocation size as the result of the GEP we
1086    // can peel off the zero index.
1087    if (DL->getTypeAllocSize(*GEPTI) != GEPAllocSize)
1088      break;
1089    --LastOperand;
1090  }
1091
1092  return LastOperand;
1093}
1094
1095int LoopVectorizationLegality::isConsecutivePtr(Value *Ptr) {
1096  assert(Ptr->getType()->isPointerTy() && "Unexpected non ptr");
1097  // Make sure that the pointer does not point to structs.
1098  if (Ptr->getType()->getPointerElementType()->isAggregateType())
1099    return 0;
1100
1101  // If this value is a pointer induction variable we know it is consecutive.
1102  PHINode *Phi = dyn_cast_or_null<PHINode>(Ptr);
1103  if (Phi && Inductions.count(Phi)) {
1104    InductionInfo II = Inductions[Phi];
1105    if (IK_PtrInduction == II.IK)
1106      return 1;
1107    else if (IK_ReversePtrInduction == II.IK)
1108      return -1;
1109  }
1110
1111  GetElementPtrInst *Gep = dyn_cast_or_null<GetElementPtrInst>(Ptr);
1112  if (!Gep)
1113    return 0;
1114
1115  unsigned NumOperands = Gep->getNumOperands();
1116  Value *GpPtr = Gep->getPointerOperand();
1117  // If this GEP value is a consecutive pointer induction variable and all of
1118  // the indices are constant then we know it is consecutive. We can
1119  Phi = dyn_cast<PHINode>(GpPtr);
1120  if (Phi && Inductions.count(Phi)) {
1121
1122    // Make sure that the pointer does not point to structs.
1123    PointerType *GepPtrType = cast<PointerType>(GpPtr->getType());
1124    if (GepPtrType->getElementType()->isAggregateType())
1125      return 0;
1126
1127    // Make sure that all of the index operands are loop invariant.
1128    for (unsigned i = 1; i < NumOperands; ++i)
1129      if (!SE->isLoopInvariant(SE->getSCEV(Gep->getOperand(i)), TheLoop))
1130        return 0;
1131
1132    InductionInfo II = Inductions[Phi];
1133    if (IK_PtrInduction == II.IK)
1134      return 1;
1135    else if (IK_ReversePtrInduction == II.IK)
1136      return -1;
1137  }
1138
1139  unsigned InductionOperand = getGEPInductionOperand(DL, Gep);
1140
1141  // Check that all of the gep indices are uniform except for our induction
1142  // operand.
1143  for (unsigned i = 0; i != NumOperands; ++i)
1144    if (i != InductionOperand &&
1145        !SE->isLoopInvariant(SE->getSCEV(Gep->getOperand(i)), TheLoop))
1146      return 0;
1147
1148  // We can emit wide load/stores only if the last non-zero index is the
1149  // induction variable.
1150  const SCEV *Last = SE->getSCEV(Gep->getOperand(InductionOperand));
1151  if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Last)) {
1152    const SCEV *Step = AR->getStepRecurrence(*SE);
1153
1154    // The memory is consecutive because the last index is consecutive
1155    // and all other indices are loop invariant.
1156    if (Step->isOne())
1157      return 1;
1158    if (Step->isAllOnesValue())
1159      return -1;
1160  }
1161
1162  return 0;
1163}
1164
1165bool LoopVectorizationLegality::isUniform(Value *V) {
1166  return (SE->isLoopInvariant(SE->getSCEV(V), TheLoop));
1167}
1168
1169InnerLoopVectorizer::VectorParts&
1170InnerLoopVectorizer::getVectorValue(Value *V) {
1171  assert(V != Induction && "The new induction variable should not be used.");
1172  assert(!V->getType()->isVectorTy() && "Can't widen a vector");
1173
1174  // If we have this scalar in the map, return it.
1175  if (WidenMap.has(V))
1176    return WidenMap.get(V);
1177
1178  // If this scalar is unknown, assume that it is a constant or that it is
1179  // loop invariant. Broadcast V and save the value for future uses.
1180  Value *B = getBroadcastInstrs(V);
1181  return WidenMap.splat(V, B);
1182}
1183
1184Value *InnerLoopVectorizer::reverseVector(Value *Vec) {
1185  assert(Vec->getType()->isVectorTy() && "Invalid type");
1186  SmallVector<Constant*, 8> ShuffleMask;
1187  for (unsigned i = 0; i < VF; ++i)
1188    ShuffleMask.push_back(Builder.getInt32(VF - i - 1));
1189
1190  return Builder.CreateShuffleVector(Vec, UndefValue::get(Vec->getType()),
1191                                     ConstantVector::get(ShuffleMask),
1192                                     "reverse");
1193}
1194
1195
1196void InnerLoopVectorizer::vectorizeMemoryInstruction(Instruction *Instr,
1197                                             LoopVectorizationLegality *Legal) {
1198  // Attempt to issue a wide load.
1199  LoadInst *LI = dyn_cast<LoadInst>(Instr);
1200  StoreInst *SI = dyn_cast<StoreInst>(Instr);
1201
1202  assert((LI || SI) && "Invalid Load/Store instruction");
1203
1204  Type *ScalarDataTy = LI ? LI->getType() : SI->getValueOperand()->getType();
1205  Type *DataTy = VectorType::get(ScalarDataTy, VF);
1206  Value *Ptr = LI ? LI->getPointerOperand() : SI->getPointerOperand();
1207  unsigned Alignment = LI ? LI->getAlignment() : SI->getAlignment();
1208  // An alignment of 0 means target abi alignment. We need to use the scalar's
1209  // target abi alignment in such a case.
1210  if (!Alignment)
1211    Alignment = DL->getABITypeAlignment(ScalarDataTy);
1212  unsigned AddressSpace = Ptr->getType()->getPointerAddressSpace();
1213  unsigned ScalarAllocatedSize = DL->getTypeAllocSize(ScalarDataTy);
1214  unsigned VectorElementSize = DL->getTypeStoreSize(DataTy)/VF;
1215
1216  if (ScalarAllocatedSize != VectorElementSize)
1217    return scalarizeInstruction(Instr);
1218
1219  // If the pointer is loop invariant or if it is non consecutive,
1220  // scalarize the load.
1221  int ConsecutiveStride = Legal->isConsecutivePtr(Ptr);
1222  bool Reverse = ConsecutiveStride < 0;
1223  bool UniformLoad = LI && Legal->isUniform(Ptr);
1224  if (!ConsecutiveStride || UniformLoad)
1225    return scalarizeInstruction(Instr);
1226
1227  Constant *Zero = Builder.getInt32(0);
1228  VectorParts &Entry = WidenMap.get(Instr);
1229
1230  // Handle consecutive loads/stores.
1231  GetElementPtrInst *Gep = dyn_cast<GetElementPtrInst>(Ptr);
1232  if (Gep && Legal->isInductionVariable(Gep->getPointerOperand())) {
1233    setDebugLocFromInst(Builder, Gep);
1234    Value *PtrOperand = Gep->getPointerOperand();
1235    Value *FirstBasePtr = getVectorValue(PtrOperand)[0];
1236    FirstBasePtr = Builder.CreateExtractElement(FirstBasePtr, Zero);
1237
1238    // Create the new GEP with the new induction variable.
1239    GetElementPtrInst *Gep2 = cast<GetElementPtrInst>(Gep->clone());
1240    Gep2->setOperand(0, FirstBasePtr);
1241    Gep2->setName("gep.indvar.base");
1242    Ptr = Builder.Insert(Gep2);
1243  } else if (Gep) {
1244    setDebugLocFromInst(Builder, Gep);
1245    assert(SE->isLoopInvariant(SE->getSCEV(Gep->getPointerOperand()),
1246                               OrigLoop) && "Base ptr must be invariant");
1247
1248    // The last index does not have to be the induction. It can be
1249    // consecutive and be a function of the index. For example A[I+1];
1250    unsigned NumOperands = Gep->getNumOperands();
1251    unsigned InductionOperand = getGEPInductionOperand(DL, Gep);
1252    // Create the new GEP with the new induction variable.
1253    GetElementPtrInst *Gep2 = cast<GetElementPtrInst>(Gep->clone());
1254
1255    for (unsigned i = 0; i < NumOperands; ++i) {
1256      Value *GepOperand = Gep->getOperand(i);
1257      Instruction *GepOperandInst = dyn_cast<Instruction>(GepOperand);
1258
1259      // Update last index or loop invariant instruction anchored in loop.
1260      if (i == InductionOperand ||
1261          (GepOperandInst && OrigLoop->contains(GepOperandInst))) {
1262        assert((i == InductionOperand ||
1263               SE->isLoopInvariant(SE->getSCEV(GepOperandInst), OrigLoop)) &&
1264               "Must be last index or loop invariant");
1265
1266        VectorParts &GEPParts = getVectorValue(GepOperand);
1267        Value *Index = GEPParts[0];
1268        Index = Builder.CreateExtractElement(Index, Zero);
1269        Gep2->setOperand(i, Index);
1270        Gep2->setName("gep.indvar.idx");
1271      }
1272    }
1273    Ptr = Builder.Insert(Gep2);
1274  } else {
1275    // Use the induction element ptr.
1276    assert(isa<PHINode>(Ptr) && "Invalid induction ptr");
1277    setDebugLocFromInst(Builder, Ptr);
1278    VectorParts &PtrVal = getVectorValue(Ptr);
1279    Ptr = Builder.CreateExtractElement(PtrVal[0], Zero);
1280  }
1281
1282  // Handle Stores:
1283  if (SI) {
1284    assert(!Legal->isUniform(SI->getPointerOperand()) &&
1285           "We do not allow storing to uniform addresses");
1286    setDebugLocFromInst(Builder, SI);
1287    // We don't want to update the value in the map as it might be used in
1288    // another expression. So don't use a reference type for "StoredVal".
1289    VectorParts StoredVal = getVectorValue(SI->getValueOperand());
1290
1291    for (unsigned Part = 0; Part < UF; ++Part) {
1292      // Calculate the pointer for the specific unroll-part.
1293      Value *PartPtr = Builder.CreateGEP(Ptr, Builder.getInt32(Part * VF));
1294
1295      if (Reverse) {
1296        // If we store to reverse consecutive memory locations then we need
1297        // to reverse the order of elements in the stored value.
1298        StoredVal[Part] = reverseVector(StoredVal[Part]);
1299        // If the address is consecutive but reversed, then the
1300        // wide store needs to start at the last vector element.
1301        PartPtr = Builder.CreateGEP(Ptr, Builder.getInt32(-Part * VF));
1302        PartPtr = Builder.CreateGEP(PartPtr, Builder.getInt32(1 - VF));
1303      }
1304
1305      Value *VecPtr = Builder.CreateBitCast(PartPtr,
1306                                            DataTy->getPointerTo(AddressSpace));
1307      Builder.CreateStore(StoredVal[Part], VecPtr)->setAlignment(Alignment);
1308    }
1309    return;
1310  }
1311
1312  // Handle loads.
1313  assert(LI && "Must have a load instruction");
1314  setDebugLocFromInst(Builder, LI);
1315  for (unsigned Part = 0; Part < UF; ++Part) {
1316    // Calculate the pointer for the specific unroll-part.
1317    Value *PartPtr = Builder.CreateGEP(Ptr, Builder.getInt32(Part * VF));
1318
1319    if (Reverse) {
1320      // If the address is consecutive but reversed, then the
1321      // wide store needs to start at the last vector element.
1322      PartPtr = Builder.CreateGEP(Ptr, Builder.getInt32(-Part * VF));
1323      PartPtr = Builder.CreateGEP(PartPtr, Builder.getInt32(1 - VF));
1324    }
1325
1326    Value *VecPtr = Builder.CreateBitCast(PartPtr,
1327                                          DataTy->getPointerTo(AddressSpace));
1328    Value *LI = Builder.CreateLoad(VecPtr, "wide.load");
1329    cast<LoadInst>(LI)->setAlignment(Alignment);
1330    Entry[Part] = Reverse ? reverseVector(LI) :  LI;
1331  }
1332}
1333
1334void InnerLoopVectorizer::scalarizeInstruction(Instruction *Instr) {
1335  assert(!Instr->getType()->isAggregateType() && "Can't handle vectors");
1336  // Holds vector parameters or scalars, in case of uniform vals.
1337  SmallVector<VectorParts, 4> Params;
1338
1339  setDebugLocFromInst(Builder, Instr);
1340
1341  // Find all of the vectorized parameters.
1342  for (unsigned op = 0, e = Instr->getNumOperands(); op != e; ++op) {
1343    Value *SrcOp = Instr->getOperand(op);
1344
1345    // If we are accessing the old induction variable, use the new one.
1346    if (SrcOp == OldInduction) {
1347      Params.push_back(getVectorValue(SrcOp));
1348      continue;
1349    }
1350
1351    // Try using previously calculated values.
1352    Instruction *SrcInst = dyn_cast<Instruction>(SrcOp);
1353
1354    // If the src is an instruction that appeared earlier in the basic block
1355    // then it should already be vectorized.
1356    if (SrcInst && OrigLoop->contains(SrcInst)) {
1357      assert(WidenMap.has(SrcInst) && "Source operand is unavailable");
1358      // The parameter is a vector value from earlier.
1359      Params.push_back(WidenMap.get(SrcInst));
1360    } else {
1361      // The parameter is a scalar from outside the loop. Maybe even a constant.
1362      VectorParts Scalars;
1363      Scalars.append(UF, SrcOp);
1364      Params.push_back(Scalars);
1365    }
1366  }
1367
1368  assert(Params.size() == Instr->getNumOperands() &&
1369         "Invalid number of operands");
1370
1371  // Does this instruction return a value ?
1372  bool IsVoidRetTy = Instr->getType()->isVoidTy();
1373
1374  Value *UndefVec = IsVoidRetTy ? 0 :
1375    UndefValue::get(VectorType::get(Instr->getType(), VF));
1376  // Create a new entry in the WidenMap and initialize it to Undef or Null.
1377  VectorParts &VecResults = WidenMap.splat(Instr, UndefVec);
1378
1379  // For each vector unroll 'part':
1380  for (unsigned Part = 0; Part < UF; ++Part) {
1381    // For each scalar that we create:
1382    for (unsigned Width = 0; Width < VF; ++Width) {
1383      Instruction *Cloned = Instr->clone();
1384      if (!IsVoidRetTy)
1385        Cloned->setName(Instr->getName() + ".cloned");
1386      // Replace the operands of the cloned instructions with extracted scalars.
1387      for (unsigned op = 0, e = Instr->getNumOperands(); op != e; ++op) {
1388        Value *Op = Params[op][Part];
1389        // Param is a vector. Need to extract the right lane.
1390        if (Op->getType()->isVectorTy())
1391          Op = Builder.CreateExtractElement(Op, Builder.getInt32(Width));
1392        Cloned->setOperand(op, Op);
1393      }
1394
1395      // Place the cloned scalar in the new loop.
1396      Builder.Insert(Cloned);
1397
1398      // If the original scalar returns a value we need to place it in a vector
1399      // so that future users will be able to use it.
1400      if (!IsVoidRetTy)
1401        VecResults[Part] = Builder.CreateInsertElement(VecResults[Part], Cloned,
1402                                                       Builder.getInt32(Width));
1403    }
1404  }
1405}
1406
1407Instruction *
1408InnerLoopVectorizer::addRuntimeCheck(LoopVectorizationLegality *Legal,
1409                                     Instruction *Loc) {
1410  LoopVectorizationLegality::RuntimePointerCheck *PtrRtCheck =
1411  Legal->getRuntimePointerCheck();
1412
1413  if (!PtrRtCheck->Need)
1414    return NULL;
1415
1416  unsigned NumPointers = PtrRtCheck->Pointers.size();
1417  SmallVector<TrackingVH<Value> , 2> Starts;
1418  SmallVector<TrackingVH<Value> , 2> Ends;
1419
1420  LLVMContext &Ctx = Loc->getContext();
1421  SCEVExpander Exp(*SE, "induction");
1422
1423  for (unsigned i = 0; i < NumPointers; ++i) {
1424    Value *Ptr = PtrRtCheck->Pointers[i];
1425    const SCEV *Sc = SE->getSCEV(Ptr);
1426
1427    if (SE->isLoopInvariant(Sc, OrigLoop)) {
1428      DEBUG(dbgs() << "LV: Adding RT check for a loop invariant ptr:" <<
1429            *Ptr <<"\n");
1430      Starts.push_back(Ptr);
1431      Ends.push_back(Ptr);
1432    } else {
1433      DEBUG(dbgs() << "LV: Adding RT check for range:" << *Ptr << '\n');
1434      unsigned AS = Ptr->getType()->getPointerAddressSpace();
1435
1436      // Use this type for pointer arithmetic.
1437      Type *PtrArithTy = Type::getInt8PtrTy(Ctx, AS);
1438
1439      Value *Start = Exp.expandCodeFor(PtrRtCheck->Starts[i], PtrArithTy, Loc);
1440      Value *End = Exp.expandCodeFor(PtrRtCheck->Ends[i], PtrArithTy, Loc);
1441      Starts.push_back(Start);
1442      Ends.push_back(End);
1443    }
1444  }
1445
1446  IRBuilder<> ChkBuilder(Loc);
1447  // Our instructions might fold to a constant.
1448  Value *MemoryRuntimeCheck = 0;
1449  for (unsigned i = 0; i < NumPointers; ++i) {
1450    for (unsigned j = i+1; j < NumPointers; ++j) {
1451      // No need to check if two readonly pointers intersect.
1452      if (!PtrRtCheck->IsWritePtr[i] && !PtrRtCheck->IsWritePtr[j])
1453        continue;
1454
1455      // Only need to check pointers between two different dependency sets.
1456      if (PtrRtCheck->DependencySetId[i] == PtrRtCheck->DependencySetId[j])
1457       continue;
1458
1459      unsigned AS0 = Starts[i]->getType()->getPointerAddressSpace();
1460      unsigned AS1 = Starts[j]->getType()->getPointerAddressSpace();
1461
1462      assert((AS0 == Ends[j]->getType()->getPointerAddressSpace()) &&
1463             (AS1 == Ends[i]->getType()->getPointerAddressSpace()) &&
1464             "Trying to bounds check pointers with different address spaces");
1465
1466      Type *PtrArithTy0 = Type::getInt8PtrTy(Ctx, AS0);
1467      Type *PtrArithTy1 = Type::getInt8PtrTy(Ctx, AS1);
1468
1469      Value *Start0 = ChkBuilder.CreateBitCast(Starts[i], PtrArithTy0, "bc");
1470      Value *Start1 = ChkBuilder.CreateBitCast(Starts[j], PtrArithTy1, "bc");
1471      Value *End0 =   ChkBuilder.CreateBitCast(Ends[i],   PtrArithTy1, "bc");
1472      Value *End1 =   ChkBuilder.CreateBitCast(Ends[j],   PtrArithTy0, "bc");
1473
1474      Value *Cmp0 = ChkBuilder.CreateICmpULE(Start0, End1, "bound0");
1475      Value *Cmp1 = ChkBuilder.CreateICmpULE(Start1, End0, "bound1");
1476      Value *IsConflict = ChkBuilder.CreateAnd(Cmp0, Cmp1, "found.conflict");
1477      if (MemoryRuntimeCheck)
1478        IsConflict = ChkBuilder.CreateOr(MemoryRuntimeCheck, IsConflict,
1479                                         "conflict.rdx");
1480      MemoryRuntimeCheck = IsConflict;
1481    }
1482  }
1483
1484  // We have to do this trickery because the IRBuilder might fold the check to a
1485  // constant expression in which case there is no Instruction anchored in a
1486  // the block.
1487  Instruction *Check = BinaryOperator::CreateAnd(MemoryRuntimeCheck,
1488                                                 ConstantInt::getTrue(Ctx));
1489  ChkBuilder.Insert(Check, "memcheck.conflict");
1490  return Check;
1491}
1492
1493void
1494InnerLoopVectorizer::createEmptyLoop(LoopVectorizationLegality *Legal) {
1495  /*
1496   In this function we generate a new loop. The new loop will contain
1497   the vectorized instructions while the old loop will continue to run the
1498   scalar remainder.
1499
1500       [ ] <-- vector loop bypass (may consist of multiple blocks).
1501     /  |
1502    /   v
1503   |   [ ]     <-- vector pre header.
1504   |    |
1505   |    v
1506   |   [  ] \
1507   |   [  ]_|   <-- vector loop.
1508   |    |
1509    \   v
1510      >[ ]   <--- middle-block.
1511     /  |
1512    /   v
1513   |   [ ]     <--- new preheader.
1514   |    |
1515   |    v
1516   |   [ ] \
1517   |   [ ]_|   <-- old scalar loop to handle remainder.
1518    \   |
1519     \  v
1520      >[ ]     <-- exit block.
1521   ...
1522   */
1523
1524  BasicBlock *OldBasicBlock = OrigLoop->getHeader();
1525  BasicBlock *BypassBlock = OrigLoop->getLoopPreheader();
1526  BasicBlock *ExitBlock = OrigLoop->getExitBlock();
1527  assert(ExitBlock && "Must have an exit block");
1528
1529  // Some loops have a single integer induction variable, while other loops
1530  // don't. One example is c++ iterators that often have multiple pointer
1531  // induction variables. In the code below we also support a case where we
1532  // don't have a single induction variable.
1533  OldInduction = Legal->getInduction();
1534  Type *IdxTy = Legal->getWidestInductionType();
1535
1536  // Find the loop boundaries.
1537  const SCEV *ExitCount = SE->getBackedgeTakenCount(OrigLoop);
1538  assert(ExitCount != SE->getCouldNotCompute() && "Invalid loop count");
1539
1540  // The exit count might have the type of i64 while the phi is i32. This can
1541  // happen if we have an induction variable that is sign extended before the
1542  // compare. The only way that we get a backedge taken count is that the
1543  // induction variable was signed and as such will not overflow. In such a case
1544  // truncation is legal.
1545  if (ExitCount->getType()->getPrimitiveSizeInBits() >
1546      IdxTy->getPrimitiveSizeInBits())
1547    ExitCount = SE->getTruncateOrNoop(ExitCount, IdxTy);
1548
1549  ExitCount = SE->getNoopOrZeroExtend(ExitCount, IdxTy);
1550  // Get the total trip count from the count by adding 1.
1551  ExitCount = SE->getAddExpr(ExitCount,
1552                             SE->getConstant(ExitCount->getType(), 1));
1553
1554  // Expand the trip count and place the new instructions in the preheader.
1555  // Notice that the pre-header does not change, only the loop body.
1556  SCEVExpander Exp(*SE, "induction");
1557
1558  // Count holds the overall loop count (N).
1559  Value *Count = Exp.expandCodeFor(ExitCount, ExitCount->getType(),
1560                                   BypassBlock->getTerminator());
1561
1562  // The loop index does not have to start at Zero. Find the original start
1563  // value from the induction PHI node. If we don't have an induction variable
1564  // then we know that it starts at zero.
1565  Builder.SetInsertPoint(BypassBlock->getTerminator());
1566  Value *StartIdx = ExtendedIdx = OldInduction ?
1567    Builder.CreateZExt(OldInduction->getIncomingValueForBlock(BypassBlock),
1568                       IdxTy):
1569    ConstantInt::get(IdxTy, 0);
1570
1571  assert(BypassBlock && "Invalid loop structure");
1572  LoopBypassBlocks.push_back(BypassBlock);
1573
1574  // Split the single block loop into the two loop structure described above.
1575  BasicBlock *VectorPH =
1576  BypassBlock->splitBasicBlock(BypassBlock->getTerminator(), "vector.ph");
1577  BasicBlock *VecBody =
1578  VectorPH->splitBasicBlock(VectorPH->getTerminator(), "vector.body");
1579  BasicBlock *MiddleBlock =
1580  VecBody->splitBasicBlock(VecBody->getTerminator(), "middle.block");
1581  BasicBlock *ScalarPH =
1582  MiddleBlock->splitBasicBlock(MiddleBlock->getTerminator(), "scalar.ph");
1583
1584  // Create and register the new vector loop.
1585  Loop* Lp = new Loop();
1586  Loop *ParentLoop = OrigLoop->getParentLoop();
1587
1588  // Insert the new loop into the loop nest and register the new basic blocks
1589  // before calling any utilities such as SCEV that require valid LoopInfo.
1590  if (ParentLoop) {
1591    ParentLoop->addChildLoop(Lp);
1592    ParentLoop->addBasicBlockToLoop(ScalarPH, LI->getBase());
1593    ParentLoop->addBasicBlockToLoop(VectorPH, LI->getBase());
1594    ParentLoop->addBasicBlockToLoop(MiddleBlock, LI->getBase());
1595  } else {
1596    LI->addTopLevelLoop(Lp);
1597  }
1598  Lp->addBasicBlockToLoop(VecBody, LI->getBase());
1599
1600  // Use this IR builder to create the loop instructions (Phi, Br, Cmp)
1601  // inside the loop.
1602  Builder.SetInsertPoint(VecBody->getFirstNonPHI());
1603
1604  // Generate the induction variable.
1605  setDebugLocFromInst(Builder, getDebugLocFromInstOrOperands(OldInduction));
1606  Induction = Builder.CreatePHI(IdxTy, 2, "index");
1607  // The loop step is equal to the vectorization factor (num of SIMD elements)
1608  // times the unroll factor (num of SIMD instructions).
1609  Constant *Step = ConstantInt::get(IdxTy, VF * UF);
1610
1611  // This is the IR builder that we use to add all of the logic for bypassing
1612  // the new vector loop.
1613  IRBuilder<> BypassBuilder(BypassBlock->getTerminator());
1614  setDebugLocFromInst(BypassBuilder,
1615                      getDebugLocFromInstOrOperands(OldInduction));
1616
1617  // We may need to extend the index in case there is a type mismatch.
1618  // We know that the count starts at zero and does not overflow.
1619  if (Count->getType() != IdxTy) {
1620    // The exit count can be of pointer type. Convert it to the correct
1621    // integer type.
1622    if (ExitCount->getType()->isPointerTy())
1623      Count = BypassBuilder.CreatePointerCast(Count, IdxTy, "ptrcnt.to.int");
1624    else
1625      Count = BypassBuilder.CreateZExtOrTrunc(Count, IdxTy, "cnt.cast");
1626  }
1627
1628  // Add the start index to the loop count to get the new end index.
1629  Value *IdxEnd = BypassBuilder.CreateAdd(Count, StartIdx, "end.idx");
1630
1631  // Now we need to generate the expression for N - (N % VF), which is
1632  // the part that the vectorized body will execute.
1633  Value *R = BypassBuilder.CreateURem(Count, Step, "n.mod.vf");
1634  Value *CountRoundDown = BypassBuilder.CreateSub(Count, R, "n.vec");
1635  Value *IdxEndRoundDown = BypassBuilder.CreateAdd(CountRoundDown, StartIdx,
1636                                                     "end.idx.rnd.down");
1637
1638  // Now, compare the new count to zero. If it is zero skip the vector loop and
1639  // jump to the scalar loop.
1640  Value *Cmp = BypassBuilder.CreateICmpEQ(IdxEndRoundDown, StartIdx,
1641                                          "cmp.zero");
1642
1643  BasicBlock *LastBypassBlock = BypassBlock;
1644
1645  // Generate the code that checks in runtime if arrays overlap. We put the
1646  // checks into a separate block to make the more common case of few elements
1647  // faster.
1648  Instruction *MemRuntimeCheck = addRuntimeCheck(Legal,
1649                                                 BypassBlock->getTerminator());
1650  if (MemRuntimeCheck) {
1651    // Create a new block containing the memory check.
1652    BasicBlock *CheckBlock = BypassBlock->splitBasicBlock(MemRuntimeCheck,
1653                                                          "vector.memcheck");
1654    if (ParentLoop)
1655      ParentLoop->addBasicBlockToLoop(CheckBlock, LI->getBase());
1656    LoopBypassBlocks.push_back(CheckBlock);
1657
1658    // Replace the branch into the memory check block with a conditional branch
1659    // for the "few elements case".
1660    Instruction *OldTerm = BypassBlock->getTerminator();
1661    BranchInst::Create(MiddleBlock, CheckBlock, Cmp, OldTerm);
1662    OldTerm->eraseFromParent();
1663
1664    Cmp = MemRuntimeCheck;
1665    LastBypassBlock = CheckBlock;
1666  }
1667
1668  LastBypassBlock->getTerminator()->eraseFromParent();
1669  BranchInst::Create(MiddleBlock, VectorPH, Cmp,
1670                     LastBypassBlock);
1671
1672  // We are going to resume the execution of the scalar loop.
1673  // Go over all of the induction variables that we found and fix the
1674  // PHIs that are left in the scalar version of the loop.
1675  // The starting values of PHI nodes depend on the counter of the last
1676  // iteration in the vectorized loop.
1677  // If we come from a bypass edge then we need to start from the original
1678  // start value.
1679
1680  // This variable saves the new starting index for the scalar loop.
1681  PHINode *ResumeIndex = 0;
1682  LoopVectorizationLegality::InductionList::iterator I, E;
1683  LoopVectorizationLegality::InductionList *List = Legal->getInductionVars();
1684  // Set builder to point to last bypass block.
1685  BypassBuilder.SetInsertPoint(LoopBypassBlocks.back()->getTerminator());
1686  for (I = List->begin(), E = List->end(); I != E; ++I) {
1687    PHINode *OrigPhi = I->first;
1688    LoopVectorizationLegality::InductionInfo II = I->second;
1689
1690    Type *ResumeValTy = (OrigPhi == OldInduction) ? IdxTy : OrigPhi->getType();
1691    PHINode *ResumeVal = PHINode::Create(ResumeValTy, 2, "resume.val",
1692                                         MiddleBlock->getTerminator());
1693    // We might have extended the type of the induction variable but we need a
1694    // truncated version for the scalar loop.
1695    PHINode *TruncResumeVal = (OrigPhi == OldInduction) ?
1696      PHINode::Create(OrigPhi->getType(), 2, "trunc.resume.val",
1697                      MiddleBlock->getTerminator()) : 0;
1698
1699    Value *EndValue = 0;
1700    switch (II.IK) {
1701    case LoopVectorizationLegality::IK_NoInduction:
1702      llvm_unreachable("Unknown induction");
1703    case LoopVectorizationLegality::IK_IntInduction: {
1704      // Handle the integer induction counter.
1705      assert(OrigPhi->getType()->isIntegerTy() && "Invalid type");
1706
1707      // We have the canonical induction variable.
1708      if (OrigPhi == OldInduction) {
1709        // Create a truncated version of the resume value for the scalar loop,
1710        // we might have promoted the type to a larger width.
1711        EndValue =
1712          BypassBuilder.CreateTrunc(IdxEndRoundDown, OrigPhi->getType());
1713        // The new PHI merges the original incoming value, in case of a bypass,
1714        // or the value at the end of the vectorized loop.
1715        for (unsigned I = 0, E = LoopBypassBlocks.size(); I != E; ++I)
1716          TruncResumeVal->addIncoming(II.StartValue, LoopBypassBlocks[I]);
1717        TruncResumeVal->addIncoming(EndValue, VecBody);
1718
1719        // We know what the end value is.
1720        EndValue = IdxEndRoundDown;
1721        // We also know which PHI node holds it.
1722        ResumeIndex = ResumeVal;
1723        break;
1724      }
1725
1726      // Not the canonical induction variable - add the vector loop count to the
1727      // start value.
1728      Value *CRD = BypassBuilder.CreateSExtOrTrunc(CountRoundDown,
1729                                                   II.StartValue->getType(),
1730                                                   "cast.crd");
1731      EndValue = BypassBuilder.CreateAdd(CRD, II.StartValue , "ind.end");
1732      break;
1733    }
1734    case LoopVectorizationLegality::IK_ReverseIntInduction: {
1735      // Convert the CountRoundDown variable to the PHI size.
1736      Value *CRD = BypassBuilder.CreateSExtOrTrunc(CountRoundDown,
1737                                                   II.StartValue->getType(),
1738                                                   "cast.crd");
1739      // Handle reverse integer induction counter.
1740      EndValue = BypassBuilder.CreateSub(II.StartValue, CRD, "rev.ind.end");
1741      break;
1742    }
1743    case LoopVectorizationLegality::IK_PtrInduction: {
1744      // For pointer induction variables, calculate the offset using
1745      // the end index.
1746      EndValue = BypassBuilder.CreateGEP(II.StartValue, CountRoundDown,
1747                                         "ptr.ind.end");
1748      break;
1749    }
1750    case LoopVectorizationLegality::IK_ReversePtrInduction: {
1751      // The value at the end of the loop for the reverse pointer is calculated
1752      // by creating a GEP with a negative index starting from the start value.
1753      Value *Zero = ConstantInt::get(CountRoundDown->getType(), 0);
1754      Value *NegIdx = BypassBuilder.CreateSub(Zero, CountRoundDown,
1755                                              "rev.ind.end");
1756      EndValue = BypassBuilder.CreateGEP(II.StartValue, NegIdx,
1757                                         "rev.ptr.ind.end");
1758      break;
1759    }
1760    }// end of case
1761
1762    // The new PHI merges the original incoming value, in case of a bypass,
1763    // or the value at the end of the vectorized loop.
1764    for (unsigned I = 0, E = LoopBypassBlocks.size(); I != E; ++I) {
1765      if (OrigPhi == OldInduction)
1766        ResumeVal->addIncoming(StartIdx, LoopBypassBlocks[I]);
1767      else
1768        ResumeVal->addIncoming(II.StartValue, LoopBypassBlocks[I]);
1769    }
1770    ResumeVal->addIncoming(EndValue, VecBody);
1771
1772    // Fix the scalar body counter (PHI node).
1773    unsigned BlockIdx = OrigPhi->getBasicBlockIndex(ScalarPH);
1774    // The old inductions phi node in the scalar body needs the truncated value.
1775    if (OrigPhi == OldInduction)
1776      OrigPhi->setIncomingValue(BlockIdx, TruncResumeVal);
1777    else
1778      OrigPhi->setIncomingValue(BlockIdx, ResumeVal);
1779  }
1780
1781  // If we are generating a new induction variable then we also need to
1782  // generate the code that calculates the exit value. This value is not
1783  // simply the end of the counter because we may skip the vectorized body
1784  // in case of a runtime check.
1785  if (!OldInduction){
1786    assert(!ResumeIndex && "Unexpected resume value found");
1787    ResumeIndex = PHINode::Create(IdxTy, 2, "new.indc.resume.val",
1788                                  MiddleBlock->getTerminator());
1789    for (unsigned I = 0, E = LoopBypassBlocks.size(); I != E; ++I)
1790      ResumeIndex->addIncoming(StartIdx, LoopBypassBlocks[I]);
1791    ResumeIndex->addIncoming(IdxEndRoundDown, VecBody);
1792  }
1793
1794  // Make sure that we found the index where scalar loop needs to continue.
1795  assert(ResumeIndex && ResumeIndex->getType()->isIntegerTy() &&
1796         "Invalid resume Index");
1797
1798  // Add a check in the middle block to see if we have completed
1799  // all of the iterations in the first vector loop.
1800  // If (N - N%VF) == N, then we *don't* need to run the remainder.
1801  Value *CmpN = CmpInst::Create(Instruction::ICmp, CmpInst::ICMP_EQ, IdxEnd,
1802                                ResumeIndex, "cmp.n",
1803                                MiddleBlock->getTerminator());
1804
1805  BranchInst::Create(ExitBlock, ScalarPH, CmpN, MiddleBlock->getTerminator());
1806  // Remove the old terminator.
1807  MiddleBlock->getTerminator()->eraseFromParent();
1808
1809  // Create i+1 and fill the PHINode.
1810  Value *NextIdx = Builder.CreateAdd(Induction, Step, "index.next");
1811  Induction->addIncoming(StartIdx, VectorPH);
1812  Induction->addIncoming(NextIdx, VecBody);
1813  // Create the compare.
1814  Value *ICmp = Builder.CreateICmpEQ(NextIdx, IdxEndRoundDown);
1815  Builder.CreateCondBr(ICmp, MiddleBlock, VecBody);
1816
1817  // Now we have two terminators. Remove the old one from the block.
1818  VecBody->getTerminator()->eraseFromParent();
1819
1820  // Get ready to start creating new instructions into the vectorized body.
1821  Builder.SetInsertPoint(VecBody->getFirstInsertionPt());
1822
1823  // Save the state.
1824  LoopVectorPreHeader = VectorPH;
1825  LoopScalarPreHeader = ScalarPH;
1826  LoopMiddleBlock = MiddleBlock;
1827  LoopExitBlock = ExitBlock;
1828  LoopVectorBody = VecBody;
1829  LoopScalarBody = OldBasicBlock;
1830
1831  LoopVectorizeHints Hints(Lp, true);
1832  Hints.setAlreadyVectorized(Lp);
1833}
1834
1835/// This function returns the identity element (or neutral element) for
1836/// the operation K.
1837Constant*
1838LoopVectorizationLegality::getReductionIdentity(ReductionKind K, Type *Tp) {
1839  switch (K) {
1840  case RK_IntegerXor:
1841  case RK_IntegerAdd:
1842  case RK_IntegerOr:
1843    // Adding, Xoring, Oring zero to a number does not change it.
1844    return ConstantInt::get(Tp, 0);
1845  case RK_IntegerMult:
1846    // Multiplying a number by 1 does not change it.
1847    return ConstantInt::get(Tp, 1);
1848  case RK_IntegerAnd:
1849    // AND-ing a number with an all-1 value does not change it.
1850    return ConstantInt::get(Tp, -1, true);
1851  case  RK_FloatMult:
1852    // Multiplying a number by 1 does not change it.
1853    return ConstantFP::get(Tp, 1.0L);
1854  case  RK_FloatAdd:
1855    // Adding zero to a number does not change it.
1856    return ConstantFP::get(Tp, 0.0L);
1857  default:
1858    llvm_unreachable("Unknown reduction kind");
1859  }
1860}
1861
1862static Intrinsic::ID checkUnaryFloatSignature(const CallInst &I,
1863                                              Intrinsic::ID ValidIntrinsicID) {
1864  if (I.getNumArgOperands() != 1 ||
1865      !I.getArgOperand(0)->getType()->isFloatingPointTy() ||
1866      I.getType() != I.getArgOperand(0)->getType() ||
1867      !I.onlyReadsMemory())
1868    return Intrinsic::not_intrinsic;
1869
1870  return ValidIntrinsicID;
1871}
1872
1873static Intrinsic::ID checkBinaryFloatSignature(const CallInst &I,
1874                                               Intrinsic::ID ValidIntrinsicID) {
1875  if (I.getNumArgOperands() != 2 ||
1876      !I.getArgOperand(0)->getType()->isFloatingPointTy() ||
1877      !I.getArgOperand(1)->getType()->isFloatingPointTy() ||
1878      I.getType() != I.getArgOperand(0)->getType() ||
1879      I.getType() != I.getArgOperand(1)->getType() ||
1880      !I.onlyReadsMemory())
1881    return Intrinsic::not_intrinsic;
1882
1883  return ValidIntrinsicID;
1884}
1885
1886
1887static Intrinsic::ID
1888getIntrinsicIDForCall(CallInst *CI, const TargetLibraryInfo *TLI) {
1889  // If we have an intrinsic call, check if it is trivially vectorizable.
1890  if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(CI)) {
1891    switch (II->getIntrinsicID()) {
1892    case Intrinsic::sqrt:
1893    case Intrinsic::sin:
1894    case Intrinsic::cos:
1895    case Intrinsic::exp:
1896    case Intrinsic::exp2:
1897    case Intrinsic::log:
1898    case Intrinsic::log10:
1899    case Intrinsic::log2:
1900    case Intrinsic::fabs:
1901    case Intrinsic::copysign:
1902    case Intrinsic::floor:
1903    case Intrinsic::ceil:
1904    case Intrinsic::trunc:
1905    case Intrinsic::rint:
1906    case Intrinsic::nearbyint:
1907    case Intrinsic::round:
1908    case Intrinsic::pow:
1909    case Intrinsic::fma:
1910    case Intrinsic::fmuladd:
1911    case Intrinsic::lifetime_start:
1912    case Intrinsic::lifetime_end:
1913      return II->getIntrinsicID();
1914    default:
1915      return Intrinsic::not_intrinsic;
1916    }
1917  }
1918
1919  if (!TLI)
1920    return Intrinsic::not_intrinsic;
1921
1922  LibFunc::Func Func;
1923  Function *F = CI->getCalledFunction();
1924  // We're going to make assumptions on the semantics of the functions, check
1925  // that the target knows that it's available in this environment and it does
1926  // not have local linkage.
1927  if (!F || F->hasLocalLinkage() || !TLI->getLibFunc(F->getName(), Func))
1928    return Intrinsic::not_intrinsic;
1929
1930  // Otherwise check if we have a call to a function that can be turned into a
1931  // vector intrinsic.
1932  switch (Func) {
1933  default:
1934    break;
1935  case LibFunc::sin:
1936  case LibFunc::sinf:
1937  case LibFunc::sinl:
1938    return checkUnaryFloatSignature(*CI, Intrinsic::sin);
1939  case LibFunc::cos:
1940  case LibFunc::cosf:
1941  case LibFunc::cosl:
1942    return checkUnaryFloatSignature(*CI, Intrinsic::cos);
1943  case LibFunc::exp:
1944  case LibFunc::expf:
1945  case LibFunc::expl:
1946    return checkUnaryFloatSignature(*CI, Intrinsic::exp);
1947  case LibFunc::exp2:
1948  case LibFunc::exp2f:
1949  case LibFunc::exp2l:
1950    return checkUnaryFloatSignature(*CI, Intrinsic::exp2);
1951  case LibFunc::log:
1952  case LibFunc::logf:
1953  case LibFunc::logl:
1954    return checkUnaryFloatSignature(*CI, Intrinsic::log);
1955  case LibFunc::log10:
1956  case LibFunc::log10f:
1957  case LibFunc::log10l:
1958    return checkUnaryFloatSignature(*CI, Intrinsic::log10);
1959  case LibFunc::log2:
1960  case LibFunc::log2f:
1961  case LibFunc::log2l:
1962    return checkUnaryFloatSignature(*CI, Intrinsic::log2);
1963  case LibFunc::fabs:
1964  case LibFunc::fabsf:
1965  case LibFunc::fabsl:
1966    return checkUnaryFloatSignature(*CI, Intrinsic::fabs);
1967  case LibFunc::copysign:
1968  case LibFunc::copysignf:
1969  case LibFunc::copysignl:
1970    return checkBinaryFloatSignature(*CI, Intrinsic::copysign);
1971  case LibFunc::floor:
1972  case LibFunc::floorf:
1973  case LibFunc::floorl:
1974    return checkUnaryFloatSignature(*CI, Intrinsic::floor);
1975  case LibFunc::ceil:
1976  case LibFunc::ceilf:
1977  case LibFunc::ceill:
1978    return checkUnaryFloatSignature(*CI, Intrinsic::ceil);
1979  case LibFunc::trunc:
1980  case LibFunc::truncf:
1981  case LibFunc::truncl:
1982    return checkUnaryFloatSignature(*CI, Intrinsic::trunc);
1983  case LibFunc::rint:
1984  case LibFunc::rintf:
1985  case LibFunc::rintl:
1986    return checkUnaryFloatSignature(*CI, Intrinsic::rint);
1987  case LibFunc::nearbyint:
1988  case LibFunc::nearbyintf:
1989  case LibFunc::nearbyintl:
1990    return checkUnaryFloatSignature(*CI, Intrinsic::nearbyint);
1991  case LibFunc::round:
1992  case LibFunc::roundf:
1993  case LibFunc::roundl:
1994    return checkUnaryFloatSignature(*CI, Intrinsic::round);
1995  case LibFunc::pow:
1996  case LibFunc::powf:
1997  case LibFunc::powl:
1998    return checkBinaryFloatSignature(*CI, Intrinsic::pow);
1999  }
2000
2001  return Intrinsic::not_intrinsic;
2002}
2003
2004/// This function translates the reduction kind to an LLVM binary operator.
2005static unsigned
2006getReductionBinOp(LoopVectorizationLegality::ReductionKind Kind) {
2007  switch (Kind) {
2008    case LoopVectorizationLegality::RK_IntegerAdd:
2009      return Instruction::Add;
2010    case LoopVectorizationLegality::RK_IntegerMult:
2011      return Instruction::Mul;
2012    case LoopVectorizationLegality::RK_IntegerOr:
2013      return Instruction::Or;
2014    case LoopVectorizationLegality::RK_IntegerAnd:
2015      return Instruction::And;
2016    case LoopVectorizationLegality::RK_IntegerXor:
2017      return Instruction::Xor;
2018    case LoopVectorizationLegality::RK_FloatMult:
2019      return Instruction::FMul;
2020    case LoopVectorizationLegality::RK_FloatAdd:
2021      return Instruction::FAdd;
2022    case LoopVectorizationLegality::RK_IntegerMinMax:
2023      return Instruction::ICmp;
2024    case LoopVectorizationLegality::RK_FloatMinMax:
2025      return Instruction::FCmp;
2026    default:
2027      llvm_unreachable("Unknown reduction operation");
2028  }
2029}
2030
2031Value *createMinMaxOp(IRBuilder<> &Builder,
2032                      LoopVectorizationLegality::MinMaxReductionKind RK,
2033                      Value *Left,
2034                      Value *Right) {
2035  CmpInst::Predicate P = CmpInst::ICMP_NE;
2036  switch (RK) {
2037  default:
2038    llvm_unreachable("Unknown min/max reduction kind");
2039  case LoopVectorizationLegality::MRK_UIntMin:
2040    P = CmpInst::ICMP_ULT;
2041    break;
2042  case LoopVectorizationLegality::MRK_UIntMax:
2043    P = CmpInst::ICMP_UGT;
2044    break;
2045  case LoopVectorizationLegality::MRK_SIntMin:
2046    P = CmpInst::ICMP_SLT;
2047    break;
2048  case LoopVectorizationLegality::MRK_SIntMax:
2049    P = CmpInst::ICMP_SGT;
2050    break;
2051  case LoopVectorizationLegality::MRK_FloatMin:
2052    P = CmpInst::FCMP_OLT;
2053    break;
2054  case LoopVectorizationLegality::MRK_FloatMax:
2055    P = CmpInst::FCMP_OGT;
2056    break;
2057  }
2058
2059  Value *Cmp;
2060  if (RK == LoopVectorizationLegality::MRK_FloatMin ||
2061      RK == LoopVectorizationLegality::MRK_FloatMax)
2062    Cmp = Builder.CreateFCmp(P, Left, Right, "rdx.minmax.cmp");
2063  else
2064    Cmp = Builder.CreateICmp(P, Left, Right, "rdx.minmax.cmp");
2065
2066  Value *Select = Builder.CreateSelect(Cmp, Left, Right, "rdx.minmax.select");
2067  return Select;
2068}
2069
2070namespace {
2071struct CSEDenseMapInfo {
2072  static bool canHandle(Instruction *I) {
2073    return isa<InsertElementInst>(I) || isa<ExtractElementInst>(I) ||
2074           isa<ShuffleVectorInst>(I) || isa<GetElementPtrInst>(I);
2075  }
2076  static inline Instruction *getEmptyKey() {
2077    return DenseMapInfo<Instruction *>::getEmptyKey();
2078  }
2079  static inline Instruction *getTombstoneKey() {
2080    return DenseMapInfo<Instruction *>::getTombstoneKey();
2081  }
2082  static unsigned getHashValue(Instruction *I) {
2083    assert(canHandle(I) && "Unknown instruction!");
2084    return hash_combine(I->getOpcode(), hash_combine_range(I->value_op_begin(),
2085                                                           I->value_op_end()));
2086  }
2087  static bool isEqual(Instruction *LHS, Instruction *RHS) {
2088    if (LHS == getEmptyKey() || RHS == getEmptyKey() ||
2089        LHS == getTombstoneKey() || RHS == getTombstoneKey())
2090      return LHS == RHS;
2091    return LHS->isIdenticalTo(RHS);
2092  }
2093};
2094}
2095
2096///\brief Perform cse of induction variable instructions.
2097static void cse(BasicBlock *BB) {
2098  // Perform simple cse.
2099  SmallDenseMap<Instruction *, Instruction *, 4, CSEDenseMapInfo> CSEMap;
2100  for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E;) {
2101    Instruction *In = I++;
2102
2103    if (!CSEDenseMapInfo::canHandle(In))
2104      continue;
2105
2106    // Check if we can replace this instruction with any of the
2107    // visited instructions.
2108    if (Instruction *V = CSEMap.lookup(In)) {
2109      In->replaceAllUsesWith(V);
2110      In->eraseFromParent();
2111      continue;
2112    }
2113
2114    CSEMap[In] = In;
2115  }
2116}
2117
2118void
2119InnerLoopVectorizer::vectorizeLoop(LoopVectorizationLegality *Legal) {
2120  //===------------------------------------------------===//
2121  //
2122  // Notice: any optimization or new instruction that go
2123  // into the code below should be also be implemented in
2124  // the cost-model.
2125  //
2126  //===------------------------------------------------===//
2127  Constant *Zero = Builder.getInt32(0);
2128
2129  // In order to support reduction variables we need to be able to vectorize
2130  // Phi nodes. Phi nodes have cycles, so we need to vectorize them in two
2131  // stages. First, we create a new vector PHI node with no incoming edges.
2132  // We use this value when we vectorize all of the instructions that use the
2133  // PHI. Next, after all of the instructions in the block are complete we
2134  // add the new incoming edges to the PHI. At this point all of the
2135  // instructions in the basic block are vectorized, so we can use them to
2136  // construct the PHI.
2137  PhiVector RdxPHIsToFix;
2138
2139  // Scan the loop in a topological order to ensure that defs are vectorized
2140  // before users.
2141  LoopBlocksDFS DFS(OrigLoop);
2142  DFS.perform(LI);
2143
2144  // Vectorize all of the blocks in the original loop.
2145  for (LoopBlocksDFS::RPOIterator bb = DFS.beginRPO(),
2146       be = DFS.endRPO(); bb != be; ++bb)
2147    vectorizeBlockInLoop(Legal, *bb, &RdxPHIsToFix);
2148
2149  // At this point every instruction in the original loop is widened to
2150  // a vector form. We are almost done. Now, we need to fix the PHI nodes
2151  // that we vectorized. The PHI nodes are currently empty because we did
2152  // not want to introduce cycles. Notice that the remaining PHI nodes
2153  // that we need to fix are reduction variables.
2154
2155  // Create the 'reduced' values for each of the induction vars.
2156  // The reduced values are the vector values that we scalarize and combine
2157  // after the loop is finished.
2158  for (PhiVector::iterator it = RdxPHIsToFix.begin(), e = RdxPHIsToFix.end();
2159       it != e; ++it) {
2160    PHINode *RdxPhi = *it;
2161    assert(RdxPhi && "Unable to recover vectorized PHI");
2162
2163    // Find the reduction variable descriptor.
2164    assert(Legal->getReductionVars()->count(RdxPhi) &&
2165           "Unable to find the reduction variable");
2166    LoopVectorizationLegality::ReductionDescriptor RdxDesc =
2167    (*Legal->getReductionVars())[RdxPhi];
2168
2169    setDebugLocFromInst(Builder, RdxDesc.StartValue);
2170
2171    // We need to generate a reduction vector from the incoming scalar.
2172    // To do so, we need to generate the 'identity' vector and overide
2173    // one of the elements with the incoming scalar reduction. We need
2174    // to do it in the vector-loop preheader.
2175    Builder.SetInsertPoint(LoopBypassBlocks.front()->getTerminator());
2176
2177    // This is the vector-clone of the value that leaves the loop.
2178    VectorParts &VectorExit = getVectorValue(RdxDesc.LoopExitInstr);
2179    Type *VecTy = VectorExit[0]->getType();
2180
2181    // Find the reduction identity variable. Zero for addition, or, xor,
2182    // one for multiplication, -1 for And.
2183    Value *Identity;
2184    Value *VectorStart;
2185    if (RdxDesc.Kind == LoopVectorizationLegality::RK_IntegerMinMax ||
2186        RdxDesc.Kind == LoopVectorizationLegality::RK_FloatMinMax) {
2187      // MinMax reduction have the start value as their identify.
2188      if (VF == 1) {
2189        VectorStart = Identity = RdxDesc.StartValue;
2190      } else {
2191        VectorStart = Identity = Builder.CreateVectorSplat(VF,
2192                                                           RdxDesc.StartValue,
2193                                                           "minmax.ident");
2194      }
2195    } else {
2196      // Handle other reduction kinds:
2197      Constant *Iden =
2198      LoopVectorizationLegality::getReductionIdentity(RdxDesc.Kind,
2199                                                      VecTy->getScalarType());
2200      if (VF == 1) {
2201        Identity = Iden;
2202        // This vector is the Identity vector where the first element is the
2203        // incoming scalar reduction.
2204        VectorStart = RdxDesc.StartValue;
2205      } else {
2206        Identity = ConstantVector::getSplat(VF, Iden);
2207
2208        // This vector is the Identity vector where the first element is the
2209        // incoming scalar reduction.
2210        VectorStart = Builder.CreateInsertElement(Identity,
2211                                                  RdxDesc.StartValue, Zero);
2212      }
2213    }
2214
2215    // Fix the vector-loop phi.
2216    // We created the induction variable so we know that the
2217    // preheader is the first entry.
2218    BasicBlock *VecPreheader = Induction->getIncomingBlock(0);
2219
2220    // Reductions do not have to start at zero. They can start with
2221    // any loop invariant values.
2222    VectorParts &VecRdxPhi = WidenMap.get(RdxPhi);
2223    BasicBlock *Latch = OrigLoop->getLoopLatch();
2224    Value *LoopVal = RdxPhi->getIncomingValueForBlock(Latch);
2225    VectorParts &Val = getVectorValue(LoopVal);
2226    for (unsigned part = 0; part < UF; ++part) {
2227      // Make sure to add the reduction stat value only to the
2228      // first unroll part.
2229      Value *StartVal = (part == 0) ? VectorStart : Identity;
2230      cast<PHINode>(VecRdxPhi[part])->addIncoming(StartVal, VecPreheader);
2231      cast<PHINode>(VecRdxPhi[part])->addIncoming(Val[part], LoopVectorBody);
2232    }
2233
2234    // Before each round, move the insertion point right between
2235    // the PHIs and the values we are going to write.
2236    // This allows us to write both PHINodes and the extractelement
2237    // instructions.
2238    Builder.SetInsertPoint(LoopMiddleBlock->getFirstInsertionPt());
2239
2240    VectorParts RdxParts;
2241    setDebugLocFromInst(Builder, RdxDesc.LoopExitInstr);
2242    for (unsigned part = 0; part < UF; ++part) {
2243      // This PHINode contains the vectorized reduction variable, or
2244      // the initial value vector, if we bypass the vector loop.
2245      VectorParts &RdxExitVal = getVectorValue(RdxDesc.LoopExitInstr);
2246      PHINode *NewPhi = Builder.CreatePHI(VecTy, 2, "rdx.vec.exit.phi");
2247      Value *StartVal = (part == 0) ? VectorStart : Identity;
2248      for (unsigned I = 0, E = LoopBypassBlocks.size(); I != E; ++I)
2249        NewPhi->addIncoming(StartVal, LoopBypassBlocks[I]);
2250      NewPhi->addIncoming(RdxExitVal[part], LoopVectorBody);
2251      RdxParts.push_back(NewPhi);
2252    }
2253
2254    // Reduce all of the unrolled parts into a single vector.
2255    Value *ReducedPartRdx = RdxParts[0];
2256    unsigned Op = getReductionBinOp(RdxDesc.Kind);
2257    setDebugLocFromInst(Builder, ReducedPartRdx);
2258    for (unsigned part = 1; part < UF; ++part) {
2259      if (Op != Instruction::ICmp && Op != Instruction::FCmp)
2260        ReducedPartRdx = Builder.CreateBinOp((Instruction::BinaryOps)Op,
2261                                             RdxParts[part], ReducedPartRdx,
2262                                             "bin.rdx");
2263      else
2264        ReducedPartRdx = createMinMaxOp(Builder, RdxDesc.MinMaxKind,
2265                                        ReducedPartRdx, RdxParts[part]);
2266    }
2267
2268    if (VF > 1) {
2269      // VF is a power of 2 so we can emit the reduction using log2(VF) shuffles
2270      // and vector ops, reducing the set of values being computed by half each
2271      // round.
2272      assert(isPowerOf2_32(VF) &&
2273             "Reduction emission only supported for pow2 vectors!");
2274      Value *TmpVec = ReducedPartRdx;
2275      SmallVector<Constant*, 32> ShuffleMask(VF, 0);
2276      for (unsigned i = VF; i != 1; i >>= 1) {
2277        // Move the upper half of the vector to the lower half.
2278        for (unsigned j = 0; j != i/2; ++j)
2279          ShuffleMask[j] = Builder.getInt32(i/2 + j);
2280
2281        // Fill the rest of the mask with undef.
2282        std::fill(&ShuffleMask[i/2], ShuffleMask.end(),
2283                  UndefValue::get(Builder.getInt32Ty()));
2284
2285        Value *Shuf =
2286        Builder.CreateShuffleVector(TmpVec,
2287                                    UndefValue::get(TmpVec->getType()),
2288                                    ConstantVector::get(ShuffleMask),
2289                                    "rdx.shuf");
2290
2291        if (Op != Instruction::ICmp && Op != Instruction::FCmp)
2292          TmpVec = Builder.CreateBinOp((Instruction::BinaryOps)Op, TmpVec, Shuf,
2293                                       "bin.rdx");
2294        else
2295          TmpVec = createMinMaxOp(Builder, RdxDesc.MinMaxKind, TmpVec, Shuf);
2296      }
2297
2298      // The result is in the first element of the vector.
2299      ReducedPartRdx = Builder.CreateExtractElement(TmpVec,
2300                                                    Builder.getInt32(0));
2301    }
2302
2303    // Now, we need to fix the users of the reduction variable
2304    // inside and outside of the scalar remainder loop.
2305    // We know that the loop is in LCSSA form. We need to update the
2306    // PHI nodes in the exit blocks.
2307    for (BasicBlock::iterator LEI = LoopExitBlock->begin(),
2308         LEE = LoopExitBlock->end(); LEI != LEE; ++LEI) {
2309      PHINode *LCSSAPhi = dyn_cast<PHINode>(LEI);
2310      if (!LCSSAPhi) break;
2311
2312      // All PHINodes need to have a single entry edge, or two if
2313      // we already fixed them.
2314      assert(LCSSAPhi->getNumIncomingValues() < 3 && "Invalid LCSSA PHI");
2315
2316      // We found our reduction value exit-PHI. Update it with the
2317      // incoming bypass edge.
2318      if (LCSSAPhi->getIncomingValue(0) == RdxDesc.LoopExitInstr) {
2319        // Add an edge coming from the bypass.
2320        LCSSAPhi->addIncoming(ReducedPartRdx, LoopMiddleBlock);
2321        break;
2322      }
2323    }// end of the LCSSA phi scan.
2324
2325    // Fix the scalar loop reduction variable with the incoming reduction sum
2326    // from the vector body and from the backedge value.
2327    int IncomingEdgeBlockIdx =
2328    (RdxPhi)->getBasicBlockIndex(OrigLoop->getLoopLatch());
2329    assert(IncomingEdgeBlockIdx >= 0 && "Invalid block index");
2330    // Pick the other block.
2331    int SelfEdgeBlockIdx = (IncomingEdgeBlockIdx ? 0 : 1);
2332    (RdxPhi)->setIncomingValue(SelfEdgeBlockIdx, ReducedPartRdx);
2333    (RdxPhi)->setIncomingValue(IncomingEdgeBlockIdx, RdxDesc.LoopExitInstr);
2334  }// end of for each redux variable.
2335
2336  fixLCSSAPHIs();
2337
2338  // Remove redundant induction instructions.
2339  cse(LoopVectorBody);
2340}
2341
2342void InnerLoopVectorizer::fixLCSSAPHIs() {
2343  for (BasicBlock::iterator LEI = LoopExitBlock->begin(),
2344       LEE = LoopExitBlock->end(); LEI != LEE; ++LEI) {
2345    PHINode *LCSSAPhi = dyn_cast<PHINode>(LEI);
2346    if (!LCSSAPhi) break;
2347    if (LCSSAPhi->getNumIncomingValues() == 1)
2348      LCSSAPhi->addIncoming(UndefValue::get(LCSSAPhi->getType()),
2349                            LoopMiddleBlock);
2350  }
2351}
2352
2353InnerLoopVectorizer::VectorParts
2354InnerLoopVectorizer::createEdgeMask(BasicBlock *Src, BasicBlock *Dst) {
2355  assert(std::find(pred_begin(Dst), pred_end(Dst), Src) != pred_end(Dst) &&
2356         "Invalid edge");
2357
2358  // Look for cached value.
2359  std::pair<BasicBlock*, BasicBlock*> Edge(Src, Dst);
2360  EdgeMaskCache::iterator ECEntryIt = MaskCache.find(Edge);
2361  if (ECEntryIt != MaskCache.end())
2362    return ECEntryIt->second;
2363
2364  VectorParts SrcMask = createBlockInMask(Src);
2365
2366  // The terminator has to be a branch inst!
2367  BranchInst *BI = dyn_cast<BranchInst>(Src->getTerminator());
2368  assert(BI && "Unexpected terminator found");
2369
2370  if (BI->isConditional()) {
2371    VectorParts EdgeMask = getVectorValue(BI->getCondition());
2372
2373    if (BI->getSuccessor(0) != Dst)
2374      for (unsigned part = 0; part < UF; ++part)
2375        EdgeMask[part] = Builder.CreateNot(EdgeMask[part]);
2376
2377    for (unsigned part = 0; part < UF; ++part)
2378      EdgeMask[part] = Builder.CreateAnd(EdgeMask[part], SrcMask[part]);
2379
2380    MaskCache[Edge] = EdgeMask;
2381    return EdgeMask;
2382  }
2383
2384  MaskCache[Edge] = SrcMask;
2385  return SrcMask;
2386}
2387
2388InnerLoopVectorizer::VectorParts
2389InnerLoopVectorizer::createBlockInMask(BasicBlock *BB) {
2390  assert(OrigLoop->contains(BB) && "Block is not a part of a loop");
2391
2392  // Loop incoming mask is all-one.
2393  if (OrigLoop->getHeader() == BB) {
2394    Value *C = ConstantInt::get(IntegerType::getInt1Ty(BB->getContext()), 1);
2395    return getVectorValue(C);
2396  }
2397
2398  // This is the block mask. We OR all incoming edges, and with zero.
2399  Value *Zero = ConstantInt::get(IntegerType::getInt1Ty(BB->getContext()), 0);
2400  VectorParts BlockMask = getVectorValue(Zero);
2401
2402  // For each pred:
2403  for (pred_iterator it = pred_begin(BB), e = pred_end(BB); it != e; ++it) {
2404    VectorParts EM = createEdgeMask(*it, BB);
2405    for (unsigned part = 0; part < UF; ++part)
2406      BlockMask[part] = Builder.CreateOr(BlockMask[part], EM[part]);
2407  }
2408
2409  return BlockMask;
2410}
2411
2412void InnerLoopVectorizer::widenPHIInstruction(Instruction *PN,
2413                                              InnerLoopVectorizer::VectorParts &Entry,
2414                                              LoopVectorizationLegality *Legal,
2415                                              unsigned UF, unsigned VF, PhiVector *PV) {
2416  PHINode* P = cast<PHINode>(PN);
2417  // Handle reduction variables:
2418  if (Legal->getReductionVars()->count(P)) {
2419    for (unsigned part = 0; part < UF; ++part) {
2420      // This is phase one of vectorizing PHIs.
2421      Type *VecTy = (VF == 1) ? PN->getType() :
2422      VectorType::get(PN->getType(), VF);
2423      Entry[part] = PHINode::Create(VecTy, 2, "vec.phi",
2424                                    LoopVectorBody-> getFirstInsertionPt());
2425    }
2426    PV->push_back(P);
2427    return;
2428  }
2429
2430  setDebugLocFromInst(Builder, P);
2431  // Check for PHI nodes that are lowered to vector selects.
2432  if (P->getParent() != OrigLoop->getHeader()) {
2433    // We know that all PHIs in non header blocks are converted into
2434    // selects, so we don't have to worry about the insertion order and we
2435    // can just use the builder.
2436    // At this point we generate the predication tree. There may be
2437    // duplications since this is a simple recursive scan, but future
2438    // optimizations will clean it up.
2439
2440    unsigned NumIncoming = P->getNumIncomingValues();
2441
2442    // Generate a sequence of selects of the form:
2443    // SELECT(Mask3, In3,
2444    //      SELECT(Mask2, In2,
2445    //                   ( ...)))
2446    for (unsigned In = 0; In < NumIncoming; In++) {
2447      VectorParts Cond = createEdgeMask(P->getIncomingBlock(In),
2448                                        P->getParent());
2449      VectorParts &In0 = getVectorValue(P->getIncomingValue(In));
2450
2451      for (unsigned part = 0; part < UF; ++part) {
2452        // We might have single edge PHIs (blocks) - use an identity
2453        // 'select' for the first PHI operand.
2454        if (In == 0)
2455          Entry[part] = Builder.CreateSelect(Cond[part], In0[part],
2456                                             In0[part]);
2457        else
2458          // Select between the current value and the previous incoming edge
2459          // based on the incoming mask.
2460          Entry[part] = Builder.CreateSelect(Cond[part], In0[part],
2461                                             Entry[part], "predphi");
2462      }
2463    }
2464    return;
2465  }
2466
2467  // This PHINode must be an induction variable.
2468  // Make sure that we know about it.
2469  assert(Legal->getInductionVars()->count(P) &&
2470         "Not an induction variable");
2471
2472  LoopVectorizationLegality::InductionInfo II =
2473  Legal->getInductionVars()->lookup(P);
2474
2475  switch (II.IK) {
2476    case LoopVectorizationLegality::IK_NoInduction:
2477      llvm_unreachable("Unknown induction");
2478    case LoopVectorizationLegality::IK_IntInduction: {
2479      assert(P->getType() == II.StartValue->getType() && "Types must match");
2480      Type *PhiTy = P->getType();
2481      Value *Broadcasted;
2482      if (P == OldInduction) {
2483        // Handle the canonical induction variable. We might have had to
2484        // extend the type.
2485        Broadcasted = Builder.CreateTrunc(Induction, PhiTy);
2486      } else {
2487        // Handle other induction variables that are now based on the
2488        // canonical one.
2489        Value *NormalizedIdx = Builder.CreateSub(Induction, ExtendedIdx,
2490                                                 "normalized.idx");
2491        NormalizedIdx = Builder.CreateSExtOrTrunc(NormalizedIdx, PhiTy);
2492        Broadcasted = Builder.CreateAdd(II.StartValue, NormalizedIdx,
2493                                        "offset.idx");
2494      }
2495      Broadcasted = getBroadcastInstrs(Broadcasted);
2496      // After broadcasting the induction variable we need to make the vector
2497      // consecutive by adding 0, 1, 2, etc.
2498      for (unsigned part = 0; part < UF; ++part)
2499        Entry[part] = getConsecutiveVector(Broadcasted, VF * part, false);
2500      return;
2501    }
2502    case LoopVectorizationLegality::IK_ReverseIntInduction:
2503    case LoopVectorizationLegality::IK_PtrInduction:
2504    case LoopVectorizationLegality::IK_ReversePtrInduction:
2505      // Handle reverse integer and pointer inductions.
2506      Value *StartIdx = ExtendedIdx;
2507      // This is the normalized GEP that starts counting at zero.
2508      Value *NormalizedIdx = Builder.CreateSub(Induction, StartIdx,
2509                                               "normalized.idx");
2510
2511      // Handle the reverse integer induction variable case.
2512      if (LoopVectorizationLegality::IK_ReverseIntInduction == II.IK) {
2513        IntegerType *DstTy = cast<IntegerType>(II.StartValue->getType());
2514        Value *CNI = Builder.CreateSExtOrTrunc(NormalizedIdx, DstTy,
2515                                               "resize.norm.idx");
2516        Value *ReverseInd  = Builder.CreateSub(II.StartValue, CNI,
2517                                               "reverse.idx");
2518
2519        // This is a new value so do not hoist it out.
2520        Value *Broadcasted = getBroadcastInstrs(ReverseInd);
2521        // After broadcasting the induction variable we need to make the
2522        // vector consecutive by adding  ... -3, -2, -1, 0.
2523        for (unsigned part = 0; part < UF; ++part)
2524          Entry[part] = getConsecutiveVector(Broadcasted, -(int)VF * part,
2525                                             true);
2526        return;
2527      }
2528
2529      // Handle the pointer induction variable case.
2530      assert(P->getType()->isPointerTy() && "Unexpected type.");
2531
2532      // Is this a reverse induction ptr or a consecutive induction ptr.
2533      bool Reverse = (LoopVectorizationLegality::IK_ReversePtrInduction ==
2534                      II.IK);
2535
2536      // This is the vector of results. Notice that we don't generate
2537      // vector geps because scalar geps result in better code.
2538      for (unsigned part = 0; part < UF; ++part) {
2539        if (VF == 1) {
2540          int EltIndex = (part) * (Reverse ? -1 : 1);
2541          Constant *Idx = ConstantInt::get(Induction->getType(), EltIndex);
2542          Value *GlobalIdx;
2543          if (Reverse)
2544            GlobalIdx = Builder.CreateSub(Idx, NormalizedIdx, "gep.ridx");
2545          else
2546            GlobalIdx = Builder.CreateAdd(NormalizedIdx, Idx, "gep.idx");
2547
2548          Value *SclrGep = Builder.CreateGEP(II.StartValue, GlobalIdx,
2549                                             "next.gep");
2550          Entry[part] = SclrGep;
2551          continue;
2552        }
2553
2554        Value *VecVal = UndefValue::get(VectorType::get(P->getType(), VF));
2555        for (unsigned int i = 0; i < VF; ++i) {
2556          int EltIndex = (i + part * VF) * (Reverse ? -1 : 1);
2557          Constant *Idx = ConstantInt::get(Induction->getType(), EltIndex);
2558          Value *GlobalIdx;
2559          if (!Reverse)
2560            GlobalIdx = Builder.CreateAdd(NormalizedIdx, Idx, "gep.idx");
2561          else
2562            GlobalIdx = Builder.CreateSub(Idx, NormalizedIdx, "gep.ridx");
2563
2564          Value *SclrGep = Builder.CreateGEP(II.StartValue, GlobalIdx,
2565                                             "next.gep");
2566          VecVal = Builder.CreateInsertElement(VecVal, SclrGep,
2567                                               Builder.getInt32(i),
2568                                               "insert.gep");
2569        }
2570        Entry[part] = VecVal;
2571      }
2572      return;
2573  }
2574}
2575
2576void
2577InnerLoopVectorizer::vectorizeBlockInLoop(LoopVectorizationLegality *Legal,
2578                                          BasicBlock *BB, PhiVector *PV) {
2579  // For each instruction in the old loop.
2580  for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; ++it) {
2581    VectorParts &Entry = WidenMap.get(it);
2582    switch (it->getOpcode()) {
2583    case Instruction::Br:
2584      // Nothing to do for PHIs and BR, since we already took care of the
2585      // loop control flow instructions.
2586      continue;
2587    case Instruction::PHI:{
2588      // Vectorize PHINodes.
2589      widenPHIInstruction(it, Entry, Legal, UF, VF, PV);
2590      continue;
2591    }// End of PHI.
2592
2593    case Instruction::Add:
2594    case Instruction::FAdd:
2595    case Instruction::Sub:
2596    case Instruction::FSub:
2597    case Instruction::Mul:
2598    case Instruction::FMul:
2599    case Instruction::UDiv:
2600    case Instruction::SDiv:
2601    case Instruction::FDiv:
2602    case Instruction::URem:
2603    case Instruction::SRem:
2604    case Instruction::FRem:
2605    case Instruction::Shl:
2606    case Instruction::LShr:
2607    case Instruction::AShr:
2608    case Instruction::And:
2609    case Instruction::Or:
2610    case Instruction::Xor: {
2611      // Just widen binops.
2612      BinaryOperator *BinOp = dyn_cast<BinaryOperator>(it);
2613      setDebugLocFromInst(Builder, BinOp);
2614      VectorParts &A = getVectorValue(it->getOperand(0));
2615      VectorParts &B = getVectorValue(it->getOperand(1));
2616
2617      // Use this vector value for all users of the original instruction.
2618      for (unsigned Part = 0; Part < UF; ++Part) {
2619        Value *V = Builder.CreateBinOp(BinOp->getOpcode(), A[Part], B[Part]);
2620
2621        // Update the NSW, NUW and Exact flags. Notice: V can be an Undef.
2622        BinaryOperator *VecOp = dyn_cast<BinaryOperator>(V);
2623        if (VecOp && isa<OverflowingBinaryOperator>(BinOp)) {
2624          VecOp->setHasNoSignedWrap(BinOp->hasNoSignedWrap());
2625          VecOp->setHasNoUnsignedWrap(BinOp->hasNoUnsignedWrap());
2626        }
2627        if (VecOp && isa<PossiblyExactOperator>(VecOp))
2628          VecOp->setIsExact(BinOp->isExact());
2629
2630        Entry[Part] = V;
2631      }
2632      break;
2633    }
2634    case Instruction::Select: {
2635      // Widen selects.
2636      // If the selector is loop invariant we can create a select
2637      // instruction with a scalar condition. Otherwise, use vector-select.
2638      bool InvariantCond = SE->isLoopInvariant(SE->getSCEV(it->getOperand(0)),
2639                                               OrigLoop);
2640      setDebugLocFromInst(Builder, it);
2641
2642      // The condition can be loop invariant  but still defined inside the
2643      // loop. This means that we can't just use the original 'cond' value.
2644      // We have to take the 'vectorized' value and pick the first lane.
2645      // Instcombine will make this a no-op.
2646      VectorParts &Cond = getVectorValue(it->getOperand(0));
2647      VectorParts &Op0  = getVectorValue(it->getOperand(1));
2648      VectorParts &Op1  = getVectorValue(it->getOperand(2));
2649
2650      Value *ScalarCond = (VF == 1) ? Cond[0] :
2651        Builder.CreateExtractElement(Cond[0], Builder.getInt32(0));
2652
2653      for (unsigned Part = 0; Part < UF; ++Part) {
2654        Entry[Part] = Builder.CreateSelect(
2655          InvariantCond ? ScalarCond : Cond[Part],
2656          Op0[Part],
2657          Op1[Part]);
2658      }
2659      break;
2660    }
2661
2662    case Instruction::ICmp:
2663    case Instruction::FCmp: {
2664      // Widen compares. Generate vector compares.
2665      bool FCmp = (it->getOpcode() == Instruction::FCmp);
2666      CmpInst *Cmp = dyn_cast<CmpInst>(it);
2667      setDebugLocFromInst(Builder, it);
2668      VectorParts &A = getVectorValue(it->getOperand(0));
2669      VectorParts &B = getVectorValue(it->getOperand(1));
2670      for (unsigned Part = 0; Part < UF; ++Part) {
2671        Value *C = 0;
2672        if (FCmp)
2673          C = Builder.CreateFCmp(Cmp->getPredicate(), A[Part], B[Part]);
2674        else
2675          C = Builder.CreateICmp(Cmp->getPredicate(), A[Part], B[Part]);
2676        Entry[Part] = C;
2677      }
2678      break;
2679    }
2680
2681    case Instruction::Store:
2682    case Instruction::Load:
2683        vectorizeMemoryInstruction(it, Legal);
2684        break;
2685    case Instruction::ZExt:
2686    case Instruction::SExt:
2687    case Instruction::FPToUI:
2688    case Instruction::FPToSI:
2689    case Instruction::FPExt:
2690    case Instruction::PtrToInt:
2691    case Instruction::IntToPtr:
2692    case Instruction::SIToFP:
2693    case Instruction::UIToFP:
2694    case Instruction::Trunc:
2695    case Instruction::FPTrunc:
2696    case Instruction::BitCast: {
2697      CastInst *CI = dyn_cast<CastInst>(it);
2698      setDebugLocFromInst(Builder, it);
2699      /// Optimize the special case where the source is the induction
2700      /// variable. Notice that we can only optimize the 'trunc' case
2701      /// because: a. FP conversions lose precision, b. sext/zext may wrap,
2702      /// c. other casts depend on pointer size.
2703      if (CI->getOperand(0) == OldInduction &&
2704          it->getOpcode() == Instruction::Trunc) {
2705        Value *ScalarCast = Builder.CreateCast(CI->getOpcode(), Induction,
2706                                               CI->getType());
2707        Value *Broadcasted = getBroadcastInstrs(ScalarCast);
2708        for (unsigned Part = 0; Part < UF; ++Part)
2709          Entry[Part] = getConsecutiveVector(Broadcasted, VF * Part, false);
2710        break;
2711      }
2712      /// Vectorize casts.
2713      Type *DestTy = (VF == 1) ? CI->getType() :
2714                                 VectorType::get(CI->getType(), VF);
2715
2716      VectorParts &A = getVectorValue(it->getOperand(0));
2717      for (unsigned Part = 0; Part < UF; ++Part)
2718        Entry[Part] = Builder.CreateCast(CI->getOpcode(), A[Part], DestTy);
2719      break;
2720    }
2721
2722    case Instruction::Call: {
2723      // Ignore dbg intrinsics.
2724      if (isa<DbgInfoIntrinsic>(it))
2725        break;
2726      setDebugLocFromInst(Builder, it);
2727
2728      Module *M = BB->getParent()->getParent();
2729      CallInst *CI = cast<CallInst>(it);
2730      Intrinsic::ID ID = getIntrinsicIDForCall(CI, TLI);
2731      assert(ID && "Not an intrinsic call!");
2732      switch (ID) {
2733      case Intrinsic::lifetime_end:
2734      case Intrinsic::lifetime_start:
2735        scalarizeInstruction(it);
2736        break;
2737      default:
2738        for (unsigned Part = 0; Part < UF; ++Part) {
2739          SmallVector<Value *, 4> Args;
2740          for (unsigned i = 0, ie = CI->getNumArgOperands(); i != ie; ++i) {
2741            VectorParts &Arg = getVectorValue(CI->getArgOperand(i));
2742            Args.push_back(Arg[Part]);
2743          }
2744          Type *Tys[] = {CI->getType()};
2745          if (VF > 1)
2746            Tys[0] = VectorType::get(CI->getType()->getScalarType(), VF);
2747
2748          Function *F = Intrinsic::getDeclaration(M, ID, Tys);
2749          Entry[Part] = Builder.CreateCall(F, Args);
2750        }
2751        break;
2752      }
2753      break;
2754    }
2755
2756    default:
2757      // All other instructions are unsupported. Scalarize them.
2758      scalarizeInstruction(it);
2759      break;
2760    }// end of switch.
2761  }// end of for_each instr.
2762}
2763
2764void InnerLoopVectorizer::updateAnalysis() {
2765  // Forget the original basic block.
2766  SE->forgetLoop(OrigLoop);
2767
2768  // Update the dominator tree information.
2769  assert(DT->properlyDominates(LoopBypassBlocks.front(), LoopExitBlock) &&
2770         "Entry does not dominate exit.");
2771
2772  for (unsigned I = 1, E = LoopBypassBlocks.size(); I != E; ++I)
2773    DT->addNewBlock(LoopBypassBlocks[I], LoopBypassBlocks[I-1]);
2774  DT->addNewBlock(LoopVectorPreHeader, LoopBypassBlocks.back());
2775  DT->addNewBlock(LoopVectorBody, LoopVectorPreHeader);
2776  DT->addNewBlock(LoopMiddleBlock, LoopBypassBlocks.front());
2777  DT->addNewBlock(LoopScalarPreHeader, LoopMiddleBlock);
2778  DT->changeImmediateDominator(LoopScalarBody, LoopScalarPreHeader);
2779  DT->changeImmediateDominator(LoopExitBlock, LoopMiddleBlock);
2780
2781  DEBUG(DT->verifyAnalysis());
2782}
2783
2784/// \brief Check whether it is safe to if-convert this phi node.
2785///
2786/// Phi nodes with constant expressions that can trap are not safe to if
2787/// convert.
2788static bool canIfConvertPHINodes(BasicBlock *BB) {
2789  for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) {
2790    PHINode *Phi = dyn_cast<PHINode>(I);
2791    if (!Phi)
2792      return true;
2793    for (unsigned p = 0, e = Phi->getNumIncomingValues(); p != e; ++p)
2794      if (Constant *C = dyn_cast<Constant>(Phi->getIncomingValue(p)))
2795        if (C->canTrap())
2796          return false;
2797  }
2798  return true;
2799}
2800
2801bool LoopVectorizationLegality::canVectorizeWithIfConvert() {
2802  if (!EnableIfConversion)
2803    return false;
2804
2805  assert(TheLoop->getNumBlocks() > 1 && "Single block loops are vectorizable");
2806
2807  // A list of pointers that we can safely read and write to.
2808  SmallPtrSet<Value *, 8> SafePointes;
2809
2810  // Collect safe addresses.
2811  for (Loop::block_iterator BI = TheLoop->block_begin(),
2812         BE = TheLoop->block_end(); BI != BE; ++BI) {
2813    BasicBlock *BB = *BI;
2814
2815    if (blockNeedsPredication(BB))
2816      continue;
2817
2818    for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) {
2819      if (LoadInst *LI = dyn_cast<LoadInst>(I))
2820        SafePointes.insert(LI->getPointerOperand());
2821      else if (StoreInst *SI = dyn_cast<StoreInst>(I))
2822        SafePointes.insert(SI->getPointerOperand());
2823    }
2824  }
2825
2826  // Collect the blocks that need predication.
2827  BasicBlock *Header = TheLoop->getHeader();
2828  for (Loop::block_iterator BI = TheLoop->block_begin(),
2829         BE = TheLoop->block_end(); BI != BE; ++BI) {
2830    BasicBlock *BB = *BI;
2831
2832    // We don't support switch statements inside loops.
2833    if (!isa<BranchInst>(BB->getTerminator()))
2834      return false;
2835
2836    // We must be able to predicate all blocks that need to be predicated.
2837    if (blockNeedsPredication(BB)) {
2838      if (!blockCanBePredicated(BB, SafePointes))
2839        return false;
2840    } else if (BB != Header && !canIfConvertPHINodes(BB))
2841      return false;
2842
2843  }
2844
2845  // We can if-convert this loop.
2846  return true;
2847}
2848
2849bool LoopVectorizationLegality::canVectorize() {
2850  // We must have a loop in canonical form. Loops with indirectbr in them cannot
2851  // be canonicalized.
2852  if (!TheLoop->getLoopPreheader())
2853    return false;
2854
2855  // We can only vectorize innermost loops.
2856  if (TheLoop->getSubLoopsVector().size())
2857    return false;
2858
2859  // We must have a single backedge.
2860  if (TheLoop->getNumBackEdges() != 1)
2861    return false;
2862
2863  // We must have a single exiting block.
2864  if (!TheLoop->getExitingBlock())
2865    return false;
2866
2867  // We need to have a loop header.
2868  DEBUG(dbgs() << "LV: Found a loop: " <<
2869        TheLoop->getHeader()->getName() << '\n');
2870
2871  // Check if we can if-convert non single-bb loops.
2872  unsigned NumBlocks = TheLoop->getNumBlocks();
2873  if (NumBlocks != 1 && !canVectorizeWithIfConvert()) {
2874    DEBUG(dbgs() << "LV: Can't if-convert the loop.\n");
2875    return false;
2876  }
2877
2878  // ScalarEvolution needs to be able to find the exit count.
2879  const SCEV *ExitCount = SE->getBackedgeTakenCount(TheLoop);
2880  if (ExitCount == SE->getCouldNotCompute()) {
2881    DEBUG(dbgs() << "LV: SCEV could not compute the loop exit count.\n");
2882    return false;
2883  }
2884
2885  // Do not loop-vectorize loops with a tiny trip count.
2886  BasicBlock *Latch = TheLoop->getLoopLatch();
2887  unsigned TC = SE->getSmallConstantTripCount(TheLoop, Latch);
2888  if (TC > 0u && TC < TinyTripCountVectorThreshold) {
2889    DEBUG(dbgs() << "LV: Found a loop with a very small trip count. " <<
2890          "This loop is not worth vectorizing.\n");
2891    return false;
2892  }
2893
2894  // Check if we can vectorize the instructions and CFG in this loop.
2895  if (!canVectorizeInstrs()) {
2896    DEBUG(dbgs() << "LV: Can't vectorize the instructions or CFG\n");
2897    return false;
2898  }
2899
2900  // Go over each instruction and look at memory deps.
2901  if (!canVectorizeMemory()) {
2902    DEBUG(dbgs() << "LV: Can't vectorize due to memory conflicts\n");
2903    return false;
2904  }
2905
2906  // Collect all of the variables that remain uniform after vectorization.
2907  collectLoopUniforms();
2908
2909  DEBUG(dbgs() << "LV: We can vectorize this loop" <<
2910        (PtrRtCheck.Need ? " (with a runtime bound check)" : "")
2911        <<"!\n");
2912
2913  // Okay! We can vectorize. At this point we don't have any other mem analysis
2914  // which may limit our maximum vectorization factor, so just return true with
2915  // no restrictions.
2916  return true;
2917}
2918
2919static Type *convertPointerToIntegerType(DataLayout &DL, Type *Ty) {
2920  if (Ty->isPointerTy())
2921    return DL.getIntPtrType(Ty);
2922
2923  // It is possible that char's or short's overflow when we ask for the loop's
2924  // trip count, work around this by changing the type size.
2925  if (Ty->getScalarSizeInBits() < 32)
2926    return Type::getInt32Ty(Ty->getContext());
2927
2928  return Ty;
2929}
2930
2931static Type* getWiderType(DataLayout &DL, Type *Ty0, Type *Ty1) {
2932  Ty0 = convertPointerToIntegerType(DL, Ty0);
2933  Ty1 = convertPointerToIntegerType(DL, Ty1);
2934  if (Ty0->getScalarSizeInBits() > Ty1->getScalarSizeInBits())
2935    return Ty0;
2936  return Ty1;
2937}
2938
2939/// \brief Check that the instruction has outside loop users and is not an
2940/// identified reduction variable.
2941static bool hasOutsideLoopUser(const Loop *TheLoop, Instruction *Inst,
2942                               SmallPtrSet<Value *, 4> &Reductions) {
2943  // Reduction instructions are allowed to have exit users. All other
2944  // instructions must not have external users.
2945  if (!Reductions.count(Inst))
2946    //Check that all of the users of the loop are inside the BB.
2947    for (Value::use_iterator I = Inst->use_begin(), E = Inst->use_end();
2948         I != E; ++I) {
2949      Instruction *U = cast<Instruction>(*I);
2950      // This user may be a reduction exit value.
2951      if (!TheLoop->contains(U)) {
2952        DEBUG(dbgs() << "LV: Found an outside user for : " << *U << '\n');
2953        return true;
2954      }
2955    }
2956  return false;
2957}
2958
2959bool LoopVectorizationLegality::canVectorizeInstrs() {
2960  BasicBlock *PreHeader = TheLoop->getLoopPreheader();
2961  BasicBlock *Header = TheLoop->getHeader();
2962
2963  // Look for the attribute signaling the absence of NaNs.
2964  Function &F = *Header->getParent();
2965  if (F.hasFnAttribute("no-nans-fp-math"))
2966    HasFunNoNaNAttr = F.getAttributes().getAttribute(
2967      AttributeSet::FunctionIndex,
2968      "no-nans-fp-math").getValueAsString() == "true";
2969
2970  // For each block in the loop.
2971  for (Loop::block_iterator bb = TheLoop->block_begin(),
2972       be = TheLoop->block_end(); bb != be; ++bb) {
2973
2974    // Scan the instructions in the block and look for hazards.
2975    for (BasicBlock::iterator it = (*bb)->begin(), e = (*bb)->end(); it != e;
2976         ++it) {
2977
2978      if (PHINode *Phi = dyn_cast<PHINode>(it)) {
2979        Type *PhiTy = Phi->getType();
2980        // Check that this PHI type is allowed.
2981        if (!PhiTy->isIntegerTy() &&
2982            !PhiTy->isFloatingPointTy() &&
2983            !PhiTy->isPointerTy()) {
2984          DEBUG(dbgs() << "LV: Found an non-int non-pointer PHI.\n");
2985          return false;
2986        }
2987
2988        // If this PHINode is not in the header block, then we know that we
2989        // can convert it to select during if-conversion. No need to check if
2990        // the PHIs in this block are induction or reduction variables.
2991        if (*bb != Header) {
2992          // Check that this instruction has no outside users or is an
2993          // identified reduction value with an outside user.
2994          if(!hasOutsideLoopUser(TheLoop, it, AllowedExit))
2995            continue;
2996          return false;
2997        }
2998
2999        // We only allow if-converted PHIs with more than two incoming values.
3000        if (Phi->getNumIncomingValues() != 2) {
3001          DEBUG(dbgs() << "LV: Found an invalid PHI.\n");
3002          return false;
3003        }
3004
3005        // This is the value coming from the preheader.
3006        Value *StartValue = Phi->getIncomingValueForBlock(PreHeader);
3007        // Check if this is an induction variable.
3008        InductionKind IK = isInductionVariable(Phi);
3009
3010        if (IK_NoInduction != IK) {
3011          // Get the widest type.
3012          if (!WidestIndTy)
3013            WidestIndTy = convertPointerToIntegerType(*DL, PhiTy);
3014          else
3015            WidestIndTy = getWiderType(*DL, PhiTy, WidestIndTy);
3016
3017          // Int inductions are special because we only allow one IV.
3018          if (IK == IK_IntInduction) {
3019            // Use the phi node with the widest type as induction. Use the last
3020            // one if there are multiple (no good reason for doing this other
3021            // than it is expedient).
3022            if (!Induction || PhiTy == WidestIndTy)
3023              Induction = Phi;
3024          }
3025
3026          DEBUG(dbgs() << "LV: Found an induction variable.\n");
3027          Inductions[Phi] = InductionInfo(StartValue, IK);
3028
3029          // Until we explicitly handle the case of an induction variable with
3030          // an outside loop user we have to give up vectorizing this loop.
3031          if (hasOutsideLoopUser(TheLoop, it, AllowedExit))
3032            return false;
3033
3034          continue;
3035        }
3036
3037        if (AddReductionVar(Phi, RK_IntegerAdd)) {
3038          DEBUG(dbgs() << "LV: Found an ADD reduction PHI."<< *Phi <<"\n");
3039          continue;
3040        }
3041        if (AddReductionVar(Phi, RK_IntegerMult)) {
3042          DEBUG(dbgs() << "LV: Found a MUL reduction PHI."<< *Phi <<"\n");
3043          continue;
3044        }
3045        if (AddReductionVar(Phi, RK_IntegerOr)) {
3046          DEBUG(dbgs() << "LV: Found an OR reduction PHI."<< *Phi <<"\n");
3047          continue;
3048        }
3049        if (AddReductionVar(Phi, RK_IntegerAnd)) {
3050          DEBUG(dbgs() << "LV: Found an AND reduction PHI."<< *Phi <<"\n");
3051          continue;
3052        }
3053        if (AddReductionVar(Phi, RK_IntegerXor)) {
3054          DEBUG(dbgs() << "LV: Found a XOR reduction PHI."<< *Phi <<"\n");
3055          continue;
3056        }
3057        if (AddReductionVar(Phi, RK_IntegerMinMax)) {
3058          DEBUG(dbgs() << "LV: Found a MINMAX reduction PHI."<< *Phi <<"\n");
3059          continue;
3060        }
3061        if (AddReductionVar(Phi, RK_FloatMult)) {
3062          DEBUG(dbgs() << "LV: Found an FMult reduction PHI."<< *Phi <<"\n");
3063          continue;
3064        }
3065        if (AddReductionVar(Phi, RK_FloatAdd)) {
3066          DEBUG(dbgs() << "LV: Found an FAdd reduction PHI."<< *Phi <<"\n");
3067          continue;
3068        }
3069        if (AddReductionVar(Phi, RK_FloatMinMax)) {
3070          DEBUG(dbgs() << "LV: Found an float MINMAX reduction PHI."<< *Phi <<
3071                "\n");
3072          continue;
3073        }
3074
3075        DEBUG(dbgs() << "LV: Found an unidentified PHI."<< *Phi <<"\n");
3076        return false;
3077      }// end of PHI handling
3078
3079      // We still don't handle functions. However, we can ignore dbg intrinsic
3080      // calls and we do handle certain intrinsic and libm functions.
3081      CallInst *CI = dyn_cast<CallInst>(it);
3082      if (CI && !getIntrinsicIDForCall(CI, TLI) && !isa<DbgInfoIntrinsic>(CI)) {
3083        DEBUG(dbgs() << "LV: Found a call site.\n");
3084        return false;
3085      }
3086
3087      // Check that the instruction return type is vectorizable.
3088      // Also, we can't vectorize extractelement instructions.
3089      if ((!VectorType::isValidElementType(it->getType()) &&
3090           !it->getType()->isVoidTy()) || isa<ExtractElementInst>(it)) {
3091        DEBUG(dbgs() << "LV: Found unvectorizable type.\n");
3092        return false;
3093      }
3094
3095      // Check that the stored type is vectorizable.
3096      if (StoreInst *ST = dyn_cast<StoreInst>(it)) {
3097        Type *T = ST->getValueOperand()->getType();
3098        if (!VectorType::isValidElementType(T))
3099          return false;
3100      }
3101
3102      // Reduction instructions are allowed to have exit users.
3103      // All other instructions must not have external users.
3104      if (hasOutsideLoopUser(TheLoop, it, AllowedExit))
3105        return false;
3106
3107    } // next instr.
3108
3109  }
3110
3111  if (!Induction) {
3112    DEBUG(dbgs() << "LV: Did not find one integer induction var.\n");
3113    if (Inductions.empty())
3114      return false;
3115  }
3116
3117  return true;
3118}
3119
3120void LoopVectorizationLegality::collectLoopUniforms() {
3121  // We now know that the loop is vectorizable!
3122  // Collect variables that will remain uniform after vectorization.
3123  std::vector<Value*> Worklist;
3124  BasicBlock *Latch = TheLoop->getLoopLatch();
3125
3126  // Start with the conditional branch and walk up the block.
3127  Worklist.push_back(Latch->getTerminator()->getOperand(0));
3128
3129  while (Worklist.size()) {
3130    Instruction *I = dyn_cast<Instruction>(Worklist.back());
3131    Worklist.pop_back();
3132
3133    // Look at instructions inside this loop.
3134    // Stop when reaching PHI nodes.
3135    // TODO: we need to follow values all over the loop, not only in this block.
3136    if (!I || !TheLoop->contains(I) || isa<PHINode>(I))
3137      continue;
3138
3139    // This is a known uniform.
3140    Uniforms.insert(I);
3141
3142    // Insert all operands.
3143    Worklist.insert(Worklist.end(), I->op_begin(), I->op_end());
3144  }
3145}
3146
3147namespace {
3148/// \brief Analyses memory accesses in a loop.
3149///
3150/// Checks whether run time pointer checks are needed and builds sets for data
3151/// dependence checking.
3152class AccessAnalysis {
3153public:
3154  /// \brief Read or write access location.
3155  typedef PointerIntPair<Value *, 1, bool> MemAccessInfo;
3156  typedef SmallPtrSet<MemAccessInfo, 8> MemAccessInfoSet;
3157
3158  /// \brief Set of potential dependent memory accesses.
3159  typedef EquivalenceClasses<MemAccessInfo> DepCandidates;
3160
3161  AccessAnalysis(DataLayout *Dl, DepCandidates &DA) :
3162    DL(Dl), DepCands(DA), AreAllWritesIdentified(true),
3163    AreAllReadsIdentified(true), IsRTCheckNeeded(false) {}
3164
3165  /// \brief Register a load  and whether it is only read from.
3166  void addLoad(Value *Ptr, bool IsReadOnly) {
3167    Accesses.insert(MemAccessInfo(Ptr, false));
3168    if (IsReadOnly)
3169      ReadOnlyPtr.insert(Ptr);
3170  }
3171
3172  /// \brief Register a store.
3173  void addStore(Value *Ptr) {
3174    Accesses.insert(MemAccessInfo(Ptr, true));
3175  }
3176
3177  /// \brief Check whether we can check the pointers at runtime for
3178  /// non-intersection.
3179  bool canCheckPtrAtRT(LoopVectorizationLegality::RuntimePointerCheck &RtCheck,
3180                       unsigned &NumComparisons, ScalarEvolution *SE,
3181                       Loop *TheLoop, bool ShouldCheckStride = false);
3182
3183  /// \brief Goes over all memory accesses, checks whether a RT check is needed
3184  /// and builds sets of dependent accesses.
3185  void buildDependenceSets() {
3186    // Process read-write pointers first.
3187    processMemAccesses(false);
3188    // Next, process read pointers.
3189    processMemAccesses(true);
3190  }
3191
3192  bool isRTCheckNeeded() { return IsRTCheckNeeded; }
3193
3194  bool isDependencyCheckNeeded() { return !CheckDeps.empty(); }
3195  void resetDepChecks() { CheckDeps.clear(); }
3196
3197  MemAccessInfoSet &getDependenciesToCheck() { return CheckDeps; }
3198
3199private:
3200  typedef SetVector<MemAccessInfo> PtrAccessSet;
3201  typedef DenseMap<Value*, MemAccessInfo> UnderlyingObjToAccessMap;
3202
3203  /// \brief Go over all memory access or only the deferred ones if
3204  /// \p UseDeferred is true and check whether runtime pointer checks are needed
3205  /// and build sets of dependency check candidates.
3206  void processMemAccesses(bool UseDeferred);
3207
3208  /// Set of all accesses.
3209  PtrAccessSet Accesses;
3210
3211  /// Set of access to check after all writes have been processed.
3212  PtrAccessSet DeferredAccesses;
3213
3214  /// Map of pointers to last access encountered.
3215  UnderlyingObjToAccessMap ObjToLastAccess;
3216
3217  /// Set of accesses that need a further dependence check.
3218  MemAccessInfoSet CheckDeps;
3219
3220  /// Set of pointers that are read only.
3221  SmallPtrSet<Value*, 16> ReadOnlyPtr;
3222
3223  /// Set of underlying objects already written to.
3224  SmallPtrSet<Value*, 16> WriteObjects;
3225
3226  DataLayout *DL;
3227
3228  /// Sets of potentially dependent accesses - members of one set share an
3229  /// underlying pointer. The set "CheckDeps" identfies which sets really need a
3230  /// dependence check.
3231  DepCandidates &DepCands;
3232
3233  bool AreAllWritesIdentified;
3234  bool AreAllReadsIdentified;
3235  bool IsRTCheckNeeded;
3236};
3237
3238} // end anonymous namespace
3239
3240/// \brief Check whether a pointer can participate in a runtime bounds check.
3241static bool hasComputableBounds(ScalarEvolution *SE, Value *Ptr) {
3242  const SCEV *PtrScev = SE->getSCEV(Ptr);
3243  const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(PtrScev);
3244  if (!AR)
3245    return false;
3246
3247  return AR->isAffine();
3248}
3249
3250/// \brief Check the stride of the pointer and ensure that it does not wrap in
3251/// the address space.
3252static int isStridedPtr(ScalarEvolution *SE, DataLayout *DL, Value *Ptr,
3253                        const Loop *Lp);
3254
3255bool AccessAnalysis::canCheckPtrAtRT(
3256                       LoopVectorizationLegality::RuntimePointerCheck &RtCheck,
3257                        unsigned &NumComparisons, ScalarEvolution *SE,
3258                        Loop *TheLoop, bool ShouldCheckStride) {
3259  // Find pointers with computable bounds. We are going to use this information
3260  // to place a runtime bound check.
3261  unsigned NumReadPtrChecks = 0;
3262  unsigned NumWritePtrChecks = 0;
3263  bool CanDoRT = true;
3264
3265  bool IsDepCheckNeeded = isDependencyCheckNeeded();
3266  // We assign consecutive id to access from different dependence sets.
3267  // Accesses within the same set don't need a runtime check.
3268  unsigned RunningDepId = 1;
3269  DenseMap<Value *, unsigned> DepSetId;
3270
3271  for (PtrAccessSet::iterator AI = Accesses.begin(), AE = Accesses.end();
3272       AI != AE; ++AI) {
3273    const MemAccessInfo &Access = *AI;
3274    Value *Ptr = Access.getPointer();
3275    bool IsWrite = Access.getInt();
3276
3277    // Just add write checks if we have both.
3278    if (!IsWrite && Accesses.count(MemAccessInfo(Ptr, true)))
3279      continue;
3280
3281    if (IsWrite)
3282      ++NumWritePtrChecks;
3283    else
3284      ++NumReadPtrChecks;
3285
3286    if (hasComputableBounds(SE, Ptr) &&
3287        // When we run after a failing dependency check we have to make sure we
3288        // don't have wrapping pointers.
3289        (!ShouldCheckStride || isStridedPtr(SE, DL, Ptr, TheLoop) == 1)) {
3290      // The id of the dependence set.
3291      unsigned DepId;
3292
3293      if (IsDepCheckNeeded) {
3294        Value *Leader = DepCands.getLeaderValue(Access).getPointer();
3295        unsigned &LeaderId = DepSetId[Leader];
3296        if (!LeaderId)
3297          LeaderId = RunningDepId++;
3298        DepId = LeaderId;
3299      } else
3300        // Each access has its own dependence set.
3301        DepId = RunningDepId++;
3302
3303      RtCheck.insert(SE, TheLoop, Ptr, IsWrite, DepId);
3304
3305      DEBUG(dbgs() << "LV: Found a runtime check ptr:" << *Ptr << '\n');
3306    } else {
3307      CanDoRT = false;
3308    }
3309  }
3310
3311  if (IsDepCheckNeeded && CanDoRT && RunningDepId == 2)
3312    NumComparisons = 0; // Only one dependence set.
3313  else {
3314    NumComparisons = (NumWritePtrChecks * (NumReadPtrChecks +
3315                                           NumWritePtrChecks - 1));
3316  }
3317
3318  // If the pointers that we would use for the bounds comparison have different
3319  // address spaces, assume the values aren't directly comparable, so we can't
3320  // use them for the runtime check. We also have to assume they could
3321  // overlap. In the future there should be metadata for whether address spaces
3322  // are disjoint.
3323  unsigned NumPointers = RtCheck.Pointers.size();
3324  for (unsigned i = 0; i < NumPointers; ++i) {
3325    for (unsigned j = i + 1; j < NumPointers; ++j) {
3326      // Only need to check pointers between two different dependency sets.
3327      if (RtCheck.DependencySetId[i] == RtCheck.DependencySetId[j])
3328       continue;
3329
3330      Value *PtrI = RtCheck.Pointers[i];
3331      Value *PtrJ = RtCheck.Pointers[j];
3332
3333      unsigned ASi = PtrI->getType()->getPointerAddressSpace();
3334      unsigned ASj = PtrJ->getType()->getPointerAddressSpace();
3335      if (ASi != ASj) {
3336        DEBUG(dbgs() << "LV: Runtime check would require comparison between"
3337                       " different address spaces\n");
3338        return false;
3339      }
3340    }
3341  }
3342
3343  return CanDoRT;
3344}
3345
3346static bool isFunctionScopeIdentifiedObject(Value *Ptr) {
3347  return isNoAliasArgument(Ptr) || isNoAliasCall(Ptr) || isa<AllocaInst>(Ptr);
3348}
3349
3350void AccessAnalysis::processMemAccesses(bool UseDeferred) {
3351  // We process the set twice: first we process read-write pointers, last we
3352  // process read-only pointers. This allows us to skip dependence tests for
3353  // read-only pointers.
3354
3355  PtrAccessSet &S = UseDeferred ? DeferredAccesses : Accesses;
3356  for (PtrAccessSet::iterator AI = S.begin(), AE = S.end(); AI != AE; ++AI) {
3357    const MemAccessInfo &Access = *AI;
3358    Value *Ptr = Access.getPointer();
3359    bool IsWrite = Access.getInt();
3360
3361    DepCands.insert(Access);
3362
3363    // Memorize read-only pointers for later processing and skip them in the
3364    // first round (they need to be checked after we have seen all write
3365    // pointers). Note: we also mark pointer that are not consecutive as
3366    // "read-only" pointers (so that we check "a[b[i]] +="). Hence, we need the
3367    // second check for "!IsWrite".
3368    bool IsReadOnlyPtr = ReadOnlyPtr.count(Ptr) && !IsWrite;
3369    if (!UseDeferred && IsReadOnlyPtr) {
3370      DeferredAccesses.insert(Access);
3371      continue;
3372    }
3373
3374    bool NeedDepCheck = false;
3375    // Check whether there is the possiblity of dependency because of underlying
3376    // objects being the same.
3377    typedef SmallVector<Value*, 16> ValueVector;
3378    ValueVector TempObjects;
3379    GetUnderlyingObjects(Ptr, TempObjects, DL);
3380    for (ValueVector::iterator UI = TempObjects.begin(), UE = TempObjects.end();
3381         UI != UE; ++UI) {
3382      Value *UnderlyingObj = *UI;
3383
3384      // If this is a write then it needs to be an identified object.  If this a
3385      // read and all writes (so far) are identified function scope objects we
3386      // don't need an identified underlying object but only an Argument (the
3387      // next write is going to invalidate this assumption if it is
3388      // unidentified).
3389      // This is a micro-optimization for the case where all writes are
3390      // identified and we have one argument pointer.
3391      // Otherwise, we do need a runtime check.
3392      if ((IsWrite && !isFunctionScopeIdentifiedObject(UnderlyingObj)) ||
3393          (!IsWrite && (!AreAllWritesIdentified ||
3394                        !isa<Argument>(UnderlyingObj)) &&
3395           !isIdentifiedObject(UnderlyingObj))) {
3396        DEBUG(dbgs() << "LV: Found an unidentified " <<
3397              (IsWrite ?  "write" : "read" ) << " ptr: " << *UnderlyingObj <<
3398              "\n");
3399        IsRTCheckNeeded = (IsRTCheckNeeded ||
3400                           !isIdentifiedObject(UnderlyingObj) ||
3401                           !AreAllReadsIdentified);
3402
3403        if (IsWrite)
3404          AreAllWritesIdentified = false;
3405        if (!IsWrite)
3406          AreAllReadsIdentified = false;
3407      }
3408
3409      // If this is a write - check other reads and writes for conflicts.  If
3410      // this is a read only check other writes for conflicts (but only if there
3411      // is no other write to the ptr - this is an optimization to catch "a[i] =
3412      // a[i] + " without having to do a dependence check).
3413      if ((IsWrite || IsReadOnlyPtr) && WriteObjects.count(UnderlyingObj))
3414        NeedDepCheck = true;
3415
3416      if (IsWrite)
3417        WriteObjects.insert(UnderlyingObj);
3418
3419      // Create sets of pointers connected by shared underlying objects.
3420      UnderlyingObjToAccessMap::iterator Prev =
3421        ObjToLastAccess.find(UnderlyingObj);
3422      if (Prev != ObjToLastAccess.end())
3423        DepCands.unionSets(Access, Prev->second);
3424
3425      ObjToLastAccess[UnderlyingObj] = Access;
3426    }
3427
3428    if (NeedDepCheck)
3429      CheckDeps.insert(Access);
3430  }
3431}
3432
3433namespace {
3434/// \brief Checks memory dependences among accesses to the same underlying
3435/// object to determine whether there vectorization is legal or not (and at
3436/// which vectorization factor).
3437///
3438/// This class works under the assumption that we already checked that memory
3439/// locations with different underlying pointers are "must-not alias".
3440/// We use the ScalarEvolution framework to symbolically evalutate access
3441/// functions pairs. Since we currently don't restructure the loop we can rely
3442/// on the program order of memory accesses to determine their safety.
3443/// At the moment we will only deem accesses as safe for:
3444///  * A negative constant distance assuming program order.
3445///
3446///      Safe: tmp = a[i + 1];     OR     a[i + 1] = x;
3447///            a[i] = tmp;                y = a[i];
3448///
3449///   The latter case is safe because later checks guarantuee that there can't
3450///   be a cycle through a phi node (that is, we check that "x" and "y" is not
3451///   the same variable: a header phi can only be an induction or a reduction, a
3452///   reduction can't have a memory sink, an induction can't have a memory
3453///   source). This is important and must not be violated (or we have to
3454///   resort to checking for cycles through memory).
3455///
3456///  * A positive constant distance assuming program order that is bigger
3457///    than the biggest memory access.
3458///
3459///     tmp = a[i]        OR              b[i] = x
3460///     a[i+2] = tmp                      y = b[i+2];
3461///
3462///     Safe distance: 2 x sizeof(a[0]), and 2 x sizeof(b[0]), respectively.
3463///
3464///  * Zero distances and all accesses have the same size.
3465///
3466class MemoryDepChecker {
3467public:
3468  typedef PointerIntPair<Value *, 1, bool> MemAccessInfo;
3469  typedef SmallPtrSet<MemAccessInfo, 8> MemAccessInfoSet;
3470
3471  MemoryDepChecker(ScalarEvolution *Se, DataLayout *Dl, const Loop *L)
3472      : SE(Se), DL(Dl), InnermostLoop(L), AccessIdx(0),
3473        ShouldRetryWithRuntimeCheck(false) {}
3474
3475  /// \brief Register the location (instructions are given increasing numbers)
3476  /// of a write access.
3477  void addAccess(StoreInst *SI) {
3478    Value *Ptr = SI->getPointerOperand();
3479    Accesses[MemAccessInfo(Ptr, true)].push_back(AccessIdx);
3480    InstMap.push_back(SI);
3481    ++AccessIdx;
3482  }
3483
3484  /// \brief Register the location (instructions are given increasing numbers)
3485  /// of a write access.
3486  void addAccess(LoadInst *LI) {
3487    Value *Ptr = LI->getPointerOperand();
3488    Accesses[MemAccessInfo(Ptr, false)].push_back(AccessIdx);
3489    InstMap.push_back(LI);
3490    ++AccessIdx;
3491  }
3492
3493  /// \brief Check whether the dependencies between the accesses are safe.
3494  ///
3495  /// Only checks sets with elements in \p CheckDeps.
3496  bool areDepsSafe(AccessAnalysis::DepCandidates &AccessSets,
3497                   MemAccessInfoSet &CheckDeps);
3498
3499  /// \brief The maximum number of bytes of a vector register we can vectorize
3500  /// the accesses safely with.
3501  unsigned getMaxSafeDepDistBytes() { return MaxSafeDepDistBytes; }
3502
3503  /// \brief In same cases when the dependency check fails we can still
3504  /// vectorize the loop with a dynamic array access check.
3505  bool shouldRetryWithRuntimeCheck() { return ShouldRetryWithRuntimeCheck; }
3506
3507private:
3508  ScalarEvolution *SE;
3509  DataLayout *DL;
3510  const Loop *InnermostLoop;
3511
3512  /// \brief Maps access locations (ptr, read/write) to program order.
3513  DenseMap<MemAccessInfo, std::vector<unsigned> > Accesses;
3514
3515  /// \brief Memory access instructions in program order.
3516  SmallVector<Instruction *, 16> InstMap;
3517
3518  /// \brief The program order index to be used for the next instruction.
3519  unsigned AccessIdx;
3520
3521  // We can access this many bytes in parallel safely.
3522  unsigned MaxSafeDepDistBytes;
3523
3524  /// \brief If we see a non constant dependence distance we can still try to
3525  /// vectorize this loop with runtime checks.
3526  bool ShouldRetryWithRuntimeCheck;
3527
3528  /// \brief Check whether there is a plausible dependence between the two
3529  /// accesses.
3530  ///
3531  /// Access \p A must happen before \p B in program order. The two indices
3532  /// identify the index into the program order map.
3533  ///
3534  /// This function checks  whether there is a plausible dependence (or the
3535  /// absence of such can't be proved) between the two accesses. If there is a
3536  /// plausible dependence but the dependence distance is bigger than one
3537  /// element access it records this distance in \p MaxSafeDepDistBytes (if this
3538  /// distance is smaller than any other distance encountered so far).
3539  /// Otherwise, this function returns true signaling a possible dependence.
3540  bool isDependent(const MemAccessInfo &A, unsigned AIdx,
3541                   const MemAccessInfo &B, unsigned BIdx);
3542
3543  /// \brief Check whether the data dependence could prevent store-load
3544  /// forwarding.
3545  bool couldPreventStoreLoadForward(unsigned Distance, unsigned TypeByteSize);
3546};
3547
3548} // end anonymous namespace
3549
3550static bool isInBoundsGep(Value *Ptr) {
3551  if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr))
3552    return GEP->isInBounds();
3553  return false;
3554}
3555
3556/// \brief Check whether the access through \p Ptr has a constant stride.
3557static int isStridedPtr(ScalarEvolution *SE, DataLayout *DL, Value *Ptr,
3558                        const Loop *Lp) {
3559  const Type *Ty = Ptr->getType();
3560  assert(Ty->isPointerTy() && "Unexpected non ptr");
3561
3562  // Make sure that the pointer does not point to aggregate types.
3563  const PointerType *PtrTy = cast<PointerType>(Ty);
3564  if (PtrTy->getElementType()->isAggregateType()) {
3565    DEBUG(dbgs() << "LV: Bad stride - Not a pointer to a scalar type" << *Ptr <<
3566          "\n");
3567    return 0;
3568  }
3569
3570  const SCEV *PtrScev = SE->getSCEV(Ptr);
3571  const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(PtrScev);
3572  if (!AR) {
3573    DEBUG(dbgs() << "LV: Bad stride - Not an AddRecExpr pointer "
3574          << *Ptr << " SCEV: " << *PtrScev << "\n");
3575    return 0;
3576  }
3577
3578  // The accesss function must stride over the innermost loop.
3579  if (Lp != AR->getLoop()) {
3580    DEBUG(dbgs() << "LV: Bad stride - Not striding over innermost loop " <<
3581          *Ptr << " SCEV: " << *PtrScev << "\n");
3582  }
3583
3584  // The address calculation must not wrap. Otherwise, a dependence could be
3585  // inverted.
3586  // An inbounds getelementptr that is a AddRec with a unit stride
3587  // cannot wrap per definition. The unit stride requirement is checked later.
3588  // An getelementptr without an inbounds attribute and unit stride would have
3589  // to access the pointer value "0" which is undefined behavior in address
3590  // space 0, therefore we can also vectorize this case.
3591  bool IsInBoundsGEP = isInBoundsGep(Ptr);
3592  bool IsNoWrapAddRec = AR->getNoWrapFlags(SCEV::NoWrapMask);
3593  bool IsInAddressSpaceZero = PtrTy->getAddressSpace() == 0;
3594  if (!IsNoWrapAddRec && !IsInBoundsGEP && !IsInAddressSpaceZero) {
3595    DEBUG(dbgs() << "LV: Bad stride - Pointer may wrap in the address space "
3596          << *Ptr << " SCEV: " << *PtrScev << "\n");
3597    return 0;
3598  }
3599
3600  // Check the step is constant.
3601  const SCEV *Step = AR->getStepRecurrence(*SE);
3602
3603  // Calculate the pointer stride and check if it is consecutive.
3604  const SCEVConstant *C = dyn_cast<SCEVConstant>(Step);
3605  if (!C) {
3606    DEBUG(dbgs() << "LV: Bad stride - Not a constant strided " << *Ptr <<
3607          " SCEV: " << *PtrScev << "\n");
3608    return 0;
3609  }
3610
3611  int64_t Size = DL->getTypeAllocSize(PtrTy->getElementType());
3612  const APInt &APStepVal = C->getValue()->getValue();
3613
3614  // Huge step value - give up.
3615  if (APStepVal.getBitWidth() > 64)
3616    return 0;
3617
3618  int64_t StepVal = APStepVal.getSExtValue();
3619
3620  // Strided access.
3621  int64_t Stride = StepVal / Size;
3622  int64_t Rem = StepVal % Size;
3623  if (Rem)
3624    return 0;
3625
3626  // If the SCEV could wrap but we have an inbounds gep with a unit stride we
3627  // know we can't "wrap around the address space". In case of address space
3628  // zero we know that this won't happen without triggering undefined behavior.
3629  if (!IsNoWrapAddRec && (IsInBoundsGEP || IsInAddressSpaceZero) &&
3630      Stride != 1 && Stride != -1)
3631    return 0;
3632
3633  return Stride;
3634}
3635
3636bool MemoryDepChecker::couldPreventStoreLoadForward(unsigned Distance,
3637                                                    unsigned TypeByteSize) {
3638  // If loads occur at a distance that is not a multiple of a feasible vector
3639  // factor store-load forwarding does not take place.
3640  // Positive dependences might cause troubles because vectorizing them might
3641  // prevent store-load forwarding making vectorized code run a lot slower.
3642  //   a[i] = a[i-3] ^ a[i-8];
3643  //   The stores to a[i:i+1] don't align with the stores to a[i-3:i-2] and
3644  //   hence on your typical architecture store-load forwarding does not take
3645  //   place. Vectorizing in such cases does not make sense.
3646  // Store-load forwarding distance.
3647  const unsigned NumCyclesForStoreLoadThroughMemory = 8*TypeByteSize;
3648  // Maximum vector factor.
3649  unsigned MaxVFWithoutSLForwardIssues = MaxVectorWidth*TypeByteSize;
3650  if(MaxSafeDepDistBytes < MaxVFWithoutSLForwardIssues)
3651    MaxVFWithoutSLForwardIssues = MaxSafeDepDistBytes;
3652
3653  for (unsigned vf = 2*TypeByteSize; vf <= MaxVFWithoutSLForwardIssues;
3654       vf *= 2) {
3655    if (Distance % vf && Distance / vf < NumCyclesForStoreLoadThroughMemory) {
3656      MaxVFWithoutSLForwardIssues = (vf >>=1);
3657      break;
3658    }
3659  }
3660
3661  if (MaxVFWithoutSLForwardIssues< 2*TypeByteSize) {
3662    DEBUG(dbgs() << "LV: Distance " << Distance <<
3663          " that could cause a store-load forwarding conflict\n");
3664    return true;
3665  }
3666
3667  if (MaxVFWithoutSLForwardIssues < MaxSafeDepDistBytes &&
3668      MaxVFWithoutSLForwardIssues != MaxVectorWidth*TypeByteSize)
3669    MaxSafeDepDistBytes = MaxVFWithoutSLForwardIssues;
3670  return false;
3671}
3672
3673bool MemoryDepChecker::isDependent(const MemAccessInfo &A, unsigned AIdx,
3674                                   const MemAccessInfo &B, unsigned BIdx) {
3675  assert (AIdx < BIdx && "Must pass arguments in program order");
3676
3677  Value *APtr = A.getPointer();
3678  Value *BPtr = B.getPointer();
3679  bool AIsWrite = A.getInt();
3680  bool BIsWrite = B.getInt();
3681
3682  // Two reads are independent.
3683  if (!AIsWrite && !BIsWrite)
3684    return false;
3685
3686  const SCEV *AScev = SE->getSCEV(APtr);
3687  const SCEV *BScev = SE->getSCEV(BPtr);
3688
3689  int StrideAPtr = isStridedPtr(SE, DL, APtr, InnermostLoop);
3690  int StrideBPtr = isStridedPtr(SE, DL, BPtr, InnermostLoop);
3691
3692  const SCEV *Src = AScev;
3693  const SCEV *Sink = BScev;
3694
3695  // If the induction step is negative we have to invert source and sink of the
3696  // dependence.
3697  if (StrideAPtr < 0) {
3698    //Src = BScev;
3699    //Sink = AScev;
3700    std::swap(APtr, BPtr);
3701    std::swap(Src, Sink);
3702    std::swap(AIsWrite, BIsWrite);
3703    std::swap(AIdx, BIdx);
3704    std::swap(StrideAPtr, StrideBPtr);
3705  }
3706
3707  const SCEV *Dist = SE->getMinusSCEV(Sink, Src);
3708
3709  DEBUG(dbgs() << "LV: Src Scev: " << *Src << "Sink Scev: " << *Sink
3710        << "(Induction step: " << StrideAPtr <<  ")\n");
3711  DEBUG(dbgs() << "LV: Distance for " << *InstMap[AIdx] << " to "
3712        << *InstMap[BIdx] << ": " << *Dist << "\n");
3713
3714  // Need consecutive accesses. We don't want to vectorize
3715  // "A[B[i]] += ..." and similar code or pointer arithmetic that could wrap in
3716  // the address space.
3717  if (!StrideAPtr || !StrideBPtr || StrideAPtr != StrideBPtr){
3718    DEBUG(dbgs() << "Non-consecutive pointer access\n");
3719    return true;
3720  }
3721
3722  const SCEVConstant *C = dyn_cast<SCEVConstant>(Dist);
3723  if (!C) {
3724    DEBUG(dbgs() << "LV: Dependence because of non constant distance\n");
3725    ShouldRetryWithRuntimeCheck = true;
3726    return true;
3727  }
3728
3729  Type *ATy = APtr->getType()->getPointerElementType();
3730  Type *BTy = BPtr->getType()->getPointerElementType();
3731  unsigned TypeByteSize = DL->getTypeAllocSize(ATy);
3732
3733  // Negative distances are not plausible dependencies.
3734  const APInt &Val = C->getValue()->getValue();
3735  if (Val.isNegative()) {
3736    bool IsTrueDataDependence = (AIsWrite && !BIsWrite);
3737    if (IsTrueDataDependence &&
3738        (couldPreventStoreLoadForward(Val.abs().getZExtValue(), TypeByteSize) ||
3739         ATy != BTy))
3740      return true;
3741
3742    DEBUG(dbgs() << "LV: Dependence is negative: NoDep\n");
3743    return false;
3744  }
3745
3746  // Write to the same location with the same size.
3747  // Could be improved to assert type sizes are the same (i32 == float, etc).
3748  if (Val == 0) {
3749    if (ATy == BTy)
3750      return false;
3751    DEBUG(dbgs() << "LV: Zero dependence difference but different types\n");
3752    return true;
3753  }
3754
3755  assert(Val.isStrictlyPositive() && "Expect a positive value");
3756
3757  // Positive distance bigger than max vectorization factor.
3758  if (ATy != BTy) {
3759    DEBUG(dbgs() <<
3760          "LV: ReadWrite-Write positive dependency with different types\n");
3761    return false;
3762  }
3763
3764  unsigned Distance = (unsigned) Val.getZExtValue();
3765
3766  // Bail out early if passed-in parameters make vectorization not feasible.
3767  unsigned ForcedFactor = VectorizationFactor ? VectorizationFactor : 1;
3768  unsigned ForcedUnroll = VectorizationUnroll ? VectorizationUnroll : 1;
3769
3770  // The distance must be bigger than the size needed for a vectorized version
3771  // of the operation and the size of the vectorized operation must not be
3772  // bigger than the currrent maximum size.
3773  if (Distance < 2*TypeByteSize ||
3774      2*TypeByteSize > MaxSafeDepDistBytes ||
3775      Distance < TypeByteSize * ForcedUnroll * ForcedFactor) {
3776    DEBUG(dbgs() << "LV: Failure because of Positive distance "
3777        << Val.getSExtValue() << '\n');
3778    return true;
3779  }
3780
3781  MaxSafeDepDistBytes = Distance < MaxSafeDepDistBytes ?
3782    Distance : MaxSafeDepDistBytes;
3783
3784  bool IsTrueDataDependence = (!AIsWrite && BIsWrite);
3785  if (IsTrueDataDependence &&
3786      couldPreventStoreLoadForward(Distance, TypeByteSize))
3787     return true;
3788
3789  DEBUG(dbgs() << "LV: Positive distance " << Val.getSExtValue() <<
3790        " with max VF = " << MaxSafeDepDistBytes / TypeByteSize << '\n');
3791
3792  return false;
3793}
3794
3795bool
3796MemoryDepChecker::areDepsSafe(AccessAnalysis::DepCandidates &AccessSets,
3797                              MemAccessInfoSet &CheckDeps) {
3798
3799  MaxSafeDepDistBytes = -1U;
3800  while (!CheckDeps.empty()) {
3801    MemAccessInfo CurAccess = *CheckDeps.begin();
3802
3803    // Get the relevant memory access set.
3804    EquivalenceClasses<MemAccessInfo>::iterator I =
3805      AccessSets.findValue(AccessSets.getLeaderValue(CurAccess));
3806
3807    // Check accesses within this set.
3808    EquivalenceClasses<MemAccessInfo>::member_iterator AI, AE;
3809    AI = AccessSets.member_begin(I), AE = AccessSets.member_end();
3810
3811    // Check every access pair.
3812    while (AI != AE) {
3813      CheckDeps.erase(*AI);
3814      EquivalenceClasses<MemAccessInfo>::member_iterator OI = llvm::next(AI);
3815      while (OI != AE) {
3816        // Check every accessing instruction pair in program order.
3817        for (std::vector<unsigned>::iterator I1 = Accesses[*AI].begin(),
3818             I1E = Accesses[*AI].end(); I1 != I1E; ++I1)
3819          for (std::vector<unsigned>::iterator I2 = Accesses[*OI].begin(),
3820               I2E = Accesses[*OI].end(); I2 != I2E; ++I2) {
3821            if (*I1 < *I2 && isDependent(*AI, *I1, *OI, *I2))
3822              return false;
3823            if (*I2 < *I1 && isDependent(*OI, *I2, *AI, *I1))
3824              return false;
3825          }
3826        ++OI;
3827      }
3828      AI++;
3829    }
3830  }
3831  return true;
3832}
3833
3834bool LoopVectorizationLegality::canVectorizeMemory() {
3835
3836  typedef SmallVector<Value*, 16> ValueVector;
3837  typedef SmallPtrSet<Value*, 16> ValueSet;
3838
3839  // Holds the Load and Store *instructions*.
3840  ValueVector Loads;
3841  ValueVector Stores;
3842
3843  // Holds all the different accesses in the loop.
3844  unsigned NumReads = 0;
3845  unsigned NumReadWrites = 0;
3846
3847  PtrRtCheck.Pointers.clear();
3848  PtrRtCheck.Need = false;
3849
3850  const bool IsAnnotatedParallel = TheLoop->isAnnotatedParallel();
3851  MemoryDepChecker DepChecker(SE, DL, TheLoop);
3852
3853  // For each block.
3854  for (Loop::block_iterator bb = TheLoop->block_begin(),
3855       be = TheLoop->block_end(); bb != be; ++bb) {
3856
3857    // Scan the BB and collect legal loads and stores.
3858    for (BasicBlock::iterator it = (*bb)->begin(), e = (*bb)->end(); it != e;
3859         ++it) {
3860
3861      // If this is a load, save it. If this instruction can read from memory
3862      // but is not a load, then we quit. Notice that we don't handle function
3863      // calls that read or write.
3864      if (it->mayReadFromMemory()) {
3865        // Many math library functions read the rounding mode. We will only
3866        // vectorize a loop if it contains known function calls that don't set
3867        // the flag. Therefore, it is safe to ignore this read from memory.
3868        CallInst *Call = dyn_cast<CallInst>(it);
3869        if (Call && getIntrinsicIDForCall(Call, TLI))
3870          continue;
3871
3872        LoadInst *Ld = dyn_cast<LoadInst>(it);
3873        if (!Ld) return false;
3874        if (!Ld->isSimple() && !IsAnnotatedParallel) {
3875          DEBUG(dbgs() << "LV: Found a non-simple load.\n");
3876          return false;
3877        }
3878        Loads.push_back(Ld);
3879        DepChecker.addAccess(Ld);
3880        continue;
3881      }
3882
3883      // Save 'store' instructions. Abort if other instructions write to memory.
3884      if (it->mayWriteToMemory()) {
3885        StoreInst *St = dyn_cast<StoreInst>(it);
3886        if (!St) return false;
3887        if (!St->isSimple() && !IsAnnotatedParallel) {
3888          DEBUG(dbgs() << "LV: Found a non-simple store.\n");
3889          return false;
3890        }
3891        Stores.push_back(St);
3892        DepChecker.addAccess(St);
3893      }
3894    } // Next instr.
3895  } // Next block.
3896
3897  // Now we have two lists that hold the loads and the stores.
3898  // Next, we find the pointers that they use.
3899
3900  // Check if we see any stores. If there are no stores, then we don't
3901  // care if the pointers are *restrict*.
3902  if (!Stores.size()) {
3903    DEBUG(dbgs() << "LV: Found a read-only loop!\n");
3904    return true;
3905  }
3906
3907  AccessAnalysis::DepCandidates DependentAccesses;
3908  AccessAnalysis Accesses(DL, DependentAccesses);
3909
3910  // Holds the analyzed pointers. We don't want to call GetUnderlyingObjects
3911  // multiple times on the same object. If the ptr is accessed twice, once
3912  // for read and once for write, it will only appear once (on the write
3913  // list). This is okay, since we are going to check for conflicts between
3914  // writes and between reads and writes, but not between reads and reads.
3915  ValueSet Seen;
3916
3917  ValueVector::iterator I, IE;
3918  for (I = Stores.begin(), IE = Stores.end(); I != IE; ++I) {
3919    StoreInst *ST = cast<StoreInst>(*I);
3920    Value* Ptr = ST->getPointerOperand();
3921
3922    if (isUniform(Ptr)) {
3923      DEBUG(dbgs() << "LV: We don't allow storing to uniform addresses\n");
3924      return false;
3925    }
3926
3927    // If we did *not* see this pointer before, insert it to  the read-write
3928    // list. At this phase it is only a 'write' list.
3929    if (Seen.insert(Ptr)) {
3930      ++NumReadWrites;
3931      Accesses.addStore(Ptr);
3932    }
3933  }
3934
3935  if (IsAnnotatedParallel) {
3936    DEBUG(dbgs()
3937          << "LV: A loop annotated parallel, ignore memory dependency "
3938          << "checks.\n");
3939    return true;
3940  }
3941
3942  for (I = Loads.begin(), IE = Loads.end(); I != IE; ++I) {
3943    LoadInst *LD = cast<LoadInst>(*I);
3944    Value* Ptr = LD->getPointerOperand();
3945    // If we did *not* see this pointer before, insert it to the
3946    // read list. If we *did* see it before, then it is already in
3947    // the read-write list. This allows us to vectorize expressions
3948    // such as A[i] += x;  Because the address of A[i] is a read-write
3949    // pointer. This only works if the index of A[i] is consecutive.
3950    // If the address of i is unknown (for example A[B[i]]) then we may
3951    // read a few words, modify, and write a few words, and some of the
3952    // words may be written to the same address.
3953    bool IsReadOnlyPtr = false;
3954    if (Seen.insert(Ptr) || !isStridedPtr(SE, DL, Ptr, TheLoop)) {
3955      ++NumReads;
3956      IsReadOnlyPtr = true;
3957    }
3958    Accesses.addLoad(Ptr, IsReadOnlyPtr);
3959  }
3960
3961  // If we write (or read-write) to a single destination and there are no
3962  // other reads in this loop then is it safe to vectorize.
3963  if (NumReadWrites == 1 && NumReads == 0) {
3964    DEBUG(dbgs() << "LV: Found a write-only loop!\n");
3965    return true;
3966  }
3967
3968  // Build dependence sets and check whether we need a runtime pointer bounds
3969  // check.
3970  Accesses.buildDependenceSets();
3971  bool NeedRTCheck = Accesses.isRTCheckNeeded();
3972
3973  // Find pointers with computable bounds. We are going to use this information
3974  // to place a runtime bound check.
3975  unsigned NumComparisons = 0;
3976  bool CanDoRT = false;
3977  if (NeedRTCheck)
3978    CanDoRT = Accesses.canCheckPtrAtRT(PtrRtCheck, NumComparisons, SE, TheLoop);
3979
3980
3981  DEBUG(dbgs() << "LV: We need to do " << NumComparisons <<
3982        " pointer comparisons.\n");
3983
3984  // If we only have one set of dependences to check pointers among we don't
3985  // need a runtime check.
3986  if (NumComparisons == 0 && NeedRTCheck)
3987    NeedRTCheck = false;
3988
3989  // Check that we did not collect too many pointers or found an unsizeable
3990  // pointer.
3991  if (!CanDoRT || NumComparisons > RuntimeMemoryCheckThreshold) {
3992    PtrRtCheck.reset();
3993    CanDoRT = false;
3994  }
3995
3996  if (CanDoRT) {
3997    DEBUG(dbgs() << "LV: We can perform a memory runtime check if needed.\n");
3998  }
3999
4000  if (NeedRTCheck && !CanDoRT) {
4001    DEBUG(dbgs() << "LV: We can't vectorize because we can't find " <<
4002          "the array bounds.\n");
4003    PtrRtCheck.reset();
4004    return false;
4005  }
4006
4007  PtrRtCheck.Need = NeedRTCheck;
4008
4009  bool CanVecMem = true;
4010  if (Accesses.isDependencyCheckNeeded()) {
4011    DEBUG(dbgs() << "LV: Checking memory dependencies\n");
4012    CanVecMem = DepChecker.areDepsSafe(DependentAccesses,
4013                                       Accesses.getDependenciesToCheck());
4014    MaxSafeDepDistBytes = DepChecker.getMaxSafeDepDistBytes();
4015
4016    if (!CanVecMem && DepChecker.shouldRetryWithRuntimeCheck()) {
4017      DEBUG(dbgs() << "LV: Retrying with memory checks\n");
4018      NeedRTCheck = true;
4019
4020      // Clear the dependency checks. We assume they are not needed.
4021      Accesses.resetDepChecks();
4022
4023      PtrRtCheck.reset();
4024      PtrRtCheck.Need = true;
4025
4026      CanDoRT = Accesses.canCheckPtrAtRT(PtrRtCheck, NumComparisons, SE,
4027                                         TheLoop, true);
4028      // Check that we did not collect too many pointers or found an unsizeable
4029      // pointer.
4030      if (!CanDoRT || NumComparisons > RuntimeMemoryCheckThreshold) {
4031        DEBUG(dbgs() << "LV: Can't vectorize with memory checks\n");
4032        PtrRtCheck.reset();
4033        return false;
4034      }
4035
4036      CanVecMem = true;
4037    }
4038  }
4039
4040  DEBUG(dbgs() << "LV: We" << (NeedRTCheck ? "" : " don't") <<
4041        " need a runtime memory check.\n");
4042
4043  return CanVecMem;
4044}
4045
4046static bool hasMultipleUsesOf(Instruction *I,
4047                              SmallPtrSet<Instruction *, 8> &Insts) {
4048  unsigned NumUses = 0;
4049  for(User::op_iterator Use = I->op_begin(), E = I->op_end(); Use != E; ++Use) {
4050    if (Insts.count(dyn_cast<Instruction>(*Use)))
4051      ++NumUses;
4052    if (NumUses > 1)
4053      return true;
4054  }
4055
4056  return false;
4057}
4058
4059static bool areAllUsesIn(Instruction *I, SmallPtrSet<Instruction *, 8> &Set) {
4060  for(User::op_iterator Use = I->op_begin(), E = I->op_end(); Use != E; ++Use)
4061    if (!Set.count(dyn_cast<Instruction>(*Use)))
4062      return false;
4063  return true;
4064}
4065
4066bool LoopVectorizationLegality::AddReductionVar(PHINode *Phi,
4067                                                ReductionKind Kind) {
4068  if (Phi->getNumIncomingValues() != 2)
4069    return false;
4070
4071  // Reduction variables are only found in the loop header block.
4072  if (Phi->getParent() != TheLoop->getHeader())
4073    return false;
4074
4075  // Obtain the reduction start value from the value that comes from the loop
4076  // preheader.
4077  Value *RdxStart = Phi->getIncomingValueForBlock(TheLoop->getLoopPreheader());
4078
4079  // ExitInstruction is the single value which is used outside the loop.
4080  // We only allow for a single reduction value to be used outside the loop.
4081  // This includes users of the reduction, variables (which form a cycle
4082  // which ends in the phi node).
4083  Instruction *ExitInstruction = 0;
4084  // Indicates that we found a reduction operation in our scan.
4085  bool FoundReduxOp = false;
4086
4087  // We start with the PHI node and scan for all of the users of this
4088  // instruction. All users must be instructions that can be used as reduction
4089  // variables (such as ADD). We must have a single out-of-block user. The cycle
4090  // must include the original PHI.
4091  bool FoundStartPHI = false;
4092
4093  // To recognize min/max patterns formed by a icmp select sequence, we store
4094  // the number of instruction we saw from the recognized min/max pattern,
4095  //  to make sure we only see exactly the two instructions.
4096  unsigned NumCmpSelectPatternInst = 0;
4097  ReductionInstDesc ReduxDesc(false, 0);
4098
4099  SmallPtrSet<Instruction *, 8> VisitedInsts;
4100  SmallVector<Instruction *, 8> Worklist;
4101  Worklist.push_back(Phi);
4102  VisitedInsts.insert(Phi);
4103
4104  // A value in the reduction can be used:
4105  //  - By the reduction:
4106  //      - Reduction operation:
4107  //        - One use of reduction value (safe).
4108  //        - Multiple use of reduction value (not safe).
4109  //      - PHI:
4110  //        - All uses of the PHI must be the reduction (safe).
4111  //        - Otherwise, not safe.
4112  //  - By one instruction outside of the loop (safe).
4113  //  - By further instructions outside of the loop (not safe).
4114  //  - By an instruction that is not part of the reduction (not safe).
4115  //    This is either:
4116  //      * An instruction type other than PHI or the reduction operation.
4117  //      * A PHI in the header other than the initial PHI.
4118  while (!Worklist.empty()) {
4119    Instruction *Cur = Worklist.back();
4120    Worklist.pop_back();
4121
4122    // No Users.
4123    // If the instruction has no users then this is a broken chain and can't be
4124    // a reduction variable.
4125    if (Cur->use_empty())
4126      return false;
4127
4128    bool IsAPhi = isa<PHINode>(Cur);
4129
4130    // A header PHI use other than the original PHI.
4131    if (Cur != Phi && IsAPhi && Cur->getParent() == Phi->getParent())
4132      return false;
4133
4134    // Reductions of instructions such as Div, and Sub is only possible if the
4135    // LHS is the reduction variable.
4136    if (!Cur->isCommutative() && !IsAPhi && !isa<SelectInst>(Cur) &&
4137        !isa<ICmpInst>(Cur) && !isa<FCmpInst>(Cur) &&
4138        !VisitedInsts.count(dyn_cast<Instruction>(Cur->getOperand(0))))
4139      return false;
4140
4141    // Any reduction instruction must be of one of the allowed kinds.
4142    ReduxDesc = isReductionInstr(Cur, Kind, ReduxDesc);
4143    if (!ReduxDesc.IsReduction)
4144      return false;
4145
4146    // A reduction operation must only have one use of the reduction value.
4147    if (!IsAPhi && Kind != RK_IntegerMinMax && Kind != RK_FloatMinMax &&
4148        hasMultipleUsesOf(Cur, VisitedInsts))
4149      return false;
4150
4151    // All inputs to a PHI node must be a reduction value.
4152    if(IsAPhi && Cur != Phi && !areAllUsesIn(Cur, VisitedInsts))
4153      return false;
4154
4155    if (Kind == RK_IntegerMinMax && (isa<ICmpInst>(Cur) ||
4156                                     isa<SelectInst>(Cur)))
4157      ++NumCmpSelectPatternInst;
4158    if (Kind == RK_FloatMinMax && (isa<FCmpInst>(Cur) ||
4159                                   isa<SelectInst>(Cur)))
4160      ++NumCmpSelectPatternInst;
4161
4162    // Check  whether we found a reduction operator.
4163    FoundReduxOp |= !IsAPhi;
4164
4165    // Process users of current instruction. Push non PHI nodes after PHI nodes
4166    // onto the stack. This way we are going to have seen all inputs to PHI
4167    // nodes once we get to them.
4168    SmallVector<Instruction *, 8> NonPHIs;
4169    SmallVector<Instruction *, 8> PHIs;
4170    for (Value::use_iterator UI = Cur->use_begin(), E = Cur->use_end(); UI != E;
4171         ++UI) {
4172      Instruction *Usr = cast<Instruction>(*UI);
4173
4174      // Check if we found the exit user.
4175      BasicBlock *Parent = Usr->getParent();
4176      if (!TheLoop->contains(Parent)) {
4177        // Exit if you find multiple outside users or if the header phi node is
4178        // being used. In this case the user uses the value of the previous
4179        // iteration, in which case we would loose "VF-1" iterations of the
4180        // reduction operation if we vectorize.
4181        if (ExitInstruction != 0 || Cur == Phi)
4182          return false;
4183
4184        // The instruction used by an outside user must be the last instruction
4185        // before we feed back to the reduction phi. Otherwise, we loose VF-1
4186        // operations on the value.
4187        if (std::find(Phi->op_begin(), Phi->op_end(), Cur) == Phi->op_end())
4188         return false;
4189
4190        ExitInstruction = Cur;
4191        continue;
4192      }
4193
4194      // Process instructions only once (termination).
4195      if (VisitedInsts.insert(Usr)) {
4196        if (isa<PHINode>(Usr))
4197          PHIs.push_back(Usr);
4198        else
4199          NonPHIs.push_back(Usr);
4200      }
4201      // Remember that we completed the cycle.
4202      if (Usr == Phi)
4203        FoundStartPHI = true;
4204    }
4205    Worklist.append(PHIs.begin(), PHIs.end());
4206    Worklist.append(NonPHIs.begin(), NonPHIs.end());
4207  }
4208
4209  // This means we have seen one but not the other instruction of the
4210  // pattern or more than just a select and cmp.
4211  if ((Kind == RK_IntegerMinMax || Kind == RK_FloatMinMax) &&
4212      NumCmpSelectPatternInst != 2)
4213    return false;
4214
4215  if (!FoundStartPHI || !FoundReduxOp || !ExitInstruction)
4216    return false;
4217
4218  // We found a reduction var if we have reached the original phi node and we
4219  // only have a single instruction with out-of-loop users.
4220
4221  // This instruction is allowed to have out-of-loop users.
4222  AllowedExit.insert(ExitInstruction);
4223
4224  // Save the description of this reduction variable.
4225  ReductionDescriptor RD(RdxStart, ExitInstruction, Kind,
4226                         ReduxDesc.MinMaxKind);
4227  Reductions[Phi] = RD;
4228  // We've ended the cycle. This is a reduction variable if we have an
4229  // outside user and it has a binary op.
4230
4231  return true;
4232}
4233
4234/// Returns true if the instruction is a Select(ICmp(X, Y), X, Y) instruction
4235/// pattern corresponding to a min(X, Y) or max(X, Y).
4236LoopVectorizationLegality::ReductionInstDesc
4237LoopVectorizationLegality::isMinMaxSelectCmpPattern(Instruction *I,
4238                                                    ReductionInstDesc &Prev) {
4239
4240  assert((isa<ICmpInst>(I) || isa<FCmpInst>(I) || isa<SelectInst>(I)) &&
4241         "Expect a select instruction");
4242  Instruction *Cmp = 0;
4243  SelectInst *Select = 0;
4244
4245  // We must handle the select(cmp()) as a single instruction. Advance to the
4246  // select.
4247  if ((Cmp = dyn_cast<ICmpInst>(I)) || (Cmp = dyn_cast<FCmpInst>(I))) {
4248    if (!Cmp->hasOneUse() || !(Select = dyn_cast<SelectInst>(*I->use_begin())))
4249      return ReductionInstDesc(false, I);
4250    return ReductionInstDesc(Select, Prev.MinMaxKind);
4251  }
4252
4253  // Only handle single use cases for now.
4254  if (!(Select = dyn_cast<SelectInst>(I)))
4255    return ReductionInstDesc(false, I);
4256  if (!(Cmp = dyn_cast<ICmpInst>(I->getOperand(0))) &&
4257      !(Cmp = dyn_cast<FCmpInst>(I->getOperand(0))))
4258    return ReductionInstDesc(false, I);
4259  if (!Cmp->hasOneUse())
4260    return ReductionInstDesc(false, I);
4261
4262  Value *CmpLeft;
4263  Value *CmpRight;
4264
4265  // Look for a min/max pattern.
4266  if (m_UMin(m_Value(CmpLeft), m_Value(CmpRight)).match(Select))
4267    return ReductionInstDesc(Select, MRK_UIntMin);
4268  else if (m_UMax(m_Value(CmpLeft), m_Value(CmpRight)).match(Select))
4269    return ReductionInstDesc(Select, MRK_UIntMax);
4270  else if (m_SMax(m_Value(CmpLeft), m_Value(CmpRight)).match(Select))
4271    return ReductionInstDesc(Select, MRK_SIntMax);
4272  else if (m_SMin(m_Value(CmpLeft), m_Value(CmpRight)).match(Select))
4273    return ReductionInstDesc(Select, MRK_SIntMin);
4274  else if (m_OrdFMin(m_Value(CmpLeft), m_Value(CmpRight)).match(Select))
4275    return ReductionInstDesc(Select, MRK_FloatMin);
4276  else if (m_OrdFMax(m_Value(CmpLeft), m_Value(CmpRight)).match(Select))
4277    return ReductionInstDesc(Select, MRK_FloatMax);
4278  else if (m_UnordFMin(m_Value(CmpLeft), m_Value(CmpRight)).match(Select))
4279    return ReductionInstDesc(Select, MRK_FloatMin);
4280  else if (m_UnordFMax(m_Value(CmpLeft), m_Value(CmpRight)).match(Select))
4281    return ReductionInstDesc(Select, MRK_FloatMax);
4282
4283  return ReductionInstDesc(false, I);
4284}
4285
4286LoopVectorizationLegality::ReductionInstDesc
4287LoopVectorizationLegality::isReductionInstr(Instruction *I,
4288                                            ReductionKind Kind,
4289                                            ReductionInstDesc &Prev) {
4290  bool FP = I->getType()->isFloatingPointTy();
4291  bool FastMath = (FP && I->isCommutative() && I->isAssociative());
4292  switch (I->getOpcode()) {
4293  default:
4294    return ReductionInstDesc(false, I);
4295  case Instruction::PHI:
4296      if (FP && (Kind != RK_FloatMult && Kind != RK_FloatAdd &&
4297                 Kind != RK_FloatMinMax))
4298        return ReductionInstDesc(false, I);
4299    return ReductionInstDesc(I, Prev.MinMaxKind);
4300  case Instruction::Sub:
4301  case Instruction::Add:
4302    return ReductionInstDesc(Kind == RK_IntegerAdd, I);
4303  case Instruction::Mul:
4304    return ReductionInstDesc(Kind == RK_IntegerMult, I);
4305  case Instruction::And:
4306    return ReductionInstDesc(Kind == RK_IntegerAnd, I);
4307  case Instruction::Or:
4308    return ReductionInstDesc(Kind == RK_IntegerOr, I);
4309  case Instruction::Xor:
4310    return ReductionInstDesc(Kind == RK_IntegerXor, I);
4311  case Instruction::FMul:
4312    return ReductionInstDesc(Kind == RK_FloatMult && FastMath, I);
4313  case Instruction::FAdd:
4314    return ReductionInstDesc(Kind == RK_FloatAdd && FastMath, I);
4315  case Instruction::FCmp:
4316  case Instruction::ICmp:
4317  case Instruction::Select:
4318    if (Kind != RK_IntegerMinMax &&
4319        (!HasFunNoNaNAttr || Kind != RK_FloatMinMax))
4320      return ReductionInstDesc(false, I);
4321    return isMinMaxSelectCmpPattern(I, Prev);
4322  }
4323}
4324
4325LoopVectorizationLegality::InductionKind
4326LoopVectorizationLegality::isInductionVariable(PHINode *Phi) {
4327  Type *PhiTy = Phi->getType();
4328  // We only handle integer and pointer inductions variables.
4329  if (!PhiTy->isIntegerTy() && !PhiTy->isPointerTy())
4330    return IK_NoInduction;
4331
4332  // Check that the PHI is consecutive.
4333  const SCEV *PhiScev = SE->getSCEV(Phi);
4334  const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(PhiScev);
4335  if (!AR) {
4336    DEBUG(dbgs() << "LV: PHI is not a poly recurrence.\n");
4337    return IK_NoInduction;
4338  }
4339  const SCEV *Step = AR->getStepRecurrence(*SE);
4340
4341  // Integer inductions need to have a stride of one.
4342  if (PhiTy->isIntegerTy()) {
4343    if (Step->isOne())
4344      return IK_IntInduction;
4345    if (Step->isAllOnesValue())
4346      return IK_ReverseIntInduction;
4347    return IK_NoInduction;
4348  }
4349
4350  // Calculate the pointer stride and check if it is consecutive.
4351  const SCEVConstant *C = dyn_cast<SCEVConstant>(Step);
4352  if (!C)
4353    return IK_NoInduction;
4354
4355  assert(PhiTy->isPointerTy() && "The PHI must be a pointer");
4356  uint64_t Size = DL->getTypeAllocSize(PhiTy->getPointerElementType());
4357  if (C->getValue()->equalsInt(Size))
4358    return IK_PtrInduction;
4359  else if (C->getValue()->equalsInt(0 - Size))
4360    return IK_ReversePtrInduction;
4361
4362  return IK_NoInduction;
4363}
4364
4365bool LoopVectorizationLegality::isInductionVariable(const Value *V) {
4366  Value *In0 = const_cast<Value*>(V);
4367  PHINode *PN = dyn_cast_or_null<PHINode>(In0);
4368  if (!PN)
4369    return false;
4370
4371  return Inductions.count(PN);
4372}
4373
4374bool LoopVectorizationLegality::blockNeedsPredication(BasicBlock *BB)  {
4375  assert(TheLoop->contains(BB) && "Unknown block used");
4376
4377  // Blocks that do not dominate the latch need predication.
4378  BasicBlock* Latch = TheLoop->getLoopLatch();
4379  return !DT->dominates(BB, Latch);
4380}
4381
4382bool LoopVectorizationLegality::blockCanBePredicated(BasicBlock *BB,
4383                                            SmallPtrSet<Value *, 8>& SafePtrs) {
4384  for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; ++it) {
4385    // We might be able to hoist the load.
4386    if (it->mayReadFromMemory()) {
4387      LoadInst *LI = dyn_cast<LoadInst>(it);
4388      if (!LI || !SafePtrs.count(LI->getPointerOperand()))
4389        return false;
4390    }
4391
4392    // We don't predicate stores at the moment.
4393    if (it->mayWriteToMemory() || it->mayThrow())
4394      return false;
4395
4396    // Check that we don't have a constant expression that can trap as operand.
4397    for (Instruction::op_iterator OI = it->op_begin(), OE = it->op_end();
4398         OI != OE; ++OI) {
4399      if (Constant *C = dyn_cast<Constant>(*OI))
4400        if (C->canTrap())
4401          return false;
4402    }
4403
4404    // The instructions below can trap.
4405    switch (it->getOpcode()) {
4406    default: continue;
4407    case Instruction::UDiv:
4408    case Instruction::SDiv:
4409    case Instruction::URem:
4410    case Instruction::SRem:
4411             return false;
4412    }
4413  }
4414
4415  return true;
4416}
4417
4418LoopVectorizationCostModel::VectorizationFactor
4419LoopVectorizationCostModel::selectVectorizationFactor(bool OptForSize,
4420                                                      unsigned UserVF) {
4421  // Width 1 means no vectorize
4422  VectorizationFactor Factor = { 1U, 0U };
4423  if (OptForSize && Legal->getRuntimePointerCheck()->Need) {
4424    DEBUG(dbgs() << "LV: Aborting. Runtime ptr check is required in Os.\n");
4425    return Factor;
4426  }
4427
4428  // Find the trip count.
4429  unsigned TC = SE->getSmallConstantTripCount(TheLoop, TheLoop->getLoopLatch());
4430  DEBUG(dbgs() << "LV: Found trip count: " << TC << '\n');
4431
4432  unsigned WidestType = getWidestType();
4433  unsigned WidestRegister = TTI.getRegisterBitWidth(true);
4434  unsigned MaxSafeDepDist = -1U;
4435  if (Legal->getMaxSafeDepDistBytes() != -1U)
4436    MaxSafeDepDist = Legal->getMaxSafeDepDistBytes() * 8;
4437  WidestRegister = ((WidestRegister < MaxSafeDepDist) ?
4438                    WidestRegister : MaxSafeDepDist);
4439  unsigned MaxVectorSize = WidestRegister / WidestType;
4440  DEBUG(dbgs() << "LV: The Widest type: " << WidestType << " bits.\n");
4441  DEBUG(dbgs() << "LV: The Widest register is: "
4442          << WidestRegister << " bits.\n");
4443
4444  if (MaxVectorSize == 0) {
4445    DEBUG(dbgs() << "LV: The target has no vector registers.\n");
4446    MaxVectorSize = 1;
4447  }
4448
4449  assert(MaxVectorSize <= 32 && "Did not expect to pack so many elements"
4450         " into one vector!");
4451
4452  unsigned VF = MaxVectorSize;
4453
4454  // If we optimize the program for size, avoid creating the tail loop.
4455  if (OptForSize) {
4456    // If we are unable to calculate the trip count then don't try to vectorize.
4457    if (TC < 2) {
4458      DEBUG(dbgs() << "LV: Aborting. A tail loop is required in Os.\n");
4459      return Factor;
4460    }
4461
4462    // Find the maximum SIMD width that can fit within the trip count.
4463    VF = TC % MaxVectorSize;
4464
4465    if (VF == 0)
4466      VF = MaxVectorSize;
4467
4468    // If the trip count that we found modulo the vectorization factor is not
4469    // zero then we require a tail.
4470    if (VF < 2) {
4471      DEBUG(dbgs() << "LV: Aborting. A tail loop is required in Os.\n");
4472      return Factor;
4473    }
4474  }
4475
4476  if (UserVF != 0) {
4477    assert(isPowerOf2_32(UserVF) && "VF needs to be a power of two");
4478    DEBUG(dbgs() << "LV: Using user VF " << UserVF << ".\n");
4479
4480    Factor.Width = UserVF;
4481    return Factor;
4482  }
4483
4484  float Cost = expectedCost(1);
4485  unsigned Width = 1;
4486  DEBUG(dbgs() << "LV: Scalar loop costs: " << (int)Cost << ".\n");
4487  for (unsigned i=2; i <= VF; i*=2) {
4488    // Notice that the vector loop needs to be executed less times, so
4489    // we need to divide the cost of the vector loops by the width of
4490    // the vector elements.
4491    float VectorCost = expectedCost(i) / (float)i;
4492    DEBUG(dbgs() << "LV: Vector loop of width " << i << " costs: " <<
4493          (int)VectorCost << ".\n");
4494    if (VectorCost < Cost) {
4495      Cost = VectorCost;
4496      Width = i;
4497    }
4498  }
4499
4500  DEBUG(dbgs() << "LV: Selecting VF = : "<< Width << ".\n");
4501  Factor.Width = Width;
4502  Factor.Cost = Width * Cost;
4503  return Factor;
4504}
4505
4506unsigned LoopVectorizationCostModel::getWidestType() {
4507  unsigned MaxWidth = 8;
4508
4509  // For each block.
4510  for (Loop::block_iterator bb = TheLoop->block_begin(),
4511       be = TheLoop->block_end(); bb != be; ++bb) {
4512    BasicBlock *BB = *bb;
4513
4514    // For each instruction in the loop.
4515    for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; ++it) {
4516      Type *T = it->getType();
4517
4518      // Only examine Loads, Stores and PHINodes.
4519      if (!isa<LoadInst>(it) && !isa<StoreInst>(it) && !isa<PHINode>(it))
4520        continue;
4521
4522      // Examine PHI nodes that are reduction variables.
4523      if (PHINode *PN = dyn_cast<PHINode>(it))
4524        if (!Legal->getReductionVars()->count(PN))
4525          continue;
4526
4527      // Examine the stored values.
4528      if (StoreInst *ST = dyn_cast<StoreInst>(it))
4529        T = ST->getValueOperand()->getType();
4530
4531      // Ignore loaded pointer types and stored pointer types that are not
4532      // consecutive. However, we do want to take consecutive stores/loads of
4533      // pointer vectors into account.
4534      if (T->isPointerTy() && !isConsecutiveLoadOrStore(it))
4535        continue;
4536
4537      MaxWidth = std::max(MaxWidth,
4538                          (unsigned)DL->getTypeSizeInBits(T->getScalarType()));
4539    }
4540  }
4541
4542  return MaxWidth;
4543}
4544
4545unsigned
4546LoopVectorizationCostModel::selectUnrollFactor(bool OptForSize,
4547                                               unsigned UserUF,
4548                                               unsigned VF,
4549                                               unsigned LoopCost) {
4550
4551  // -- The unroll heuristics --
4552  // We unroll the loop in order to expose ILP and reduce the loop overhead.
4553  // There are many micro-architectural considerations that we can't predict
4554  // at this level. For example frontend pressure (on decode or fetch) due to
4555  // code size, or the number and capabilities of the execution ports.
4556  //
4557  // We use the following heuristics to select the unroll factor:
4558  // 1. If the code has reductions the we unroll in order to break the cross
4559  // iteration dependency.
4560  // 2. If the loop is really small then we unroll in order to reduce the loop
4561  // overhead.
4562  // 3. We don't unroll if we think that we will spill registers to memory due
4563  // to the increased register pressure.
4564
4565  // Use the user preference, unless 'auto' is selected.
4566  if (UserUF != 0)
4567    return UserUF;
4568
4569  // When we optimize for size we don't unroll.
4570  if (OptForSize)
4571    return 1;
4572
4573  // We used the distance for the unroll factor.
4574  if (Legal->getMaxSafeDepDistBytes() != -1U)
4575    return 1;
4576
4577  // Do not unroll loops with a relatively small trip count.
4578  unsigned TC = SE->getSmallConstantTripCount(TheLoop,
4579                                              TheLoop->getLoopLatch());
4580  if (TC > 1 && TC < TinyTripCountUnrollThreshold)
4581    return 1;
4582
4583  unsigned TargetVectorRegisters = TTI.getNumberOfRegisters(true);
4584  DEBUG(dbgs() << "LV: The target has " << TargetVectorRegisters <<
4585        " vector registers\n");
4586
4587  LoopVectorizationCostModel::RegisterUsage R = calculateRegisterUsage();
4588  // We divide by these constants so assume that we have at least one
4589  // instruction that uses at least one register.
4590  R.MaxLocalUsers = std::max(R.MaxLocalUsers, 1U);
4591  R.NumInstructions = std::max(R.NumInstructions, 1U);
4592
4593  // We calculate the unroll factor using the following formula.
4594  // Subtract the number of loop invariants from the number of available
4595  // registers. These registers are used by all of the unrolled instances.
4596  // Next, divide the remaining registers by the number of registers that is
4597  // required by the loop, in order to estimate how many parallel instances
4598  // fit without causing spills.
4599  unsigned UF = (TargetVectorRegisters - R.LoopInvariantRegs) / R.MaxLocalUsers;
4600
4601  // Clamp the unroll factor ranges to reasonable factors.
4602  unsigned MaxUnrollSize = TTI.getMaximumUnrollFactor();
4603
4604  // If we did not calculate the cost for VF (because the user selected the VF)
4605  // then we calculate the cost of VF here.
4606  if (LoopCost == 0)
4607    LoopCost = expectedCost(VF);
4608
4609  // Clamp the calculated UF to be between the 1 and the max unroll factor
4610  // that the target allows.
4611  if (UF > MaxUnrollSize)
4612    UF = MaxUnrollSize;
4613  else if (UF < 1)
4614    UF = 1;
4615
4616  bool HasReductions = Legal->getReductionVars()->size();
4617
4618  // Decide if we want to unroll if we decided that it is legal to vectorize
4619  // but not profitable.
4620  if (VF == 1) {
4621    if (TheLoop->getNumBlocks() > 1 || !HasReductions ||
4622        LoopCost > SmallLoopCost)
4623      return 1;
4624
4625    return UF;
4626  }
4627
4628  if (HasReductions) {
4629    DEBUG(dbgs() << "LV: Unrolling because of reductions.\n");
4630    return UF;
4631  }
4632
4633  // We want to unroll tiny loops in order to reduce the loop overhead.
4634  // We assume that the cost overhead is 1 and we use the cost model
4635  // to estimate the cost of the loop and unroll until the cost of the
4636  // loop overhead is about 5% of the cost of the loop.
4637  DEBUG(dbgs() << "LV: Loop cost is " << LoopCost << '\n');
4638  if (LoopCost < SmallLoopCost) {
4639    DEBUG(dbgs() << "LV: Unrolling to reduce branch cost.\n");
4640    unsigned NewUF = SmallLoopCost / (LoopCost + 1);
4641    return std::min(NewUF, UF);
4642  }
4643
4644  DEBUG(dbgs() << "LV: Not Unrolling.\n");
4645  return 1;
4646}
4647
4648LoopVectorizationCostModel::RegisterUsage
4649LoopVectorizationCostModel::calculateRegisterUsage() {
4650  // This function calculates the register usage by measuring the highest number
4651  // of values that are alive at a single location. Obviously, this is a very
4652  // rough estimation. We scan the loop in a topological order in order and
4653  // assign a number to each instruction. We use RPO to ensure that defs are
4654  // met before their users. We assume that each instruction that has in-loop
4655  // users starts an interval. We record every time that an in-loop value is
4656  // used, so we have a list of the first and last occurrences of each
4657  // instruction. Next, we transpose this data structure into a multi map that
4658  // holds the list of intervals that *end* at a specific location. This multi
4659  // map allows us to perform a linear search. We scan the instructions linearly
4660  // and record each time that a new interval starts, by placing it in a set.
4661  // If we find this value in the multi-map then we remove it from the set.
4662  // The max register usage is the maximum size of the set.
4663  // We also search for instructions that are defined outside the loop, but are
4664  // used inside the loop. We need this number separately from the max-interval
4665  // usage number because when we unroll, loop-invariant values do not take
4666  // more register.
4667  LoopBlocksDFS DFS(TheLoop);
4668  DFS.perform(LI);
4669
4670  RegisterUsage R;
4671  R.NumInstructions = 0;
4672
4673  // Each 'key' in the map opens a new interval. The values
4674  // of the map are the index of the 'last seen' usage of the
4675  // instruction that is the key.
4676  typedef DenseMap<Instruction*, unsigned> IntervalMap;
4677  // Maps instruction to its index.
4678  DenseMap<unsigned, Instruction*> IdxToInstr;
4679  // Marks the end of each interval.
4680  IntervalMap EndPoint;
4681  // Saves the list of instruction indices that are used in the loop.
4682  SmallSet<Instruction*, 8> Ends;
4683  // Saves the list of values that are used in the loop but are
4684  // defined outside the loop, such as arguments and constants.
4685  SmallPtrSet<Value*, 8> LoopInvariants;
4686
4687  unsigned Index = 0;
4688  for (LoopBlocksDFS::RPOIterator bb = DFS.beginRPO(),
4689       be = DFS.endRPO(); bb != be; ++bb) {
4690    R.NumInstructions += (*bb)->size();
4691    for (BasicBlock::iterator it = (*bb)->begin(), e = (*bb)->end(); it != e;
4692         ++it) {
4693      Instruction *I = it;
4694      IdxToInstr[Index++] = I;
4695
4696      // Save the end location of each USE.
4697      for (unsigned i = 0; i < I->getNumOperands(); ++i) {
4698        Value *U = I->getOperand(i);
4699        Instruction *Instr = dyn_cast<Instruction>(U);
4700
4701        // Ignore non-instruction values such as arguments, constants, etc.
4702        if (!Instr) continue;
4703
4704        // If this instruction is outside the loop then record it and continue.
4705        if (!TheLoop->contains(Instr)) {
4706          LoopInvariants.insert(Instr);
4707          continue;
4708        }
4709
4710        // Overwrite previous end points.
4711        EndPoint[Instr] = Index;
4712        Ends.insert(Instr);
4713      }
4714    }
4715  }
4716
4717  // Saves the list of intervals that end with the index in 'key'.
4718  typedef SmallVector<Instruction*, 2> InstrList;
4719  DenseMap<unsigned, InstrList> TransposeEnds;
4720
4721  // Transpose the EndPoints to a list of values that end at each index.
4722  for (IntervalMap::iterator it = EndPoint.begin(), e = EndPoint.end();
4723       it != e; ++it)
4724    TransposeEnds[it->second].push_back(it->first);
4725
4726  SmallSet<Instruction*, 8> OpenIntervals;
4727  unsigned MaxUsage = 0;
4728
4729
4730  DEBUG(dbgs() << "LV(REG): Calculating max register usage:\n");
4731  for (unsigned int i = 0; i < Index; ++i) {
4732    Instruction *I = IdxToInstr[i];
4733    // Ignore instructions that are never used within the loop.
4734    if (!Ends.count(I)) continue;
4735
4736    // Remove all of the instructions that end at this location.
4737    InstrList &List = TransposeEnds[i];
4738    for (unsigned int j=0, e = List.size(); j < e; ++j)
4739      OpenIntervals.erase(List[j]);
4740
4741    // Count the number of live interals.
4742    MaxUsage = std::max(MaxUsage, OpenIntervals.size());
4743
4744    DEBUG(dbgs() << "LV(REG): At #" << i << " Interval # " <<
4745          OpenIntervals.size() << '\n');
4746
4747    // Add the current instruction to the list of open intervals.
4748    OpenIntervals.insert(I);
4749  }
4750
4751  unsigned Invariant = LoopInvariants.size();
4752  DEBUG(dbgs() << "LV(REG): Found max usage: " << MaxUsage << '\n');
4753  DEBUG(dbgs() << "LV(REG): Found invariant usage: " << Invariant << '\n');
4754  DEBUG(dbgs() << "LV(REG): LoopSize: " << R.NumInstructions << '\n');
4755
4756  R.LoopInvariantRegs = Invariant;
4757  R.MaxLocalUsers = MaxUsage;
4758  return R;
4759}
4760
4761unsigned LoopVectorizationCostModel::expectedCost(unsigned VF) {
4762  unsigned Cost = 0;
4763
4764  // For each block.
4765  for (Loop::block_iterator bb = TheLoop->block_begin(),
4766       be = TheLoop->block_end(); bb != be; ++bb) {
4767    unsigned BlockCost = 0;
4768    BasicBlock *BB = *bb;
4769
4770    // For each instruction in the old loop.
4771    for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; ++it) {
4772      // Skip dbg intrinsics.
4773      if (isa<DbgInfoIntrinsic>(it))
4774        continue;
4775
4776      unsigned C = getInstructionCost(it, VF);
4777      BlockCost += C;
4778      DEBUG(dbgs() << "LV: Found an estimated cost of " << C << " for VF " <<
4779            VF << " For instruction: " << *it << '\n');
4780    }
4781
4782    // We assume that if-converted blocks have a 50% chance of being executed.
4783    // When the code is scalar then some of the blocks are avoided due to CF.
4784    // When the code is vectorized we execute all code paths.
4785    if (VF == 1 && Legal->blockNeedsPredication(*bb))
4786      BlockCost /= 2;
4787
4788    Cost += BlockCost;
4789  }
4790
4791  return Cost;
4792}
4793
4794/// \brief Check whether the address computation for a non-consecutive memory
4795/// access looks like an unlikely candidate for being merged into the indexing
4796/// mode.
4797///
4798/// We look for a GEP which has one index that is an induction variable and all
4799/// other indices are loop invariant. If the stride of this access is also
4800/// within a small bound we decide that this address computation can likely be
4801/// merged into the addressing mode.
4802/// In all other cases, we identify the address computation as complex.
4803static bool isLikelyComplexAddressComputation(Value *Ptr,
4804                                              LoopVectorizationLegality *Legal,
4805                                              ScalarEvolution *SE,
4806                                              const Loop *TheLoop) {
4807  GetElementPtrInst *Gep = dyn_cast<GetElementPtrInst>(Ptr);
4808  if (!Gep)
4809    return true;
4810
4811  // We are looking for a gep with all loop invariant indices except for one
4812  // which should be an induction variable.
4813  unsigned NumOperands = Gep->getNumOperands();
4814  for (unsigned i = 1; i < NumOperands; ++i) {
4815    Value *Opd = Gep->getOperand(i);
4816    if (!SE->isLoopInvariant(SE->getSCEV(Opd), TheLoop) &&
4817        !Legal->isInductionVariable(Opd))
4818      return true;
4819  }
4820
4821  // Now we know we have a GEP ptr, %inv, %ind, %inv. Make sure that the step
4822  // can likely be merged into the address computation.
4823  unsigned MaxMergeDistance = 64;
4824
4825  const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(Ptr));
4826  if (!AddRec)
4827    return true;
4828
4829  // Check the step is constant.
4830  const SCEV *Step = AddRec->getStepRecurrence(*SE);
4831  // Calculate the pointer stride and check if it is consecutive.
4832  const SCEVConstant *C = dyn_cast<SCEVConstant>(Step);
4833  if (!C)
4834    return true;
4835
4836  const APInt &APStepVal = C->getValue()->getValue();
4837
4838  // Huge step value - give up.
4839  if (APStepVal.getBitWidth() > 64)
4840    return true;
4841
4842  int64_t StepVal = APStepVal.getSExtValue();
4843
4844  return StepVal > MaxMergeDistance;
4845}
4846
4847unsigned
4848LoopVectorizationCostModel::getInstructionCost(Instruction *I, unsigned VF) {
4849  // If we know that this instruction will remain uniform, check the cost of
4850  // the scalar version.
4851  if (Legal->isUniformAfterVectorization(I))
4852    VF = 1;
4853
4854  Type *RetTy = I->getType();
4855  Type *VectorTy = ToVectorTy(RetTy, VF);
4856
4857  // TODO: We need to estimate the cost of intrinsic calls.
4858  switch (I->getOpcode()) {
4859  case Instruction::GetElementPtr:
4860    // We mark this instruction as zero-cost because the cost of GEPs in
4861    // vectorized code depends on whether the corresponding memory instruction
4862    // is scalarized or not. Therefore, we handle GEPs with the memory
4863    // instruction cost.
4864    return 0;
4865  case Instruction::Br: {
4866    return TTI.getCFInstrCost(I->getOpcode());
4867  }
4868  case Instruction::PHI:
4869    //TODO: IF-converted IFs become selects.
4870    return 0;
4871  case Instruction::Add:
4872  case Instruction::FAdd:
4873  case Instruction::Sub:
4874  case Instruction::FSub:
4875  case Instruction::Mul:
4876  case Instruction::FMul:
4877  case Instruction::UDiv:
4878  case Instruction::SDiv:
4879  case Instruction::FDiv:
4880  case Instruction::URem:
4881  case Instruction::SRem:
4882  case Instruction::FRem:
4883  case Instruction::Shl:
4884  case Instruction::LShr:
4885  case Instruction::AShr:
4886  case Instruction::And:
4887  case Instruction::Or:
4888  case Instruction::Xor: {
4889    // Certain instructions can be cheaper to vectorize if they have a constant
4890    // second vector operand. One example of this are shifts on x86.
4891    TargetTransformInfo::OperandValueKind Op1VK =
4892      TargetTransformInfo::OK_AnyValue;
4893    TargetTransformInfo::OperandValueKind Op2VK =
4894      TargetTransformInfo::OK_AnyValue;
4895
4896    if (isa<ConstantInt>(I->getOperand(1)))
4897      Op2VK = TargetTransformInfo::OK_UniformConstantValue;
4898
4899    return TTI.getArithmeticInstrCost(I->getOpcode(), VectorTy, Op1VK, Op2VK);
4900  }
4901  case Instruction::Select: {
4902    SelectInst *SI = cast<SelectInst>(I);
4903    const SCEV *CondSCEV = SE->getSCEV(SI->getCondition());
4904    bool ScalarCond = (SE->isLoopInvariant(CondSCEV, TheLoop));
4905    Type *CondTy = SI->getCondition()->getType();
4906    if (!ScalarCond)
4907      CondTy = VectorType::get(CondTy, VF);
4908
4909    return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy, CondTy);
4910  }
4911  case Instruction::ICmp:
4912  case Instruction::FCmp: {
4913    Type *ValTy = I->getOperand(0)->getType();
4914    VectorTy = ToVectorTy(ValTy, VF);
4915    return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy);
4916  }
4917  case Instruction::Store:
4918  case Instruction::Load: {
4919    StoreInst *SI = dyn_cast<StoreInst>(I);
4920    LoadInst *LI = dyn_cast<LoadInst>(I);
4921    Type *ValTy = (SI ? SI->getValueOperand()->getType() :
4922                   LI->getType());
4923    VectorTy = ToVectorTy(ValTy, VF);
4924
4925    unsigned Alignment = SI ? SI->getAlignment() : LI->getAlignment();
4926    unsigned AS = SI ? SI->getPointerAddressSpace() :
4927      LI->getPointerAddressSpace();
4928    Value *Ptr = SI ? SI->getPointerOperand() : LI->getPointerOperand();
4929    // We add the cost of address computation here instead of with the gep
4930    // instruction because only here we know whether the operation is
4931    // scalarized.
4932    if (VF == 1)
4933      return TTI.getAddressComputationCost(VectorTy) +
4934        TTI.getMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS);
4935
4936    // Scalarized loads/stores.
4937    int ConsecutiveStride = Legal->isConsecutivePtr(Ptr);
4938    bool Reverse = ConsecutiveStride < 0;
4939    unsigned ScalarAllocatedSize = DL->getTypeAllocSize(ValTy);
4940    unsigned VectorElementSize = DL->getTypeStoreSize(VectorTy)/VF;
4941    if (!ConsecutiveStride || ScalarAllocatedSize != VectorElementSize) {
4942      bool IsComplexComputation =
4943        isLikelyComplexAddressComputation(Ptr, Legal, SE, TheLoop);
4944      unsigned Cost = 0;
4945      // The cost of extracting from the value vector and pointer vector.
4946      Type *PtrTy = ToVectorTy(Ptr->getType(), VF);
4947      for (unsigned i = 0; i < VF; ++i) {
4948        //  The cost of extracting the pointer operand.
4949        Cost += TTI.getVectorInstrCost(Instruction::ExtractElement, PtrTy, i);
4950        // In case of STORE, the cost of ExtractElement from the vector.
4951        // In case of LOAD, the cost of InsertElement into the returned
4952        // vector.
4953        Cost += TTI.getVectorInstrCost(SI ? Instruction::ExtractElement :
4954                                            Instruction::InsertElement,
4955                                            VectorTy, i);
4956      }
4957
4958      // The cost of the scalar loads/stores.
4959      Cost += VF * TTI.getAddressComputationCost(PtrTy, IsComplexComputation);
4960      Cost += VF * TTI.getMemoryOpCost(I->getOpcode(), ValTy->getScalarType(),
4961                                       Alignment, AS);
4962      return Cost;
4963    }
4964
4965    // Wide load/stores.
4966    unsigned Cost = TTI.getAddressComputationCost(VectorTy);
4967    Cost += TTI.getMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS);
4968
4969    if (Reverse)
4970      Cost += TTI.getShuffleCost(TargetTransformInfo::SK_Reverse,
4971                                  VectorTy, 0);
4972    return Cost;
4973  }
4974  case Instruction::ZExt:
4975  case Instruction::SExt:
4976  case Instruction::FPToUI:
4977  case Instruction::FPToSI:
4978  case Instruction::FPExt:
4979  case Instruction::PtrToInt:
4980  case Instruction::IntToPtr:
4981  case Instruction::SIToFP:
4982  case Instruction::UIToFP:
4983  case Instruction::Trunc:
4984  case Instruction::FPTrunc:
4985  case Instruction::BitCast: {
4986    // We optimize the truncation of induction variable.
4987    // The cost of these is the same as the scalar operation.
4988    if (I->getOpcode() == Instruction::Trunc &&
4989        Legal->isInductionVariable(I->getOperand(0)))
4990      return TTI.getCastInstrCost(I->getOpcode(), I->getType(),
4991                                  I->getOperand(0)->getType());
4992
4993    Type *SrcVecTy = ToVectorTy(I->getOperand(0)->getType(), VF);
4994    return TTI.getCastInstrCost(I->getOpcode(), VectorTy, SrcVecTy);
4995  }
4996  case Instruction::Call: {
4997    CallInst *CI = cast<CallInst>(I);
4998    Intrinsic::ID ID = getIntrinsicIDForCall(CI, TLI);
4999    assert(ID && "Not an intrinsic call!");
5000    Type *RetTy = ToVectorTy(CI->getType(), VF);
5001    SmallVector<Type*, 4> Tys;
5002    for (unsigned i = 0, ie = CI->getNumArgOperands(); i != ie; ++i)
5003      Tys.push_back(ToVectorTy(CI->getArgOperand(i)->getType(), VF));
5004    return TTI.getIntrinsicInstrCost(ID, RetTy, Tys);
5005  }
5006  default: {
5007    // We are scalarizing the instruction. Return the cost of the scalar
5008    // instruction, plus the cost of insert and extract into vector
5009    // elements, times the vector width.
5010    unsigned Cost = 0;
5011
5012    if (!RetTy->isVoidTy() && VF != 1) {
5013      unsigned InsCost = TTI.getVectorInstrCost(Instruction::InsertElement,
5014                                                VectorTy);
5015      unsigned ExtCost = TTI.getVectorInstrCost(Instruction::ExtractElement,
5016                                                VectorTy);
5017
5018      // The cost of inserting the results plus extracting each one of the
5019      // operands.
5020      Cost += VF * (InsCost + ExtCost * I->getNumOperands());
5021    }
5022
5023    // The cost of executing VF copies of the scalar instruction. This opcode
5024    // is unknown. Assume that it is the same as 'mul'.
5025    Cost += VF * TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy);
5026    return Cost;
5027  }
5028  }// end of switch.
5029}
5030
5031Type* LoopVectorizationCostModel::ToVectorTy(Type *Scalar, unsigned VF) {
5032  if (Scalar->isVoidTy() || VF == 1)
5033    return Scalar;
5034  return VectorType::get(Scalar, VF);
5035}
5036
5037char LoopVectorize::ID = 0;
5038static const char lv_name[] = "Loop Vectorization";
5039INITIALIZE_PASS_BEGIN(LoopVectorize, LV_NAME, lv_name, false, false)
5040INITIALIZE_AG_DEPENDENCY(TargetTransformInfo)
5041INITIALIZE_PASS_DEPENDENCY(DominatorTree)
5042INITIALIZE_PASS_DEPENDENCY(ScalarEvolution)
5043INITIALIZE_PASS_DEPENDENCY(LCSSA)
5044INITIALIZE_PASS_DEPENDENCY(LoopInfo)
5045INITIALIZE_PASS_DEPENDENCY(LoopSimplify)
5046INITIALIZE_PASS_END(LoopVectorize, LV_NAME, lv_name, false, false)
5047
5048namespace llvm {
5049  Pass *createLoopVectorizePass(bool NoUnrolling) {
5050    return new LoopVectorize(NoUnrolling);
5051  }
5052}
5053
5054bool LoopVectorizationCostModel::isConsecutiveLoadOrStore(Instruction *Inst) {
5055  // Check for a store.
5056  if (StoreInst *ST = dyn_cast<StoreInst>(Inst))
5057    return Legal->isConsecutivePtr(ST->getPointerOperand()) != 0;
5058
5059  // Check for a load.
5060  if (LoadInst *LI = dyn_cast<LoadInst>(Inst))
5061    return Legal->isConsecutivePtr(LI->getPointerOperand()) != 0;
5062
5063  return false;
5064}
5065
5066
5067void InnerLoopUnroller::scalarizeInstruction(Instruction *Instr) {
5068  assert(!Instr->getType()->isAggregateType() && "Can't handle vectors");
5069  // Holds vector parameters or scalars, in case of uniform vals.
5070  SmallVector<VectorParts, 4> Params;
5071
5072  setDebugLocFromInst(Builder, Instr);
5073
5074  // Find all of the vectorized parameters.
5075  for (unsigned op = 0, e = Instr->getNumOperands(); op != e; ++op) {
5076    Value *SrcOp = Instr->getOperand(op);
5077
5078    // If we are accessing the old induction variable, use the new one.
5079    if (SrcOp == OldInduction) {
5080      Params.push_back(getVectorValue(SrcOp));
5081      continue;
5082    }
5083
5084    // Try using previously calculated values.
5085    Instruction *SrcInst = dyn_cast<Instruction>(SrcOp);
5086
5087    // If the src is an instruction that appeared earlier in the basic block
5088    // then it should already be vectorized.
5089    if (SrcInst && OrigLoop->contains(SrcInst)) {
5090      assert(WidenMap.has(SrcInst) && "Source operand is unavailable");
5091      // The parameter is a vector value from earlier.
5092      Params.push_back(WidenMap.get(SrcInst));
5093    } else {
5094      // The parameter is a scalar from outside the loop. Maybe even a constant.
5095      VectorParts Scalars;
5096      Scalars.append(UF, SrcOp);
5097      Params.push_back(Scalars);
5098    }
5099  }
5100
5101  assert(Params.size() == Instr->getNumOperands() &&
5102         "Invalid number of operands");
5103
5104  // Does this instruction return a value ?
5105  bool IsVoidRetTy = Instr->getType()->isVoidTy();
5106
5107  Value *UndefVec = IsVoidRetTy ? 0 :
5108  UndefValue::get(Instr->getType());
5109  // Create a new entry in the WidenMap and initialize it to Undef or Null.
5110  VectorParts &VecResults = WidenMap.splat(Instr, UndefVec);
5111
5112  // For each vector unroll 'part':
5113  for (unsigned Part = 0; Part < UF; ++Part) {
5114    // For each scalar that we create:
5115
5116    Instruction *Cloned = Instr->clone();
5117      if (!IsVoidRetTy)
5118        Cloned->setName(Instr->getName() + ".cloned");
5119      // Replace the operands of the cloned instructions with extracted scalars.
5120      for (unsigned op = 0, e = Instr->getNumOperands(); op != e; ++op) {
5121        Value *Op = Params[op][Part];
5122        Cloned->setOperand(op, Op);
5123      }
5124
5125      // Place the cloned scalar in the new loop.
5126      Builder.Insert(Cloned);
5127
5128      // If the original scalar returns a value we need to place it in a vector
5129      // so that future users will be able to use it.
5130      if (!IsVoidRetTy)
5131        VecResults[Part] = Cloned;
5132  }
5133}
5134
5135void
5136InnerLoopUnroller::vectorizeMemoryInstruction(Instruction *Instr,
5137                                              LoopVectorizationLegality*) {
5138  return scalarizeInstruction(Instr);
5139}
5140
5141Value *InnerLoopUnroller::reverseVector(Value *Vec) {
5142  return Vec;
5143}
5144
5145Value *InnerLoopUnroller::getBroadcastInstrs(Value *V) {
5146  return V;
5147}
5148
5149Value *InnerLoopUnroller::getConsecutiveVector(Value* Val, int StartIdx,
5150                                               bool Negate) {
5151  // When unrolling and the VF is 1, we only need to add a simple scalar.
5152  Type *ITy = Val->getType();
5153  assert(!ITy->isVectorTy() && "Val must be a scalar");
5154  Constant *C = ConstantInt::get(ITy, StartIdx, Negate);
5155  return Builder.CreateAdd(Val, C, "induction");
5156}
5157
5158