LowerInvoke.cpp revision 263508
1//===- LowerInvoke.cpp - Eliminate Invoke & Unwind instructions -----------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This transformation is designed for use by code generators which do not yet
11// support stack unwinding.  This pass supports two models of exception handling
12// lowering, the 'cheap' support and the 'expensive' support.
13//
14// 'Cheap' exception handling support gives the program the ability to execute
15// any program which does not "throw an exception", by turning 'invoke'
16// instructions into calls and by turning 'unwind' instructions into calls to
17// abort().  If the program does dynamically use the unwind instruction, the
18// program will print a message then abort.
19//
20// 'Expensive' exception handling support gives the full exception handling
21// support to the program at the cost of making the 'invoke' instruction
22// really expensive.  It basically inserts setjmp/longjmp calls to emulate the
23// exception handling as necessary.
24//
25// Because the 'expensive' support slows down programs a lot, and EH is only
26// used for a subset of the programs, it must be specifically enabled by an
27// option.
28//
29// Note that after this pass runs the CFG is not entirely accurate (exceptional
30// control flow edges are not correct anymore) so only very simple things should
31// be done after the lowerinvoke pass has run (like generation of native code).
32// This should not be used as a general purpose "my LLVM-to-LLVM pass doesn't
33// support the invoke instruction yet" lowering pass.
34//
35//===----------------------------------------------------------------------===//
36
37#define DEBUG_TYPE "lowerinvoke"
38#include "llvm/Transforms/Scalar.h"
39#include "llvm/ADT/SmallVector.h"
40#include "llvm/ADT/Statistic.h"
41#include "llvm/IR/Constants.h"
42#include "llvm/IR/DerivedTypes.h"
43#include "llvm/IR/Instructions.h"
44#include "llvm/IR/Intrinsics.h"
45#include "llvm/IR/LLVMContext.h"
46#include "llvm/IR/Module.h"
47#include "llvm/Pass.h"
48#include "llvm/Support/CommandLine.h"
49#include "llvm/Target/TargetLowering.h"
50#include "llvm/Transforms/Utils/BasicBlockUtils.h"
51#include "llvm/Transforms/Utils/Local.h"
52#include <csetjmp>
53#include <set>
54using namespace llvm;
55
56STATISTIC(NumInvokes, "Number of invokes replaced");
57STATISTIC(NumSpilled, "Number of registers live across unwind edges");
58
59static cl::opt<bool> ExpensiveEHSupport("enable-correct-eh-support",
60 cl::desc("Make the -lowerinvoke pass insert expensive, but correct, EH code"));
61
62namespace {
63  class LowerInvoke : public FunctionPass {
64    const TargetMachine *TM;
65
66    // Used for both models.
67    Constant *AbortFn;
68
69    // Used for expensive EH support.
70    StructType *JBLinkTy;
71    GlobalVariable *JBListHead;
72    Constant *SetJmpFn, *LongJmpFn, *StackSaveFn, *StackRestoreFn;
73    bool useExpensiveEHSupport;
74
75  public:
76    static char ID; // Pass identification, replacement for typeid
77    explicit LowerInvoke(const TargetMachine *TM = 0,
78                         bool useExpensiveEHSupport = ExpensiveEHSupport)
79      : FunctionPass(ID), TM(TM),
80        useExpensiveEHSupport(useExpensiveEHSupport) {
81      initializeLowerInvokePass(*PassRegistry::getPassRegistry());
82    }
83    bool doInitialization(Module &M);
84    bool runOnFunction(Function &F);
85
86    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
87      // This is a cluster of orthogonal Transforms
88      AU.addPreserved("mem2reg");
89      AU.addPreservedID(LowerSwitchID);
90    }
91
92  private:
93    bool insertCheapEHSupport(Function &F);
94    void splitLiveRangesLiveAcrossInvokes(SmallVectorImpl<InvokeInst*>&Invokes);
95    void rewriteExpensiveInvoke(InvokeInst *II, unsigned InvokeNo,
96                                AllocaInst *InvokeNum, AllocaInst *StackPtr,
97                                SwitchInst *CatchSwitch);
98    bool insertExpensiveEHSupport(Function &F);
99  };
100}
101
102char LowerInvoke::ID = 0;
103INITIALIZE_PASS(LowerInvoke, "lowerinvoke",
104                "Lower invoke and unwind, for unwindless code generators",
105                false, false)
106
107char &llvm::LowerInvokePassID = LowerInvoke::ID;
108
109// Public Interface To the LowerInvoke pass.
110FunctionPass *llvm::createLowerInvokePass(const TargetMachine *TM,
111                                          bool useExpensiveEHSupport) {
112  return new LowerInvoke(TM, useExpensiveEHSupport || ExpensiveEHSupport);
113}
114
115// doInitialization - Make sure that there is a prototype for abort in the
116// current module.
117bool LowerInvoke::doInitialization(Module &M) {
118  Type *VoidPtrTy = Type::getInt8PtrTy(M.getContext());
119  if (useExpensiveEHSupport) {
120    // Insert a type for the linked list of jump buffers.
121    const TargetLowering *TLI = TM ? TM->getTargetLowering() : 0;
122    unsigned JBSize = TLI ? TLI->getJumpBufSize() : 0;
123    JBSize = JBSize ? JBSize : 200;
124    Type *JmpBufTy = ArrayType::get(VoidPtrTy, JBSize);
125
126    JBLinkTy = StructType::create(M.getContext(), "llvm.sjljeh.jmpbufty");
127    Type *Elts[] = { JmpBufTy, PointerType::getUnqual(JBLinkTy) };
128    JBLinkTy->setBody(Elts);
129
130    Type *PtrJBList = PointerType::getUnqual(JBLinkTy);
131
132    // Now that we've done that, insert the jmpbuf list head global, unless it
133    // already exists.
134    if (!(JBListHead = M.getGlobalVariable("llvm.sjljeh.jblist", PtrJBList))) {
135      JBListHead = new GlobalVariable(M, PtrJBList, false,
136                                      GlobalValue::LinkOnceAnyLinkage,
137                                      Constant::getNullValue(PtrJBList),
138                                      "llvm.sjljeh.jblist");
139    }
140
141// VisualStudio defines setjmp as _setjmp
142#if defined(_MSC_VER) && defined(setjmp) && \
143                         !defined(setjmp_undefined_for_msvc)
144#  pragma push_macro("setjmp")
145#  undef setjmp
146#  define setjmp_undefined_for_msvc
147#endif
148
149    SetJmpFn = Intrinsic::getDeclaration(&M, Intrinsic::setjmp);
150
151#if defined(_MSC_VER) && defined(setjmp_undefined_for_msvc)
152   // let's return it to _setjmp state
153#  pragma pop_macro("setjmp")
154#  undef setjmp_undefined_for_msvc
155#endif
156
157    LongJmpFn = Intrinsic::getDeclaration(&M, Intrinsic::longjmp);
158    StackSaveFn = Intrinsic::getDeclaration(&M, Intrinsic::stacksave);
159    StackRestoreFn = Intrinsic::getDeclaration(&M, Intrinsic::stackrestore);
160  }
161
162  // We need the 'write' and 'abort' functions for both models.
163  AbortFn = M.getOrInsertFunction("abort", Type::getVoidTy(M.getContext()),
164                                  (Type *)0);
165  return true;
166}
167
168bool LowerInvoke::insertCheapEHSupport(Function &F) {
169  bool Changed = false;
170  for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
171    if (InvokeInst *II = dyn_cast<InvokeInst>(BB->getTerminator())) {
172      SmallVector<Value*,16> CallArgs(II->op_begin(), II->op_end() - 3);
173      // Insert a normal call instruction...
174      CallInst *NewCall = CallInst::Create(II->getCalledValue(),
175                                           CallArgs, "", II);
176      NewCall->takeName(II);
177      NewCall->setCallingConv(II->getCallingConv());
178      NewCall->setAttributes(II->getAttributes());
179      NewCall->setDebugLoc(II->getDebugLoc());
180      II->replaceAllUsesWith(NewCall);
181
182      // Insert an unconditional branch to the normal destination.
183      BranchInst::Create(II->getNormalDest(), II);
184
185      // Remove any PHI node entries from the exception destination.
186      II->getUnwindDest()->removePredecessor(BB);
187
188      // Remove the invoke instruction now.
189      BB->getInstList().erase(II);
190
191      ++NumInvokes; Changed = true;
192    }
193  return Changed;
194}
195
196/// rewriteExpensiveInvoke - Insert code and hack the function to replace the
197/// specified invoke instruction with a call.
198void LowerInvoke::rewriteExpensiveInvoke(InvokeInst *II, unsigned InvokeNo,
199                                         AllocaInst *InvokeNum,
200                                         AllocaInst *StackPtr,
201                                         SwitchInst *CatchSwitch) {
202  ConstantInt *InvokeNoC = ConstantInt::get(Type::getInt32Ty(II->getContext()),
203                                            InvokeNo);
204
205  // If the unwind edge has phi nodes, split the edge.
206  if (isa<PHINode>(II->getUnwindDest()->begin())) {
207    SplitCriticalEdge(II, 1, this);
208
209    // If there are any phi nodes left, they must have a single predecessor.
210    while (PHINode *PN = dyn_cast<PHINode>(II->getUnwindDest()->begin())) {
211      PN->replaceAllUsesWith(PN->getIncomingValue(0));
212      PN->eraseFromParent();
213    }
214  }
215
216  // Insert a store of the invoke num before the invoke and store zero into the
217  // location afterward.
218  new StoreInst(InvokeNoC, InvokeNum, true, II);  // volatile
219
220  // Insert a store of the stack ptr before the invoke, so we can restore it
221  // later in the exception case.
222  CallInst* StackSaveRet = CallInst::Create(StackSaveFn, "ssret", II);
223  new StoreInst(StackSaveRet, StackPtr, true, II); // volatile
224
225  BasicBlock::iterator NI = II->getNormalDest()->getFirstInsertionPt();
226  // nonvolatile.
227  new StoreInst(Constant::getNullValue(Type::getInt32Ty(II->getContext())),
228                InvokeNum, false, NI);
229
230  Instruction* StackPtrLoad =
231    new LoadInst(StackPtr, "stackptr.restore", true,
232                 II->getUnwindDest()->getFirstInsertionPt());
233  CallInst::Create(StackRestoreFn, StackPtrLoad, "")->insertAfter(StackPtrLoad);
234
235  // Add a switch case to our unwind block.
236  CatchSwitch->addCase(InvokeNoC, II->getUnwindDest());
237
238  // Insert a normal call instruction.
239  SmallVector<Value*,16> CallArgs(II->op_begin(), II->op_end() - 3);
240  CallInst *NewCall = CallInst::Create(II->getCalledValue(),
241                                       CallArgs, "", II);
242  NewCall->takeName(II);
243  NewCall->setCallingConv(II->getCallingConv());
244  NewCall->setAttributes(II->getAttributes());
245  NewCall->setDebugLoc(II->getDebugLoc());
246  II->replaceAllUsesWith(NewCall);
247
248  // Replace the invoke with an uncond branch.
249  BranchInst::Create(II->getNormalDest(), NewCall->getParent());
250  II->eraseFromParent();
251}
252
253/// MarkBlocksLiveIn - Insert BB and all of its predescessors into LiveBBs until
254/// we reach blocks we've already seen.
255static void MarkBlocksLiveIn(BasicBlock *BB, std::set<BasicBlock*> &LiveBBs) {
256  if (!LiveBBs.insert(BB).second) return; // already been here.
257
258  for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI)
259    MarkBlocksLiveIn(*PI, LiveBBs);
260}
261
262// First thing we need to do is scan the whole function for values that are
263// live across unwind edges.  Each value that is live across an unwind edge
264// we spill into a stack location, guaranteeing that there is nothing live
265// across the unwind edge.  This process also splits all critical edges
266// coming out of invoke's.
267void LowerInvoke::
268splitLiveRangesLiveAcrossInvokes(SmallVectorImpl<InvokeInst*> &Invokes) {
269  // First step, split all critical edges from invoke instructions.
270  for (unsigned i = 0, e = Invokes.size(); i != e; ++i) {
271    InvokeInst *II = Invokes[i];
272    SplitCriticalEdge(II, 0, this);
273    SplitCriticalEdge(II, 1, this);
274    assert(!isa<PHINode>(II->getNormalDest()) &&
275           !isa<PHINode>(II->getUnwindDest()) &&
276           "critical edge splitting left single entry phi nodes?");
277  }
278
279  Function *F = Invokes.back()->getParent()->getParent();
280
281  // To avoid having to handle incoming arguments specially, we lower each arg
282  // to a copy instruction in the entry block.  This ensures that the argument
283  // value itself cannot be live across the entry block.
284  BasicBlock::iterator AfterAllocaInsertPt = F->begin()->begin();
285  while (isa<AllocaInst>(AfterAllocaInsertPt) &&
286        isa<ConstantInt>(cast<AllocaInst>(AfterAllocaInsertPt)->getArraySize()))
287    ++AfterAllocaInsertPt;
288  for (Function::arg_iterator AI = F->arg_begin(), E = F->arg_end();
289       AI != E; ++AI) {
290    Type *Ty = AI->getType();
291    // Aggregate types can't be cast, but are legal argument types, so we have
292    // to handle them differently. We use an extract/insert pair as a
293    // lightweight method to achieve the same goal.
294    if (isa<StructType>(Ty) || isa<ArrayType>(Ty) || isa<VectorType>(Ty)) {
295      Instruction *EI = ExtractValueInst::Create(AI, 0, "",AfterAllocaInsertPt);
296      Instruction *NI = InsertValueInst::Create(AI, EI, 0);
297      NI->insertAfter(EI);
298      AI->replaceAllUsesWith(NI);
299      // Set the operand of the instructions back to the AllocaInst.
300      EI->setOperand(0, AI);
301      NI->setOperand(0, AI);
302    } else {
303      // This is always a no-op cast because we're casting AI to AI->getType()
304      // so src and destination types are identical. BitCast is the only
305      // possibility.
306      CastInst *NC = new BitCastInst(
307        AI, AI->getType(), AI->getName()+".tmp", AfterAllocaInsertPt);
308      AI->replaceAllUsesWith(NC);
309      // Set the operand of the cast instruction back to the AllocaInst.
310      // Normally it's forbidden to replace a CastInst's operand because it
311      // could cause the opcode to reflect an illegal conversion. However,
312      // we're replacing it here with the same value it was constructed with.
313      // We do this because the above replaceAllUsesWith() clobbered the
314      // operand, but we want this one to remain.
315      NC->setOperand(0, AI);
316    }
317  }
318
319  // Finally, scan the code looking for instructions with bad live ranges.
320  for (Function::iterator BB = F->begin(), E = F->end(); BB != E; ++BB)
321    for (BasicBlock::iterator II = BB->begin(), E = BB->end(); II != E; ++II) {
322      // Ignore obvious cases we don't have to handle.  In particular, most
323      // instructions either have no uses or only have a single use inside the
324      // current block.  Ignore them quickly.
325      Instruction *Inst = II;
326      if (Inst->use_empty()) continue;
327      if (Inst->hasOneUse() &&
328          cast<Instruction>(Inst->use_back())->getParent() == BB &&
329          !isa<PHINode>(Inst->use_back())) continue;
330
331      // If this is an alloca in the entry block, it's not a real register
332      // value.
333      if (AllocaInst *AI = dyn_cast<AllocaInst>(Inst))
334        if (isa<ConstantInt>(AI->getArraySize()) && BB == F->begin())
335          continue;
336
337      // Avoid iterator invalidation by copying users to a temporary vector.
338      SmallVector<Instruction*,16> Users;
339      for (Value::use_iterator UI = Inst->use_begin(), E = Inst->use_end();
340           UI != E; ++UI) {
341        Instruction *User = cast<Instruction>(*UI);
342        if (User->getParent() != BB || isa<PHINode>(User))
343          Users.push_back(User);
344      }
345
346      // Scan all of the uses and see if the live range is live across an unwind
347      // edge.  If we find a use live across an invoke edge, create an alloca
348      // and spill the value.
349
350      // Find all of the blocks that this value is live in.
351      std::set<BasicBlock*> LiveBBs;
352      LiveBBs.insert(Inst->getParent());
353      while (!Users.empty()) {
354        Instruction *U = Users.back();
355        Users.pop_back();
356
357        if (!isa<PHINode>(U)) {
358          MarkBlocksLiveIn(U->getParent(), LiveBBs);
359        } else {
360          // Uses for a PHI node occur in their predecessor block.
361          PHINode *PN = cast<PHINode>(U);
362          for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
363            if (PN->getIncomingValue(i) == Inst)
364              MarkBlocksLiveIn(PN->getIncomingBlock(i), LiveBBs);
365        }
366      }
367
368      // Now that we know all of the blocks that this thing is live in, see if
369      // it includes any of the unwind locations.
370      bool NeedsSpill = false;
371      for (unsigned i = 0, e = Invokes.size(); i != e; ++i) {
372        BasicBlock *UnwindBlock = Invokes[i]->getUnwindDest();
373        if (UnwindBlock != BB && LiveBBs.count(UnwindBlock)) {
374          NeedsSpill = true;
375        }
376      }
377
378      // If we decided we need a spill, do it.
379      if (NeedsSpill) {
380        ++NumSpilled;
381        DemoteRegToStack(*Inst, true);
382      }
383    }
384}
385
386bool LowerInvoke::insertExpensiveEHSupport(Function &F) {
387  SmallVector<ReturnInst*,16> Returns;
388  SmallVector<InvokeInst*,16> Invokes;
389  UnreachableInst* UnreachablePlaceholder = 0;
390
391  for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
392    if (ReturnInst *RI = dyn_cast<ReturnInst>(BB->getTerminator())) {
393      // Remember all return instructions in case we insert an invoke into this
394      // function.
395      Returns.push_back(RI);
396    } else if (InvokeInst *II = dyn_cast<InvokeInst>(BB->getTerminator())) {
397      Invokes.push_back(II);
398    }
399
400  if (Invokes.empty()) return false;
401
402  NumInvokes += Invokes.size();
403
404  // TODO: This is not an optimal way to do this.  In particular, this always
405  // inserts setjmp calls into the entries of functions with invoke instructions
406  // even though there are possibly paths through the function that do not
407  // execute any invokes.  In particular, for functions with early exits, e.g.
408  // the 'addMove' method in hexxagon, it would be nice to not have to do the
409  // setjmp stuff on the early exit path.  This requires a bit of dataflow, but
410  // would not be too hard to do.
411
412  // If we have an invoke instruction, insert a setjmp that dominates all
413  // invokes.  After the setjmp, use a cond branch that goes to the original
414  // code path on zero, and to a designated 'catch' block of nonzero.
415  Value *OldJmpBufPtr = 0;
416  if (!Invokes.empty()) {
417    // First thing we need to do is scan the whole function for values that are
418    // live across unwind edges.  Each value that is live across an unwind edge
419    // we spill into a stack location, guaranteeing that there is nothing live
420    // across the unwind edge.  This process also splits all critical edges
421    // coming out of invoke's.
422    splitLiveRangesLiveAcrossInvokes(Invokes);
423
424    BasicBlock *EntryBB = F.begin();
425
426    // Create an alloca for the incoming jump buffer ptr and the new jump buffer
427    // that needs to be restored on all exits from the function.  This is an
428    // alloca because the value needs to be live across invokes.
429    const TargetLowering *TLI = TM ? TM->getTargetLowering() : 0;
430    unsigned Align = TLI ? TLI->getJumpBufAlignment() : 0;
431    AllocaInst *JmpBuf =
432      new AllocaInst(JBLinkTy, 0, Align,
433                     "jblink", F.begin()->begin());
434
435    Value *Idx[] = { Constant::getNullValue(Type::getInt32Ty(F.getContext())),
436                     ConstantInt::get(Type::getInt32Ty(F.getContext()), 1) };
437    OldJmpBufPtr = GetElementPtrInst::Create(JmpBuf, Idx, "OldBuf",
438                                             EntryBB->getTerminator());
439
440    // Copy the JBListHead to the alloca.
441    Value *OldBuf = new LoadInst(JBListHead, "oldjmpbufptr", true,
442                                 EntryBB->getTerminator());
443    new StoreInst(OldBuf, OldJmpBufPtr, true, EntryBB->getTerminator());
444
445    // Add the new jumpbuf to the list.
446    new StoreInst(JmpBuf, JBListHead, true, EntryBB->getTerminator());
447
448    // Create the catch block.  The catch block is basically a big switch
449    // statement that goes to all of the invoke catch blocks.
450    BasicBlock *CatchBB =
451            BasicBlock::Create(F.getContext(), "setjmp.catch", &F);
452
453    // Create an alloca which keeps track of the stack pointer before every
454    // invoke, this allows us to properly restore the stack pointer after
455    // long jumping.
456    AllocaInst *StackPtr = new AllocaInst(Type::getInt8PtrTy(F.getContext()), 0,
457                                          "stackptr", EntryBB->begin());
458
459    // Create an alloca which keeps track of which invoke is currently
460    // executing.  For normal calls it contains zero.
461    AllocaInst *InvokeNum = new AllocaInst(Type::getInt32Ty(F.getContext()), 0,
462                                           "invokenum",EntryBB->begin());
463    new StoreInst(ConstantInt::get(Type::getInt32Ty(F.getContext()), 0),
464                  InvokeNum, true, EntryBB->getTerminator());
465
466    // Insert a load in the Catch block, and a switch on its value.  By default,
467    // we go to a block that just does an unwind (which is the correct action
468    // for a standard call). We insert an unreachable instruction here and
469    // modify the block to jump to the correct unwinding pad later.
470    BasicBlock *UnwindBB = BasicBlock::Create(F.getContext(), "unwindbb", &F);
471    UnreachablePlaceholder = new UnreachableInst(F.getContext(), UnwindBB);
472
473    Value *CatchLoad = new LoadInst(InvokeNum, "invoke.num", true, CatchBB);
474    SwitchInst *CatchSwitch =
475      SwitchInst::Create(CatchLoad, UnwindBB, Invokes.size(), CatchBB);
476
477    // Now that things are set up, insert the setjmp call itself.
478
479    // Split the entry block to insert the conditional branch for the setjmp.
480    BasicBlock *ContBlock = EntryBB->splitBasicBlock(EntryBB->getTerminator(),
481                                                     "setjmp.cont");
482
483    Idx[1] = ConstantInt::get(Type::getInt32Ty(F.getContext()), 0);
484    Value *JmpBufPtr = GetElementPtrInst::Create(JmpBuf, Idx, "TheJmpBuf",
485                                                 EntryBB->getTerminator());
486    JmpBufPtr = new BitCastInst(JmpBufPtr,
487                        Type::getInt8PtrTy(F.getContext()),
488                                "tmp", EntryBB->getTerminator());
489    Value *SJRet = CallInst::Create(SetJmpFn, JmpBufPtr, "sjret",
490                                    EntryBB->getTerminator());
491
492    // Compare the return value to zero.
493    Value *IsNormal = new ICmpInst(EntryBB->getTerminator(),
494                                   ICmpInst::ICMP_EQ, SJRet,
495                                   Constant::getNullValue(SJRet->getType()),
496                                   "notunwind");
497    // Nuke the uncond branch.
498    EntryBB->getTerminator()->eraseFromParent();
499
500    // Put in a new condbranch in its place.
501    BranchInst::Create(ContBlock, CatchBB, IsNormal, EntryBB);
502
503    // At this point, we are all set up, rewrite each invoke instruction.
504    for (unsigned i = 0, e = Invokes.size(); i != e; ++i)
505      rewriteExpensiveInvoke(Invokes[i], i+1, InvokeNum, StackPtr, CatchSwitch);
506  }
507
508  // We know that there is at least one unwind.
509
510  // Create three new blocks, the block to load the jmpbuf ptr and compare
511  // against null, the block to do the longjmp, and the error block for if it
512  // is null.  Add them at the end of the function because they are not hot.
513  BasicBlock *UnwindHandler = BasicBlock::Create(F.getContext(),
514                                                "dounwind", &F);
515  BasicBlock *UnwindBlock = BasicBlock::Create(F.getContext(), "unwind", &F);
516  BasicBlock *TermBlock = BasicBlock::Create(F.getContext(), "unwinderror", &F);
517
518  // If this function contains an invoke, restore the old jumpbuf ptr.
519  Value *BufPtr;
520  if (OldJmpBufPtr) {
521    // Before the return, insert a copy from the saved value to the new value.
522    BufPtr = new LoadInst(OldJmpBufPtr, "oldjmpbufptr", UnwindHandler);
523    new StoreInst(BufPtr, JBListHead, UnwindHandler);
524  } else {
525    BufPtr = new LoadInst(JBListHead, "ehlist", UnwindHandler);
526  }
527
528  // Load the JBList, if it's null, then there was no catch!
529  Value *NotNull = new ICmpInst(*UnwindHandler, ICmpInst::ICMP_NE, BufPtr,
530                                Constant::getNullValue(BufPtr->getType()),
531                                "notnull");
532  BranchInst::Create(UnwindBlock, TermBlock, NotNull, UnwindHandler);
533
534  // Create the block to do the longjmp.
535  // Get a pointer to the jmpbuf and longjmp.
536  Value *Idx[] = { Constant::getNullValue(Type::getInt32Ty(F.getContext())),
537                   ConstantInt::get(Type::getInt32Ty(F.getContext()), 0) };
538  Idx[0] = GetElementPtrInst::Create(BufPtr, Idx, "JmpBuf", UnwindBlock);
539  Idx[0] = new BitCastInst(Idx[0],
540             Type::getInt8PtrTy(F.getContext()),
541                           "tmp", UnwindBlock);
542  Idx[1] = ConstantInt::get(Type::getInt32Ty(F.getContext()), 1);
543  CallInst::Create(LongJmpFn, Idx, "", UnwindBlock);
544  new UnreachableInst(F.getContext(), UnwindBlock);
545
546  // Set up the term block ("throw without a catch").
547  new UnreachableInst(F.getContext(), TermBlock);
548
549  // Insert a call to abort()
550  CallInst::Create(AbortFn, "",
551                   TermBlock->getTerminator())->setTailCall();
552
553  // Replace the inserted unreachable with a branch to the unwind handler.
554  if (UnreachablePlaceholder) {
555    BranchInst::Create(UnwindHandler, UnreachablePlaceholder);
556    UnreachablePlaceholder->eraseFromParent();
557  }
558
559  // Finally, for any returns from this function, if this function contains an
560  // invoke, restore the old jmpbuf pointer to its input value.
561  if (OldJmpBufPtr) {
562    for (unsigned i = 0, e = Returns.size(); i != e; ++i) {
563      ReturnInst *R = Returns[i];
564
565      // Before the return, insert a copy from the saved value to the new value.
566      Value *OldBuf = new LoadInst(OldJmpBufPtr, "oldjmpbufptr", true, R);
567      new StoreInst(OldBuf, JBListHead, true, R);
568    }
569  }
570
571  return true;
572}
573
574bool LowerInvoke::runOnFunction(Function &F) {
575  if (useExpensiveEHSupport)
576    return insertExpensiveEHSupport(F);
577  else
578    return insertCheapEHSupport(F);
579}
580