InlineFunction.cpp revision 263508
1//===- InlineFunction.cpp - Code to perform function inlining -------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements inlining of a function into a call site, resolving
11// parameters and the return value as appropriate.
12//
13//===----------------------------------------------------------------------===//
14
15#include "llvm/Transforms/Utils/Cloning.h"
16#include "llvm/ADT/SmallVector.h"
17#include "llvm/ADT/StringExtras.h"
18#include "llvm/Analysis/CallGraph.h"
19#include "llvm/Analysis/InstructionSimplify.h"
20#include "llvm/DebugInfo.h"
21#include "llvm/IR/Attributes.h"
22#include "llvm/IR/Constants.h"
23#include "llvm/IR/DataLayout.h"
24#include "llvm/IR/DerivedTypes.h"
25#include "llvm/IR/IRBuilder.h"
26#include "llvm/IR/Instructions.h"
27#include "llvm/IR/IntrinsicInst.h"
28#include "llvm/IR/Intrinsics.h"
29#include "llvm/IR/Module.h"
30#include "llvm/Support/CallSite.h"
31#include "llvm/Transforms/Utils/Local.h"
32using namespace llvm;
33
34bool llvm::InlineFunction(CallInst *CI, InlineFunctionInfo &IFI,
35                          bool InsertLifetime) {
36  return InlineFunction(CallSite(CI), IFI, InsertLifetime);
37}
38bool llvm::InlineFunction(InvokeInst *II, InlineFunctionInfo &IFI,
39                          bool InsertLifetime) {
40  return InlineFunction(CallSite(II), IFI, InsertLifetime);
41}
42
43namespace {
44  /// A class for recording information about inlining through an invoke.
45  class InvokeInliningInfo {
46    BasicBlock *OuterResumeDest; ///< Destination of the invoke's unwind.
47    BasicBlock *InnerResumeDest; ///< Destination for the callee's resume.
48    LandingPadInst *CallerLPad;  ///< LandingPadInst associated with the invoke.
49    PHINode *InnerEHValuesPHI;   ///< PHI for EH values from landingpad insts.
50    SmallVector<Value*, 8> UnwindDestPHIValues;
51
52  public:
53    InvokeInliningInfo(InvokeInst *II)
54      : OuterResumeDest(II->getUnwindDest()), InnerResumeDest(0),
55        CallerLPad(0), InnerEHValuesPHI(0) {
56      // If there are PHI nodes in the unwind destination block, we need to keep
57      // track of which values came into them from the invoke before removing
58      // the edge from this block.
59      llvm::BasicBlock *InvokeBB = II->getParent();
60      BasicBlock::iterator I = OuterResumeDest->begin();
61      for (; isa<PHINode>(I); ++I) {
62        // Save the value to use for this edge.
63        PHINode *PHI = cast<PHINode>(I);
64        UnwindDestPHIValues.push_back(PHI->getIncomingValueForBlock(InvokeBB));
65      }
66
67      CallerLPad = cast<LandingPadInst>(I);
68    }
69
70    /// getOuterResumeDest - The outer unwind destination is the target of
71    /// unwind edges introduced for calls within the inlined function.
72    BasicBlock *getOuterResumeDest() const {
73      return OuterResumeDest;
74    }
75
76    BasicBlock *getInnerResumeDest();
77
78    LandingPadInst *getLandingPadInst() const { return CallerLPad; }
79
80    /// forwardResume - Forward the 'resume' instruction to the caller's landing
81    /// pad block. When the landing pad block has only one predecessor, this is
82    /// a simple branch. When there is more than one predecessor, we need to
83    /// split the landing pad block after the landingpad instruction and jump
84    /// to there.
85    void forwardResume(ResumeInst *RI,
86                       SmallPtrSet<LandingPadInst*, 16> &InlinedLPads);
87
88    /// addIncomingPHIValuesFor - Add incoming-PHI values to the unwind
89    /// destination block for the given basic block, using the values for the
90    /// original invoke's source block.
91    void addIncomingPHIValuesFor(BasicBlock *BB) const {
92      addIncomingPHIValuesForInto(BB, OuterResumeDest);
93    }
94
95    void addIncomingPHIValuesForInto(BasicBlock *src, BasicBlock *dest) const {
96      BasicBlock::iterator I = dest->begin();
97      for (unsigned i = 0, e = UnwindDestPHIValues.size(); i != e; ++i, ++I) {
98        PHINode *phi = cast<PHINode>(I);
99        phi->addIncoming(UnwindDestPHIValues[i], src);
100      }
101    }
102  };
103}
104
105/// getInnerResumeDest - Get or create a target for the branch from ResumeInsts.
106BasicBlock *InvokeInliningInfo::getInnerResumeDest() {
107  if (InnerResumeDest) return InnerResumeDest;
108
109  // Split the landing pad.
110  BasicBlock::iterator SplitPoint = CallerLPad; ++SplitPoint;
111  InnerResumeDest =
112    OuterResumeDest->splitBasicBlock(SplitPoint,
113                                     OuterResumeDest->getName() + ".body");
114
115  // The number of incoming edges we expect to the inner landing pad.
116  const unsigned PHICapacity = 2;
117
118  // Create corresponding new PHIs for all the PHIs in the outer landing pad.
119  BasicBlock::iterator InsertPoint = InnerResumeDest->begin();
120  BasicBlock::iterator I = OuterResumeDest->begin();
121  for (unsigned i = 0, e = UnwindDestPHIValues.size(); i != e; ++i, ++I) {
122    PHINode *OuterPHI = cast<PHINode>(I);
123    PHINode *InnerPHI = PHINode::Create(OuterPHI->getType(), PHICapacity,
124                                        OuterPHI->getName() + ".lpad-body",
125                                        InsertPoint);
126    OuterPHI->replaceAllUsesWith(InnerPHI);
127    InnerPHI->addIncoming(OuterPHI, OuterResumeDest);
128  }
129
130  // Create a PHI for the exception values.
131  InnerEHValuesPHI = PHINode::Create(CallerLPad->getType(), PHICapacity,
132                                     "eh.lpad-body", InsertPoint);
133  CallerLPad->replaceAllUsesWith(InnerEHValuesPHI);
134  InnerEHValuesPHI->addIncoming(CallerLPad, OuterResumeDest);
135
136  // All done.
137  return InnerResumeDest;
138}
139
140/// forwardResume - Forward the 'resume' instruction to the caller's landing pad
141/// block. When the landing pad block has only one predecessor, this is a simple
142/// branch. When there is more than one predecessor, we need to split the
143/// landing pad block after the landingpad instruction and jump to there.
144void InvokeInliningInfo::forwardResume(ResumeInst *RI,
145                               SmallPtrSet<LandingPadInst*, 16> &InlinedLPads) {
146  BasicBlock *Dest = getInnerResumeDest();
147  LandingPadInst *OuterLPad = getLandingPadInst();
148  BasicBlock *Src = RI->getParent();
149
150  BranchInst::Create(Dest, Src);
151
152  // Update the PHIs in the destination. They were inserted in an order which
153  // makes this work.
154  addIncomingPHIValuesForInto(Src, Dest);
155
156  InnerEHValuesPHI->addIncoming(RI->getOperand(0), Src);
157  RI->eraseFromParent();
158
159  // Append the clauses from the outer landing pad instruction into the inlined
160  // landing pad instructions.
161  for (SmallPtrSet<LandingPadInst*, 16>::iterator I = InlinedLPads.begin(),
162         E = InlinedLPads.end(); I != E; ++I) {
163    LandingPadInst *InlinedLPad = *I;
164    for (unsigned OuterIdx = 0, OuterNum = OuterLPad->getNumClauses();
165         OuterIdx != OuterNum; ++OuterIdx)
166      InlinedLPad->addClause(OuterLPad->getClause(OuterIdx));
167  }
168}
169
170/// HandleCallsInBlockInlinedThroughInvoke - When we inline a basic block into
171/// an invoke, we have to turn all of the calls that can throw into
172/// invokes.  This function analyze BB to see if there are any calls, and if so,
173/// it rewrites them to be invokes that jump to InvokeDest and fills in the PHI
174/// nodes in that block with the values specified in InvokeDestPHIValues.
175///
176/// Returns true to indicate that the next block should be skipped.
177static bool HandleCallsInBlockInlinedThroughInvoke(BasicBlock *BB,
178                                                   InvokeInliningInfo &Invoke) {
179  LandingPadInst *LPI = Invoke.getLandingPadInst();
180
181  for (BasicBlock::iterator BBI = BB->begin(), E = BB->end(); BBI != E; ) {
182    Instruction *I = BBI++;
183
184    if (LandingPadInst *L = dyn_cast<LandingPadInst>(I)) {
185      unsigned NumClauses = LPI->getNumClauses();
186      L->reserveClauses(NumClauses);
187      for (unsigned i = 0; i != NumClauses; ++i)
188        L->addClause(LPI->getClause(i));
189    }
190
191    // We only need to check for function calls: inlined invoke
192    // instructions require no special handling.
193    CallInst *CI = dyn_cast<CallInst>(I);
194
195    // If this call cannot unwind, don't convert it to an invoke.
196    // Inline asm calls cannot throw.
197    if (!CI || CI->doesNotThrow() || isa<InlineAsm>(CI->getCalledValue()))
198      continue;
199
200    // Convert this function call into an invoke instruction.  First, split the
201    // basic block.
202    BasicBlock *Split = BB->splitBasicBlock(CI, CI->getName()+".noexc");
203
204    // Delete the unconditional branch inserted by splitBasicBlock
205    BB->getInstList().pop_back();
206
207    // Create the new invoke instruction.
208    ImmutableCallSite CS(CI);
209    SmallVector<Value*, 8> InvokeArgs(CS.arg_begin(), CS.arg_end());
210    InvokeInst *II = InvokeInst::Create(CI->getCalledValue(), Split,
211                                        Invoke.getOuterResumeDest(),
212                                        InvokeArgs, CI->getName(), BB);
213    II->setCallingConv(CI->getCallingConv());
214    II->setAttributes(CI->getAttributes());
215
216    // Make sure that anything using the call now uses the invoke!  This also
217    // updates the CallGraph if present, because it uses a WeakVH.
218    CI->replaceAllUsesWith(II);
219
220    // Delete the original call
221    Split->getInstList().pop_front();
222
223    // Update any PHI nodes in the exceptional block to indicate that there is
224    // now a new entry in them.
225    Invoke.addIncomingPHIValuesFor(BB);
226    return false;
227  }
228
229  return false;
230}
231
232/// HandleInlinedInvoke - If we inlined an invoke site, we need to convert calls
233/// in the body of the inlined function into invokes.
234///
235/// II is the invoke instruction being inlined.  FirstNewBlock is the first
236/// block of the inlined code (the last block is the end of the function),
237/// and InlineCodeInfo is information about the code that got inlined.
238static void HandleInlinedInvoke(InvokeInst *II, BasicBlock *FirstNewBlock,
239                                ClonedCodeInfo &InlinedCodeInfo) {
240  BasicBlock *InvokeDest = II->getUnwindDest();
241
242  Function *Caller = FirstNewBlock->getParent();
243
244  // The inlined code is currently at the end of the function, scan from the
245  // start of the inlined code to its end, checking for stuff we need to
246  // rewrite.
247  InvokeInliningInfo Invoke(II);
248
249  // Get all of the inlined landing pad instructions.
250  SmallPtrSet<LandingPadInst*, 16> InlinedLPads;
251  for (Function::iterator I = FirstNewBlock, E = Caller->end(); I != E; ++I)
252    if (InvokeInst *II = dyn_cast<InvokeInst>(I->getTerminator()))
253      InlinedLPads.insert(II->getLandingPadInst());
254
255  for (Function::iterator BB = FirstNewBlock, E = Caller->end(); BB != E; ++BB){
256    if (InlinedCodeInfo.ContainsCalls)
257      if (HandleCallsInBlockInlinedThroughInvoke(BB, Invoke)) {
258        // Honor a request to skip the next block.
259        ++BB;
260        continue;
261      }
262
263    // Forward any resumes that are remaining here.
264    if (ResumeInst *RI = dyn_cast<ResumeInst>(BB->getTerminator()))
265      Invoke.forwardResume(RI, InlinedLPads);
266  }
267
268  // Now that everything is happy, we have one final detail.  The PHI nodes in
269  // the exception destination block still have entries due to the original
270  // invoke instruction. Eliminate these entries (which might even delete the
271  // PHI node) now.
272  InvokeDest->removePredecessor(II->getParent());
273}
274
275/// UpdateCallGraphAfterInlining - Once we have cloned code over from a callee
276/// into the caller, update the specified callgraph to reflect the changes we
277/// made.  Note that it's possible that not all code was copied over, so only
278/// some edges of the callgraph may remain.
279static void UpdateCallGraphAfterInlining(CallSite CS,
280                                         Function::iterator FirstNewBlock,
281                                         ValueToValueMapTy &VMap,
282                                         InlineFunctionInfo &IFI) {
283  CallGraph &CG = *IFI.CG;
284  const Function *Caller = CS.getInstruction()->getParent()->getParent();
285  const Function *Callee = CS.getCalledFunction();
286  CallGraphNode *CalleeNode = CG[Callee];
287  CallGraphNode *CallerNode = CG[Caller];
288
289  // Since we inlined some uninlined call sites in the callee into the caller,
290  // add edges from the caller to all of the callees of the callee.
291  CallGraphNode::iterator I = CalleeNode->begin(), E = CalleeNode->end();
292
293  // Consider the case where CalleeNode == CallerNode.
294  CallGraphNode::CalledFunctionsVector CallCache;
295  if (CalleeNode == CallerNode) {
296    CallCache.assign(I, E);
297    I = CallCache.begin();
298    E = CallCache.end();
299  }
300
301  for (; I != E; ++I) {
302    const Value *OrigCall = I->first;
303
304    ValueToValueMapTy::iterator VMI = VMap.find(OrigCall);
305    // Only copy the edge if the call was inlined!
306    if (VMI == VMap.end() || VMI->second == 0)
307      continue;
308
309    // If the call was inlined, but then constant folded, there is no edge to
310    // add.  Check for this case.
311    Instruction *NewCall = dyn_cast<Instruction>(VMI->second);
312    if (NewCall == 0) continue;
313
314    // Remember that this call site got inlined for the client of
315    // InlineFunction.
316    IFI.InlinedCalls.push_back(NewCall);
317
318    // It's possible that inlining the callsite will cause it to go from an
319    // indirect to a direct call by resolving a function pointer.  If this
320    // happens, set the callee of the new call site to a more precise
321    // destination.  This can also happen if the call graph node of the caller
322    // was just unnecessarily imprecise.
323    if (I->second->getFunction() == 0)
324      if (Function *F = CallSite(NewCall).getCalledFunction()) {
325        // Indirect call site resolved to direct call.
326        CallerNode->addCalledFunction(CallSite(NewCall), CG[F]);
327
328        continue;
329      }
330
331    CallerNode->addCalledFunction(CallSite(NewCall), I->second);
332  }
333
334  // Update the call graph by deleting the edge from Callee to Caller.  We must
335  // do this after the loop above in case Caller and Callee are the same.
336  CallerNode->removeCallEdgeFor(CS);
337}
338
339/// HandleByValArgument - When inlining a call site that has a byval argument,
340/// we have to make the implicit memcpy explicit by adding it.
341static Value *HandleByValArgument(Value *Arg, Instruction *TheCall,
342                                  const Function *CalledFunc,
343                                  InlineFunctionInfo &IFI,
344                                  unsigned ByValAlignment) {
345  Type *AggTy = cast<PointerType>(Arg->getType())->getElementType();
346
347  // If the called function is readonly, then it could not mutate the caller's
348  // copy of the byval'd memory.  In this case, it is safe to elide the copy and
349  // temporary.
350  if (CalledFunc->onlyReadsMemory()) {
351    // If the byval argument has a specified alignment that is greater than the
352    // passed in pointer, then we either have to round up the input pointer or
353    // give up on this transformation.
354    if (ByValAlignment <= 1)  // 0 = unspecified, 1 = no particular alignment.
355      return Arg;
356
357    // If the pointer is already known to be sufficiently aligned, or if we can
358    // round it up to a larger alignment, then we don't need a temporary.
359    if (getOrEnforceKnownAlignment(Arg, ByValAlignment,
360                                   IFI.TD) >= ByValAlignment)
361      return Arg;
362
363    // Otherwise, we have to make a memcpy to get a safe alignment.  This is bad
364    // for code quality, but rarely happens and is required for correctness.
365  }
366
367  LLVMContext &Context = Arg->getContext();
368
369  Type *VoidPtrTy = Type::getInt8PtrTy(Context);
370
371  // Create the alloca.  If we have DataLayout, use nice alignment.
372  unsigned Align = 1;
373  if (IFI.TD)
374    Align = IFI.TD->getPrefTypeAlignment(AggTy);
375
376  // If the byval had an alignment specified, we *must* use at least that
377  // alignment, as it is required by the byval argument (and uses of the
378  // pointer inside the callee).
379  Align = std::max(Align, ByValAlignment);
380
381  Function *Caller = TheCall->getParent()->getParent();
382
383  Value *NewAlloca = new AllocaInst(AggTy, 0, Align, Arg->getName(),
384                                    &*Caller->begin()->begin());
385  // Emit a memcpy.
386  Type *Tys[3] = {VoidPtrTy, VoidPtrTy, Type::getInt64Ty(Context)};
387  Function *MemCpyFn = Intrinsic::getDeclaration(Caller->getParent(),
388                                                 Intrinsic::memcpy,
389                                                 Tys);
390  Value *DestCast = new BitCastInst(NewAlloca, VoidPtrTy, "tmp", TheCall);
391  Value *SrcCast = new BitCastInst(Arg, VoidPtrTy, "tmp", TheCall);
392
393  Value *Size;
394  if (IFI.TD == 0)
395    Size = ConstantExpr::getSizeOf(AggTy);
396  else
397    Size = ConstantInt::get(Type::getInt64Ty(Context),
398                            IFI.TD->getTypeStoreSize(AggTy));
399
400  // Always generate a memcpy of alignment 1 here because we don't know
401  // the alignment of the src pointer.  Other optimizations can infer
402  // better alignment.
403  Value *CallArgs[] = {
404    DestCast, SrcCast, Size,
405    ConstantInt::get(Type::getInt32Ty(Context), 1),
406    ConstantInt::getFalse(Context) // isVolatile
407  };
408  IRBuilder<>(TheCall).CreateCall(MemCpyFn, CallArgs);
409
410  // Uses of the argument in the function should use our new alloca
411  // instead.
412  return NewAlloca;
413}
414
415// isUsedByLifetimeMarker - Check whether this Value is used by a lifetime
416// intrinsic.
417static bool isUsedByLifetimeMarker(Value *V) {
418  for (Value::use_iterator UI = V->use_begin(), UE = V->use_end(); UI != UE;
419       ++UI) {
420    if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(*UI)) {
421      switch (II->getIntrinsicID()) {
422      default: break;
423      case Intrinsic::lifetime_start:
424      case Intrinsic::lifetime_end:
425        return true;
426      }
427    }
428  }
429  return false;
430}
431
432// hasLifetimeMarkers - Check whether the given alloca already has
433// lifetime.start or lifetime.end intrinsics.
434static bool hasLifetimeMarkers(AllocaInst *AI) {
435  Type *Int8PtrTy = Type::getInt8PtrTy(AI->getType()->getContext());
436  if (AI->getType() == Int8PtrTy)
437    return isUsedByLifetimeMarker(AI);
438
439  // Do a scan to find all the casts to i8*.
440  for (Value::use_iterator I = AI->use_begin(), E = AI->use_end(); I != E;
441       ++I) {
442    if (I->getType() != Int8PtrTy) continue;
443    if (I->stripPointerCasts() != AI) continue;
444    if (isUsedByLifetimeMarker(*I))
445      return true;
446  }
447  return false;
448}
449
450/// updateInlinedAtInfo - Helper function used by fixupLineNumbers to
451/// recursively update InlinedAtEntry of a DebugLoc.
452static DebugLoc updateInlinedAtInfo(const DebugLoc &DL,
453                                    const DebugLoc &InlinedAtDL,
454                                    LLVMContext &Ctx) {
455  if (MDNode *IA = DL.getInlinedAt(Ctx)) {
456    DebugLoc NewInlinedAtDL
457      = updateInlinedAtInfo(DebugLoc::getFromDILocation(IA), InlinedAtDL, Ctx);
458    return DebugLoc::get(DL.getLine(), DL.getCol(), DL.getScope(Ctx),
459                         NewInlinedAtDL.getAsMDNode(Ctx));
460  }
461
462  return DebugLoc::get(DL.getLine(), DL.getCol(), DL.getScope(Ctx),
463                       InlinedAtDL.getAsMDNode(Ctx));
464}
465
466/// fixupLineNumbers - Update inlined instructions' line numbers to
467/// to encode location where these instructions are inlined.
468static void fixupLineNumbers(Function *Fn, Function::iterator FI,
469                             Instruction *TheCall) {
470  DebugLoc TheCallDL = TheCall->getDebugLoc();
471  if (TheCallDL.isUnknown())
472    return;
473
474  for (; FI != Fn->end(); ++FI) {
475    for (BasicBlock::iterator BI = FI->begin(), BE = FI->end();
476         BI != BE; ++BI) {
477      DebugLoc DL = BI->getDebugLoc();
478      if (!DL.isUnknown()) {
479        BI->setDebugLoc(updateInlinedAtInfo(DL, TheCallDL, BI->getContext()));
480        if (DbgValueInst *DVI = dyn_cast<DbgValueInst>(BI)) {
481          LLVMContext &Ctx = BI->getContext();
482          MDNode *InlinedAt = BI->getDebugLoc().getInlinedAt(Ctx);
483          DVI->setOperand(2, createInlinedVariable(DVI->getVariable(),
484                                                   InlinedAt, Ctx));
485        }
486      }
487    }
488  }
489}
490
491/// InlineFunction - This function inlines the called function into the basic
492/// block of the caller.  This returns false if it is not possible to inline
493/// this call.  The program is still in a well defined state if this occurs
494/// though.
495///
496/// Note that this only does one level of inlining.  For example, if the
497/// instruction 'call B' is inlined, and 'B' calls 'C', then the call to 'C' now
498/// exists in the instruction stream.  Similarly this will inline a recursive
499/// function by one level.
500bool llvm::InlineFunction(CallSite CS, InlineFunctionInfo &IFI,
501                          bool InsertLifetime) {
502  Instruction *TheCall = CS.getInstruction();
503  assert(TheCall->getParent() && TheCall->getParent()->getParent() &&
504         "Instruction not in function!");
505
506  // If IFI has any state in it, zap it before we fill it in.
507  IFI.reset();
508
509  const Function *CalledFunc = CS.getCalledFunction();
510  if (CalledFunc == 0 ||          // Can't inline external function or indirect
511      CalledFunc->isDeclaration() || // call, or call to a vararg function!
512      CalledFunc->getFunctionType()->isVarArg()) return false;
513
514  // If the call to the callee is not a tail call, we must clear the 'tail'
515  // flags on any calls that we inline.
516  bool MustClearTailCallFlags =
517    !(isa<CallInst>(TheCall) && cast<CallInst>(TheCall)->isTailCall());
518
519  // If the call to the callee cannot throw, set the 'nounwind' flag on any
520  // calls that we inline.
521  bool MarkNoUnwind = CS.doesNotThrow();
522
523  BasicBlock *OrigBB = TheCall->getParent();
524  Function *Caller = OrigBB->getParent();
525
526  // GC poses two hazards to inlining, which only occur when the callee has GC:
527  //  1. If the caller has no GC, then the callee's GC must be propagated to the
528  //     caller.
529  //  2. If the caller has a differing GC, it is invalid to inline.
530  if (CalledFunc->hasGC()) {
531    if (!Caller->hasGC())
532      Caller->setGC(CalledFunc->getGC());
533    else if (CalledFunc->getGC() != Caller->getGC())
534      return false;
535  }
536
537  // Get the personality function from the callee if it contains a landing pad.
538  Value *CalleePersonality = 0;
539  for (Function::const_iterator I = CalledFunc->begin(), E = CalledFunc->end();
540       I != E; ++I)
541    if (const InvokeInst *II = dyn_cast<InvokeInst>(I->getTerminator())) {
542      const BasicBlock *BB = II->getUnwindDest();
543      const LandingPadInst *LP = BB->getLandingPadInst();
544      CalleePersonality = LP->getPersonalityFn();
545      break;
546    }
547
548  // Find the personality function used by the landing pads of the caller. If it
549  // exists, then check to see that it matches the personality function used in
550  // the callee.
551  if (CalleePersonality) {
552    for (Function::const_iterator I = Caller->begin(), E = Caller->end();
553         I != E; ++I)
554      if (const InvokeInst *II = dyn_cast<InvokeInst>(I->getTerminator())) {
555        const BasicBlock *BB = II->getUnwindDest();
556        const LandingPadInst *LP = BB->getLandingPadInst();
557
558        // If the personality functions match, then we can perform the
559        // inlining. Otherwise, we can't inline.
560        // TODO: This isn't 100% true. Some personality functions are proper
561        //       supersets of others and can be used in place of the other.
562        if (LP->getPersonalityFn() != CalleePersonality)
563          return false;
564
565        break;
566      }
567  }
568
569  // Get an iterator to the last basic block in the function, which will have
570  // the new function inlined after it.
571  Function::iterator LastBlock = &Caller->back();
572
573  // Make sure to capture all of the return instructions from the cloned
574  // function.
575  SmallVector<ReturnInst*, 8> Returns;
576  ClonedCodeInfo InlinedFunctionInfo;
577  Function::iterator FirstNewBlock;
578
579  { // Scope to destroy VMap after cloning.
580    ValueToValueMapTy VMap;
581
582    assert(CalledFunc->arg_size() == CS.arg_size() &&
583           "No varargs calls can be inlined!");
584
585    // Calculate the vector of arguments to pass into the function cloner, which
586    // matches up the formal to the actual argument values.
587    CallSite::arg_iterator AI = CS.arg_begin();
588    unsigned ArgNo = 0;
589    for (Function::const_arg_iterator I = CalledFunc->arg_begin(),
590         E = CalledFunc->arg_end(); I != E; ++I, ++AI, ++ArgNo) {
591      Value *ActualArg = *AI;
592
593      // When byval arguments actually inlined, we need to make the copy implied
594      // by them explicit.  However, we don't do this if the callee is readonly
595      // or readnone, because the copy would be unneeded: the callee doesn't
596      // modify the struct.
597      if (CS.isByValArgument(ArgNo)) {
598        ActualArg = HandleByValArgument(ActualArg, TheCall, CalledFunc, IFI,
599                                        CalledFunc->getParamAlignment(ArgNo+1));
600
601        // Calls that we inline may use the new alloca, so we need to clear
602        // their 'tail' flags if HandleByValArgument introduced a new alloca and
603        // the callee has calls.
604        MustClearTailCallFlags |= ActualArg != *AI;
605      }
606
607      VMap[I] = ActualArg;
608    }
609
610    // We want the inliner to prune the code as it copies.  We would LOVE to
611    // have no dead or constant instructions leftover after inlining occurs
612    // (which can happen, e.g., because an argument was constant), but we'll be
613    // happy with whatever the cloner can do.
614    CloneAndPruneFunctionInto(Caller, CalledFunc, VMap,
615                              /*ModuleLevelChanges=*/false, Returns, ".i",
616                              &InlinedFunctionInfo, IFI.TD, TheCall);
617
618    // Remember the first block that is newly cloned over.
619    FirstNewBlock = LastBlock; ++FirstNewBlock;
620
621    // Update the callgraph if requested.
622    if (IFI.CG)
623      UpdateCallGraphAfterInlining(CS, FirstNewBlock, VMap, IFI);
624
625    // Update inlined instructions' line number information.
626    fixupLineNumbers(Caller, FirstNewBlock, TheCall);
627  }
628
629  // If there are any alloca instructions in the block that used to be the entry
630  // block for the callee, move them to the entry block of the caller.  First
631  // calculate which instruction they should be inserted before.  We insert the
632  // instructions at the end of the current alloca list.
633  {
634    BasicBlock::iterator InsertPoint = Caller->begin()->begin();
635    for (BasicBlock::iterator I = FirstNewBlock->begin(),
636         E = FirstNewBlock->end(); I != E; ) {
637      AllocaInst *AI = dyn_cast<AllocaInst>(I++);
638      if (AI == 0) continue;
639
640      // If the alloca is now dead, remove it.  This often occurs due to code
641      // specialization.
642      if (AI->use_empty()) {
643        AI->eraseFromParent();
644        continue;
645      }
646
647      if (!isa<Constant>(AI->getArraySize()))
648        continue;
649
650      // Keep track of the static allocas that we inline into the caller.
651      IFI.StaticAllocas.push_back(AI);
652
653      // Scan for the block of allocas that we can move over, and move them
654      // all at once.
655      while (isa<AllocaInst>(I) &&
656             isa<Constant>(cast<AllocaInst>(I)->getArraySize())) {
657        IFI.StaticAllocas.push_back(cast<AllocaInst>(I));
658        ++I;
659      }
660
661      // Transfer all of the allocas over in a block.  Using splice means
662      // that the instructions aren't removed from the symbol table, then
663      // reinserted.
664      Caller->getEntryBlock().getInstList().splice(InsertPoint,
665                                                   FirstNewBlock->getInstList(),
666                                                   AI, I);
667    }
668  }
669
670  // Leave lifetime markers for the static alloca's, scoping them to the
671  // function we just inlined.
672  if (InsertLifetime && !IFI.StaticAllocas.empty()) {
673    IRBuilder<> builder(FirstNewBlock->begin());
674    for (unsigned ai = 0, ae = IFI.StaticAllocas.size(); ai != ae; ++ai) {
675      AllocaInst *AI = IFI.StaticAllocas[ai];
676
677      // If the alloca is already scoped to something smaller than the whole
678      // function then there's no need to add redundant, less accurate markers.
679      if (hasLifetimeMarkers(AI))
680        continue;
681
682      // Try to determine the size of the allocation.
683      ConstantInt *AllocaSize = 0;
684      if (ConstantInt *AIArraySize =
685          dyn_cast<ConstantInt>(AI->getArraySize())) {
686        if (IFI.TD) {
687          Type *AllocaType = AI->getAllocatedType();
688          uint64_t AllocaTypeSize = IFI.TD->getTypeAllocSize(AllocaType);
689          uint64_t AllocaArraySize = AIArraySize->getLimitedValue();
690          assert(AllocaArraySize > 0 && "array size of AllocaInst is zero");
691          // Check that array size doesn't saturate uint64_t and doesn't
692          // overflow when it's multiplied by type size.
693          if (AllocaArraySize != ~0ULL &&
694              UINT64_MAX / AllocaArraySize >= AllocaTypeSize) {
695            AllocaSize = ConstantInt::get(Type::getInt64Ty(AI->getContext()),
696                                          AllocaArraySize * AllocaTypeSize);
697          }
698        }
699      }
700
701      builder.CreateLifetimeStart(AI, AllocaSize);
702      for (unsigned ri = 0, re = Returns.size(); ri != re; ++ri) {
703        IRBuilder<> builder(Returns[ri]);
704        builder.CreateLifetimeEnd(AI, AllocaSize);
705      }
706    }
707  }
708
709  // If the inlined code contained dynamic alloca instructions, wrap the inlined
710  // code with llvm.stacksave/llvm.stackrestore intrinsics.
711  if (InlinedFunctionInfo.ContainsDynamicAllocas) {
712    Module *M = Caller->getParent();
713    // Get the two intrinsics we care about.
714    Function *StackSave = Intrinsic::getDeclaration(M, Intrinsic::stacksave);
715    Function *StackRestore=Intrinsic::getDeclaration(M,Intrinsic::stackrestore);
716
717    // Insert the llvm.stacksave.
718    CallInst *SavedPtr = IRBuilder<>(FirstNewBlock, FirstNewBlock->begin())
719      .CreateCall(StackSave, "savedstack");
720
721    // Insert a call to llvm.stackrestore before any return instructions in the
722    // inlined function.
723    for (unsigned i = 0, e = Returns.size(); i != e; ++i) {
724      IRBuilder<>(Returns[i]).CreateCall(StackRestore, SavedPtr);
725    }
726  }
727
728  // If we are inlining tail call instruction through a call site that isn't
729  // marked 'tail', we must remove the tail marker for any calls in the inlined
730  // code.  Also, calls inlined through a 'nounwind' call site should be marked
731  // 'nounwind'.
732  if (InlinedFunctionInfo.ContainsCalls &&
733      (MustClearTailCallFlags || MarkNoUnwind)) {
734    for (Function::iterator BB = FirstNewBlock, E = Caller->end();
735         BB != E; ++BB)
736      for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
737        if (CallInst *CI = dyn_cast<CallInst>(I)) {
738          if (MustClearTailCallFlags)
739            CI->setTailCall(false);
740          if (MarkNoUnwind)
741            CI->setDoesNotThrow();
742        }
743  }
744
745  // If we are inlining for an invoke instruction, we must make sure to rewrite
746  // any call instructions into invoke instructions.
747  if (InvokeInst *II = dyn_cast<InvokeInst>(TheCall))
748    HandleInlinedInvoke(II, FirstNewBlock, InlinedFunctionInfo);
749
750  // If we cloned in _exactly one_ basic block, and if that block ends in a
751  // return instruction, we splice the body of the inlined callee directly into
752  // the calling basic block.
753  if (Returns.size() == 1 && std::distance(FirstNewBlock, Caller->end()) == 1) {
754    // Move all of the instructions right before the call.
755    OrigBB->getInstList().splice(TheCall, FirstNewBlock->getInstList(),
756                                 FirstNewBlock->begin(), FirstNewBlock->end());
757    // Remove the cloned basic block.
758    Caller->getBasicBlockList().pop_back();
759
760    // If the call site was an invoke instruction, add a branch to the normal
761    // destination.
762    if (InvokeInst *II = dyn_cast<InvokeInst>(TheCall)) {
763      BranchInst *NewBr = BranchInst::Create(II->getNormalDest(), TheCall);
764      NewBr->setDebugLoc(Returns[0]->getDebugLoc());
765    }
766
767    // If the return instruction returned a value, replace uses of the call with
768    // uses of the returned value.
769    if (!TheCall->use_empty()) {
770      ReturnInst *R = Returns[0];
771      if (TheCall == R->getReturnValue())
772        TheCall->replaceAllUsesWith(UndefValue::get(TheCall->getType()));
773      else
774        TheCall->replaceAllUsesWith(R->getReturnValue());
775    }
776    // Since we are now done with the Call/Invoke, we can delete it.
777    TheCall->eraseFromParent();
778
779    // Since we are now done with the return instruction, delete it also.
780    Returns[0]->eraseFromParent();
781
782    // We are now done with the inlining.
783    return true;
784  }
785
786  // Otherwise, we have the normal case, of more than one block to inline or
787  // multiple return sites.
788
789  // We want to clone the entire callee function into the hole between the
790  // "starter" and "ender" blocks.  How we accomplish this depends on whether
791  // this is an invoke instruction or a call instruction.
792  BasicBlock *AfterCallBB;
793  BranchInst *CreatedBranchToNormalDest = NULL;
794  if (InvokeInst *II = dyn_cast<InvokeInst>(TheCall)) {
795
796    // Add an unconditional branch to make this look like the CallInst case...
797    CreatedBranchToNormalDest = BranchInst::Create(II->getNormalDest(), TheCall);
798
799    // Split the basic block.  This guarantees that no PHI nodes will have to be
800    // updated due to new incoming edges, and make the invoke case more
801    // symmetric to the call case.
802    AfterCallBB = OrigBB->splitBasicBlock(CreatedBranchToNormalDest,
803                                          CalledFunc->getName()+".exit");
804
805  } else {  // It's a call
806    // If this is a call instruction, we need to split the basic block that
807    // the call lives in.
808    //
809    AfterCallBB = OrigBB->splitBasicBlock(TheCall,
810                                          CalledFunc->getName()+".exit");
811  }
812
813  // Change the branch that used to go to AfterCallBB to branch to the first
814  // basic block of the inlined function.
815  //
816  TerminatorInst *Br = OrigBB->getTerminator();
817  assert(Br && Br->getOpcode() == Instruction::Br &&
818         "splitBasicBlock broken!");
819  Br->setOperand(0, FirstNewBlock);
820
821
822  // Now that the function is correct, make it a little bit nicer.  In
823  // particular, move the basic blocks inserted from the end of the function
824  // into the space made by splitting the source basic block.
825  Caller->getBasicBlockList().splice(AfterCallBB, Caller->getBasicBlockList(),
826                                     FirstNewBlock, Caller->end());
827
828  // Handle all of the return instructions that we just cloned in, and eliminate
829  // any users of the original call/invoke instruction.
830  Type *RTy = CalledFunc->getReturnType();
831
832  PHINode *PHI = 0;
833  if (Returns.size() > 1) {
834    // The PHI node should go at the front of the new basic block to merge all
835    // possible incoming values.
836    if (!TheCall->use_empty()) {
837      PHI = PHINode::Create(RTy, Returns.size(), TheCall->getName(),
838                            AfterCallBB->begin());
839      // Anything that used the result of the function call should now use the
840      // PHI node as their operand.
841      TheCall->replaceAllUsesWith(PHI);
842    }
843
844    // Loop over all of the return instructions adding entries to the PHI node
845    // as appropriate.
846    if (PHI) {
847      for (unsigned i = 0, e = Returns.size(); i != e; ++i) {
848        ReturnInst *RI = Returns[i];
849        assert(RI->getReturnValue()->getType() == PHI->getType() &&
850               "Ret value not consistent in function!");
851        PHI->addIncoming(RI->getReturnValue(), RI->getParent());
852      }
853    }
854
855
856    // Add a branch to the merge points and remove return instructions.
857    DebugLoc Loc;
858    for (unsigned i = 0, e = Returns.size(); i != e; ++i) {
859      ReturnInst *RI = Returns[i];
860      BranchInst* BI = BranchInst::Create(AfterCallBB, RI);
861      Loc = RI->getDebugLoc();
862      BI->setDebugLoc(Loc);
863      RI->eraseFromParent();
864    }
865    // We need to set the debug location to *somewhere* inside the
866    // inlined function. The line number may be nonsensical, but the
867    // instruction will at least be associated with the right
868    // function.
869    if (CreatedBranchToNormalDest)
870      CreatedBranchToNormalDest->setDebugLoc(Loc);
871  } else if (!Returns.empty()) {
872    // Otherwise, if there is exactly one return value, just replace anything
873    // using the return value of the call with the computed value.
874    if (!TheCall->use_empty()) {
875      if (TheCall == Returns[0]->getReturnValue())
876        TheCall->replaceAllUsesWith(UndefValue::get(TheCall->getType()));
877      else
878        TheCall->replaceAllUsesWith(Returns[0]->getReturnValue());
879    }
880
881    // Update PHI nodes that use the ReturnBB to use the AfterCallBB.
882    BasicBlock *ReturnBB = Returns[0]->getParent();
883    ReturnBB->replaceAllUsesWith(AfterCallBB);
884
885    // Splice the code from the return block into the block that it will return
886    // to, which contains the code that was after the call.
887    AfterCallBB->getInstList().splice(AfterCallBB->begin(),
888                                      ReturnBB->getInstList());
889
890    if (CreatedBranchToNormalDest)
891      CreatedBranchToNormalDest->setDebugLoc(Returns[0]->getDebugLoc());
892
893    // Delete the return instruction now and empty ReturnBB now.
894    Returns[0]->eraseFromParent();
895    ReturnBB->eraseFromParent();
896  } else if (!TheCall->use_empty()) {
897    // No returns, but something is using the return value of the call.  Just
898    // nuke the result.
899    TheCall->replaceAllUsesWith(UndefValue::get(TheCall->getType()));
900  }
901
902  // Since we are now done with the Call/Invoke, we can delete it.
903  TheCall->eraseFromParent();
904
905  // We should always be able to fold the entry block of the function into the
906  // single predecessor of the block...
907  assert(cast<BranchInst>(Br)->isUnconditional() && "splitBasicBlock broken!");
908  BasicBlock *CalleeEntry = cast<BranchInst>(Br)->getSuccessor(0);
909
910  // Splice the code entry block into calling block, right before the
911  // unconditional branch.
912  CalleeEntry->replaceAllUsesWith(OrigBB);  // Update PHI nodes
913  OrigBB->getInstList().splice(Br, CalleeEntry->getInstList());
914
915  // Remove the unconditional branch.
916  OrigBB->getInstList().erase(Br);
917
918  // Now we can remove the CalleeEntry block, which is now empty.
919  Caller->getBasicBlockList().erase(CalleeEntry);
920
921  // If we inserted a phi node, check to see if it has a single value (e.g. all
922  // the entries are the same or undef).  If so, remove the PHI so it doesn't
923  // block other optimizations.
924  if (PHI) {
925    if (Value *V = SimplifyInstruction(PHI, IFI.TD)) {
926      PHI->replaceAllUsesWith(V);
927      PHI->eraseFromParent();
928    }
929  }
930
931  return true;
932}
933