BasicBlockUtils.cpp revision 263508
1//===-- BasicBlockUtils.cpp - BasicBlock Utilities -------------------------==//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This family of functions perform manipulations on basic blocks, and
11// instructions contained within basic blocks.
12//
13//===----------------------------------------------------------------------===//
14
15#include "llvm/Transforms/Utils/BasicBlockUtils.h"
16#include "llvm/Analysis/AliasAnalysis.h"
17#include "llvm/Analysis/CFG.h"
18#include "llvm/Analysis/Dominators.h"
19#include "llvm/Analysis/LoopInfo.h"
20#include "llvm/Analysis/MemoryDependenceAnalysis.h"
21#include "llvm/IR/Constant.h"
22#include "llvm/IR/DataLayout.h"
23#include "llvm/IR/Function.h"
24#include "llvm/IR/Instructions.h"
25#include "llvm/IR/IntrinsicInst.h"
26#include "llvm/IR/Type.h"
27#include "llvm/Support/ErrorHandling.h"
28#include "llvm/Support/ValueHandle.h"
29#include "llvm/Transforms/Scalar.h"
30#include "llvm/Transforms/Utils/Local.h"
31#include <algorithm>
32using namespace llvm;
33
34/// DeleteDeadBlock - Delete the specified block, which must have no
35/// predecessors.
36void llvm::DeleteDeadBlock(BasicBlock *BB) {
37  assert((pred_begin(BB) == pred_end(BB) ||
38         // Can delete self loop.
39         BB->getSinglePredecessor() == BB) && "Block is not dead!");
40  TerminatorInst *BBTerm = BB->getTerminator();
41
42  // Loop through all of our successors and make sure they know that one
43  // of their predecessors is going away.
44  for (unsigned i = 0, e = BBTerm->getNumSuccessors(); i != e; ++i)
45    BBTerm->getSuccessor(i)->removePredecessor(BB);
46
47  // Zap all the instructions in the block.
48  while (!BB->empty()) {
49    Instruction &I = BB->back();
50    // If this instruction is used, replace uses with an arbitrary value.
51    // Because control flow can't get here, we don't care what we replace the
52    // value with.  Note that since this block is unreachable, and all values
53    // contained within it must dominate their uses, that all uses will
54    // eventually be removed (they are themselves dead).
55    if (!I.use_empty())
56      I.replaceAllUsesWith(UndefValue::get(I.getType()));
57    BB->getInstList().pop_back();
58  }
59
60  // Zap the block!
61  BB->eraseFromParent();
62}
63
64/// FoldSingleEntryPHINodes - We know that BB has one predecessor.  If there are
65/// any single-entry PHI nodes in it, fold them away.  This handles the case
66/// when all entries to the PHI nodes in a block are guaranteed equal, such as
67/// when the block has exactly one predecessor.
68void llvm::FoldSingleEntryPHINodes(BasicBlock *BB, Pass *P) {
69  if (!isa<PHINode>(BB->begin())) return;
70
71  AliasAnalysis *AA = 0;
72  MemoryDependenceAnalysis *MemDep = 0;
73  if (P) {
74    AA = P->getAnalysisIfAvailable<AliasAnalysis>();
75    MemDep = P->getAnalysisIfAvailable<MemoryDependenceAnalysis>();
76  }
77
78  while (PHINode *PN = dyn_cast<PHINode>(BB->begin())) {
79    if (PN->getIncomingValue(0) != PN)
80      PN->replaceAllUsesWith(PN->getIncomingValue(0));
81    else
82      PN->replaceAllUsesWith(UndefValue::get(PN->getType()));
83
84    if (MemDep)
85      MemDep->removeInstruction(PN);  // Memdep updates AA itself.
86    else if (AA && isa<PointerType>(PN->getType()))
87      AA->deleteValue(PN);
88
89    PN->eraseFromParent();
90  }
91}
92
93
94/// DeleteDeadPHIs - Examine each PHI in the given block and delete it if it
95/// is dead. Also recursively delete any operands that become dead as
96/// a result. This includes tracing the def-use list from the PHI to see if
97/// it is ultimately unused or if it reaches an unused cycle.
98bool llvm::DeleteDeadPHIs(BasicBlock *BB, const TargetLibraryInfo *TLI) {
99  // Recursively deleting a PHI may cause multiple PHIs to be deleted
100  // or RAUW'd undef, so use an array of WeakVH for the PHIs to delete.
101  SmallVector<WeakVH, 8> PHIs;
102  for (BasicBlock::iterator I = BB->begin();
103       PHINode *PN = dyn_cast<PHINode>(I); ++I)
104    PHIs.push_back(PN);
105
106  bool Changed = false;
107  for (unsigned i = 0, e = PHIs.size(); i != e; ++i)
108    if (PHINode *PN = dyn_cast_or_null<PHINode>(PHIs[i].operator Value*()))
109      Changed |= RecursivelyDeleteDeadPHINode(PN, TLI);
110
111  return Changed;
112}
113
114/// MergeBlockIntoPredecessor - Attempts to merge a block into its predecessor,
115/// if possible.  The return value indicates success or failure.
116bool llvm::MergeBlockIntoPredecessor(BasicBlock *BB, Pass *P) {
117  // Don't merge away blocks who have their address taken.
118  if (BB->hasAddressTaken()) return false;
119
120  // Can't merge if there are multiple predecessors, or no predecessors.
121  BasicBlock *PredBB = BB->getUniquePredecessor();
122  if (!PredBB) return false;
123
124  // Don't break self-loops.
125  if (PredBB == BB) return false;
126  // Don't break invokes.
127  if (isa<InvokeInst>(PredBB->getTerminator())) return false;
128
129  succ_iterator SI(succ_begin(PredBB)), SE(succ_end(PredBB));
130  BasicBlock *OnlySucc = BB;
131  for (; SI != SE; ++SI)
132    if (*SI != OnlySucc) {
133      OnlySucc = 0;     // There are multiple distinct successors!
134      break;
135    }
136
137  // Can't merge if there are multiple successors.
138  if (!OnlySucc) return false;
139
140  // Can't merge if there is PHI loop.
141  for (BasicBlock::iterator BI = BB->begin(), BE = BB->end(); BI != BE; ++BI) {
142    if (PHINode *PN = dyn_cast<PHINode>(BI)) {
143      for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
144        if (PN->getIncomingValue(i) == PN)
145          return false;
146    } else
147      break;
148  }
149
150  // Begin by getting rid of unneeded PHIs.
151  if (isa<PHINode>(BB->front()))
152    FoldSingleEntryPHINodes(BB, P);
153
154  // Delete the unconditional branch from the predecessor...
155  PredBB->getInstList().pop_back();
156
157  // Make all PHI nodes that referred to BB now refer to Pred as their
158  // source...
159  BB->replaceAllUsesWith(PredBB);
160
161  // Move all definitions in the successor to the predecessor...
162  PredBB->getInstList().splice(PredBB->end(), BB->getInstList());
163
164  // Inherit predecessors name if it exists.
165  if (!PredBB->hasName())
166    PredBB->takeName(BB);
167
168  // Finally, erase the old block and update dominator info.
169  if (P) {
170    if (DominatorTree *DT = P->getAnalysisIfAvailable<DominatorTree>()) {
171      if (DomTreeNode *DTN = DT->getNode(BB)) {
172        DomTreeNode *PredDTN = DT->getNode(PredBB);
173        SmallVector<DomTreeNode*, 8> Children(DTN->begin(), DTN->end());
174        for (SmallVectorImpl<DomTreeNode *>::iterator DI = Children.begin(),
175             DE = Children.end(); DI != DE; ++DI)
176          DT->changeImmediateDominator(*DI, PredDTN);
177
178        DT->eraseNode(BB);
179      }
180
181      if (LoopInfo *LI = P->getAnalysisIfAvailable<LoopInfo>())
182        LI->removeBlock(BB);
183
184      if (MemoryDependenceAnalysis *MD =
185            P->getAnalysisIfAvailable<MemoryDependenceAnalysis>())
186        MD->invalidateCachedPredecessors();
187    }
188  }
189
190  BB->eraseFromParent();
191  return true;
192}
193
194/// ReplaceInstWithValue - Replace all uses of an instruction (specified by BI)
195/// with a value, then remove and delete the original instruction.
196///
197void llvm::ReplaceInstWithValue(BasicBlock::InstListType &BIL,
198                                BasicBlock::iterator &BI, Value *V) {
199  Instruction &I = *BI;
200  // Replaces all of the uses of the instruction with uses of the value
201  I.replaceAllUsesWith(V);
202
203  // Make sure to propagate a name if there is one already.
204  if (I.hasName() && !V->hasName())
205    V->takeName(&I);
206
207  // Delete the unnecessary instruction now...
208  BI = BIL.erase(BI);
209}
210
211
212/// ReplaceInstWithInst - Replace the instruction specified by BI with the
213/// instruction specified by I.  The original instruction is deleted and BI is
214/// updated to point to the new instruction.
215///
216void llvm::ReplaceInstWithInst(BasicBlock::InstListType &BIL,
217                               BasicBlock::iterator &BI, Instruction *I) {
218  assert(I->getParent() == 0 &&
219         "ReplaceInstWithInst: Instruction already inserted into basic block!");
220
221  // Insert the new instruction into the basic block...
222  BasicBlock::iterator New = BIL.insert(BI, I);
223
224  // Replace all uses of the old instruction, and delete it.
225  ReplaceInstWithValue(BIL, BI, I);
226
227  // Move BI back to point to the newly inserted instruction
228  BI = New;
229}
230
231/// ReplaceInstWithInst - Replace the instruction specified by From with the
232/// instruction specified by To.
233///
234void llvm::ReplaceInstWithInst(Instruction *From, Instruction *To) {
235  BasicBlock::iterator BI(From);
236  ReplaceInstWithInst(From->getParent()->getInstList(), BI, To);
237}
238
239/// SplitEdge -  Split the edge connecting specified block. Pass P must
240/// not be NULL.
241BasicBlock *llvm::SplitEdge(BasicBlock *BB, BasicBlock *Succ, Pass *P) {
242  unsigned SuccNum = GetSuccessorNumber(BB, Succ);
243
244  // If this is a critical edge, let SplitCriticalEdge do it.
245  TerminatorInst *LatchTerm = BB->getTerminator();
246  if (SplitCriticalEdge(LatchTerm, SuccNum, P))
247    return LatchTerm->getSuccessor(SuccNum);
248
249  // If the edge isn't critical, then BB has a single successor or Succ has a
250  // single pred.  Split the block.
251  if (BasicBlock *SP = Succ->getSinglePredecessor()) {
252    // If the successor only has a single pred, split the top of the successor
253    // block.
254    assert(SP == BB && "CFG broken");
255    SP = NULL;
256    return SplitBlock(Succ, Succ->begin(), P);
257  }
258
259  // Otherwise, if BB has a single successor, split it at the bottom of the
260  // block.
261  assert(BB->getTerminator()->getNumSuccessors() == 1 &&
262         "Should have a single succ!");
263  return SplitBlock(BB, BB->getTerminator(), P);
264}
265
266/// SplitBlock - Split the specified block at the specified instruction - every
267/// thing before SplitPt stays in Old and everything starting with SplitPt moves
268/// to a new block.  The two blocks are joined by an unconditional branch and
269/// the loop info is updated.
270///
271BasicBlock *llvm::SplitBlock(BasicBlock *Old, Instruction *SplitPt, Pass *P) {
272  BasicBlock::iterator SplitIt = SplitPt;
273  while (isa<PHINode>(SplitIt) || isa<LandingPadInst>(SplitIt))
274    ++SplitIt;
275  BasicBlock *New = Old->splitBasicBlock(SplitIt, Old->getName()+".split");
276
277  // The new block lives in whichever loop the old one did. This preserves
278  // LCSSA as well, because we force the split point to be after any PHI nodes.
279  if (LoopInfo *LI = P->getAnalysisIfAvailable<LoopInfo>())
280    if (Loop *L = LI->getLoopFor(Old))
281      L->addBasicBlockToLoop(New, LI->getBase());
282
283  if (DominatorTree *DT = P->getAnalysisIfAvailable<DominatorTree>()) {
284    // Old dominates New. New node dominates all other nodes dominated by Old.
285    if (DomTreeNode *OldNode = DT->getNode(Old)) {
286      std::vector<DomTreeNode *> Children;
287      for (DomTreeNode::iterator I = OldNode->begin(), E = OldNode->end();
288           I != E; ++I)
289        Children.push_back(*I);
290
291      DomTreeNode *NewNode = DT->addNewBlock(New,Old);
292      for (std::vector<DomTreeNode *>::iterator I = Children.begin(),
293             E = Children.end(); I != E; ++I)
294        DT->changeImmediateDominator(*I, NewNode);
295    }
296  }
297
298  return New;
299}
300
301/// UpdateAnalysisInformation - Update DominatorTree, LoopInfo, and LCCSA
302/// analysis information.
303static void UpdateAnalysisInformation(BasicBlock *OldBB, BasicBlock *NewBB,
304                                      ArrayRef<BasicBlock *> Preds,
305                                      Pass *P, bool &HasLoopExit) {
306  if (!P) return;
307
308  LoopInfo *LI = P->getAnalysisIfAvailable<LoopInfo>();
309  Loop *L = LI ? LI->getLoopFor(OldBB) : 0;
310
311  // If we need to preserve loop analyses, collect some information about how
312  // this split will affect loops.
313  bool IsLoopEntry = !!L;
314  bool SplitMakesNewLoopHeader = false;
315  if (LI) {
316    bool PreserveLCSSA = P->mustPreserveAnalysisID(LCSSAID);
317    for (ArrayRef<BasicBlock*>::iterator
318           i = Preds.begin(), e = Preds.end(); i != e; ++i) {
319      BasicBlock *Pred = *i;
320
321      // If we need to preserve LCSSA, determine if any of the preds is a loop
322      // exit.
323      if (PreserveLCSSA)
324        if (Loop *PL = LI->getLoopFor(Pred))
325          if (!PL->contains(OldBB))
326            HasLoopExit = true;
327
328      // If we need to preserve LoopInfo, note whether any of the preds crosses
329      // an interesting loop boundary.
330      if (!L) continue;
331      if (L->contains(Pred))
332        IsLoopEntry = false;
333      else
334        SplitMakesNewLoopHeader = true;
335    }
336  }
337
338  // Update dominator tree if available.
339  DominatorTree *DT = P->getAnalysisIfAvailable<DominatorTree>();
340  if (DT)
341    DT->splitBlock(NewBB);
342
343  if (!L) return;
344
345  if (IsLoopEntry) {
346    // Add the new block to the nearest enclosing loop (and not an adjacent
347    // loop). To find this, examine each of the predecessors and determine which
348    // loops enclose them, and select the most-nested loop which contains the
349    // loop containing the block being split.
350    Loop *InnermostPredLoop = 0;
351    for (ArrayRef<BasicBlock*>::iterator
352           i = Preds.begin(), e = Preds.end(); i != e; ++i) {
353      BasicBlock *Pred = *i;
354      if (Loop *PredLoop = LI->getLoopFor(Pred)) {
355        // Seek a loop which actually contains the block being split (to avoid
356        // adjacent loops).
357        while (PredLoop && !PredLoop->contains(OldBB))
358          PredLoop = PredLoop->getParentLoop();
359
360        // Select the most-nested of these loops which contains the block.
361        if (PredLoop && PredLoop->contains(OldBB) &&
362            (!InnermostPredLoop ||
363             InnermostPredLoop->getLoopDepth() < PredLoop->getLoopDepth()))
364          InnermostPredLoop = PredLoop;
365      }
366    }
367
368    if (InnermostPredLoop)
369      InnermostPredLoop->addBasicBlockToLoop(NewBB, LI->getBase());
370  } else {
371    L->addBasicBlockToLoop(NewBB, LI->getBase());
372    if (SplitMakesNewLoopHeader)
373      L->moveToHeader(NewBB);
374  }
375}
376
377/// UpdatePHINodes - Update the PHI nodes in OrigBB to include the values coming
378/// from NewBB. This also updates AliasAnalysis, if available.
379static void UpdatePHINodes(BasicBlock *OrigBB, BasicBlock *NewBB,
380                           ArrayRef<BasicBlock*> Preds, BranchInst *BI,
381                           Pass *P, bool HasLoopExit) {
382  // Otherwise, create a new PHI node in NewBB for each PHI node in OrigBB.
383  AliasAnalysis *AA = P ? P->getAnalysisIfAvailable<AliasAnalysis>() : 0;
384  for (BasicBlock::iterator I = OrigBB->begin(); isa<PHINode>(I); ) {
385    PHINode *PN = cast<PHINode>(I++);
386
387    // Check to see if all of the values coming in are the same.  If so, we
388    // don't need to create a new PHI node, unless it's needed for LCSSA.
389    Value *InVal = 0;
390    if (!HasLoopExit) {
391      InVal = PN->getIncomingValueForBlock(Preds[0]);
392      for (unsigned i = 1, e = Preds.size(); i != e; ++i)
393        if (InVal != PN->getIncomingValueForBlock(Preds[i])) {
394          InVal = 0;
395          break;
396        }
397    }
398
399    if (InVal) {
400      // If all incoming values for the new PHI would be the same, just don't
401      // make a new PHI.  Instead, just remove the incoming values from the old
402      // PHI.
403      for (unsigned i = 0, e = Preds.size(); i != e; ++i) {
404        // Explicitly check the BB index here to handle duplicates in Preds.
405        int Idx = PN->getBasicBlockIndex(Preds[i]);
406        if (Idx >= 0)
407          PN->removeIncomingValue(Idx, false);
408      }
409    } else {
410      // If the values coming into the block are not the same, we need a PHI.
411      // Create the new PHI node, insert it into NewBB at the end of the block
412      PHINode *NewPHI =
413        PHINode::Create(PN->getType(), Preds.size(), PN->getName() + ".ph", BI);
414      if (AA) AA->copyValue(PN, NewPHI);
415
416      // Move all of the PHI values for 'Preds' to the new PHI.
417      for (unsigned i = 0, e = Preds.size(); i != e; ++i) {
418        Value *V = PN->removeIncomingValue(Preds[i], false);
419        NewPHI->addIncoming(V, Preds[i]);
420      }
421
422      InVal = NewPHI;
423    }
424
425    // Add an incoming value to the PHI node in the loop for the preheader
426    // edge.
427    PN->addIncoming(InVal, NewBB);
428  }
429}
430
431/// SplitBlockPredecessors - This method transforms BB by introducing a new
432/// basic block into the function, and moving some of the predecessors of BB to
433/// be predecessors of the new block.  The new predecessors are indicated by the
434/// Preds array, which has NumPreds elements in it.  The new block is given a
435/// suffix of 'Suffix'.
436///
437/// This currently updates the LLVM IR, AliasAnalysis, DominatorTree,
438/// LoopInfo, and LCCSA but no other analyses. In particular, it does not
439/// preserve LoopSimplify (because it's complicated to handle the case where one
440/// of the edges being split is an exit of a loop with other exits).
441///
442BasicBlock *llvm::SplitBlockPredecessors(BasicBlock *BB,
443                                         ArrayRef<BasicBlock*> Preds,
444                                         const char *Suffix, Pass *P) {
445  // Create new basic block, insert right before the original block.
446  BasicBlock *NewBB = BasicBlock::Create(BB->getContext(), BB->getName()+Suffix,
447                                         BB->getParent(), BB);
448
449  // The new block unconditionally branches to the old block.
450  BranchInst *BI = BranchInst::Create(BB, NewBB);
451
452  // Move the edges from Preds to point to NewBB instead of BB.
453  for (unsigned i = 0, e = Preds.size(); i != e; ++i) {
454    // This is slightly more strict than necessary; the minimum requirement
455    // is that there be no more than one indirectbr branching to BB. And
456    // all BlockAddress uses would need to be updated.
457    assert(!isa<IndirectBrInst>(Preds[i]->getTerminator()) &&
458           "Cannot split an edge from an IndirectBrInst");
459    Preds[i]->getTerminator()->replaceUsesOfWith(BB, NewBB);
460  }
461
462  // Insert a new PHI node into NewBB for every PHI node in BB and that new PHI
463  // node becomes an incoming value for BB's phi node.  However, if the Preds
464  // list is empty, we need to insert dummy entries into the PHI nodes in BB to
465  // account for the newly created predecessor.
466  if (Preds.size() == 0) {
467    // Insert dummy values as the incoming value.
468    for (BasicBlock::iterator I = BB->begin(); isa<PHINode>(I); ++I)
469      cast<PHINode>(I)->addIncoming(UndefValue::get(I->getType()), NewBB);
470    return NewBB;
471  }
472
473  // Update DominatorTree, LoopInfo, and LCCSA analysis information.
474  bool HasLoopExit = false;
475  UpdateAnalysisInformation(BB, NewBB, Preds, P, HasLoopExit);
476
477  // Update the PHI nodes in BB with the values coming from NewBB.
478  UpdatePHINodes(BB, NewBB, Preds, BI, P, HasLoopExit);
479  return NewBB;
480}
481
482/// SplitLandingPadPredecessors - This method transforms the landing pad,
483/// OrigBB, by introducing two new basic blocks into the function. One of those
484/// new basic blocks gets the predecessors listed in Preds. The other basic
485/// block gets the remaining predecessors of OrigBB. The landingpad instruction
486/// OrigBB is clone into both of the new basic blocks. The new blocks are given
487/// the suffixes 'Suffix1' and 'Suffix2', and are returned in the NewBBs vector.
488///
489/// This currently updates the LLVM IR, AliasAnalysis, DominatorTree,
490/// DominanceFrontier, LoopInfo, and LCCSA but no other analyses. In particular,
491/// it does not preserve LoopSimplify (because it's complicated to handle the
492/// case where one of the edges being split is an exit of a loop with other
493/// exits).
494///
495void llvm::SplitLandingPadPredecessors(BasicBlock *OrigBB,
496                                       ArrayRef<BasicBlock*> Preds,
497                                       const char *Suffix1, const char *Suffix2,
498                                       Pass *P,
499                                       SmallVectorImpl<BasicBlock*> &NewBBs) {
500  assert(OrigBB->isLandingPad() && "Trying to split a non-landing pad!");
501
502  // Create a new basic block for OrigBB's predecessors listed in Preds. Insert
503  // it right before the original block.
504  BasicBlock *NewBB1 = BasicBlock::Create(OrigBB->getContext(),
505                                          OrigBB->getName() + Suffix1,
506                                          OrigBB->getParent(), OrigBB);
507  NewBBs.push_back(NewBB1);
508
509  // The new block unconditionally branches to the old block.
510  BranchInst *BI1 = BranchInst::Create(OrigBB, NewBB1);
511
512  // Move the edges from Preds to point to NewBB1 instead of OrigBB.
513  for (unsigned i = 0, e = Preds.size(); i != e; ++i) {
514    // This is slightly more strict than necessary; the minimum requirement
515    // is that there be no more than one indirectbr branching to BB. And
516    // all BlockAddress uses would need to be updated.
517    assert(!isa<IndirectBrInst>(Preds[i]->getTerminator()) &&
518           "Cannot split an edge from an IndirectBrInst");
519    Preds[i]->getTerminator()->replaceUsesOfWith(OrigBB, NewBB1);
520  }
521
522  // Update DominatorTree, LoopInfo, and LCCSA analysis information.
523  bool HasLoopExit = false;
524  UpdateAnalysisInformation(OrigBB, NewBB1, Preds, P, HasLoopExit);
525
526  // Update the PHI nodes in OrigBB with the values coming from NewBB1.
527  UpdatePHINodes(OrigBB, NewBB1, Preds, BI1, P, HasLoopExit);
528
529  // Move the remaining edges from OrigBB to point to NewBB2.
530  SmallVector<BasicBlock*, 8> NewBB2Preds;
531  for (pred_iterator i = pred_begin(OrigBB), e = pred_end(OrigBB);
532       i != e; ) {
533    BasicBlock *Pred = *i++;
534    if (Pred == NewBB1) continue;
535    assert(!isa<IndirectBrInst>(Pred->getTerminator()) &&
536           "Cannot split an edge from an IndirectBrInst");
537    NewBB2Preds.push_back(Pred);
538    e = pred_end(OrigBB);
539  }
540
541  BasicBlock *NewBB2 = 0;
542  if (!NewBB2Preds.empty()) {
543    // Create another basic block for the rest of OrigBB's predecessors.
544    NewBB2 = BasicBlock::Create(OrigBB->getContext(),
545                                OrigBB->getName() + Suffix2,
546                                OrigBB->getParent(), OrigBB);
547    NewBBs.push_back(NewBB2);
548
549    // The new block unconditionally branches to the old block.
550    BranchInst *BI2 = BranchInst::Create(OrigBB, NewBB2);
551
552    // Move the remaining edges from OrigBB to point to NewBB2.
553    for (SmallVectorImpl<BasicBlock*>::iterator
554           i = NewBB2Preds.begin(), e = NewBB2Preds.end(); i != e; ++i)
555      (*i)->getTerminator()->replaceUsesOfWith(OrigBB, NewBB2);
556
557    // Update DominatorTree, LoopInfo, and LCCSA analysis information.
558    HasLoopExit = false;
559    UpdateAnalysisInformation(OrigBB, NewBB2, NewBB2Preds, P, HasLoopExit);
560
561    // Update the PHI nodes in OrigBB with the values coming from NewBB2.
562    UpdatePHINodes(OrigBB, NewBB2, NewBB2Preds, BI2, P, HasLoopExit);
563  }
564
565  LandingPadInst *LPad = OrigBB->getLandingPadInst();
566  Instruction *Clone1 = LPad->clone();
567  Clone1->setName(Twine("lpad") + Suffix1);
568  NewBB1->getInstList().insert(NewBB1->getFirstInsertionPt(), Clone1);
569
570  if (NewBB2) {
571    Instruction *Clone2 = LPad->clone();
572    Clone2->setName(Twine("lpad") + Suffix2);
573    NewBB2->getInstList().insert(NewBB2->getFirstInsertionPt(), Clone2);
574
575    // Create a PHI node for the two cloned landingpad instructions.
576    PHINode *PN = PHINode::Create(LPad->getType(), 2, "lpad.phi", LPad);
577    PN->addIncoming(Clone1, NewBB1);
578    PN->addIncoming(Clone2, NewBB2);
579    LPad->replaceAllUsesWith(PN);
580    LPad->eraseFromParent();
581  } else {
582    // There is no second clone. Just replace the landing pad with the first
583    // clone.
584    LPad->replaceAllUsesWith(Clone1);
585    LPad->eraseFromParent();
586  }
587}
588
589/// FoldReturnIntoUncondBranch - This method duplicates the specified return
590/// instruction into a predecessor which ends in an unconditional branch. If
591/// the return instruction returns a value defined by a PHI, propagate the
592/// right value into the return. It returns the new return instruction in the
593/// predecessor.
594ReturnInst *llvm::FoldReturnIntoUncondBranch(ReturnInst *RI, BasicBlock *BB,
595                                             BasicBlock *Pred) {
596  Instruction *UncondBranch = Pred->getTerminator();
597  // Clone the return and add it to the end of the predecessor.
598  Instruction *NewRet = RI->clone();
599  Pred->getInstList().push_back(NewRet);
600
601  // If the return instruction returns a value, and if the value was a
602  // PHI node in "BB", propagate the right value into the return.
603  for (User::op_iterator i = NewRet->op_begin(), e = NewRet->op_end();
604       i != e; ++i) {
605    Value *V = *i;
606    Instruction *NewBC = 0;
607    if (BitCastInst *BCI = dyn_cast<BitCastInst>(V)) {
608      // Return value might be bitcasted. Clone and insert it before the
609      // return instruction.
610      V = BCI->getOperand(0);
611      NewBC = BCI->clone();
612      Pred->getInstList().insert(NewRet, NewBC);
613      *i = NewBC;
614    }
615    if (PHINode *PN = dyn_cast<PHINode>(V)) {
616      if (PN->getParent() == BB) {
617        if (NewBC)
618          NewBC->setOperand(0, PN->getIncomingValueForBlock(Pred));
619        else
620          *i = PN->getIncomingValueForBlock(Pred);
621      }
622    }
623  }
624
625  // Update any PHI nodes in the returning block to realize that we no
626  // longer branch to them.
627  BB->removePredecessor(Pred);
628  UncondBranch->eraseFromParent();
629  return cast<ReturnInst>(NewRet);
630}
631
632/// SplitBlockAndInsertIfThen - Split the containing block at the
633/// specified instruction - everything before and including Cmp stays
634/// in the old basic block, and everything after Cmp is moved to a
635/// new block. The two blocks are connected by a conditional branch
636/// (with value of Cmp being the condition).
637/// Before:
638///   Head
639///   Cmp
640///   Tail
641/// After:
642///   Head
643///   Cmp
644///   if (Cmp)
645///     ThenBlock
646///   Tail
647///
648/// If Unreachable is true, then ThenBlock ends with
649/// UnreachableInst, otherwise it branches to Tail.
650/// Returns the NewBasicBlock's terminator.
651
652TerminatorInst *llvm::SplitBlockAndInsertIfThen(Instruction *Cmp,
653    bool Unreachable, MDNode *BranchWeights) {
654  Instruction *SplitBefore = Cmp->getNextNode();
655  BasicBlock *Head = SplitBefore->getParent();
656  BasicBlock *Tail = Head->splitBasicBlock(SplitBefore);
657  TerminatorInst *HeadOldTerm = Head->getTerminator();
658  LLVMContext &C = Head->getContext();
659  BasicBlock *ThenBlock = BasicBlock::Create(C, "", Head->getParent(), Tail);
660  TerminatorInst *CheckTerm;
661  if (Unreachable)
662    CheckTerm = new UnreachableInst(C, ThenBlock);
663  else
664    CheckTerm = BranchInst::Create(Tail, ThenBlock);
665  BranchInst *HeadNewTerm =
666    BranchInst::Create(/*ifTrue*/ThenBlock, /*ifFalse*/Tail, Cmp);
667  HeadNewTerm->setMetadata(LLVMContext::MD_prof, BranchWeights);
668  ReplaceInstWithInst(HeadOldTerm, HeadNewTerm);
669  return CheckTerm;
670}
671
672/// GetIfCondition - Given a basic block (BB) with two predecessors,
673/// check to see if the merge at this block is due
674/// to an "if condition".  If so, return the boolean condition that determines
675/// which entry into BB will be taken.  Also, return by references the block
676/// that will be entered from if the condition is true, and the block that will
677/// be entered if the condition is false.
678///
679/// This does no checking to see if the true/false blocks have large or unsavory
680/// instructions in them.
681Value *llvm::GetIfCondition(BasicBlock *BB, BasicBlock *&IfTrue,
682                             BasicBlock *&IfFalse) {
683  PHINode *SomePHI = dyn_cast<PHINode>(BB->begin());
684  BasicBlock *Pred1 = NULL;
685  BasicBlock *Pred2 = NULL;
686
687  if (SomePHI) {
688    if (SomePHI->getNumIncomingValues() != 2)
689      return NULL;
690    Pred1 = SomePHI->getIncomingBlock(0);
691    Pred2 = SomePHI->getIncomingBlock(1);
692  } else {
693    pred_iterator PI = pred_begin(BB), PE = pred_end(BB);
694    if (PI == PE) // No predecessor
695      return NULL;
696    Pred1 = *PI++;
697    if (PI == PE) // Only one predecessor
698      return NULL;
699    Pred2 = *PI++;
700    if (PI != PE) // More than two predecessors
701      return NULL;
702  }
703
704  // We can only handle branches.  Other control flow will be lowered to
705  // branches if possible anyway.
706  BranchInst *Pred1Br = dyn_cast<BranchInst>(Pred1->getTerminator());
707  BranchInst *Pred2Br = dyn_cast<BranchInst>(Pred2->getTerminator());
708  if (Pred1Br == 0 || Pred2Br == 0)
709    return 0;
710
711  // Eliminate code duplication by ensuring that Pred1Br is conditional if
712  // either are.
713  if (Pred2Br->isConditional()) {
714    // If both branches are conditional, we don't have an "if statement".  In
715    // reality, we could transform this case, but since the condition will be
716    // required anyway, we stand no chance of eliminating it, so the xform is
717    // probably not profitable.
718    if (Pred1Br->isConditional())
719      return 0;
720
721    std::swap(Pred1, Pred2);
722    std::swap(Pred1Br, Pred2Br);
723  }
724
725  if (Pred1Br->isConditional()) {
726    // The only thing we have to watch out for here is to make sure that Pred2
727    // doesn't have incoming edges from other blocks.  If it does, the condition
728    // doesn't dominate BB.
729    if (Pred2->getSinglePredecessor() == 0)
730      return 0;
731
732    // If we found a conditional branch predecessor, make sure that it branches
733    // to BB and Pred2Br.  If it doesn't, this isn't an "if statement".
734    if (Pred1Br->getSuccessor(0) == BB &&
735        Pred1Br->getSuccessor(1) == Pred2) {
736      IfTrue = Pred1;
737      IfFalse = Pred2;
738    } else if (Pred1Br->getSuccessor(0) == Pred2 &&
739               Pred1Br->getSuccessor(1) == BB) {
740      IfTrue = Pred2;
741      IfFalse = Pred1;
742    } else {
743      // We know that one arm of the conditional goes to BB, so the other must
744      // go somewhere unrelated, and this must not be an "if statement".
745      return 0;
746    }
747
748    return Pred1Br->getCondition();
749  }
750
751  // Ok, if we got here, both predecessors end with an unconditional branch to
752  // BB.  Don't panic!  If both blocks only have a single (identical)
753  // predecessor, and THAT is a conditional branch, then we're all ok!
754  BasicBlock *CommonPred = Pred1->getSinglePredecessor();
755  if (CommonPred == 0 || CommonPred != Pred2->getSinglePredecessor())
756    return 0;
757
758  // Otherwise, if this is a conditional branch, then we can use it!
759  BranchInst *BI = dyn_cast<BranchInst>(CommonPred->getTerminator());
760  if (BI == 0) return 0;
761
762  assert(BI->isConditional() && "Two successors but not conditional?");
763  if (BI->getSuccessor(0) == Pred1) {
764    IfTrue = Pred1;
765    IfFalse = Pred2;
766  } else {
767    IfTrue = Pred2;
768    IfFalse = Pred1;
769  }
770  return BI->getCondition();
771}
772