ScalarReplAggregates.cpp revision 263508
1//===- ScalarReplAggregates.cpp - Scalar Replacement of Aggregates --------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This transformation implements the well known scalar replacement of
11// aggregates transformation.  This xform breaks up alloca instructions of
12// aggregate type (structure or array) into individual alloca instructions for
13// each member (if possible).  Then, if possible, it transforms the individual
14// alloca instructions into nice clean scalar SSA form.
15//
16// This combines a simple SRoA algorithm with the Mem2Reg algorithm because they
17// often interact, especially for C++ programs.  As such, iterating between
18// SRoA, then Mem2Reg until we run out of things to promote works well.
19//
20//===----------------------------------------------------------------------===//
21
22#define DEBUG_TYPE "scalarrepl"
23#include "llvm/Transforms/Scalar.h"
24#include "llvm/ADT/SetVector.h"
25#include "llvm/ADT/SmallVector.h"
26#include "llvm/ADT/Statistic.h"
27#include "llvm/Analysis/Dominators.h"
28#include "llvm/Analysis/Loads.h"
29#include "llvm/Analysis/ValueTracking.h"
30#include "llvm/DIBuilder.h"
31#include "llvm/DebugInfo.h"
32#include "llvm/IR/Constants.h"
33#include "llvm/IR/DataLayout.h"
34#include "llvm/IR/DerivedTypes.h"
35#include "llvm/IR/Function.h"
36#include "llvm/IR/GlobalVariable.h"
37#include "llvm/IR/IRBuilder.h"
38#include "llvm/IR/Instructions.h"
39#include "llvm/IR/IntrinsicInst.h"
40#include "llvm/IR/LLVMContext.h"
41#include "llvm/IR/Module.h"
42#include "llvm/IR/Operator.h"
43#include "llvm/Pass.h"
44#include "llvm/Support/CallSite.h"
45#include "llvm/Support/Debug.h"
46#include "llvm/Support/ErrorHandling.h"
47#include "llvm/Support/GetElementPtrTypeIterator.h"
48#include "llvm/Support/MathExtras.h"
49#include "llvm/Support/raw_ostream.h"
50#include "llvm/Transforms/Utils/Local.h"
51#include "llvm/Transforms/Utils/PromoteMemToReg.h"
52#include "llvm/Transforms/Utils/SSAUpdater.h"
53using namespace llvm;
54
55STATISTIC(NumReplaced,  "Number of allocas broken up");
56STATISTIC(NumPromoted,  "Number of allocas promoted");
57STATISTIC(NumAdjusted,  "Number of scalar allocas adjusted to allow promotion");
58STATISTIC(NumConverted, "Number of aggregates converted to scalar");
59
60namespace {
61  struct SROA : public FunctionPass {
62    SROA(int T, bool hasDT, char &ID, int ST, int AT, int SLT)
63      : FunctionPass(ID), HasDomTree(hasDT) {
64      if (T == -1)
65        SRThreshold = 128;
66      else
67        SRThreshold = T;
68      if (ST == -1)
69        StructMemberThreshold = 32;
70      else
71        StructMemberThreshold = ST;
72      if (AT == -1)
73        ArrayElementThreshold = 8;
74      else
75        ArrayElementThreshold = AT;
76      if (SLT == -1)
77        // Do not limit the scalar integer load size if no threshold is given.
78        ScalarLoadThreshold = -1;
79      else
80        ScalarLoadThreshold = SLT;
81    }
82
83    bool runOnFunction(Function &F);
84
85    bool performScalarRepl(Function &F);
86    bool performPromotion(Function &F);
87
88  private:
89    bool HasDomTree;
90    DataLayout *TD;
91
92    /// DeadInsts - Keep track of instructions we have made dead, so that
93    /// we can remove them after we are done working.
94    SmallVector<Value*, 32> DeadInsts;
95
96    /// AllocaInfo - When analyzing uses of an alloca instruction, this captures
97    /// information about the uses.  All these fields are initialized to false
98    /// and set to true when something is learned.
99    struct AllocaInfo {
100      /// The alloca to promote.
101      AllocaInst *AI;
102
103      /// CheckedPHIs - This is a set of verified PHI nodes, to prevent infinite
104      /// looping and avoid redundant work.
105      SmallPtrSet<PHINode*, 8> CheckedPHIs;
106
107      /// isUnsafe - This is set to true if the alloca cannot be SROA'd.
108      bool isUnsafe : 1;
109
110      /// isMemCpySrc - This is true if this aggregate is memcpy'd from.
111      bool isMemCpySrc : 1;
112
113      /// isMemCpyDst - This is true if this aggregate is memcpy'd into.
114      bool isMemCpyDst : 1;
115
116      /// hasSubelementAccess - This is true if a subelement of the alloca is
117      /// ever accessed, or false if the alloca is only accessed with mem
118      /// intrinsics or load/store that only access the entire alloca at once.
119      bool hasSubelementAccess : 1;
120
121      /// hasALoadOrStore - This is true if there are any loads or stores to it.
122      /// The alloca may just be accessed with memcpy, for example, which would
123      /// not set this.
124      bool hasALoadOrStore : 1;
125
126      explicit AllocaInfo(AllocaInst *ai)
127        : AI(ai), isUnsafe(false), isMemCpySrc(false), isMemCpyDst(false),
128          hasSubelementAccess(false), hasALoadOrStore(false) {}
129    };
130
131    /// SRThreshold - The maximum alloca size to considered for SROA.
132    unsigned SRThreshold;
133
134    /// StructMemberThreshold - The maximum number of members a struct can
135    /// contain to be considered for SROA.
136    unsigned StructMemberThreshold;
137
138    /// ArrayElementThreshold - The maximum number of elements an array can
139    /// have to be considered for SROA.
140    unsigned ArrayElementThreshold;
141
142    /// ScalarLoadThreshold - The maximum size in bits of scalars to load when
143    /// converting to scalar
144    unsigned ScalarLoadThreshold;
145
146    void MarkUnsafe(AllocaInfo &I, Instruction *User) {
147      I.isUnsafe = true;
148      DEBUG(dbgs() << "  Transformation preventing inst: " << *User << '\n');
149    }
150
151    bool isSafeAllocaToScalarRepl(AllocaInst *AI);
152
153    void isSafeForScalarRepl(Instruction *I, uint64_t Offset, AllocaInfo &Info);
154    void isSafePHISelectUseForScalarRepl(Instruction *User, uint64_t Offset,
155                                         AllocaInfo &Info);
156    void isSafeGEP(GetElementPtrInst *GEPI, uint64_t &Offset, AllocaInfo &Info);
157    void isSafeMemAccess(uint64_t Offset, uint64_t MemSize,
158                         Type *MemOpType, bool isStore, AllocaInfo &Info,
159                         Instruction *TheAccess, bool AllowWholeAccess);
160    bool TypeHasComponent(Type *T, uint64_t Offset, uint64_t Size);
161    uint64_t FindElementAndOffset(Type *&T, uint64_t &Offset,
162                                  Type *&IdxTy);
163
164    void DoScalarReplacement(AllocaInst *AI,
165                             std::vector<AllocaInst*> &WorkList);
166    void DeleteDeadInstructions();
167
168    void RewriteForScalarRepl(Instruction *I, AllocaInst *AI, uint64_t Offset,
169                              SmallVectorImpl<AllocaInst *> &NewElts);
170    void RewriteBitCast(BitCastInst *BC, AllocaInst *AI, uint64_t Offset,
171                        SmallVectorImpl<AllocaInst *> &NewElts);
172    void RewriteGEP(GetElementPtrInst *GEPI, AllocaInst *AI, uint64_t Offset,
173                    SmallVectorImpl<AllocaInst *> &NewElts);
174    void RewriteLifetimeIntrinsic(IntrinsicInst *II, AllocaInst *AI,
175                                  uint64_t Offset,
176                                  SmallVectorImpl<AllocaInst *> &NewElts);
177    void RewriteMemIntrinUserOfAlloca(MemIntrinsic *MI, Instruction *Inst,
178                                      AllocaInst *AI,
179                                      SmallVectorImpl<AllocaInst *> &NewElts);
180    void RewriteStoreUserOfWholeAlloca(StoreInst *SI, AllocaInst *AI,
181                                       SmallVectorImpl<AllocaInst *> &NewElts);
182    void RewriteLoadUserOfWholeAlloca(LoadInst *LI, AllocaInst *AI,
183                                      SmallVectorImpl<AllocaInst *> &NewElts);
184    bool ShouldAttemptScalarRepl(AllocaInst *AI);
185  };
186
187  // SROA_DT - SROA that uses DominatorTree.
188  struct SROA_DT : public SROA {
189    static char ID;
190  public:
191    SROA_DT(int T = -1, int ST = -1, int AT = -1, int SLT = -1) :
192        SROA(T, true, ID, ST, AT, SLT) {
193      initializeSROA_DTPass(*PassRegistry::getPassRegistry());
194    }
195
196    // getAnalysisUsage - This pass does not require any passes, but we know it
197    // will not alter the CFG, so say so.
198    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
199      AU.addRequired<DominatorTree>();
200      AU.setPreservesCFG();
201    }
202  };
203
204  // SROA_SSAUp - SROA that uses SSAUpdater.
205  struct SROA_SSAUp : public SROA {
206    static char ID;
207  public:
208    SROA_SSAUp(int T = -1, int ST = -1, int AT = -1, int SLT = -1) :
209        SROA(T, false, ID, ST, AT, SLT) {
210      initializeSROA_SSAUpPass(*PassRegistry::getPassRegistry());
211    }
212
213    // getAnalysisUsage - This pass does not require any passes, but we know it
214    // will not alter the CFG, so say so.
215    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
216      AU.setPreservesCFG();
217    }
218  };
219
220}
221
222char SROA_DT::ID = 0;
223char SROA_SSAUp::ID = 0;
224
225INITIALIZE_PASS_BEGIN(SROA_DT, "scalarrepl",
226                "Scalar Replacement of Aggregates (DT)", false, false)
227INITIALIZE_PASS_DEPENDENCY(DominatorTree)
228INITIALIZE_PASS_END(SROA_DT, "scalarrepl",
229                "Scalar Replacement of Aggregates (DT)", false, false)
230
231INITIALIZE_PASS_BEGIN(SROA_SSAUp, "scalarrepl-ssa",
232                      "Scalar Replacement of Aggregates (SSAUp)", false, false)
233INITIALIZE_PASS_END(SROA_SSAUp, "scalarrepl-ssa",
234                    "Scalar Replacement of Aggregates (SSAUp)", false, false)
235
236// Public interface to the ScalarReplAggregates pass
237FunctionPass *llvm::createScalarReplAggregatesPass(int Threshold,
238                                                   bool UseDomTree,
239                                                   int StructMemberThreshold,
240                                                   int ArrayElementThreshold,
241                                                   int ScalarLoadThreshold) {
242  if (UseDomTree)
243    return new SROA_DT(Threshold, StructMemberThreshold, ArrayElementThreshold,
244                       ScalarLoadThreshold);
245  return new SROA_SSAUp(Threshold, StructMemberThreshold,
246                        ArrayElementThreshold, ScalarLoadThreshold);
247}
248
249
250//===----------------------------------------------------------------------===//
251// Convert To Scalar Optimization.
252//===----------------------------------------------------------------------===//
253
254namespace {
255/// ConvertToScalarInfo - This class implements the "Convert To Scalar"
256/// optimization, which scans the uses of an alloca and determines if it can
257/// rewrite it in terms of a single new alloca that can be mem2reg'd.
258class ConvertToScalarInfo {
259  /// AllocaSize - The size of the alloca being considered in bytes.
260  unsigned AllocaSize;
261  const DataLayout &TD;
262  unsigned ScalarLoadThreshold;
263
264  /// IsNotTrivial - This is set to true if there is some access to the object
265  /// which means that mem2reg can't promote it.
266  bool IsNotTrivial;
267
268  /// ScalarKind - Tracks the kind of alloca being considered for promotion,
269  /// computed based on the uses of the alloca rather than the LLVM type system.
270  enum {
271    Unknown,
272
273    // Accesses via GEPs that are consistent with element access of a vector
274    // type. This will not be converted into a vector unless there is a later
275    // access using an actual vector type.
276    ImplicitVector,
277
278    // Accesses via vector operations and GEPs that are consistent with the
279    // layout of a vector type.
280    Vector,
281
282    // An integer bag-of-bits with bitwise operations for insertion and
283    // extraction. Any combination of types can be converted into this kind
284    // of scalar.
285    Integer
286  } ScalarKind;
287
288  /// VectorTy - This tracks the type that we should promote the vector to if
289  /// it is possible to turn it into a vector.  This starts out null, and if it
290  /// isn't possible to turn into a vector type, it gets set to VoidTy.
291  VectorType *VectorTy;
292
293  /// HadNonMemTransferAccess - True if there is at least one access to the
294  /// alloca that is not a MemTransferInst.  We don't want to turn structs into
295  /// large integers unless there is some potential for optimization.
296  bool HadNonMemTransferAccess;
297
298  /// HadDynamicAccess - True if some element of this alloca was dynamic.
299  /// We don't yet have support for turning a dynamic access into a large
300  /// integer.
301  bool HadDynamicAccess;
302
303public:
304  explicit ConvertToScalarInfo(unsigned Size, const DataLayout &td,
305                               unsigned SLT)
306    : AllocaSize(Size), TD(td), ScalarLoadThreshold(SLT), IsNotTrivial(false),
307    ScalarKind(Unknown), VectorTy(0), HadNonMemTransferAccess(false),
308    HadDynamicAccess(false) { }
309
310  AllocaInst *TryConvert(AllocaInst *AI);
311
312private:
313  bool CanConvertToScalar(Value *V, uint64_t Offset, Value* NonConstantIdx);
314  void MergeInTypeForLoadOrStore(Type *In, uint64_t Offset);
315  bool MergeInVectorType(VectorType *VInTy, uint64_t Offset);
316  void ConvertUsesToScalar(Value *Ptr, AllocaInst *NewAI, uint64_t Offset,
317                           Value *NonConstantIdx);
318
319  Value *ConvertScalar_ExtractValue(Value *NV, Type *ToType,
320                                    uint64_t Offset, Value* NonConstantIdx,
321                                    IRBuilder<> &Builder);
322  Value *ConvertScalar_InsertValue(Value *StoredVal, Value *ExistingVal,
323                                   uint64_t Offset, Value* NonConstantIdx,
324                                   IRBuilder<> &Builder);
325};
326} // end anonymous namespace.
327
328
329/// TryConvert - Analyze the specified alloca, and if it is safe to do so,
330/// rewrite it to be a new alloca which is mem2reg'able.  This returns the new
331/// alloca if possible or null if not.
332AllocaInst *ConvertToScalarInfo::TryConvert(AllocaInst *AI) {
333  // If we can't convert this scalar, or if mem2reg can trivially do it, bail
334  // out.
335  if (!CanConvertToScalar(AI, 0, 0) || !IsNotTrivial)
336    return 0;
337
338  // If an alloca has only memset / memcpy uses, it may still have an Unknown
339  // ScalarKind. Treat it as an Integer below.
340  if (ScalarKind == Unknown)
341    ScalarKind = Integer;
342
343  if (ScalarKind == Vector && VectorTy->getBitWidth() != AllocaSize * 8)
344    ScalarKind = Integer;
345
346  // If we were able to find a vector type that can handle this with
347  // insert/extract elements, and if there was at least one use that had
348  // a vector type, promote this to a vector.  We don't want to promote
349  // random stuff that doesn't use vectors (e.g. <9 x double>) because then
350  // we just get a lot of insert/extracts.  If at least one vector is
351  // involved, then we probably really do have a union of vector/array.
352  Type *NewTy;
353  if (ScalarKind == Vector) {
354    assert(VectorTy && "Missing type for vector scalar.");
355    DEBUG(dbgs() << "CONVERT TO VECTOR: " << *AI << "\n  TYPE = "
356          << *VectorTy << '\n');
357    NewTy = VectorTy;  // Use the vector type.
358  } else {
359    unsigned BitWidth = AllocaSize * 8;
360
361    // Do not convert to scalar integer if the alloca size exceeds the
362    // scalar load threshold.
363    if (BitWidth > ScalarLoadThreshold)
364      return 0;
365
366    if ((ScalarKind == ImplicitVector || ScalarKind == Integer) &&
367        !HadNonMemTransferAccess && !TD.fitsInLegalInteger(BitWidth))
368      return 0;
369    // Dynamic accesses on integers aren't yet supported.  They need us to shift
370    // by a dynamic amount which could be difficult to work out as we might not
371    // know whether to use a left or right shift.
372    if (ScalarKind == Integer && HadDynamicAccess)
373      return 0;
374
375    DEBUG(dbgs() << "CONVERT TO SCALAR INTEGER: " << *AI << "\n");
376    // Create and insert the integer alloca.
377    NewTy = IntegerType::get(AI->getContext(), BitWidth);
378  }
379  AllocaInst *NewAI = new AllocaInst(NewTy, 0, "", AI->getParent()->begin());
380  ConvertUsesToScalar(AI, NewAI, 0, 0);
381  return NewAI;
382}
383
384/// MergeInTypeForLoadOrStore - Add the 'In' type to the accumulated vector type
385/// (VectorTy) so far at the offset specified by Offset (which is specified in
386/// bytes).
387///
388/// There are two cases we handle here:
389///   1) A union of vector types of the same size and potentially its elements.
390///      Here we turn element accesses into insert/extract element operations.
391///      This promotes a <4 x float> with a store of float to the third element
392///      into a <4 x float> that uses insert element.
393///   2) A fully general blob of memory, which we turn into some (potentially
394///      large) integer type with extract and insert operations where the loads
395///      and stores would mutate the memory.  We mark this by setting VectorTy
396///      to VoidTy.
397void ConvertToScalarInfo::MergeInTypeForLoadOrStore(Type *In,
398                                                    uint64_t Offset) {
399  // If we already decided to turn this into a blob of integer memory, there is
400  // nothing to be done.
401  if (ScalarKind == Integer)
402    return;
403
404  // If this could be contributing to a vector, analyze it.
405
406  // If the In type is a vector that is the same size as the alloca, see if it
407  // matches the existing VecTy.
408  if (VectorType *VInTy = dyn_cast<VectorType>(In)) {
409    if (MergeInVectorType(VInTy, Offset))
410      return;
411  } else if (In->isFloatTy() || In->isDoubleTy() ||
412             (In->isIntegerTy() && In->getPrimitiveSizeInBits() >= 8 &&
413              isPowerOf2_32(In->getPrimitiveSizeInBits()))) {
414    // Full width accesses can be ignored, because they can always be turned
415    // into bitcasts.
416    unsigned EltSize = In->getPrimitiveSizeInBits()/8;
417    if (EltSize == AllocaSize)
418      return;
419
420    // If we're accessing something that could be an element of a vector, see
421    // if the implied vector agrees with what we already have and if Offset is
422    // compatible with it.
423    if (Offset % EltSize == 0 && AllocaSize % EltSize == 0 &&
424        (!VectorTy || EltSize == VectorTy->getElementType()
425                                         ->getPrimitiveSizeInBits()/8)) {
426      if (!VectorTy) {
427        ScalarKind = ImplicitVector;
428        VectorTy = VectorType::get(In, AllocaSize/EltSize);
429      }
430      return;
431    }
432  }
433
434  // Otherwise, we have a case that we can't handle with an optimized vector
435  // form.  We can still turn this into a large integer.
436  ScalarKind = Integer;
437}
438
439/// MergeInVectorType - Handles the vector case of MergeInTypeForLoadOrStore,
440/// returning true if the type was successfully merged and false otherwise.
441bool ConvertToScalarInfo::MergeInVectorType(VectorType *VInTy,
442                                            uint64_t Offset) {
443  if (VInTy->getBitWidth()/8 == AllocaSize && Offset == 0) {
444    // If we're storing/loading a vector of the right size, allow it as a
445    // vector.  If this the first vector we see, remember the type so that
446    // we know the element size. If this is a subsequent access, ignore it
447    // even if it is a differing type but the same size. Worst case we can
448    // bitcast the resultant vectors.
449    if (!VectorTy)
450      VectorTy = VInTy;
451    ScalarKind = Vector;
452    return true;
453  }
454
455  return false;
456}
457
458/// CanConvertToScalar - V is a pointer.  If we can convert the pointee and all
459/// its accesses to a single vector type, return true and set VecTy to
460/// the new type.  If we could convert the alloca into a single promotable
461/// integer, return true but set VecTy to VoidTy.  Further, if the use is not a
462/// completely trivial use that mem2reg could promote, set IsNotTrivial.  Offset
463/// is the current offset from the base of the alloca being analyzed.
464///
465/// If we see at least one access to the value that is as a vector type, set the
466/// SawVec flag.
467bool ConvertToScalarInfo::CanConvertToScalar(Value *V, uint64_t Offset,
468                                             Value* NonConstantIdx) {
469  for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI!=E; ++UI) {
470    Instruction *User = cast<Instruction>(*UI);
471
472    if (LoadInst *LI = dyn_cast<LoadInst>(User)) {
473      // Don't break volatile loads.
474      if (!LI->isSimple())
475        return false;
476      // Don't touch MMX operations.
477      if (LI->getType()->isX86_MMXTy())
478        return false;
479      HadNonMemTransferAccess = true;
480      MergeInTypeForLoadOrStore(LI->getType(), Offset);
481      continue;
482    }
483
484    if (StoreInst *SI = dyn_cast<StoreInst>(User)) {
485      // Storing the pointer, not into the value?
486      if (SI->getOperand(0) == V || !SI->isSimple()) return false;
487      // Don't touch MMX operations.
488      if (SI->getOperand(0)->getType()->isX86_MMXTy())
489        return false;
490      HadNonMemTransferAccess = true;
491      MergeInTypeForLoadOrStore(SI->getOperand(0)->getType(), Offset);
492      continue;
493    }
494
495    if (BitCastInst *BCI = dyn_cast<BitCastInst>(User)) {
496      if (!onlyUsedByLifetimeMarkers(BCI))
497        IsNotTrivial = true;  // Can't be mem2reg'd.
498      if (!CanConvertToScalar(BCI, Offset, NonConstantIdx))
499        return false;
500      continue;
501    }
502
503    if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(User)) {
504      // If this is a GEP with a variable indices, we can't handle it.
505      PointerType* PtrTy = dyn_cast<PointerType>(GEP->getPointerOperandType());
506      if (!PtrTy)
507        return false;
508
509      // Compute the offset that this GEP adds to the pointer.
510      SmallVector<Value*, 8> Indices(GEP->op_begin()+1, GEP->op_end());
511      Value *GEPNonConstantIdx = 0;
512      if (!GEP->hasAllConstantIndices()) {
513        if (!isa<VectorType>(PtrTy->getElementType()))
514          return false;
515        if (NonConstantIdx)
516          return false;
517        GEPNonConstantIdx = Indices.pop_back_val();
518        if (!GEPNonConstantIdx->getType()->isIntegerTy(32))
519          return false;
520        HadDynamicAccess = true;
521      } else
522        GEPNonConstantIdx = NonConstantIdx;
523      uint64_t GEPOffset = TD.getIndexedOffset(PtrTy,
524                                               Indices);
525      // See if all uses can be converted.
526      if (!CanConvertToScalar(GEP, Offset+GEPOffset, GEPNonConstantIdx))
527        return false;
528      IsNotTrivial = true;  // Can't be mem2reg'd.
529      HadNonMemTransferAccess = true;
530      continue;
531    }
532
533    // If this is a constant sized memset of a constant value (e.g. 0) we can
534    // handle it.
535    if (MemSetInst *MSI = dyn_cast<MemSetInst>(User)) {
536      // Store to dynamic index.
537      if (NonConstantIdx)
538        return false;
539      // Store of constant value.
540      if (!isa<ConstantInt>(MSI->getValue()))
541        return false;
542
543      // Store of constant size.
544      ConstantInt *Len = dyn_cast<ConstantInt>(MSI->getLength());
545      if (!Len)
546        return false;
547
548      // If the size differs from the alloca, we can only convert the alloca to
549      // an integer bag-of-bits.
550      // FIXME: This should handle all of the cases that are currently accepted
551      // as vector element insertions.
552      if (Len->getZExtValue() != AllocaSize || Offset != 0)
553        ScalarKind = Integer;
554
555      IsNotTrivial = true;  // Can't be mem2reg'd.
556      HadNonMemTransferAccess = true;
557      continue;
558    }
559
560    // If this is a memcpy or memmove into or out of the whole allocation, we
561    // can handle it like a load or store of the scalar type.
562    if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(User)) {
563      // Store to dynamic index.
564      if (NonConstantIdx)
565        return false;
566      ConstantInt *Len = dyn_cast<ConstantInt>(MTI->getLength());
567      if (Len == 0 || Len->getZExtValue() != AllocaSize || Offset != 0)
568        return false;
569
570      IsNotTrivial = true;  // Can't be mem2reg'd.
571      continue;
572    }
573
574    // If this is a lifetime intrinsic, we can handle it.
575    if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(User)) {
576      if (II->getIntrinsicID() == Intrinsic::lifetime_start ||
577          II->getIntrinsicID() == Intrinsic::lifetime_end) {
578        continue;
579      }
580    }
581
582    // Otherwise, we cannot handle this!
583    return false;
584  }
585
586  return true;
587}
588
589/// ConvertUsesToScalar - Convert all of the users of Ptr to use the new alloca
590/// directly.  This happens when we are converting an "integer union" to a
591/// single integer scalar, or when we are converting a "vector union" to a
592/// vector with insert/extractelement instructions.
593///
594/// Offset is an offset from the original alloca, in bits that need to be
595/// shifted to the right.  By the end of this, there should be no uses of Ptr.
596void ConvertToScalarInfo::ConvertUsesToScalar(Value *Ptr, AllocaInst *NewAI,
597                                              uint64_t Offset,
598                                              Value* NonConstantIdx) {
599  while (!Ptr->use_empty()) {
600    Instruction *User = cast<Instruction>(Ptr->use_back());
601
602    if (BitCastInst *CI = dyn_cast<BitCastInst>(User)) {
603      ConvertUsesToScalar(CI, NewAI, Offset, NonConstantIdx);
604      CI->eraseFromParent();
605      continue;
606    }
607
608    if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(User)) {
609      // Compute the offset that this GEP adds to the pointer.
610      SmallVector<Value*, 8> Indices(GEP->op_begin()+1, GEP->op_end());
611      Value* GEPNonConstantIdx = 0;
612      if (!GEP->hasAllConstantIndices()) {
613        assert(!NonConstantIdx &&
614               "Dynamic GEP reading from dynamic GEP unsupported");
615        GEPNonConstantIdx = Indices.pop_back_val();
616      } else
617        GEPNonConstantIdx = NonConstantIdx;
618      uint64_t GEPOffset = TD.getIndexedOffset(GEP->getPointerOperandType(),
619                                               Indices);
620      ConvertUsesToScalar(GEP, NewAI, Offset+GEPOffset*8, GEPNonConstantIdx);
621      GEP->eraseFromParent();
622      continue;
623    }
624
625    IRBuilder<> Builder(User);
626
627    if (LoadInst *LI = dyn_cast<LoadInst>(User)) {
628      // The load is a bit extract from NewAI shifted right by Offset bits.
629      Value *LoadedVal = Builder.CreateLoad(NewAI);
630      Value *NewLoadVal
631        = ConvertScalar_ExtractValue(LoadedVal, LI->getType(), Offset,
632                                     NonConstantIdx, Builder);
633      LI->replaceAllUsesWith(NewLoadVal);
634      LI->eraseFromParent();
635      continue;
636    }
637
638    if (StoreInst *SI = dyn_cast<StoreInst>(User)) {
639      assert(SI->getOperand(0) != Ptr && "Consistency error!");
640      Instruction *Old = Builder.CreateLoad(NewAI, NewAI->getName()+".in");
641      Value *New = ConvertScalar_InsertValue(SI->getOperand(0), Old, Offset,
642                                             NonConstantIdx, Builder);
643      Builder.CreateStore(New, NewAI);
644      SI->eraseFromParent();
645
646      // If the load we just inserted is now dead, then the inserted store
647      // overwrote the entire thing.
648      if (Old->use_empty())
649        Old->eraseFromParent();
650      continue;
651    }
652
653    // If this is a constant sized memset of a constant value (e.g. 0) we can
654    // transform it into a store of the expanded constant value.
655    if (MemSetInst *MSI = dyn_cast<MemSetInst>(User)) {
656      assert(MSI->getRawDest() == Ptr && "Consistency error!");
657      assert(!NonConstantIdx && "Cannot replace dynamic memset with insert");
658      int64_t SNumBytes = cast<ConstantInt>(MSI->getLength())->getSExtValue();
659      if (SNumBytes > 0 && (SNumBytes >> 32) == 0) {
660        unsigned NumBytes = static_cast<unsigned>(SNumBytes);
661        unsigned Val = cast<ConstantInt>(MSI->getValue())->getZExtValue();
662
663        // Compute the value replicated the right number of times.
664        APInt APVal(NumBytes*8, Val);
665
666        // Splat the value if non-zero.
667        if (Val)
668          for (unsigned i = 1; i != NumBytes; ++i)
669            APVal |= APVal << 8;
670
671        Instruction *Old = Builder.CreateLoad(NewAI, NewAI->getName()+".in");
672        Value *New = ConvertScalar_InsertValue(
673                                    ConstantInt::get(User->getContext(), APVal),
674                                               Old, Offset, 0, Builder);
675        Builder.CreateStore(New, NewAI);
676
677        // If the load we just inserted is now dead, then the memset overwrote
678        // the entire thing.
679        if (Old->use_empty())
680          Old->eraseFromParent();
681      }
682      MSI->eraseFromParent();
683      continue;
684    }
685
686    // If this is a memcpy or memmove into or out of the whole allocation, we
687    // can handle it like a load or store of the scalar type.
688    if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(User)) {
689      assert(Offset == 0 && "must be store to start of alloca");
690      assert(!NonConstantIdx && "Cannot replace dynamic transfer with insert");
691
692      // If the source and destination are both to the same alloca, then this is
693      // a noop copy-to-self, just delete it.  Otherwise, emit a load and store
694      // as appropriate.
695      AllocaInst *OrigAI = cast<AllocaInst>(GetUnderlyingObject(Ptr, &TD, 0));
696
697      if (GetUnderlyingObject(MTI->getSource(), &TD, 0) != OrigAI) {
698        // Dest must be OrigAI, change this to be a load from the original
699        // pointer (bitcasted), then a store to our new alloca.
700        assert(MTI->getRawDest() == Ptr && "Neither use is of pointer?");
701        Value *SrcPtr = MTI->getSource();
702        PointerType* SPTy = cast<PointerType>(SrcPtr->getType());
703        PointerType* AIPTy = cast<PointerType>(NewAI->getType());
704        if (SPTy->getAddressSpace() != AIPTy->getAddressSpace()) {
705          AIPTy = PointerType::get(AIPTy->getElementType(),
706                                   SPTy->getAddressSpace());
707        }
708        SrcPtr = Builder.CreateBitCast(SrcPtr, AIPTy);
709
710        LoadInst *SrcVal = Builder.CreateLoad(SrcPtr, "srcval");
711        SrcVal->setAlignment(MTI->getAlignment());
712        Builder.CreateStore(SrcVal, NewAI);
713      } else if (GetUnderlyingObject(MTI->getDest(), &TD, 0) != OrigAI) {
714        // Src must be OrigAI, change this to be a load from NewAI then a store
715        // through the original dest pointer (bitcasted).
716        assert(MTI->getRawSource() == Ptr && "Neither use is of pointer?");
717        LoadInst *SrcVal = Builder.CreateLoad(NewAI, "srcval");
718
719        PointerType* DPTy = cast<PointerType>(MTI->getDest()->getType());
720        PointerType* AIPTy = cast<PointerType>(NewAI->getType());
721        if (DPTy->getAddressSpace() != AIPTy->getAddressSpace()) {
722          AIPTy = PointerType::get(AIPTy->getElementType(),
723                                   DPTy->getAddressSpace());
724        }
725        Value *DstPtr = Builder.CreateBitCast(MTI->getDest(), AIPTy);
726
727        StoreInst *NewStore = Builder.CreateStore(SrcVal, DstPtr);
728        NewStore->setAlignment(MTI->getAlignment());
729      } else {
730        // Noop transfer. Src == Dst
731      }
732
733      MTI->eraseFromParent();
734      continue;
735    }
736
737    if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(User)) {
738      if (II->getIntrinsicID() == Intrinsic::lifetime_start ||
739          II->getIntrinsicID() == Intrinsic::lifetime_end) {
740        // There's no need to preserve these, as the resulting alloca will be
741        // converted to a register anyways.
742        II->eraseFromParent();
743        continue;
744      }
745    }
746
747    llvm_unreachable("Unsupported operation!");
748  }
749}
750
751/// ConvertScalar_ExtractValue - Extract a value of type ToType from an integer
752/// or vector value FromVal, extracting the bits from the offset specified by
753/// Offset.  This returns the value, which is of type ToType.
754///
755/// This happens when we are converting an "integer union" to a single
756/// integer scalar, or when we are converting a "vector union" to a vector with
757/// insert/extractelement instructions.
758///
759/// Offset is an offset from the original alloca, in bits that need to be
760/// shifted to the right.
761Value *ConvertToScalarInfo::
762ConvertScalar_ExtractValue(Value *FromVal, Type *ToType,
763                           uint64_t Offset, Value* NonConstantIdx,
764                           IRBuilder<> &Builder) {
765  // If the load is of the whole new alloca, no conversion is needed.
766  Type *FromType = FromVal->getType();
767  if (FromType == ToType && Offset == 0)
768    return FromVal;
769
770  // If the result alloca is a vector type, this is either an element
771  // access or a bitcast to another vector type of the same size.
772  if (VectorType *VTy = dyn_cast<VectorType>(FromType)) {
773    unsigned FromTypeSize = TD.getTypeAllocSize(FromType);
774    unsigned ToTypeSize = TD.getTypeAllocSize(ToType);
775    if (FromTypeSize == ToTypeSize)
776        return Builder.CreateBitCast(FromVal, ToType);
777
778    // Otherwise it must be an element access.
779    unsigned Elt = 0;
780    if (Offset) {
781      unsigned EltSize = TD.getTypeAllocSizeInBits(VTy->getElementType());
782      Elt = Offset/EltSize;
783      assert(EltSize*Elt == Offset && "Invalid modulus in validity checking");
784    }
785    // Return the element extracted out of it.
786    Value *Idx;
787    if (NonConstantIdx) {
788      if (Elt)
789        Idx = Builder.CreateAdd(NonConstantIdx,
790                                Builder.getInt32(Elt),
791                                "dyn.offset");
792      else
793        Idx = NonConstantIdx;
794    } else
795      Idx = Builder.getInt32(Elt);
796    Value *V = Builder.CreateExtractElement(FromVal, Idx);
797    if (V->getType() != ToType)
798      V = Builder.CreateBitCast(V, ToType);
799    return V;
800  }
801
802  // If ToType is a first class aggregate, extract out each of the pieces and
803  // use insertvalue's to form the FCA.
804  if (StructType *ST = dyn_cast<StructType>(ToType)) {
805    assert(!NonConstantIdx &&
806           "Dynamic indexing into struct types not supported");
807    const StructLayout &Layout = *TD.getStructLayout(ST);
808    Value *Res = UndefValue::get(ST);
809    for (unsigned i = 0, e = ST->getNumElements(); i != e; ++i) {
810      Value *Elt = ConvertScalar_ExtractValue(FromVal, ST->getElementType(i),
811                                        Offset+Layout.getElementOffsetInBits(i),
812                                              0, Builder);
813      Res = Builder.CreateInsertValue(Res, Elt, i);
814    }
815    return Res;
816  }
817
818  if (ArrayType *AT = dyn_cast<ArrayType>(ToType)) {
819    assert(!NonConstantIdx &&
820           "Dynamic indexing into array types not supported");
821    uint64_t EltSize = TD.getTypeAllocSizeInBits(AT->getElementType());
822    Value *Res = UndefValue::get(AT);
823    for (unsigned i = 0, e = AT->getNumElements(); i != e; ++i) {
824      Value *Elt = ConvertScalar_ExtractValue(FromVal, AT->getElementType(),
825                                              Offset+i*EltSize, 0, Builder);
826      Res = Builder.CreateInsertValue(Res, Elt, i);
827    }
828    return Res;
829  }
830
831  // Otherwise, this must be a union that was converted to an integer value.
832  IntegerType *NTy = cast<IntegerType>(FromVal->getType());
833
834  // If this is a big-endian system and the load is narrower than the
835  // full alloca type, we need to do a shift to get the right bits.
836  int ShAmt = 0;
837  if (TD.isBigEndian()) {
838    // On big-endian machines, the lowest bit is stored at the bit offset
839    // from the pointer given by getTypeStoreSizeInBits.  This matters for
840    // integers with a bitwidth that is not a multiple of 8.
841    ShAmt = TD.getTypeStoreSizeInBits(NTy) -
842            TD.getTypeStoreSizeInBits(ToType) - Offset;
843  } else {
844    ShAmt = Offset;
845  }
846
847  // Note: we support negative bitwidths (with shl) which are not defined.
848  // We do this to support (f.e.) loads off the end of a structure where
849  // only some bits are used.
850  if (ShAmt > 0 && (unsigned)ShAmt < NTy->getBitWidth())
851    FromVal = Builder.CreateLShr(FromVal,
852                                 ConstantInt::get(FromVal->getType(), ShAmt));
853  else if (ShAmt < 0 && (unsigned)-ShAmt < NTy->getBitWidth())
854    FromVal = Builder.CreateShl(FromVal,
855                                ConstantInt::get(FromVal->getType(), -ShAmt));
856
857  // Finally, unconditionally truncate the integer to the right width.
858  unsigned LIBitWidth = TD.getTypeSizeInBits(ToType);
859  if (LIBitWidth < NTy->getBitWidth())
860    FromVal =
861      Builder.CreateTrunc(FromVal, IntegerType::get(FromVal->getContext(),
862                                                    LIBitWidth));
863  else if (LIBitWidth > NTy->getBitWidth())
864    FromVal =
865       Builder.CreateZExt(FromVal, IntegerType::get(FromVal->getContext(),
866                                                    LIBitWidth));
867
868  // If the result is an integer, this is a trunc or bitcast.
869  if (ToType->isIntegerTy()) {
870    // Should be done.
871  } else if (ToType->isFloatingPointTy() || ToType->isVectorTy()) {
872    // Just do a bitcast, we know the sizes match up.
873    FromVal = Builder.CreateBitCast(FromVal, ToType);
874  } else {
875    // Otherwise must be a pointer.
876    FromVal = Builder.CreateIntToPtr(FromVal, ToType);
877  }
878  assert(FromVal->getType() == ToType && "Didn't convert right?");
879  return FromVal;
880}
881
882/// ConvertScalar_InsertValue - Insert the value "SV" into the existing integer
883/// or vector value "Old" at the offset specified by Offset.
884///
885/// This happens when we are converting an "integer union" to a
886/// single integer scalar, or when we are converting a "vector union" to a
887/// vector with insert/extractelement instructions.
888///
889/// Offset is an offset from the original alloca, in bits that need to be
890/// shifted to the right.
891///
892/// NonConstantIdx is an index value if there was a GEP with a non-constant
893/// index value.  If this is 0 then all GEPs used to find this insert address
894/// are constant.
895Value *ConvertToScalarInfo::
896ConvertScalar_InsertValue(Value *SV, Value *Old,
897                          uint64_t Offset, Value* NonConstantIdx,
898                          IRBuilder<> &Builder) {
899  // Convert the stored type to the actual type, shift it left to insert
900  // then 'or' into place.
901  Type *AllocaType = Old->getType();
902  LLVMContext &Context = Old->getContext();
903
904  if (VectorType *VTy = dyn_cast<VectorType>(AllocaType)) {
905    uint64_t VecSize = TD.getTypeAllocSizeInBits(VTy);
906    uint64_t ValSize = TD.getTypeAllocSizeInBits(SV->getType());
907
908    // Changing the whole vector with memset or with an access of a different
909    // vector type?
910    if (ValSize == VecSize)
911        return Builder.CreateBitCast(SV, AllocaType);
912
913    // Must be an element insertion.
914    Type *EltTy = VTy->getElementType();
915    if (SV->getType() != EltTy)
916      SV = Builder.CreateBitCast(SV, EltTy);
917    uint64_t EltSize = TD.getTypeAllocSizeInBits(EltTy);
918    unsigned Elt = Offset/EltSize;
919    Value *Idx;
920    if (NonConstantIdx) {
921      if (Elt)
922        Idx = Builder.CreateAdd(NonConstantIdx,
923                                Builder.getInt32(Elt),
924                                "dyn.offset");
925      else
926        Idx = NonConstantIdx;
927    } else
928      Idx = Builder.getInt32(Elt);
929    return Builder.CreateInsertElement(Old, SV, Idx);
930  }
931
932  // If SV is a first-class aggregate value, insert each value recursively.
933  if (StructType *ST = dyn_cast<StructType>(SV->getType())) {
934    assert(!NonConstantIdx &&
935           "Dynamic indexing into struct types not supported");
936    const StructLayout &Layout = *TD.getStructLayout(ST);
937    for (unsigned i = 0, e = ST->getNumElements(); i != e; ++i) {
938      Value *Elt = Builder.CreateExtractValue(SV, i);
939      Old = ConvertScalar_InsertValue(Elt, Old,
940                                      Offset+Layout.getElementOffsetInBits(i),
941                                      0, Builder);
942    }
943    return Old;
944  }
945
946  if (ArrayType *AT = dyn_cast<ArrayType>(SV->getType())) {
947    assert(!NonConstantIdx &&
948           "Dynamic indexing into array types not supported");
949    uint64_t EltSize = TD.getTypeAllocSizeInBits(AT->getElementType());
950    for (unsigned i = 0, e = AT->getNumElements(); i != e; ++i) {
951      Value *Elt = Builder.CreateExtractValue(SV, i);
952      Old = ConvertScalar_InsertValue(Elt, Old, Offset+i*EltSize, 0, Builder);
953    }
954    return Old;
955  }
956
957  // If SV is a float, convert it to the appropriate integer type.
958  // If it is a pointer, do the same.
959  unsigned SrcWidth = TD.getTypeSizeInBits(SV->getType());
960  unsigned DestWidth = TD.getTypeSizeInBits(AllocaType);
961  unsigned SrcStoreWidth = TD.getTypeStoreSizeInBits(SV->getType());
962  unsigned DestStoreWidth = TD.getTypeStoreSizeInBits(AllocaType);
963  if (SV->getType()->isFloatingPointTy() || SV->getType()->isVectorTy())
964    SV = Builder.CreateBitCast(SV, IntegerType::get(SV->getContext(),SrcWidth));
965  else if (SV->getType()->isPointerTy())
966    SV = Builder.CreatePtrToInt(SV, TD.getIntPtrType(SV->getType()));
967
968  // Zero extend or truncate the value if needed.
969  if (SV->getType() != AllocaType) {
970    if (SV->getType()->getPrimitiveSizeInBits() <
971             AllocaType->getPrimitiveSizeInBits())
972      SV = Builder.CreateZExt(SV, AllocaType);
973    else {
974      // Truncation may be needed if storing more than the alloca can hold
975      // (undefined behavior).
976      SV = Builder.CreateTrunc(SV, AllocaType);
977      SrcWidth = DestWidth;
978      SrcStoreWidth = DestStoreWidth;
979    }
980  }
981
982  // If this is a big-endian system and the store is narrower than the
983  // full alloca type, we need to do a shift to get the right bits.
984  int ShAmt = 0;
985  if (TD.isBigEndian()) {
986    // On big-endian machines, the lowest bit is stored at the bit offset
987    // from the pointer given by getTypeStoreSizeInBits.  This matters for
988    // integers with a bitwidth that is not a multiple of 8.
989    ShAmt = DestStoreWidth - SrcStoreWidth - Offset;
990  } else {
991    ShAmt = Offset;
992  }
993
994  // Note: we support negative bitwidths (with shr) which are not defined.
995  // We do this to support (f.e.) stores off the end of a structure where
996  // only some bits in the structure are set.
997  APInt Mask(APInt::getLowBitsSet(DestWidth, SrcWidth));
998  if (ShAmt > 0 && (unsigned)ShAmt < DestWidth) {
999    SV = Builder.CreateShl(SV, ConstantInt::get(SV->getType(), ShAmt));
1000    Mask <<= ShAmt;
1001  } else if (ShAmt < 0 && (unsigned)-ShAmt < DestWidth) {
1002    SV = Builder.CreateLShr(SV, ConstantInt::get(SV->getType(), -ShAmt));
1003    Mask = Mask.lshr(-ShAmt);
1004  }
1005
1006  // Mask out the bits we are about to insert from the old value, and or
1007  // in the new bits.
1008  if (SrcWidth != DestWidth) {
1009    assert(DestWidth > SrcWidth);
1010    Old = Builder.CreateAnd(Old, ConstantInt::get(Context, ~Mask), "mask");
1011    SV = Builder.CreateOr(Old, SV, "ins");
1012  }
1013  return SV;
1014}
1015
1016
1017//===----------------------------------------------------------------------===//
1018// SRoA Driver
1019//===----------------------------------------------------------------------===//
1020
1021
1022bool SROA::runOnFunction(Function &F) {
1023  TD = getAnalysisIfAvailable<DataLayout>();
1024
1025  bool Changed = performPromotion(F);
1026
1027  // FIXME: ScalarRepl currently depends on DataLayout more than it
1028  // theoretically needs to. It should be refactored in order to support
1029  // target-independent IR. Until this is done, just skip the actual
1030  // scalar-replacement portion of this pass.
1031  if (!TD) return Changed;
1032
1033  while (1) {
1034    bool LocalChange = performScalarRepl(F);
1035    if (!LocalChange) break;   // No need to repromote if no scalarrepl
1036    Changed = true;
1037    LocalChange = performPromotion(F);
1038    if (!LocalChange) break;   // No need to re-scalarrepl if no promotion
1039  }
1040
1041  return Changed;
1042}
1043
1044namespace {
1045class AllocaPromoter : public LoadAndStorePromoter {
1046  AllocaInst *AI;
1047  DIBuilder *DIB;
1048  SmallVector<DbgDeclareInst *, 4> DDIs;
1049  SmallVector<DbgValueInst *, 4> DVIs;
1050public:
1051  AllocaPromoter(const SmallVectorImpl<Instruction*> &Insts, SSAUpdater &S,
1052                 DIBuilder *DB)
1053    : LoadAndStorePromoter(Insts, S), AI(0), DIB(DB) {}
1054
1055  void run(AllocaInst *AI, const SmallVectorImpl<Instruction*> &Insts) {
1056    // Remember which alloca we're promoting (for isInstInList).
1057    this->AI = AI;
1058    if (MDNode *DebugNode = MDNode::getIfExists(AI->getContext(), AI)) {
1059      for (Value::use_iterator UI = DebugNode->use_begin(),
1060             E = DebugNode->use_end(); UI != E; ++UI)
1061        if (DbgDeclareInst *DDI = dyn_cast<DbgDeclareInst>(*UI))
1062          DDIs.push_back(DDI);
1063        else if (DbgValueInst *DVI = dyn_cast<DbgValueInst>(*UI))
1064          DVIs.push_back(DVI);
1065    }
1066
1067    LoadAndStorePromoter::run(Insts);
1068    AI->eraseFromParent();
1069    for (SmallVectorImpl<DbgDeclareInst *>::iterator I = DDIs.begin(),
1070           E = DDIs.end(); I != E; ++I) {
1071      DbgDeclareInst *DDI = *I;
1072      DDI->eraseFromParent();
1073    }
1074    for (SmallVectorImpl<DbgValueInst *>::iterator I = DVIs.begin(),
1075           E = DVIs.end(); I != E; ++I) {
1076      DbgValueInst *DVI = *I;
1077      DVI->eraseFromParent();
1078    }
1079  }
1080
1081  virtual bool isInstInList(Instruction *I,
1082                            const SmallVectorImpl<Instruction*> &Insts) const {
1083    if (LoadInst *LI = dyn_cast<LoadInst>(I))
1084      return LI->getOperand(0) == AI;
1085    return cast<StoreInst>(I)->getPointerOperand() == AI;
1086  }
1087
1088  virtual void updateDebugInfo(Instruction *Inst) const {
1089    for (SmallVectorImpl<DbgDeclareInst *>::const_iterator I = DDIs.begin(),
1090           E = DDIs.end(); I != E; ++I) {
1091      DbgDeclareInst *DDI = *I;
1092      if (StoreInst *SI = dyn_cast<StoreInst>(Inst))
1093        ConvertDebugDeclareToDebugValue(DDI, SI, *DIB);
1094      else if (LoadInst *LI = dyn_cast<LoadInst>(Inst))
1095        ConvertDebugDeclareToDebugValue(DDI, LI, *DIB);
1096    }
1097    for (SmallVectorImpl<DbgValueInst *>::const_iterator I = DVIs.begin(),
1098           E = DVIs.end(); I != E; ++I) {
1099      DbgValueInst *DVI = *I;
1100      Value *Arg = NULL;
1101      if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
1102        // If an argument is zero extended then use argument directly. The ZExt
1103        // may be zapped by an optimization pass in future.
1104        if (ZExtInst *ZExt = dyn_cast<ZExtInst>(SI->getOperand(0)))
1105          Arg = dyn_cast<Argument>(ZExt->getOperand(0));
1106        if (SExtInst *SExt = dyn_cast<SExtInst>(SI->getOperand(0)))
1107          Arg = dyn_cast<Argument>(SExt->getOperand(0));
1108        if (!Arg)
1109          Arg = SI->getOperand(0);
1110      } else if (LoadInst *LI = dyn_cast<LoadInst>(Inst)) {
1111        Arg = LI->getOperand(0);
1112      } else {
1113        continue;
1114      }
1115      Instruction *DbgVal =
1116        DIB->insertDbgValueIntrinsic(Arg, 0, DIVariable(DVI->getVariable()),
1117                                     Inst);
1118      DbgVal->setDebugLoc(DVI->getDebugLoc());
1119    }
1120  }
1121};
1122} // end anon namespace
1123
1124/// isSafeSelectToSpeculate - Select instructions that use an alloca and are
1125/// subsequently loaded can be rewritten to load both input pointers and then
1126/// select between the result, allowing the load of the alloca to be promoted.
1127/// From this:
1128///   %P2 = select i1 %cond, i32* %Alloca, i32* %Other
1129///   %V = load i32* %P2
1130/// to:
1131///   %V1 = load i32* %Alloca      -> will be mem2reg'd
1132///   %V2 = load i32* %Other
1133///   %V = select i1 %cond, i32 %V1, i32 %V2
1134///
1135/// We can do this to a select if its only uses are loads and if the operand to
1136/// the select can be loaded unconditionally.
1137static bool isSafeSelectToSpeculate(SelectInst *SI, const DataLayout *TD) {
1138  bool TDerefable = SI->getTrueValue()->isDereferenceablePointer();
1139  bool FDerefable = SI->getFalseValue()->isDereferenceablePointer();
1140
1141  for (Value::use_iterator UI = SI->use_begin(), UE = SI->use_end();
1142       UI != UE; ++UI) {
1143    LoadInst *LI = dyn_cast<LoadInst>(*UI);
1144    if (LI == 0 || !LI->isSimple()) return false;
1145
1146    // Both operands to the select need to be dereferencable, either absolutely
1147    // (e.g. allocas) or at this point because we can see other accesses to it.
1148    if (!TDerefable && !isSafeToLoadUnconditionally(SI->getTrueValue(), LI,
1149                                                    LI->getAlignment(), TD))
1150      return false;
1151    if (!FDerefable && !isSafeToLoadUnconditionally(SI->getFalseValue(), LI,
1152                                                    LI->getAlignment(), TD))
1153      return false;
1154  }
1155
1156  return true;
1157}
1158
1159/// isSafePHIToSpeculate - PHI instructions that use an alloca and are
1160/// subsequently loaded can be rewritten to load both input pointers in the pred
1161/// blocks and then PHI the results, allowing the load of the alloca to be
1162/// promoted.
1163/// From this:
1164///   %P2 = phi [i32* %Alloca, i32* %Other]
1165///   %V = load i32* %P2
1166/// to:
1167///   %V1 = load i32* %Alloca      -> will be mem2reg'd
1168///   ...
1169///   %V2 = load i32* %Other
1170///   ...
1171///   %V = phi [i32 %V1, i32 %V2]
1172///
1173/// We can do this to a select if its only uses are loads and if the operand to
1174/// the select can be loaded unconditionally.
1175static bool isSafePHIToSpeculate(PHINode *PN, const DataLayout *TD) {
1176  // For now, we can only do this promotion if the load is in the same block as
1177  // the PHI, and if there are no stores between the phi and load.
1178  // TODO: Allow recursive phi users.
1179  // TODO: Allow stores.
1180  BasicBlock *BB = PN->getParent();
1181  unsigned MaxAlign = 0;
1182  for (Value::use_iterator UI = PN->use_begin(), UE = PN->use_end();
1183       UI != UE; ++UI) {
1184    LoadInst *LI = dyn_cast<LoadInst>(*UI);
1185    if (LI == 0 || !LI->isSimple()) return false;
1186
1187    // For now we only allow loads in the same block as the PHI.  This is a
1188    // common case that happens when instcombine merges two loads through a PHI.
1189    if (LI->getParent() != BB) return false;
1190
1191    // Ensure that there are no instructions between the PHI and the load that
1192    // could store.
1193    for (BasicBlock::iterator BBI = PN; &*BBI != LI; ++BBI)
1194      if (BBI->mayWriteToMemory())
1195        return false;
1196
1197    MaxAlign = std::max(MaxAlign, LI->getAlignment());
1198  }
1199
1200  // Okay, we know that we have one or more loads in the same block as the PHI.
1201  // We can transform this if it is safe to push the loads into the predecessor
1202  // blocks.  The only thing to watch out for is that we can't put a possibly
1203  // trapping load in the predecessor if it is a critical edge.
1204  for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
1205    BasicBlock *Pred = PN->getIncomingBlock(i);
1206    Value *InVal = PN->getIncomingValue(i);
1207
1208    // If the terminator of the predecessor has side-effects (an invoke),
1209    // there is no safe place to put a load in the predecessor.
1210    if (Pred->getTerminator()->mayHaveSideEffects())
1211      return false;
1212
1213    // If the value is produced by the terminator of the predecessor
1214    // (an invoke), there is no valid place to put a load in the predecessor.
1215    if (Pred->getTerminator() == InVal)
1216      return false;
1217
1218    // If the predecessor has a single successor, then the edge isn't critical.
1219    if (Pred->getTerminator()->getNumSuccessors() == 1)
1220      continue;
1221
1222    // If this pointer is always safe to load, or if we can prove that there is
1223    // already a load in the block, then we can move the load to the pred block.
1224    if (InVal->isDereferenceablePointer() ||
1225        isSafeToLoadUnconditionally(InVal, Pred->getTerminator(), MaxAlign, TD))
1226      continue;
1227
1228    return false;
1229  }
1230
1231  return true;
1232}
1233
1234
1235/// tryToMakeAllocaBePromotable - This returns true if the alloca only has
1236/// direct (non-volatile) loads and stores to it.  If the alloca is close but
1237/// not quite there, this will transform the code to allow promotion.  As such,
1238/// it is a non-pure predicate.
1239static bool tryToMakeAllocaBePromotable(AllocaInst *AI, const DataLayout *TD) {
1240  SetVector<Instruction*, SmallVector<Instruction*, 4>,
1241            SmallPtrSet<Instruction*, 4> > InstsToRewrite;
1242
1243  for (Value::use_iterator UI = AI->use_begin(), UE = AI->use_end();
1244       UI != UE; ++UI) {
1245    User *U = *UI;
1246    if (LoadInst *LI = dyn_cast<LoadInst>(U)) {
1247      if (!LI->isSimple())
1248        return false;
1249      continue;
1250    }
1251
1252    if (StoreInst *SI = dyn_cast<StoreInst>(U)) {
1253      if (SI->getOperand(0) == AI || !SI->isSimple())
1254        return false;   // Don't allow a store OF the AI, only INTO the AI.
1255      continue;
1256    }
1257
1258    if (SelectInst *SI = dyn_cast<SelectInst>(U)) {
1259      // If the condition being selected on is a constant, fold the select, yes
1260      // this does (rarely) happen early on.
1261      if (ConstantInt *CI = dyn_cast<ConstantInt>(SI->getCondition())) {
1262        Value *Result = SI->getOperand(1+CI->isZero());
1263        SI->replaceAllUsesWith(Result);
1264        SI->eraseFromParent();
1265
1266        // This is very rare and we just scrambled the use list of AI, start
1267        // over completely.
1268        return tryToMakeAllocaBePromotable(AI, TD);
1269      }
1270
1271      // If it is safe to turn "load (select c, AI, ptr)" into a select of two
1272      // loads, then we can transform this by rewriting the select.
1273      if (!isSafeSelectToSpeculate(SI, TD))
1274        return false;
1275
1276      InstsToRewrite.insert(SI);
1277      continue;
1278    }
1279
1280    if (PHINode *PN = dyn_cast<PHINode>(U)) {
1281      if (PN->use_empty()) {  // Dead PHIs can be stripped.
1282        InstsToRewrite.insert(PN);
1283        continue;
1284      }
1285
1286      // If it is safe to turn "load (phi [AI, ptr, ...])" into a PHI of loads
1287      // in the pred blocks, then we can transform this by rewriting the PHI.
1288      if (!isSafePHIToSpeculate(PN, TD))
1289        return false;
1290
1291      InstsToRewrite.insert(PN);
1292      continue;
1293    }
1294
1295    if (BitCastInst *BCI = dyn_cast<BitCastInst>(U)) {
1296      if (onlyUsedByLifetimeMarkers(BCI)) {
1297        InstsToRewrite.insert(BCI);
1298        continue;
1299      }
1300    }
1301
1302    return false;
1303  }
1304
1305  // If there are no instructions to rewrite, then all uses are load/stores and
1306  // we're done!
1307  if (InstsToRewrite.empty())
1308    return true;
1309
1310  // If we have instructions that need to be rewritten for this to be promotable
1311  // take care of it now.
1312  for (unsigned i = 0, e = InstsToRewrite.size(); i != e; ++i) {
1313    if (BitCastInst *BCI = dyn_cast<BitCastInst>(InstsToRewrite[i])) {
1314      // This could only be a bitcast used by nothing but lifetime intrinsics.
1315      for (BitCastInst::use_iterator I = BCI->use_begin(), E = BCI->use_end();
1316           I != E;) {
1317        Use &U = I.getUse();
1318        ++I;
1319        cast<Instruction>(U.getUser())->eraseFromParent();
1320      }
1321      BCI->eraseFromParent();
1322      continue;
1323    }
1324
1325    if (SelectInst *SI = dyn_cast<SelectInst>(InstsToRewrite[i])) {
1326      // Selects in InstsToRewrite only have load uses.  Rewrite each as two
1327      // loads with a new select.
1328      while (!SI->use_empty()) {
1329        LoadInst *LI = cast<LoadInst>(SI->use_back());
1330
1331        IRBuilder<> Builder(LI);
1332        LoadInst *TrueLoad =
1333          Builder.CreateLoad(SI->getTrueValue(), LI->getName()+".t");
1334        LoadInst *FalseLoad =
1335          Builder.CreateLoad(SI->getFalseValue(), LI->getName()+".f");
1336
1337        // Transfer alignment and TBAA info if present.
1338        TrueLoad->setAlignment(LI->getAlignment());
1339        FalseLoad->setAlignment(LI->getAlignment());
1340        if (MDNode *Tag = LI->getMetadata(LLVMContext::MD_tbaa)) {
1341          TrueLoad->setMetadata(LLVMContext::MD_tbaa, Tag);
1342          FalseLoad->setMetadata(LLVMContext::MD_tbaa, Tag);
1343        }
1344
1345        Value *V = Builder.CreateSelect(SI->getCondition(), TrueLoad, FalseLoad);
1346        V->takeName(LI);
1347        LI->replaceAllUsesWith(V);
1348        LI->eraseFromParent();
1349      }
1350
1351      // Now that all the loads are gone, the select is gone too.
1352      SI->eraseFromParent();
1353      continue;
1354    }
1355
1356    // Otherwise, we have a PHI node which allows us to push the loads into the
1357    // predecessors.
1358    PHINode *PN = cast<PHINode>(InstsToRewrite[i]);
1359    if (PN->use_empty()) {
1360      PN->eraseFromParent();
1361      continue;
1362    }
1363
1364    Type *LoadTy = cast<PointerType>(PN->getType())->getElementType();
1365    PHINode *NewPN = PHINode::Create(LoadTy, PN->getNumIncomingValues(),
1366                                     PN->getName()+".ld", PN);
1367
1368    // Get the TBAA tag and alignment to use from one of the loads.  It doesn't
1369    // matter which one we get and if any differ, it doesn't matter.
1370    LoadInst *SomeLoad = cast<LoadInst>(PN->use_back());
1371    MDNode *TBAATag = SomeLoad->getMetadata(LLVMContext::MD_tbaa);
1372    unsigned Align = SomeLoad->getAlignment();
1373
1374    // Rewrite all loads of the PN to use the new PHI.
1375    while (!PN->use_empty()) {
1376      LoadInst *LI = cast<LoadInst>(PN->use_back());
1377      LI->replaceAllUsesWith(NewPN);
1378      LI->eraseFromParent();
1379    }
1380
1381    // Inject loads into all of the pred blocks.  Keep track of which blocks we
1382    // insert them into in case we have multiple edges from the same block.
1383    DenseMap<BasicBlock*, LoadInst*> InsertedLoads;
1384
1385    for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
1386      BasicBlock *Pred = PN->getIncomingBlock(i);
1387      LoadInst *&Load = InsertedLoads[Pred];
1388      if (Load == 0) {
1389        Load = new LoadInst(PN->getIncomingValue(i),
1390                            PN->getName() + "." + Pred->getName(),
1391                            Pred->getTerminator());
1392        Load->setAlignment(Align);
1393        if (TBAATag) Load->setMetadata(LLVMContext::MD_tbaa, TBAATag);
1394      }
1395
1396      NewPN->addIncoming(Load, Pred);
1397    }
1398
1399    PN->eraseFromParent();
1400  }
1401
1402  ++NumAdjusted;
1403  return true;
1404}
1405
1406bool SROA::performPromotion(Function &F) {
1407  std::vector<AllocaInst*> Allocas;
1408  DominatorTree *DT = 0;
1409  if (HasDomTree)
1410    DT = &getAnalysis<DominatorTree>();
1411
1412  BasicBlock &BB = F.getEntryBlock();  // Get the entry node for the function
1413  DIBuilder DIB(*F.getParent());
1414  bool Changed = false;
1415  SmallVector<Instruction*, 64> Insts;
1416  while (1) {
1417    Allocas.clear();
1418
1419    // Find allocas that are safe to promote, by looking at all instructions in
1420    // the entry node
1421    for (BasicBlock::iterator I = BB.begin(), E = --BB.end(); I != E; ++I)
1422      if (AllocaInst *AI = dyn_cast<AllocaInst>(I))       // Is it an alloca?
1423        if (tryToMakeAllocaBePromotable(AI, TD))
1424          Allocas.push_back(AI);
1425
1426    if (Allocas.empty()) break;
1427
1428    if (HasDomTree)
1429      PromoteMemToReg(Allocas, *DT);
1430    else {
1431      SSAUpdater SSA;
1432      for (unsigned i = 0, e = Allocas.size(); i != e; ++i) {
1433        AllocaInst *AI = Allocas[i];
1434
1435        // Build list of instructions to promote.
1436        for (Value::use_iterator UI = AI->use_begin(), E = AI->use_end();
1437             UI != E; ++UI)
1438          Insts.push_back(cast<Instruction>(*UI));
1439        AllocaPromoter(Insts, SSA, &DIB).run(AI, Insts);
1440        Insts.clear();
1441      }
1442    }
1443    NumPromoted += Allocas.size();
1444    Changed = true;
1445  }
1446
1447  return Changed;
1448}
1449
1450
1451/// ShouldAttemptScalarRepl - Decide if an alloca is a good candidate for
1452/// SROA.  It must be a struct or array type with a small number of elements.
1453bool SROA::ShouldAttemptScalarRepl(AllocaInst *AI) {
1454  Type *T = AI->getAllocatedType();
1455  // Do not promote any struct that has too many members.
1456  if (StructType *ST = dyn_cast<StructType>(T))
1457    return ST->getNumElements() <= StructMemberThreshold;
1458  // Do not promote any array that has too many elements.
1459  if (ArrayType *AT = dyn_cast<ArrayType>(T))
1460    return AT->getNumElements() <= ArrayElementThreshold;
1461  return false;
1462}
1463
1464// performScalarRepl - This algorithm is a simple worklist driven algorithm,
1465// which runs on all of the alloca instructions in the entry block, removing
1466// them if they are only used by getelementptr instructions.
1467//
1468bool SROA::performScalarRepl(Function &F) {
1469  std::vector<AllocaInst*> WorkList;
1470
1471  // Scan the entry basic block, adding allocas to the worklist.
1472  BasicBlock &BB = F.getEntryBlock();
1473  for (BasicBlock::iterator I = BB.begin(), E = BB.end(); I != E; ++I)
1474    if (AllocaInst *A = dyn_cast<AllocaInst>(I))
1475      WorkList.push_back(A);
1476
1477  // Process the worklist
1478  bool Changed = false;
1479  while (!WorkList.empty()) {
1480    AllocaInst *AI = WorkList.back();
1481    WorkList.pop_back();
1482
1483    // Handle dead allocas trivially.  These can be formed by SROA'ing arrays
1484    // with unused elements.
1485    if (AI->use_empty()) {
1486      AI->eraseFromParent();
1487      Changed = true;
1488      continue;
1489    }
1490
1491    // If this alloca is impossible for us to promote, reject it early.
1492    if (AI->isArrayAllocation() || !AI->getAllocatedType()->isSized())
1493      continue;
1494
1495    // Check to see if we can perform the core SROA transformation.  We cannot
1496    // transform the allocation instruction if it is an array allocation
1497    // (allocations OF arrays are ok though), and an allocation of a scalar
1498    // value cannot be decomposed at all.
1499    uint64_t AllocaSize = TD->getTypeAllocSize(AI->getAllocatedType());
1500
1501    // Do not promote [0 x %struct].
1502    if (AllocaSize == 0) continue;
1503
1504    // Do not promote any struct whose size is too big.
1505    if (AllocaSize > SRThreshold) continue;
1506
1507    // If the alloca looks like a good candidate for scalar replacement, and if
1508    // all its users can be transformed, then split up the aggregate into its
1509    // separate elements.
1510    if (ShouldAttemptScalarRepl(AI) && isSafeAllocaToScalarRepl(AI)) {
1511      DoScalarReplacement(AI, WorkList);
1512      Changed = true;
1513      continue;
1514    }
1515
1516    // If we can turn this aggregate value (potentially with casts) into a
1517    // simple scalar value that can be mem2reg'd into a register value.
1518    // IsNotTrivial tracks whether this is something that mem2reg could have
1519    // promoted itself.  If so, we don't want to transform it needlessly.  Note
1520    // that we can't just check based on the type: the alloca may be of an i32
1521    // but that has pointer arithmetic to set byte 3 of it or something.
1522    if (AllocaInst *NewAI = ConvertToScalarInfo(
1523              (unsigned)AllocaSize, *TD, ScalarLoadThreshold).TryConvert(AI)) {
1524      NewAI->takeName(AI);
1525      AI->eraseFromParent();
1526      ++NumConverted;
1527      Changed = true;
1528      continue;
1529    }
1530
1531    // Otherwise, couldn't process this alloca.
1532  }
1533
1534  return Changed;
1535}
1536
1537/// DoScalarReplacement - This alloca satisfied the isSafeAllocaToScalarRepl
1538/// predicate, do SROA now.
1539void SROA::DoScalarReplacement(AllocaInst *AI,
1540                               std::vector<AllocaInst*> &WorkList) {
1541  DEBUG(dbgs() << "Found inst to SROA: " << *AI << '\n');
1542  SmallVector<AllocaInst*, 32> ElementAllocas;
1543  if (StructType *ST = dyn_cast<StructType>(AI->getAllocatedType())) {
1544    ElementAllocas.reserve(ST->getNumContainedTypes());
1545    for (unsigned i = 0, e = ST->getNumContainedTypes(); i != e; ++i) {
1546      AllocaInst *NA = new AllocaInst(ST->getContainedType(i), 0,
1547                                      AI->getAlignment(),
1548                                      AI->getName() + "." + Twine(i), AI);
1549      ElementAllocas.push_back(NA);
1550      WorkList.push_back(NA);  // Add to worklist for recursive processing
1551    }
1552  } else {
1553    ArrayType *AT = cast<ArrayType>(AI->getAllocatedType());
1554    ElementAllocas.reserve(AT->getNumElements());
1555    Type *ElTy = AT->getElementType();
1556    for (unsigned i = 0, e = AT->getNumElements(); i != e; ++i) {
1557      AllocaInst *NA = new AllocaInst(ElTy, 0, AI->getAlignment(),
1558                                      AI->getName() + "." + Twine(i), AI);
1559      ElementAllocas.push_back(NA);
1560      WorkList.push_back(NA);  // Add to worklist for recursive processing
1561    }
1562  }
1563
1564  // Now that we have created the new alloca instructions, rewrite all the
1565  // uses of the old alloca.
1566  RewriteForScalarRepl(AI, AI, 0, ElementAllocas);
1567
1568  // Now erase any instructions that were made dead while rewriting the alloca.
1569  DeleteDeadInstructions();
1570  AI->eraseFromParent();
1571
1572  ++NumReplaced;
1573}
1574
1575/// DeleteDeadInstructions - Erase instructions on the DeadInstrs list,
1576/// recursively including all their operands that become trivially dead.
1577void SROA::DeleteDeadInstructions() {
1578  while (!DeadInsts.empty()) {
1579    Instruction *I = cast<Instruction>(DeadInsts.pop_back_val());
1580
1581    for (User::op_iterator OI = I->op_begin(), E = I->op_end(); OI != E; ++OI)
1582      if (Instruction *U = dyn_cast<Instruction>(*OI)) {
1583        // Zero out the operand and see if it becomes trivially dead.
1584        // (But, don't add allocas to the dead instruction list -- they are
1585        // already on the worklist and will be deleted separately.)
1586        *OI = 0;
1587        if (isInstructionTriviallyDead(U) && !isa<AllocaInst>(U))
1588          DeadInsts.push_back(U);
1589      }
1590
1591    I->eraseFromParent();
1592  }
1593}
1594
1595/// isSafeForScalarRepl - Check if instruction I is a safe use with regard to
1596/// performing scalar replacement of alloca AI.  The results are flagged in
1597/// the Info parameter.  Offset indicates the position within AI that is
1598/// referenced by this instruction.
1599void SROA::isSafeForScalarRepl(Instruction *I, uint64_t Offset,
1600                               AllocaInfo &Info) {
1601  for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI!=E; ++UI) {
1602    Instruction *User = cast<Instruction>(*UI);
1603
1604    if (BitCastInst *BC = dyn_cast<BitCastInst>(User)) {
1605      isSafeForScalarRepl(BC, Offset, Info);
1606    } else if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(User)) {
1607      uint64_t GEPOffset = Offset;
1608      isSafeGEP(GEPI, GEPOffset, Info);
1609      if (!Info.isUnsafe)
1610        isSafeForScalarRepl(GEPI, GEPOffset, Info);
1611    } else if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(User)) {
1612      ConstantInt *Length = dyn_cast<ConstantInt>(MI->getLength());
1613      if (Length == 0)
1614        return MarkUnsafe(Info, User);
1615      if (Length->isNegative())
1616        return MarkUnsafe(Info, User);
1617
1618      isSafeMemAccess(Offset, Length->getZExtValue(), 0,
1619                      UI.getOperandNo() == 0, Info, MI,
1620                      true /*AllowWholeAccess*/);
1621    } else if (LoadInst *LI = dyn_cast<LoadInst>(User)) {
1622      if (!LI->isSimple())
1623        return MarkUnsafe(Info, User);
1624      Type *LIType = LI->getType();
1625      isSafeMemAccess(Offset, TD->getTypeAllocSize(LIType),
1626                      LIType, false, Info, LI, true /*AllowWholeAccess*/);
1627      Info.hasALoadOrStore = true;
1628
1629    } else if (StoreInst *SI = dyn_cast<StoreInst>(User)) {
1630      // Store is ok if storing INTO the pointer, not storing the pointer
1631      if (!SI->isSimple() || SI->getOperand(0) == I)
1632        return MarkUnsafe(Info, User);
1633
1634      Type *SIType = SI->getOperand(0)->getType();
1635      isSafeMemAccess(Offset, TD->getTypeAllocSize(SIType),
1636                      SIType, true, Info, SI, true /*AllowWholeAccess*/);
1637      Info.hasALoadOrStore = true;
1638    } else if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(User)) {
1639      if (II->getIntrinsicID() != Intrinsic::lifetime_start &&
1640          II->getIntrinsicID() != Intrinsic::lifetime_end)
1641        return MarkUnsafe(Info, User);
1642    } else if (isa<PHINode>(User) || isa<SelectInst>(User)) {
1643      isSafePHISelectUseForScalarRepl(User, Offset, Info);
1644    } else {
1645      return MarkUnsafe(Info, User);
1646    }
1647    if (Info.isUnsafe) return;
1648  }
1649}
1650
1651
1652/// isSafePHIUseForScalarRepl - If we see a PHI node or select using a pointer
1653/// derived from the alloca, we can often still split the alloca into elements.
1654/// This is useful if we have a large alloca where one element is phi'd
1655/// together somewhere: we can SRoA and promote all the other elements even if
1656/// we end up not being able to promote this one.
1657///
1658/// All we require is that the uses of the PHI do not index into other parts of
1659/// the alloca.  The most important use case for this is single load and stores
1660/// that are PHI'd together, which can happen due to code sinking.
1661void SROA::isSafePHISelectUseForScalarRepl(Instruction *I, uint64_t Offset,
1662                                           AllocaInfo &Info) {
1663  // If we've already checked this PHI, don't do it again.
1664  if (PHINode *PN = dyn_cast<PHINode>(I))
1665    if (!Info.CheckedPHIs.insert(PN))
1666      return;
1667
1668  for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI!=E; ++UI) {
1669    Instruction *User = cast<Instruction>(*UI);
1670
1671    if (BitCastInst *BC = dyn_cast<BitCastInst>(User)) {
1672      isSafePHISelectUseForScalarRepl(BC, Offset, Info);
1673    } else if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(User)) {
1674      // Only allow "bitcast" GEPs for simplicity.  We could generalize this,
1675      // but would have to prove that we're staying inside of an element being
1676      // promoted.
1677      if (!GEPI->hasAllZeroIndices())
1678        return MarkUnsafe(Info, User);
1679      isSafePHISelectUseForScalarRepl(GEPI, Offset, Info);
1680    } else if (LoadInst *LI = dyn_cast<LoadInst>(User)) {
1681      if (!LI->isSimple())
1682        return MarkUnsafe(Info, User);
1683      Type *LIType = LI->getType();
1684      isSafeMemAccess(Offset, TD->getTypeAllocSize(LIType),
1685                      LIType, false, Info, LI, false /*AllowWholeAccess*/);
1686      Info.hasALoadOrStore = true;
1687
1688    } else if (StoreInst *SI = dyn_cast<StoreInst>(User)) {
1689      // Store is ok if storing INTO the pointer, not storing the pointer
1690      if (!SI->isSimple() || SI->getOperand(0) == I)
1691        return MarkUnsafe(Info, User);
1692
1693      Type *SIType = SI->getOperand(0)->getType();
1694      isSafeMemAccess(Offset, TD->getTypeAllocSize(SIType),
1695                      SIType, true, Info, SI, false /*AllowWholeAccess*/);
1696      Info.hasALoadOrStore = true;
1697    } else if (isa<PHINode>(User) || isa<SelectInst>(User)) {
1698      isSafePHISelectUseForScalarRepl(User, Offset, Info);
1699    } else {
1700      return MarkUnsafe(Info, User);
1701    }
1702    if (Info.isUnsafe) return;
1703  }
1704}
1705
1706/// isSafeGEP - Check if a GEP instruction can be handled for scalar
1707/// replacement.  It is safe when all the indices are constant, in-bounds
1708/// references, and when the resulting offset corresponds to an element within
1709/// the alloca type.  The results are flagged in the Info parameter.  Upon
1710/// return, Offset is adjusted as specified by the GEP indices.
1711void SROA::isSafeGEP(GetElementPtrInst *GEPI,
1712                     uint64_t &Offset, AllocaInfo &Info) {
1713  gep_type_iterator GEPIt = gep_type_begin(GEPI), E = gep_type_end(GEPI);
1714  if (GEPIt == E)
1715    return;
1716  bool NonConstant = false;
1717  unsigned NonConstantIdxSize = 0;
1718
1719  // Walk through the GEP type indices, checking the types that this indexes
1720  // into.
1721  for (; GEPIt != E; ++GEPIt) {
1722    // Ignore struct elements, no extra checking needed for these.
1723    if ((*GEPIt)->isStructTy())
1724      continue;
1725
1726    ConstantInt *IdxVal = dyn_cast<ConstantInt>(GEPIt.getOperand());
1727    if (!IdxVal)
1728      return MarkUnsafe(Info, GEPI);
1729  }
1730
1731  // Compute the offset due to this GEP and check if the alloca has a
1732  // component element at that offset.
1733  SmallVector<Value*, 8> Indices(GEPI->op_begin() + 1, GEPI->op_end());
1734  // If this GEP is non constant then the last operand must have been a
1735  // dynamic index into a vector.  Pop this now as it has no impact on the
1736  // constant part of the offset.
1737  if (NonConstant)
1738    Indices.pop_back();
1739  Offset += TD->getIndexedOffset(GEPI->getPointerOperandType(), Indices);
1740  if (!TypeHasComponent(Info.AI->getAllocatedType(), Offset,
1741                        NonConstantIdxSize))
1742    MarkUnsafe(Info, GEPI);
1743}
1744
1745/// isHomogeneousAggregate - Check if type T is a struct or array containing
1746/// elements of the same type (which is always true for arrays).  If so,
1747/// return true with NumElts and EltTy set to the number of elements and the
1748/// element type, respectively.
1749static bool isHomogeneousAggregate(Type *T, unsigned &NumElts,
1750                                   Type *&EltTy) {
1751  if (ArrayType *AT = dyn_cast<ArrayType>(T)) {
1752    NumElts = AT->getNumElements();
1753    EltTy = (NumElts == 0 ? 0 : AT->getElementType());
1754    return true;
1755  }
1756  if (StructType *ST = dyn_cast<StructType>(T)) {
1757    NumElts = ST->getNumContainedTypes();
1758    EltTy = (NumElts == 0 ? 0 : ST->getContainedType(0));
1759    for (unsigned n = 1; n < NumElts; ++n) {
1760      if (ST->getContainedType(n) != EltTy)
1761        return false;
1762    }
1763    return true;
1764  }
1765  return false;
1766}
1767
1768/// isCompatibleAggregate - Check if T1 and T2 are either the same type or are
1769/// "homogeneous" aggregates with the same element type and number of elements.
1770static bool isCompatibleAggregate(Type *T1, Type *T2) {
1771  if (T1 == T2)
1772    return true;
1773
1774  unsigned NumElts1, NumElts2;
1775  Type *EltTy1, *EltTy2;
1776  if (isHomogeneousAggregate(T1, NumElts1, EltTy1) &&
1777      isHomogeneousAggregate(T2, NumElts2, EltTy2) &&
1778      NumElts1 == NumElts2 &&
1779      EltTy1 == EltTy2)
1780    return true;
1781
1782  return false;
1783}
1784
1785/// isSafeMemAccess - Check if a load/store/memcpy operates on the entire AI
1786/// alloca or has an offset and size that corresponds to a component element
1787/// within it.  The offset checked here may have been formed from a GEP with a
1788/// pointer bitcasted to a different type.
1789///
1790/// If AllowWholeAccess is true, then this allows uses of the entire alloca as a
1791/// unit.  If false, it only allows accesses known to be in a single element.
1792void SROA::isSafeMemAccess(uint64_t Offset, uint64_t MemSize,
1793                           Type *MemOpType, bool isStore,
1794                           AllocaInfo &Info, Instruction *TheAccess,
1795                           bool AllowWholeAccess) {
1796  // Check if this is a load/store of the entire alloca.
1797  if (Offset == 0 && AllowWholeAccess &&
1798      MemSize == TD->getTypeAllocSize(Info.AI->getAllocatedType())) {
1799    // This can be safe for MemIntrinsics (where MemOpType is 0) and integer
1800    // loads/stores (which are essentially the same as the MemIntrinsics with
1801    // regard to copying padding between elements).  But, if an alloca is
1802    // flagged as both a source and destination of such operations, we'll need
1803    // to check later for padding between elements.
1804    if (!MemOpType || MemOpType->isIntegerTy()) {
1805      if (isStore)
1806        Info.isMemCpyDst = true;
1807      else
1808        Info.isMemCpySrc = true;
1809      return;
1810    }
1811    // This is also safe for references using a type that is compatible with
1812    // the type of the alloca, so that loads/stores can be rewritten using
1813    // insertvalue/extractvalue.
1814    if (isCompatibleAggregate(MemOpType, Info.AI->getAllocatedType())) {
1815      Info.hasSubelementAccess = true;
1816      return;
1817    }
1818  }
1819  // Check if the offset/size correspond to a component within the alloca type.
1820  Type *T = Info.AI->getAllocatedType();
1821  if (TypeHasComponent(T, Offset, MemSize)) {
1822    Info.hasSubelementAccess = true;
1823    return;
1824  }
1825
1826  return MarkUnsafe(Info, TheAccess);
1827}
1828
1829/// TypeHasComponent - Return true if T has a component type with the
1830/// specified offset and size.  If Size is zero, do not check the size.
1831bool SROA::TypeHasComponent(Type *T, uint64_t Offset, uint64_t Size) {
1832  Type *EltTy;
1833  uint64_t EltSize;
1834  if (StructType *ST = dyn_cast<StructType>(T)) {
1835    const StructLayout *Layout = TD->getStructLayout(ST);
1836    unsigned EltIdx = Layout->getElementContainingOffset(Offset);
1837    EltTy = ST->getContainedType(EltIdx);
1838    EltSize = TD->getTypeAllocSize(EltTy);
1839    Offset -= Layout->getElementOffset(EltIdx);
1840  } else if (ArrayType *AT = dyn_cast<ArrayType>(T)) {
1841    EltTy = AT->getElementType();
1842    EltSize = TD->getTypeAllocSize(EltTy);
1843    if (Offset >= AT->getNumElements() * EltSize)
1844      return false;
1845    Offset %= EltSize;
1846  } else if (VectorType *VT = dyn_cast<VectorType>(T)) {
1847    EltTy = VT->getElementType();
1848    EltSize = TD->getTypeAllocSize(EltTy);
1849    if (Offset >= VT->getNumElements() * EltSize)
1850      return false;
1851    Offset %= EltSize;
1852  } else {
1853    return false;
1854  }
1855  if (Offset == 0 && (Size == 0 || EltSize == Size))
1856    return true;
1857  // Check if the component spans multiple elements.
1858  if (Offset + Size > EltSize)
1859    return false;
1860  return TypeHasComponent(EltTy, Offset, Size);
1861}
1862
1863/// RewriteForScalarRepl - Alloca AI is being split into NewElts, so rewrite
1864/// the instruction I, which references it, to use the separate elements.
1865/// Offset indicates the position within AI that is referenced by this
1866/// instruction.
1867void SROA::RewriteForScalarRepl(Instruction *I, AllocaInst *AI, uint64_t Offset,
1868                                SmallVectorImpl<AllocaInst *> &NewElts) {
1869  for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI!=E;) {
1870    Use &TheUse = UI.getUse();
1871    Instruction *User = cast<Instruction>(*UI++);
1872
1873    if (BitCastInst *BC = dyn_cast<BitCastInst>(User)) {
1874      RewriteBitCast(BC, AI, Offset, NewElts);
1875      continue;
1876    }
1877
1878    if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(User)) {
1879      RewriteGEP(GEPI, AI, Offset, NewElts);
1880      continue;
1881    }
1882
1883    if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(User)) {
1884      ConstantInt *Length = dyn_cast<ConstantInt>(MI->getLength());
1885      uint64_t MemSize = Length->getZExtValue();
1886      if (Offset == 0 &&
1887          MemSize == TD->getTypeAllocSize(AI->getAllocatedType()))
1888        RewriteMemIntrinUserOfAlloca(MI, I, AI, NewElts);
1889      // Otherwise the intrinsic can only touch a single element and the
1890      // address operand will be updated, so nothing else needs to be done.
1891      continue;
1892    }
1893
1894    if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(User)) {
1895      if (II->getIntrinsicID() == Intrinsic::lifetime_start ||
1896          II->getIntrinsicID() == Intrinsic::lifetime_end) {
1897        RewriteLifetimeIntrinsic(II, AI, Offset, NewElts);
1898      }
1899      continue;
1900    }
1901
1902    if (LoadInst *LI = dyn_cast<LoadInst>(User)) {
1903      Type *LIType = LI->getType();
1904
1905      if (isCompatibleAggregate(LIType, AI->getAllocatedType())) {
1906        // Replace:
1907        //   %res = load { i32, i32 }* %alloc
1908        // with:
1909        //   %load.0 = load i32* %alloc.0
1910        //   %insert.0 insertvalue { i32, i32 } zeroinitializer, i32 %load.0, 0
1911        //   %load.1 = load i32* %alloc.1
1912        //   %insert = insertvalue { i32, i32 } %insert.0, i32 %load.1, 1
1913        // (Also works for arrays instead of structs)
1914        Value *Insert = UndefValue::get(LIType);
1915        IRBuilder<> Builder(LI);
1916        for (unsigned i = 0, e = NewElts.size(); i != e; ++i) {
1917          Value *Load = Builder.CreateLoad(NewElts[i], "load");
1918          Insert = Builder.CreateInsertValue(Insert, Load, i, "insert");
1919        }
1920        LI->replaceAllUsesWith(Insert);
1921        DeadInsts.push_back(LI);
1922      } else if (LIType->isIntegerTy() &&
1923                 TD->getTypeAllocSize(LIType) ==
1924                 TD->getTypeAllocSize(AI->getAllocatedType())) {
1925        // If this is a load of the entire alloca to an integer, rewrite it.
1926        RewriteLoadUserOfWholeAlloca(LI, AI, NewElts);
1927      }
1928      continue;
1929    }
1930
1931    if (StoreInst *SI = dyn_cast<StoreInst>(User)) {
1932      Value *Val = SI->getOperand(0);
1933      Type *SIType = Val->getType();
1934      if (isCompatibleAggregate(SIType, AI->getAllocatedType())) {
1935        // Replace:
1936        //   store { i32, i32 } %val, { i32, i32 }* %alloc
1937        // with:
1938        //   %val.0 = extractvalue { i32, i32 } %val, 0
1939        //   store i32 %val.0, i32* %alloc.0
1940        //   %val.1 = extractvalue { i32, i32 } %val, 1
1941        //   store i32 %val.1, i32* %alloc.1
1942        // (Also works for arrays instead of structs)
1943        IRBuilder<> Builder(SI);
1944        for (unsigned i = 0, e = NewElts.size(); i != e; ++i) {
1945          Value *Extract = Builder.CreateExtractValue(Val, i, Val->getName());
1946          Builder.CreateStore(Extract, NewElts[i]);
1947        }
1948        DeadInsts.push_back(SI);
1949      } else if (SIType->isIntegerTy() &&
1950                 TD->getTypeAllocSize(SIType) ==
1951                 TD->getTypeAllocSize(AI->getAllocatedType())) {
1952        // If this is a store of the entire alloca from an integer, rewrite it.
1953        RewriteStoreUserOfWholeAlloca(SI, AI, NewElts);
1954      }
1955      continue;
1956    }
1957
1958    if (isa<SelectInst>(User) || isa<PHINode>(User)) {
1959      // If we have a PHI user of the alloca itself (as opposed to a GEP or
1960      // bitcast) we have to rewrite it.  GEP and bitcast uses will be RAUW'd to
1961      // the new pointer.
1962      if (!isa<AllocaInst>(I)) continue;
1963
1964      assert(Offset == 0 && NewElts[0] &&
1965             "Direct alloca use should have a zero offset");
1966
1967      // If we have a use of the alloca, we know the derived uses will be
1968      // utilizing just the first element of the scalarized result.  Insert a
1969      // bitcast of the first alloca before the user as required.
1970      AllocaInst *NewAI = NewElts[0];
1971      BitCastInst *BCI = new BitCastInst(NewAI, AI->getType(), "", NewAI);
1972      NewAI->moveBefore(BCI);
1973      TheUse = BCI;
1974      continue;
1975    }
1976  }
1977}
1978
1979/// RewriteBitCast - Update a bitcast reference to the alloca being replaced
1980/// and recursively continue updating all of its uses.
1981void SROA::RewriteBitCast(BitCastInst *BC, AllocaInst *AI, uint64_t Offset,
1982                          SmallVectorImpl<AllocaInst *> &NewElts) {
1983  RewriteForScalarRepl(BC, AI, Offset, NewElts);
1984  if (BC->getOperand(0) != AI)
1985    return;
1986
1987  // The bitcast references the original alloca.  Replace its uses with
1988  // references to the alloca containing offset zero (which is normally at
1989  // index zero, but might not be in cases involving structs with elements
1990  // of size zero).
1991  Type *T = AI->getAllocatedType();
1992  uint64_t EltOffset = 0;
1993  Type *IdxTy;
1994  uint64_t Idx = FindElementAndOffset(T, EltOffset, IdxTy);
1995  Instruction *Val = NewElts[Idx];
1996  if (Val->getType() != BC->getDestTy()) {
1997    Val = new BitCastInst(Val, BC->getDestTy(), "", BC);
1998    Val->takeName(BC);
1999  }
2000  BC->replaceAllUsesWith(Val);
2001  DeadInsts.push_back(BC);
2002}
2003
2004/// FindElementAndOffset - Return the index of the element containing Offset
2005/// within the specified type, which must be either a struct or an array.
2006/// Sets T to the type of the element and Offset to the offset within that
2007/// element.  IdxTy is set to the type of the index result to be used in a
2008/// GEP instruction.
2009uint64_t SROA::FindElementAndOffset(Type *&T, uint64_t &Offset,
2010                                    Type *&IdxTy) {
2011  uint64_t Idx = 0;
2012  if (StructType *ST = dyn_cast<StructType>(T)) {
2013    const StructLayout *Layout = TD->getStructLayout(ST);
2014    Idx = Layout->getElementContainingOffset(Offset);
2015    T = ST->getContainedType(Idx);
2016    Offset -= Layout->getElementOffset(Idx);
2017    IdxTy = Type::getInt32Ty(T->getContext());
2018    return Idx;
2019  } else if (ArrayType *AT = dyn_cast<ArrayType>(T)) {
2020    T = AT->getElementType();
2021    uint64_t EltSize = TD->getTypeAllocSize(T);
2022    Idx = Offset / EltSize;
2023    Offset -= Idx * EltSize;
2024    IdxTy = Type::getInt64Ty(T->getContext());
2025    return Idx;
2026  }
2027  VectorType *VT = cast<VectorType>(T);
2028  T = VT->getElementType();
2029  uint64_t EltSize = TD->getTypeAllocSize(T);
2030  Idx = Offset / EltSize;
2031  Offset -= Idx * EltSize;
2032  IdxTy = Type::getInt64Ty(T->getContext());
2033  return Idx;
2034}
2035
2036/// RewriteGEP - Check if this GEP instruction moves the pointer across
2037/// elements of the alloca that are being split apart, and if so, rewrite
2038/// the GEP to be relative to the new element.
2039void SROA::RewriteGEP(GetElementPtrInst *GEPI, AllocaInst *AI, uint64_t Offset,
2040                      SmallVectorImpl<AllocaInst *> &NewElts) {
2041  uint64_t OldOffset = Offset;
2042  SmallVector<Value*, 8> Indices(GEPI->op_begin() + 1, GEPI->op_end());
2043  // If the GEP was dynamic then it must have been a dynamic vector lookup.
2044  // In this case, it must be the last GEP operand which is dynamic so keep that
2045  // aside until we've found the constant GEP offset then add it back in at the
2046  // end.
2047  Value* NonConstantIdx = 0;
2048  if (!GEPI->hasAllConstantIndices())
2049    NonConstantIdx = Indices.pop_back_val();
2050  Offset += TD->getIndexedOffset(GEPI->getPointerOperandType(), Indices);
2051
2052  RewriteForScalarRepl(GEPI, AI, Offset, NewElts);
2053
2054  Type *T = AI->getAllocatedType();
2055  Type *IdxTy;
2056  uint64_t OldIdx = FindElementAndOffset(T, OldOffset, IdxTy);
2057  if (GEPI->getOperand(0) == AI)
2058    OldIdx = ~0ULL; // Force the GEP to be rewritten.
2059
2060  T = AI->getAllocatedType();
2061  uint64_t EltOffset = Offset;
2062  uint64_t Idx = FindElementAndOffset(T, EltOffset, IdxTy);
2063
2064  // If this GEP does not move the pointer across elements of the alloca
2065  // being split, then it does not needs to be rewritten.
2066  if (Idx == OldIdx)
2067    return;
2068
2069  Type *i32Ty = Type::getInt32Ty(AI->getContext());
2070  SmallVector<Value*, 8> NewArgs;
2071  NewArgs.push_back(Constant::getNullValue(i32Ty));
2072  while (EltOffset != 0) {
2073    uint64_t EltIdx = FindElementAndOffset(T, EltOffset, IdxTy);
2074    NewArgs.push_back(ConstantInt::get(IdxTy, EltIdx));
2075  }
2076  if (NonConstantIdx) {
2077    Type* GepTy = T;
2078    // This GEP has a dynamic index.  We need to add "i32 0" to index through
2079    // any structs or arrays in the original type until we get to the vector
2080    // to index.
2081    while (!isa<VectorType>(GepTy)) {
2082      NewArgs.push_back(Constant::getNullValue(i32Ty));
2083      GepTy = cast<CompositeType>(GepTy)->getTypeAtIndex(0U);
2084    }
2085    NewArgs.push_back(NonConstantIdx);
2086  }
2087  Instruction *Val = NewElts[Idx];
2088  if (NewArgs.size() > 1) {
2089    Val = GetElementPtrInst::CreateInBounds(Val, NewArgs, "", GEPI);
2090    Val->takeName(GEPI);
2091  }
2092  if (Val->getType() != GEPI->getType())
2093    Val = new BitCastInst(Val, GEPI->getType(), Val->getName(), GEPI);
2094  GEPI->replaceAllUsesWith(Val);
2095  DeadInsts.push_back(GEPI);
2096}
2097
2098/// RewriteLifetimeIntrinsic - II is a lifetime.start/lifetime.end. Rewrite it
2099/// to mark the lifetime of the scalarized memory.
2100void SROA::RewriteLifetimeIntrinsic(IntrinsicInst *II, AllocaInst *AI,
2101                                    uint64_t Offset,
2102                                    SmallVectorImpl<AllocaInst *> &NewElts) {
2103  ConstantInt *OldSize = cast<ConstantInt>(II->getArgOperand(0));
2104  // Put matching lifetime markers on everything from Offset up to
2105  // Offset+OldSize.
2106  Type *AIType = AI->getAllocatedType();
2107  uint64_t NewOffset = Offset;
2108  Type *IdxTy;
2109  uint64_t Idx = FindElementAndOffset(AIType, NewOffset, IdxTy);
2110
2111  IRBuilder<> Builder(II);
2112  uint64_t Size = OldSize->getLimitedValue();
2113
2114  if (NewOffset) {
2115    // Splice the first element and index 'NewOffset' bytes in.  SROA will
2116    // split the alloca again later.
2117    Value *V = Builder.CreateBitCast(NewElts[Idx], Builder.getInt8PtrTy());
2118    V = Builder.CreateGEP(V, Builder.getInt64(NewOffset));
2119
2120    IdxTy = NewElts[Idx]->getAllocatedType();
2121    uint64_t EltSize = TD->getTypeAllocSize(IdxTy) - NewOffset;
2122    if (EltSize > Size) {
2123      EltSize = Size;
2124      Size = 0;
2125    } else {
2126      Size -= EltSize;
2127    }
2128    if (II->getIntrinsicID() == Intrinsic::lifetime_start)
2129      Builder.CreateLifetimeStart(V, Builder.getInt64(EltSize));
2130    else
2131      Builder.CreateLifetimeEnd(V, Builder.getInt64(EltSize));
2132    ++Idx;
2133  }
2134
2135  for (; Idx != NewElts.size() && Size; ++Idx) {
2136    IdxTy = NewElts[Idx]->getAllocatedType();
2137    uint64_t EltSize = TD->getTypeAllocSize(IdxTy);
2138    if (EltSize > Size) {
2139      EltSize = Size;
2140      Size = 0;
2141    } else {
2142      Size -= EltSize;
2143    }
2144    if (II->getIntrinsicID() == Intrinsic::lifetime_start)
2145      Builder.CreateLifetimeStart(NewElts[Idx],
2146                                  Builder.getInt64(EltSize));
2147    else
2148      Builder.CreateLifetimeEnd(NewElts[Idx],
2149                                Builder.getInt64(EltSize));
2150  }
2151  DeadInsts.push_back(II);
2152}
2153
2154/// RewriteMemIntrinUserOfAlloca - MI is a memcpy/memset/memmove from or to AI.
2155/// Rewrite it to copy or set the elements of the scalarized memory.
2156void
2157SROA::RewriteMemIntrinUserOfAlloca(MemIntrinsic *MI, Instruction *Inst,
2158                                   AllocaInst *AI,
2159                                   SmallVectorImpl<AllocaInst *> &NewElts) {
2160  // If this is a memcpy/memmove, construct the other pointer as the
2161  // appropriate type.  The "Other" pointer is the pointer that goes to memory
2162  // that doesn't have anything to do with the alloca that we are promoting. For
2163  // memset, this Value* stays null.
2164  Value *OtherPtr = 0;
2165  unsigned MemAlignment = MI->getAlignment();
2166  if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(MI)) { // memmove/memcopy
2167    if (Inst == MTI->getRawDest())
2168      OtherPtr = MTI->getRawSource();
2169    else {
2170      assert(Inst == MTI->getRawSource());
2171      OtherPtr = MTI->getRawDest();
2172    }
2173  }
2174
2175  // If there is an other pointer, we want to convert it to the same pointer
2176  // type as AI has, so we can GEP through it safely.
2177  if (OtherPtr) {
2178    unsigned AddrSpace =
2179      cast<PointerType>(OtherPtr->getType())->getAddressSpace();
2180
2181    // Remove bitcasts and all-zero GEPs from OtherPtr.  This is an
2182    // optimization, but it's also required to detect the corner case where
2183    // both pointer operands are referencing the same memory, and where
2184    // OtherPtr may be a bitcast or GEP that currently being rewritten.  (This
2185    // function is only called for mem intrinsics that access the whole
2186    // aggregate, so non-zero GEPs are not an issue here.)
2187    OtherPtr = OtherPtr->stripPointerCasts();
2188
2189    // Copying the alloca to itself is a no-op: just delete it.
2190    if (OtherPtr == AI || OtherPtr == NewElts[0]) {
2191      // This code will run twice for a no-op memcpy -- once for each operand.
2192      // Put only one reference to MI on the DeadInsts list.
2193      for (SmallVectorImpl<Value *>::const_iterator I = DeadInsts.begin(),
2194             E = DeadInsts.end(); I != E; ++I)
2195        if (*I == MI) return;
2196      DeadInsts.push_back(MI);
2197      return;
2198    }
2199
2200    // If the pointer is not the right type, insert a bitcast to the right
2201    // type.
2202    Type *NewTy =
2203      PointerType::get(AI->getType()->getElementType(), AddrSpace);
2204
2205    if (OtherPtr->getType() != NewTy)
2206      OtherPtr = new BitCastInst(OtherPtr, NewTy, OtherPtr->getName(), MI);
2207  }
2208
2209  // Process each element of the aggregate.
2210  bool SROADest = MI->getRawDest() == Inst;
2211
2212  Constant *Zero = Constant::getNullValue(Type::getInt32Ty(MI->getContext()));
2213
2214  for (unsigned i = 0, e = NewElts.size(); i != e; ++i) {
2215    // If this is a memcpy/memmove, emit a GEP of the other element address.
2216    Value *OtherElt = 0;
2217    unsigned OtherEltAlign = MemAlignment;
2218
2219    if (OtherPtr) {
2220      Value *Idx[2] = { Zero,
2221                      ConstantInt::get(Type::getInt32Ty(MI->getContext()), i) };
2222      OtherElt = GetElementPtrInst::CreateInBounds(OtherPtr, Idx,
2223                                              OtherPtr->getName()+"."+Twine(i),
2224                                                   MI);
2225      uint64_t EltOffset;
2226      PointerType *OtherPtrTy = cast<PointerType>(OtherPtr->getType());
2227      Type *OtherTy = OtherPtrTy->getElementType();
2228      if (StructType *ST = dyn_cast<StructType>(OtherTy)) {
2229        EltOffset = TD->getStructLayout(ST)->getElementOffset(i);
2230      } else {
2231        Type *EltTy = cast<SequentialType>(OtherTy)->getElementType();
2232        EltOffset = TD->getTypeAllocSize(EltTy)*i;
2233      }
2234
2235      // The alignment of the other pointer is the guaranteed alignment of the
2236      // element, which is affected by both the known alignment of the whole
2237      // mem intrinsic and the alignment of the element.  If the alignment of
2238      // the memcpy (f.e.) is 32 but the element is at a 4-byte offset, then the
2239      // known alignment is just 4 bytes.
2240      OtherEltAlign = (unsigned)MinAlign(OtherEltAlign, EltOffset);
2241    }
2242
2243    Value *EltPtr = NewElts[i];
2244    Type *EltTy = cast<PointerType>(EltPtr->getType())->getElementType();
2245
2246    // If we got down to a scalar, insert a load or store as appropriate.
2247    if (EltTy->isSingleValueType()) {
2248      if (isa<MemTransferInst>(MI)) {
2249        if (SROADest) {
2250          // From Other to Alloca.
2251          Value *Elt = new LoadInst(OtherElt, "tmp", false, OtherEltAlign, MI);
2252          new StoreInst(Elt, EltPtr, MI);
2253        } else {
2254          // From Alloca to Other.
2255          Value *Elt = new LoadInst(EltPtr, "tmp", MI);
2256          new StoreInst(Elt, OtherElt, false, OtherEltAlign, MI);
2257        }
2258        continue;
2259      }
2260      assert(isa<MemSetInst>(MI));
2261
2262      // If the stored element is zero (common case), just store a null
2263      // constant.
2264      Constant *StoreVal;
2265      if (ConstantInt *CI = dyn_cast<ConstantInt>(MI->getArgOperand(1))) {
2266        if (CI->isZero()) {
2267          StoreVal = Constant::getNullValue(EltTy);  // 0.0, null, 0, <0,0>
2268        } else {
2269          // If EltTy is a vector type, get the element type.
2270          Type *ValTy = EltTy->getScalarType();
2271
2272          // Construct an integer with the right value.
2273          unsigned EltSize = TD->getTypeSizeInBits(ValTy);
2274          APInt OneVal(EltSize, CI->getZExtValue());
2275          APInt TotalVal(OneVal);
2276          // Set each byte.
2277          for (unsigned i = 0; 8*i < EltSize; ++i) {
2278            TotalVal = TotalVal.shl(8);
2279            TotalVal |= OneVal;
2280          }
2281
2282          // Convert the integer value to the appropriate type.
2283          StoreVal = ConstantInt::get(CI->getContext(), TotalVal);
2284          if (ValTy->isPointerTy())
2285            StoreVal = ConstantExpr::getIntToPtr(StoreVal, ValTy);
2286          else if (ValTy->isFloatingPointTy())
2287            StoreVal = ConstantExpr::getBitCast(StoreVal, ValTy);
2288          assert(StoreVal->getType() == ValTy && "Type mismatch!");
2289
2290          // If the requested value was a vector constant, create it.
2291          if (EltTy->isVectorTy()) {
2292            unsigned NumElts = cast<VectorType>(EltTy)->getNumElements();
2293            StoreVal = ConstantVector::getSplat(NumElts, StoreVal);
2294          }
2295        }
2296        new StoreInst(StoreVal, EltPtr, MI);
2297        continue;
2298      }
2299      // Otherwise, if we're storing a byte variable, use a memset call for
2300      // this element.
2301    }
2302
2303    unsigned EltSize = TD->getTypeAllocSize(EltTy);
2304    if (!EltSize)
2305      continue;
2306
2307    IRBuilder<> Builder(MI);
2308
2309    // Finally, insert the meminst for this element.
2310    if (isa<MemSetInst>(MI)) {
2311      Builder.CreateMemSet(EltPtr, MI->getArgOperand(1), EltSize,
2312                           MI->isVolatile());
2313    } else {
2314      assert(isa<MemTransferInst>(MI));
2315      Value *Dst = SROADest ? EltPtr : OtherElt;  // Dest ptr
2316      Value *Src = SROADest ? OtherElt : EltPtr;  // Src ptr
2317
2318      if (isa<MemCpyInst>(MI))
2319        Builder.CreateMemCpy(Dst, Src, EltSize, OtherEltAlign,MI->isVolatile());
2320      else
2321        Builder.CreateMemMove(Dst, Src, EltSize,OtherEltAlign,MI->isVolatile());
2322    }
2323  }
2324  DeadInsts.push_back(MI);
2325}
2326
2327/// RewriteStoreUserOfWholeAlloca - We found a store of an integer that
2328/// overwrites the entire allocation.  Extract out the pieces of the stored
2329/// integer and store them individually.
2330void
2331SROA::RewriteStoreUserOfWholeAlloca(StoreInst *SI, AllocaInst *AI,
2332                                    SmallVectorImpl<AllocaInst *> &NewElts) {
2333  // Extract each element out of the integer according to its structure offset
2334  // and store the element value to the individual alloca.
2335  Value *SrcVal = SI->getOperand(0);
2336  Type *AllocaEltTy = AI->getAllocatedType();
2337  uint64_t AllocaSizeBits = TD->getTypeAllocSizeInBits(AllocaEltTy);
2338
2339  IRBuilder<> Builder(SI);
2340
2341  // Handle tail padding by extending the operand
2342  if (TD->getTypeSizeInBits(SrcVal->getType()) != AllocaSizeBits)
2343    SrcVal = Builder.CreateZExt(SrcVal,
2344                            IntegerType::get(SI->getContext(), AllocaSizeBits));
2345
2346  DEBUG(dbgs() << "PROMOTING STORE TO WHOLE ALLOCA: " << *AI << '\n' << *SI
2347               << '\n');
2348
2349  // There are two forms here: AI could be an array or struct.  Both cases
2350  // have different ways to compute the element offset.
2351  if (StructType *EltSTy = dyn_cast<StructType>(AllocaEltTy)) {
2352    const StructLayout *Layout = TD->getStructLayout(EltSTy);
2353
2354    for (unsigned i = 0, e = NewElts.size(); i != e; ++i) {
2355      // Get the number of bits to shift SrcVal to get the value.
2356      Type *FieldTy = EltSTy->getElementType(i);
2357      uint64_t Shift = Layout->getElementOffsetInBits(i);
2358
2359      if (TD->isBigEndian())
2360        Shift = AllocaSizeBits-Shift-TD->getTypeAllocSizeInBits(FieldTy);
2361
2362      Value *EltVal = SrcVal;
2363      if (Shift) {
2364        Value *ShiftVal = ConstantInt::get(EltVal->getType(), Shift);
2365        EltVal = Builder.CreateLShr(EltVal, ShiftVal, "sroa.store.elt");
2366      }
2367
2368      // Truncate down to an integer of the right size.
2369      uint64_t FieldSizeBits = TD->getTypeSizeInBits(FieldTy);
2370
2371      // Ignore zero sized fields like {}, they obviously contain no data.
2372      if (FieldSizeBits == 0) continue;
2373
2374      if (FieldSizeBits != AllocaSizeBits)
2375        EltVal = Builder.CreateTrunc(EltVal,
2376                             IntegerType::get(SI->getContext(), FieldSizeBits));
2377      Value *DestField = NewElts[i];
2378      if (EltVal->getType() == FieldTy) {
2379        // Storing to an integer field of this size, just do it.
2380      } else if (FieldTy->isFloatingPointTy() || FieldTy->isVectorTy()) {
2381        // Bitcast to the right element type (for fp/vector values).
2382        EltVal = Builder.CreateBitCast(EltVal, FieldTy);
2383      } else {
2384        // Otherwise, bitcast the dest pointer (for aggregates).
2385        DestField = Builder.CreateBitCast(DestField,
2386                                     PointerType::getUnqual(EltVal->getType()));
2387      }
2388      new StoreInst(EltVal, DestField, SI);
2389    }
2390
2391  } else {
2392    ArrayType *ATy = cast<ArrayType>(AllocaEltTy);
2393    Type *ArrayEltTy = ATy->getElementType();
2394    uint64_t ElementOffset = TD->getTypeAllocSizeInBits(ArrayEltTy);
2395    uint64_t ElementSizeBits = TD->getTypeSizeInBits(ArrayEltTy);
2396
2397    uint64_t Shift;
2398
2399    if (TD->isBigEndian())
2400      Shift = AllocaSizeBits-ElementOffset;
2401    else
2402      Shift = 0;
2403
2404    for (unsigned i = 0, e = NewElts.size(); i != e; ++i) {
2405      // Ignore zero sized fields like {}, they obviously contain no data.
2406      if (ElementSizeBits == 0) continue;
2407
2408      Value *EltVal = SrcVal;
2409      if (Shift) {
2410        Value *ShiftVal = ConstantInt::get(EltVal->getType(), Shift);
2411        EltVal = Builder.CreateLShr(EltVal, ShiftVal, "sroa.store.elt");
2412      }
2413
2414      // Truncate down to an integer of the right size.
2415      if (ElementSizeBits != AllocaSizeBits)
2416        EltVal = Builder.CreateTrunc(EltVal,
2417                                     IntegerType::get(SI->getContext(),
2418                                                      ElementSizeBits));
2419      Value *DestField = NewElts[i];
2420      if (EltVal->getType() == ArrayEltTy) {
2421        // Storing to an integer field of this size, just do it.
2422      } else if (ArrayEltTy->isFloatingPointTy() ||
2423                 ArrayEltTy->isVectorTy()) {
2424        // Bitcast to the right element type (for fp/vector values).
2425        EltVal = Builder.CreateBitCast(EltVal, ArrayEltTy);
2426      } else {
2427        // Otherwise, bitcast the dest pointer (for aggregates).
2428        DestField = Builder.CreateBitCast(DestField,
2429                                     PointerType::getUnqual(EltVal->getType()));
2430      }
2431      new StoreInst(EltVal, DestField, SI);
2432
2433      if (TD->isBigEndian())
2434        Shift -= ElementOffset;
2435      else
2436        Shift += ElementOffset;
2437    }
2438  }
2439
2440  DeadInsts.push_back(SI);
2441}
2442
2443/// RewriteLoadUserOfWholeAlloca - We found a load of the entire allocation to
2444/// an integer.  Load the individual pieces to form the aggregate value.
2445void
2446SROA::RewriteLoadUserOfWholeAlloca(LoadInst *LI, AllocaInst *AI,
2447                                   SmallVectorImpl<AllocaInst *> &NewElts) {
2448  // Extract each element out of the NewElts according to its structure offset
2449  // and form the result value.
2450  Type *AllocaEltTy = AI->getAllocatedType();
2451  uint64_t AllocaSizeBits = TD->getTypeAllocSizeInBits(AllocaEltTy);
2452
2453  DEBUG(dbgs() << "PROMOTING LOAD OF WHOLE ALLOCA: " << *AI << '\n' << *LI
2454               << '\n');
2455
2456  // There are two forms here: AI could be an array or struct.  Both cases
2457  // have different ways to compute the element offset.
2458  const StructLayout *Layout = 0;
2459  uint64_t ArrayEltBitOffset = 0;
2460  if (StructType *EltSTy = dyn_cast<StructType>(AllocaEltTy)) {
2461    Layout = TD->getStructLayout(EltSTy);
2462  } else {
2463    Type *ArrayEltTy = cast<ArrayType>(AllocaEltTy)->getElementType();
2464    ArrayEltBitOffset = TD->getTypeAllocSizeInBits(ArrayEltTy);
2465  }
2466
2467  Value *ResultVal =
2468    Constant::getNullValue(IntegerType::get(LI->getContext(), AllocaSizeBits));
2469
2470  for (unsigned i = 0, e = NewElts.size(); i != e; ++i) {
2471    // Load the value from the alloca.  If the NewElt is an aggregate, cast
2472    // the pointer to an integer of the same size before doing the load.
2473    Value *SrcField = NewElts[i];
2474    Type *FieldTy =
2475      cast<PointerType>(SrcField->getType())->getElementType();
2476    uint64_t FieldSizeBits = TD->getTypeSizeInBits(FieldTy);
2477
2478    // Ignore zero sized fields like {}, they obviously contain no data.
2479    if (FieldSizeBits == 0) continue;
2480
2481    IntegerType *FieldIntTy = IntegerType::get(LI->getContext(),
2482                                                     FieldSizeBits);
2483    if (!FieldTy->isIntegerTy() && !FieldTy->isFloatingPointTy() &&
2484        !FieldTy->isVectorTy())
2485      SrcField = new BitCastInst(SrcField,
2486                                 PointerType::getUnqual(FieldIntTy),
2487                                 "", LI);
2488    SrcField = new LoadInst(SrcField, "sroa.load.elt", LI);
2489
2490    // If SrcField is a fp or vector of the right size but that isn't an
2491    // integer type, bitcast to an integer so we can shift it.
2492    if (SrcField->getType() != FieldIntTy)
2493      SrcField = new BitCastInst(SrcField, FieldIntTy, "", LI);
2494
2495    // Zero extend the field to be the same size as the final alloca so that
2496    // we can shift and insert it.
2497    if (SrcField->getType() != ResultVal->getType())
2498      SrcField = new ZExtInst(SrcField, ResultVal->getType(), "", LI);
2499
2500    // Determine the number of bits to shift SrcField.
2501    uint64_t Shift;
2502    if (Layout) // Struct case.
2503      Shift = Layout->getElementOffsetInBits(i);
2504    else  // Array case.
2505      Shift = i*ArrayEltBitOffset;
2506
2507    if (TD->isBigEndian())
2508      Shift = AllocaSizeBits-Shift-FieldIntTy->getBitWidth();
2509
2510    if (Shift) {
2511      Value *ShiftVal = ConstantInt::get(SrcField->getType(), Shift);
2512      SrcField = BinaryOperator::CreateShl(SrcField, ShiftVal, "", LI);
2513    }
2514
2515    // Don't create an 'or x, 0' on the first iteration.
2516    if (!isa<Constant>(ResultVal) ||
2517        !cast<Constant>(ResultVal)->isNullValue())
2518      ResultVal = BinaryOperator::CreateOr(SrcField, ResultVal, "", LI);
2519    else
2520      ResultVal = SrcField;
2521  }
2522
2523  // Handle tail padding by truncating the result
2524  if (TD->getTypeSizeInBits(LI->getType()) != AllocaSizeBits)
2525    ResultVal = new TruncInst(ResultVal, LI->getType(), "", LI);
2526
2527  LI->replaceAllUsesWith(ResultVal);
2528  DeadInsts.push_back(LI);
2529}
2530
2531/// HasPadding - Return true if the specified type has any structure or
2532/// alignment padding in between the elements that would be split apart
2533/// by SROA; return false otherwise.
2534static bool HasPadding(Type *Ty, const DataLayout &TD) {
2535  if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
2536    Ty = ATy->getElementType();
2537    return TD.getTypeSizeInBits(Ty) != TD.getTypeAllocSizeInBits(Ty);
2538  }
2539
2540  // SROA currently handles only Arrays and Structs.
2541  StructType *STy = cast<StructType>(Ty);
2542  const StructLayout *SL = TD.getStructLayout(STy);
2543  unsigned PrevFieldBitOffset = 0;
2544  for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
2545    unsigned FieldBitOffset = SL->getElementOffsetInBits(i);
2546
2547    // Check to see if there is any padding between this element and the
2548    // previous one.
2549    if (i) {
2550      unsigned PrevFieldEnd =
2551        PrevFieldBitOffset+TD.getTypeSizeInBits(STy->getElementType(i-1));
2552      if (PrevFieldEnd < FieldBitOffset)
2553        return true;
2554    }
2555    PrevFieldBitOffset = FieldBitOffset;
2556  }
2557  // Check for tail padding.
2558  if (unsigned EltCount = STy->getNumElements()) {
2559    unsigned PrevFieldEnd = PrevFieldBitOffset +
2560      TD.getTypeSizeInBits(STy->getElementType(EltCount-1));
2561    if (PrevFieldEnd < SL->getSizeInBits())
2562      return true;
2563  }
2564  return false;
2565}
2566
2567/// isSafeStructAllocaToScalarRepl - Check to see if the specified allocation of
2568/// an aggregate can be broken down into elements.  Return 0 if not, 3 if safe,
2569/// or 1 if safe after canonicalization has been performed.
2570bool SROA::isSafeAllocaToScalarRepl(AllocaInst *AI) {
2571  // Loop over the use list of the alloca.  We can only transform it if all of
2572  // the users are safe to transform.
2573  AllocaInfo Info(AI);
2574
2575  isSafeForScalarRepl(AI, 0, Info);
2576  if (Info.isUnsafe) {
2577    DEBUG(dbgs() << "Cannot transform: " << *AI << '\n');
2578    return false;
2579  }
2580
2581  // Okay, we know all the users are promotable.  If the aggregate is a memcpy
2582  // source and destination, we have to be careful.  In particular, the memcpy
2583  // could be moving around elements that live in structure padding of the LLVM
2584  // types, but may actually be used.  In these cases, we refuse to promote the
2585  // struct.
2586  if (Info.isMemCpySrc && Info.isMemCpyDst &&
2587      HasPadding(AI->getAllocatedType(), *TD))
2588    return false;
2589
2590  // If the alloca never has an access to just *part* of it, but is accessed
2591  // via loads and stores, then we should use ConvertToScalarInfo to promote
2592  // the alloca instead of promoting each piece at a time and inserting fission
2593  // and fusion code.
2594  if (!Info.hasSubelementAccess && Info.hasALoadOrStore) {
2595    // If the struct/array just has one element, use basic SRoA.
2596    if (StructType *ST = dyn_cast<StructType>(AI->getAllocatedType())) {
2597      if (ST->getNumElements() > 1) return false;
2598    } else {
2599      if (cast<ArrayType>(AI->getAllocatedType())->getNumElements() > 1)
2600        return false;
2601    }
2602  }
2603
2604  return true;
2605}
2606