LoopUnswitch.cpp revision 263508
1//===-- LoopUnswitch.cpp - Hoist loop-invariant conditionals in loop ------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This pass transforms loops that contain branches on loop-invariant conditions
11// to have multiple loops.  For example, it turns the left into the right code:
12//
13//  for (...)                  if (lic)
14//    A                          for (...)
15//    if (lic)                     A; B; C
16//      B                      else
17//    C                          for (...)
18//                                 A; C
19//
20// This can increase the size of the code exponentially (doubling it every time
21// a loop is unswitched) so we only unswitch if the resultant code will be
22// smaller than a threshold.
23//
24// This pass expects LICM to be run before it to hoist invariant conditions out
25// of the loop, to make the unswitching opportunity obvious.
26//
27//===----------------------------------------------------------------------===//
28
29#define DEBUG_TYPE "loop-unswitch"
30#include "llvm/Transforms/Scalar.h"
31#include "llvm/ADT/STLExtras.h"
32#include "llvm/ADT/SmallPtrSet.h"
33#include "llvm/ADT/Statistic.h"
34#include "llvm/Analysis/CodeMetrics.h"
35#include "llvm/Analysis/Dominators.h"
36#include "llvm/Analysis/InstructionSimplify.h"
37#include "llvm/Analysis/LoopInfo.h"
38#include "llvm/Analysis/LoopPass.h"
39#include "llvm/Analysis/ScalarEvolution.h"
40#include "llvm/Analysis/TargetTransformInfo.h"
41#include "llvm/IR/Constants.h"
42#include "llvm/IR/DerivedTypes.h"
43#include "llvm/IR/Function.h"
44#include "llvm/IR/Instructions.h"
45#include "llvm/Support/CommandLine.h"
46#include "llvm/Support/Debug.h"
47#include "llvm/Support/raw_ostream.h"
48#include "llvm/Transforms/Utils/BasicBlockUtils.h"
49#include "llvm/Transforms/Utils/Cloning.h"
50#include "llvm/Transforms/Utils/Local.h"
51#include <algorithm>
52#include <map>
53#include <set>
54using namespace llvm;
55
56STATISTIC(NumBranches, "Number of branches unswitched");
57STATISTIC(NumSwitches, "Number of switches unswitched");
58STATISTIC(NumSelects , "Number of selects unswitched");
59STATISTIC(NumTrivial , "Number of unswitches that are trivial");
60STATISTIC(NumSimplify, "Number of simplifications of unswitched code");
61STATISTIC(TotalInsts,  "Total number of instructions analyzed");
62
63// The specific value of 100 here was chosen based only on intuition and a
64// few specific examples.
65static cl::opt<unsigned>
66Threshold("loop-unswitch-threshold", cl::desc("Max loop size to unswitch"),
67          cl::init(100), cl::Hidden);
68
69namespace {
70
71  class LUAnalysisCache {
72
73    typedef DenseMap<const SwitchInst*, SmallPtrSet<const Value *, 8> >
74      UnswitchedValsMap;
75
76    typedef UnswitchedValsMap::iterator UnswitchedValsIt;
77
78    struct LoopProperties {
79      unsigned CanBeUnswitchedCount;
80      unsigned SizeEstimation;
81      UnswitchedValsMap UnswitchedVals;
82    };
83
84    // Here we use std::map instead of DenseMap, since we need to keep valid
85    // LoopProperties pointer for current loop for better performance.
86    typedef std::map<const Loop*, LoopProperties> LoopPropsMap;
87    typedef LoopPropsMap::iterator LoopPropsMapIt;
88
89    LoopPropsMap LoopsProperties;
90    UnswitchedValsMap *CurLoopInstructions;
91    LoopProperties *CurrentLoopProperties;
92
93    // Max size of code we can produce on remained iterations.
94    unsigned MaxSize;
95
96    public:
97
98      LUAnalysisCache() :
99        CurLoopInstructions(0), CurrentLoopProperties(0),
100        MaxSize(Threshold)
101      {}
102
103      // Analyze loop. Check its size, calculate is it possible to unswitch
104      // it. Returns true if we can unswitch this loop.
105      bool countLoop(const Loop *L, const TargetTransformInfo &TTI);
106
107      // Clean all data related to given loop.
108      void forgetLoop(const Loop *L);
109
110      // Mark case value as unswitched.
111      // Since SI instruction can be partly unswitched, in order to avoid
112      // extra unswitching in cloned loops keep track all unswitched values.
113      void setUnswitched(const SwitchInst *SI, const Value *V);
114
115      // Check was this case value unswitched before or not.
116      bool isUnswitched(const SwitchInst *SI, const Value *V);
117
118      // Clone all loop-unswitch related loop properties.
119      // Redistribute unswitching quotas.
120      // Note, that new loop data is stored inside the VMap.
121      void cloneData(const Loop *NewLoop, const Loop *OldLoop,
122                     const ValueToValueMapTy &VMap);
123  };
124
125  class LoopUnswitch : public LoopPass {
126    LoopInfo *LI;  // Loop information
127    LPPassManager *LPM;
128
129    // LoopProcessWorklist - Used to check if second loop needs processing
130    // after RewriteLoopBodyWithConditionConstant rewrites first loop.
131    std::vector<Loop*> LoopProcessWorklist;
132
133    LUAnalysisCache BranchesInfo;
134
135    bool OptimizeForSize;
136    bool redoLoop;
137
138    Loop *currentLoop;
139    DominatorTree *DT;
140    BasicBlock *loopHeader;
141    BasicBlock *loopPreheader;
142
143    // LoopBlocks contains all of the basic blocks of the loop, including the
144    // preheader of the loop, the body of the loop, and the exit blocks of the
145    // loop, in that order.
146    std::vector<BasicBlock*> LoopBlocks;
147    // NewBlocks contained cloned copy of basic blocks from LoopBlocks.
148    std::vector<BasicBlock*> NewBlocks;
149
150  public:
151    static char ID; // Pass ID, replacement for typeid
152    explicit LoopUnswitch(bool Os = false) :
153      LoopPass(ID), OptimizeForSize(Os), redoLoop(false),
154      currentLoop(0), DT(0), loopHeader(0),
155      loopPreheader(0) {
156        initializeLoopUnswitchPass(*PassRegistry::getPassRegistry());
157      }
158
159    bool runOnLoop(Loop *L, LPPassManager &LPM);
160    bool processCurrentLoop();
161
162    /// This transformation requires natural loop information & requires that
163    /// loop preheaders be inserted into the CFG.
164    ///
165    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
166      AU.addRequiredID(LoopSimplifyID);
167      AU.addPreservedID(LoopSimplifyID);
168      AU.addRequired<LoopInfo>();
169      AU.addPreserved<LoopInfo>();
170      AU.addRequiredID(LCSSAID);
171      AU.addPreservedID(LCSSAID);
172      AU.addPreserved<DominatorTree>();
173      AU.addPreserved<ScalarEvolution>();
174      AU.addRequired<TargetTransformInfo>();
175    }
176
177  private:
178
179    virtual void releaseMemory() {
180      BranchesInfo.forgetLoop(currentLoop);
181    }
182
183    /// RemoveLoopFromWorklist - If the specified loop is on the loop worklist,
184    /// remove it.
185    void RemoveLoopFromWorklist(Loop *L) {
186      std::vector<Loop*>::iterator I = std::find(LoopProcessWorklist.begin(),
187                                                 LoopProcessWorklist.end(), L);
188      if (I != LoopProcessWorklist.end())
189        LoopProcessWorklist.erase(I);
190    }
191
192    void initLoopData() {
193      loopHeader = currentLoop->getHeader();
194      loopPreheader = currentLoop->getLoopPreheader();
195    }
196
197    /// Split all of the edges from inside the loop to their exit blocks.
198    /// Update the appropriate Phi nodes as we do so.
199    void SplitExitEdges(Loop *L, const SmallVectorImpl<BasicBlock *> &ExitBlocks);
200
201    bool UnswitchIfProfitable(Value *LoopCond, Constant *Val);
202    void UnswitchTrivialCondition(Loop *L, Value *Cond, Constant *Val,
203                                  BasicBlock *ExitBlock);
204    void UnswitchNontrivialCondition(Value *LIC, Constant *OnVal, Loop *L);
205
206    void RewriteLoopBodyWithConditionConstant(Loop *L, Value *LIC,
207                                              Constant *Val, bool isEqual);
208
209    void EmitPreheaderBranchOnCondition(Value *LIC, Constant *Val,
210                                        BasicBlock *TrueDest,
211                                        BasicBlock *FalseDest,
212                                        Instruction *InsertPt);
213
214    void SimplifyCode(std::vector<Instruction*> &Worklist, Loop *L);
215    void RemoveLoopFromHierarchy(Loop *L);
216    bool IsTrivialUnswitchCondition(Value *Cond, Constant **Val = 0,
217                                    BasicBlock **LoopExit = 0);
218
219  };
220}
221
222// Analyze loop. Check its size, calculate is it possible to unswitch
223// it. Returns true if we can unswitch this loop.
224bool LUAnalysisCache::countLoop(const Loop *L, const TargetTransformInfo &TTI) {
225
226  LoopPropsMapIt PropsIt;
227  bool Inserted;
228  llvm::tie(PropsIt, Inserted) =
229      LoopsProperties.insert(std::make_pair(L, LoopProperties()));
230
231  LoopProperties &Props = PropsIt->second;
232
233  if (Inserted) {
234    // New loop.
235
236    // Limit the number of instructions to avoid causing significant code
237    // expansion, and the number of basic blocks, to avoid loops with
238    // large numbers of branches which cause loop unswitching to go crazy.
239    // This is a very ad-hoc heuristic.
240
241    // FIXME: This is overly conservative because it does not take into
242    // consideration code simplification opportunities and code that can
243    // be shared by the resultant unswitched loops.
244    CodeMetrics Metrics;
245    for (Loop::block_iterator I = L->block_begin(), E = L->block_end();
246         I != E; ++I)
247      Metrics.analyzeBasicBlock(*I, TTI);
248
249    Props.SizeEstimation = std::min(Metrics.NumInsts, Metrics.NumBlocks * 5);
250    Props.CanBeUnswitchedCount = MaxSize / (Props.SizeEstimation);
251    MaxSize -= Props.SizeEstimation * Props.CanBeUnswitchedCount;
252
253    if (Metrics.notDuplicatable) {
254      DEBUG(dbgs() << "NOT unswitching loop %"
255                   << L->getHeader()->getName() << ", contents cannot be "
256                   << "duplicated!\n");
257      return false;
258    }
259  }
260
261  if (!Props.CanBeUnswitchedCount) {
262    DEBUG(dbgs() << "NOT unswitching loop %"
263                 << L->getHeader()->getName() << ", cost too high: "
264                 << L->getBlocks().size() << "\n");
265    return false;
266  }
267
268  // Be careful. This links are good only before new loop addition.
269  CurrentLoopProperties = &Props;
270  CurLoopInstructions = &Props.UnswitchedVals;
271
272  return true;
273}
274
275// Clean all data related to given loop.
276void LUAnalysisCache::forgetLoop(const Loop *L) {
277
278  LoopPropsMapIt LIt = LoopsProperties.find(L);
279
280  if (LIt != LoopsProperties.end()) {
281    LoopProperties &Props = LIt->second;
282    MaxSize += Props.CanBeUnswitchedCount * Props.SizeEstimation;
283    LoopsProperties.erase(LIt);
284  }
285
286  CurrentLoopProperties = 0;
287  CurLoopInstructions = 0;
288}
289
290// Mark case value as unswitched.
291// Since SI instruction can be partly unswitched, in order to avoid
292// extra unswitching in cloned loops keep track all unswitched values.
293void LUAnalysisCache::setUnswitched(const SwitchInst *SI, const Value *V) {
294  (*CurLoopInstructions)[SI].insert(V);
295}
296
297// Check was this case value unswitched before or not.
298bool LUAnalysisCache::isUnswitched(const SwitchInst *SI, const Value *V) {
299  return (*CurLoopInstructions)[SI].count(V);
300}
301
302// Clone all loop-unswitch related loop properties.
303// Redistribute unswitching quotas.
304// Note, that new loop data is stored inside the VMap.
305void LUAnalysisCache::cloneData(const Loop *NewLoop, const Loop *OldLoop,
306                                const ValueToValueMapTy &VMap) {
307
308  LoopProperties &NewLoopProps = LoopsProperties[NewLoop];
309  LoopProperties &OldLoopProps = *CurrentLoopProperties;
310  UnswitchedValsMap &Insts = OldLoopProps.UnswitchedVals;
311
312  // Reallocate "can-be-unswitched quota"
313
314  --OldLoopProps.CanBeUnswitchedCount;
315  unsigned Quota = OldLoopProps.CanBeUnswitchedCount;
316  NewLoopProps.CanBeUnswitchedCount = Quota / 2;
317  OldLoopProps.CanBeUnswitchedCount = Quota - Quota / 2;
318
319  NewLoopProps.SizeEstimation = OldLoopProps.SizeEstimation;
320
321  // Clone unswitched values info:
322  // for new loop switches we clone info about values that was
323  // already unswitched and has redundant successors.
324  for (UnswitchedValsIt I = Insts.begin(); I != Insts.end(); ++I) {
325    const SwitchInst *OldInst = I->first;
326    Value *NewI = VMap.lookup(OldInst);
327    const SwitchInst *NewInst = cast_or_null<SwitchInst>(NewI);
328    assert(NewInst && "All instructions that are in SrcBB must be in VMap.");
329
330    NewLoopProps.UnswitchedVals[NewInst] = OldLoopProps.UnswitchedVals[OldInst];
331  }
332}
333
334char LoopUnswitch::ID = 0;
335INITIALIZE_PASS_BEGIN(LoopUnswitch, "loop-unswitch", "Unswitch loops",
336                      false, false)
337INITIALIZE_AG_DEPENDENCY(TargetTransformInfo)
338INITIALIZE_PASS_DEPENDENCY(LoopSimplify)
339INITIALIZE_PASS_DEPENDENCY(LoopInfo)
340INITIALIZE_PASS_DEPENDENCY(LCSSA)
341INITIALIZE_PASS_END(LoopUnswitch, "loop-unswitch", "Unswitch loops",
342                      false, false)
343
344Pass *llvm::createLoopUnswitchPass(bool Os) {
345  return new LoopUnswitch(Os);
346}
347
348/// FindLIVLoopCondition - Cond is a condition that occurs in L.  If it is
349/// invariant in the loop, or has an invariant piece, return the invariant.
350/// Otherwise, return null.
351static Value *FindLIVLoopCondition(Value *Cond, Loop *L, bool &Changed) {
352
353  // We started analyze new instruction, increment scanned instructions counter.
354  ++TotalInsts;
355
356  // We can never unswitch on vector conditions.
357  if (Cond->getType()->isVectorTy())
358    return 0;
359
360  // Constants should be folded, not unswitched on!
361  if (isa<Constant>(Cond)) return 0;
362
363  // TODO: Handle: br (VARIANT|INVARIANT).
364
365  // Hoist simple values out.
366  if (L->makeLoopInvariant(Cond, Changed))
367    return Cond;
368
369  if (BinaryOperator *BO = dyn_cast<BinaryOperator>(Cond))
370    if (BO->getOpcode() == Instruction::And ||
371        BO->getOpcode() == Instruction::Or) {
372      // If either the left or right side is invariant, we can unswitch on this,
373      // which will cause the branch to go away in one loop and the condition to
374      // simplify in the other one.
375      if (Value *LHS = FindLIVLoopCondition(BO->getOperand(0), L, Changed))
376        return LHS;
377      if (Value *RHS = FindLIVLoopCondition(BO->getOperand(1), L, Changed))
378        return RHS;
379    }
380
381  return 0;
382}
383
384bool LoopUnswitch::runOnLoop(Loop *L, LPPassManager &LPM_Ref) {
385  LI = &getAnalysis<LoopInfo>();
386  LPM = &LPM_Ref;
387  DT = getAnalysisIfAvailable<DominatorTree>();
388  currentLoop = L;
389  Function *F = currentLoop->getHeader()->getParent();
390  bool Changed = false;
391  do {
392    assert(currentLoop->isLCSSAForm(*DT));
393    redoLoop = false;
394    Changed |= processCurrentLoop();
395  } while(redoLoop);
396
397  if (Changed) {
398    // FIXME: Reconstruct dom info, because it is not preserved properly.
399    if (DT)
400      DT->runOnFunction(*F);
401  }
402  return Changed;
403}
404
405/// processCurrentLoop - Do actual work and unswitch loop if possible
406/// and profitable.
407bool LoopUnswitch::processCurrentLoop() {
408  bool Changed = false;
409
410  initLoopData();
411
412  // If LoopSimplify was unable to form a preheader, don't do any unswitching.
413  if (!loopPreheader)
414    return false;
415
416  // Loops with indirectbr cannot be cloned.
417  if (!currentLoop->isSafeToClone())
418    return false;
419
420  // Without dedicated exits, splitting the exit edge may fail.
421  if (!currentLoop->hasDedicatedExits())
422    return false;
423
424  LLVMContext &Context = loopHeader->getContext();
425
426  // Probably we reach the quota of branches for this loop. If so
427  // stop unswitching.
428  if (!BranchesInfo.countLoop(currentLoop, getAnalysis<TargetTransformInfo>()))
429    return false;
430
431  // Loop over all of the basic blocks in the loop.  If we find an interior
432  // block that is branching on a loop-invariant condition, we can unswitch this
433  // loop.
434  for (Loop::block_iterator I = currentLoop->block_begin(),
435         E = currentLoop->block_end(); I != E; ++I) {
436    TerminatorInst *TI = (*I)->getTerminator();
437    if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
438      // If this isn't branching on an invariant condition, we can't unswitch
439      // it.
440      if (BI->isConditional()) {
441        // See if this, or some part of it, is loop invariant.  If so, we can
442        // unswitch on it if we desire.
443        Value *LoopCond = FindLIVLoopCondition(BI->getCondition(),
444                                               currentLoop, Changed);
445        if (LoopCond && UnswitchIfProfitable(LoopCond,
446                                             ConstantInt::getTrue(Context))) {
447          ++NumBranches;
448          return true;
449        }
450      }
451    } else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
452      Value *LoopCond = FindLIVLoopCondition(SI->getCondition(),
453                                             currentLoop, Changed);
454      unsigned NumCases = SI->getNumCases();
455      if (LoopCond && NumCases) {
456        // Find a value to unswitch on:
457        // FIXME: this should chose the most expensive case!
458        // FIXME: scan for a case with a non-critical edge?
459        Constant *UnswitchVal = 0;
460
461        // Do not process same value again and again.
462        // At this point we have some cases already unswitched and
463        // some not yet unswitched. Let's find the first not yet unswitched one.
464        for (SwitchInst::CaseIt i = SI->case_begin(), e = SI->case_end();
465             i != e; ++i) {
466          Constant *UnswitchValCandidate = i.getCaseValue();
467          if (!BranchesInfo.isUnswitched(SI, UnswitchValCandidate)) {
468            UnswitchVal = UnswitchValCandidate;
469            break;
470          }
471        }
472
473        if (!UnswitchVal)
474          continue;
475
476        if (UnswitchIfProfitable(LoopCond, UnswitchVal)) {
477          ++NumSwitches;
478          return true;
479        }
480      }
481    }
482
483    // Scan the instructions to check for unswitchable values.
484    for (BasicBlock::iterator BBI = (*I)->begin(), E = (*I)->end();
485         BBI != E; ++BBI)
486      if (SelectInst *SI = dyn_cast<SelectInst>(BBI)) {
487        Value *LoopCond = FindLIVLoopCondition(SI->getCondition(),
488                                               currentLoop, Changed);
489        if (LoopCond && UnswitchIfProfitable(LoopCond,
490                                             ConstantInt::getTrue(Context))) {
491          ++NumSelects;
492          return true;
493        }
494      }
495  }
496  return Changed;
497}
498
499/// isTrivialLoopExitBlock - Check to see if all paths from BB exit the
500/// loop with no side effects (including infinite loops).
501///
502/// If true, we return true and set ExitBB to the block we
503/// exit through.
504///
505static bool isTrivialLoopExitBlockHelper(Loop *L, BasicBlock *BB,
506                                         BasicBlock *&ExitBB,
507                                         std::set<BasicBlock*> &Visited) {
508  if (!Visited.insert(BB).second) {
509    // Already visited. Without more analysis, this could indicate an infinite
510    // loop.
511    return false;
512  }
513  if (!L->contains(BB)) {
514    // Otherwise, this is a loop exit, this is fine so long as this is the
515    // first exit.
516    if (ExitBB != 0) return false;
517    ExitBB = BB;
518    return true;
519  }
520
521  // Otherwise, this is an unvisited intra-loop node.  Check all successors.
522  for (succ_iterator SI = succ_begin(BB), E = succ_end(BB); SI != E; ++SI) {
523    // Check to see if the successor is a trivial loop exit.
524    if (!isTrivialLoopExitBlockHelper(L, *SI, ExitBB, Visited))
525      return false;
526  }
527
528  // Okay, everything after this looks good, check to make sure that this block
529  // doesn't include any side effects.
530  for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
531    if (I->mayHaveSideEffects())
532      return false;
533
534  return true;
535}
536
537/// isTrivialLoopExitBlock - Return true if the specified block unconditionally
538/// leads to an exit from the specified loop, and has no side-effects in the
539/// process.  If so, return the block that is exited to, otherwise return null.
540static BasicBlock *isTrivialLoopExitBlock(Loop *L, BasicBlock *BB) {
541  std::set<BasicBlock*> Visited;
542  Visited.insert(L->getHeader());  // Branches to header make infinite loops.
543  BasicBlock *ExitBB = 0;
544  if (isTrivialLoopExitBlockHelper(L, BB, ExitBB, Visited))
545    return ExitBB;
546  return 0;
547}
548
549/// IsTrivialUnswitchCondition - Check to see if this unswitch condition is
550/// trivial: that is, that the condition controls whether or not the loop does
551/// anything at all.  If this is a trivial condition, unswitching produces no
552/// code duplications (equivalently, it produces a simpler loop and a new empty
553/// loop, which gets deleted).
554///
555/// If this is a trivial condition, return true, otherwise return false.  When
556/// returning true, this sets Cond and Val to the condition that controls the
557/// trivial condition: when Cond dynamically equals Val, the loop is known to
558/// exit.  Finally, this sets LoopExit to the BB that the loop exits to when
559/// Cond == Val.
560///
561bool LoopUnswitch::IsTrivialUnswitchCondition(Value *Cond, Constant **Val,
562                                       BasicBlock **LoopExit) {
563  BasicBlock *Header = currentLoop->getHeader();
564  TerminatorInst *HeaderTerm = Header->getTerminator();
565  LLVMContext &Context = Header->getContext();
566
567  BasicBlock *LoopExitBB = 0;
568  if (BranchInst *BI = dyn_cast<BranchInst>(HeaderTerm)) {
569    // If the header block doesn't end with a conditional branch on Cond, we
570    // can't handle it.
571    if (!BI->isConditional() || BI->getCondition() != Cond)
572      return false;
573
574    // Check to see if a successor of the branch is guaranteed to
575    // exit through a unique exit block without having any
576    // side-effects.  If so, determine the value of Cond that causes it to do
577    // this.
578    if ((LoopExitBB = isTrivialLoopExitBlock(currentLoop,
579                                             BI->getSuccessor(0)))) {
580      if (Val) *Val = ConstantInt::getTrue(Context);
581    } else if ((LoopExitBB = isTrivialLoopExitBlock(currentLoop,
582                                                    BI->getSuccessor(1)))) {
583      if (Val) *Val = ConstantInt::getFalse(Context);
584    }
585  } else if (SwitchInst *SI = dyn_cast<SwitchInst>(HeaderTerm)) {
586    // If this isn't a switch on Cond, we can't handle it.
587    if (SI->getCondition() != Cond) return false;
588
589    // Check to see if a successor of the switch is guaranteed to go to the
590    // latch block or exit through a one exit block without having any
591    // side-effects.  If so, determine the value of Cond that causes it to do
592    // this.
593    // Note that we can't trivially unswitch on the default case or
594    // on already unswitched cases.
595    for (SwitchInst::CaseIt i = SI->case_begin(), e = SI->case_end();
596         i != e; ++i) {
597      BasicBlock *LoopExitCandidate;
598      if ((LoopExitCandidate = isTrivialLoopExitBlock(currentLoop,
599                                               i.getCaseSuccessor()))) {
600        // Okay, we found a trivial case, remember the value that is trivial.
601        ConstantInt *CaseVal = i.getCaseValue();
602
603        // Check that it was not unswitched before, since already unswitched
604        // trivial vals are looks trivial too.
605        if (BranchesInfo.isUnswitched(SI, CaseVal))
606          continue;
607        LoopExitBB = LoopExitCandidate;
608        if (Val) *Val = CaseVal;
609        break;
610      }
611    }
612  }
613
614  // If we didn't find a single unique LoopExit block, or if the loop exit block
615  // contains phi nodes, this isn't trivial.
616  if (!LoopExitBB || isa<PHINode>(LoopExitBB->begin()))
617    return false;   // Can't handle this.
618
619  if (LoopExit) *LoopExit = LoopExitBB;
620
621  // We already know that nothing uses any scalar values defined inside of this
622  // loop.  As such, we just have to check to see if this loop will execute any
623  // side-effecting instructions (e.g. stores, calls, volatile loads) in the
624  // part of the loop that the code *would* execute.  We already checked the
625  // tail, check the header now.
626  for (BasicBlock::iterator I = Header->begin(), E = Header->end(); I != E; ++I)
627    if (I->mayHaveSideEffects())
628      return false;
629  return true;
630}
631
632/// UnswitchIfProfitable - We have found that we can unswitch currentLoop when
633/// LoopCond == Val to simplify the loop.  If we decide that this is profitable,
634/// unswitch the loop, reprocess the pieces, then return true.
635bool LoopUnswitch::UnswitchIfProfitable(Value *LoopCond, Constant *Val) {
636  Function *F = loopHeader->getParent();
637  Constant *CondVal = 0;
638  BasicBlock *ExitBlock = 0;
639
640  if (IsTrivialUnswitchCondition(LoopCond, &CondVal, &ExitBlock)) {
641    // If the condition is trivial, always unswitch. There is no code growth
642    // for this case.
643    UnswitchTrivialCondition(currentLoop, LoopCond, CondVal, ExitBlock);
644    return true;
645  }
646
647  // Check to see if it would be profitable to unswitch current loop.
648
649  // Do not do non-trivial unswitch while optimizing for size.
650  if (OptimizeForSize ||
651      F->getAttributes().hasAttribute(AttributeSet::FunctionIndex,
652                                      Attribute::OptimizeForSize))
653    return false;
654
655  UnswitchNontrivialCondition(LoopCond, Val, currentLoop);
656  return true;
657}
658
659/// CloneLoop - Recursively clone the specified loop and all of its children,
660/// mapping the blocks with the specified map.
661static Loop *CloneLoop(Loop *L, Loop *PL, ValueToValueMapTy &VM,
662                       LoopInfo *LI, LPPassManager *LPM) {
663  Loop *New = new Loop();
664  LPM->insertLoop(New, PL);
665
666  // Add all of the blocks in L to the new loop.
667  for (Loop::block_iterator I = L->block_begin(), E = L->block_end();
668       I != E; ++I)
669    if (LI->getLoopFor(*I) == L)
670      New->addBasicBlockToLoop(cast<BasicBlock>(VM[*I]), LI->getBase());
671
672  // Add all of the subloops to the new loop.
673  for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I)
674    CloneLoop(*I, New, VM, LI, LPM);
675
676  return New;
677}
678
679/// EmitPreheaderBranchOnCondition - Emit a conditional branch on two values
680/// if LIC == Val, branch to TrueDst, otherwise branch to FalseDest.  Insert the
681/// code immediately before InsertPt.
682void LoopUnswitch::EmitPreheaderBranchOnCondition(Value *LIC, Constant *Val,
683                                                  BasicBlock *TrueDest,
684                                                  BasicBlock *FalseDest,
685                                                  Instruction *InsertPt) {
686  // Insert a conditional branch on LIC to the two preheaders.  The original
687  // code is the true version and the new code is the false version.
688  Value *BranchVal = LIC;
689  if (!isa<ConstantInt>(Val) ||
690      Val->getType() != Type::getInt1Ty(LIC->getContext()))
691    BranchVal = new ICmpInst(InsertPt, ICmpInst::ICMP_EQ, LIC, Val);
692  else if (Val != ConstantInt::getTrue(Val->getContext()))
693    // We want to enter the new loop when the condition is true.
694    std::swap(TrueDest, FalseDest);
695
696  // Insert the new branch.
697  BranchInst *BI = BranchInst::Create(TrueDest, FalseDest, BranchVal, InsertPt);
698
699  // If either edge is critical, split it. This helps preserve LoopSimplify
700  // form for enclosing loops.
701  SplitCriticalEdge(BI, 0, this, false, false, true);
702  SplitCriticalEdge(BI, 1, this, false, false, true);
703}
704
705/// UnswitchTrivialCondition - Given a loop that has a trivial unswitchable
706/// condition in it (a cond branch from its header block to its latch block,
707/// where the path through the loop that doesn't execute its body has no
708/// side-effects), unswitch it.  This doesn't involve any code duplication, just
709/// moving the conditional branch outside of the loop and updating loop info.
710void LoopUnswitch::UnswitchTrivialCondition(Loop *L, Value *Cond,
711                                            Constant *Val,
712                                            BasicBlock *ExitBlock) {
713  DEBUG(dbgs() << "loop-unswitch: Trivial-Unswitch loop %"
714        << loopHeader->getName() << " [" << L->getBlocks().size()
715        << " blocks] in Function " << L->getHeader()->getParent()->getName()
716        << " on cond: " << *Val << " == " << *Cond << "\n");
717
718  // First step, split the preheader, so that we know that there is a safe place
719  // to insert the conditional branch.  We will change loopPreheader to have a
720  // conditional branch on Cond.
721  BasicBlock *NewPH = SplitEdge(loopPreheader, loopHeader, this);
722
723  // Now that we have a place to insert the conditional branch, create a place
724  // to branch to: this is the exit block out of the loop that we should
725  // short-circuit to.
726
727  // Split this block now, so that the loop maintains its exit block, and so
728  // that the jump from the preheader can execute the contents of the exit block
729  // without actually branching to it (the exit block should be dominated by the
730  // loop header, not the preheader).
731  assert(!L->contains(ExitBlock) && "Exit block is in the loop?");
732  BasicBlock *NewExit = SplitBlock(ExitBlock, ExitBlock->begin(), this);
733
734  // Okay, now we have a position to branch from and a position to branch to,
735  // insert the new conditional branch.
736  EmitPreheaderBranchOnCondition(Cond, Val, NewExit, NewPH,
737                                 loopPreheader->getTerminator());
738  LPM->deleteSimpleAnalysisValue(loopPreheader->getTerminator(), L);
739  loopPreheader->getTerminator()->eraseFromParent();
740
741  // We need to reprocess this loop, it could be unswitched again.
742  redoLoop = true;
743
744  // Now that we know that the loop is never entered when this condition is a
745  // particular value, rewrite the loop with this info.  We know that this will
746  // at least eliminate the old branch.
747  RewriteLoopBodyWithConditionConstant(L, Cond, Val, false);
748  ++NumTrivial;
749}
750
751/// SplitExitEdges - Split all of the edges from inside the loop to their exit
752/// blocks.  Update the appropriate Phi nodes as we do so.
753void LoopUnswitch::SplitExitEdges(Loop *L,
754                               const SmallVectorImpl<BasicBlock *> &ExitBlocks){
755
756  for (unsigned i = 0, e = ExitBlocks.size(); i != e; ++i) {
757    BasicBlock *ExitBlock = ExitBlocks[i];
758    SmallVector<BasicBlock *, 4> Preds(pred_begin(ExitBlock),
759                                       pred_end(ExitBlock));
760
761    // Although SplitBlockPredecessors doesn't preserve loop-simplify in
762    // general, if we call it on all predecessors of all exits then it does.
763    if (!ExitBlock->isLandingPad()) {
764      SplitBlockPredecessors(ExitBlock, Preds, ".us-lcssa", this);
765    } else {
766      SmallVector<BasicBlock*, 2> NewBBs;
767      SplitLandingPadPredecessors(ExitBlock, Preds, ".us-lcssa", ".us-lcssa",
768                                  this, NewBBs);
769    }
770  }
771}
772
773/// UnswitchNontrivialCondition - We determined that the loop is profitable
774/// to unswitch when LIC equal Val.  Split it into loop versions and test the
775/// condition outside of either loop.  Return the loops created as Out1/Out2.
776void LoopUnswitch::UnswitchNontrivialCondition(Value *LIC, Constant *Val,
777                                               Loop *L) {
778  Function *F = loopHeader->getParent();
779  DEBUG(dbgs() << "loop-unswitch: Unswitching loop %"
780        << loopHeader->getName() << " [" << L->getBlocks().size()
781        << " blocks] in Function " << F->getName()
782        << " when '" << *Val << "' == " << *LIC << "\n");
783
784  if (ScalarEvolution *SE = getAnalysisIfAvailable<ScalarEvolution>())
785    SE->forgetLoop(L);
786
787  LoopBlocks.clear();
788  NewBlocks.clear();
789
790  // First step, split the preheader and exit blocks, and add these blocks to
791  // the LoopBlocks list.
792  BasicBlock *NewPreheader = SplitEdge(loopPreheader, loopHeader, this);
793  LoopBlocks.push_back(NewPreheader);
794
795  // We want the loop to come after the preheader, but before the exit blocks.
796  LoopBlocks.insert(LoopBlocks.end(), L->block_begin(), L->block_end());
797
798  SmallVector<BasicBlock*, 8> ExitBlocks;
799  L->getUniqueExitBlocks(ExitBlocks);
800
801  // Split all of the edges from inside the loop to their exit blocks.  Update
802  // the appropriate Phi nodes as we do so.
803  SplitExitEdges(L, ExitBlocks);
804
805  // The exit blocks may have been changed due to edge splitting, recompute.
806  ExitBlocks.clear();
807  L->getUniqueExitBlocks(ExitBlocks);
808
809  // Add exit blocks to the loop blocks.
810  LoopBlocks.insert(LoopBlocks.end(), ExitBlocks.begin(), ExitBlocks.end());
811
812  // Next step, clone all of the basic blocks that make up the loop (including
813  // the loop preheader and exit blocks), keeping track of the mapping between
814  // the instructions and blocks.
815  NewBlocks.reserve(LoopBlocks.size());
816  ValueToValueMapTy VMap;
817  for (unsigned i = 0, e = LoopBlocks.size(); i != e; ++i) {
818    BasicBlock *NewBB = CloneBasicBlock(LoopBlocks[i], VMap, ".us", F);
819
820    NewBlocks.push_back(NewBB);
821    VMap[LoopBlocks[i]] = NewBB;  // Keep the BB mapping.
822    LPM->cloneBasicBlockSimpleAnalysis(LoopBlocks[i], NewBB, L);
823  }
824
825  // Splice the newly inserted blocks into the function right before the
826  // original preheader.
827  F->getBasicBlockList().splice(NewPreheader, F->getBasicBlockList(),
828                                NewBlocks[0], F->end());
829
830  // Now we create the new Loop object for the versioned loop.
831  Loop *NewLoop = CloneLoop(L, L->getParentLoop(), VMap, LI, LPM);
832
833  // Recalculate unswitching quota, inherit simplified switches info for NewBB,
834  // Probably clone more loop-unswitch related loop properties.
835  BranchesInfo.cloneData(NewLoop, L, VMap);
836
837  Loop *ParentLoop = L->getParentLoop();
838  if (ParentLoop) {
839    // Make sure to add the cloned preheader and exit blocks to the parent loop
840    // as well.
841    ParentLoop->addBasicBlockToLoop(NewBlocks[0], LI->getBase());
842  }
843
844  for (unsigned i = 0, e = ExitBlocks.size(); i != e; ++i) {
845    BasicBlock *NewExit = cast<BasicBlock>(VMap[ExitBlocks[i]]);
846    // The new exit block should be in the same loop as the old one.
847    if (Loop *ExitBBLoop = LI->getLoopFor(ExitBlocks[i]))
848      ExitBBLoop->addBasicBlockToLoop(NewExit, LI->getBase());
849
850    assert(NewExit->getTerminator()->getNumSuccessors() == 1 &&
851           "Exit block should have been split to have one successor!");
852    BasicBlock *ExitSucc = NewExit->getTerminator()->getSuccessor(0);
853
854    // If the successor of the exit block had PHI nodes, add an entry for
855    // NewExit.
856    for (BasicBlock::iterator I = ExitSucc->begin();
857         PHINode *PN = dyn_cast<PHINode>(I); ++I) {
858      Value *V = PN->getIncomingValueForBlock(ExitBlocks[i]);
859      ValueToValueMapTy::iterator It = VMap.find(V);
860      if (It != VMap.end()) V = It->second;
861      PN->addIncoming(V, NewExit);
862    }
863
864    if (LandingPadInst *LPad = NewExit->getLandingPadInst()) {
865      PHINode *PN = PHINode::Create(LPad->getType(), 0, "",
866                                    ExitSucc->getFirstInsertionPt());
867
868      for (pred_iterator I = pred_begin(ExitSucc), E = pred_end(ExitSucc);
869           I != E; ++I) {
870        BasicBlock *BB = *I;
871        LandingPadInst *LPI = BB->getLandingPadInst();
872        LPI->replaceAllUsesWith(PN);
873        PN->addIncoming(LPI, BB);
874      }
875    }
876  }
877
878  // Rewrite the code to refer to itself.
879  for (unsigned i = 0, e = NewBlocks.size(); i != e; ++i)
880    for (BasicBlock::iterator I = NewBlocks[i]->begin(),
881           E = NewBlocks[i]->end(); I != E; ++I)
882      RemapInstruction(I, VMap,RF_NoModuleLevelChanges|RF_IgnoreMissingEntries);
883
884  // Rewrite the original preheader to select between versions of the loop.
885  BranchInst *OldBR = cast<BranchInst>(loopPreheader->getTerminator());
886  assert(OldBR->isUnconditional() && OldBR->getSuccessor(0) == LoopBlocks[0] &&
887         "Preheader splitting did not work correctly!");
888
889  // Emit the new branch that selects between the two versions of this loop.
890  EmitPreheaderBranchOnCondition(LIC, Val, NewBlocks[0], LoopBlocks[0], OldBR);
891  LPM->deleteSimpleAnalysisValue(OldBR, L);
892  OldBR->eraseFromParent();
893
894  LoopProcessWorklist.push_back(NewLoop);
895  redoLoop = true;
896
897  // Keep a WeakVH holding onto LIC.  If the first call to RewriteLoopBody
898  // deletes the instruction (for example by simplifying a PHI that feeds into
899  // the condition that we're unswitching on), we don't rewrite the second
900  // iteration.
901  WeakVH LICHandle(LIC);
902
903  // Now we rewrite the original code to know that the condition is true and the
904  // new code to know that the condition is false.
905  RewriteLoopBodyWithConditionConstant(L, LIC, Val, false);
906
907  // It's possible that simplifying one loop could cause the other to be
908  // changed to another value or a constant.  If its a constant, don't simplify
909  // it.
910  if (!LoopProcessWorklist.empty() && LoopProcessWorklist.back() == NewLoop &&
911      LICHandle && !isa<Constant>(LICHandle))
912    RewriteLoopBodyWithConditionConstant(NewLoop, LICHandle, Val, true);
913}
914
915/// RemoveFromWorklist - Remove all instances of I from the worklist vector
916/// specified.
917static void RemoveFromWorklist(Instruction *I,
918                               std::vector<Instruction*> &Worklist) {
919
920  Worklist.erase(std::remove(Worklist.begin(), Worklist.end(), I),
921                 Worklist.end());
922}
923
924/// ReplaceUsesOfWith - When we find that I really equals V, remove I from the
925/// program, replacing all uses with V and update the worklist.
926static void ReplaceUsesOfWith(Instruction *I, Value *V,
927                              std::vector<Instruction*> &Worklist,
928                              Loop *L, LPPassManager *LPM) {
929  DEBUG(dbgs() << "Replace with '" << *V << "': " << *I);
930
931  // Add uses to the worklist, which may be dead now.
932  for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i)
933    if (Instruction *Use = dyn_cast<Instruction>(I->getOperand(i)))
934      Worklist.push_back(Use);
935
936  // Add users to the worklist which may be simplified now.
937  for (Value::use_iterator UI = I->use_begin(), E = I->use_end();
938       UI != E; ++UI)
939    Worklist.push_back(cast<Instruction>(*UI));
940  LPM->deleteSimpleAnalysisValue(I, L);
941  RemoveFromWorklist(I, Worklist);
942  I->replaceAllUsesWith(V);
943  I->eraseFromParent();
944  ++NumSimplify;
945}
946
947/// RemoveLoopFromHierarchy - We have discovered that the specified loop has
948/// become unwrapped, either because the backedge was deleted, or because the
949/// edge into the header was removed.  If the edge into the header from the
950/// latch block was removed, the loop is unwrapped but subloops are still alive,
951/// so they just reparent loops.  If the loops are actually dead, they will be
952/// removed later.
953void LoopUnswitch::RemoveLoopFromHierarchy(Loop *L) {
954  LPM->deleteLoopFromQueue(L);
955  RemoveLoopFromWorklist(L);
956}
957
958// RewriteLoopBodyWithConditionConstant - We know either that the value LIC has
959// the value specified by Val in the specified loop, or we know it does NOT have
960// that value.  Rewrite any uses of LIC or of properties correlated to it.
961void LoopUnswitch::RewriteLoopBodyWithConditionConstant(Loop *L, Value *LIC,
962                                                        Constant *Val,
963                                                        bool IsEqual) {
964  assert(!isa<Constant>(LIC) && "Why are we unswitching on a constant?");
965
966  // FIXME: Support correlated properties, like:
967  //  for (...)
968  //    if (li1 < li2)
969  //      ...
970  //    if (li1 > li2)
971  //      ...
972
973  // FOLD boolean conditions (X|LIC), (X&LIC).  Fold conditional branches,
974  // selects, switches.
975  std::vector<Instruction*> Worklist;
976  LLVMContext &Context = Val->getContext();
977
978  // If we know that LIC == Val, or that LIC == NotVal, just replace uses of LIC
979  // in the loop with the appropriate one directly.
980  if (IsEqual || (isa<ConstantInt>(Val) &&
981      Val->getType()->isIntegerTy(1))) {
982    Value *Replacement;
983    if (IsEqual)
984      Replacement = Val;
985    else
986      Replacement = ConstantInt::get(Type::getInt1Ty(Val->getContext()),
987                                     !cast<ConstantInt>(Val)->getZExtValue());
988
989    for (Value::use_iterator UI = LIC->use_begin(), E = LIC->use_end();
990         UI != E; ++UI) {
991      Instruction *U = dyn_cast<Instruction>(*UI);
992      if (!U || !L->contains(U))
993        continue;
994      Worklist.push_back(U);
995    }
996
997    for (std::vector<Instruction*>::iterator UI = Worklist.begin(),
998         UE = Worklist.end(); UI != UE; ++UI)
999      (*UI)->replaceUsesOfWith(LIC, Replacement);
1000
1001    SimplifyCode(Worklist, L);
1002    return;
1003  }
1004
1005  // Otherwise, we don't know the precise value of LIC, but we do know that it
1006  // is certainly NOT "Val".  As such, simplify any uses in the loop that we
1007  // can.  This case occurs when we unswitch switch statements.
1008  for (Value::use_iterator UI = LIC->use_begin(), E = LIC->use_end();
1009       UI != E; ++UI) {
1010    Instruction *U = dyn_cast<Instruction>(*UI);
1011    if (!U || !L->contains(U))
1012      continue;
1013
1014    Worklist.push_back(U);
1015
1016    // TODO: We could do other simplifications, for example, turning
1017    // 'icmp eq LIC, Val' -> false.
1018
1019    // If we know that LIC is not Val, use this info to simplify code.
1020    SwitchInst *SI = dyn_cast<SwitchInst>(U);
1021    if (SI == 0 || !isa<ConstantInt>(Val)) continue;
1022
1023    SwitchInst::CaseIt DeadCase = SI->findCaseValue(cast<ConstantInt>(Val));
1024    // Default case is live for multiple values.
1025    if (DeadCase == SI->case_default()) continue;
1026
1027    // Found a dead case value.  Don't remove PHI nodes in the
1028    // successor if they become single-entry, those PHI nodes may
1029    // be in the Users list.
1030
1031    BasicBlock *Switch = SI->getParent();
1032    BasicBlock *SISucc = DeadCase.getCaseSuccessor();
1033    BasicBlock *Latch = L->getLoopLatch();
1034
1035    BranchesInfo.setUnswitched(SI, Val);
1036
1037    if (!SI->findCaseDest(SISucc)) continue;  // Edge is critical.
1038    // If the DeadCase successor dominates the loop latch, then the
1039    // transformation isn't safe since it will delete the sole predecessor edge
1040    // to the latch.
1041    if (Latch && DT->dominates(SISucc, Latch))
1042      continue;
1043
1044    // FIXME: This is a hack.  We need to keep the successor around
1045    // and hooked up so as to preserve the loop structure, because
1046    // trying to update it is complicated.  So instead we preserve the
1047    // loop structure and put the block on a dead code path.
1048    SplitEdge(Switch, SISucc, this);
1049    // Compute the successors instead of relying on the return value
1050    // of SplitEdge, since it may have split the switch successor
1051    // after PHI nodes.
1052    BasicBlock *NewSISucc = DeadCase.getCaseSuccessor();
1053    BasicBlock *OldSISucc = *succ_begin(NewSISucc);
1054    // Create an "unreachable" destination.
1055    BasicBlock *Abort = BasicBlock::Create(Context, "us-unreachable",
1056                                           Switch->getParent(),
1057                                           OldSISucc);
1058    new UnreachableInst(Context, Abort);
1059    // Force the new case destination to branch to the "unreachable"
1060    // block while maintaining a (dead) CFG edge to the old block.
1061    NewSISucc->getTerminator()->eraseFromParent();
1062    BranchInst::Create(Abort, OldSISucc,
1063                       ConstantInt::getTrue(Context), NewSISucc);
1064    // Release the PHI operands for this edge.
1065    for (BasicBlock::iterator II = NewSISucc->begin();
1066         PHINode *PN = dyn_cast<PHINode>(II); ++II)
1067      PN->setIncomingValue(PN->getBasicBlockIndex(Switch),
1068                           UndefValue::get(PN->getType()));
1069    // Tell the domtree about the new block. We don't fully update the
1070    // domtree here -- instead we force it to do a full recomputation
1071    // after the pass is complete -- but we do need to inform it of
1072    // new blocks.
1073    if (DT)
1074      DT->addNewBlock(Abort, NewSISucc);
1075  }
1076
1077  SimplifyCode(Worklist, L);
1078}
1079
1080/// SimplifyCode - Okay, now that we have simplified some instructions in the
1081/// loop, walk over it and constant prop, dce, and fold control flow where
1082/// possible.  Note that this is effectively a very simple loop-structure-aware
1083/// optimizer.  During processing of this loop, L could very well be deleted, so
1084/// it must not be used.
1085///
1086/// FIXME: When the loop optimizer is more mature, separate this out to a new
1087/// pass.
1088///
1089void LoopUnswitch::SimplifyCode(std::vector<Instruction*> &Worklist, Loop *L) {
1090  while (!Worklist.empty()) {
1091    Instruction *I = Worklist.back();
1092    Worklist.pop_back();
1093
1094    // Simple DCE.
1095    if (isInstructionTriviallyDead(I)) {
1096      DEBUG(dbgs() << "Remove dead instruction '" << *I);
1097
1098      // Add uses to the worklist, which may be dead now.
1099      for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i)
1100        if (Instruction *Use = dyn_cast<Instruction>(I->getOperand(i)))
1101          Worklist.push_back(Use);
1102      LPM->deleteSimpleAnalysisValue(I, L);
1103      RemoveFromWorklist(I, Worklist);
1104      I->eraseFromParent();
1105      ++NumSimplify;
1106      continue;
1107    }
1108
1109    // See if instruction simplification can hack this up.  This is common for
1110    // things like "select false, X, Y" after unswitching made the condition be
1111    // 'false'.  TODO: update the domtree properly so we can pass it here.
1112    if (Value *V = SimplifyInstruction(I))
1113      if (LI->replacementPreservesLCSSAForm(I, V)) {
1114        ReplaceUsesOfWith(I, V, Worklist, L, LPM);
1115        continue;
1116      }
1117
1118    // Special case hacks that appear commonly in unswitched code.
1119    if (BranchInst *BI = dyn_cast<BranchInst>(I)) {
1120      if (BI->isUnconditional()) {
1121        // If BI's parent is the only pred of the successor, fold the two blocks
1122        // together.
1123        BasicBlock *Pred = BI->getParent();
1124        BasicBlock *Succ = BI->getSuccessor(0);
1125        BasicBlock *SinglePred = Succ->getSinglePredecessor();
1126        if (!SinglePred) continue;  // Nothing to do.
1127        assert(SinglePred == Pred && "CFG broken");
1128
1129        DEBUG(dbgs() << "Merging blocks: " << Pred->getName() << " <- "
1130              << Succ->getName() << "\n");
1131
1132        // Resolve any single entry PHI nodes in Succ.
1133        while (PHINode *PN = dyn_cast<PHINode>(Succ->begin()))
1134          ReplaceUsesOfWith(PN, PN->getIncomingValue(0), Worklist, L, LPM);
1135
1136        // If Succ has any successors with PHI nodes, update them to have
1137        // entries coming from Pred instead of Succ.
1138        Succ->replaceAllUsesWith(Pred);
1139
1140        // Move all of the successor contents from Succ to Pred.
1141        Pred->getInstList().splice(BI, Succ->getInstList(), Succ->begin(),
1142                                   Succ->end());
1143        LPM->deleteSimpleAnalysisValue(BI, L);
1144        BI->eraseFromParent();
1145        RemoveFromWorklist(BI, Worklist);
1146
1147        // Remove Succ from the loop tree.
1148        LI->removeBlock(Succ);
1149        LPM->deleteSimpleAnalysisValue(Succ, L);
1150        Succ->eraseFromParent();
1151        ++NumSimplify;
1152        continue;
1153      }
1154
1155      continue;
1156    }
1157  }
1158}
1159