LoopDeletion.cpp revision 263508
1//===- LoopDeletion.cpp - Dead Loop Deletion Pass ---------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the Dead Loop Deletion Pass. This pass is responsible
11// for eliminating loops with non-infinite computable trip counts that have no
12// side effects or volatile instructions, and do not contribute to the
13// computation of the function's return value.
14//
15//===----------------------------------------------------------------------===//
16
17#define DEBUG_TYPE "loop-delete"
18#include "llvm/Transforms/Scalar.h"
19#include "llvm/ADT/SmallVector.h"
20#include "llvm/ADT/Statistic.h"
21#include "llvm/Analysis/Dominators.h"
22#include "llvm/Analysis/LoopPass.h"
23#include "llvm/Analysis/ScalarEvolution.h"
24using namespace llvm;
25
26STATISTIC(NumDeleted, "Number of loops deleted");
27
28namespace {
29  class LoopDeletion : public LoopPass {
30  public:
31    static char ID; // Pass ID, replacement for typeid
32    LoopDeletion() : LoopPass(ID) {
33      initializeLoopDeletionPass(*PassRegistry::getPassRegistry());
34    }
35
36    // Possibly eliminate loop L if it is dead.
37    bool runOnLoop(Loop *L, LPPassManager &LPM);
38
39    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
40      AU.addRequired<DominatorTree>();
41      AU.addRequired<LoopInfo>();
42      AU.addRequired<ScalarEvolution>();
43      AU.addRequiredID(LoopSimplifyID);
44      AU.addRequiredID(LCSSAID);
45
46      AU.addPreserved<ScalarEvolution>();
47      AU.addPreserved<DominatorTree>();
48      AU.addPreserved<LoopInfo>();
49      AU.addPreservedID(LoopSimplifyID);
50      AU.addPreservedID(LCSSAID);
51    }
52
53  private:
54    bool isLoopDead(Loop *L, SmallVectorImpl<BasicBlock *> &exitingBlocks,
55                    SmallVectorImpl<BasicBlock *> &exitBlocks,
56                    bool &Changed, BasicBlock *Preheader);
57
58  };
59}
60
61char LoopDeletion::ID = 0;
62INITIALIZE_PASS_BEGIN(LoopDeletion, "loop-deletion",
63                "Delete dead loops", false, false)
64INITIALIZE_PASS_DEPENDENCY(DominatorTree)
65INITIALIZE_PASS_DEPENDENCY(LoopInfo)
66INITIALIZE_PASS_DEPENDENCY(ScalarEvolution)
67INITIALIZE_PASS_DEPENDENCY(LoopSimplify)
68INITIALIZE_PASS_DEPENDENCY(LCSSA)
69INITIALIZE_PASS_END(LoopDeletion, "loop-deletion",
70                "Delete dead loops", false, false)
71
72Pass *llvm::createLoopDeletionPass() {
73  return new LoopDeletion();
74}
75
76/// isLoopDead - Determined if a loop is dead.  This assumes that we've already
77/// checked for unique exit and exiting blocks, and that the code is in LCSSA
78/// form.
79bool LoopDeletion::isLoopDead(Loop *L,
80                              SmallVectorImpl<BasicBlock *> &exitingBlocks,
81                              SmallVectorImpl<BasicBlock *> &exitBlocks,
82                              bool &Changed, BasicBlock *Preheader) {
83  BasicBlock *exitBlock = exitBlocks[0];
84
85  // Make sure that all PHI entries coming from the loop are loop invariant.
86  // Because the code is in LCSSA form, any values used outside of the loop
87  // must pass through a PHI in the exit block, meaning that this check is
88  // sufficient to guarantee that no loop-variant values are used outside
89  // of the loop.
90  BasicBlock::iterator BI = exitBlock->begin();
91  while (PHINode *P = dyn_cast<PHINode>(BI)) {
92    Value *incoming = P->getIncomingValueForBlock(exitingBlocks[0]);
93
94    // Make sure all exiting blocks produce the same incoming value for the exit
95    // block.  If there are different incoming values for different exiting
96    // blocks, then it is impossible to statically determine which value should
97    // be used.
98    for (unsigned i = 1, e = exitingBlocks.size(); i < e; ++i) {
99      if (incoming != P->getIncomingValueForBlock(exitingBlocks[i]))
100        return false;
101    }
102
103    if (Instruction *I = dyn_cast<Instruction>(incoming))
104      if (!L->makeLoopInvariant(I, Changed, Preheader->getTerminator()))
105        return false;
106
107    ++BI;
108  }
109
110  // Make sure that no instructions in the block have potential side-effects.
111  // This includes instructions that could write to memory, and loads that are
112  // marked volatile.  This could be made more aggressive by using aliasing
113  // information to identify readonly and readnone calls.
114  for (Loop::block_iterator LI = L->block_begin(), LE = L->block_end();
115       LI != LE; ++LI) {
116    for (BasicBlock::iterator BI = (*LI)->begin(), BE = (*LI)->end();
117         BI != BE; ++BI) {
118      if (BI->mayHaveSideEffects())
119        return false;
120    }
121  }
122
123  return true;
124}
125
126/// runOnLoop - Remove dead loops, by which we mean loops that do not impact the
127/// observable behavior of the program other than finite running time.  Note
128/// we do ensure that this never remove a loop that might be infinite, as doing
129/// so could change the halting/non-halting nature of a program.
130/// NOTE: This entire process relies pretty heavily on LoopSimplify and LCSSA
131/// in order to make various safety checks work.
132bool LoopDeletion::runOnLoop(Loop *L, LPPassManager &LPM) {
133  // We can only remove the loop if there is a preheader that we can
134  // branch from after removing it.
135  BasicBlock *preheader = L->getLoopPreheader();
136  if (!preheader)
137    return false;
138
139  // If LoopSimplify form is not available, stay out of trouble.
140  if (!L->hasDedicatedExits())
141    return false;
142
143  // We can't remove loops that contain subloops.  If the subloops were dead,
144  // they would already have been removed in earlier executions of this pass.
145  if (L->begin() != L->end())
146    return false;
147
148  SmallVector<BasicBlock*, 4> exitingBlocks;
149  L->getExitingBlocks(exitingBlocks);
150
151  SmallVector<BasicBlock*, 4> exitBlocks;
152  L->getUniqueExitBlocks(exitBlocks);
153
154  // We require that the loop only have a single exit block.  Otherwise, we'd
155  // be in the situation of needing to be able to solve statically which exit
156  // block will be branched to, or trying to preserve the branching logic in
157  // a loop invariant manner.
158  if (exitBlocks.size() != 1)
159    return false;
160
161  // Finally, we have to check that the loop really is dead.
162  bool Changed = false;
163  if (!isLoopDead(L, exitingBlocks, exitBlocks, Changed, preheader))
164    return Changed;
165
166  // Don't remove loops for which we can't solve the trip count.
167  // They could be infinite, in which case we'd be changing program behavior.
168  ScalarEvolution &SE = getAnalysis<ScalarEvolution>();
169  const SCEV *S = SE.getMaxBackedgeTakenCount(L);
170  if (isa<SCEVCouldNotCompute>(S))
171    return Changed;
172
173  // Now that we know the removal is safe, remove the loop by changing the
174  // branch from the preheader to go to the single exit block.
175  BasicBlock *exitBlock = exitBlocks[0];
176
177  // Because we're deleting a large chunk of code at once, the sequence in which
178  // we remove things is very important to avoid invalidation issues.  Don't
179  // mess with this unless you have good reason and know what you're doing.
180
181  // Tell ScalarEvolution that the loop is deleted. Do this before
182  // deleting the loop so that ScalarEvolution can look at the loop
183  // to determine what it needs to clean up.
184  SE.forgetLoop(L);
185
186  // Connect the preheader directly to the exit block.
187  TerminatorInst *TI = preheader->getTerminator();
188  TI->replaceUsesOfWith(L->getHeader(), exitBlock);
189
190  // Rewrite phis in the exit block to get their inputs from
191  // the preheader instead of the exiting block.
192  BasicBlock *exitingBlock = exitingBlocks[0];
193  BasicBlock::iterator BI = exitBlock->begin();
194  while (PHINode *P = dyn_cast<PHINode>(BI)) {
195    int j = P->getBasicBlockIndex(exitingBlock);
196    assert(j >= 0 && "Can't find exiting block in exit block's phi node!");
197    P->setIncomingBlock(j, preheader);
198    for (unsigned i = 1; i < exitingBlocks.size(); ++i)
199      P->removeIncomingValue(exitingBlocks[i]);
200    ++BI;
201  }
202
203  // Update the dominator tree and remove the instructions and blocks that will
204  // be deleted from the reference counting scheme.
205  DominatorTree &DT = getAnalysis<DominatorTree>();
206  SmallVector<DomTreeNode*, 8> ChildNodes;
207  for (Loop::block_iterator LI = L->block_begin(), LE = L->block_end();
208       LI != LE; ++LI) {
209    // Move all of the block's children to be children of the preheader, which
210    // allows us to remove the domtree entry for the block.
211    ChildNodes.insert(ChildNodes.begin(), DT[*LI]->begin(), DT[*LI]->end());
212    for (SmallVectorImpl<DomTreeNode *>::iterator DI = ChildNodes.begin(),
213         DE = ChildNodes.end(); DI != DE; ++DI) {
214      DT.changeImmediateDominator(*DI, DT[preheader]);
215    }
216
217    ChildNodes.clear();
218    DT.eraseNode(*LI);
219
220    // Remove the block from the reference counting scheme, so that we can
221    // delete it freely later.
222    (*LI)->dropAllReferences();
223  }
224
225  // Erase the instructions and the blocks without having to worry
226  // about ordering because we already dropped the references.
227  // NOTE: This iteration is safe because erasing the block does not remove its
228  // entry from the loop's block list.  We do that in the next section.
229  for (Loop::block_iterator LI = L->block_begin(), LE = L->block_end();
230       LI != LE; ++LI)
231    (*LI)->eraseFromParent();
232
233  // Finally, the blocks from loopinfo.  This has to happen late because
234  // otherwise our loop iterators won't work.
235  LoopInfo &loopInfo = getAnalysis<LoopInfo>();
236  SmallPtrSet<BasicBlock*, 8> blocks;
237  blocks.insert(L->block_begin(), L->block_end());
238  for (SmallPtrSet<BasicBlock*,8>::iterator I = blocks.begin(),
239       E = blocks.end(); I != E; ++I)
240    loopInfo.removeBlock(*I);
241
242  // The last step is to inform the loop pass manager that we've
243  // eliminated this loop.
244  LPM.deleteLoopFromQueue(L);
245  Changed = true;
246
247  ++NumDeleted;
248
249  return Changed;
250}
251