ObjCARCOpts.cpp revision 263508
1//===- ObjCARCOpts.cpp - ObjC ARC Optimization ----------------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9/// \file
10/// This file defines ObjC ARC optimizations. ARC stands for Automatic
11/// Reference Counting and is a system for managing reference counts for objects
12/// in Objective C.
13///
14/// The optimizations performed include elimination of redundant, partially
15/// redundant, and inconsequential reference count operations, elimination of
16/// redundant weak pointer operations, and numerous minor simplifications.
17///
18/// WARNING: This file knows about certain library functions. It recognizes them
19/// by name, and hardwires knowledge of their semantics.
20///
21/// WARNING: This file knows about how certain Objective-C library functions are
22/// used. Naive LLVM IR transformations which would otherwise be
23/// behavior-preserving may break these assumptions.
24///
25//===----------------------------------------------------------------------===//
26
27#define DEBUG_TYPE "objc-arc-opts"
28#include "ObjCARC.h"
29#include "ARCRuntimeEntryPoints.h"
30#include "DependencyAnalysis.h"
31#include "ObjCARCAliasAnalysis.h"
32#include "ProvenanceAnalysis.h"
33#include "llvm/ADT/DenseMap.h"
34#include "llvm/ADT/DenseSet.h"
35#include "llvm/ADT/STLExtras.h"
36#include "llvm/ADT/SmallPtrSet.h"
37#include "llvm/ADT/Statistic.h"
38#include "llvm/IR/IRBuilder.h"
39#include "llvm/IR/LLVMContext.h"
40#include "llvm/Support/CFG.h"
41#include "llvm/Support/Debug.h"
42#include "llvm/Support/raw_ostream.h"
43
44using namespace llvm;
45using namespace llvm::objcarc;
46
47/// \defgroup MiscUtils Miscellaneous utilities that are not ARC specific.
48/// @{
49
50namespace {
51  /// \brief An associative container with fast insertion-order (deterministic)
52  /// iteration over its elements. Plus the special blot operation.
53  template<class KeyT, class ValueT>
54  class MapVector {
55    /// Map keys to indices in Vector.
56    typedef DenseMap<KeyT, size_t> MapTy;
57    MapTy Map;
58
59    typedef std::vector<std::pair<KeyT, ValueT> > VectorTy;
60    /// Keys and values.
61    VectorTy Vector;
62
63  public:
64    typedef typename VectorTy::iterator iterator;
65    typedef typename VectorTy::const_iterator const_iterator;
66    iterator begin() { return Vector.begin(); }
67    iterator end() { return Vector.end(); }
68    const_iterator begin() const { return Vector.begin(); }
69    const_iterator end() const { return Vector.end(); }
70
71#ifdef XDEBUG
72    ~MapVector() {
73      assert(Vector.size() >= Map.size()); // May differ due to blotting.
74      for (typename MapTy::const_iterator I = Map.begin(), E = Map.end();
75           I != E; ++I) {
76        assert(I->second < Vector.size());
77        assert(Vector[I->second].first == I->first);
78      }
79      for (typename VectorTy::const_iterator I = Vector.begin(),
80           E = Vector.end(); I != E; ++I)
81        assert(!I->first ||
82               (Map.count(I->first) &&
83                Map[I->first] == size_t(I - Vector.begin())));
84    }
85#endif
86
87    ValueT &operator[](const KeyT &Arg) {
88      std::pair<typename MapTy::iterator, bool> Pair =
89        Map.insert(std::make_pair(Arg, size_t(0)));
90      if (Pair.second) {
91        size_t Num = Vector.size();
92        Pair.first->second = Num;
93        Vector.push_back(std::make_pair(Arg, ValueT()));
94        return Vector[Num].second;
95      }
96      return Vector[Pair.first->second].second;
97    }
98
99    std::pair<iterator, bool>
100    insert(const std::pair<KeyT, ValueT> &InsertPair) {
101      std::pair<typename MapTy::iterator, bool> Pair =
102        Map.insert(std::make_pair(InsertPair.first, size_t(0)));
103      if (Pair.second) {
104        size_t Num = Vector.size();
105        Pair.first->second = Num;
106        Vector.push_back(InsertPair);
107        return std::make_pair(Vector.begin() + Num, true);
108      }
109      return std::make_pair(Vector.begin() + Pair.first->second, false);
110    }
111
112    iterator find(const KeyT &Key) {
113      typename MapTy::iterator It = Map.find(Key);
114      if (It == Map.end()) return Vector.end();
115      return Vector.begin() + It->second;
116    }
117
118    const_iterator find(const KeyT &Key) const {
119      typename MapTy::const_iterator It = Map.find(Key);
120      if (It == Map.end()) return Vector.end();
121      return Vector.begin() + It->second;
122    }
123
124    /// This is similar to erase, but instead of removing the element from the
125    /// vector, it just zeros out the key in the vector. This leaves iterators
126    /// intact, but clients must be prepared for zeroed-out keys when iterating.
127    void blot(const KeyT &Key) {
128      typename MapTy::iterator It = Map.find(Key);
129      if (It == Map.end()) return;
130      Vector[It->second].first = KeyT();
131      Map.erase(It);
132    }
133
134    void clear() {
135      Map.clear();
136      Vector.clear();
137    }
138  };
139}
140
141/// @}
142///
143/// \defgroup ARCUtilities Utility declarations/definitions specific to ARC.
144/// @{
145
146/// \brief This is similar to StripPointerCastsAndObjCCalls but it stops as soon
147/// as it finds a value with multiple uses.
148static const Value *FindSingleUseIdentifiedObject(const Value *Arg) {
149  if (Arg->hasOneUse()) {
150    if (const BitCastInst *BC = dyn_cast<BitCastInst>(Arg))
151      return FindSingleUseIdentifiedObject(BC->getOperand(0));
152    if (const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Arg))
153      if (GEP->hasAllZeroIndices())
154        return FindSingleUseIdentifiedObject(GEP->getPointerOperand());
155    if (IsForwarding(GetBasicInstructionClass(Arg)))
156      return FindSingleUseIdentifiedObject(
157               cast<CallInst>(Arg)->getArgOperand(0));
158    if (!IsObjCIdentifiedObject(Arg))
159      return 0;
160    return Arg;
161  }
162
163  // If we found an identifiable object but it has multiple uses, but they are
164  // trivial uses, we can still consider this to be a single-use value.
165  if (IsObjCIdentifiedObject(Arg)) {
166    for (Value::const_use_iterator UI = Arg->use_begin(), UE = Arg->use_end();
167         UI != UE; ++UI) {
168      const User *U = *UI;
169      if (!U->use_empty() || StripPointerCastsAndObjCCalls(U) != Arg)
170         return 0;
171    }
172
173    return Arg;
174  }
175
176  return 0;
177}
178
179/// This is a wrapper around getUnderlyingObjCPtr along the lines of
180/// GetUnderlyingObjects except that it returns early when it sees the first
181/// alloca.
182static inline bool AreAnyUnderlyingObjectsAnAlloca(const Value *V) {
183  SmallPtrSet<const Value *, 4> Visited;
184  SmallVector<const Value *, 4> Worklist;
185  Worklist.push_back(V);
186  do {
187    const Value *P = Worklist.pop_back_val();
188    P = GetUnderlyingObjCPtr(P);
189
190    if (isa<AllocaInst>(P))
191      return true;
192
193    if (!Visited.insert(P))
194      continue;
195
196    if (const SelectInst *SI = dyn_cast<const SelectInst>(P)) {
197      Worklist.push_back(SI->getTrueValue());
198      Worklist.push_back(SI->getFalseValue());
199      continue;
200    }
201
202    if (const PHINode *PN = dyn_cast<const PHINode>(P)) {
203      for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
204        Worklist.push_back(PN->getIncomingValue(i));
205      continue;
206    }
207  } while (!Worklist.empty());
208
209  return false;
210}
211
212
213/// @}
214///
215/// \defgroup ARCOpt ARC Optimization.
216/// @{
217
218// TODO: On code like this:
219//
220// objc_retain(%x)
221// stuff_that_cannot_release()
222// objc_autorelease(%x)
223// stuff_that_cannot_release()
224// objc_retain(%x)
225// stuff_that_cannot_release()
226// objc_autorelease(%x)
227//
228// The second retain and autorelease can be deleted.
229
230// TODO: It should be possible to delete
231// objc_autoreleasePoolPush and objc_autoreleasePoolPop
232// pairs if nothing is actually autoreleased between them. Also, autorelease
233// calls followed by objc_autoreleasePoolPop calls (perhaps in ObjC++ code
234// after inlining) can be turned into plain release calls.
235
236// TODO: Critical-edge splitting. If the optimial insertion point is
237// a critical edge, the current algorithm has to fail, because it doesn't
238// know how to split edges. It should be possible to make the optimizer
239// think in terms of edges, rather than blocks, and then split critical
240// edges on demand.
241
242// TODO: OptimizeSequences could generalized to be Interprocedural.
243
244// TODO: Recognize that a bunch of other objc runtime calls have
245// non-escaping arguments and non-releasing arguments, and may be
246// non-autoreleasing.
247
248// TODO: Sink autorelease calls as far as possible. Unfortunately we
249// usually can't sink them past other calls, which would be the main
250// case where it would be useful.
251
252// TODO: The pointer returned from objc_loadWeakRetained is retained.
253
254// TODO: Delete release+retain pairs (rare).
255
256STATISTIC(NumNoops,       "Number of no-op objc calls eliminated");
257STATISTIC(NumPartialNoops, "Number of partially no-op objc calls eliminated");
258STATISTIC(NumAutoreleases,"Number of autoreleases converted to releases");
259STATISTIC(NumRets,        "Number of return value forwarding "
260                          "retain+autoreleases eliminated");
261STATISTIC(NumRRs,         "Number of retain+release paths eliminated");
262STATISTIC(NumPeeps,       "Number of calls peephole-optimized");
263#ifndef NDEBUG
264STATISTIC(NumRetainsBeforeOpt,
265          "Number of retains before optimization");
266STATISTIC(NumReleasesBeforeOpt,
267          "Number of releases before optimization");
268STATISTIC(NumRetainsAfterOpt,
269          "Number of retains after optimization");
270STATISTIC(NumReleasesAfterOpt,
271          "Number of releases after optimization");
272#endif
273
274namespace {
275  /// \enum Sequence
276  ///
277  /// \brief A sequence of states that a pointer may go through in which an
278  /// objc_retain and objc_release are actually needed.
279  enum Sequence {
280    S_None,
281    S_Retain,         ///< objc_retain(x).
282    S_CanRelease,     ///< foo(x) -- x could possibly see a ref count decrement.
283    S_Use,            ///< any use of x.
284    S_Stop,           ///< like S_Release, but code motion is stopped.
285    S_Release,        ///< objc_release(x).
286    S_MovableRelease  ///< objc_release(x), !clang.imprecise_release.
287  };
288
289  raw_ostream &operator<<(raw_ostream &OS, const Sequence S)
290    LLVM_ATTRIBUTE_UNUSED;
291  raw_ostream &operator<<(raw_ostream &OS, const Sequence S) {
292    switch (S) {
293    case S_None:
294      return OS << "S_None";
295    case S_Retain:
296      return OS << "S_Retain";
297    case S_CanRelease:
298      return OS << "S_CanRelease";
299    case S_Use:
300      return OS << "S_Use";
301    case S_Release:
302      return OS << "S_Release";
303    case S_MovableRelease:
304      return OS << "S_MovableRelease";
305    case S_Stop:
306      return OS << "S_Stop";
307    }
308    llvm_unreachable("Unknown sequence type.");
309  }
310}
311
312static Sequence MergeSeqs(Sequence A, Sequence B, bool TopDown) {
313  // The easy cases.
314  if (A == B)
315    return A;
316  if (A == S_None || B == S_None)
317    return S_None;
318
319  if (A > B) std::swap(A, B);
320  if (TopDown) {
321    // Choose the side which is further along in the sequence.
322    if ((A == S_Retain || A == S_CanRelease) &&
323        (B == S_CanRelease || B == S_Use))
324      return B;
325  } else {
326    // Choose the side which is further along in the sequence.
327    if ((A == S_Use || A == S_CanRelease) &&
328        (B == S_Use || B == S_Release || B == S_Stop || B == S_MovableRelease))
329      return A;
330    // If both sides are releases, choose the more conservative one.
331    if (A == S_Stop && (B == S_Release || B == S_MovableRelease))
332      return A;
333    if (A == S_Release && B == S_MovableRelease)
334      return A;
335  }
336
337  return S_None;
338}
339
340namespace {
341  /// \brief Unidirectional information about either a
342  /// retain-decrement-use-release sequence or release-use-decrement-retain
343  /// reverse sequence.
344  struct RRInfo {
345    /// After an objc_retain, the reference count of the referenced
346    /// object is known to be positive. Similarly, before an objc_release, the
347    /// reference count of the referenced object is known to be positive. If
348    /// there are retain-release pairs in code regions where the retain count
349    /// is known to be positive, they can be eliminated, regardless of any side
350    /// effects between them.
351    ///
352    /// Also, a retain+release pair nested within another retain+release
353    /// pair all on the known same pointer value can be eliminated, regardless
354    /// of any intervening side effects.
355    ///
356    /// KnownSafe is true when either of these conditions is satisfied.
357    bool KnownSafe;
358
359    /// True of the objc_release calls are all marked with the "tail" keyword.
360    bool IsTailCallRelease;
361
362    /// If the Calls are objc_release calls and they all have a
363    /// clang.imprecise_release tag, this is the metadata tag.
364    MDNode *ReleaseMetadata;
365
366    /// For a top-down sequence, the set of objc_retains or
367    /// objc_retainBlocks. For bottom-up, the set of objc_releases.
368    SmallPtrSet<Instruction *, 2> Calls;
369
370    /// The set of optimal insert positions for moving calls in the opposite
371    /// sequence.
372    SmallPtrSet<Instruction *, 2> ReverseInsertPts;
373
374    /// If this is true, we cannot perform code motion but can still remove
375    /// retain/release pairs.
376    bool CFGHazardAfflicted;
377
378    RRInfo() :
379      KnownSafe(false), IsTailCallRelease(false), ReleaseMetadata(0),
380      CFGHazardAfflicted(false) {}
381
382    void clear();
383
384    /// Conservatively merge the two RRInfo. Returns true if a partial merge has
385    /// occured, false otherwise.
386    bool Merge(const RRInfo &Other);
387
388  };
389}
390
391void RRInfo::clear() {
392  KnownSafe = false;
393  IsTailCallRelease = false;
394  ReleaseMetadata = 0;
395  Calls.clear();
396  ReverseInsertPts.clear();
397  CFGHazardAfflicted = false;
398}
399
400bool RRInfo::Merge(const RRInfo &Other) {
401    // Conservatively merge the ReleaseMetadata information.
402    if (ReleaseMetadata != Other.ReleaseMetadata)
403      ReleaseMetadata = 0;
404
405    // Conservatively merge the boolean state.
406    KnownSafe &= Other.KnownSafe;
407    IsTailCallRelease &= Other.IsTailCallRelease;
408    CFGHazardAfflicted |= Other.CFGHazardAfflicted;
409
410    // Merge the call sets.
411    Calls.insert(Other.Calls.begin(), Other.Calls.end());
412
413    // Merge the insert point sets. If there are any differences,
414    // that makes this a partial merge.
415    bool Partial = ReverseInsertPts.size() != Other.ReverseInsertPts.size();
416    for (SmallPtrSet<Instruction *, 2>::const_iterator
417         I = Other.ReverseInsertPts.begin(),
418         E = Other.ReverseInsertPts.end(); I != E; ++I)
419      Partial |= ReverseInsertPts.insert(*I);
420    return Partial;
421}
422
423namespace {
424  /// \brief This class summarizes several per-pointer runtime properties which
425  /// are propogated through the flow graph.
426  class PtrState {
427    /// True if the reference count is known to be incremented.
428    bool KnownPositiveRefCount;
429
430    /// True if we've seen an opportunity for partial RR elimination, such as
431    /// pushing calls into a CFG triangle or into one side of a CFG diamond.
432    bool Partial;
433
434    /// The current position in the sequence.
435    unsigned char Seq : 8;
436
437    /// Unidirectional information about the current sequence.
438    RRInfo RRI;
439
440  public:
441    PtrState() : KnownPositiveRefCount(false), Partial(false),
442                 Seq(S_None) {}
443
444
445    bool IsKnownSafe() const {
446      return RRI.KnownSafe;
447    }
448
449    void SetKnownSafe(const bool NewValue) {
450      RRI.KnownSafe = NewValue;
451    }
452
453    bool IsTailCallRelease() const {
454      return RRI.IsTailCallRelease;
455    }
456
457    void SetTailCallRelease(const bool NewValue) {
458      RRI.IsTailCallRelease = NewValue;
459    }
460
461    bool IsTrackingImpreciseReleases() const {
462      return RRI.ReleaseMetadata != 0;
463    }
464
465    const MDNode *GetReleaseMetadata() const {
466      return RRI.ReleaseMetadata;
467    }
468
469    void SetReleaseMetadata(MDNode *NewValue) {
470      RRI.ReleaseMetadata = NewValue;
471    }
472
473    bool IsCFGHazardAfflicted() const {
474      return RRI.CFGHazardAfflicted;
475    }
476
477    void SetCFGHazardAfflicted(const bool NewValue) {
478      RRI.CFGHazardAfflicted = NewValue;
479    }
480
481    void SetKnownPositiveRefCount() {
482      DEBUG(dbgs() << "Setting Known Positive.\n");
483      KnownPositiveRefCount = true;
484    }
485
486    void ClearKnownPositiveRefCount() {
487      DEBUG(dbgs() << "Clearing Known Positive.\n");
488      KnownPositiveRefCount = false;
489    }
490
491    bool HasKnownPositiveRefCount() const {
492      return KnownPositiveRefCount;
493    }
494
495    void SetSeq(Sequence NewSeq) {
496      DEBUG(dbgs() << "Old: " << Seq << "; New: " << NewSeq << "\n");
497      Seq = NewSeq;
498    }
499
500    Sequence GetSeq() const {
501      return static_cast<Sequence>(Seq);
502    }
503
504    void ClearSequenceProgress() {
505      ResetSequenceProgress(S_None);
506    }
507
508    void ResetSequenceProgress(Sequence NewSeq) {
509      DEBUG(dbgs() << "Resetting sequence progress.\n");
510      SetSeq(NewSeq);
511      Partial = false;
512      RRI.clear();
513    }
514
515    void Merge(const PtrState &Other, bool TopDown);
516
517    void InsertCall(Instruction *I) {
518      RRI.Calls.insert(I);
519    }
520
521    void InsertReverseInsertPt(Instruction *I) {
522      RRI.ReverseInsertPts.insert(I);
523    }
524
525    void ClearReverseInsertPts() {
526      RRI.ReverseInsertPts.clear();
527    }
528
529    bool HasReverseInsertPts() const {
530      return !RRI.ReverseInsertPts.empty();
531    }
532
533    const RRInfo &GetRRInfo() const {
534      return RRI;
535    }
536  };
537}
538
539void
540PtrState::Merge(const PtrState &Other, bool TopDown) {
541  Seq = MergeSeqs(static_cast<Sequence>(Seq), static_cast<Sequence>(Other.Seq),
542                  TopDown);
543  KnownPositiveRefCount &= Other.KnownPositiveRefCount;
544
545  // If we're not in a sequence (anymore), drop all associated state.
546  if (Seq == S_None) {
547    Partial = false;
548    RRI.clear();
549  } else if (Partial || Other.Partial) {
550    // If we're doing a merge on a path that's previously seen a partial
551    // merge, conservatively drop the sequence, to avoid doing partial
552    // RR elimination. If the branch predicates for the two merge differ,
553    // mixing them is unsafe.
554    ClearSequenceProgress();
555  } else {
556    // Otherwise merge the other PtrState's RRInfo into our RRInfo. At this
557    // point, we know that currently we are not partial. Stash whether or not
558    // the merge operation caused us to undergo a partial merging of reverse
559    // insertion points.
560    Partial = RRI.Merge(Other.RRI);
561  }
562}
563
564namespace {
565  /// \brief Per-BasicBlock state.
566  class BBState {
567    /// The number of unique control paths from the entry which can reach this
568    /// block.
569    unsigned TopDownPathCount;
570
571    /// The number of unique control paths to exits from this block.
572    unsigned BottomUpPathCount;
573
574    /// A type for PerPtrTopDown and PerPtrBottomUp.
575    typedef MapVector<const Value *, PtrState> MapTy;
576
577    /// The top-down traversal uses this to record information known about a
578    /// pointer at the bottom of each block.
579    MapTy PerPtrTopDown;
580
581    /// The bottom-up traversal uses this to record information known about a
582    /// pointer at the top of each block.
583    MapTy PerPtrBottomUp;
584
585    /// Effective predecessors of the current block ignoring ignorable edges and
586    /// ignored backedges.
587    SmallVector<BasicBlock *, 2> Preds;
588    /// Effective successors of the current block ignoring ignorable edges and
589    /// ignored backedges.
590    SmallVector<BasicBlock *, 2> Succs;
591
592  public:
593    static const unsigned OverflowOccurredValue;
594
595    BBState() : TopDownPathCount(0), BottomUpPathCount(0) { }
596
597    typedef MapTy::iterator ptr_iterator;
598    typedef MapTy::const_iterator ptr_const_iterator;
599
600    ptr_iterator top_down_ptr_begin() { return PerPtrTopDown.begin(); }
601    ptr_iterator top_down_ptr_end() { return PerPtrTopDown.end(); }
602    ptr_const_iterator top_down_ptr_begin() const {
603      return PerPtrTopDown.begin();
604    }
605    ptr_const_iterator top_down_ptr_end() const {
606      return PerPtrTopDown.end();
607    }
608
609    ptr_iterator bottom_up_ptr_begin() { return PerPtrBottomUp.begin(); }
610    ptr_iterator bottom_up_ptr_end() { return PerPtrBottomUp.end(); }
611    ptr_const_iterator bottom_up_ptr_begin() const {
612      return PerPtrBottomUp.begin();
613    }
614    ptr_const_iterator bottom_up_ptr_end() const {
615      return PerPtrBottomUp.end();
616    }
617
618    /// Mark this block as being an entry block, which has one path from the
619    /// entry by definition.
620    void SetAsEntry() { TopDownPathCount = 1; }
621
622    /// Mark this block as being an exit block, which has one path to an exit by
623    /// definition.
624    void SetAsExit()  { BottomUpPathCount = 1; }
625
626    /// Attempt to find the PtrState object describing the top down state for
627    /// pointer Arg. Return a new initialized PtrState describing the top down
628    /// state for Arg if we do not find one.
629    PtrState &getPtrTopDownState(const Value *Arg) {
630      return PerPtrTopDown[Arg];
631    }
632
633    /// Attempt to find the PtrState object describing the bottom up state for
634    /// pointer Arg. Return a new initialized PtrState describing the bottom up
635    /// state for Arg if we do not find one.
636    PtrState &getPtrBottomUpState(const Value *Arg) {
637      return PerPtrBottomUp[Arg];
638    }
639
640    /// Attempt to find the PtrState object describing the bottom up state for
641    /// pointer Arg.
642    ptr_iterator findPtrBottomUpState(const Value *Arg) {
643      return PerPtrBottomUp.find(Arg);
644    }
645
646    void clearBottomUpPointers() {
647      PerPtrBottomUp.clear();
648    }
649
650    void clearTopDownPointers() {
651      PerPtrTopDown.clear();
652    }
653
654    void InitFromPred(const BBState &Other);
655    void InitFromSucc(const BBState &Other);
656    void MergePred(const BBState &Other);
657    void MergeSucc(const BBState &Other);
658
659    /// Compute the number of possible unique paths from an entry to an exit
660    /// which pass through this block. This is only valid after both the
661    /// top-down and bottom-up traversals are complete.
662    ///
663    /// Returns true if overflow occured. Returns false if overflow did not
664    /// occur.
665    bool GetAllPathCountWithOverflow(unsigned &PathCount) const {
666      if (TopDownPathCount == OverflowOccurredValue ||
667          BottomUpPathCount == OverflowOccurredValue)
668        return true;
669      unsigned long long Product =
670        (unsigned long long)TopDownPathCount*BottomUpPathCount;
671      // Overflow occured if any of the upper bits of Product are set or if all
672      // the lower bits of Product are all set.
673      return (Product >> 32) ||
674             ((PathCount = Product) == OverflowOccurredValue);
675    }
676
677    // Specialized CFG utilities.
678    typedef SmallVectorImpl<BasicBlock *>::const_iterator edge_iterator;
679    edge_iterator pred_begin() const { return Preds.begin(); }
680    edge_iterator pred_end() const { return Preds.end(); }
681    edge_iterator succ_begin() const { return Succs.begin(); }
682    edge_iterator succ_end() const { return Succs.end(); }
683
684    void addSucc(BasicBlock *Succ) { Succs.push_back(Succ); }
685    void addPred(BasicBlock *Pred) { Preds.push_back(Pred); }
686
687    bool isExit() const { return Succs.empty(); }
688  };
689
690  const unsigned BBState::OverflowOccurredValue = 0xffffffff;
691}
692
693void BBState::InitFromPred(const BBState &Other) {
694  PerPtrTopDown = Other.PerPtrTopDown;
695  TopDownPathCount = Other.TopDownPathCount;
696}
697
698void BBState::InitFromSucc(const BBState &Other) {
699  PerPtrBottomUp = Other.PerPtrBottomUp;
700  BottomUpPathCount = Other.BottomUpPathCount;
701}
702
703/// The top-down traversal uses this to merge information about predecessors to
704/// form the initial state for a new block.
705void BBState::MergePred(const BBState &Other) {
706  if (TopDownPathCount == OverflowOccurredValue)
707    return;
708
709  // Other.TopDownPathCount can be 0, in which case it is either dead or a
710  // loop backedge. Loop backedges are special.
711  TopDownPathCount += Other.TopDownPathCount;
712
713  // In order to be consistent, we clear the top down pointers when by adding
714  // TopDownPathCount becomes OverflowOccurredValue even though "true" overflow
715  // has not occured.
716  if (TopDownPathCount == OverflowOccurredValue) {
717    clearTopDownPointers();
718    return;
719  }
720
721  // Check for overflow. If we have overflow, fall back to conservative
722  // behavior.
723  if (TopDownPathCount < Other.TopDownPathCount) {
724    TopDownPathCount = OverflowOccurredValue;
725    clearTopDownPointers();
726    return;
727  }
728
729  // For each entry in the other set, if our set has an entry with the same key,
730  // merge the entries. Otherwise, copy the entry and merge it with an empty
731  // entry.
732  for (ptr_const_iterator MI = Other.top_down_ptr_begin(),
733       ME = Other.top_down_ptr_end(); MI != ME; ++MI) {
734    std::pair<ptr_iterator, bool> Pair = PerPtrTopDown.insert(*MI);
735    Pair.first->second.Merge(Pair.second ? PtrState() : MI->second,
736                             /*TopDown=*/true);
737  }
738
739  // For each entry in our set, if the other set doesn't have an entry with the
740  // same key, force it to merge with an empty entry.
741  for (ptr_iterator MI = top_down_ptr_begin(),
742       ME = top_down_ptr_end(); MI != ME; ++MI)
743    if (Other.PerPtrTopDown.find(MI->first) == Other.PerPtrTopDown.end())
744      MI->second.Merge(PtrState(), /*TopDown=*/true);
745}
746
747/// The bottom-up traversal uses this to merge information about successors to
748/// form the initial state for a new block.
749void BBState::MergeSucc(const BBState &Other) {
750  if (BottomUpPathCount == OverflowOccurredValue)
751    return;
752
753  // Other.BottomUpPathCount can be 0, in which case it is either dead or a
754  // loop backedge. Loop backedges are special.
755  BottomUpPathCount += Other.BottomUpPathCount;
756
757  // In order to be consistent, we clear the top down pointers when by adding
758  // BottomUpPathCount becomes OverflowOccurredValue even though "true" overflow
759  // has not occured.
760  if (BottomUpPathCount == OverflowOccurredValue) {
761    clearBottomUpPointers();
762    return;
763  }
764
765  // Check for overflow. If we have overflow, fall back to conservative
766  // behavior.
767  if (BottomUpPathCount < Other.BottomUpPathCount) {
768    BottomUpPathCount = OverflowOccurredValue;
769    clearBottomUpPointers();
770    return;
771  }
772
773  // For each entry in the other set, if our set has an entry with the
774  // same key, merge the entries. Otherwise, copy the entry and merge
775  // it with an empty entry.
776  for (ptr_const_iterator MI = Other.bottom_up_ptr_begin(),
777       ME = Other.bottom_up_ptr_end(); MI != ME; ++MI) {
778    std::pair<ptr_iterator, bool> Pair = PerPtrBottomUp.insert(*MI);
779    Pair.first->second.Merge(Pair.second ? PtrState() : MI->second,
780                             /*TopDown=*/false);
781  }
782
783  // For each entry in our set, if the other set doesn't have an entry
784  // with the same key, force it to merge with an empty entry.
785  for (ptr_iterator MI = bottom_up_ptr_begin(),
786       ME = bottom_up_ptr_end(); MI != ME; ++MI)
787    if (Other.PerPtrBottomUp.find(MI->first) == Other.PerPtrBottomUp.end())
788      MI->second.Merge(PtrState(), /*TopDown=*/false);
789}
790
791// Only enable ARC Annotations if we are building a debug version of
792// libObjCARCOpts.
793#ifndef NDEBUG
794#define ARC_ANNOTATIONS
795#endif
796
797// Define some macros along the lines of DEBUG and some helper functions to make
798// it cleaner to create annotations in the source code and to no-op when not
799// building in debug mode.
800#ifdef ARC_ANNOTATIONS
801
802#include "llvm/Support/CommandLine.h"
803
804/// Enable/disable ARC sequence annotations.
805static cl::opt<bool>
806EnableARCAnnotations("enable-objc-arc-annotations", cl::init(false),
807                     cl::desc("Enable emission of arc data flow analysis "
808                              "annotations"));
809static cl::opt<bool>
810DisableCheckForCFGHazards("disable-objc-arc-checkforcfghazards", cl::init(false),
811                          cl::desc("Disable check for cfg hazards when "
812                                   "annotating"));
813static cl::opt<std::string>
814ARCAnnotationTargetIdentifier("objc-arc-annotation-target-identifier",
815                              cl::init(""),
816                              cl::desc("filter out all data flow annotations "
817                                       "but those that apply to the given "
818                                       "target llvm identifier."));
819
820/// This function appends a unique ARCAnnotationProvenanceSourceMDKind id to an
821/// instruction so that we can track backwards when post processing via the llvm
822/// arc annotation processor tool. If the function is an
823static MDString *AppendMDNodeToSourcePtr(unsigned NodeId,
824                                         Value *Ptr) {
825  MDString *Hash = 0;
826
827  // If pointer is a result of an instruction and it does not have a source
828  // MDNode it, attach a new MDNode onto it. If pointer is a result of
829  // an instruction and does have a source MDNode attached to it, return a
830  // reference to said Node. Otherwise just return 0.
831  if (Instruction *Inst = dyn_cast<Instruction>(Ptr)) {
832    MDNode *Node;
833    if (!(Node = Inst->getMetadata(NodeId))) {
834      // We do not have any node. Generate and attatch the hash MDString to the
835      // instruction.
836
837      // We just use an MDString to ensure that this metadata gets written out
838      // of line at the module level and to provide a very simple format
839      // encoding the information herein. Both of these makes it simpler to
840      // parse the annotations by a simple external program.
841      std::string Str;
842      raw_string_ostream os(Str);
843      os << "(" << Inst->getParent()->getParent()->getName() << ",%"
844         << Inst->getName() << ")";
845
846      Hash = MDString::get(Inst->getContext(), os.str());
847      Inst->setMetadata(NodeId, MDNode::get(Inst->getContext(),Hash));
848    } else {
849      // We have a node. Grab its hash and return it.
850      assert(Node->getNumOperands() == 1 &&
851        "An ARCAnnotationProvenanceSourceMDKind can only have 1 operand.");
852      Hash = cast<MDString>(Node->getOperand(0));
853    }
854  } else if (Argument *Arg = dyn_cast<Argument>(Ptr)) {
855    std::string str;
856    raw_string_ostream os(str);
857    os << "(" << Arg->getParent()->getName() << ",%" << Arg->getName()
858       << ")";
859    Hash = MDString::get(Arg->getContext(), os.str());
860  }
861
862  return Hash;
863}
864
865static std::string SequenceToString(Sequence A) {
866  std::string str;
867  raw_string_ostream os(str);
868  os << A;
869  return os.str();
870}
871
872/// Helper function to change a Sequence into a String object using our overload
873/// for raw_ostream so we only have printing code in one location.
874static MDString *SequenceToMDString(LLVMContext &Context,
875                                    Sequence A) {
876  return MDString::get(Context, SequenceToString(A));
877}
878
879/// A simple function to generate a MDNode which describes the change in state
880/// for Value *Ptr caused by Instruction *Inst.
881static void AppendMDNodeToInstForPtr(unsigned NodeId,
882                                     Instruction *Inst,
883                                     Value *Ptr,
884                                     MDString *PtrSourceMDNodeID,
885                                     Sequence OldSeq,
886                                     Sequence NewSeq) {
887  MDNode *Node = 0;
888  Value *tmp[3] = {PtrSourceMDNodeID,
889                   SequenceToMDString(Inst->getContext(),
890                                      OldSeq),
891                   SequenceToMDString(Inst->getContext(),
892                                      NewSeq)};
893  Node = MDNode::get(Inst->getContext(),
894                     ArrayRef<Value*>(tmp, 3));
895
896  Inst->setMetadata(NodeId, Node);
897}
898
899/// Add to the beginning of the basic block llvm.ptr.annotations which show the
900/// state of a pointer at the entrance to a basic block.
901static void GenerateARCBBEntranceAnnotation(const char *Name, BasicBlock *BB,
902                                            Value *Ptr, Sequence Seq) {
903  // If we have a target identifier, make sure that we match it before
904  // continuing.
905  if(!ARCAnnotationTargetIdentifier.empty() &&
906     !Ptr->getName().equals(ARCAnnotationTargetIdentifier))
907    return;
908
909  Module *M = BB->getParent()->getParent();
910  LLVMContext &C = M->getContext();
911  Type *I8X = PointerType::getUnqual(Type::getInt8Ty(C));
912  Type *I8XX = PointerType::getUnqual(I8X);
913  Type *Params[] = {I8XX, I8XX};
914  FunctionType *FTy = FunctionType::get(Type::getVoidTy(C),
915                                        ArrayRef<Type*>(Params, 2),
916                                        /*isVarArg=*/false);
917  Constant *Callee = M->getOrInsertFunction(Name, FTy);
918
919  IRBuilder<> Builder(BB, BB->getFirstInsertionPt());
920
921  Value *PtrName;
922  StringRef Tmp = Ptr->getName();
923  if (0 == (PtrName = M->getGlobalVariable(Tmp, true))) {
924    Value *ActualPtrName = Builder.CreateGlobalStringPtr(Tmp,
925                                                         Tmp + "_STR");
926    PtrName = new GlobalVariable(*M, I8X, true, GlobalVariable::InternalLinkage,
927                                 cast<Constant>(ActualPtrName), Tmp);
928  }
929
930  Value *S;
931  std::string SeqStr = SequenceToString(Seq);
932  if (0 == (S = M->getGlobalVariable(SeqStr, true))) {
933    Value *ActualPtrName = Builder.CreateGlobalStringPtr(SeqStr,
934                                                         SeqStr + "_STR");
935    S = new GlobalVariable(*M, I8X, true, GlobalVariable::InternalLinkage,
936                           cast<Constant>(ActualPtrName), SeqStr);
937  }
938
939  Builder.CreateCall2(Callee, PtrName, S);
940}
941
942/// Add to the end of the basic block llvm.ptr.annotations which show the state
943/// of the pointer at the bottom of the basic block.
944static void GenerateARCBBTerminatorAnnotation(const char *Name, BasicBlock *BB,
945                                              Value *Ptr, Sequence Seq) {
946  // If we have a target identifier, make sure that we match it before emitting
947  // an annotation.
948  if(!ARCAnnotationTargetIdentifier.empty() &&
949     !Ptr->getName().equals(ARCAnnotationTargetIdentifier))
950    return;
951
952  Module *M = BB->getParent()->getParent();
953  LLVMContext &C = M->getContext();
954  Type *I8X = PointerType::getUnqual(Type::getInt8Ty(C));
955  Type *I8XX = PointerType::getUnqual(I8X);
956  Type *Params[] = {I8XX, I8XX};
957  FunctionType *FTy = FunctionType::get(Type::getVoidTy(C),
958                                        ArrayRef<Type*>(Params, 2),
959                                        /*isVarArg=*/false);
960  Constant *Callee = M->getOrInsertFunction(Name, FTy);
961
962  IRBuilder<> Builder(BB, llvm::prior(BB->end()));
963
964  Value *PtrName;
965  StringRef Tmp = Ptr->getName();
966  if (0 == (PtrName = M->getGlobalVariable(Tmp, true))) {
967    Value *ActualPtrName = Builder.CreateGlobalStringPtr(Tmp,
968                                                         Tmp + "_STR");
969    PtrName = new GlobalVariable(*M, I8X, true, GlobalVariable::InternalLinkage,
970                                 cast<Constant>(ActualPtrName), Tmp);
971  }
972
973  Value *S;
974  std::string SeqStr = SequenceToString(Seq);
975  if (0 == (S = M->getGlobalVariable(SeqStr, true))) {
976    Value *ActualPtrName = Builder.CreateGlobalStringPtr(SeqStr,
977                                                         SeqStr + "_STR");
978    S = new GlobalVariable(*M, I8X, true, GlobalVariable::InternalLinkage,
979                           cast<Constant>(ActualPtrName), SeqStr);
980  }
981  Builder.CreateCall2(Callee, PtrName, S);
982}
983
984/// Adds a source annotation to pointer and a state change annotation to Inst
985/// referencing the source annotation and the old/new state of pointer.
986static void GenerateARCAnnotation(unsigned InstMDId,
987                                  unsigned PtrMDId,
988                                  Instruction *Inst,
989                                  Value *Ptr,
990                                  Sequence OldSeq,
991                                  Sequence NewSeq) {
992  if (EnableARCAnnotations) {
993    // If we have a target identifier, make sure that we match it before
994    // emitting an annotation.
995    if(!ARCAnnotationTargetIdentifier.empty() &&
996       !Ptr->getName().equals(ARCAnnotationTargetIdentifier))
997      return;
998
999    // First generate the source annotation on our pointer. This will return an
1000    // MDString* if Ptr actually comes from an instruction implying we can put
1001    // in a source annotation. If AppendMDNodeToSourcePtr returns 0 (i.e. NULL),
1002    // then we know that our pointer is from an Argument so we put a reference
1003    // to the argument number.
1004    //
1005    // The point of this is to make it easy for the
1006    // llvm-arc-annotation-processor tool to cross reference where the source
1007    // pointer is in the LLVM IR since the LLVM IR parser does not submit such
1008    // information via debug info for backends to use (since why would anyone
1009    // need such a thing from LLVM IR besides in non standard cases
1010    // [i.e. this]).
1011    MDString *SourcePtrMDNode =
1012      AppendMDNodeToSourcePtr(PtrMDId, Ptr);
1013    AppendMDNodeToInstForPtr(InstMDId, Inst, Ptr, SourcePtrMDNode, OldSeq,
1014                             NewSeq);
1015  }
1016}
1017
1018// The actual interface for accessing the above functionality is defined via
1019// some simple macros which are defined below. We do this so that the user does
1020// not need to pass in what metadata id is needed resulting in cleaner code and
1021// additionally since it provides an easy way to conditionally no-op all
1022// annotation support in a non-debug build.
1023
1024/// Use this macro to annotate a sequence state change when processing
1025/// instructions bottom up,
1026#define ANNOTATE_BOTTOMUP(inst, ptr, old, new)                          \
1027  GenerateARCAnnotation(ARCAnnotationBottomUpMDKind,                    \
1028                        ARCAnnotationProvenanceSourceMDKind, (inst),    \
1029                        const_cast<Value*>(ptr), (old), (new))
1030/// Use this macro to annotate a sequence state change when processing
1031/// instructions top down.
1032#define ANNOTATE_TOPDOWN(inst, ptr, old, new)                           \
1033  GenerateARCAnnotation(ARCAnnotationTopDownMDKind,                     \
1034                        ARCAnnotationProvenanceSourceMDKind, (inst),    \
1035                        const_cast<Value*>(ptr), (old), (new))
1036
1037#define ANNOTATE_BB(_states, _bb, _name, _type, _direction)                   \
1038  do {                                                                        \
1039    if (EnableARCAnnotations) {                                               \
1040      for(BBState::ptr_const_iterator I = (_states)._direction##_ptr_begin(), \
1041          E = (_states)._direction##_ptr_end(); I != E; ++I) {                \
1042        Value *Ptr = const_cast<Value*>(I->first);                            \
1043        Sequence Seq = I->second.GetSeq();                                    \
1044        GenerateARCBB ## _type ## Annotation(_name, (_bb), Ptr, Seq);         \
1045      }                                                                       \
1046    }                                                                         \
1047  } while (0)
1048
1049#define ANNOTATE_BOTTOMUP_BBSTART(_states, _basicblock)                       \
1050    ANNOTATE_BB(_states, _basicblock, "llvm.arc.annotation.bottomup.bbstart", \
1051                Entrance, bottom_up)
1052#define ANNOTATE_BOTTOMUP_BBEND(_states, _basicblock)                         \
1053    ANNOTATE_BB(_states, _basicblock, "llvm.arc.annotation.bottomup.bbend",   \
1054                Terminator, bottom_up)
1055#define ANNOTATE_TOPDOWN_BBSTART(_states, _basicblock)                        \
1056    ANNOTATE_BB(_states, _basicblock, "llvm.arc.annotation.topdown.bbstart",  \
1057                Entrance, top_down)
1058#define ANNOTATE_TOPDOWN_BBEND(_states, _basicblock)                          \
1059    ANNOTATE_BB(_states, _basicblock, "llvm.arc.annotation.topdown.bbend",    \
1060                Terminator, top_down)
1061
1062#else // !ARC_ANNOTATION
1063// If annotations are off, noop.
1064#define ANNOTATE_BOTTOMUP(inst, ptr, old, new)
1065#define ANNOTATE_TOPDOWN(inst, ptr, old, new)
1066#define ANNOTATE_BOTTOMUP_BBSTART(states, basicblock)
1067#define ANNOTATE_BOTTOMUP_BBEND(states, basicblock)
1068#define ANNOTATE_TOPDOWN_BBSTART(states, basicblock)
1069#define ANNOTATE_TOPDOWN_BBEND(states, basicblock)
1070#endif // !ARC_ANNOTATION
1071
1072namespace {
1073  /// \brief The main ARC optimization pass.
1074  class ObjCARCOpt : public FunctionPass {
1075    bool Changed;
1076    ProvenanceAnalysis PA;
1077    ARCRuntimeEntryPoints EP;
1078
1079    // This is used to track if a pointer is stored into an alloca.
1080    DenseSet<const Value *> MultiOwnersSet;
1081
1082    /// A flag indicating whether this optimization pass should run.
1083    bool Run;
1084
1085    /// Flags which determine whether each of the interesting runtine functions
1086    /// is in fact used in the current function.
1087    unsigned UsedInThisFunction;
1088
1089    /// The Metadata Kind for clang.imprecise_release metadata.
1090    unsigned ImpreciseReleaseMDKind;
1091
1092    /// The Metadata Kind for clang.arc.copy_on_escape metadata.
1093    unsigned CopyOnEscapeMDKind;
1094
1095    /// The Metadata Kind for clang.arc.no_objc_arc_exceptions metadata.
1096    unsigned NoObjCARCExceptionsMDKind;
1097
1098#ifdef ARC_ANNOTATIONS
1099    /// The Metadata Kind for llvm.arc.annotation.bottomup metadata.
1100    unsigned ARCAnnotationBottomUpMDKind;
1101    /// The Metadata Kind for llvm.arc.annotation.topdown metadata.
1102    unsigned ARCAnnotationTopDownMDKind;
1103    /// The Metadata Kind for llvm.arc.annotation.provenancesource metadata.
1104    unsigned ARCAnnotationProvenanceSourceMDKind;
1105#endif // ARC_ANNOATIONS
1106
1107    bool OptimizeRetainRVCall(Function &F, Instruction *RetainRV);
1108    void OptimizeAutoreleaseRVCall(Function &F, Instruction *AutoreleaseRV,
1109                                   InstructionClass &Class);
1110    void OptimizeIndividualCalls(Function &F);
1111
1112    void CheckForCFGHazards(const BasicBlock *BB,
1113                            DenseMap<const BasicBlock *, BBState> &BBStates,
1114                            BBState &MyStates) const;
1115    bool VisitInstructionBottomUp(Instruction *Inst,
1116                                  BasicBlock *BB,
1117                                  MapVector<Value *, RRInfo> &Retains,
1118                                  BBState &MyStates);
1119    bool VisitBottomUp(BasicBlock *BB,
1120                       DenseMap<const BasicBlock *, BBState> &BBStates,
1121                       MapVector<Value *, RRInfo> &Retains);
1122    bool VisitInstructionTopDown(Instruction *Inst,
1123                                 DenseMap<Value *, RRInfo> &Releases,
1124                                 BBState &MyStates);
1125    bool VisitTopDown(BasicBlock *BB,
1126                      DenseMap<const BasicBlock *, BBState> &BBStates,
1127                      DenseMap<Value *, RRInfo> &Releases);
1128    bool Visit(Function &F,
1129               DenseMap<const BasicBlock *, BBState> &BBStates,
1130               MapVector<Value *, RRInfo> &Retains,
1131               DenseMap<Value *, RRInfo> &Releases);
1132
1133    void MoveCalls(Value *Arg, RRInfo &RetainsToMove, RRInfo &ReleasesToMove,
1134                   MapVector<Value *, RRInfo> &Retains,
1135                   DenseMap<Value *, RRInfo> &Releases,
1136                   SmallVectorImpl<Instruction *> &DeadInsts,
1137                   Module *M);
1138
1139    bool ConnectTDBUTraversals(DenseMap<const BasicBlock *, BBState> &BBStates,
1140                               MapVector<Value *, RRInfo> &Retains,
1141                               DenseMap<Value *, RRInfo> &Releases,
1142                               Module *M,
1143                               SmallVectorImpl<Instruction *> &NewRetains,
1144                               SmallVectorImpl<Instruction *> &NewReleases,
1145                               SmallVectorImpl<Instruction *> &DeadInsts,
1146                               RRInfo &RetainsToMove,
1147                               RRInfo &ReleasesToMove,
1148                               Value *Arg,
1149                               bool KnownSafe,
1150                               bool &AnyPairsCompletelyEliminated);
1151
1152    bool PerformCodePlacement(DenseMap<const BasicBlock *, BBState> &BBStates,
1153                              MapVector<Value *, RRInfo> &Retains,
1154                              DenseMap<Value *, RRInfo> &Releases,
1155                              Module *M);
1156
1157    void OptimizeWeakCalls(Function &F);
1158
1159    bool OptimizeSequences(Function &F);
1160
1161    void OptimizeReturns(Function &F);
1162
1163#ifndef NDEBUG
1164    void GatherStatistics(Function &F, bool AfterOptimization = false);
1165#endif
1166
1167    virtual void getAnalysisUsage(AnalysisUsage &AU) const;
1168    virtual bool doInitialization(Module &M);
1169    virtual bool runOnFunction(Function &F);
1170    virtual void releaseMemory();
1171
1172  public:
1173    static char ID;
1174    ObjCARCOpt() : FunctionPass(ID) {
1175      initializeObjCARCOptPass(*PassRegistry::getPassRegistry());
1176    }
1177  };
1178}
1179
1180char ObjCARCOpt::ID = 0;
1181INITIALIZE_PASS_BEGIN(ObjCARCOpt,
1182                      "objc-arc", "ObjC ARC optimization", false, false)
1183INITIALIZE_PASS_DEPENDENCY(ObjCARCAliasAnalysis)
1184INITIALIZE_PASS_END(ObjCARCOpt,
1185                    "objc-arc", "ObjC ARC optimization", false, false)
1186
1187Pass *llvm::createObjCARCOptPass() {
1188  return new ObjCARCOpt();
1189}
1190
1191void ObjCARCOpt::getAnalysisUsage(AnalysisUsage &AU) const {
1192  AU.addRequired<ObjCARCAliasAnalysis>();
1193  AU.addRequired<AliasAnalysis>();
1194  // ARC optimization doesn't currently split critical edges.
1195  AU.setPreservesCFG();
1196}
1197
1198/// Turn objc_retainAutoreleasedReturnValue into objc_retain if the operand is
1199/// not a return value.  Or, if it can be paired with an
1200/// objc_autoreleaseReturnValue, delete the pair and return true.
1201bool
1202ObjCARCOpt::OptimizeRetainRVCall(Function &F, Instruction *RetainRV) {
1203  // Check for the argument being from an immediately preceding call or invoke.
1204  const Value *Arg = GetObjCArg(RetainRV);
1205  ImmutableCallSite CS(Arg);
1206  if (const Instruction *Call = CS.getInstruction()) {
1207    if (Call->getParent() == RetainRV->getParent()) {
1208      BasicBlock::const_iterator I = Call;
1209      ++I;
1210      while (IsNoopInstruction(I)) ++I;
1211      if (&*I == RetainRV)
1212        return false;
1213    } else if (const InvokeInst *II = dyn_cast<InvokeInst>(Call)) {
1214      BasicBlock *RetainRVParent = RetainRV->getParent();
1215      if (II->getNormalDest() == RetainRVParent) {
1216        BasicBlock::const_iterator I = RetainRVParent->begin();
1217        while (IsNoopInstruction(I)) ++I;
1218        if (&*I == RetainRV)
1219          return false;
1220      }
1221    }
1222  }
1223
1224  // Check for being preceded by an objc_autoreleaseReturnValue on the same
1225  // pointer. In this case, we can delete the pair.
1226  BasicBlock::iterator I = RetainRV, Begin = RetainRV->getParent()->begin();
1227  if (I != Begin) {
1228    do --I; while (I != Begin && IsNoopInstruction(I));
1229    if (GetBasicInstructionClass(I) == IC_AutoreleaseRV &&
1230        GetObjCArg(I) == Arg) {
1231      Changed = true;
1232      ++NumPeeps;
1233
1234      DEBUG(dbgs() << "Erasing autoreleaseRV,retainRV pair: " << *I << "\n"
1235                   << "Erasing " << *RetainRV << "\n");
1236
1237      EraseInstruction(I);
1238      EraseInstruction(RetainRV);
1239      return true;
1240    }
1241  }
1242
1243  // Turn it to a plain objc_retain.
1244  Changed = true;
1245  ++NumPeeps;
1246
1247  DEBUG(dbgs() << "Transforming objc_retainAutoreleasedReturnValue => "
1248                  "objc_retain since the operand is not a return value.\n"
1249                  "Old = " << *RetainRV << "\n");
1250
1251  Constant *NewDecl = EP.get(ARCRuntimeEntryPoints::EPT_Retain);
1252  cast<CallInst>(RetainRV)->setCalledFunction(NewDecl);
1253
1254  DEBUG(dbgs() << "New = " << *RetainRV << "\n");
1255
1256  return false;
1257}
1258
1259/// Turn objc_autoreleaseReturnValue into objc_autorelease if the result is not
1260/// used as a return value.
1261void
1262ObjCARCOpt::OptimizeAutoreleaseRVCall(Function &F, Instruction *AutoreleaseRV,
1263                                      InstructionClass &Class) {
1264  // Check for a return of the pointer value.
1265  const Value *Ptr = GetObjCArg(AutoreleaseRV);
1266  SmallVector<const Value *, 2> Users;
1267  Users.push_back(Ptr);
1268  do {
1269    Ptr = Users.pop_back_val();
1270    for (Value::const_use_iterator UI = Ptr->use_begin(), UE = Ptr->use_end();
1271         UI != UE; ++UI) {
1272      const User *I = *UI;
1273      if (isa<ReturnInst>(I) || GetBasicInstructionClass(I) == IC_RetainRV)
1274        return;
1275      if (isa<BitCastInst>(I))
1276        Users.push_back(I);
1277    }
1278  } while (!Users.empty());
1279
1280  Changed = true;
1281  ++NumPeeps;
1282
1283  DEBUG(dbgs() << "Transforming objc_autoreleaseReturnValue => "
1284                  "objc_autorelease since its operand is not used as a return "
1285                  "value.\n"
1286                  "Old = " << *AutoreleaseRV << "\n");
1287
1288  CallInst *AutoreleaseRVCI = cast<CallInst>(AutoreleaseRV);
1289  Constant *NewDecl = EP.get(ARCRuntimeEntryPoints::EPT_Autorelease);
1290  AutoreleaseRVCI->setCalledFunction(NewDecl);
1291  AutoreleaseRVCI->setTailCall(false); // Never tail call objc_autorelease.
1292  Class = IC_Autorelease;
1293
1294  DEBUG(dbgs() << "New: " << *AutoreleaseRV << "\n");
1295
1296}
1297
1298/// Visit each call, one at a time, and make simplifications without doing any
1299/// additional analysis.
1300void ObjCARCOpt::OptimizeIndividualCalls(Function &F) {
1301  DEBUG(dbgs() << "\n== ObjCARCOpt::OptimizeIndividualCalls ==\n");
1302  // Reset all the flags in preparation for recomputing them.
1303  UsedInThisFunction = 0;
1304
1305  // Visit all objc_* calls in F.
1306  for (inst_iterator I = inst_begin(&F), E = inst_end(&F); I != E; ) {
1307    Instruction *Inst = &*I++;
1308
1309    InstructionClass Class = GetBasicInstructionClass(Inst);
1310
1311    DEBUG(dbgs() << "Visiting: Class: " << Class << "; " << *Inst << "\n");
1312
1313    switch (Class) {
1314    default: break;
1315
1316    // Delete no-op casts. These function calls have special semantics, but
1317    // the semantics are entirely implemented via lowering in the front-end,
1318    // so by the time they reach the optimizer, they are just no-op calls
1319    // which return their argument.
1320    //
1321    // There are gray areas here, as the ability to cast reference-counted
1322    // pointers to raw void* and back allows code to break ARC assumptions,
1323    // however these are currently considered to be unimportant.
1324    case IC_NoopCast:
1325      Changed = true;
1326      ++NumNoops;
1327      DEBUG(dbgs() << "Erasing no-op cast: " << *Inst << "\n");
1328      EraseInstruction(Inst);
1329      continue;
1330
1331    // If the pointer-to-weak-pointer is null, it's undefined behavior.
1332    case IC_StoreWeak:
1333    case IC_LoadWeak:
1334    case IC_LoadWeakRetained:
1335    case IC_InitWeak:
1336    case IC_DestroyWeak: {
1337      CallInst *CI = cast<CallInst>(Inst);
1338      if (IsNullOrUndef(CI->getArgOperand(0))) {
1339        Changed = true;
1340        Type *Ty = CI->getArgOperand(0)->getType();
1341        new StoreInst(UndefValue::get(cast<PointerType>(Ty)->getElementType()),
1342                      Constant::getNullValue(Ty),
1343                      CI);
1344        llvm::Value *NewValue = UndefValue::get(CI->getType());
1345        DEBUG(dbgs() << "A null pointer-to-weak-pointer is undefined behavior."
1346                       "\nOld = " << *CI << "\nNew = " << *NewValue << "\n");
1347        CI->replaceAllUsesWith(NewValue);
1348        CI->eraseFromParent();
1349        continue;
1350      }
1351      break;
1352    }
1353    case IC_CopyWeak:
1354    case IC_MoveWeak: {
1355      CallInst *CI = cast<CallInst>(Inst);
1356      if (IsNullOrUndef(CI->getArgOperand(0)) ||
1357          IsNullOrUndef(CI->getArgOperand(1))) {
1358        Changed = true;
1359        Type *Ty = CI->getArgOperand(0)->getType();
1360        new StoreInst(UndefValue::get(cast<PointerType>(Ty)->getElementType()),
1361                      Constant::getNullValue(Ty),
1362                      CI);
1363
1364        llvm::Value *NewValue = UndefValue::get(CI->getType());
1365        DEBUG(dbgs() << "A null pointer-to-weak-pointer is undefined behavior."
1366                        "\nOld = " << *CI << "\nNew = " << *NewValue << "\n");
1367
1368        CI->replaceAllUsesWith(NewValue);
1369        CI->eraseFromParent();
1370        continue;
1371      }
1372      break;
1373    }
1374    case IC_RetainRV:
1375      if (OptimizeRetainRVCall(F, Inst))
1376        continue;
1377      break;
1378    case IC_AutoreleaseRV:
1379      OptimizeAutoreleaseRVCall(F, Inst, Class);
1380      break;
1381    }
1382
1383    // objc_autorelease(x) -> objc_release(x) if x is otherwise unused.
1384    if (IsAutorelease(Class) && Inst->use_empty()) {
1385      CallInst *Call = cast<CallInst>(Inst);
1386      const Value *Arg = Call->getArgOperand(0);
1387      Arg = FindSingleUseIdentifiedObject(Arg);
1388      if (Arg) {
1389        Changed = true;
1390        ++NumAutoreleases;
1391
1392        // Create the declaration lazily.
1393        LLVMContext &C = Inst->getContext();
1394
1395        Constant *Decl = EP.get(ARCRuntimeEntryPoints::EPT_Release);
1396        CallInst *NewCall = CallInst::Create(Decl, Call->getArgOperand(0), "",
1397                                             Call);
1398        NewCall->setMetadata(ImpreciseReleaseMDKind, MDNode::get(C, None));
1399
1400        DEBUG(dbgs() << "Replacing autorelease{,RV}(x) with objc_release(x) "
1401              "since x is otherwise unused.\nOld: " << *Call << "\nNew: "
1402              << *NewCall << "\n");
1403
1404        EraseInstruction(Call);
1405        Inst = NewCall;
1406        Class = IC_Release;
1407      }
1408    }
1409
1410    // For functions which can never be passed stack arguments, add
1411    // a tail keyword.
1412    if (IsAlwaysTail(Class)) {
1413      Changed = true;
1414      DEBUG(dbgs() << "Adding tail keyword to function since it can never be "
1415                      "passed stack args: " << *Inst << "\n");
1416      cast<CallInst>(Inst)->setTailCall();
1417    }
1418
1419    // Ensure that functions that can never have a "tail" keyword due to the
1420    // semantics of ARC truly do not do so.
1421    if (IsNeverTail(Class)) {
1422      Changed = true;
1423      DEBUG(dbgs() << "Removing tail keyword from function: " << *Inst <<
1424            "\n");
1425      cast<CallInst>(Inst)->setTailCall(false);
1426    }
1427
1428    // Set nounwind as needed.
1429    if (IsNoThrow(Class)) {
1430      Changed = true;
1431      DEBUG(dbgs() << "Found no throw class. Setting nounwind on: " << *Inst
1432                   << "\n");
1433      cast<CallInst>(Inst)->setDoesNotThrow();
1434    }
1435
1436    if (!IsNoopOnNull(Class)) {
1437      UsedInThisFunction |= 1 << Class;
1438      continue;
1439    }
1440
1441    const Value *Arg = GetObjCArg(Inst);
1442
1443    // ARC calls with null are no-ops. Delete them.
1444    if (IsNullOrUndef(Arg)) {
1445      Changed = true;
1446      ++NumNoops;
1447      DEBUG(dbgs() << "ARC calls with  null are no-ops. Erasing: " << *Inst
1448            << "\n");
1449      EraseInstruction(Inst);
1450      continue;
1451    }
1452
1453    // Keep track of which of retain, release, autorelease, and retain_block
1454    // are actually present in this function.
1455    UsedInThisFunction |= 1 << Class;
1456
1457    // If Arg is a PHI, and one or more incoming values to the
1458    // PHI are null, and the call is control-equivalent to the PHI, and there
1459    // are no relevant side effects between the PHI and the call, the call
1460    // could be pushed up to just those paths with non-null incoming values.
1461    // For now, don't bother splitting critical edges for this.
1462    SmallVector<std::pair<Instruction *, const Value *>, 4> Worklist;
1463    Worklist.push_back(std::make_pair(Inst, Arg));
1464    do {
1465      std::pair<Instruction *, const Value *> Pair = Worklist.pop_back_val();
1466      Inst = Pair.first;
1467      Arg = Pair.second;
1468
1469      const PHINode *PN = dyn_cast<PHINode>(Arg);
1470      if (!PN) continue;
1471
1472      // Determine if the PHI has any null operands, or any incoming
1473      // critical edges.
1474      bool HasNull = false;
1475      bool HasCriticalEdges = false;
1476      for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
1477        Value *Incoming =
1478          StripPointerCastsAndObjCCalls(PN->getIncomingValue(i));
1479        if (IsNullOrUndef(Incoming))
1480          HasNull = true;
1481        else if (cast<TerminatorInst>(PN->getIncomingBlock(i)->back())
1482                   .getNumSuccessors() != 1) {
1483          HasCriticalEdges = true;
1484          break;
1485        }
1486      }
1487      // If we have null operands and no critical edges, optimize.
1488      if (!HasCriticalEdges && HasNull) {
1489        SmallPtrSet<Instruction *, 4> DependingInstructions;
1490        SmallPtrSet<const BasicBlock *, 4> Visited;
1491
1492        // Check that there is nothing that cares about the reference
1493        // count between the call and the phi.
1494        switch (Class) {
1495        case IC_Retain:
1496        case IC_RetainBlock:
1497          // These can always be moved up.
1498          break;
1499        case IC_Release:
1500          // These can't be moved across things that care about the retain
1501          // count.
1502          FindDependencies(NeedsPositiveRetainCount, Arg,
1503                           Inst->getParent(), Inst,
1504                           DependingInstructions, Visited, PA);
1505          break;
1506        case IC_Autorelease:
1507          // These can't be moved across autorelease pool scope boundaries.
1508          FindDependencies(AutoreleasePoolBoundary, Arg,
1509                           Inst->getParent(), Inst,
1510                           DependingInstructions, Visited, PA);
1511          break;
1512        case IC_RetainRV:
1513        case IC_AutoreleaseRV:
1514          // Don't move these; the RV optimization depends on the autoreleaseRV
1515          // being tail called, and the retainRV being immediately after a call
1516          // (which might still happen if we get lucky with codegen layout, but
1517          // it's not worth taking the chance).
1518          continue;
1519        default:
1520          llvm_unreachable("Invalid dependence flavor");
1521        }
1522
1523        if (DependingInstructions.size() == 1 &&
1524            *DependingInstructions.begin() == PN) {
1525          Changed = true;
1526          ++NumPartialNoops;
1527          // Clone the call into each predecessor that has a non-null value.
1528          CallInst *CInst = cast<CallInst>(Inst);
1529          Type *ParamTy = CInst->getArgOperand(0)->getType();
1530          for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
1531            Value *Incoming =
1532              StripPointerCastsAndObjCCalls(PN->getIncomingValue(i));
1533            if (!IsNullOrUndef(Incoming)) {
1534              CallInst *Clone = cast<CallInst>(CInst->clone());
1535              Value *Op = PN->getIncomingValue(i);
1536              Instruction *InsertPos = &PN->getIncomingBlock(i)->back();
1537              if (Op->getType() != ParamTy)
1538                Op = new BitCastInst(Op, ParamTy, "", InsertPos);
1539              Clone->setArgOperand(0, Op);
1540              Clone->insertBefore(InsertPos);
1541
1542              DEBUG(dbgs() << "Cloning "
1543                           << *CInst << "\n"
1544                           "And inserting clone at " << *InsertPos << "\n");
1545              Worklist.push_back(std::make_pair(Clone, Incoming));
1546            }
1547          }
1548          // Erase the original call.
1549          DEBUG(dbgs() << "Erasing: " << *CInst << "\n");
1550          EraseInstruction(CInst);
1551          continue;
1552        }
1553      }
1554    } while (!Worklist.empty());
1555  }
1556}
1557
1558/// If we have a top down pointer in the S_Use state, make sure that there are
1559/// no CFG hazards by checking the states of various bottom up pointers.
1560static void CheckForUseCFGHazard(const Sequence SuccSSeq,
1561                                 const bool SuccSRRIKnownSafe,
1562                                 PtrState &S,
1563                                 bool &SomeSuccHasSame,
1564                                 bool &AllSuccsHaveSame,
1565                                 bool &NotAllSeqEqualButKnownSafe,
1566                                 bool &ShouldContinue) {
1567  switch (SuccSSeq) {
1568  case S_CanRelease: {
1569    if (!S.IsKnownSafe() && !SuccSRRIKnownSafe) {
1570      S.ClearSequenceProgress();
1571      break;
1572    }
1573    S.SetCFGHazardAfflicted(true);
1574    ShouldContinue = true;
1575    break;
1576  }
1577  case S_Use:
1578    SomeSuccHasSame = true;
1579    break;
1580  case S_Stop:
1581  case S_Release:
1582  case S_MovableRelease:
1583    if (!S.IsKnownSafe() && !SuccSRRIKnownSafe)
1584      AllSuccsHaveSame = false;
1585    else
1586      NotAllSeqEqualButKnownSafe = true;
1587    break;
1588  case S_Retain:
1589    llvm_unreachable("bottom-up pointer in retain state!");
1590  case S_None:
1591    llvm_unreachable("This should have been handled earlier.");
1592  }
1593}
1594
1595/// If we have a Top Down pointer in the S_CanRelease state, make sure that
1596/// there are no CFG hazards by checking the states of various bottom up
1597/// pointers.
1598static void CheckForCanReleaseCFGHazard(const Sequence SuccSSeq,
1599                                        const bool SuccSRRIKnownSafe,
1600                                        PtrState &S,
1601                                        bool &SomeSuccHasSame,
1602                                        bool &AllSuccsHaveSame,
1603                                        bool &NotAllSeqEqualButKnownSafe) {
1604  switch (SuccSSeq) {
1605  case S_CanRelease:
1606    SomeSuccHasSame = true;
1607    break;
1608  case S_Stop:
1609  case S_Release:
1610  case S_MovableRelease:
1611  case S_Use:
1612    if (!S.IsKnownSafe() && !SuccSRRIKnownSafe)
1613      AllSuccsHaveSame = false;
1614    else
1615      NotAllSeqEqualButKnownSafe = true;
1616    break;
1617  case S_Retain:
1618    llvm_unreachable("bottom-up pointer in retain state!");
1619  case S_None:
1620    llvm_unreachable("This should have been handled earlier.");
1621  }
1622}
1623
1624/// Check for critical edges, loop boundaries, irreducible control flow, or
1625/// other CFG structures where moving code across the edge would result in it
1626/// being executed more.
1627void
1628ObjCARCOpt::CheckForCFGHazards(const BasicBlock *BB,
1629                               DenseMap<const BasicBlock *, BBState> &BBStates,
1630                               BBState &MyStates) const {
1631  // If any top-down local-use or possible-dec has a succ which is earlier in
1632  // the sequence, forget it.
1633  for (BBState::ptr_iterator I = MyStates.top_down_ptr_begin(),
1634         E = MyStates.top_down_ptr_end(); I != E; ++I) {
1635    PtrState &S = I->second;
1636    const Sequence Seq = I->second.GetSeq();
1637
1638    // We only care about S_Retain, S_CanRelease, and S_Use.
1639    if (Seq == S_None)
1640      continue;
1641
1642    // Make sure that if extra top down states are added in the future that this
1643    // code is updated to handle it.
1644    assert((Seq == S_Retain || Seq == S_CanRelease || Seq == S_Use) &&
1645           "Unknown top down sequence state.");
1646
1647    const Value *Arg = I->first;
1648    const TerminatorInst *TI = cast<TerminatorInst>(&BB->back());
1649    bool SomeSuccHasSame = false;
1650    bool AllSuccsHaveSame = true;
1651    bool NotAllSeqEqualButKnownSafe = false;
1652
1653    succ_const_iterator SI(TI), SE(TI, false);
1654
1655    for (; SI != SE; ++SI) {
1656      // If VisitBottomUp has pointer information for this successor, take
1657      // what we know about it.
1658      const DenseMap<const BasicBlock *, BBState>::iterator BBI =
1659        BBStates.find(*SI);
1660      assert(BBI != BBStates.end());
1661      const PtrState &SuccS = BBI->second.getPtrBottomUpState(Arg);
1662      const Sequence SuccSSeq = SuccS.GetSeq();
1663
1664      // If bottom up, the pointer is in an S_None state, clear the sequence
1665      // progress since the sequence in the bottom up state finished
1666      // suggesting a mismatch in between retains/releases. This is true for
1667      // all three cases that we are handling here: S_Retain, S_Use, and
1668      // S_CanRelease.
1669      if (SuccSSeq == S_None) {
1670        S.ClearSequenceProgress();
1671        continue;
1672      }
1673
1674      // If we have S_Use or S_CanRelease, perform our check for cfg hazard
1675      // checks.
1676      const bool SuccSRRIKnownSafe = SuccS.IsKnownSafe();
1677
1678      // *NOTE* We do not use Seq from above here since we are allowing for
1679      // S.GetSeq() to change while we are visiting basic blocks.
1680      switch(S.GetSeq()) {
1681      case S_Use: {
1682        bool ShouldContinue = false;
1683        CheckForUseCFGHazard(SuccSSeq, SuccSRRIKnownSafe, S, SomeSuccHasSame,
1684                             AllSuccsHaveSame, NotAllSeqEqualButKnownSafe,
1685                             ShouldContinue);
1686        if (ShouldContinue)
1687          continue;
1688        break;
1689      }
1690      case S_CanRelease: {
1691        CheckForCanReleaseCFGHazard(SuccSSeq, SuccSRRIKnownSafe, S,
1692                                    SomeSuccHasSame, AllSuccsHaveSame,
1693                                    NotAllSeqEqualButKnownSafe);
1694        break;
1695      }
1696      case S_Retain:
1697      case S_None:
1698      case S_Stop:
1699      case S_Release:
1700      case S_MovableRelease:
1701        break;
1702      }
1703    }
1704
1705    // If the state at the other end of any of the successor edges
1706    // matches the current state, require all edges to match. This
1707    // guards against loops in the middle of a sequence.
1708    if (SomeSuccHasSame && !AllSuccsHaveSame) {
1709      S.ClearSequenceProgress();
1710    } else if (NotAllSeqEqualButKnownSafe) {
1711      // If we would have cleared the state foregoing the fact that we are known
1712      // safe, stop code motion. This is because whether or not it is safe to
1713      // remove RR pairs via KnownSafe is an orthogonal concept to whether we
1714      // are allowed to perform code motion.
1715      S.SetCFGHazardAfflicted(true);
1716    }
1717  }
1718}
1719
1720bool
1721ObjCARCOpt::VisitInstructionBottomUp(Instruction *Inst,
1722                                     BasicBlock *BB,
1723                                     MapVector<Value *, RRInfo> &Retains,
1724                                     BBState &MyStates) {
1725  bool NestingDetected = false;
1726  InstructionClass Class = GetInstructionClass(Inst);
1727  const Value *Arg = 0;
1728
1729  DEBUG(dbgs() << "Class: " << Class << "\n");
1730
1731  switch (Class) {
1732  case IC_Release: {
1733    Arg = GetObjCArg(Inst);
1734
1735    PtrState &S = MyStates.getPtrBottomUpState(Arg);
1736
1737    // If we see two releases in a row on the same pointer. If so, make
1738    // a note, and we'll cicle back to revisit it after we've
1739    // hopefully eliminated the second release, which may allow us to
1740    // eliminate the first release too.
1741    // Theoretically we could implement removal of nested retain+release
1742    // pairs by making PtrState hold a stack of states, but this is
1743    // simple and avoids adding overhead for the non-nested case.
1744    if (S.GetSeq() == S_Release || S.GetSeq() == S_MovableRelease) {
1745      DEBUG(dbgs() << "Found nested releases (i.e. a release pair)\n");
1746      NestingDetected = true;
1747    }
1748
1749    MDNode *ReleaseMetadata = Inst->getMetadata(ImpreciseReleaseMDKind);
1750    Sequence NewSeq = ReleaseMetadata ? S_MovableRelease : S_Release;
1751    ANNOTATE_BOTTOMUP(Inst, Arg, S.GetSeq(), NewSeq);
1752    S.ResetSequenceProgress(NewSeq);
1753    S.SetReleaseMetadata(ReleaseMetadata);
1754    S.SetKnownSafe(S.HasKnownPositiveRefCount());
1755    S.SetTailCallRelease(cast<CallInst>(Inst)->isTailCall());
1756    S.InsertCall(Inst);
1757    S.SetKnownPositiveRefCount();
1758    break;
1759  }
1760  case IC_RetainBlock:
1761    // In OptimizeIndividualCalls, we have strength reduced all optimizable
1762    // objc_retainBlocks to objc_retains. Thus at this point any
1763    // objc_retainBlocks that we see are not optimizable.
1764    break;
1765  case IC_Retain:
1766  case IC_RetainRV: {
1767    Arg = GetObjCArg(Inst);
1768
1769    PtrState &S = MyStates.getPtrBottomUpState(Arg);
1770    S.SetKnownPositiveRefCount();
1771
1772    Sequence OldSeq = S.GetSeq();
1773    switch (OldSeq) {
1774    case S_Stop:
1775    case S_Release:
1776    case S_MovableRelease:
1777    case S_Use:
1778      // If OldSeq is not S_Use or OldSeq is S_Use and we are tracking an
1779      // imprecise release, clear our reverse insertion points.
1780      if (OldSeq != S_Use || S.IsTrackingImpreciseReleases())
1781        S.ClearReverseInsertPts();
1782      // FALL THROUGH
1783    case S_CanRelease:
1784      // Don't do retain+release tracking for IC_RetainRV, because it's
1785      // better to let it remain as the first instruction after a call.
1786      if (Class != IC_RetainRV)
1787        Retains[Inst] = S.GetRRInfo();
1788      S.ClearSequenceProgress();
1789      break;
1790    case S_None:
1791      break;
1792    case S_Retain:
1793      llvm_unreachable("bottom-up pointer in retain state!");
1794    }
1795    ANNOTATE_BOTTOMUP(Inst, Arg, OldSeq, S.GetSeq());
1796    // A retain moving bottom up can be a use.
1797    break;
1798  }
1799  case IC_AutoreleasepoolPop:
1800    // Conservatively, clear MyStates for all known pointers.
1801    MyStates.clearBottomUpPointers();
1802    return NestingDetected;
1803  case IC_AutoreleasepoolPush:
1804  case IC_None:
1805    // These are irrelevant.
1806    return NestingDetected;
1807  case IC_User:
1808    // If we have a store into an alloca of a pointer we are tracking, the
1809    // pointer has multiple owners implying that we must be more conservative.
1810    //
1811    // This comes up in the context of a pointer being ``KnownSafe''. In the
1812    // presense of a block being initialized, the frontend will emit the
1813    // objc_retain on the original pointer and the release on the pointer loaded
1814    // from the alloca. The optimizer will through the provenance analysis
1815    // realize that the two are related, but since we only require KnownSafe in
1816    // one direction, will match the inner retain on the original pointer with
1817    // the guard release on the original pointer. This is fixed by ensuring that
1818    // in the presense of allocas we only unconditionally remove pointers if
1819    // both our retain and our release are KnownSafe.
1820    if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
1821      if (AreAnyUnderlyingObjectsAnAlloca(SI->getPointerOperand())) {
1822        BBState::ptr_iterator I = MyStates.findPtrBottomUpState(
1823          StripPointerCastsAndObjCCalls(SI->getValueOperand()));
1824        if (I != MyStates.bottom_up_ptr_end())
1825          MultiOwnersSet.insert(I->first);
1826      }
1827    }
1828    break;
1829  default:
1830    break;
1831  }
1832
1833  // Consider any other possible effects of this instruction on each
1834  // pointer being tracked.
1835  for (BBState::ptr_iterator MI = MyStates.bottom_up_ptr_begin(),
1836       ME = MyStates.bottom_up_ptr_end(); MI != ME; ++MI) {
1837    const Value *Ptr = MI->first;
1838    if (Ptr == Arg)
1839      continue; // Handled above.
1840    PtrState &S = MI->second;
1841    Sequence Seq = S.GetSeq();
1842
1843    // Check for possible releases.
1844    if (CanAlterRefCount(Inst, Ptr, PA, Class)) {
1845      DEBUG(dbgs() << "CanAlterRefCount: Seq: " << Seq << "; " << *Ptr
1846            << "\n");
1847      S.ClearKnownPositiveRefCount();
1848      switch (Seq) {
1849      case S_Use:
1850        S.SetSeq(S_CanRelease);
1851        ANNOTATE_BOTTOMUP(Inst, Ptr, Seq, S.GetSeq());
1852        continue;
1853      case S_CanRelease:
1854      case S_Release:
1855      case S_MovableRelease:
1856      case S_Stop:
1857      case S_None:
1858        break;
1859      case S_Retain:
1860        llvm_unreachable("bottom-up pointer in retain state!");
1861      }
1862    }
1863
1864    // Check for possible direct uses.
1865    switch (Seq) {
1866    case S_Release:
1867    case S_MovableRelease:
1868      if (CanUse(Inst, Ptr, PA, Class)) {
1869        DEBUG(dbgs() << "CanUse: Seq: " << Seq << "; " << *Ptr
1870              << "\n");
1871        assert(!S.HasReverseInsertPts());
1872        // If this is an invoke instruction, we're scanning it as part of
1873        // one of its successor blocks, since we can't insert code after it
1874        // in its own block, and we don't want to split critical edges.
1875        if (isa<InvokeInst>(Inst))
1876          S.InsertReverseInsertPt(BB->getFirstInsertionPt());
1877        else
1878          S.InsertReverseInsertPt(llvm::next(BasicBlock::iterator(Inst)));
1879        S.SetSeq(S_Use);
1880        ANNOTATE_BOTTOMUP(Inst, Ptr, Seq, S_Use);
1881      } else if (Seq == S_Release && IsUser(Class)) {
1882        DEBUG(dbgs() << "PreciseReleaseUse: Seq: " << Seq << "; " << *Ptr
1883              << "\n");
1884        // Non-movable releases depend on any possible objc pointer use.
1885        S.SetSeq(S_Stop);
1886        ANNOTATE_BOTTOMUP(Inst, Ptr, S_Release, S_Stop);
1887        assert(!S.HasReverseInsertPts());
1888        // As above; handle invoke specially.
1889        if (isa<InvokeInst>(Inst))
1890          S.InsertReverseInsertPt(BB->getFirstInsertionPt());
1891        else
1892          S.InsertReverseInsertPt(llvm::next(BasicBlock::iterator(Inst)));
1893      }
1894      break;
1895    case S_Stop:
1896      if (CanUse(Inst, Ptr, PA, Class)) {
1897        DEBUG(dbgs() << "PreciseStopUse: Seq: " << Seq << "; " << *Ptr
1898              << "\n");
1899        S.SetSeq(S_Use);
1900        ANNOTATE_BOTTOMUP(Inst, Ptr, Seq, S_Use);
1901      }
1902      break;
1903    case S_CanRelease:
1904    case S_Use:
1905    case S_None:
1906      break;
1907    case S_Retain:
1908      llvm_unreachable("bottom-up pointer in retain state!");
1909    }
1910  }
1911
1912  return NestingDetected;
1913}
1914
1915bool
1916ObjCARCOpt::VisitBottomUp(BasicBlock *BB,
1917                          DenseMap<const BasicBlock *, BBState> &BBStates,
1918                          MapVector<Value *, RRInfo> &Retains) {
1919
1920  DEBUG(dbgs() << "\n== ObjCARCOpt::VisitBottomUp ==\n");
1921
1922  bool NestingDetected = false;
1923  BBState &MyStates = BBStates[BB];
1924
1925  // Merge the states from each successor to compute the initial state
1926  // for the current block.
1927  BBState::edge_iterator SI(MyStates.succ_begin()),
1928                         SE(MyStates.succ_end());
1929  if (SI != SE) {
1930    const BasicBlock *Succ = *SI;
1931    DenseMap<const BasicBlock *, BBState>::iterator I = BBStates.find(Succ);
1932    assert(I != BBStates.end());
1933    MyStates.InitFromSucc(I->second);
1934    ++SI;
1935    for (; SI != SE; ++SI) {
1936      Succ = *SI;
1937      I = BBStates.find(Succ);
1938      assert(I != BBStates.end());
1939      MyStates.MergeSucc(I->second);
1940    }
1941  }
1942
1943  // If ARC Annotations are enabled, output the current state of pointers at the
1944  // bottom of the basic block.
1945  ANNOTATE_BOTTOMUP_BBEND(MyStates, BB);
1946
1947  // Visit all the instructions, bottom-up.
1948  for (BasicBlock::iterator I = BB->end(), E = BB->begin(); I != E; --I) {
1949    Instruction *Inst = llvm::prior(I);
1950
1951    // Invoke instructions are visited as part of their successors (below).
1952    if (isa<InvokeInst>(Inst))
1953      continue;
1954
1955    DEBUG(dbgs() << "Visiting " << *Inst << "\n");
1956
1957    NestingDetected |= VisitInstructionBottomUp(Inst, BB, Retains, MyStates);
1958  }
1959
1960  // If there's a predecessor with an invoke, visit the invoke as if it were
1961  // part of this block, since we can't insert code after an invoke in its own
1962  // block, and we don't want to split critical edges.
1963  for (BBState::edge_iterator PI(MyStates.pred_begin()),
1964       PE(MyStates.pred_end()); PI != PE; ++PI) {
1965    BasicBlock *Pred = *PI;
1966    if (InvokeInst *II = dyn_cast<InvokeInst>(&Pred->back()))
1967      NestingDetected |= VisitInstructionBottomUp(II, BB, Retains, MyStates);
1968  }
1969
1970  // If ARC Annotations are enabled, output the current state of pointers at the
1971  // top of the basic block.
1972  ANNOTATE_BOTTOMUP_BBSTART(MyStates, BB);
1973
1974  return NestingDetected;
1975}
1976
1977bool
1978ObjCARCOpt::VisitInstructionTopDown(Instruction *Inst,
1979                                    DenseMap<Value *, RRInfo> &Releases,
1980                                    BBState &MyStates) {
1981  bool NestingDetected = false;
1982  InstructionClass Class = GetInstructionClass(Inst);
1983  const Value *Arg = 0;
1984
1985  switch (Class) {
1986  case IC_RetainBlock:
1987    // In OptimizeIndividualCalls, we have strength reduced all optimizable
1988    // objc_retainBlocks to objc_retains. Thus at this point any
1989    // objc_retainBlocks that we see are not optimizable.
1990    break;
1991  case IC_Retain:
1992  case IC_RetainRV: {
1993    Arg = GetObjCArg(Inst);
1994
1995    PtrState &S = MyStates.getPtrTopDownState(Arg);
1996
1997    // Don't do retain+release tracking for IC_RetainRV, because it's
1998    // better to let it remain as the first instruction after a call.
1999    if (Class != IC_RetainRV) {
2000      // If we see two retains in a row on the same pointer. If so, make
2001      // a note, and we'll cicle back to revisit it after we've
2002      // hopefully eliminated the second retain, which may allow us to
2003      // eliminate the first retain too.
2004      // Theoretically we could implement removal of nested retain+release
2005      // pairs by making PtrState hold a stack of states, but this is
2006      // simple and avoids adding overhead for the non-nested case.
2007      if (S.GetSeq() == S_Retain)
2008        NestingDetected = true;
2009
2010      ANNOTATE_TOPDOWN(Inst, Arg, S.GetSeq(), S_Retain);
2011      S.ResetSequenceProgress(S_Retain);
2012      S.SetKnownSafe(S.HasKnownPositiveRefCount());
2013      S.InsertCall(Inst);
2014    }
2015
2016    S.SetKnownPositiveRefCount();
2017
2018    // A retain can be a potential use; procede to the generic checking
2019    // code below.
2020    break;
2021  }
2022  case IC_Release: {
2023    Arg = GetObjCArg(Inst);
2024
2025    PtrState &S = MyStates.getPtrTopDownState(Arg);
2026    S.ClearKnownPositiveRefCount();
2027
2028    Sequence OldSeq = S.GetSeq();
2029
2030    MDNode *ReleaseMetadata = Inst->getMetadata(ImpreciseReleaseMDKind);
2031
2032    switch (OldSeq) {
2033    case S_Retain:
2034    case S_CanRelease:
2035      if (OldSeq == S_Retain || ReleaseMetadata != 0)
2036        S.ClearReverseInsertPts();
2037      // FALL THROUGH
2038    case S_Use:
2039      S.SetReleaseMetadata(ReleaseMetadata);
2040      S.SetTailCallRelease(cast<CallInst>(Inst)->isTailCall());
2041      Releases[Inst] = S.GetRRInfo();
2042      ANNOTATE_TOPDOWN(Inst, Arg, S.GetSeq(), S_None);
2043      S.ClearSequenceProgress();
2044      break;
2045    case S_None:
2046      break;
2047    case S_Stop:
2048    case S_Release:
2049    case S_MovableRelease:
2050      llvm_unreachable("top-down pointer in release state!");
2051    }
2052    break;
2053  }
2054  case IC_AutoreleasepoolPop:
2055    // Conservatively, clear MyStates for all known pointers.
2056    MyStates.clearTopDownPointers();
2057    return NestingDetected;
2058  case IC_AutoreleasepoolPush:
2059  case IC_None:
2060    // These are irrelevant.
2061    return NestingDetected;
2062  default:
2063    break;
2064  }
2065
2066  // Consider any other possible effects of this instruction on each
2067  // pointer being tracked.
2068  for (BBState::ptr_iterator MI = MyStates.top_down_ptr_begin(),
2069       ME = MyStates.top_down_ptr_end(); MI != ME; ++MI) {
2070    const Value *Ptr = MI->first;
2071    if (Ptr == Arg)
2072      continue; // Handled above.
2073    PtrState &S = MI->second;
2074    Sequence Seq = S.GetSeq();
2075
2076    // Check for possible releases.
2077    if (CanAlterRefCount(Inst, Ptr, PA, Class)) {
2078      DEBUG(dbgs() << "CanAlterRefCount: Seq: " << Seq << "; " << *Ptr
2079            << "\n");
2080      S.ClearKnownPositiveRefCount();
2081      switch (Seq) {
2082      case S_Retain:
2083        S.SetSeq(S_CanRelease);
2084        ANNOTATE_TOPDOWN(Inst, Ptr, Seq, S_CanRelease);
2085        assert(!S.HasReverseInsertPts());
2086        S.InsertReverseInsertPt(Inst);
2087
2088        // One call can't cause a transition from S_Retain to S_CanRelease
2089        // and S_CanRelease to S_Use. If we've made the first transition,
2090        // we're done.
2091        continue;
2092      case S_Use:
2093      case S_CanRelease:
2094      case S_None:
2095        break;
2096      case S_Stop:
2097      case S_Release:
2098      case S_MovableRelease:
2099        llvm_unreachable("top-down pointer in release state!");
2100      }
2101    }
2102
2103    // Check for possible direct uses.
2104    switch (Seq) {
2105    case S_CanRelease:
2106      if (CanUse(Inst, Ptr, PA, Class)) {
2107        DEBUG(dbgs() << "CanUse: Seq: " << Seq << "; " << *Ptr
2108              << "\n");
2109        S.SetSeq(S_Use);
2110        ANNOTATE_TOPDOWN(Inst, Ptr, Seq, S_Use);
2111      }
2112      break;
2113    case S_Retain:
2114    case S_Use:
2115    case S_None:
2116      break;
2117    case S_Stop:
2118    case S_Release:
2119    case S_MovableRelease:
2120      llvm_unreachable("top-down pointer in release state!");
2121    }
2122  }
2123
2124  return NestingDetected;
2125}
2126
2127bool
2128ObjCARCOpt::VisitTopDown(BasicBlock *BB,
2129                         DenseMap<const BasicBlock *, BBState> &BBStates,
2130                         DenseMap<Value *, RRInfo> &Releases) {
2131  DEBUG(dbgs() << "\n== ObjCARCOpt::VisitTopDown ==\n");
2132  bool NestingDetected = false;
2133  BBState &MyStates = BBStates[BB];
2134
2135  // Merge the states from each predecessor to compute the initial state
2136  // for the current block.
2137  BBState::edge_iterator PI(MyStates.pred_begin()),
2138                         PE(MyStates.pred_end());
2139  if (PI != PE) {
2140    const BasicBlock *Pred = *PI;
2141    DenseMap<const BasicBlock *, BBState>::iterator I = BBStates.find(Pred);
2142    assert(I != BBStates.end());
2143    MyStates.InitFromPred(I->second);
2144    ++PI;
2145    for (; PI != PE; ++PI) {
2146      Pred = *PI;
2147      I = BBStates.find(Pred);
2148      assert(I != BBStates.end());
2149      MyStates.MergePred(I->second);
2150    }
2151  }
2152
2153  // If ARC Annotations are enabled, output the current state of pointers at the
2154  // top of the basic block.
2155  ANNOTATE_TOPDOWN_BBSTART(MyStates, BB);
2156
2157  // Visit all the instructions, top-down.
2158  for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) {
2159    Instruction *Inst = I;
2160
2161    DEBUG(dbgs() << "Visiting " << *Inst << "\n");
2162
2163    NestingDetected |= VisitInstructionTopDown(Inst, Releases, MyStates);
2164  }
2165
2166  // If ARC Annotations are enabled, output the current state of pointers at the
2167  // bottom of the basic block.
2168  ANNOTATE_TOPDOWN_BBEND(MyStates, BB);
2169
2170#ifdef ARC_ANNOTATIONS
2171  if (!(EnableARCAnnotations && DisableCheckForCFGHazards))
2172#endif
2173  CheckForCFGHazards(BB, BBStates, MyStates);
2174  return NestingDetected;
2175}
2176
2177static void
2178ComputePostOrders(Function &F,
2179                  SmallVectorImpl<BasicBlock *> &PostOrder,
2180                  SmallVectorImpl<BasicBlock *> &ReverseCFGPostOrder,
2181                  unsigned NoObjCARCExceptionsMDKind,
2182                  DenseMap<const BasicBlock *, BBState> &BBStates) {
2183  /// The visited set, for doing DFS walks.
2184  SmallPtrSet<BasicBlock *, 16> Visited;
2185
2186  // Do DFS, computing the PostOrder.
2187  SmallPtrSet<BasicBlock *, 16> OnStack;
2188  SmallVector<std::pair<BasicBlock *, succ_iterator>, 16> SuccStack;
2189
2190  // Functions always have exactly one entry block, and we don't have
2191  // any other block that we treat like an entry block.
2192  BasicBlock *EntryBB = &F.getEntryBlock();
2193  BBState &MyStates = BBStates[EntryBB];
2194  MyStates.SetAsEntry();
2195  TerminatorInst *EntryTI = cast<TerminatorInst>(&EntryBB->back());
2196  SuccStack.push_back(std::make_pair(EntryBB, succ_iterator(EntryTI)));
2197  Visited.insert(EntryBB);
2198  OnStack.insert(EntryBB);
2199  do {
2200  dfs_next_succ:
2201    BasicBlock *CurrBB = SuccStack.back().first;
2202    TerminatorInst *TI = cast<TerminatorInst>(&CurrBB->back());
2203    succ_iterator SE(TI, false);
2204
2205    while (SuccStack.back().second != SE) {
2206      BasicBlock *SuccBB = *SuccStack.back().second++;
2207      if (Visited.insert(SuccBB)) {
2208        TerminatorInst *TI = cast<TerminatorInst>(&SuccBB->back());
2209        SuccStack.push_back(std::make_pair(SuccBB, succ_iterator(TI)));
2210        BBStates[CurrBB].addSucc(SuccBB);
2211        BBState &SuccStates = BBStates[SuccBB];
2212        SuccStates.addPred(CurrBB);
2213        OnStack.insert(SuccBB);
2214        goto dfs_next_succ;
2215      }
2216
2217      if (!OnStack.count(SuccBB)) {
2218        BBStates[CurrBB].addSucc(SuccBB);
2219        BBStates[SuccBB].addPred(CurrBB);
2220      }
2221    }
2222    OnStack.erase(CurrBB);
2223    PostOrder.push_back(CurrBB);
2224    SuccStack.pop_back();
2225  } while (!SuccStack.empty());
2226
2227  Visited.clear();
2228
2229  // Do reverse-CFG DFS, computing the reverse-CFG PostOrder.
2230  // Functions may have many exits, and there also blocks which we treat
2231  // as exits due to ignored edges.
2232  SmallVector<std::pair<BasicBlock *, BBState::edge_iterator>, 16> PredStack;
2233  for (Function::iterator I = F.begin(), E = F.end(); I != E; ++I) {
2234    BasicBlock *ExitBB = I;
2235    BBState &MyStates = BBStates[ExitBB];
2236    if (!MyStates.isExit())
2237      continue;
2238
2239    MyStates.SetAsExit();
2240
2241    PredStack.push_back(std::make_pair(ExitBB, MyStates.pred_begin()));
2242    Visited.insert(ExitBB);
2243    while (!PredStack.empty()) {
2244    reverse_dfs_next_succ:
2245      BBState::edge_iterator PE = BBStates[PredStack.back().first].pred_end();
2246      while (PredStack.back().second != PE) {
2247        BasicBlock *BB = *PredStack.back().second++;
2248        if (Visited.insert(BB)) {
2249          PredStack.push_back(std::make_pair(BB, BBStates[BB].pred_begin()));
2250          goto reverse_dfs_next_succ;
2251        }
2252      }
2253      ReverseCFGPostOrder.push_back(PredStack.pop_back_val().first);
2254    }
2255  }
2256}
2257
2258// Visit the function both top-down and bottom-up.
2259bool
2260ObjCARCOpt::Visit(Function &F,
2261                  DenseMap<const BasicBlock *, BBState> &BBStates,
2262                  MapVector<Value *, RRInfo> &Retains,
2263                  DenseMap<Value *, RRInfo> &Releases) {
2264
2265  // Use reverse-postorder traversals, because we magically know that loops
2266  // will be well behaved, i.e. they won't repeatedly call retain on a single
2267  // pointer without doing a release. We can't use the ReversePostOrderTraversal
2268  // class here because we want the reverse-CFG postorder to consider each
2269  // function exit point, and we want to ignore selected cycle edges.
2270  SmallVector<BasicBlock *, 16> PostOrder;
2271  SmallVector<BasicBlock *, 16> ReverseCFGPostOrder;
2272  ComputePostOrders(F, PostOrder, ReverseCFGPostOrder,
2273                    NoObjCARCExceptionsMDKind,
2274                    BBStates);
2275
2276  // Use reverse-postorder on the reverse CFG for bottom-up.
2277  bool BottomUpNestingDetected = false;
2278  for (SmallVectorImpl<BasicBlock *>::const_reverse_iterator I =
2279       ReverseCFGPostOrder.rbegin(), E = ReverseCFGPostOrder.rend();
2280       I != E; ++I)
2281    BottomUpNestingDetected |= VisitBottomUp(*I, BBStates, Retains);
2282
2283  // Use reverse-postorder for top-down.
2284  bool TopDownNestingDetected = false;
2285  for (SmallVectorImpl<BasicBlock *>::const_reverse_iterator I =
2286       PostOrder.rbegin(), E = PostOrder.rend();
2287       I != E; ++I)
2288    TopDownNestingDetected |= VisitTopDown(*I, BBStates, Releases);
2289
2290  return TopDownNestingDetected && BottomUpNestingDetected;
2291}
2292
2293/// Move the calls in RetainsToMove and ReleasesToMove.
2294void ObjCARCOpt::MoveCalls(Value *Arg,
2295                           RRInfo &RetainsToMove,
2296                           RRInfo &ReleasesToMove,
2297                           MapVector<Value *, RRInfo> &Retains,
2298                           DenseMap<Value *, RRInfo> &Releases,
2299                           SmallVectorImpl<Instruction *> &DeadInsts,
2300                           Module *M) {
2301  Type *ArgTy = Arg->getType();
2302  Type *ParamTy = PointerType::getUnqual(Type::getInt8Ty(ArgTy->getContext()));
2303
2304  DEBUG(dbgs() << "== ObjCARCOpt::MoveCalls ==\n");
2305
2306  // Insert the new retain and release calls.
2307  for (SmallPtrSet<Instruction *, 2>::const_iterator
2308       PI = ReleasesToMove.ReverseInsertPts.begin(),
2309       PE = ReleasesToMove.ReverseInsertPts.end(); PI != PE; ++PI) {
2310    Instruction *InsertPt = *PI;
2311    Value *MyArg = ArgTy == ParamTy ? Arg :
2312                   new BitCastInst(Arg, ParamTy, "", InsertPt);
2313    Constant *Decl = EP.get(ARCRuntimeEntryPoints::EPT_Retain);
2314    CallInst *Call = CallInst::Create(Decl, MyArg, "", InsertPt);
2315    Call->setDoesNotThrow();
2316    Call->setTailCall();
2317
2318    DEBUG(dbgs() << "Inserting new Retain: " << *Call << "\n"
2319                    "At insertion point: " << *InsertPt << "\n");
2320  }
2321  for (SmallPtrSet<Instruction *, 2>::const_iterator
2322       PI = RetainsToMove.ReverseInsertPts.begin(),
2323       PE = RetainsToMove.ReverseInsertPts.end(); PI != PE; ++PI) {
2324    Instruction *InsertPt = *PI;
2325    Value *MyArg = ArgTy == ParamTy ? Arg :
2326                   new BitCastInst(Arg, ParamTy, "", InsertPt);
2327    Constant *Decl = EP.get(ARCRuntimeEntryPoints::EPT_Release);
2328    CallInst *Call = CallInst::Create(Decl, MyArg, "", InsertPt);
2329    // Attach a clang.imprecise_release metadata tag, if appropriate.
2330    if (MDNode *M = ReleasesToMove.ReleaseMetadata)
2331      Call->setMetadata(ImpreciseReleaseMDKind, M);
2332    Call->setDoesNotThrow();
2333    if (ReleasesToMove.IsTailCallRelease)
2334      Call->setTailCall();
2335
2336    DEBUG(dbgs() << "Inserting new Release: " << *Call << "\n"
2337                    "At insertion point: " << *InsertPt << "\n");
2338  }
2339
2340  // Delete the original retain and release calls.
2341  for (SmallPtrSet<Instruction *, 2>::const_iterator
2342       AI = RetainsToMove.Calls.begin(),
2343       AE = RetainsToMove.Calls.end(); AI != AE; ++AI) {
2344    Instruction *OrigRetain = *AI;
2345    Retains.blot(OrigRetain);
2346    DeadInsts.push_back(OrigRetain);
2347    DEBUG(dbgs() << "Deleting retain: " << *OrigRetain << "\n");
2348  }
2349  for (SmallPtrSet<Instruction *, 2>::const_iterator
2350       AI = ReleasesToMove.Calls.begin(),
2351       AE = ReleasesToMove.Calls.end(); AI != AE; ++AI) {
2352    Instruction *OrigRelease = *AI;
2353    Releases.erase(OrigRelease);
2354    DeadInsts.push_back(OrigRelease);
2355    DEBUG(dbgs() << "Deleting release: " << *OrigRelease << "\n");
2356  }
2357
2358}
2359
2360bool
2361ObjCARCOpt::ConnectTDBUTraversals(DenseMap<const BasicBlock *, BBState>
2362                                    &BBStates,
2363                                  MapVector<Value *, RRInfo> &Retains,
2364                                  DenseMap<Value *, RRInfo> &Releases,
2365                                  Module *M,
2366                                  SmallVectorImpl<Instruction *> &NewRetains,
2367                                  SmallVectorImpl<Instruction *> &NewReleases,
2368                                  SmallVectorImpl<Instruction *> &DeadInsts,
2369                                  RRInfo &RetainsToMove,
2370                                  RRInfo &ReleasesToMove,
2371                                  Value *Arg,
2372                                  bool KnownSafe,
2373                                  bool &AnyPairsCompletelyEliminated) {
2374  // If a pair happens in a region where it is known that the reference count
2375  // is already incremented, we can similarly ignore possible decrements unless
2376  // we are dealing with a retainable object with multiple provenance sources.
2377  bool KnownSafeTD = true, KnownSafeBU = true;
2378  bool MultipleOwners = false;
2379  bool CFGHazardAfflicted = false;
2380
2381  // Connect the dots between the top-down-collected RetainsToMove and
2382  // bottom-up-collected ReleasesToMove to form sets of related calls.
2383  // This is an iterative process so that we connect multiple releases
2384  // to multiple retains if needed.
2385  unsigned OldDelta = 0;
2386  unsigned NewDelta = 0;
2387  unsigned OldCount = 0;
2388  unsigned NewCount = 0;
2389  bool FirstRelease = true;
2390  for (;;) {
2391    for (SmallVectorImpl<Instruction *>::const_iterator
2392           NI = NewRetains.begin(), NE = NewRetains.end(); NI != NE; ++NI) {
2393      Instruction *NewRetain = *NI;
2394      MapVector<Value *, RRInfo>::const_iterator It = Retains.find(NewRetain);
2395      assert(It != Retains.end());
2396      const RRInfo &NewRetainRRI = It->second;
2397      KnownSafeTD &= NewRetainRRI.KnownSafe;
2398      MultipleOwners =
2399        MultipleOwners || MultiOwnersSet.count(GetObjCArg(NewRetain));
2400      for (SmallPtrSet<Instruction *, 2>::const_iterator
2401             LI = NewRetainRRI.Calls.begin(),
2402             LE = NewRetainRRI.Calls.end(); LI != LE; ++LI) {
2403        Instruction *NewRetainRelease = *LI;
2404        DenseMap<Value *, RRInfo>::const_iterator Jt =
2405          Releases.find(NewRetainRelease);
2406        if (Jt == Releases.end())
2407          return false;
2408        const RRInfo &NewRetainReleaseRRI = Jt->second;
2409
2410        // If the release does not have a reference to the retain as well,
2411        // something happened which is unaccounted for. Do not do anything.
2412        //
2413        // This can happen if we catch an additive overflow during path count
2414        // merging.
2415        if (!NewRetainReleaseRRI.Calls.count(NewRetain))
2416          return false;
2417
2418        if (ReleasesToMove.Calls.insert(NewRetainRelease)) {
2419
2420          // If we overflow when we compute the path count, don't remove/move
2421          // anything.
2422          const BBState &NRRBBState = BBStates[NewRetainRelease->getParent()];
2423          unsigned PathCount = BBState::OverflowOccurredValue;
2424          if (NRRBBState.GetAllPathCountWithOverflow(PathCount))
2425            return false;
2426          assert(PathCount != BBState::OverflowOccurredValue &&
2427                 "PathCount at this point can not be "
2428                 "OverflowOccurredValue.");
2429          OldDelta -= PathCount;
2430
2431          // Merge the ReleaseMetadata and IsTailCallRelease values.
2432          if (FirstRelease) {
2433            ReleasesToMove.ReleaseMetadata =
2434              NewRetainReleaseRRI.ReleaseMetadata;
2435            ReleasesToMove.IsTailCallRelease =
2436              NewRetainReleaseRRI.IsTailCallRelease;
2437            FirstRelease = false;
2438          } else {
2439            if (ReleasesToMove.ReleaseMetadata !=
2440                NewRetainReleaseRRI.ReleaseMetadata)
2441              ReleasesToMove.ReleaseMetadata = 0;
2442            if (ReleasesToMove.IsTailCallRelease !=
2443                NewRetainReleaseRRI.IsTailCallRelease)
2444              ReleasesToMove.IsTailCallRelease = false;
2445          }
2446
2447          // Collect the optimal insertion points.
2448          if (!KnownSafe)
2449            for (SmallPtrSet<Instruction *, 2>::const_iterator
2450                   RI = NewRetainReleaseRRI.ReverseInsertPts.begin(),
2451                   RE = NewRetainReleaseRRI.ReverseInsertPts.end();
2452                 RI != RE; ++RI) {
2453              Instruction *RIP = *RI;
2454              if (ReleasesToMove.ReverseInsertPts.insert(RIP)) {
2455                // If we overflow when we compute the path count, don't
2456                // remove/move anything.
2457                const BBState &RIPBBState = BBStates[RIP->getParent()];
2458                PathCount = BBState::OverflowOccurredValue;
2459                if (RIPBBState.GetAllPathCountWithOverflow(PathCount))
2460                  return false;
2461                assert(PathCount != BBState::OverflowOccurredValue &&
2462                       "PathCount at this point can not be "
2463                       "OverflowOccurredValue.");
2464                NewDelta -= PathCount;
2465              }
2466            }
2467          NewReleases.push_back(NewRetainRelease);
2468        }
2469      }
2470    }
2471    NewRetains.clear();
2472    if (NewReleases.empty()) break;
2473
2474    // Back the other way.
2475    for (SmallVectorImpl<Instruction *>::const_iterator
2476           NI = NewReleases.begin(), NE = NewReleases.end(); NI != NE; ++NI) {
2477      Instruction *NewRelease = *NI;
2478      DenseMap<Value *, RRInfo>::const_iterator It =
2479        Releases.find(NewRelease);
2480      assert(It != Releases.end());
2481      const RRInfo &NewReleaseRRI = It->second;
2482      KnownSafeBU &= NewReleaseRRI.KnownSafe;
2483      CFGHazardAfflicted |= NewReleaseRRI.CFGHazardAfflicted;
2484      for (SmallPtrSet<Instruction *, 2>::const_iterator
2485             LI = NewReleaseRRI.Calls.begin(),
2486             LE = NewReleaseRRI.Calls.end(); LI != LE; ++LI) {
2487        Instruction *NewReleaseRetain = *LI;
2488        MapVector<Value *, RRInfo>::const_iterator Jt =
2489          Retains.find(NewReleaseRetain);
2490        if (Jt == Retains.end())
2491          return false;
2492        const RRInfo &NewReleaseRetainRRI = Jt->second;
2493
2494        // If the retain does not have a reference to the release as well,
2495        // something happened which is unaccounted for. Do not do anything.
2496        //
2497        // This can happen if we catch an additive overflow during path count
2498        // merging.
2499        if (!NewReleaseRetainRRI.Calls.count(NewRelease))
2500          return false;
2501
2502        if (RetainsToMove.Calls.insert(NewReleaseRetain)) {
2503          // If we overflow when we compute the path count, don't remove/move
2504          // anything.
2505          const BBState &NRRBBState = BBStates[NewReleaseRetain->getParent()];
2506          unsigned PathCount = BBState::OverflowOccurredValue;
2507          if (NRRBBState.GetAllPathCountWithOverflow(PathCount))
2508            return false;
2509          assert(PathCount != BBState::OverflowOccurredValue &&
2510                 "PathCount at this point can not be "
2511                 "OverflowOccurredValue.");
2512          OldDelta += PathCount;
2513          OldCount += PathCount;
2514
2515          // Collect the optimal insertion points.
2516          if (!KnownSafe)
2517            for (SmallPtrSet<Instruction *, 2>::const_iterator
2518                   RI = NewReleaseRetainRRI.ReverseInsertPts.begin(),
2519                   RE = NewReleaseRetainRRI.ReverseInsertPts.end();
2520                 RI != RE; ++RI) {
2521              Instruction *RIP = *RI;
2522              if (RetainsToMove.ReverseInsertPts.insert(RIP)) {
2523                // If we overflow when we compute the path count, don't
2524                // remove/move anything.
2525                const BBState &RIPBBState = BBStates[RIP->getParent()];
2526
2527                PathCount = BBState::OverflowOccurredValue;
2528                if (RIPBBState.GetAllPathCountWithOverflow(PathCount))
2529                  return false;
2530                assert(PathCount != BBState::OverflowOccurredValue &&
2531                       "PathCount at this point can not be "
2532                       "OverflowOccurredValue.");
2533                NewDelta += PathCount;
2534                NewCount += PathCount;
2535              }
2536            }
2537          NewRetains.push_back(NewReleaseRetain);
2538        }
2539      }
2540    }
2541    NewReleases.clear();
2542    if (NewRetains.empty()) break;
2543  }
2544
2545  // If the pointer is known incremented in 1 direction and we do not have
2546  // MultipleOwners, we can safely remove the retain/releases. Otherwise we need
2547  // to be known safe in both directions.
2548  bool UnconditionallySafe = (KnownSafeTD && KnownSafeBU) ||
2549    ((KnownSafeTD || KnownSafeBU) && !MultipleOwners);
2550  if (UnconditionallySafe) {
2551    RetainsToMove.ReverseInsertPts.clear();
2552    ReleasesToMove.ReverseInsertPts.clear();
2553    NewCount = 0;
2554  } else {
2555    // Determine whether the new insertion points we computed preserve the
2556    // balance of retain and release calls through the program.
2557    // TODO: If the fully aggressive solution isn't valid, try to find a
2558    // less aggressive solution which is.
2559    if (NewDelta != 0)
2560      return false;
2561
2562    // At this point, we are not going to remove any RR pairs, but we still are
2563    // able to move RR pairs. If one of our pointers is afflicted with
2564    // CFGHazards, we cannot perform such code motion so exit early.
2565    const bool WillPerformCodeMotion = RetainsToMove.ReverseInsertPts.size() ||
2566      ReleasesToMove.ReverseInsertPts.size();
2567    if (CFGHazardAfflicted && WillPerformCodeMotion)
2568      return false;
2569  }
2570
2571  // Determine whether the original call points are balanced in the retain and
2572  // release calls through the program. If not, conservatively don't touch
2573  // them.
2574  // TODO: It's theoretically possible to do code motion in this case, as
2575  // long as the existing imbalances are maintained.
2576  if (OldDelta != 0)
2577    return false;
2578
2579#ifdef ARC_ANNOTATIONS
2580  // Do not move calls if ARC annotations are requested.
2581  if (EnableARCAnnotations)
2582    return false;
2583#endif // ARC_ANNOTATIONS
2584
2585  Changed = true;
2586  assert(OldCount != 0 && "Unreachable code?");
2587  NumRRs += OldCount - NewCount;
2588  // Set to true if we completely removed any RR pairs.
2589  AnyPairsCompletelyEliminated = NewCount == 0;
2590
2591  // We can move calls!
2592  return true;
2593}
2594
2595/// Identify pairings between the retains and releases, and delete and/or move
2596/// them.
2597bool
2598ObjCARCOpt::PerformCodePlacement(DenseMap<const BasicBlock *, BBState>
2599                                   &BBStates,
2600                                 MapVector<Value *, RRInfo> &Retains,
2601                                 DenseMap<Value *, RRInfo> &Releases,
2602                                 Module *M) {
2603  DEBUG(dbgs() << "\n== ObjCARCOpt::PerformCodePlacement ==\n");
2604
2605  bool AnyPairsCompletelyEliminated = false;
2606  RRInfo RetainsToMove;
2607  RRInfo ReleasesToMove;
2608  SmallVector<Instruction *, 4> NewRetains;
2609  SmallVector<Instruction *, 4> NewReleases;
2610  SmallVector<Instruction *, 8> DeadInsts;
2611
2612  // Visit each retain.
2613  for (MapVector<Value *, RRInfo>::const_iterator I = Retains.begin(),
2614       E = Retains.end(); I != E; ++I) {
2615    Value *V = I->first;
2616    if (!V) continue; // blotted
2617
2618    Instruction *Retain = cast<Instruction>(V);
2619
2620    DEBUG(dbgs() << "Visiting: " << *Retain << "\n");
2621
2622    Value *Arg = GetObjCArg(Retain);
2623
2624    // If the object being released is in static or stack storage, we know it's
2625    // not being managed by ObjC reference counting, so we can delete pairs
2626    // regardless of what possible decrements or uses lie between them.
2627    bool KnownSafe = isa<Constant>(Arg) || isa<AllocaInst>(Arg);
2628
2629    // A constant pointer can't be pointing to an object on the heap. It may
2630    // be reference-counted, but it won't be deleted.
2631    if (const LoadInst *LI = dyn_cast<LoadInst>(Arg))
2632      if (const GlobalVariable *GV =
2633            dyn_cast<GlobalVariable>(
2634              StripPointerCastsAndObjCCalls(LI->getPointerOperand())))
2635        if (GV->isConstant())
2636          KnownSafe = true;
2637
2638    // Connect the dots between the top-down-collected RetainsToMove and
2639    // bottom-up-collected ReleasesToMove to form sets of related calls.
2640    NewRetains.push_back(Retain);
2641    bool PerformMoveCalls =
2642      ConnectTDBUTraversals(BBStates, Retains, Releases, M, NewRetains,
2643                            NewReleases, DeadInsts, RetainsToMove,
2644                            ReleasesToMove, Arg, KnownSafe,
2645                            AnyPairsCompletelyEliminated);
2646
2647    if (PerformMoveCalls) {
2648      // Ok, everything checks out and we're all set. Let's move/delete some
2649      // code!
2650      MoveCalls(Arg, RetainsToMove, ReleasesToMove,
2651                Retains, Releases, DeadInsts, M);
2652    }
2653
2654    // Clean up state for next retain.
2655    NewReleases.clear();
2656    NewRetains.clear();
2657    RetainsToMove.clear();
2658    ReleasesToMove.clear();
2659  }
2660
2661  // Now that we're done moving everything, we can delete the newly dead
2662  // instructions, as we no longer need them as insert points.
2663  while (!DeadInsts.empty())
2664    EraseInstruction(DeadInsts.pop_back_val());
2665
2666  return AnyPairsCompletelyEliminated;
2667}
2668
2669/// Weak pointer optimizations.
2670void ObjCARCOpt::OptimizeWeakCalls(Function &F) {
2671  DEBUG(dbgs() << "\n== ObjCARCOpt::OptimizeWeakCalls ==\n");
2672
2673  // First, do memdep-style RLE and S2L optimizations. We can't use memdep
2674  // itself because it uses AliasAnalysis and we need to do provenance
2675  // queries instead.
2676  for (inst_iterator I = inst_begin(&F), E = inst_end(&F); I != E; ) {
2677    Instruction *Inst = &*I++;
2678
2679    DEBUG(dbgs() << "Visiting: " << *Inst << "\n");
2680
2681    InstructionClass Class = GetBasicInstructionClass(Inst);
2682    if (Class != IC_LoadWeak && Class != IC_LoadWeakRetained)
2683      continue;
2684
2685    // Delete objc_loadWeak calls with no users.
2686    if (Class == IC_LoadWeak && Inst->use_empty()) {
2687      Inst->eraseFromParent();
2688      continue;
2689    }
2690
2691    // TODO: For now, just look for an earlier available version of this value
2692    // within the same block. Theoretically, we could do memdep-style non-local
2693    // analysis too, but that would want caching. A better approach would be to
2694    // use the technique that EarlyCSE uses.
2695    inst_iterator Current = llvm::prior(I);
2696    BasicBlock *CurrentBB = Current.getBasicBlockIterator();
2697    for (BasicBlock::iterator B = CurrentBB->begin(),
2698                              J = Current.getInstructionIterator();
2699         J != B; --J) {
2700      Instruction *EarlierInst = &*llvm::prior(J);
2701      InstructionClass EarlierClass = GetInstructionClass(EarlierInst);
2702      switch (EarlierClass) {
2703      case IC_LoadWeak:
2704      case IC_LoadWeakRetained: {
2705        // If this is loading from the same pointer, replace this load's value
2706        // with that one.
2707        CallInst *Call = cast<CallInst>(Inst);
2708        CallInst *EarlierCall = cast<CallInst>(EarlierInst);
2709        Value *Arg = Call->getArgOperand(0);
2710        Value *EarlierArg = EarlierCall->getArgOperand(0);
2711        switch (PA.getAA()->alias(Arg, EarlierArg)) {
2712        case AliasAnalysis::MustAlias:
2713          Changed = true;
2714          // If the load has a builtin retain, insert a plain retain for it.
2715          if (Class == IC_LoadWeakRetained) {
2716            Constant *Decl = EP.get(ARCRuntimeEntryPoints::EPT_Retain);
2717            CallInst *CI = CallInst::Create(Decl, EarlierCall, "", Call);
2718            CI->setTailCall();
2719          }
2720          // Zap the fully redundant load.
2721          Call->replaceAllUsesWith(EarlierCall);
2722          Call->eraseFromParent();
2723          goto clobbered;
2724        case AliasAnalysis::MayAlias:
2725        case AliasAnalysis::PartialAlias:
2726          goto clobbered;
2727        case AliasAnalysis::NoAlias:
2728          break;
2729        }
2730        break;
2731      }
2732      case IC_StoreWeak:
2733      case IC_InitWeak: {
2734        // If this is storing to the same pointer and has the same size etc.
2735        // replace this load's value with the stored value.
2736        CallInst *Call = cast<CallInst>(Inst);
2737        CallInst *EarlierCall = cast<CallInst>(EarlierInst);
2738        Value *Arg = Call->getArgOperand(0);
2739        Value *EarlierArg = EarlierCall->getArgOperand(0);
2740        switch (PA.getAA()->alias(Arg, EarlierArg)) {
2741        case AliasAnalysis::MustAlias:
2742          Changed = true;
2743          // If the load has a builtin retain, insert a plain retain for it.
2744          if (Class == IC_LoadWeakRetained) {
2745            Constant *Decl = EP.get(ARCRuntimeEntryPoints::EPT_Retain);
2746            CallInst *CI = CallInst::Create(Decl, EarlierCall, "", Call);
2747            CI->setTailCall();
2748          }
2749          // Zap the fully redundant load.
2750          Call->replaceAllUsesWith(EarlierCall->getArgOperand(1));
2751          Call->eraseFromParent();
2752          goto clobbered;
2753        case AliasAnalysis::MayAlias:
2754        case AliasAnalysis::PartialAlias:
2755          goto clobbered;
2756        case AliasAnalysis::NoAlias:
2757          break;
2758        }
2759        break;
2760      }
2761      case IC_MoveWeak:
2762      case IC_CopyWeak:
2763        // TOOD: Grab the copied value.
2764        goto clobbered;
2765      case IC_AutoreleasepoolPush:
2766      case IC_None:
2767      case IC_IntrinsicUser:
2768      case IC_User:
2769        // Weak pointers are only modified through the weak entry points
2770        // (and arbitrary calls, which could call the weak entry points).
2771        break;
2772      default:
2773        // Anything else could modify the weak pointer.
2774        goto clobbered;
2775      }
2776    }
2777  clobbered:;
2778  }
2779
2780  // Then, for each destroyWeak with an alloca operand, check to see if
2781  // the alloca and all its users can be zapped.
2782  for (inst_iterator I = inst_begin(&F), E = inst_end(&F); I != E; ) {
2783    Instruction *Inst = &*I++;
2784    InstructionClass Class = GetBasicInstructionClass(Inst);
2785    if (Class != IC_DestroyWeak)
2786      continue;
2787
2788    CallInst *Call = cast<CallInst>(Inst);
2789    Value *Arg = Call->getArgOperand(0);
2790    if (AllocaInst *Alloca = dyn_cast<AllocaInst>(Arg)) {
2791      for (Value::use_iterator UI = Alloca->use_begin(),
2792           UE = Alloca->use_end(); UI != UE; ++UI) {
2793        const Instruction *UserInst = cast<Instruction>(*UI);
2794        switch (GetBasicInstructionClass(UserInst)) {
2795        case IC_InitWeak:
2796        case IC_StoreWeak:
2797        case IC_DestroyWeak:
2798          continue;
2799        default:
2800          goto done;
2801        }
2802      }
2803      Changed = true;
2804      for (Value::use_iterator UI = Alloca->use_begin(),
2805           UE = Alloca->use_end(); UI != UE; ) {
2806        CallInst *UserInst = cast<CallInst>(*UI++);
2807        switch (GetBasicInstructionClass(UserInst)) {
2808        case IC_InitWeak:
2809        case IC_StoreWeak:
2810          // These functions return their second argument.
2811          UserInst->replaceAllUsesWith(UserInst->getArgOperand(1));
2812          break;
2813        case IC_DestroyWeak:
2814          // No return value.
2815          break;
2816        default:
2817          llvm_unreachable("alloca really is used!");
2818        }
2819        UserInst->eraseFromParent();
2820      }
2821      Alloca->eraseFromParent();
2822    done:;
2823    }
2824  }
2825}
2826
2827/// Identify program paths which execute sequences of retains and releases which
2828/// can be eliminated.
2829bool ObjCARCOpt::OptimizeSequences(Function &F) {
2830  // Releases, Retains - These are used to store the results of the main flow
2831  // analysis. These use Value* as the key instead of Instruction* so that the
2832  // map stays valid when we get around to rewriting code and calls get
2833  // replaced by arguments.
2834  DenseMap<Value *, RRInfo> Releases;
2835  MapVector<Value *, RRInfo> Retains;
2836
2837  // This is used during the traversal of the function to track the
2838  // states for each identified object at each block.
2839  DenseMap<const BasicBlock *, BBState> BBStates;
2840
2841  // Analyze the CFG of the function, and all instructions.
2842  bool NestingDetected = Visit(F, BBStates, Retains, Releases);
2843
2844  // Transform.
2845  bool AnyPairsCompletelyEliminated = PerformCodePlacement(BBStates, Retains,
2846                                                           Releases,
2847                                                           F.getParent());
2848
2849  // Cleanup.
2850  MultiOwnersSet.clear();
2851
2852  return AnyPairsCompletelyEliminated && NestingDetected;
2853}
2854
2855/// Check if there is a dependent call earlier that does not have anything in
2856/// between the Retain and the call that can affect the reference count of their
2857/// shared pointer argument. Note that Retain need not be in BB.
2858static bool
2859HasSafePathToPredecessorCall(const Value *Arg, Instruction *Retain,
2860                             SmallPtrSet<Instruction *, 4> &DepInsts,
2861                             SmallPtrSet<const BasicBlock *, 4> &Visited,
2862                             ProvenanceAnalysis &PA) {
2863  FindDependencies(CanChangeRetainCount, Arg, Retain->getParent(), Retain,
2864                   DepInsts, Visited, PA);
2865  if (DepInsts.size() != 1)
2866    return false;
2867
2868  CallInst *Call =
2869    dyn_cast_or_null<CallInst>(*DepInsts.begin());
2870
2871  // Check that the pointer is the return value of the call.
2872  if (!Call || Arg != Call)
2873    return false;
2874
2875  // Check that the call is a regular call.
2876  InstructionClass Class = GetBasicInstructionClass(Call);
2877  if (Class != IC_CallOrUser && Class != IC_Call)
2878    return false;
2879
2880  return true;
2881}
2882
2883/// Find a dependent retain that precedes the given autorelease for which there
2884/// is nothing in between the two instructions that can affect the ref count of
2885/// Arg.
2886static CallInst *
2887FindPredecessorRetainWithSafePath(const Value *Arg, BasicBlock *BB,
2888                                  Instruction *Autorelease,
2889                                  SmallPtrSet<Instruction *, 4> &DepInsts,
2890                                  SmallPtrSet<const BasicBlock *, 4> &Visited,
2891                                  ProvenanceAnalysis &PA) {
2892  FindDependencies(CanChangeRetainCount, Arg,
2893                   BB, Autorelease, DepInsts, Visited, PA);
2894  if (DepInsts.size() != 1)
2895    return 0;
2896
2897  CallInst *Retain =
2898    dyn_cast_or_null<CallInst>(*DepInsts.begin());
2899
2900  // Check that we found a retain with the same argument.
2901  if (!Retain ||
2902      !IsRetain(GetBasicInstructionClass(Retain)) ||
2903      GetObjCArg(Retain) != Arg) {
2904    return 0;
2905  }
2906
2907  return Retain;
2908}
2909
2910/// Look for an ``autorelease'' instruction dependent on Arg such that there are
2911/// no instructions dependent on Arg that need a positive ref count in between
2912/// the autorelease and the ret.
2913static CallInst *
2914FindPredecessorAutoreleaseWithSafePath(const Value *Arg, BasicBlock *BB,
2915                                       ReturnInst *Ret,
2916                                       SmallPtrSet<Instruction *, 4> &DepInsts,
2917                                       SmallPtrSet<const BasicBlock *, 4> &V,
2918                                       ProvenanceAnalysis &PA) {
2919  FindDependencies(NeedsPositiveRetainCount, Arg,
2920                   BB, Ret, DepInsts, V, PA);
2921  if (DepInsts.size() != 1)
2922    return 0;
2923
2924  CallInst *Autorelease =
2925    dyn_cast_or_null<CallInst>(*DepInsts.begin());
2926  if (!Autorelease)
2927    return 0;
2928  InstructionClass AutoreleaseClass = GetBasicInstructionClass(Autorelease);
2929  if (!IsAutorelease(AutoreleaseClass))
2930    return 0;
2931  if (GetObjCArg(Autorelease) != Arg)
2932    return 0;
2933
2934  return Autorelease;
2935}
2936
2937/// Look for this pattern:
2938/// \code
2939///    %call = call i8* @something(...)
2940///    %2 = call i8* @objc_retain(i8* %call)
2941///    %3 = call i8* @objc_autorelease(i8* %2)
2942///    ret i8* %3
2943/// \endcode
2944/// And delete the retain and autorelease.
2945void ObjCARCOpt::OptimizeReturns(Function &F) {
2946  if (!F.getReturnType()->isPointerTy())
2947    return;
2948
2949  DEBUG(dbgs() << "\n== ObjCARCOpt::OptimizeReturns ==\n");
2950
2951  SmallPtrSet<Instruction *, 4> DependingInstructions;
2952  SmallPtrSet<const BasicBlock *, 4> Visited;
2953  for (Function::iterator FI = F.begin(), FE = F.end(); FI != FE; ++FI) {
2954    BasicBlock *BB = FI;
2955    ReturnInst *Ret = dyn_cast<ReturnInst>(&BB->back());
2956
2957    DEBUG(dbgs() << "Visiting: " << *Ret << "\n");
2958
2959    if (!Ret)
2960      continue;
2961
2962    const Value *Arg = StripPointerCastsAndObjCCalls(Ret->getOperand(0));
2963
2964    // Look for an ``autorelease'' instruction that is a predecessor of Ret and
2965    // dependent on Arg such that there are no instructions dependent on Arg
2966    // that need a positive ref count in between the autorelease and Ret.
2967    CallInst *Autorelease =
2968      FindPredecessorAutoreleaseWithSafePath(Arg, BB, Ret,
2969                                             DependingInstructions, Visited,
2970                                             PA);
2971    DependingInstructions.clear();
2972    Visited.clear();
2973
2974    if (!Autorelease)
2975      continue;
2976
2977    CallInst *Retain =
2978      FindPredecessorRetainWithSafePath(Arg, BB, Autorelease,
2979                                        DependingInstructions, Visited, PA);
2980    DependingInstructions.clear();
2981    Visited.clear();
2982
2983    if (!Retain)
2984      continue;
2985
2986    // Check that there is nothing that can affect the reference count
2987    // between the retain and the call.  Note that Retain need not be in BB.
2988    bool HasSafePathToCall = HasSafePathToPredecessorCall(Arg, Retain,
2989                                                          DependingInstructions,
2990                                                          Visited, PA);
2991    DependingInstructions.clear();
2992    Visited.clear();
2993
2994    if (!HasSafePathToCall)
2995      continue;
2996
2997    // If so, we can zap the retain and autorelease.
2998    Changed = true;
2999    ++NumRets;
3000    DEBUG(dbgs() << "Erasing: " << *Retain << "\nErasing: "
3001          << *Autorelease << "\n");
3002    EraseInstruction(Retain);
3003    EraseInstruction(Autorelease);
3004  }
3005}
3006
3007#ifndef NDEBUG
3008void
3009ObjCARCOpt::GatherStatistics(Function &F, bool AfterOptimization) {
3010  llvm::Statistic &NumRetains =
3011    AfterOptimization? NumRetainsAfterOpt : NumRetainsBeforeOpt;
3012  llvm::Statistic &NumReleases =
3013    AfterOptimization? NumReleasesAfterOpt : NumReleasesBeforeOpt;
3014
3015  for (inst_iterator I = inst_begin(&F), E = inst_end(&F); I != E; ) {
3016    Instruction *Inst = &*I++;
3017    switch (GetBasicInstructionClass(Inst)) {
3018    default:
3019      break;
3020    case IC_Retain:
3021      ++NumRetains;
3022      break;
3023    case IC_Release:
3024      ++NumReleases;
3025      break;
3026    }
3027  }
3028}
3029#endif
3030
3031bool ObjCARCOpt::doInitialization(Module &M) {
3032  if (!EnableARCOpts)
3033    return false;
3034
3035  // If nothing in the Module uses ARC, don't do anything.
3036  Run = ModuleHasARC(M);
3037  if (!Run)
3038    return false;
3039
3040  // Identify the imprecise release metadata kind.
3041  ImpreciseReleaseMDKind =
3042    M.getContext().getMDKindID("clang.imprecise_release");
3043  CopyOnEscapeMDKind =
3044    M.getContext().getMDKindID("clang.arc.copy_on_escape");
3045  NoObjCARCExceptionsMDKind =
3046    M.getContext().getMDKindID("clang.arc.no_objc_arc_exceptions");
3047#ifdef ARC_ANNOTATIONS
3048  ARCAnnotationBottomUpMDKind =
3049    M.getContext().getMDKindID("llvm.arc.annotation.bottomup");
3050  ARCAnnotationTopDownMDKind =
3051    M.getContext().getMDKindID("llvm.arc.annotation.topdown");
3052  ARCAnnotationProvenanceSourceMDKind =
3053    M.getContext().getMDKindID("llvm.arc.annotation.provenancesource");
3054#endif // ARC_ANNOTATIONS
3055
3056  // Intuitively, objc_retain and others are nocapture, however in practice
3057  // they are not, because they return their argument value. And objc_release
3058  // calls finalizers which can have arbitrary side effects.
3059
3060  // Initialize our runtime entry point cache.
3061  EP.Initialize(&M);
3062
3063  return false;
3064}
3065
3066bool ObjCARCOpt::runOnFunction(Function &F) {
3067  if (!EnableARCOpts)
3068    return false;
3069
3070  // If nothing in the Module uses ARC, don't do anything.
3071  if (!Run)
3072    return false;
3073
3074  Changed = false;
3075
3076  DEBUG(dbgs() << "<<< ObjCARCOpt: Visiting Function: " << F.getName() << " >>>"
3077        "\n");
3078
3079  PA.setAA(&getAnalysis<AliasAnalysis>());
3080
3081#ifndef NDEBUG
3082  if (AreStatisticsEnabled()) {
3083    GatherStatistics(F, false);
3084  }
3085#endif
3086
3087  // This pass performs several distinct transformations. As a compile-time aid
3088  // when compiling code that isn't ObjC, skip these if the relevant ObjC
3089  // library functions aren't declared.
3090
3091  // Preliminary optimizations. This also computes UsedInThisFunction.
3092  OptimizeIndividualCalls(F);
3093
3094  // Optimizations for weak pointers.
3095  if (UsedInThisFunction & ((1 << IC_LoadWeak) |
3096                            (1 << IC_LoadWeakRetained) |
3097                            (1 << IC_StoreWeak) |
3098                            (1 << IC_InitWeak) |
3099                            (1 << IC_CopyWeak) |
3100                            (1 << IC_MoveWeak) |
3101                            (1 << IC_DestroyWeak)))
3102    OptimizeWeakCalls(F);
3103
3104  // Optimizations for retain+release pairs.
3105  if (UsedInThisFunction & ((1 << IC_Retain) |
3106                            (1 << IC_RetainRV) |
3107                            (1 << IC_RetainBlock)))
3108    if (UsedInThisFunction & (1 << IC_Release))
3109      // Run OptimizeSequences until it either stops making changes or
3110      // no retain+release pair nesting is detected.
3111      while (OptimizeSequences(F)) {}
3112
3113  // Optimizations if objc_autorelease is used.
3114  if (UsedInThisFunction & ((1 << IC_Autorelease) |
3115                            (1 << IC_AutoreleaseRV)))
3116    OptimizeReturns(F);
3117
3118  // Gather statistics after optimization.
3119#ifndef NDEBUG
3120  if (AreStatisticsEnabled()) {
3121    GatherStatistics(F, true);
3122  }
3123#endif
3124
3125  DEBUG(dbgs() << "\n");
3126
3127  return Changed;
3128}
3129
3130void ObjCARCOpt::releaseMemory() {
3131  PA.clear();
3132}
3133
3134/// @}
3135///
3136