InstCombineVectorOps.cpp revision 263508
1//===- InstCombineVectorOps.cpp -------------------------------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements instcombine for ExtractElement, InsertElement and
11// ShuffleVector.
12//
13//===----------------------------------------------------------------------===//
14
15#include "InstCombine.h"
16#include "llvm/Support/PatternMatch.h"
17using namespace llvm;
18using namespace PatternMatch;
19
20/// CheapToScalarize - Return true if the value is cheaper to scalarize than it
21/// is to leave as a vector operation.  isConstant indicates whether we're
22/// extracting one known element.  If false we're extracting a variable index.
23static bool CheapToScalarize(Value *V, bool isConstant) {
24  if (Constant *C = dyn_cast<Constant>(V)) {
25    if (isConstant) return true;
26
27    // If all elts are the same, we can extract it and use any of the values.
28    Constant *Op0 = C->getAggregateElement(0U);
29    for (unsigned i = 1, e = V->getType()->getVectorNumElements(); i != e; ++i)
30      if (C->getAggregateElement(i) != Op0)
31        return false;
32    return true;
33  }
34  Instruction *I = dyn_cast<Instruction>(V);
35  if (!I) return false;
36
37  // Insert element gets simplified to the inserted element or is deleted if
38  // this is constant idx extract element and its a constant idx insertelt.
39  if (I->getOpcode() == Instruction::InsertElement && isConstant &&
40      isa<ConstantInt>(I->getOperand(2)))
41    return true;
42  if (I->getOpcode() == Instruction::Load && I->hasOneUse())
43    return true;
44  if (BinaryOperator *BO = dyn_cast<BinaryOperator>(I))
45    if (BO->hasOneUse() &&
46        (CheapToScalarize(BO->getOperand(0), isConstant) ||
47         CheapToScalarize(BO->getOperand(1), isConstant)))
48      return true;
49  if (CmpInst *CI = dyn_cast<CmpInst>(I))
50    if (CI->hasOneUse() &&
51        (CheapToScalarize(CI->getOperand(0), isConstant) ||
52         CheapToScalarize(CI->getOperand(1), isConstant)))
53      return true;
54
55  return false;
56}
57
58/// FindScalarElement - Given a vector and an element number, see if the scalar
59/// value is already around as a register, for example if it were inserted then
60/// extracted from the vector.
61static Value *FindScalarElement(Value *V, unsigned EltNo) {
62  assert(V->getType()->isVectorTy() && "Not looking at a vector?");
63  VectorType *VTy = cast<VectorType>(V->getType());
64  unsigned Width = VTy->getNumElements();
65  if (EltNo >= Width)  // Out of range access.
66    return UndefValue::get(VTy->getElementType());
67
68  if (Constant *C = dyn_cast<Constant>(V))
69    return C->getAggregateElement(EltNo);
70
71  if (InsertElementInst *III = dyn_cast<InsertElementInst>(V)) {
72    // If this is an insert to a variable element, we don't know what it is.
73    if (!isa<ConstantInt>(III->getOperand(2)))
74      return 0;
75    unsigned IIElt = cast<ConstantInt>(III->getOperand(2))->getZExtValue();
76
77    // If this is an insert to the element we are looking for, return the
78    // inserted value.
79    if (EltNo == IIElt)
80      return III->getOperand(1);
81
82    // Otherwise, the insertelement doesn't modify the value, recurse on its
83    // vector input.
84    return FindScalarElement(III->getOperand(0), EltNo);
85  }
86
87  if (ShuffleVectorInst *SVI = dyn_cast<ShuffleVectorInst>(V)) {
88    unsigned LHSWidth = SVI->getOperand(0)->getType()->getVectorNumElements();
89    int InEl = SVI->getMaskValue(EltNo);
90    if (InEl < 0)
91      return UndefValue::get(VTy->getElementType());
92    if (InEl < (int)LHSWidth)
93      return FindScalarElement(SVI->getOperand(0), InEl);
94    return FindScalarElement(SVI->getOperand(1), InEl - LHSWidth);
95  }
96
97  // Extract a value from a vector add operation with a constant zero.
98  Value *Val = 0; Constant *Con = 0;
99  if (match(V, m_Add(m_Value(Val), m_Constant(Con)))) {
100    if (Con->getAggregateElement(EltNo)->isNullValue())
101      return FindScalarElement(Val, EltNo);
102  }
103
104  // Otherwise, we don't know.
105  return 0;
106}
107
108// If we have a PHI node with a vector type that has only 2 uses: feed
109// itself and be an operand of extractelement at a constant location,
110// try to replace the PHI of the vector type with a PHI of a scalar type.
111Instruction *InstCombiner::scalarizePHI(ExtractElementInst &EI, PHINode *PN) {
112  // Verify that the PHI node has exactly 2 uses. Otherwise return NULL.
113  if (!PN->hasNUses(2))
114    return NULL;
115
116  // If so, it's known at this point that one operand is PHI and the other is
117  // an extractelement node. Find the PHI user that is not the extractelement
118  // node.
119  Value::use_iterator iu = PN->use_begin();
120  Instruction *PHIUser = dyn_cast<Instruction>(*iu);
121  if (PHIUser == cast<Instruction>(&EI))
122    PHIUser = cast<Instruction>(*(++iu));
123
124  // Verify that this PHI user has one use, which is the PHI itself,
125  // and that it is a binary operation which is cheap to scalarize.
126  // otherwise return NULL.
127  if (!PHIUser->hasOneUse() || !(PHIUser->use_back() == PN) ||
128      !(isa<BinaryOperator>(PHIUser)) || !CheapToScalarize(PHIUser, true))
129    return NULL;
130
131  // Create a scalar PHI node that will replace the vector PHI node
132  // just before the current PHI node.
133  PHINode *scalarPHI = cast<PHINode>(InsertNewInstWith(
134      PHINode::Create(EI.getType(), PN->getNumIncomingValues(), ""), *PN));
135  // Scalarize each PHI operand.
136  for (unsigned i = 0; i < PN->getNumIncomingValues(); i++) {
137    Value *PHIInVal = PN->getIncomingValue(i);
138    BasicBlock *inBB = PN->getIncomingBlock(i);
139    Value *Elt = EI.getIndexOperand();
140    // If the operand is the PHI induction variable:
141    if (PHIInVal == PHIUser) {
142      // Scalarize the binary operation. Its first operand is the
143      // scalar PHI and the second operand is extracted from the other
144      // vector operand.
145      BinaryOperator *B0 = cast<BinaryOperator>(PHIUser);
146      unsigned opId = (B0->getOperand(0) == PN) ? 1 : 0;
147      Value *Op = InsertNewInstWith(
148          ExtractElementInst::Create(B0->getOperand(opId), Elt,
149                                     B0->getOperand(opId)->getName() + ".Elt"),
150          *B0);
151      Value *newPHIUser = InsertNewInstWith(
152          BinaryOperator::Create(B0->getOpcode(), scalarPHI, Op), *B0);
153      scalarPHI->addIncoming(newPHIUser, inBB);
154    } else {
155      // Scalarize PHI input:
156      Instruction *newEI = ExtractElementInst::Create(PHIInVal, Elt, "");
157      // Insert the new instruction into the predecessor basic block.
158      Instruction *pos = dyn_cast<Instruction>(PHIInVal);
159      BasicBlock::iterator InsertPos;
160      if (pos && !isa<PHINode>(pos)) {
161        InsertPos = pos;
162        ++InsertPos;
163      } else {
164        InsertPos = inBB->getFirstInsertionPt();
165      }
166
167      InsertNewInstWith(newEI, *InsertPos);
168
169      scalarPHI->addIncoming(newEI, inBB);
170    }
171  }
172  return ReplaceInstUsesWith(EI, scalarPHI);
173}
174
175Instruction *InstCombiner::visitExtractElementInst(ExtractElementInst &EI) {
176  // If vector val is constant with all elements the same, replace EI with
177  // that element.  We handle a known element # below.
178  if (Constant *C = dyn_cast<Constant>(EI.getOperand(0)))
179    if (CheapToScalarize(C, false))
180      return ReplaceInstUsesWith(EI, C->getAggregateElement(0U));
181
182  // If extracting a specified index from the vector, see if we can recursively
183  // find a previously computed scalar that was inserted into the vector.
184  if (ConstantInt *IdxC = dyn_cast<ConstantInt>(EI.getOperand(1))) {
185    unsigned IndexVal = IdxC->getZExtValue();
186    unsigned VectorWidth = EI.getVectorOperandType()->getNumElements();
187
188    // If this is extracting an invalid index, turn this into undef, to avoid
189    // crashing the code below.
190    if (IndexVal >= VectorWidth)
191      return ReplaceInstUsesWith(EI, UndefValue::get(EI.getType()));
192
193    // This instruction only demands the single element from the input vector.
194    // If the input vector has a single use, simplify it based on this use
195    // property.
196    if (EI.getOperand(0)->hasOneUse() && VectorWidth != 1) {
197      APInt UndefElts(VectorWidth, 0);
198      APInt DemandedMask(VectorWidth, 0);
199      DemandedMask.setBit(IndexVal);
200      if (Value *V = SimplifyDemandedVectorElts(EI.getOperand(0),
201                                                DemandedMask, UndefElts)) {
202        EI.setOperand(0, V);
203        return &EI;
204      }
205    }
206
207    if (Value *Elt = FindScalarElement(EI.getOperand(0), IndexVal))
208      return ReplaceInstUsesWith(EI, Elt);
209
210    // If the this extractelement is directly using a bitcast from a vector of
211    // the same number of elements, see if we can find the source element from
212    // it.  In this case, we will end up needing to bitcast the scalars.
213    if (BitCastInst *BCI = dyn_cast<BitCastInst>(EI.getOperand(0))) {
214      if (VectorType *VT = dyn_cast<VectorType>(BCI->getOperand(0)->getType()))
215        if (VT->getNumElements() == VectorWidth)
216          if (Value *Elt = FindScalarElement(BCI->getOperand(0), IndexVal))
217            return new BitCastInst(Elt, EI.getType());
218    }
219
220    // If there's a vector PHI feeding a scalar use through this extractelement
221    // instruction, try to scalarize the PHI.
222    if (PHINode *PN = dyn_cast<PHINode>(EI.getOperand(0))) {
223      Instruction *scalarPHI = scalarizePHI(EI, PN);
224      if (scalarPHI)
225        return scalarPHI;
226    }
227  }
228
229  if (Instruction *I = dyn_cast<Instruction>(EI.getOperand(0))) {
230    // Push extractelement into predecessor operation if legal and
231    // profitable to do so
232    if (BinaryOperator *BO = dyn_cast<BinaryOperator>(I)) {
233      if (I->hasOneUse() &&
234          CheapToScalarize(BO, isa<ConstantInt>(EI.getOperand(1)))) {
235        Value *newEI0 =
236          Builder->CreateExtractElement(BO->getOperand(0), EI.getOperand(1),
237                                        EI.getName()+".lhs");
238        Value *newEI1 =
239          Builder->CreateExtractElement(BO->getOperand(1), EI.getOperand(1),
240                                        EI.getName()+".rhs");
241        return BinaryOperator::Create(BO->getOpcode(), newEI0, newEI1);
242      }
243    } else if (InsertElementInst *IE = dyn_cast<InsertElementInst>(I)) {
244      // Extracting the inserted element?
245      if (IE->getOperand(2) == EI.getOperand(1))
246        return ReplaceInstUsesWith(EI, IE->getOperand(1));
247      // If the inserted and extracted elements are constants, they must not
248      // be the same value, extract from the pre-inserted value instead.
249      if (isa<Constant>(IE->getOperand(2)) && isa<Constant>(EI.getOperand(1))) {
250        Worklist.AddValue(EI.getOperand(0));
251        EI.setOperand(0, IE->getOperand(0));
252        return &EI;
253      }
254    } else if (ShuffleVectorInst *SVI = dyn_cast<ShuffleVectorInst>(I)) {
255      // If this is extracting an element from a shufflevector, figure out where
256      // it came from and extract from the appropriate input element instead.
257      if (ConstantInt *Elt = dyn_cast<ConstantInt>(EI.getOperand(1))) {
258        int SrcIdx = SVI->getMaskValue(Elt->getZExtValue());
259        Value *Src;
260        unsigned LHSWidth =
261          SVI->getOperand(0)->getType()->getVectorNumElements();
262
263        if (SrcIdx < 0)
264          return ReplaceInstUsesWith(EI, UndefValue::get(EI.getType()));
265        if (SrcIdx < (int)LHSWidth)
266          Src = SVI->getOperand(0);
267        else {
268          SrcIdx -= LHSWidth;
269          Src = SVI->getOperand(1);
270        }
271        Type *Int32Ty = Type::getInt32Ty(EI.getContext());
272        return ExtractElementInst::Create(Src,
273                                          ConstantInt::get(Int32Ty,
274                                                           SrcIdx, false));
275      }
276    } else if (CastInst *CI = dyn_cast<CastInst>(I)) {
277      // Canonicalize extractelement(cast) -> cast(extractelement)
278      // bitcasts can change the number of vector elements and they cost nothing
279      if (CI->hasOneUse() && (CI->getOpcode() != Instruction::BitCast)) {
280        Value *EE = Builder->CreateExtractElement(CI->getOperand(0),
281                                                  EI.getIndexOperand());
282        Worklist.AddValue(EE);
283        return CastInst::Create(CI->getOpcode(), EE, EI.getType());
284      }
285    } else if (SelectInst *SI = dyn_cast<SelectInst>(I)) {
286      if (SI->hasOneUse()) {
287        // TODO: For a select on vectors, it might be useful to do this if it
288        // has multiple extractelement uses. For vector select, that seems to
289        // fight the vectorizer.
290
291        // If we are extracting an element from a vector select or a select on
292        // vectors, a select on the scalars extracted from the vector arguments.
293        Value *TrueVal = SI->getTrueValue();
294        Value *FalseVal = SI->getFalseValue();
295
296        Value *Cond = SI->getCondition();
297        if (Cond->getType()->isVectorTy()) {
298          Cond = Builder->CreateExtractElement(Cond,
299                                               EI.getIndexOperand(),
300                                               Cond->getName() + ".elt");
301        }
302
303        Value *V1Elem
304          = Builder->CreateExtractElement(TrueVal,
305                                          EI.getIndexOperand(),
306                                          TrueVal->getName() + ".elt");
307
308        Value *V2Elem
309          = Builder->CreateExtractElement(FalseVal,
310                                          EI.getIndexOperand(),
311                                          FalseVal->getName() + ".elt");
312        return SelectInst::Create(Cond,
313                                  V1Elem,
314                                  V2Elem,
315                                  SI->getName() + ".elt");
316      }
317    }
318  }
319  return 0;
320}
321
322/// CollectSingleShuffleElements - If V is a shuffle of values that ONLY returns
323/// elements from either LHS or RHS, return the shuffle mask and true.
324/// Otherwise, return false.
325static bool CollectSingleShuffleElements(Value *V, Value *LHS, Value *RHS,
326                                         SmallVectorImpl<Constant*> &Mask) {
327  assert(V->getType() == LHS->getType() && V->getType() == RHS->getType() &&
328         "Invalid CollectSingleShuffleElements");
329  unsigned NumElts = V->getType()->getVectorNumElements();
330
331  if (isa<UndefValue>(V)) {
332    Mask.assign(NumElts, UndefValue::get(Type::getInt32Ty(V->getContext())));
333    return true;
334  }
335
336  if (V == LHS) {
337    for (unsigned i = 0; i != NumElts; ++i)
338      Mask.push_back(ConstantInt::get(Type::getInt32Ty(V->getContext()), i));
339    return true;
340  }
341
342  if (V == RHS) {
343    for (unsigned i = 0; i != NumElts; ++i)
344      Mask.push_back(ConstantInt::get(Type::getInt32Ty(V->getContext()),
345                                      i+NumElts));
346    return true;
347  }
348
349  if (InsertElementInst *IEI = dyn_cast<InsertElementInst>(V)) {
350    // If this is an insert of an extract from some other vector, include it.
351    Value *VecOp    = IEI->getOperand(0);
352    Value *ScalarOp = IEI->getOperand(1);
353    Value *IdxOp    = IEI->getOperand(2);
354
355    if (!isa<ConstantInt>(IdxOp))
356      return false;
357    unsigned InsertedIdx = cast<ConstantInt>(IdxOp)->getZExtValue();
358
359    if (isa<UndefValue>(ScalarOp)) {  // inserting undef into vector.
360      // Okay, we can handle this if the vector we are insertinting into is
361      // transitively ok.
362      if (CollectSingleShuffleElements(VecOp, LHS, RHS, Mask)) {
363        // If so, update the mask to reflect the inserted undef.
364        Mask[InsertedIdx] = UndefValue::get(Type::getInt32Ty(V->getContext()));
365        return true;
366      }
367    } else if (ExtractElementInst *EI = dyn_cast<ExtractElementInst>(ScalarOp)){
368      if (isa<ConstantInt>(EI->getOperand(1)) &&
369          EI->getOperand(0)->getType() == V->getType()) {
370        unsigned ExtractedIdx =
371        cast<ConstantInt>(EI->getOperand(1))->getZExtValue();
372
373        // This must be extracting from either LHS or RHS.
374        if (EI->getOperand(0) == LHS || EI->getOperand(0) == RHS) {
375          // Okay, we can handle this if the vector we are insertinting into is
376          // transitively ok.
377          if (CollectSingleShuffleElements(VecOp, LHS, RHS, Mask)) {
378            // If so, update the mask to reflect the inserted value.
379            if (EI->getOperand(0) == LHS) {
380              Mask[InsertedIdx % NumElts] =
381              ConstantInt::get(Type::getInt32Ty(V->getContext()),
382                               ExtractedIdx);
383            } else {
384              assert(EI->getOperand(0) == RHS);
385              Mask[InsertedIdx % NumElts] =
386              ConstantInt::get(Type::getInt32Ty(V->getContext()),
387                               ExtractedIdx+NumElts);
388            }
389            return true;
390          }
391        }
392      }
393    }
394  }
395  // TODO: Handle shufflevector here!
396
397  return false;
398}
399
400/// CollectShuffleElements - We are building a shuffle of V, using RHS as the
401/// RHS of the shuffle instruction, if it is not null.  Return a shuffle mask
402/// that computes V and the LHS value of the shuffle.
403static Value *CollectShuffleElements(Value *V, SmallVectorImpl<Constant*> &Mask,
404                                     Value *&RHS) {
405  assert(V->getType()->isVectorTy() &&
406         (RHS == 0 || V->getType() == RHS->getType()) &&
407         "Invalid shuffle!");
408  unsigned NumElts = cast<VectorType>(V->getType())->getNumElements();
409
410  if (isa<UndefValue>(V)) {
411    Mask.assign(NumElts, UndefValue::get(Type::getInt32Ty(V->getContext())));
412    return V;
413  }
414
415  if (isa<ConstantAggregateZero>(V)) {
416    Mask.assign(NumElts, ConstantInt::get(Type::getInt32Ty(V->getContext()),0));
417    return V;
418  }
419
420  if (InsertElementInst *IEI = dyn_cast<InsertElementInst>(V)) {
421    // If this is an insert of an extract from some other vector, include it.
422    Value *VecOp    = IEI->getOperand(0);
423    Value *ScalarOp = IEI->getOperand(1);
424    Value *IdxOp    = IEI->getOperand(2);
425
426    if (ExtractElementInst *EI = dyn_cast<ExtractElementInst>(ScalarOp)) {
427      if (isa<ConstantInt>(EI->getOperand(1)) && isa<ConstantInt>(IdxOp) &&
428          EI->getOperand(0)->getType() == V->getType()) {
429        unsigned ExtractedIdx =
430          cast<ConstantInt>(EI->getOperand(1))->getZExtValue();
431        unsigned InsertedIdx = cast<ConstantInt>(IdxOp)->getZExtValue();
432
433        // Either the extracted from or inserted into vector must be RHSVec,
434        // otherwise we'd end up with a shuffle of three inputs.
435        if (EI->getOperand(0) == RHS || RHS == 0) {
436          RHS = EI->getOperand(0);
437          Value *V = CollectShuffleElements(VecOp, Mask, RHS);
438          Mask[InsertedIdx % NumElts] =
439            ConstantInt::get(Type::getInt32Ty(V->getContext()),
440                             NumElts+ExtractedIdx);
441          return V;
442        }
443
444        if (VecOp == RHS) {
445          Value *V = CollectShuffleElements(EI->getOperand(0), Mask, RHS);
446          // Update Mask to reflect that `ScalarOp' has been inserted at
447          // position `InsertedIdx' within the vector returned by IEI.
448          Mask[InsertedIdx % NumElts] = Mask[ExtractedIdx];
449
450          // Everything but the extracted element is replaced with the RHS.
451          for (unsigned i = 0; i != NumElts; ++i) {
452            if (i != InsertedIdx)
453              Mask[i] = ConstantInt::get(Type::getInt32Ty(V->getContext()),
454                                         NumElts+i);
455          }
456          return V;
457        }
458
459        // If this insertelement is a chain that comes from exactly these two
460        // vectors, return the vector and the effective shuffle.
461        if (CollectSingleShuffleElements(IEI, EI->getOperand(0), RHS, Mask))
462          return EI->getOperand(0);
463      }
464    }
465  }
466  // TODO: Handle shufflevector here!
467
468  // Otherwise, can't do anything fancy.  Return an identity vector.
469  for (unsigned i = 0; i != NumElts; ++i)
470    Mask.push_back(ConstantInt::get(Type::getInt32Ty(V->getContext()), i));
471  return V;
472}
473
474Instruction *InstCombiner::visitInsertElementInst(InsertElementInst &IE) {
475  Value *VecOp    = IE.getOperand(0);
476  Value *ScalarOp = IE.getOperand(1);
477  Value *IdxOp    = IE.getOperand(2);
478
479  // Inserting an undef or into an undefined place, remove this.
480  if (isa<UndefValue>(ScalarOp) || isa<UndefValue>(IdxOp))
481    ReplaceInstUsesWith(IE, VecOp);
482
483  // If the inserted element was extracted from some other vector, and if the
484  // indexes are constant, try to turn this into a shufflevector operation.
485  if (ExtractElementInst *EI = dyn_cast<ExtractElementInst>(ScalarOp)) {
486    if (isa<ConstantInt>(EI->getOperand(1)) && isa<ConstantInt>(IdxOp) &&
487        EI->getOperand(0)->getType() == IE.getType()) {
488      unsigned NumVectorElts = IE.getType()->getNumElements();
489      unsigned ExtractedIdx =
490        cast<ConstantInt>(EI->getOperand(1))->getZExtValue();
491      unsigned InsertedIdx = cast<ConstantInt>(IdxOp)->getZExtValue();
492
493      if (ExtractedIdx >= NumVectorElts) // Out of range extract.
494        return ReplaceInstUsesWith(IE, VecOp);
495
496      if (InsertedIdx >= NumVectorElts)  // Out of range insert.
497        return ReplaceInstUsesWith(IE, UndefValue::get(IE.getType()));
498
499      // If we are extracting a value from a vector, then inserting it right
500      // back into the same place, just use the input vector.
501      if (EI->getOperand(0) == VecOp && ExtractedIdx == InsertedIdx)
502        return ReplaceInstUsesWith(IE, VecOp);
503
504      // If this insertelement isn't used by some other insertelement, turn it
505      // (and any insertelements it points to), into one big shuffle.
506      if (!IE.hasOneUse() || !isa<InsertElementInst>(IE.use_back())) {
507        SmallVector<Constant*, 16> Mask;
508        Value *RHS = 0;
509        Value *LHS = CollectShuffleElements(&IE, Mask, RHS);
510        if (RHS == 0) RHS = UndefValue::get(LHS->getType());
511        // We now have a shuffle of LHS, RHS, Mask.
512        return new ShuffleVectorInst(LHS, RHS, ConstantVector::get(Mask));
513      }
514    }
515  }
516
517  unsigned VWidth = cast<VectorType>(VecOp->getType())->getNumElements();
518  APInt UndefElts(VWidth, 0);
519  APInt AllOnesEltMask(APInt::getAllOnesValue(VWidth));
520  if (Value *V = SimplifyDemandedVectorElts(&IE, AllOnesEltMask, UndefElts)) {
521    if (V != &IE)
522      return ReplaceInstUsesWith(IE, V);
523    return &IE;
524  }
525
526  return 0;
527}
528
529/// Return true if we can evaluate the specified expression tree if the vector
530/// elements were shuffled in a different order.
531static bool CanEvaluateShuffled(Value *V, ArrayRef<int> Mask,
532                                unsigned Depth = 5) {
533  // We can always reorder the elements of a constant.
534  if (isa<Constant>(V))
535    return true;
536
537  // We won't reorder vector arguments. No IPO here.
538  Instruction *I = dyn_cast<Instruction>(V);
539  if (!I) return false;
540
541  // Two users may expect different orders of the elements. Don't try it.
542  if (!I->hasOneUse())
543    return false;
544
545  if (Depth == 0) return false;
546
547  switch (I->getOpcode()) {
548    case Instruction::Add:
549    case Instruction::FAdd:
550    case Instruction::Sub:
551    case Instruction::FSub:
552    case Instruction::Mul:
553    case Instruction::FMul:
554    case Instruction::UDiv:
555    case Instruction::SDiv:
556    case Instruction::FDiv:
557    case Instruction::URem:
558    case Instruction::SRem:
559    case Instruction::FRem:
560    case Instruction::Shl:
561    case Instruction::LShr:
562    case Instruction::AShr:
563    case Instruction::And:
564    case Instruction::Or:
565    case Instruction::Xor:
566    case Instruction::ICmp:
567    case Instruction::FCmp:
568    case Instruction::Trunc:
569    case Instruction::ZExt:
570    case Instruction::SExt:
571    case Instruction::FPToUI:
572    case Instruction::FPToSI:
573    case Instruction::UIToFP:
574    case Instruction::SIToFP:
575    case Instruction::FPTrunc:
576    case Instruction::FPExt:
577    case Instruction::GetElementPtr: {
578      for (int i = 0, e = I->getNumOperands(); i != e; ++i) {
579        if (!CanEvaluateShuffled(I->getOperand(i), Mask, Depth-1))
580          return false;
581      }
582      return true;
583    }
584    case Instruction::InsertElement: {
585      ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(2));
586      if (!CI) return false;
587      int ElementNumber = CI->getLimitedValue();
588
589      // Verify that 'CI' does not occur twice in Mask. A single 'insertelement'
590      // can't put an element into multiple indices.
591      bool SeenOnce = false;
592      for (int i = 0, e = Mask.size(); i != e; ++i) {
593        if (Mask[i] == ElementNumber) {
594          if (SeenOnce)
595            return false;
596          SeenOnce = true;
597        }
598      }
599      return CanEvaluateShuffled(I->getOperand(0), Mask, Depth-1);
600    }
601  }
602  return false;
603}
604
605/// Rebuild a new instruction just like 'I' but with the new operands given.
606/// In the event of type mismatch, the type of the operands is correct.
607static Value *BuildNew(Instruction *I, ArrayRef<Value*> NewOps) {
608  // We don't want to use the IRBuilder here because we want the replacement
609  // instructions to appear next to 'I', not the builder's insertion point.
610  switch (I->getOpcode()) {
611    case Instruction::Add:
612    case Instruction::FAdd:
613    case Instruction::Sub:
614    case Instruction::FSub:
615    case Instruction::Mul:
616    case Instruction::FMul:
617    case Instruction::UDiv:
618    case Instruction::SDiv:
619    case Instruction::FDiv:
620    case Instruction::URem:
621    case Instruction::SRem:
622    case Instruction::FRem:
623    case Instruction::Shl:
624    case Instruction::LShr:
625    case Instruction::AShr:
626    case Instruction::And:
627    case Instruction::Or:
628    case Instruction::Xor: {
629      BinaryOperator *BO = cast<BinaryOperator>(I);
630      assert(NewOps.size() == 2 && "binary operator with #ops != 2");
631      BinaryOperator *New =
632          BinaryOperator::Create(cast<BinaryOperator>(I)->getOpcode(),
633                                 NewOps[0], NewOps[1], "", BO);
634      if (isa<OverflowingBinaryOperator>(BO)) {
635        New->setHasNoUnsignedWrap(BO->hasNoUnsignedWrap());
636        New->setHasNoSignedWrap(BO->hasNoSignedWrap());
637      }
638      if (isa<PossiblyExactOperator>(BO)) {
639        New->setIsExact(BO->isExact());
640      }
641      return New;
642    }
643    case Instruction::ICmp:
644      assert(NewOps.size() == 2 && "icmp with #ops != 2");
645      return new ICmpInst(I, cast<ICmpInst>(I)->getPredicate(),
646                          NewOps[0], NewOps[1]);
647    case Instruction::FCmp:
648      assert(NewOps.size() == 2 && "fcmp with #ops != 2");
649      return new FCmpInst(I, cast<FCmpInst>(I)->getPredicate(),
650                          NewOps[0], NewOps[1]);
651    case Instruction::Trunc:
652    case Instruction::ZExt:
653    case Instruction::SExt:
654    case Instruction::FPToUI:
655    case Instruction::FPToSI:
656    case Instruction::UIToFP:
657    case Instruction::SIToFP:
658    case Instruction::FPTrunc:
659    case Instruction::FPExt: {
660      // It's possible that the mask has a different number of elements from
661      // the original cast. We recompute the destination type to match the mask.
662      Type *DestTy =
663          VectorType::get(I->getType()->getScalarType(),
664                          NewOps[0]->getType()->getVectorNumElements());
665      assert(NewOps.size() == 1 && "cast with #ops != 1");
666      return CastInst::Create(cast<CastInst>(I)->getOpcode(), NewOps[0], DestTy,
667                              "", I);
668    }
669    case Instruction::GetElementPtr: {
670      Value *Ptr = NewOps[0];
671      ArrayRef<Value*> Idx = NewOps.slice(1);
672      GetElementPtrInst *GEP = GetElementPtrInst::Create(Ptr, Idx, "", I);
673      GEP->setIsInBounds(cast<GetElementPtrInst>(I)->isInBounds());
674      return GEP;
675    }
676  }
677  llvm_unreachable("failed to rebuild vector instructions");
678}
679
680Value *
681InstCombiner::EvaluateInDifferentElementOrder(Value *V, ArrayRef<int> Mask) {
682  // Mask.size() does not need to be equal to the number of vector elements.
683
684  assert(V->getType()->isVectorTy() && "can't reorder non-vector elements");
685  if (isa<UndefValue>(V)) {
686    return UndefValue::get(VectorType::get(V->getType()->getScalarType(),
687                                           Mask.size()));
688  }
689  if (isa<ConstantAggregateZero>(V)) {
690    return ConstantAggregateZero::get(
691               VectorType::get(V->getType()->getScalarType(),
692                               Mask.size()));
693  }
694  if (Constant *C = dyn_cast<Constant>(V)) {
695    SmallVector<Constant *, 16> MaskValues;
696    for (int i = 0, e = Mask.size(); i != e; ++i) {
697      if (Mask[i] == -1)
698        MaskValues.push_back(UndefValue::get(Builder->getInt32Ty()));
699      else
700        MaskValues.push_back(Builder->getInt32(Mask[i]));
701    }
702    return ConstantExpr::getShuffleVector(C, UndefValue::get(C->getType()),
703                                          ConstantVector::get(MaskValues));
704  }
705
706  Instruction *I = cast<Instruction>(V);
707  switch (I->getOpcode()) {
708    case Instruction::Add:
709    case Instruction::FAdd:
710    case Instruction::Sub:
711    case Instruction::FSub:
712    case Instruction::Mul:
713    case Instruction::FMul:
714    case Instruction::UDiv:
715    case Instruction::SDiv:
716    case Instruction::FDiv:
717    case Instruction::URem:
718    case Instruction::SRem:
719    case Instruction::FRem:
720    case Instruction::Shl:
721    case Instruction::LShr:
722    case Instruction::AShr:
723    case Instruction::And:
724    case Instruction::Or:
725    case Instruction::Xor:
726    case Instruction::ICmp:
727    case Instruction::FCmp:
728    case Instruction::Trunc:
729    case Instruction::ZExt:
730    case Instruction::SExt:
731    case Instruction::FPToUI:
732    case Instruction::FPToSI:
733    case Instruction::UIToFP:
734    case Instruction::SIToFP:
735    case Instruction::FPTrunc:
736    case Instruction::FPExt:
737    case Instruction::Select:
738    case Instruction::GetElementPtr: {
739      SmallVector<Value*, 8> NewOps;
740      bool NeedsRebuild = (Mask.size() != I->getType()->getVectorNumElements());
741      for (int i = 0, e = I->getNumOperands(); i != e; ++i) {
742        Value *V = EvaluateInDifferentElementOrder(I->getOperand(i), Mask);
743        NewOps.push_back(V);
744        NeedsRebuild |= (V != I->getOperand(i));
745      }
746      if (NeedsRebuild) {
747        return BuildNew(I, NewOps);
748      }
749      return I;
750    }
751    case Instruction::InsertElement: {
752      int Element = cast<ConstantInt>(I->getOperand(2))->getLimitedValue();
753
754      // The insertelement was inserting at Element. Figure out which element
755      // that becomes after shuffling. The answer is guaranteed to be unique
756      // by CanEvaluateShuffled.
757      bool Found = false;
758      int Index = 0;
759      for (int e = Mask.size(); Index != e; ++Index) {
760        if (Mask[Index] == Element) {
761          Found = true;
762          break;
763        }
764      }
765
766      if (!Found)
767        return UndefValue::get(
768            VectorType::get(V->getType()->getScalarType(), Mask.size()));
769
770      Value *V = EvaluateInDifferentElementOrder(I->getOperand(0), Mask);
771      return InsertElementInst::Create(V, I->getOperand(1),
772                                       Builder->getInt32(Index), "", I);
773    }
774  }
775  llvm_unreachable("failed to reorder elements of vector instruction!");
776}
777
778Instruction *InstCombiner::visitShuffleVectorInst(ShuffleVectorInst &SVI) {
779  Value *LHS = SVI.getOperand(0);
780  Value *RHS = SVI.getOperand(1);
781  SmallVector<int, 16> Mask = SVI.getShuffleMask();
782
783  bool MadeChange = false;
784
785  // Undefined shuffle mask -> undefined value.
786  if (isa<UndefValue>(SVI.getOperand(2)))
787    return ReplaceInstUsesWith(SVI, UndefValue::get(SVI.getType()));
788
789  unsigned VWidth = cast<VectorType>(SVI.getType())->getNumElements();
790
791  APInt UndefElts(VWidth, 0);
792  APInt AllOnesEltMask(APInt::getAllOnesValue(VWidth));
793  if (Value *V = SimplifyDemandedVectorElts(&SVI, AllOnesEltMask, UndefElts)) {
794    if (V != &SVI)
795      return ReplaceInstUsesWith(SVI, V);
796    LHS = SVI.getOperand(0);
797    RHS = SVI.getOperand(1);
798    MadeChange = true;
799  }
800
801  unsigned LHSWidth = cast<VectorType>(LHS->getType())->getNumElements();
802
803  // Canonicalize shuffle(x    ,x,mask) -> shuffle(x, undef,mask')
804  // Canonicalize shuffle(undef,x,mask) -> shuffle(x, undef,mask').
805  if (LHS == RHS || isa<UndefValue>(LHS)) {
806    if (isa<UndefValue>(LHS) && LHS == RHS) {
807      // shuffle(undef,undef,mask) -> undef.
808      Value *Result = (VWidth == LHSWidth)
809                      ? LHS : UndefValue::get(SVI.getType());
810      return ReplaceInstUsesWith(SVI, Result);
811    }
812
813    // Remap any references to RHS to use LHS.
814    SmallVector<Constant*, 16> Elts;
815    for (unsigned i = 0, e = LHSWidth; i != VWidth; ++i) {
816      if (Mask[i] < 0) {
817        Elts.push_back(UndefValue::get(Type::getInt32Ty(SVI.getContext())));
818        continue;
819      }
820
821      if ((Mask[i] >= (int)e && isa<UndefValue>(RHS)) ||
822          (Mask[i] <  (int)e && isa<UndefValue>(LHS))) {
823        Mask[i] = -1;     // Turn into undef.
824        Elts.push_back(UndefValue::get(Type::getInt32Ty(SVI.getContext())));
825      } else {
826        Mask[i] = Mask[i] % e;  // Force to LHS.
827        Elts.push_back(ConstantInt::get(Type::getInt32Ty(SVI.getContext()),
828                                        Mask[i]));
829      }
830    }
831    SVI.setOperand(0, SVI.getOperand(1));
832    SVI.setOperand(1, UndefValue::get(RHS->getType()));
833    SVI.setOperand(2, ConstantVector::get(Elts));
834    LHS = SVI.getOperand(0);
835    RHS = SVI.getOperand(1);
836    MadeChange = true;
837  }
838
839  if (VWidth == LHSWidth) {
840    // Analyze the shuffle, are the LHS or RHS and identity shuffles?
841    bool isLHSID = true, isRHSID = true;
842
843    for (unsigned i = 0, e = Mask.size(); i != e; ++i) {
844      if (Mask[i] < 0) continue;  // Ignore undef values.
845      // Is this an identity shuffle of the LHS value?
846      isLHSID &= (Mask[i] == (int)i);
847
848      // Is this an identity shuffle of the RHS value?
849      isRHSID &= (Mask[i]-e == i);
850    }
851
852    // Eliminate identity shuffles.
853    if (isLHSID) return ReplaceInstUsesWith(SVI, LHS);
854    if (isRHSID) return ReplaceInstUsesWith(SVI, RHS);
855  }
856
857  if (isa<UndefValue>(RHS) && CanEvaluateShuffled(LHS, Mask)) {
858    Value *V = EvaluateInDifferentElementOrder(LHS, Mask);
859    return ReplaceInstUsesWith(SVI, V);
860  }
861
862  // If the LHS is a shufflevector itself, see if we can combine it with this
863  // one without producing an unusual shuffle.
864  // Cases that might be simplified:
865  // 1.
866  // x1=shuffle(v1,v2,mask1)
867  //  x=shuffle(x1,undef,mask)
868  //        ==>
869  //  x=shuffle(v1,undef,newMask)
870  // newMask[i] = (mask[i] < x1.size()) ? mask1[mask[i]] : -1
871  // 2.
872  // x1=shuffle(v1,undef,mask1)
873  //  x=shuffle(x1,x2,mask)
874  // where v1.size() == mask1.size()
875  //        ==>
876  //  x=shuffle(v1,x2,newMask)
877  // newMask[i] = (mask[i] < x1.size()) ? mask1[mask[i]] : mask[i]
878  // 3.
879  // x2=shuffle(v2,undef,mask2)
880  //  x=shuffle(x1,x2,mask)
881  // where v2.size() == mask2.size()
882  //        ==>
883  //  x=shuffle(x1,v2,newMask)
884  // newMask[i] = (mask[i] < x1.size())
885  //              ? mask[i] : mask2[mask[i]-x1.size()]+x1.size()
886  // 4.
887  // x1=shuffle(v1,undef,mask1)
888  // x2=shuffle(v2,undef,mask2)
889  //  x=shuffle(x1,x2,mask)
890  // where v1.size() == v2.size()
891  //        ==>
892  //  x=shuffle(v1,v2,newMask)
893  // newMask[i] = (mask[i] < x1.size())
894  //              ? mask1[mask[i]] : mask2[mask[i]-x1.size()]+v1.size()
895  //
896  // Here we are really conservative:
897  // we are absolutely afraid of producing a shuffle mask not in the input
898  // program, because the code gen may not be smart enough to turn a merged
899  // shuffle into two specific shuffles: it may produce worse code.  As such,
900  // we only merge two shuffles if the result is either a splat or one of the
901  // input shuffle masks.  In this case, merging the shuffles just removes
902  // one instruction, which we know is safe.  This is good for things like
903  // turning: (splat(splat)) -> splat, or
904  // merge(V[0..n], V[n+1..2n]) -> V[0..2n]
905  ShuffleVectorInst* LHSShuffle = dyn_cast<ShuffleVectorInst>(LHS);
906  ShuffleVectorInst* RHSShuffle = dyn_cast<ShuffleVectorInst>(RHS);
907  if (LHSShuffle)
908    if (!isa<UndefValue>(LHSShuffle->getOperand(1)) && !isa<UndefValue>(RHS))
909      LHSShuffle = NULL;
910  if (RHSShuffle)
911    if (!isa<UndefValue>(RHSShuffle->getOperand(1)))
912      RHSShuffle = NULL;
913  if (!LHSShuffle && !RHSShuffle)
914    return MadeChange ? &SVI : 0;
915
916  Value* LHSOp0 = NULL;
917  Value* LHSOp1 = NULL;
918  Value* RHSOp0 = NULL;
919  unsigned LHSOp0Width = 0;
920  unsigned RHSOp0Width = 0;
921  if (LHSShuffle) {
922    LHSOp0 = LHSShuffle->getOperand(0);
923    LHSOp1 = LHSShuffle->getOperand(1);
924    LHSOp0Width = cast<VectorType>(LHSOp0->getType())->getNumElements();
925  }
926  if (RHSShuffle) {
927    RHSOp0 = RHSShuffle->getOperand(0);
928    RHSOp0Width = cast<VectorType>(RHSOp0->getType())->getNumElements();
929  }
930  Value* newLHS = LHS;
931  Value* newRHS = RHS;
932  if (LHSShuffle) {
933    // case 1
934    if (isa<UndefValue>(RHS)) {
935      newLHS = LHSOp0;
936      newRHS = LHSOp1;
937    }
938    // case 2 or 4
939    else if (LHSOp0Width == LHSWidth) {
940      newLHS = LHSOp0;
941    }
942  }
943  // case 3 or 4
944  if (RHSShuffle && RHSOp0Width == LHSWidth) {
945    newRHS = RHSOp0;
946  }
947  // case 4
948  if (LHSOp0 == RHSOp0) {
949    newLHS = LHSOp0;
950    newRHS = NULL;
951  }
952
953  if (newLHS == LHS && newRHS == RHS)
954    return MadeChange ? &SVI : 0;
955
956  SmallVector<int, 16> LHSMask;
957  SmallVector<int, 16> RHSMask;
958  if (newLHS != LHS)
959    LHSMask = LHSShuffle->getShuffleMask();
960  if (RHSShuffle && newRHS != RHS)
961    RHSMask = RHSShuffle->getShuffleMask();
962
963  unsigned newLHSWidth = (newLHS != LHS) ? LHSOp0Width : LHSWidth;
964  SmallVector<int, 16> newMask;
965  bool isSplat = true;
966  int SplatElt = -1;
967  // Create a new mask for the new ShuffleVectorInst so that the new
968  // ShuffleVectorInst is equivalent to the original one.
969  for (unsigned i = 0; i < VWidth; ++i) {
970    int eltMask;
971    if (Mask[i] < 0) {
972      // This element is an undef value.
973      eltMask = -1;
974    } else if (Mask[i] < (int)LHSWidth) {
975      // This element is from left hand side vector operand.
976      //
977      // If LHS is going to be replaced (case 1, 2, or 4), calculate the
978      // new mask value for the element.
979      if (newLHS != LHS) {
980        eltMask = LHSMask[Mask[i]];
981        // If the value selected is an undef value, explicitly specify it
982        // with a -1 mask value.
983        if (eltMask >= (int)LHSOp0Width && isa<UndefValue>(LHSOp1))
984          eltMask = -1;
985      } else
986        eltMask = Mask[i];
987    } else {
988      // This element is from right hand side vector operand
989      //
990      // If the value selected is an undef value, explicitly specify it
991      // with a -1 mask value. (case 1)
992      if (isa<UndefValue>(RHS))
993        eltMask = -1;
994      // If RHS is going to be replaced (case 3 or 4), calculate the
995      // new mask value for the element.
996      else if (newRHS != RHS) {
997        eltMask = RHSMask[Mask[i]-LHSWidth];
998        // If the value selected is an undef value, explicitly specify it
999        // with a -1 mask value.
1000        if (eltMask >= (int)RHSOp0Width) {
1001          assert(isa<UndefValue>(RHSShuffle->getOperand(1))
1002                 && "should have been check above");
1003          eltMask = -1;
1004        }
1005      } else
1006        eltMask = Mask[i]-LHSWidth;
1007
1008      // If LHS's width is changed, shift the mask value accordingly.
1009      // If newRHS == NULL, i.e. LHSOp0 == RHSOp0, we want to remap any
1010      // references from RHSOp0 to LHSOp0, so we don't need to shift the mask.
1011      // If newRHS == newLHS, we want to remap any references from newRHS to
1012      // newLHS so that we can properly identify splats that may occur due to
1013      // obfuscation accross the two vectors.
1014      if (eltMask >= 0 && newRHS != NULL && newLHS != newRHS)
1015        eltMask += newLHSWidth;
1016    }
1017
1018    // Check if this could still be a splat.
1019    if (eltMask >= 0) {
1020      if (SplatElt >= 0 && SplatElt != eltMask)
1021        isSplat = false;
1022      SplatElt = eltMask;
1023    }
1024
1025    newMask.push_back(eltMask);
1026  }
1027
1028  // If the result mask is equal to one of the original shuffle masks,
1029  // or is a splat, do the replacement.
1030  if (isSplat || newMask == LHSMask || newMask == RHSMask || newMask == Mask) {
1031    SmallVector<Constant*, 16> Elts;
1032    Type *Int32Ty = Type::getInt32Ty(SVI.getContext());
1033    for (unsigned i = 0, e = newMask.size(); i != e; ++i) {
1034      if (newMask[i] < 0) {
1035        Elts.push_back(UndefValue::get(Int32Ty));
1036      } else {
1037        Elts.push_back(ConstantInt::get(Int32Ty, newMask[i]));
1038      }
1039    }
1040    if (newRHS == NULL)
1041      newRHS = UndefValue::get(newLHS->getType());
1042    return new ShuffleVectorInst(newLHS, newRHS, ConstantVector::get(Elts));
1043  }
1044
1045  return MadeChange ? &SVI : 0;
1046}
1047