InstCombinePHI.cpp revision 263508
1//===- InstCombinePHI.cpp -------------------------------------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the visitPHINode function.
11//
12//===----------------------------------------------------------------------===//
13
14#include "InstCombine.h"
15#include "llvm/ADT/STLExtras.h"
16#include "llvm/ADT/SmallPtrSet.h"
17#include "llvm/Analysis/InstructionSimplify.h"
18#include "llvm/IR/DataLayout.h"
19using namespace llvm;
20
21/// FoldPHIArgBinOpIntoPHI - If we have something like phi [add (a,b), add(a,c)]
22/// and if a/b/c and the add's all have a single use, turn this into a phi
23/// and a single binop.
24Instruction *InstCombiner::FoldPHIArgBinOpIntoPHI(PHINode &PN) {
25  Instruction *FirstInst = cast<Instruction>(PN.getIncomingValue(0));
26  assert(isa<BinaryOperator>(FirstInst) || isa<CmpInst>(FirstInst));
27  unsigned Opc = FirstInst->getOpcode();
28  Value *LHSVal = FirstInst->getOperand(0);
29  Value *RHSVal = FirstInst->getOperand(1);
30
31  Type *LHSType = LHSVal->getType();
32  Type *RHSType = RHSVal->getType();
33
34  bool isNUW = false, isNSW = false, isExact = false;
35  if (OverflowingBinaryOperator *BO =
36        dyn_cast<OverflowingBinaryOperator>(FirstInst)) {
37    isNUW = BO->hasNoUnsignedWrap();
38    isNSW = BO->hasNoSignedWrap();
39  } else if (PossiblyExactOperator *PEO =
40               dyn_cast<PossiblyExactOperator>(FirstInst))
41    isExact = PEO->isExact();
42
43  // Scan to see if all operands are the same opcode, and all have one use.
44  for (unsigned i = 1; i != PN.getNumIncomingValues(); ++i) {
45    Instruction *I = dyn_cast<Instruction>(PN.getIncomingValue(i));
46    if (!I || I->getOpcode() != Opc || !I->hasOneUse() ||
47        // Verify type of the LHS matches so we don't fold cmp's of different
48        // types.
49        I->getOperand(0)->getType() != LHSType ||
50        I->getOperand(1)->getType() != RHSType)
51      return 0;
52
53    // If they are CmpInst instructions, check their predicates
54    if (CmpInst *CI = dyn_cast<CmpInst>(I))
55      if (CI->getPredicate() != cast<CmpInst>(FirstInst)->getPredicate())
56        return 0;
57
58    if (isNUW)
59      isNUW = cast<OverflowingBinaryOperator>(I)->hasNoUnsignedWrap();
60    if (isNSW)
61      isNSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap();
62    if (isExact)
63      isExact = cast<PossiblyExactOperator>(I)->isExact();
64
65    // Keep track of which operand needs a phi node.
66    if (I->getOperand(0) != LHSVal) LHSVal = 0;
67    if (I->getOperand(1) != RHSVal) RHSVal = 0;
68  }
69
70  // If both LHS and RHS would need a PHI, don't do this transformation,
71  // because it would increase the number of PHIs entering the block,
72  // which leads to higher register pressure. This is especially
73  // bad when the PHIs are in the header of a loop.
74  if (!LHSVal && !RHSVal)
75    return 0;
76
77  // Otherwise, this is safe to transform!
78
79  Value *InLHS = FirstInst->getOperand(0);
80  Value *InRHS = FirstInst->getOperand(1);
81  PHINode *NewLHS = 0, *NewRHS = 0;
82  if (LHSVal == 0) {
83    NewLHS = PHINode::Create(LHSType, PN.getNumIncomingValues(),
84                             FirstInst->getOperand(0)->getName() + ".pn");
85    NewLHS->addIncoming(InLHS, PN.getIncomingBlock(0));
86    InsertNewInstBefore(NewLHS, PN);
87    LHSVal = NewLHS;
88  }
89
90  if (RHSVal == 0) {
91    NewRHS = PHINode::Create(RHSType, PN.getNumIncomingValues(),
92                             FirstInst->getOperand(1)->getName() + ".pn");
93    NewRHS->addIncoming(InRHS, PN.getIncomingBlock(0));
94    InsertNewInstBefore(NewRHS, PN);
95    RHSVal = NewRHS;
96  }
97
98  // Add all operands to the new PHIs.
99  if (NewLHS || NewRHS) {
100    for (unsigned i = 1, e = PN.getNumIncomingValues(); i != e; ++i) {
101      Instruction *InInst = cast<Instruction>(PN.getIncomingValue(i));
102      if (NewLHS) {
103        Value *NewInLHS = InInst->getOperand(0);
104        NewLHS->addIncoming(NewInLHS, PN.getIncomingBlock(i));
105      }
106      if (NewRHS) {
107        Value *NewInRHS = InInst->getOperand(1);
108        NewRHS->addIncoming(NewInRHS, PN.getIncomingBlock(i));
109      }
110    }
111  }
112
113  if (CmpInst *CIOp = dyn_cast<CmpInst>(FirstInst)) {
114    CmpInst *NewCI = CmpInst::Create(CIOp->getOpcode(), CIOp->getPredicate(),
115                                     LHSVal, RHSVal);
116    NewCI->setDebugLoc(FirstInst->getDebugLoc());
117    return NewCI;
118  }
119
120  BinaryOperator *BinOp = cast<BinaryOperator>(FirstInst);
121  BinaryOperator *NewBinOp =
122    BinaryOperator::Create(BinOp->getOpcode(), LHSVal, RHSVal);
123  if (isNUW) NewBinOp->setHasNoUnsignedWrap();
124  if (isNSW) NewBinOp->setHasNoSignedWrap();
125  if (isExact) NewBinOp->setIsExact();
126  NewBinOp->setDebugLoc(FirstInst->getDebugLoc());
127  return NewBinOp;
128}
129
130Instruction *InstCombiner::FoldPHIArgGEPIntoPHI(PHINode &PN) {
131  GetElementPtrInst *FirstInst =cast<GetElementPtrInst>(PN.getIncomingValue(0));
132
133  SmallVector<Value*, 16> FixedOperands(FirstInst->op_begin(),
134                                        FirstInst->op_end());
135  // This is true if all GEP bases are allocas and if all indices into them are
136  // constants.
137  bool AllBasePointersAreAllocas = true;
138
139  // We don't want to replace this phi if the replacement would require
140  // more than one phi, which leads to higher register pressure. This is
141  // especially bad when the PHIs are in the header of a loop.
142  bool NeededPhi = false;
143
144  bool AllInBounds = true;
145
146  // Scan to see if all operands are the same opcode, and all have one use.
147  for (unsigned i = 1; i != PN.getNumIncomingValues(); ++i) {
148    GetElementPtrInst *GEP= dyn_cast<GetElementPtrInst>(PN.getIncomingValue(i));
149    if (!GEP || !GEP->hasOneUse() || GEP->getType() != FirstInst->getType() ||
150      GEP->getNumOperands() != FirstInst->getNumOperands())
151      return 0;
152
153    AllInBounds &= GEP->isInBounds();
154
155    // Keep track of whether or not all GEPs are of alloca pointers.
156    if (AllBasePointersAreAllocas &&
157        (!isa<AllocaInst>(GEP->getOperand(0)) ||
158         !GEP->hasAllConstantIndices()))
159      AllBasePointersAreAllocas = false;
160
161    // Compare the operand lists.
162    for (unsigned op = 0, e = FirstInst->getNumOperands(); op != e; ++op) {
163      if (FirstInst->getOperand(op) == GEP->getOperand(op))
164        continue;
165
166      // Don't merge two GEPs when two operands differ (introducing phi nodes)
167      // if one of the PHIs has a constant for the index.  The index may be
168      // substantially cheaper to compute for the constants, so making it a
169      // variable index could pessimize the path.  This also handles the case
170      // for struct indices, which must always be constant.
171      if (isa<ConstantInt>(FirstInst->getOperand(op)) ||
172          isa<ConstantInt>(GEP->getOperand(op)))
173        return 0;
174
175      if (FirstInst->getOperand(op)->getType() !=GEP->getOperand(op)->getType())
176        return 0;
177
178      // If we already needed a PHI for an earlier operand, and another operand
179      // also requires a PHI, we'd be introducing more PHIs than we're
180      // eliminating, which increases register pressure on entry to the PHI's
181      // block.
182      if (NeededPhi)
183        return 0;
184
185      FixedOperands[op] = 0;  // Needs a PHI.
186      NeededPhi = true;
187    }
188  }
189
190  // If all of the base pointers of the PHI'd GEPs are from allocas, don't
191  // bother doing this transformation.  At best, this will just save a bit of
192  // offset calculation, but all the predecessors will have to materialize the
193  // stack address into a register anyway.  We'd actually rather *clone* the
194  // load up into the predecessors so that we have a load of a gep of an alloca,
195  // which can usually all be folded into the load.
196  if (AllBasePointersAreAllocas)
197    return 0;
198
199  // Otherwise, this is safe to transform.  Insert PHI nodes for each operand
200  // that is variable.
201  SmallVector<PHINode*, 16> OperandPhis(FixedOperands.size());
202
203  bool HasAnyPHIs = false;
204  for (unsigned i = 0, e = FixedOperands.size(); i != e; ++i) {
205    if (FixedOperands[i]) continue;  // operand doesn't need a phi.
206    Value *FirstOp = FirstInst->getOperand(i);
207    PHINode *NewPN = PHINode::Create(FirstOp->getType(), e,
208                                     FirstOp->getName()+".pn");
209    InsertNewInstBefore(NewPN, PN);
210
211    NewPN->addIncoming(FirstOp, PN.getIncomingBlock(0));
212    OperandPhis[i] = NewPN;
213    FixedOperands[i] = NewPN;
214    HasAnyPHIs = true;
215  }
216
217
218  // Add all operands to the new PHIs.
219  if (HasAnyPHIs) {
220    for (unsigned i = 1, e = PN.getNumIncomingValues(); i != e; ++i) {
221      GetElementPtrInst *InGEP =cast<GetElementPtrInst>(PN.getIncomingValue(i));
222      BasicBlock *InBB = PN.getIncomingBlock(i);
223
224      for (unsigned op = 0, e = OperandPhis.size(); op != e; ++op)
225        if (PHINode *OpPhi = OperandPhis[op])
226          OpPhi->addIncoming(InGEP->getOperand(op), InBB);
227    }
228  }
229
230  Value *Base = FixedOperands[0];
231  GetElementPtrInst *NewGEP =
232    GetElementPtrInst::Create(Base, makeArrayRef(FixedOperands).slice(1));
233  if (AllInBounds) NewGEP->setIsInBounds();
234  NewGEP->setDebugLoc(FirstInst->getDebugLoc());
235  return NewGEP;
236}
237
238
239/// isSafeAndProfitableToSinkLoad - Return true if we know that it is safe to
240/// sink the load out of the block that defines it.  This means that it must be
241/// obvious the value of the load is not changed from the point of the load to
242/// the end of the block it is in.
243///
244/// Finally, it is safe, but not profitable, to sink a load targeting a
245/// non-address-taken alloca.  Doing so will cause us to not promote the alloca
246/// to a register.
247static bool isSafeAndProfitableToSinkLoad(LoadInst *L) {
248  BasicBlock::iterator BBI = L, E = L->getParent()->end();
249
250  for (++BBI; BBI != E; ++BBI)
251    if (BBI->mayWriteToMemory())
252      return false;
253
254  // Check for non-address taken alloca.  If not address-taken already, it isn't
255  // profitable to do this xform.
256  if (AllocaInst *AI = dyn_cast<AllocaInst>(L->getOperand(0))) {
257    bool isAddressTaken = false;
258    for (Value::use_iterator UI = AI->use_begin(), E = AI->use_end();
259         UI != E; ++UI) {
260      User *U = *UI;
261      if (isa<LoadInst>(U)) continue;
262      if (StoreInst *SI = dyn_cast<StoreInst>(U)) {
263        // If storing TO the alloca, then the address isn't taken.
264        if (SI->getOperand(1) == AI) continue;
265      }
266      isAddressTaken = true;
267      break;
268    }
269
270    if (!isAddressTaken && AI->isStaticAlloca())
271      return false;
272  }
273
274  // If this load is a load from a GEP with a constant offset from an alloca,
275  // then we don't want to sink it.  In its present form, it will be
276  // load [constant stack offset].  Sinking it will cause us to have to
277  // materialize the stack addresses in each predecessor in a register only to
278  // do a shared load from register in the successor.
279  if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(L->getOperand(0)))
280    if (AllocaInst *AI = dyn_cast<AllocaInst>(GEP->getOperand(0)))
281      if (AI->isStaticAlloca() && GEP->hasAllConstantIndices())
282        return false;
283
284  return true;
285}
286
287Instruction *InstCombiner::FoldPHIArgLoadIntoPHI(PHINode &PN) {
288  LoadInst *FirstLI = cast<LoadInst>(PN.getIncomingValue(0));
289
290  // FIXME: This is overconservative; this transform is allowed in some cases
291  // for atomic operations.
292  if (FirstLI->isAtomic())
293    return 0;
294
295  // When processing loads, we need to propagate two bits of information to the
296  // sunk load: whether it is volatile, and what its alignment is.  We currently
297  // don't sink loads when some have their alignment specified and some don't.
298  // visitLoadInst will propagate an alignment onto the load when TD is around,
299  // and if TD isn't around, we can't handle the mixed case.
300  bool isVolatile = FirstLI->isVolatile();
301  unsigned LoadAlignment = FirstLI->getAlignment();
302  unsigned LoadAddrSpace = FirstLI->getPointerAddressSpace();
303
304  // We can't sink the load if the loaded value could be modified between the
305  // load and the PHI.
306  if (FirstLI->getParent() != PN.getIncomingBlock(0) ||
307      !isSafeAndProfitableToSinkLoad(FirstLI))
308    return 0;
309
310  // If the PHI is of volatile loads and the load block has multiple
311  // successors, sinking it would remove a load of the volatile value from
312  // the path through the other successor.
313  if (isVolatile &&
314      FirstLI->getParent()->getTerminator()->getNumSuccessors() != 1)
315    return 0;
316
317  // Check to see if all arguments are the same operation.
318  for (unsigned i = 1, e = PN.getNumIncomingValues(); i != e; ++i) {
319    LoadInst *LI = dyn_cast<LoadInst>(PN.getIncomingValue(i));
320    if (!LI || !LI->hasOneUse())
321      return 0;
322
323    // We can't sink the load if the loaded value could be modified between
324    // the load and the PHI.
325    if (LI->isVolatile() != isVolatile ||
326        LI->getParent() != PN.getIncomingBlock(i) ||
327        LI->getPointerAddressSpace() != LoadAddrSpace ||
328        !isSafeAndProfitableToSinkLoad(LI))
329      return 0;
330
331    // If some of the loads have an alignment specified but not all of them,
332    // we can't do the transformation.
333    if ((LoadAlignment != 0) != (LI->getAlignment() != 0))
334      return 0;
335
336    LoadAlignment = std::min(LoadAlignment, LI->getAlignment());
337
338    // If the PHI is of volatile loads and the load block has multiple
339    // successors, sinking it would remove a load of the volatile value from
340    // the path through the other successor.
341    if (isVolatile &&
342        LI->getParent()->getTerminator()->getNumSuccessors() != 1)
343      return 0;
344  }
345
346  // Okay, they are all the same operation.  Create a new PHI node of the
347  // correct type, and PHI together all of the LHS's of the instructions.
348  PHINode *NewPN = PHINode::Create(FirstLI->getOperand(0)->getType(),
349                                   PN.getNumIncomingValues(),
350                                   PN.getName()+".in");
351
352  Value *InVal = FirstLI->getOperand(0);
353  NewPN->addIncoming(InVal, PN.getIncomingBlock(0));
354
355  // Add all operands to the new PHI.
356  for (unsigned i = 1, e = PN.getNumIncomingValues(); i != e; ++i) {
357    Value *NewInVal = cast<LoadInst>(PN.getIncomingValue(i))->getOperand(0);
358    if (NewInVal != InVal)
359      InVal = 0;
360    NewPN->addIncoming(NewInVal, PN.getIncomingBlock(i));
361  }
362
363  Value *PhiVal;
364  if (InVal) {
365    // The new PHI unions all of the same values together.  This is really
366    // common, so we handle it intelligently here for compile-time speed.
367    PhiVal = InVal;
368    delete NewPN;
369  } else {
370    InsertNewInstBefore(NewPN, PN);
371    PhiVal = NewPN;
372  }
373
374  // If this was a volatile load that we are merging, make sure to loop through
375  // and mark all the input loads as non-volatile.  If we don't do this, we will
376  // insert a new volatile load and the old ones will not be deletable.
377  if (isVolatile)
378    for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i)
379      cast<LoadInst>(PN.getIncomingValue(i))->setVolatile(false);
380
381  LoadInst *NewLI = new LoadInst(PhiVal, "", isVolatile, LoadAlignment);
382  NewLI->setDebugLoc(FirstLI->getDebugLoc());
383  return NewLI;
384}
385
386
387
388/// FoldPHIArgOpIntoPHI - If all operands to a PHI node are the same "unary"
389/// operator and they all are only used by the PHI, PHI together their
390/// inputs, and do the operation once, to the result of the PHI.
391Instruction *InstCombiner::FoldPHIArgOpIntoPHI(PHINode &PN) {
392  Instruction *FirstInst = cast<Instruction>(PN.getIncomingValue(0));
393
394  if (isa<GetElementPtrInst>(FirstInst))
395    return FoldPHIArgGEPIntoPHI(PN);
396  if (isa<LoadInst>(FirstInst))
397    return FoldPHIArgLoadIntoPHI(PN);
398
399  // Scan the instruction, looking for input operations that can be folded away.
400  // If all input operands to the phi are the same instruction (e.g. a cast from
401  // the same type or "+42") we can pull the operation through the PHI, reducing
402  // code size and simplifying code.
403  Constant *ConstantOp = 0;
404  Type *CastSrcTy = 0;
405  bool isNUW = false, isNSW = false, isExact = false;
406
407  if (isa<CastInst>(FirstInst)) {
408    CastSrcTy = FirstInst->getOperand(0)->getType();
409
410    // Be careful about transforming integer PHIs.  We don't want to pessimize
411    // the code by turning an i32 into an i1293.
412    if (PN.getType()->isIntegerTy() && CastSrcTy->isIntegerTy()) {
413      if (!ShouldChangeType(PN.getType(), CastSrcTy))
414        return 0;
415    }
416  } else if (isa<BinaryOperator>(FirstInst) || isa<CmpInst>(FirstInst)) {
417    // Can fold binop, compare or shift here if the RHS is a constant,
418    // otherwise call FoldPHIArgBinOpIntoPHI.
419    ConstantOp = dyn_cast<Constant>(FirstInst->getOperand(1));
420    if (ConstantOp == 0)
421      return FoldPHIArgBinOpIntoPHI(PN);
422
423    if (OverflowingBinaryOperator *BO =
424        dyn_cast<OverflowingBinaryOperator>(FirstInst)) {
425      isNUW = BO->hasNoUnsignedWrap();
426      isNSW = BO->hasNoSignedWrap();
427    } else if (PossiblyExactOperator *PEO =
428               dyn_cast<PossiblyExactOperator>(FirstInst))
429      isExact = PEO->isExact();
430  } else {
431    return 0;  // Cannot fold this operation.
432  }
433
434  // Check to see if all arguments are the same operation.
435  for (unsigned i = 1, e = PN.getNumIncomingValues(); i != e; ++i) {
436    Instruction *I = dyn_cast<Instruction>(PN.getIncomingValue(i));
437    if (I == 0 || !I->hasOneUse() || !I->isSameOperationAs(FirstInst))
438      return 0;
439    if (CastSrcTy) {
440      if (I->getOperand(0)->getType() != CastSrcTy)
441        return 0;  // Cast operation must match.
442    } else if (I->getOperand(1) != ConstantOp) {
443      return 0;
444    }
445
446    if (isNUW)
447      isNUW = cast<OverflowingBinaryOperator>(I)->hasNoUnsignedWrap();
448    if (isNSW)
449      isNSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap();
450    if (isExact)
451      isExact = cast<PossiblyExactOperator>(I)->isExact();
452  }
453
454  // Okay, they are all the same operation.  Create a new PHI node of the
455  // correct type, and PHI together all of the LHS's of the instructions.
456  PHINode *NewPN = PHINode::Create(FirstInst->getOperand(0)->getType(),
457                                   PN.getNumIncomingValues(),
458                                   PN.getName()+".in");
459
460  Value *InVal = FirstInst->getOperand(0);
461  NewPN->addIncoming(InVal, PN.getIncomingBlock(0));
462
463  // Add all operands to the new PHI.
464  for (unsigned i = 1, e = PN.getNumIncomingValues(); i != e; ++i) {
465    Value *NewInVal = cast<Instruction>(PN.getIncomingValue(i))->getOperand(0);
466    if (NewInVal != InVal)
467      InVal = 0;
468    NewPN->addIncoming(NewInVal, PN.getIncomingBlock(i));
469  }
470
471  Value *PhiVal;
472  if (InVal) {
473    // The new PHI unions all of the same values together.  This is really
474    // common, so we handle it intelligently here for compile-time speed.
475    PhiVal = InVal;
476    delete NewPN;
477  } else {
478    InsertNewInstBefore(NewPN, PN);
479    PhiVal = NewPN;
480  }
481
482  // Insert and return the new operation.
483  if (CastInst *FirstCI = dyn_cast<CastInst>(FirstInst)) {
484    CastInst *NewCI = CastInst::Create(FirstCI->getOpcode(), PhiVal,
485                                       PN.getType());
486    NewCI->setDebugLoc(FirstInst->getDebugLoc());
487    return NewCI;
488  }
489
490  if (BinaryOperator *BinOp = dyn_cast<BinaryOperator>(FirstInst)) {
491    BinOp = BinaryOperator::Create(BinOp->getOpcode(), PhiVal, ConstantOp);
492    if (isNUW) BinOp->setHasNoUnsignedWrap();
493    if (isNSW) BinOp->setHasNoSignedWrap();
494    if (isExact) BinOp->setIsExact();
495    BinOp->setDebugLoc(FirstInst->getDebugLoc());
496    return BinOp;
497  }
498
499  CmpInst *CIOp = cast<CmpInst>(FirstInst);
500  CmpInst *NewCI = CmpInst::Create(CIOp->getOpcode(), CIOp->getPredicate(),
501                                   PhiVal, ConstantOp);
502  NewCI->setDebugLoc(FirstInst->getDebugLoc());
503  return NewCI;
504}
505
506/// DeadPHICycle - Return true if this PHI node is only used by a PHI node cycle
507/// that is dead.
508static bool DeadPHICycle(PHINode *PN,
509                         SmallPtrSet<PHINode*, 16> &PotentiallyDeadPHIs) {
510  if (PN->use_empty()) return true;
511  if (!PN->hasOneUse()) return false;
512
513  // Remember this node, and if we find the cycle, return.
514  if (!PotentiallyDeadPHIs.insert(PN))
515    return true;
516
517  // Don't scan crazily complex things.
518  if (PotentiallyDeadPHIs.size() == 16)
519    return false;
520
521  if (PHINode *PU = dyn_cast<PHINode>(PN->use_back()))
522    return DeadPHICycle(PU, PotentiallyDeadPHIs);
523
524  return false;
525}
526
527/// PHIsEqualValue - Return true if this phi node is always equal to
528/// NonPhiInVal.  This happens with mutually cyclic phi nodes like:
529///   z = some value; x = phi (y, z); y = phi (x, z)
530static bool PHIsEqualValue(PHINode *PN, Value *NonPhiInVal,
531                           SmallPtrSet<PHINode*, 16> &ValueEqualPHIs) {
532  // See if we already saw this PHI node.
533  if (!ValueEqualPHIs.insert(PN))
534    return true;
535
536  // Don't scan crazily complex things.
537  if (ValueEqualPHIs.size() == 16)
538    return false;
539
540  // Scan the operands to see if they are either phi nodes or are equal to
541  // the value.
542  for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
543    Value *Op = PN->getIncomingValue(i);
544    if (PHINode *OpPN = dyn_cast<PHINode>(Op)) {
545      if (!PHIsEqualValue(OpPN, NonPhiInVal, ValueEqualPHIs))
546        return false;
547    } else if (Op != NonPhiInVal)
548      return false;
549  }
550
551  return true;
552}
553
554
555namespace {
556struct PHIUsageRecord {
557  unsigned PHIId;     // The ID # of the PHI (something determinstic to sort on)
558  unsigned Shift;     // The amount shifted.
559  Instruction *Inst;  // The trunc instruction.
560
561  PHIUsageRecord(unsigned pn, unsigned Sh, Instruction *User)
562    : PHIId(pn), Shift(Sh), Inst(User) {}
563
564  bool operator<(const PHIUsageRecord &RHS) const {
565    if (PHIId < RHS.PHIId) return true;
566    if (PHIId > RHS.PHIId) return false;
567    if (Shift < RHS.Shift) return true;
568    if (Shift > RHS.Shift) return false;
569    return Inst->getType()->getPrimitiveSizeInBits() <
570           RHS.Inst->getType()->getPrimitiveSizeInBits();
571  }
572};
573
574struct LoweredPHIRecord {
575  PHINode *PN;        // The PHI that was lowered.
576  unsigned Shift;     // The amount shifted.
577  unsigned Width;     // The width extracted.
578
579  LoweredPHIRecord(PHINode *pn, unsigned Sh, Type *Ty)
580    : PN(pn), Shift(Sh), Width(Ty->getPrimitiveSizeInBits()) {}
581
582  // Ctor form used by DenseMap.
583  LoweredPHIRecord(PHINode *pn, unsigned Sh)
584    : PN(pn), Shift(Sh), Width(0) {}
585};
586}
587
588namespace llvm {
589  template<>
590  struct DenseMapInfo<LoweredPHIRecord> {
591    static inline LoweredPHIRecord getEmptyKey() {
592      return LoweredPHIRecord(0, 0);
593    }
594    static inline LoweredPHIRecord getTombstoneKey() {
595      return LoweredPHIRecord(0, 1);
596    }
597    static unsigned getHashValue(const LoweredPHIRecord &Val) {
598      return DenseMapInfo<PHINode*>::getHashValue(Val.PN) ^ (Val.Shift>>3) ^
599             (Val.Width>>3);
600    }
601    static bool isEqual(const LoweredPHIRecord &LHS,
602                        const LoweredPHIRecord &RHS) {
603      return LHS.PN == RHS.PN && LHS.Shift == RHS.Shift &&
604             LHS.Width == RHS.Width;
605    }
606  };
607}
608
609
610/// SliceUpIllegalIntegerPHI - This is an integer PHI and we know that it has an
611/// illegal type: see if it is only used by trunc or trunc(lshr) operations.  If
612/// so, we split the PHI into the various pieces being extracted.  This sort of
613/// thing is introduced when SROA promotes an aggregate to large integer values.
614///
615/// TODO: The user of the trunc may be an bitcast to float/double/vector or an
616/// inttoptr.  We should produce new PHIs in the right type.
617///
618Instruction *InstCombiner::SliceUpIllegalIntegerPHI(PHINode &FirstPhi) {
619  // PHIUsers - Keep track of all of the truncated values extracted from a set
620  // of PHIs, along with their offset.  These are the things we want to rewrite.
621  SmallVector<PHIUsageRecord, 16> PHIUsers;
622
623  // PHIs are often mutually cyclic, so we keep track of a whole set of PHI
624  // nodes which are extracted from. PHIsToSlice is a set we use to avoid
625  // revisiting PHIs, PHIsInspected is a ordered list of PHIs that we need to
626  // check the uses of (to ensure they are all extracts).
627  SmallVector<PHINode*, 8> PHIsToSlice;
628  SmallPtrSet<PHINode*, 8> PHIsInspected;
629
630  PHIsToSlice.push_back(&FirstPhi);
631  PHIsInspected.insert(&FirstPhi);
632
633  for (unsigned PHIId = 0; PHIId != PHIsToSlice.size(); ++PHIId) {
634    PHINode *PN = PHIsToSlice[PHIId];
635
636    // Scan the input list of the PHI.  If any input is an invoke, and if the
637    // input is defined in the predecessor, then we won't be split the critical
638    // edge which is required to insert a truncate.  Because of this, we have to
639    // bail out.
640    for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
641      InvokeInst *II = dyn_cast<InvokeInst>(PN->getIncomingValue(i));
642      if (II == 0) continue;
643      if (II->getParent() != PN->getIncomingBlock(i))
644        continue;
645
646      // If we have a phi, and if it's directly in the predecessor, then we have
647      // a critical edge where we need to put the truncate.  Since we can't
648      // split the edge in instcombine, we have to bail out.
649      return 0;
650    }
651
652
653    for (Value::use_iterator UI = PN->use_begin(), E = PN->use_end();
654         UI != E; ++UI) {
655      Instruction *User = cast<Instruction>(*UI);
656
657      // If the user is a PHI, inspect its uses recursively.
658      if (PHINode *UserPN = dyn_cast<PHINode>(User)) {
659        if (PHIsInspected.insert(UserPN))
660          PHIsToSlice.push_back(UserPN);
661        continue;
662      }
663
664      // Truncates are always ok.
665      if (isa<TruncInst>(User)) {
666        PHIUsers.push_back(PHIUsageRecord(PHIId, 0, User));
667        continue;
668      }
669
670      // Otherwise it must be a lshr which can only be used by one trunc.
671      if (User->getOpcode() != Instruction::LShr ||
672          !User->hasOneUse() || !isa<TruncInst>(User->use_back()) ||
673          !isa<ConstantInt>(User->getOperand(1)))
674        return 0;
675
676      unsigned Shift = cast<ConstantInt>(User->getOperand(1))->getZExtValue();
677      PHIUsers.push_back(PHIUsageRecord(PHIId, Shift, User->use_back()));
678    }
679  }
680
681  // If we have no users, they must be all self uses, just nuke the PHI.
682  if (PHIUsers.empty())
683    return ReplaceInstUsesWith(FirstPhi, UndefValue::get(FirstPhi.getType()));
684
685  // If this phi node is transformable, create new PHIs for all the pieces
686  // extracted out of it.  First, sort the users by their offset and size.
687  array_pod_sort(PHIUsers.begin(), PHIUsers.end());
688
689  DEBUG(dbgs() << "SLICING UP PHI: " << FirstPhi << '\n';
690        for (unsigned i = 1, e = PHIsToSlice.size(); i != e; ++i)
691          dbgs() << "AND USER PHI #" << i << ": " << *PHIsToSlice[i] << '\n';
692    );
693
694  // PredValues - This is a temporary used when rewriting PHI nodes.  It is
695  // hoisted out here to avoid construction/destruction thrashing.
696  DenseMap<BasicBlock*, Value*> PredValues;
697
698  // ExtractedVals - Each new PHI we introduce is saved here so we don't
699  // introduce redundant PHIs.
700  DenseMap<LoweredPHIRecord, PHINode*> ExtractedVals;
701
702  for (unsigned UserI = 0, UserE = PHIUsers.size(); UserI != UserE; ++UserI) {
703    unsigned PHIId = PHIUsers[UserI].PHIId;
704    PHINode *PN = PHIsToSlice[PHIId];
705    unsigned Offset = PHIUsers[UserI].Shift;
706    Type *Ty = PHIUsers[UserI].Inst->getType();
707
708    PHINode *EltPHI;
709
710    // If we've already lowered a user like this, reuse the previously lowered
711    // value.
712    if ((EltPHI = ExtractedVals[LoweredPHIRecord(PN, Offset, Ty)]) == 0) {
713
714      // Otherwise, Create the new PHI node for this user.
715      EltPHI = PHINode::Create(Ty, PN->getNumIncomingValues(),
716                               PN->getName()+".off"+Twine(Offset), PN);
717      assert(EltPHI->getType() != PN->getType() &&
718             "Truncate didn't shrink phi?");
719
720      for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
721        BasicBlock *Pred = PN->getIncomingBlock(i);
722        Value *&PredVal = PredValues[Pred];
723
724        // If we already have a value for this predecessor, reuse it.
725        if (PredVal) {
726          EltPHI->addIncoming(PredVal, Pred);
727          continue;
728        }
729
730        // Handle the PHI self-reuse case.
731        Value *InVal = PN->getIncomingValue(i);
732        if (InVal == PN) {
733          PredVal = EltPHI;
734          EltPHI->addIncoming(PredVal, Pred);
735          continue;
736        }
737
738        if (PHINode *InPHI = dyn_cast<PHINode>(PN)) {
739          // If the incoming value was a PHI, and if it was one of the PHIs we
740          // already rewrote it, just use the lowered value.
741          if (Value *Res = ExtractedVals[LoweredPHIRecord(InPHI, Offset, Ty)]) {
742            PredVal = Res;
743            EltPHI->addIncoming(PredVal, Pred);
744            continue;
745          }
746        }
747
748        // Otherwise, do an extract in the predecessor.
749        Builder->SetInsertPoint(Pred, Pred->getTerminator());
750        Value *Res = InVal;
751        if (Offset)
752          Res = Builder->CreateLShr(Res, ConstantInt::get(InVal->getType(),
753                                                          Offset), "extract");
754        Res = Builder->CreateTrunc(Res, Ty, "extract.t");
755        PredVal = Res;
756        EltPHI->addIncoming(Res, Pred);
757
758        // If the incoming value was a PHI, and if it was one of the PHIs we are
759        // rewriting, we will ultimately delete the code we inserted.  This
760        // means we need to revisit that PHI to make sure we extract out the
761        // needed piece.
762        if (PHINode *OldInVal = dyn_cast<PHINode>(PN->getIncomingValue(i)))
763          if (PHIsInspected.count(OldInVal)) {
764            unsigned RefPHIId = std::find(PHIsToSlice.begin(),PHIsToSlice.end(),
765                                          OldInVal)-PHIsToSlice.begin();
766            PHIUsers.push_back(PHIUsageRecord(RefPHIId, Offset,
767                                              cast<Instruction>(Res)));
768            ++UserE;
769          }
770      }
771      PredValues.clear();
772
773      DEBUG(dbgs() << "  Made element PHI for offset " << Offset << ": "
774                   << *EltPHI << '\n');
775      ExtractedVals[LoweredPHIRecord(PN, Offset, Ty)] = EltPHI;
776    }
777
778    // Replace the use of this piece with the PHI node.
779    ReplaceInstUsesWith(*PHIUsers[UserI].Inst, EltPHI);
780  }
781
782  // Replace all the remaining uses of the PHI nodes (self uses and the lshrs)
783  // with undefs.
784  Value *Undef = UndefValue::get(FirstPhi.getType());
785  for (unsigned i = 1, e = PHIsToSlice.size(); i != e; ++i)
786    ReplaceInstUsesWith(*PHIsToSlice[i], Undef);
787  return ReplaceInstUsesWith(FirstPhi, Undef);
788}
789
790// PHINode simplification
791//
792Instruction *InstCombiner::visitPHINode(PHINode &PN) {
793  if (Value *V = SimplifyInstruction(&PN, TD, TLI))
794    return ReplaceInstUsesWith(PN, V);
795
796  // If all PHI operands are the same operation, pull them through the PHI,
797  // reducing code size.
798  if (isa<Instruction>(PN.getIncomingValue(0)) &&
799      isa<Instruction>(PN.getIncomingValue(1)) &&
800      cast<Instruction>(PN.getIncomingValue(0))->getOpcode() ==
801      cast<Instruction>(PN.getIncomingValue(1))->getOpcode() &&
802      // FIXME: The hasOneUse check will fail for PHIs that use the value more
803      // than themselves more than once.
804      PN.getIncomingValue(0)->hasOneUse())
805    if (Instruction *Result = FoldPHIArgOpIntoPHI(PN))
806      return Result;
807
808  // If this is a trivial cycle in the PHI node graph, remove it.  Basically, if
809  // this PHI only has a single use (a PHI), and if that PHI only has one use (a
810  // PHI)... break the cycle.
811  if (PN.hasOneUse()) {
812    Instruction *PHIUser = cast<Instruction>(PN.use_back());
813    if (PHINode *PU = dyn_cast<PHINode>(PHIUser)) {
814      SmallPtrSet<PHINode*, 16> PotentiallyDeadPHIs;
815      PotentiallyDeadPHIs.insert(&PN);
816      if (DeadPHICycle(PU, PotentiallyDeadPHIs))
817        return ReplaceInstUsesWith(PN, UndefValue::get(PN.getType()));
818    }
819
820    // If this phi has a single use, and if that use just computes a value for
821    // the next iteration of a loop, delete the phi.  This occurs with unused
822    // induction variables, e.g. "for (int j = 0; ; ++j);".  Detecting this
823    // common case here is good because the only other things that catch this
824    // are induction variable analysis (sometimes) and ADCE, which is only run
825    // late.
826    if (PHIUser->hasOneUse() &&
827        (isa<BinaryOperator>(PHIUser) || isa<GetElementPtrInst>(PHIUser)) &&
828        PHIUser->use_back() == &PN) {
829      return ReplaceInstUsesWith(PN, UndefValue::get(PN.getType()));
830    }
831  }
832
833  // We sometimes end up with phi cycles that non-obviously end up being the
834  // same value, for example:
835  //   z = some value; x = phi (y, z); y = phi (x, z)
836  // where the phi nodes don't necessarily need to be in the same block.  Do a
837  // quick check to see if the PHI node only contains a single non-phi value, if
838  // so, scan to see if the phi cycle is actually equal to that value.
839  {
840    unsigned InValNo = 0, NumIncomingVals = PN.getNumIncomingValues();
841    // Scan for the first non-phi operand.
842    while (InValNo != NumIncomingVals &&
843           isa<PHINode>(PN.getIncomingValue(InValNo)))
844      ++InValNo;
845
846    if (InValNo != NumIncomingVals) {
847      Value *NonPhiInVal = PN.getIncomingValue(InValNo);
848
849      // Scan the rest of the operands to see if there are any conflicts, if so
850      // there is no need to recursively scan other phis.
851      for (++InValNo; InValNo != NumIncomingVals; ++InValNo) {
852        Value *OpVal = PN.getIncomingValue(InValNo);
853        if (OpVal != NonPhiInVal && !isa<PHINode>(OpVal))
854          break;
855      }
856
857      // If we scanned over all operands, then we have one unique value plus
858      // phi values.  Scan PHI nodes to see if they all merge in each other or
859      // the value.
860      if (InValNo == NumIncomingVals) {
861        SmallPtrSet<PHINode*, 16> ValueEqualPHIs;
862        if (PHIsEqualValue(&PN, NonPhiInVal, ValueEqualPHIs))
863          return ReplaceInstUsesWith(PN, NonPhiInVal);
864      }
865    }
866  }
867
868  // If there are multiple PHIs, sort their operands so that they all list
869  // the blocks in the same order. This will help identical PHIs be eliminated
870  // by other passes. Other passes shouldn't depend on this for correctness
871  // however.
872  PHINode *FirstPN = cast<PHINode>(PN.getParent()->begin());
873  if (&PN != FirstPN)
874    for (unsigned i = 0, e = FirstPN->getNumIncomingValues(); i != e; ++i) {
875      BasicBlock *BBA = PN.getIncomingBlock(i);
876      BasicBlock *BBB = FirstPN->getIncomingBlock(i);
877      if (BBA != BBB) {
878        Value *VA = PN.getIncomingValue(i);
879        unsigned j = PN.getBasicBlockIndex(BBB);
880        Value *VB = PN.getIncomingValue(j);
881        PN.setIncomingBlock(i, BBB);
882        PN.setIncomingValue(i, VB);
883        PN.setIncomingBlock(j, BBA);
884        PN.setIncomingValue(j, VA);
885        // NOTE: Instcombine normally would want us to "return &PN" if we
886        // modified any of the operands of an instruction.  However, since we
887        // aren't adding or removing uses (just rearranging them) we don't do
888        // this in this case.
889      }
890    }
891
892  // If this is an integer PHI and we know that it has an illegal type, see if
893  // it is only used by trunc or trunc(lshr) operations.  If so, we split the
894  // PHI into the various pieces being extracted.  This sort of thing is
895  // introduced when SROA promotes an aggregate to a single large integer type.
896  if (PN.getType()->isIntegerTy() && TD &&
897      !TD->isLegalInteger(PN.getType()->getPrimitiveSizeInBits()))
898    if (Instruction *Res = SliceUpIllegalIntegerPHI(PN))
899      return Res;
900
901  return 0;
902}
903