InstCombineCompares.cpp revision 263508
1//===- InstCombineCompares.cpp --------------------------------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the visitICmp and visitFCmp functions.
11//
12//===----------------------------------------------------------------------===//
13
14#include "InstCombine.h"
15#include "llvm/Analysis/ConstantFolding.h"
16#include "llvm/Analysis/InstructionSimplify.h"
17#include "llvm/Analysis/MemoryBuiltins.h"
18#include "llvm/IR/DataLayout.h"
19#include "llvm/IR/IntrinsicInst.h"
20#include "llvm/Support/ConstantRange.h"
21#include "llvm/Support/GetElementPtrTypeIterator.h"
22#include "llvm/Support/PatternMatch.h"
23#include "llvm/Target/TargetLibraryInfo.h"
24using namespace llvm;
25using namespace PatternMatch;
26
27static ConstantInt *getOne(Constant *C) {
28  return ConstantInt::get(cast<IntegerType>(C->getType()), 1);
29}
30
31/// AddOne - Add one to a ConstantInt
32static Constant *AddOne(Constant *C) {
33  return ConstantExpr::getAdd(C, ConstantInt::get(C->getType(), 1));
34}
35/// SubOne - Subtract one from a ConstantInt
36static Constant *SubOne(Constant *C) {
37  return ConstantExpr::getSub(C, ConstantInt::get(C->getType(), 1));
38}
39
40static ConstantInt *ExtractElement(Constant *V, Constant *Idx) {
41  return cast<ConstantInt>(ConstantExpr::getExtractElement(V, Idx));
42}
43
44static bool HasAddOverflow(ConstantInt *Result,
45                           ConstantInt *In1, ConstantInt *In2,
46                           bool IsSigned) {
47  if (!IsSigned)
48    return Result->getValue().ult(In1->getValue());
49
50  if (In2->isNegative())
51    return Result->getValue().sgt(In1->getValue());
52  return Result->getValue().slt(In1->getValue());
53}
54
55/// AddWithOverflow - Compute Result = In1+In2, returning true if the result
56/// overflowed for this type.
57static bool AddWithOverflow(Constant *&Result, Constant *In1,
58                            Constant *In2, bool IsSigned = false) {
59  Result = ConstantExpr::getAdd(In1, In2);
60
61  if (VectorType *VTy = dyn_cast<VectorType>(In1->getType())) {
62    for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i) {
63      Constant *Idx = ConstantInt::get(Type::getInt32Ty(In1->getContext()), i);
64      if (HasAddOverflow(ExtractElement(Result, Idx),
65                         ExtractElement(In1, Idx),
66                         ExtractElement(In2, Idx),
67                         IsSigned))
68        return true;
69    }
70    return false;
71  }
72
73  return HasAddOverflow(cast<ConstantInt>(Result),
74                        cast<ConstantInt>(In1), cast<ConstantInt>(In2),
75                        IsSigned);
76}
77
78static bool HasSubOverflow(ConstantInt *Result,
79                           ConstantInt *In1, ConstantInt *In2,
80                           bool IsSigned) {
81  if (!IsSigned)
82    return Result->getValue().ugt(In1->getValue());
83
84  if (In2->isNegative())
85    return Result->getValue().slt(In1->getValue());
86
87  return Result->getValue().sgt(In1->getValue());
88}
89
90/// SubWithOverflow - Compute Result = In1-In2, returning true if the result
91/// overflowed for this type.
92static bool SubWithOverflow(Constant *&Result, Constant *In1,
93                            Constant *In2, bool IsSigned = false) {
94  Result = ConstantExpr::getSub(In1, In2);
95
96  if (VectorType *VTy = dyn_cast<VectorType>(In1->getType())) {
97    for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i) {
98      Constant *Idx = ConstantInt::get(Type::getInt32Ty(In1->getContext()), i);
99      if (HasSubOverflow(ExtractElement(Result, Idx),
100                         ExtractElement(In1, Idx),
101                         ExtractElement(In2, Idx),
102                         IsSigned))
103        return true;
104    }
105    return false;
106  }
107
108  return HasSubOverflow(cast<ConstantInt>(Result),
109                        cast<ConstantInt>(In1), cast<ConstantInt>(In2),
110                        IsSigned);
111}
112
113/// isSignBitCheck - Given an exploded icmp instruction, return true if the
114/// comparison only checks the sign bit.  If it only checks the sign bit, set
115/// TrueIfSigned if the result of the comparison is true when the input value is
116/// signed.
117static bool isSignBitCheck(ICmpInst::Predicate pred, ConstantInt *RHS,
118                           bool &TrueIfSigned) {
119  switch (pred) {
120  case ICmpInst::ICMP_SLT:   // True if LHS s< 0
121    TrueIfSigned = true;
122    return RHS->isZero();
123  case ICmpInst::ICMP_SLE:   // True if LHS s<= RHS and RHS == -1
124    TrueIfSigned = true;
125    return RHS->isAllOnesValue();
126  case ICmpInst::ICMP_SGT:   // True if LHS s> -1
127    TrueIfSigned = false;
128    return RHS->isAllOnesValue();
129  case ICmpInst::ICMP_UGT:
130    // True if LHS u> RHS and RHS == high-bit-mask - 1
131    TrueIfSigned = true;
132    return RHS->isMaxValue(true);
133  case ICmpInst::ICMP_UGE:
134    // True if LHS u>= RHS and RHS == high-bit-mask (2^7, 2^15, 2^31, etc)
135    TrueIfSigned = true;
136    return RHS->getValue().isSignBit();
137  default:
138    return false;
139  }
140}
141
142/// Returns true if the exploded icmp can be expressed as a signed comparison
143/// to zero and updates the predicate accordingly.
144/// The signedness of the comparison is preserved.
145static bool isSignTest(ICmpInst::Predicate &pred, const ConstantInt *RHS) {
146  if (!ICmpInst::isSigned(pred))
147    return false;
148
149  if (RHS->isZero())
150    return ICmpInst::isRelational(pred);
151
152  if (RHS->isOne()) {
153    if (pred == ICmpInst::ICMP_SLT) {
154      pred = ICmpInst::ICMP_SLE;
155      return true;
156    }
157  } else if (RHS->isAllOnesValue()) {
158    if (pred == ICmpInst::ICMP_SGT) {
159      pred = ICmpInst::ICMP_SGE;
160      return true;
161    }
162  }
163
164  return false;
165}
166
167// isHighOnes - Return true if the constant is of the form 1+0+.
168// This is the same as lowones(~X).
169static bool isHighOnes(const ConstantInt *CI) {
170  return (~CI->getValue() + 1).isPowerOf2();
171}
172
173/// ComputeSignedMinMaxValuesFromKnownBits - Given a signed integer type and a
174/// set of known zero and one bits, compute the maximum and minimum values that
175/// could have the specified known zero and known one bits, returning them in
176/// min/max.
177static void ComputeSignedMinMaxValuesFromKnownBits(const APInt& KnownZero,
178                                                   const APInt& KnownOne,
179                                                   APInt& Min, APInt& Max) {
180  assert(KnownZero.getBitWidth() == KnownOne.getBitWidth() &&
181         KnownZero.getBitWidth() == Min.getBitWidth() &&
182         KnownZero.getBitWidth() == Max.getBitWidth() &&
183         "KnownZero, KnownOne and Min, Max must have equal bitwidth.");
184  APInt UnknownBits = ~(KnownZero|KnownOne);
185
186  // The minimum value is when all unknown bits are zeros, EXCEPT for the sign
187  // bit if it is unknown.
188  Min = KnownOne;
189  Max = KnownOne|UnknownBits;
190
191  if (UnknownBits.isNegative()) { // Sign bit is unknown
192    Min.setBit(Min.getBitWidth()-1);
193    Max.clearBit(Max.getBitWidth()-1);
194  }
195}
196
197// ComputeUnsignedMinMaxValuesFromKnownBits - Given an unsigned integer type and
198// a set of known zero and one bits, compute the maximum and minimum values that
199// could have the specified known zero and known one bits, returning them in
200// min/max.
201static void ComputeUnsignedMinMaxValuesFromKnownBits(const APInt &KnownZero,
202                                                     const APInt &KnownOne,
203                                                     APInt &Min, APInt &Max) {
204  assert(KnownZero.getBitWidth() == KnownOne.getBitWidth() &&
205         KnownZero.getBitWidth() == Min.getBitWidth() &&
206         KnownZero.getBitWidth() == Max.getBitWidth() &&
207         "Ty, KnownZero, KnownOne and Min, Max must have equal bitwidth.");
208  APInt UnknownBits = ~(KnownZero|KnownOne);
209
210  // The minimum value is when the unknown bits are all zeros.
211  Min = KnownOne;
212  // The maximum value is when the unknown bits are all ones.
213  Max = KnownOne|UnknownBits;
214}
215
216
217
218/// FoldCmpLoadFromIndexedGlobal - Called we see this pattern:
219///   cmp pred (load (gep GV, ...)), cmpcst
220/// where GV is a global variable with a constant initializer.  Try to simplify
221/// this into some simple computation that does not need the load.  For example
222/// we can optimize "icmp eq (load (gep "foo", 0, i)), 0" into "icmp eq i, 3".
223///
224/// If AndCst is non-null, then the loaded value is masked with that constant
225/// before doing the comparison.  This handles cases like "A[i]&4 == 0".
226Instruction *InstCombiner::
227FoldCmpLoadFromIndexedGlobal(GetElementPtrInst *GEP, GlobalVariable *GV,
228                             CmpInst &ICI, ConstantInt *AndCst) {
229  // We need TD information to know the pointer size unless this is inbounds.
230  if (!GEP->isInBounds() && TD == 0)
231    return 0;
232
233  Constant *Init = GV->getInitializer();
234  if (!isa<ConstantArray>(Init) && !isa<ConstantDataArray>(Init))
235    return 0;
236
237  uint64_t ArrayElementCount = Init->getType()->getArrayNumElements();
238  if (ArrayElementCount > 1024) return 0;  // Don't blow up on huge arrays.
239
240  // There are many forms of this optimization we can handle, for now, just do
241  // the simple index into a single-dimensional array.
242  //
243  // Require: GEP GV, 0, i {{, constant indices}}
244  if (GEP->getNumOperands() < 3 ||
245      !isa<ConstantInt>(GEP->getOperand(1)) ||
246      !cast<ConstantInt>(GEP->getOperand(1))->isZero() ||
247      isa<Constant>(GEP->getOperand(2)))
248    return 0;
249
250  // Check that indices after the variable are constants and in-range for the
251  // type they index.  Collect the indices.  This is typically for arrays of
252  // structs.
253  SmallVector<unsigned, 4> LaterIndices;
254
255  Type *EltTy = Init->getType()->getArrayElementType();
256  for (unsigned i = 3, e = GEP->getNumOperands(); i != e; ++i) {
257    ConstantInt *Idx = dyn_cast<ConstantInt>(GEP->getOperand(i));
258    if (Idx == 0) return 0;  // Variable index.
259
260    uint64_t IdxVal = Idx->getZExtValue();
261    if ((unsigned)IdxVal != IdxVal) return 0; // Too large array index.
262
263    if (StructType *STy = dyn_cast<StructType>(EltTy))
264      EltTy = STy->getElementType(IdxVal);
265    else if (ArrayType *ATy = dyn_cast<ArrayType>(EltTy)) {
266      if (IdxVal >= ATy->getNumElements()) return 0;
267      EltTy = ATy->getElementType();
268    } else {
269      return 0; // Unknown type.
270    }
271
272    LaterIndices.push_back(IdxVal);
273  }
274
275  enum { Overdefined = -3, Undefined = -2 };
276
277  // Variables for our state machines.
278
279  // FirstTrueElement/SecondTrueElement - Used to emit a comparison of the form
280  // "i == 47 | i == 87", where 47 is the first index the condition is true for,
281  // and 87 is the second (and last) index.  FirstTrueElement is -2 when
282  // undefined, otherwise set to the first true element.  SecondTrueElement is
283  // -2 when undefined, -3 when overdefined and >= 0 when that index is true.
284  int FirstTrueElement = Undefined, SecondTrueElement = Undefined;
285
286  // FirstFalseElement/SecondFalseElement - Used to emit a comparison of the
287  // form "i != 47 & i != 87".  Same state transitions as for true elements.
288  int FirstFalseElement = Undefined, SecondFalseElement = Undefined;
289
290  /// TrueRangeEnd/FalseRangeEnd - In conjunction with First*Element, these
291  /// define a state machine that triggers for ranges of values that the index
292  /// is true or false for.  This triggers on things like "abbbbc"[i] == 'b'.
293  /// This is -2 when undefined, -3 when overdefined, and otherwise the last
294  /// index in the range (inclusive).  We use -2 for undefined here because we
295  /// use relative comparisons and don't want 0-1 to match -1.
296  int TrueRangeEnd = Undefined, FalseRangeEnd = Undefined;
297
298  // MagicBitvector - This is a magic bitvector where we set a bit if the
299  // comparison is true for element 'i'.  If there are 64 elements or less in
300  // the array, this will fully represent all the comparison results.
301  uint64_t MagicBitvector = 0;
302
303
304  // Scan the array and see if one of our patterns matches.
305  Constant *CompareRHS = cast<Constant>(ICI.getOperand(1));
306  for (unsigned i = 0, e = ArrayElementCount; i != e; ++i) {
307    Constant *Elt = Init->getAggregateElement(i);
308    if (Elt == 0) return 0;
309
310    // If this is indexing an array of structures, get the structure element.
311    if (!LaterIndices.empty())
312      Elt = ConstantExpr::getExtractValue(Elt, LaterIndices);
313
314    // If the element is masked, handle it.
315    if (AndCst) Elt = ConstantExpr::getAnd(Elt, AndCst);
316
317    // Find out if the comparison would be true or false for the i'th element.
318    Constant *C = ConstantFoldCompareInstOperands(ICI.getPredicate(), Elt,
319                                                  CompareRHS, TD, TLI);
320    // If the result is undef for this element, ignore it.
321    if (isa<UndefValue>(C)) {
322      // Extend range state machines to cover this element in case there is an
323      // undef in the middle of the range.
324      if (TrueRangeEnd == (int)i-1)
325        TrueRangeEnd = i;
326      if (FalseRangeEnd == (int)i-1)
327        FalseRangeEnd = i;
328      continue;
329    }
330
331    // If we can't compute the result for any of the elements, we have to give
332    // up evaluating the entire conditional.
333    if (!isa<ConstantInt>(C)) return 0;
334
335    // Otherwise, we know if the comparison is true or false for this element,
336    // update our state machines.
337    bool IsTrueForElt = !cast<ConstantInt>(C)->isZero();
338
339    // State machine for single/double/range index comparison.
340    if (IsTrueForElt) {
341      // Update the TrueElement state machine.
342      if (FirstTrueElement == Undefined)
343        FirstTrueElement = TrueRangeEnd = i;  // First true element.
344      else {
345        // Update double-compare state machine.
346        if (SecondTrueElement == Undefined)
347          SecondTrueElement = i;
348        else
349          SecondTrueElement = Overdefined;
350
351        // Update range state machine.
352        if (TrueRangeEnd == (int)i-1)
353          TrueRangeEnd = i;
354        else
355          TrueRangeEnd = Overdefined;
356      }
357    } else {
358      // Update the FalseElement state machine.
359      if (FirstFalseElement == Undefined)
360        FirstFalseElement = FalseRangeEnd = i; // First false element.
361      else {
362        // Update double-compare state machine.
363        if (SecondFalseElement == Undefined)
364          SecondFalseElement = i;
365        else
366          SecondFalseElement = Overdefined;
367
368        // Update range state machine.
369        if (FalseRangeEnd == (int)i-1)
370          FalseRangeEnd = i;
371        else
372          FalseRangeEnd = Overdefined;
373      }
374    }
375
376
377    // If this element is in range, update our magic bitvector.
378    if (i < 64 && IsTrueForElt)
379      MagicBitvector |= 1ULL << i;
380
381    // If all of our states become overdefined, bail out early.  Since the
382    // predicate is expensive, only check it every 8 elements.  This is only
383    // really useful for really huge arrays.
384    if ((i & 8) == 0 && i >= 64 && SecondTrueElement == Overdefined &&
385        SecondFalseElement == Overdefined && TrueRangeEnd == Overdefined &&
386        FalseRangeEnd == Overdefined)
387      return 0;
388  }
389
390  // Now that we've scanned the entire array, emit our new comparison(s).  We
391  // order the state machines in complexity of the generated code.
392  Value *Idx = GEP->getOperand(2);
393
394  // If the index is larger than the pointer size of the target, truncate the
395  // index down like the GEP would do implicitly.  We don't have to do this for
396  // an inbounds GEP because the index can't be out of range.
397  if (!GEP->isInBounds()) {
398    Type *IntPtrTy = TD->getIntPtrType(GEP->getType());
399    unsigned PtrSize = IntPtrTy->getIntegerBitWidth();
400    if (Idx->getType()->getPrimitiveSizeInBits() > PtrSize)
401      Idx = Builder->CreateTrunc(Idx, IntPtrTy);
402  }
403
404  // If the comparison is only true for one or two elements, emit direct
405  // comparisons.
406  if (SecondTrueElement != Overdefined) {
407    // None true -> false.
408    if (FirstTrueElement == Undefined)
409      return ReplaceInstUsesWith(ICI, Builder->getFalse());
410
411    Value *FirstTrueIdx = ConstantInt::get(Idx->getType(), FirstTrueElement);
412
413    // True for one element -> 'i == 47'.
414    if (SecondTrueElement == Undefined)
415      return new ICmpInst(ICmpInst::ICMP_EQ, Idx, FirstTrueIdx);
416
417    // True for two elements -> 'i == 47 | i == 72'.
418    Value *C1 = Builder->CreateICmpEQ(Idx, FirstTrueIdx);
419    Value *SecondTrueIdx = ConstantInt::get(Idx->getType(), SecondTrueElement);
420    Value *C2 = Builder->CreateICmpEQ(Idx, SecondTrueIdx);
421    return BinaryOperator::CreateOr(C1, C2);
422  }
423
424  // If the comparison is only false for one or two elements, emit direct
425  // comparisons.
426  if (SecondFalseElement != Overdefined) {
427    // None false -> true.
428    if (FirstFalseElement == Undefined)
429      return ReplaceInstUsesWith(ICI, Builder->getTrue());
430
431    Value *FirstFalseIdx = ConstantInt::get(Idx->getType(), FirstFalseElement);
432
433    // False for one element -> 'i != 47'.
434    if (SecondFalseElement == Undefined)
435      return new ICmpInst(ICmpInst::ICMP_NE, Idx, FirstFalseIdx);
436
437    // False for two elements -> 'i != 47 & i != 72'.
438    Value *C1 = Builder->CreateICmpNE(Idx, FirstFalseIdx);
439    Value *SecondFalseIdx = ConstantInt::get(Idx->getType(),SecondFalseElement);
440    Value *C2 = Builder->CreateICmpNE(Idx, SecondFalseIdx);
441    return BinaryOperator::CreateAnd(C1, C2);
442  }
443
444  // If the comparison can be replaced with a range comparison for the elements
445  // where it is true, emit the range check.
446  if (TrueRangeEnd != Overdefined) {
447    assert(TrueRangeEnd != FirstTrueElement && "Should emit single compare");
448
449    // Generate (i-FirstTrue) <u (TrueRangeEnd-FirstTrue+1).
450    if (FirstTrueElement) {
451      Value *Offs = ConstantInt::get(Idx->getType(), -FirstTrueElement);
452      Idx = Builder->CreateAdd(Idx, Offs);
453    }
454
455    Value *End = ConstantInt::get(Idx->getType(),
456                                  TrueRangeEnd-FirstTrueElement+1);
457    return new ICmpInst(ICmpInst::ICMP_ULT, Idx, End);
458  }
459
460  // False range check.
461  if (FalseRangeEnd != Overdefined) {
462    assert(FalseRangeEnd != FirstFalseElement && "Should emit single compare");
463    // Generate (i-FirstFalse) >u (FalseRangeEnd-FirstFalse).
464    if (FirstFalseElement) {
465      Value *Offs = ConstantInt::get(Idx->getType(), -FirstFalseElement);
466      Idx = Builder->CreateAdd(Idx, Offs);
467    }
468
469    Value *End = ConstantInt::get(Idx->getType(),
470                                  FalseRangeEnd-FirstFalseElement);
471    return new ICmpInst(ICmpInst::ICMP_UGT, Idx, End);
472  }
473
474
475  // If a magic bitvector captures the entire comparison state
476  // of this load, replace it with computation that does:
477  //   ((magic_cst >> i) & 1) != 0
478  {
479    Type *Ty = 0;
480
481    // Look for an appropriate type:
482    // - The type of Idx if the magic fits
483    // - The smallest fitting legal type if we have a DataLayout
484    // - Default to i32
485    if (ArrayElementCount <= Idx->getType()->getIntegerBitWidth())
486      Ty = Idx->getType();
487    else if (TD)
488      Ty = TD->getSmallestLegalIntType(Init->getContext(), ArrayElementCount);
489    else if (ArrayElementCount <= 32)
490      Ty = Type::getInt32Ty(Init->getContext());
491
492    if (Ty != 0) {
493      Value *V = Builder->CreateIntCast(Idx, Ty, false);
494      V = Builder->CreateLShr(ConstantInt::get(Ty, MagicBitvector), V);
495      V = Builder->CreateAnd(ConstantInt::get(Ty, 1), V);
496      return new ICmpInst(ICmpInst::ICMP_NE, V, ConstantInt::get(Ty, 0));
497    }
498  }
499
500  return 0;
501}
502
503
504/// EvaluateGEPOffsetExpression - Return a value that can be used to compare
505/// the *offset* implied by a GEP to zero.  For example, if we have &A[i], we
506/// want to return 'i' for "icmp ne i, 0".  Note that, in general, indices can
507/// be complex, and scales are involved.  The above expression would also be
508/// legal to codegen as "icmp ne (i*4), 0" (assuming A is a pointer to i32).
509/// This later form is less amenable to optimization though, and we are allowed
510/// to generate the first by knowing that pointer arithmetic doesn't overflow.
511///
512/// If we can't emit an optimized form for this expression, this returns null.
513///
514static Value *EvaluateGEPOffsetExpression(User *GEP, InstCombiner &IC) {
515  DataLayout &TD = *IC.getDataLayout();
516  gep_type_iterator GTI = gep_type_begin(GEP);
517
518  // Check to see if this gep only has a single variable index.  If so, and if
519  // any constant indices are a multiple of its scale, then we can compute this
520  // in terms of the scale of the variable index.  For example, if the GEP
521  // implies an offset of "12 + i*4", then we can codegen this as "3 + i",
522  // because the expression will cross zero at the same point.
523  unsigned i, e = GEP->getNumOperands();
524  int64_t Offset = 0;
525  for (i = 1; i != e; ++i, ++GTI) {
526    if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i))) {
527      // Compute the aggregate offset of constant indices.
528      if (CI->isZero()) continue;
529
530      // Handle a struct index, which adds its field offset to the pointer.
531      if (StructType *STy = dyn_cast<StructType>(*GTI)) {
532        Offset += TD.getStructLayout(STy)->getElementOffset(CI->getZExtValue());
533      } else {
534        uint64_t Size = TD.getTypeAllocSize(GTI.getIndexedType());
535        Offset += Size*CI->getSExtValue();
536      }
537    } else {
538      // Found our variable index.
539      break;
540    }
541  }
542
543  // If there are no variable indices, we must have a constant offset, just
544  // evaluate it the general way.
545  if (i == e) return 0;
546
547  Value *VariableIdx = GEP->getOperand(i);
548  // Determine the scale factor of the variable element.  For example, this is
549  // 4 if the variable index is into an array of i32.
550  uint64_t VariableScale = TD.getTypeAllocSize(GTI.getIndexedType());
551
552  // Verify that there are no other variable indices.  If so, emit the hard way.
553  for (++i, ++GTI; i != e; ++i, ++GTI) {
554    ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i));
555    if (!CI) return 0;
556
557    // Compute the aggregate offset of constant indices.
558    if (CI->isZero()) continue;
559
560    // Handle a struct index, which adds its field offset to the pointer.
561    if (StructType *STy = dyn_cast<StructType>(*GTI)) {
562      Offset += TD.getStructLayout(STy)->getElementOffset(CI->getZExtValue());
563    } else {
564      uint64_t Size = TD.getTypeAllocSize(GTI.getIndexedType());
565      Offset += Size*CI->getSExtValue();
566    }
567  }
568
569
570
571  // Okay, we know we have a single variable index, which must be a
572  // pointer/array/vector index.  If there is no offset, life is simple, return
573  // the index.
574  Type *IntPtrTy = TD.getIntPtrType(GEP->getOperand(0)->getType());
575  unsigned IntPtrWidth = IntPtrTy->getIntegerBitWidth();
576  if (Offset == 0) {
577    // Cast to intptrty in case a truncation occurs.  If an extension is needed,
578    // we don't need to bother extending: the extension won't affect where the
579    // computation crosses zero.
580    if (VariableIdx->getType()->getPrimitiveSizeInBits() > IntPtrWidth) {
581      VariableIdx = IC.Builder->CreateTrunc(VariableIdx, IntPtrTy);
582    }
583    return VariableIdx;
584  }
585
586  // Otherwise, there is an index.  The computation we will do will be modulo
587  // the pointer size, so get it.
588  uint64_t PtrSizeMask = ~0ULL >> (64-IntPtrWidth);
589
590  Offset &= PtrSizeMask;
591  VariableScale &= PtrSizeMask;
592
593  // To do this transformation, any constant index must be a multiple of the
594  // variable scale factor.  For example, we can evaluate "12 + 4*i" as "3 + i",
595  // but we can't evaluate "10 + 3*i" in terms of i.  Check that the offset is a
596  // multiple of the variable scale.
597  int64_t NewOffs = Offset / (int64_t)VariableScale;
598  if (Offset != NewOffs*(int64_t)VariableScale)
599    return 0;
600
601  // Okay, we can do this evaluation.  Start by converting the index to intptr.
602  if (VariableIdx->getType() != IntPtrTy)
603    VariableIdx = IC.Builder->CreateIntCast(VariableIdx, IntPtrTy,
604                                            true /*Signed*/);
605  Constant *OffsetVal = ConstantInt::get(IntPtrTy, NewOffs);
606  return IC.Builder->CreateAdd(VariableIdx, OffsetVal, "offset");
607}
608
609/// FoldGEPICmp - Fold comparisons between a GEP instruction and something
610/// else.  At this point we know that the GEP is on the LHS of the comparison.
611Instruction *InstCombiner::FoldGEPICmp(GEPOperator *GEPLHS, Value *RHS,
612                                       ICmpInst::Predicate Cond,
613                                       Instruction &I) {
614  // Don't transform signed compares of GEPs into index compares. Even if the
615  // GEP is inbounds, the final add of the base pointer can have signed overflow
616  // and would change the result of the icmp.
617  // e.g. "&foo[0] <s &foo[1]" can't be folded to "true" because "foo" could be
618  // the maximum signed value for the pointer type.
619  if (ICmpInst::isSigned(Cond))
620    return 0;
621
622  // Look through bitcasts.
623  if (BitCastInst *BCI = dyn_cast<BitCastInst>(RHS))
624    RHS = BCI->getOperand(0);
625
626  Value *PtrBase = GEPLHS->getOperand(0);
627  if (TD && PtrBase == RHS && GEPLHS->isInBounds()) {
628    // ((gep Ptr, OFFSET) cmp Ptr)   ---> (OFFSET cmp 0).
629    // This transformation (ignoring the base and scales) is valid because we
630    // know pointers can't overflow since the gep is inbounds.  See if we can
631    // output an optimized form.
632    Value *Offset = EvaluateGEPOffsetExpression(GEPLHS, *this);
633
634    // If not, synthesize the offset the hard way.
635    if (Offset == 0)
636      Offset = EmitGEPOffset(GEPLHS);
637    return new ICmpInst(ICmpInst::getSignedPredicate(Cond), Offset,
638                        Constant::getNullValue(Offset->getType()));
639  } else if (GEPOperator *GEPRHS = dyn_cast<GEPOperator>(RHS)) {
640    // If the base pointers are different, but the indices are the same, just
641    // compare the base pointer.
642    if (PtrBase != GEPRHS->getOperand(0)) {
643      bool IndicesTheSame = GEPLHS->getNumOperands()==GEPRHS->getNumOperands();
644      IndicesTheSame &= GEPLHS->getOperand(0)->getType() ==
645                        GEPRHS->getOperand(0)->getType();
646      if (IndicesTheSame)
647        for (unsigned i = 1, e = GEPLHS->getNumOperands(); i != e; ++i)
648          if (GEPLHS->getOperand(i) != GEPRHS->getOperand(i)) {
649            IndicesTheSame = false;
650            break;
651          }
652
653      // If all indices are the same, just compare the base pointers.
654      if (IndicesTheSame)
655        return new ICmpInst(Cond, GEPLHS->getOperand(0), GEPRHS->getOperand(0));
656
657      // If we're comparing GEPs with two base pointers that only differ in type
658      // and both GEPs have only constant indices or just one use, then fold
659      // the compare with the adjusted indices.
660      if (TD && GEPLHS->isInBounds() && GEPRHS->isInBounds() &&
661          (GEPLHS->hasAllConstantIndices() || GEPLHS->hasOneUse()) &&
662          (GEPRHS->hasAllConstantIndices() || GEPRHS->hasOneUse()) &&
663          PtrBase->stripPointerCasts() ==
664            GEPRHS->getOperand(0)->stripPointerCasts()) {
665        Value *Cmp = Builder->CreateICmp(ICmpInst::getSignedPredicate(Cond),
666                                         EmitGEPOffset(GEPLHS),
667                                         EmitGEPOffset(GEPRHS));
668        return ReplaceInstUsesWith(I, Cmp);
669      }
670
671      // Otherwise, the base pointers are different and the indices are
672      // different, bail out.
673      return 0;
674    }
675
676    // If one of the GEPs has all zero indices, recurse.
677    bool AllZeros = true;
678    for (unsigned i = 1, e = GEPLHS->getNumOperands(); i != e; ++i)
679      if (!isa<Constant>(GEPLHS->getOperand(i)) ||
680          !cast<Constant>(GEPLHS->getOperand(i))->isNullValue()) {
681        AllZeros = false;
682        break;
683      }
684    if (AllZeros)
685      return FoldGEPICmp(GEPRHS, GEPLHS->getOperand(0),
686                         ICmpInst::getSwappedPredicate(Cond), I);
687
688    // If the other GEP has all zero indices, recurse.
689    AllZeros = true;
690    for (unsigned i = 1, e = GEPRHS->getNumOperands(); i != e; ++i)
691      if (!isa<Constant>(GEPRHS->getOperand(i)) ||
692          !cast<Constant>(GEPRHS->getOperand(i))->isNullValue()) {
693        AllZeros = false;
694        break;
695      }
696    if (AllZeros)
697      return FoldGEPICmp(GEPLHS, GEPRHS->getOperand(0), Cond, I);
698
699    bool GEPsInBounds = GEPLHS->isInBounds() && GEPRHS->isInBounds();
700    if (GEPLHS->getNumOperands() == GEPRHS->getNumOperands()) {
701      // If the GEPs only differ by one index, compare it.
702      unsigned NumDifferences = 0;  // Keep track of # differences.
703      unsigned DiffOperand = 0;     // The operand that differs.
704      for (unsigned i = 1, e = GEPRHS->getNumOperands(); i != e; ++i)
705        if (GEPLHS->getOperand(i) != GEPRHS->getOperand(i)) {
706          if (GEPLHS->getOperand(i)->getType()->getPrimitiveSizeInBits() !=
707                   GEPRHS->getOperand(i)->getType()->getPrimitiveSizeInBits()) {
708            // Irreconcilable differences.
709            NumDifferences = 2;
710            break;
711          } else {
712            if (NumDifferences++) break;
713            DiffOperand = i;
714          }
715        }
716
717      if (NumDifferences == 0)   // SAME GEP?
718        return ReplaceInstUsesWith(I, // No comparison is needed here.
719                             Builder->getInt1(ICmpInst::isTrueWhenEqual(Cond)));
720
721      else if (NumDifferences == 1 && GEPsInBounds) {
722        Value *LHSV = GEPLHS->getOperand(DiffOperand);
723        Value *RHSV = GEPRHS->getOperand(DiffOperand);
724        // Make sure we do a signed comparison here.
725        return new ICmpInst(ICmpInst::getSignedPredicate(Cond), LHSV, RHSV);
726      }
727    }
728
729    // Only lower this if the icmp is the only user of the GEP or if we expect
730    // the result to fold to a constant!
731    if (TD &&
732        GEPsInBounds &&
733        (isa<ConstantExpr>(GEPLHS) || GEPLHS->hasOneUse()) &&
734        (isa<ConstantExpr>(GEPRHS) || GEPRHS->hasOneUse())) {
735      // ((gep Ptr, OFFSET1) cmp (gep Ptr, OFFSET2)  --->  (OFFSET1 cmp OFFSET2)
736      Value *L = EmitGEPOffset(GEPLHS);
737      Value *R = EmitGEPOffset(GEPRHS);
738      return new ICmpInst(ICmpInst::getSignedPredicate(Cond), L, R);
739    }
740  }
741  return 0;
742}
743
744/// FoldICmpAddOpCst - Fold "icmp pred (X+CI), X".
745Instruction *InstCombiner::FoldICmpAddOpCst(Instruction &ICI,
746                                            Value *X, ConstantInt *CI,
747                                            ICmpInst::Predicate Pred) {
748  // If we have X+0, exit early (simplifying logic below) and let it get folded
749  // elsewhere.   icmp X+0, X  -> icmp X, X
750  if (CI->isZero()) {
751    bool isTrue = ICmpInst::isTrueWhenEqual(Pred);
752    return ReplaceInstUsesWith(ICI, ConstantInt::get(ICI.getType(), isTrue));
753  }
754
755  // (X+4) == X -> false.
756  if (Pred == ICmpInst::ICMP_EQ)
757    return ReplaceInstUsesWith(ICI, Builder->getFalse());
758
759  // (X+4) != X -> true.
760  if (Pred == ICmpInst::ICMP_NE)
761    return ReplaceInstUsesWith(ICI, Builder->getTrue());
762
763  // From this point on, we know that (X+C <= X) --> (X+C < X) because C != 0,
764  // so the values can never be equal.  Similarly for all other "or equals"
765  // operators.
766
767  // (X+1) <u X        --> X >u (MAXUINT-1)        --> X == 255
768  // (X+2) <u X        --> X >u (MAXUINT-2)        --> X > 253
769  // (X+MAXUINT) <u X  --> X >u (MAXUINT-MAXUINT)  --> X != 0
770  if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_ULE) {
771    Value *R =
772      ConstantExpr::getSub(ConstantInt::getAllOnesValue(CI->getType()), CI);
773    return new ICmpInst(ICmpInst::ICMP_UGT, X, R);
774  }
775
776  // (X+1) >u X        --> X <u (0-1)        --> X != 255
777  // (X+2) >u X        --> X <u (0-2)        --> X <u 254
778  // (X+MAXUINT) >u X  --> X <u (0-MAXUINT)  --> X <u 1  --> X == 0
779  if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE)
780    return new ICmpInst(ICmpInst::ICMP_ULT, X, ConstantExpr::getNeg(CI));
781
782  unsigned BitWidth = CI->getType()->getPrimitiveSizeInBits();
783  ConstantInt *SMax = ConstantInt::get(X->getContext(),
784                                       APInt::getSignedMaxValue(BitWidth));
785
786  // (X+ 1) <s X       --> X >s (MAXSINT-1)          --> X == 127
787  // (X+ 2) <s X       --> X >s (MAXSINT-2)          --> X >s 125
788  // (X+MAXSINT) <s X  --> X >s (MAXSINT-MAXSINT)    --> X >s 0
789  // (X+MINSINT) <s X  --> X >s (MAXSINT-MINSINT)    --> X >s -1
790  // (X+ -2) <s X      --> X >s (MAXSINT- -2)        --> X >s 126
791  // (X+ -1) <s X      --> X >s (MAXSINT- -1)        --> X != 127
792  if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE)
793    return new ICmpInst(ICmpInst::ICMP_SGT, X, ConstantExpr::getSub(SMax, CI));
794
795  // (X+ 1) >s X       --> X <s (MAXSINT-(1-1))       --> X != 127
796  // (X+ 2) >s X       --> X <s (MAXSINT-(2-1))       --> X <s 126
797  // (X+MAXSINT) >s X  --> X <s (MAXSINT-(MAXSINT-1)) --> X <s 1
798  // (X+MINSINT) >s X  --> X <s (MAXSINT-(MINSINT-1)) --> X <s -2
799  // (X+ -2) >s X      --> X <s (MAXSINT-(-2-1))      --> X <s -126
800  // (X+ -1) >s X      --> X <s (MAXSINT-(-1-1))      --> X == -128
801
802  assert(Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE);
803  Constant *C = Builder->getInt(CI->getValue()-1);
804  return new ICmpInst(ICmpInst::ICMP_SLT, X, ConstantExpr::getSub(SMax, C));
805}
806
807/// FoldICmpDivCst - Fold "icmp pred, ([su]div X, DivRHS), CmpRHS" where DivRHS
808/// and CmpRHS are both known to be integer constants.
809Instruction *InstCombiner::FoldICmpDivCst(ICmpInst &ICI, BinaryOperator *DivI,
810                                          ConstantInt *DivRHS) {
811  ConstantInt *CmpRHS = cast<ConstantInt>(ICI.getOperand(1));
812  const APInt &CmpRHSV = CmpRHS->getValue();
813
814  // FIXME: If the operand types don't match the type of the divide
815  // then don't attempt this transform. The code below doesn't have the
816  // logic to deal with a signed divide and an unsigned compare (and
817  // vice versa). This is because (x /s C1) <s C2  produces different
818  // results than (x /s C1) <u C2 or (x /u C1) <s C2 or even
819  // (x /u C1) <u C2.  Simply casting the operands and result won't
820  // work. :(  The if statement below tests that condition and bails
821  // if it finds it.
822  bool DivIsSigned = DivI->getOpcode() == Instruction::SDiv;
823  if (!ICI.isEquality() && DivIsSigned != ICI.isSigned())
824    return 0;
825  if (DivRHS->isZero())
826    return 0; // The ProdOV computation fails on divide by zero.
827  if (DivIsSigned && DivRHS->isAllOnesValue())
828    return 0; // The overflow computation also screws up here
829  if (DivRHS->isOne()) {
830    // This eliminates some funny cases with INT_MIN.
831    ICI.setOperand(0, DivI->getOperand(0));   // X/1 == X.
832    return &ICI;
833  }
834
835  // Compute Prod = CI * DivRHS. We are essentially solving an equation
836  // of form X/C1=C2. We solve for X by multiplying C1 (DivRHS) and
837  // C2 (CI). By solving for X we can turn this into a range check
838  // instead of computing a divide.
839  Constant *Prod = ConstantExpr::getMul(CmpRHS, DivRHS);
840
841  // Determine if the product overflows by seeing if the product is
842  // not equal to the divide. Make sure we do the same kind of divide
843  // as in the LHS instruction that we're folding.
844  bool ProdOV = (DivIsSigned ? ConstantExpr::getSDiv(Prod, DivRHS) :
845                 ConstantExpr::getUDiv(Prod, DivRHS)) != CmpRHS;
846
847  // Get the ICmp opcode
848  ICmpInst::Predicate Pred = ICI.getPredicate();
849
850  /// If the division is known to be exact, then there is no remainder from the
851  /// divide, so the covered range size is unit, otherwise it is the divisor.
852  ConstantInt *RangeSize = DivI->isExact() ? getOne(Prod) : DivRHS;
853
854  // Figure out the interval that is being checked.  For example, a comparison
855  // like "X /u 5 == 0" is really checking that X is in the interval [0, 5).
856  // Compute this interval based on the constants involved and the signedness of
857  // the compare/divide.  This computes a half-open interval, keeping track of
858  // whether either value in the interval overflows.  After analysis each
859  // overflow variable is set to 0 if it's corresponding bound variable is valid
860  // -1 if overflowed off the bottom end, or +1 if overflowed off the top end.
861  int LoOverflow = 0, HiOverflow = 0;
862  Constant *LoBound = 0, *HiBound = 0;
863
864  if (!DivIsSigned) {  // udiv
865    // e.g. X/5 op 3  --> [15, 20)
866    LoBound = Prod;
867    HiOverflow = LoOverflow = ProdOV;
868    if (!HiOverflow) {
869      // If this is not an exact divide, then many values in the range collapse
870      // to the same result value.
871      HiOverflow = AddWithOverflow(HiBound, LoBound, RangeSize, false);
872    }
873
874  } else if (DivRHS->getValue().isStrictlyPositive()) { // Divisor is > 0.
875    if (CmpRHSV == 0) {       // (X / pos) op 0
876      // Can't overflow.  e.g.  X/2 op 0 --> [-1, 2)
877      LoBound = ConstantExpr::getNeg(SubOne(RangeSize));
878      HiBound = RangeSize;
879    } else if (CmpRHSV.isStrictlyPositive()) {   // (X / pos) op pos
880      LoBound = Prod;     // e.g.   X/5 op 3 --> [15, 20)
881      HiOverflow = LoOverflow = ProdOV;
882      if (!HiOverflow)
883        HiOverflow = AddWithOverflow(HiBound, Prod, RangeSize, true);
884    } else {                       // (X / pos) op neg
885      // e.g. X/5 op -3  --> [-15-4, -15+1) --> [-19, -14)
886      HiBound = AddOne(Prod);
887      LoOverflow = HiOverflow = ProdOV ? -1 : 0;
888      if (!LoOverflow) {
889        ConstantInt *DivNeg =cast<ConstantInt>(ConstantExpr::getNeg(RangeSize));
890        LoOverflow = AddWithOverflow(LoBound, HiBound, DivNeg, true) ? -1 : 0;
891      }
892    }
893  } else if (DivRHS->isNegative()) { // Divisor is < 0.
894    if (DivI->isExact())
895      RangeSize = cast<ConstantInt>(ConstantExpr::getNeg(RangeSize));
896    if (CmpRHSV == 0) {       // (X / neg) op 0
897      // e.g. X/-5 op 0  --> [-4, 5)
898      LoBound = AddOne(RangeSize);
899      HiBound = cast<ConstantInt>(ConstantExpr::getNeg(RangeSize));
900      if (HiBound == DivRHS) {     // -INTMIN = INTMIN
901        HiOverflow = 1;            // [INTMIN+1, overflow)
902        HiBound = 0;               // e.g. X/INTMIN = 0 --> X > INTMIN
903      }
904    } else if (CmpRHSV.isStrictlyPositive()) {   // (X / neg) op pos
905      // e.g. X/-5 op 3  --> [-19, -14)
906      HiBound = AddOne(Prod);
907      HiOverflow = LoOverflow = ProdOV ? -1 : 0;
908      if (!LoOverflow)
909        LoOverflow = AddWithOverflow(LoBound, HiBound, RangeSize, true) ? -1:0;
910    } else {                       // (X / neg) op neg
911      LoBound = Prod;       // e.g. X/-5 op -3  --> [15, 20)
912      LoOverflow = HiOverflow = ProdOV;
913      if (!HiOverflow)
914        HiOverflow = SubWithOverflow(HiBound, Prod, RangeSize, true);
915    }
916
917    // Dividing by a negative swaps the condition.  LT <-> GT
918    Pred = ICmpInst::getSwappedPredicate(Pred);
919  }
920
921  Value *X = DivI->getOperand(0);
922  switch (Pred) {
923  default: llvm_unreachable("Unhandled icmp opcode!");
924  case ICmpInst::ICMP_EQ:
925    if (LoOverflow && HiOverflow)
926      return ReplaceInstUsesWith(ICI, Builder->getFalse());
927    if (HiOverflow)
928      return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SGE :
929                          ICmpInst::ICMP_UGE, X, LoBound);
930    if (LoOverflow)
931      return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SLT :
932                          ICmpInst::ICMP_ULT, X, HiBound);
933    return ReplaceInstUsesWith(ICI, InsertRangeTest(X, LoBound, HiBound,
934                                                    DivIsSigned, true));
935  case ICmpInst::ICMP_NE:
936    if (LoOverflow && HiOverflow)
937      return ReplaceInstUsesWith(ICI, Builder->getTrue());
938    if (HiOverflow)
939      return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SLT :
940                          ICmpInst::ICMP_ULT, X, LoBound);
941    if (LoOverflow)
942      return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SGE :
943                          ICmpInst::ICMP_UGE, X, HiBound);
944    return ReplaceInstUsesWith(ICI, InsertRangeTest(X, LoBound, HiBound,
945                                                    DivIsSigned, false));
946  case ICmpInst::ICMP_ULT:
947  case ICmpInst::ICMP_SLT:
948    if (LoOverflow == +1)   // Low bound is greater than input range.
949      return ReplaceInstUsesWith(ICI, Builder->getTrue());
950    if (LoOverflow == -1)   // Low bound is less than input range.
951      return ReplaceInstUsesWith(ICI, Builder->getFalse());
952    return new ICmpInst(Pred, X, LoBound);
953  case ICmpInst::ICMP_UGT:
954  case ICmpInst::ICMP_SGT:
955    if (HiOverflow == +1)       // High bound greater than input range.
956      return ReplaceInstUsesWith(ICI, Builder->getFalse());
957    if (HiOverflow == -1)       // High bound less than input range.
958      return ReplaceInstUsesWith(ICI, Builder->getTrue());
959    if (Pred == ICmpInst::ICMP_UGT)
960      return new ICmpInst(ICmpInst::ICMP_UGE, X, HiBound);
961    return new ICmpInst(ICmpInst::ICMP_SGE, X, HiBound);
962  }
963}
964
965/// FoldICmpShrCst - Handle "icmp(([al]shr X, cst1), cst2)".
966Instruction *InstCombiner::FoldICmpShrCst(ICmpInst &ICI, BinaryOperator *Shr,
967                                          ConstantInt *ShAmt) {
968  const APInt &CmpRHSV = cast<ConstantInt>(ICI.getOperand(1))->getValue();
969
970  // Check that the shift amount is in range.  If not, don't perform
971  // undefined shifts.  When the shift is visited it will be
972  // simplified.
973  uint32_t TypeBits = CmpRHSV.getBitWidth();
974  uint32_t ShAmtVal = (uint32_t)ShAmt->getLimitedValue(TypeBits);
975  if (ShAmtVal >= TypeBits || ShAmtVal == 0)
976    return 0;
977
978  if (!ICI.isEquality()) {
979    // If we have an unsigned comparison and an ashr, we can't simplify this.
980    // Similarly for signed comparisons with lshr.
981    if (ICI.isSigned() != (Shr->getOpcode() == Instruction::AShr))
982      return 0;
983
984    // Otherwise, all lshr and most exact ashr's are equivalent to a udiv/sdiv
985    // by a power of 2.  Since we already have logic to simplify these,
986    // transform to div and then simplify the resultant comparison.
987    if (Shr->getOpcode() == Instruction::AShr &&
988        (!Shr->isExact() || ShAmtVal == TypeBits - 1))
989      return 0;
990
991    // Revisit the shift (to delete it).
992    Worklist.Add(Shr);
993
994    Constant *DivCst =
995      ConstantInt::get(Shr->getType(), APInt::getOneBitSet(TypeBits, ShAmtVal));
996
997    Value *Tmp =
998      Shr->getOpcode() == Instruction::AShr ?
999      Builder->CreateSDiv(Shr->getOperand(0), DivCst, "", Shr->isExact()) :
1000      Builder->CreateUDiv(Shr->getOperand(0), DivCst, "", Shr->isExact());
1001
1002    ICI.setOperand(0, Tmp);
1003
1004    // If the builder folded the binop, just return it.
1005    BinaryOperator *TheDiv = dyn_cast<BinaryOperator>(Tmp);
1006    if (TheDiv == 0)
1007      return &ICI;
1008
1009    // Otherwise, fold this div/compare.
1010    assert(TheDiv->getOpcode() == Instruction::SDiv ||
1011           TheDiv->getOpcode() == Instruction::UDiv);
1012
1013    Instruction *Res = FoldICmpDivCst(ICI, TheDiv, cast<ConstantInt>(DivCst));
1014    assert(Res && "This div/cst should have folded!");
1015    return Res;
1016  }
1017
1018
1019  // If we are comparing against bits always shifted out, the
1020  // comparison cannot succeed.
1021  APInt Comp = CmpRHSV << ShAmtVal;
1022  ConstantInt *ShiftedCmpRHS = Builder->getInt(Comp);
1023  if (Shr->getOpcode() == Instruction::LShr)
1024    Comp = Comp.lshr(ShAmtVal);
1025  else
1026    Comp = Comp.ashr(ShAmtVal);
1027
1028  if (Comp != CmpRHSV) { // Comparing against a bit that we know is zero.
1029    bool IsICMP_NE = ICI.getPredicate() == ICmpInst::ICMP_NE;
1030    Constant *Cst = Builder->getInt1(IsICMP_NE);
1031    return ReplaceInstUsesWith(ICI, Cst);
1032  }
1033
1034  // Otherwise, check to see if the bits shifted out are known to be zero.
1035  // If so, we can compare against the unshifted value:
1036  //  (X & 4) >> 1 == 2  --> (X & 4) == 4.
1037  if (Shr->hasOneUse() && Shr->isExact())
1038    return new ICmpInst(ICI.getPredicate(), Shr->getOperand(0), ShiftedCmpRHS);
1039
1040  if (Shr->hasOneUse()) {
1041    // Otherwise strength reduce the shift into an and.
1042    APInt Val(APInt::getHighBitsSet(TypeBits, TypeBits - ShAmtVal));
1043    Constant *Mask = Builder->getInt(Val);
1044
1045    Value *And = Builder->CreateAnd(Shr->getOperand(0),
1046                                    Mask, Shr->getName()+".mask");
1047    return new ICmpInst(ICI.getPredicate(), And, ShiftedCmpRHS);
1048  }
1049  return 0;
1050}
1051
1052
1053/// visitICmpInstWithInstAndIntCst - Handle "icmp (instr, intcst)".
1054///
1055Instruction *InstCombiner::visitICmpInstWithInstAndIntCst(ICmpInst &ICI,
1056                                                          Instruction *LHSI,
1057                                                          ConstantInt *RHS) {
1058  const APInt &RHSV = RHS->getValue();
1059
1060  switch (LHSI->getOpcode()) {
1061  case Instruction::Trunc:
1062    if (ICI.isEquality() && LHSI->hasOneUse()) {
1063      // Simplify icmp eq (trunc x to i8), 42 -> icmp eq x, 42|highbits if all
1064      // of the high bits truncated out of x are known.
1065      unsigned DstBits = LHSI->getType()->getPrimitiveSizeInBits(),
1066             SrcBits = LHSI->getOperand(0)->getType()->getPrimitiveSizeInBits();
1067      APInt KnownZero(SrcBits, 0), KnownOne(SrcBits, 0);
1068      ComputeMaskedBits(LHSI->getOperand(0), KnownZero, KnownOne);
1069
1070      // If all the high bits are known, we can do this xform.
1071      if ((KnownZero|KnownOne).countLeadingOnes() >= SrcBits-DstBits) {
1072        // Pull in the high bits from known-ones set.
1073        APInt NewRHS = RHS->getValue().zext(SrcBits);
1074        NewRHS |= KnownOne & APInt::getHighBitsSet(SrcBits, SrcBits-DstBits);
1075        return new ICmpInst(ICI.getPredicate(), LHSI->getOperand(0),
1076                            Builder->getInt(NewRHS));
1077      }
1078    }
1079    break;
1080
1081  case Instruction::Xor:         // (icmp pred (xor X, XorCST), CI)
1082    if (ConstantInt *XorCST = dyn_cast<ConstantInt>(LHSI->getOperand(1))) {
1083      // If this is a comparison that tests the signbit (X < 0) or (x > -1),
1084      // fold the xor.
1085      if ((ICI.getPredicate() == ICmpInst::ICMP_SLT && RHSV == 0) ||
1086          (ICI.getPredicate() == ICmpInst::ICMP_SGT && RHSV.isAllOnesValue())) {
1087        Value *CompareVal = LHSI->getOperand(0);
1088
1089        // If the sign bit of the XorCST is not set, there is no change to
1090        // the operation, just stop using the Xor.
1091        if (!XorCST->isNegative()) {
1092          ICI.setOperand(0, CompareVal);
1093          Worklist.Add(LHSI);
1094          return &ICI;
1095        }
1096
1097        // Was the old condition true if the operand is positive?
1098        bool isTrueIfPositive = ICI.getPredicate() == ICmpInst::ICMP_SGT;
1099
1100        // If so, the new one isn't.
1101        isTrueIfPositive ^= true;
1102
1103        if (isTrueIfPositive)
1104          return new ICmpInst(ICmpInst::ICMP_SGT, CompareVal,
1105                              SubOne(RHS));
1106        else
1107          return new ICmpInst(ICmpInst::ICMP_SLT, CompareVal,
1108                              AddOne(RHS));
1109      }
1110
1111      if (LHSI->hasOneUse()) {
1112        // (icmp u/s (xor A SignBit), C) -> (icmp s/u A, (xor C SignBit))
1113        if (!ICI.isEquality() && XorCST->getValue().isSignBit()) {
1114          const APInt &SignBit = XorCST->getValue();
1115          ICmpInst::Predicate Pred = ICI.isSigned()
1116                                         ? ICI.getUnsignedPredicate()
1117                                         : ICI.getSignedPredicate();
1118          return new ICmpInst(Pred, LHSI->getOperand(0),
1119                              Builder->getInt(RHSV ^ SignBit));
1120        }
1121
1122        // (icmp u/s (xor A ~SignBit), C) -> (icmp s/u (xor C ~SignBit), A)
1123        if (!ICI.isEquality() && XorCST->isMaxValue(true)) {
1124          const APInt &NotSignBit = XorCST->getValue();
1125          ICmpInst::Predicate Pred = ICI.isSigned()
1126                                         ? ICI.getUnsignedPredicate()
1127                                         : ICI.getSignedPredicate();
1128          Pred = ICI.getSwappedPredicate(Pred);
1129          return new ICmpInst(Pred, LHSI->getOperand(0),
1130                              Builder->getInt(RHSV ^ NotSignBit));
1131        }
1132      }
1133
1134      // (icmp ugt (xor X, C), ~C) -> (icmp ult X, C)
1135      //   iff -C is a power of 2
1136      if (ICI.getPredicate() == ICmpInst::ICMP_UGT &&
1137          XorCST->getValue() == ~RHSV && (RHSV + 1).isPowerOf2())
1138        return new ICmpInst(ICmpInst::ICMP_ULT, LHSI->getOperand(0), XorCST);
1139
1140      // (icmp ult (xor X, C), -C) -> (icmp uge X, C)
1141      //   iff -C is a power of 2
1142      if (ICI.getPredicate() == ICmpInst::ICMP_ULT &&
1143          XorCST->getValue() == -RHSV && RHSV.isPowerOf2())
1144        return new ICmpInst(ICmpInst::ICMP_UGE, LHSI->getOperand(0), XorCST);
1145    }
1146    break;
1147  case Instruction::And:         // (icmp pred (and X, AndCST), RHS)
1148    if (LHSI->hasOneUse() && isa<ConstantInt>(LHSI->getOperand(1)) &&
1149        LHSI->getOperand(0)->hasOneUse()) {
1150      ConstantInt *AndCST = cast<ConstantInt>(LHSI->getOperand(1));
1151
1152      // If the LHS is an AND of a truncating cast, we can widen the
1153      // and/compare to be the input width without changing the value
1154      // produced, eliminating a cast.
1155      if (TruncInst *Cast = dyn_cast<TruncInst>(LHSI->getOperand(0))) {
1156        // We can do this transformation if either the AND constant does not
1157        // have its sign bit set or if it is an equality comparison.
1158        // Extending a relational comparison when we're checking the sign
1159        // bit would not work.
1160        if (ICI.isEquality() ||
1161            (!AndCST->isNegative() && RHSV.isNonNegative())) {
1162          Value *NewAnd =
1163            Builder->CreateAnd(Cast->getOperand(0),
1164                               ConstantExpr::getZExt(AndCST, Cast->getSrcTy()));
1165          NewAnd->takeName(LHSI);
1166          return new ICmpInst(ICI.getPredicate(), NewAnd,
1167                              ConstantExpr::getZExt(RHS, Cast->getSrcTy()));
1168        }
1169      }
1170
1171      // If the LHS is an AND of a zext, and we have an equality compare, we can
1172      // shrink the and/compare to the smaller type, eliminating the cast.
1173      if (ZExtInst *Cast = dyn_cast<ZExtInst>(LHSI->getOperand(0))) {
1174        IntegerType *Ty = cast<IntegerType>(Cast->getSrcTy());
1175        // Make sure we don't compare the upper bits, SimplifyDemandedBits
1176        // should fold the icmp to true/false in that case.
1177        if (ICI.isEquality() && RHSV.getActiveBits() <= Ty->getBitWidth()) {
1178          Value *NewAnd =
1179            Builder->CreateAnd(Cast->getOperand(0),
1180                               ConstantExpr::getTrunc(AndCST, Ty));
1181          NewAnd->takeName(LHSI);
1182          return new ICmpInst(ICI.getPredicate(), NewAnd,
1183                              ConstantExpr::getTrunc(RHS, Ty));
1184        }
1185      }
1186
1187      // If this is: (X >> C1) & C2 != C3 (where any shift and any compare
1188      // could exist), turn it into (X & (C2 << C1)) != (C3 << C1).  This
1189      // happens a LOT in code produced by the C front-end, for bitfield
1190      // access.
1191      BinaryOperator *Shift = dyn_cast<BinaryOperator>(LHSI->getOperand(0));
1192      if (Shift && !Shift->isShift())
1193        Shift = 0;
1194
1195      ConstantInt *ShAmt;
1196      ShAmt = Shift ? dyn_cast<ConstantInt>(Shift->getOperand(1)) : 0;
1197      Type *Ty = Shift ? Shift->getType() : 0;  // Type of the shift.
1198      Type *AndTy = AndCST->getType();          // Type of the and.
1199
1200      // We can fold this as long as we can't shift unknown bits
1201      // into the mask. This can happen with signed shift
1202      // rights, as they sign-extend. With logical shifts,
1203      // we must still make sure the comparison is not signed
1204      // because we are effectively changing the
1205      // position of the sign bit (PR17827).
1206      // TODO: We can relax these constraints a bit more.
1207      if (ShAmt) {
1208        bool CanFold = false;
1209        unsigned ShiftOpcode = Shift->getOpcode();
1210        if (ShiftOpcode == Instruction::AShr) {
1211          // To test for the bad case of the signed shr, see if any
1212          // of the bits shifted in could be tested after the mask.
1213          uint32_t TyBits = Ty->getPrimitiveSizeInBits();
1214          int ShAmtVal = TyBits - ShAmt->getLimitedValue(TyBits);
1215
1216          uint32_t BitWidth = AndTy->getPrimitiveSizeInBits();
1217          if ((APInt::getHighBitsSet(BitWidth, BitWidth-ShAmtVal) &
1218               AndCST->getValue()) == 0)
1219            CanFold = true;
1220        } else if (ShiftOpcode == Instruction::Shl ||
1221                   ShiftOpcode == Instruction::LShr) {
1222          CanFold = !ICI.isSigned();
1223        }
1224
1225        if (CanFold) {
1226          Constant *NewCst;
1227          if (Shift->getOpcode() == Instruction::Shl)
1228            NewCst = ConstantExpr::getLShr(RHS, ShAmt);
1229          else
1230            NewCst = ConstantExpr::getShl(RHS, ShAmt);
1231
1232          // Check to see if we are shifting out any of the bits being
1233          // compared.
1234          if (ConstantExpr::get(Shift->getOpcode(),
1235                                       NewCst, ShAmt) != RHS) {
1236            // If we shifted bits out, the fold is not going to work out.
1237            // As a special case, check to see if this means that the
1238            // result is always true or false now.
1239            if (ICI.getPredicate() == ICmpInst::ICMP_EQ)
1240              return ReplaceInstUsesWith(ICI, Builder->getFalse());
1241            if (ICI.getPredicate() == ICmpInst::ICMP_NE)
1242              return ReplaceInstUsesWith(ICI, Builder->getTrue());
1243          } else {
1244            ICI.setOperand(1, NewCst);
1245            Constant *NewAndCST;
1246            if (Shift->getOpcode() == Instruction::Shl)
1247              NewAndCST = ConstantExpr::getLShr(AndCST, ShAmt);
1248            else
1249              NewAndCST = ConstantExpr::getShl(AndCST, ShAmt);
1250            LHSI->setOperand(1, NewAndCST);
1251            LHSI->setOperand(0, Shift->getOperand(0));
1252            Worklist.Add(Shift); // Shift is dead.
1253            return &ICI;
1254          }
1255        }
1256      }
1257
1258      // Turn ((X >> Y) & C) == 0  into  (X & (C << Y)) == 0.  The later is
1259      // preferable because it allows the C<<Y expression to be hoisted out
1260      // of a loop if Y is invariant and X is not.
1261      if (Shift && Shift->hasOneUse() && RHSV == 0 &&
1262          ICI.isEquality() && !Shift->isArithmeticShift() &&
1263          !isa<Constant>(Shift->getOperand(0))) {
1264        // Compute C << Y.
1265        Value *NS;
1266        if (Shift->getOpcode() == Instruction::LShr) {
1267          NS = Builder->CreateShl(AndCST, Shift->getOperand(1));
1268        } else {
1269          // Insert a logical shift.
1270          NS = Builder->CreateLShr(AndCST, Shift->getOperand(1));
1271        }
1272
1273        // Compute X & (C << Y).
1274        Value *NewAnd =
1275          Builder->CreateAnd(Shift->getOperand(0), NS, LHSI->getName());
1276
1277        ICI.setOperand(0, NewAnd);
1278        return &ICI;
1279      }
1280
1281      // Replace ((X & AndCST) > RHSV) with ((X & AndCST) != 0), if any
1282      // bit set in (X & AndCST) will produce a result greater than RHSV.
1283      if (ICI.getPredicate() == ICmpInst::ICMP_UGT) {
1284        unsigned NTZ = AndCST->getValue().countTrailingZeros();
1285        if ((NTZ < AndCST->getBitWidth()) &&
1286            APInt::getOneBitSet(AndCST->getBitWidth(), NTZ).ugt(RHSV))
1287          return new ICmpInst(ICmpInst::ICMP_NE, LHSI,
1288                              Constant::getNullValue(RHS->getType()));
1289      }
1290    }
1291
1292    // Try to optimize things like "A[i]&42 == 0" to index computations.
1293    if (LoadInst *LI = dyn_cast<LoadInst>(LHSI->getOperand(0))) {
1294      if (GetElementPtrInst *GEP =
1295          dyn_cast<GetElementPtrInst>(LI->getOperand(0)))
1296        if (GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0)))
1297          if (GV->isConstant() && GV->hasDefinitiveInitializer() &&
1298              !LI->isVolatile() && isa<ConstantInt>(LHSI->getOperand(1))) {
1299            ConstantInt *C = cast<ConstantInt>(LHSI->getOperand(1));
1300            if (Instruction *Res = FoldCmpLoadFromIndexedGlobal(GEP, GV,ICI, C))
1301              return Res;
1302          }
1303    }
1304
1305    // X & -C == -C -> X >  u ~C
1306    // X & -C != -C -> X <= u ~C
1307    //   iff C is a power of 2
1308    if (ICI.isEquality() && RHS == LHSI->getOperand(1) && (-RHSV).isPowerOf2())
1309      return new ICmpInst(
1310          ICI.getPredicate() == ICmpInst::ICMP_EQ ? ICmpInst::ICMP_UGT
1311                                                  : ICmpInst::ICMP_ULE,
1312          LHSI->getOperand(0), SubOne(RHS));
1313    break;
1314
1315  case Instruction::Or: {
1316    if (!ICI.isEquality() || !RHS->isNullValue() || !LHSI->hasOneUse())
1317      break;
1318    Value *P, *Q;
1319    if (match(LHSI, m_Or(m_PtrToInt(m_Value(P)), m_PtrToInt(m_Value(Q))))) {
1320      // Simplify icmp eq (or (ptrtoint P), (ptrtoint Q)), 0
1321      // -> and (icmp eq P, null), (icmp eq Q, null).
1322      Value *ICIP = Builder->CreateICmp(ICI.getPredicate(), P,
1323                                        Constant::getNullValue(P->getType()));
1324      Value *ICIQ = Builder->CreateICmp(ICI.getPredicate(), Q,
1325                                        Constant::getNullValue(Q->getType()));
1326      Instruction *Op;
1327      if (ICI.getPredicate() == ICmpInst::ICMP_EQ)
1328        Op = BinaryOperator::CreateAnd(ICIP, ICIQ);
1329      else
1330        Op = BinaryOperator::CreateOr(ICIP, ICIQ);
1331      return Op;
1332    }
1333    break;
1334  }
1335
1336  case Instruction::Mul: {       // (icmp pred (mul X, Val), CI)
1337    ConstantInt *Val = dyn_cast<ConstantInt>(LHSI->getOperand(1));
1338    if (!Val) break;
1339
1340    // If this is a signed comparison to 0 and the mul is sign preserving,
1341    // use the mul LHS operand instead.
1342    ICmpInst::Predicate pred = ICI.getPredicate();
1343    if (isSignTest(pred, RHS) && !Val->isZero() &&
1344        cast<BinaryOperator>(LHSI)->hasNoSignedWrap())
1345      return new ICmpInst(Val->isNegative() ?
1346                          ICmpInst::getSwappedPredicate(pred) : pred,
1347                          LHSI->getOperand(0),
1348                          Constant::getNullValue(RHS->getType()));
1349
1350    break;
1351  }
1352
1353  case Instruction::Shl: {       // (icmp pred (shl X, ShAmt), CI)
1354    uint32_t TypeBits = RHSV.getBitWidth();
1355    ConstantInt *ShAmt = dyn_cast<ConstantInt>(LHSI->getOperand(1));
1356    if (!ShAmt) {
1357      Value *X;
1358      // (1 << X) pred P2 -> X pred Log2(P2)
1359      if (match(LHSI, m_Shl(m_One(), m_Value(X)))) {
1360        bool RHSVIsPowerOf2 = RHSV.isPowerOf2();
1361        ICmpInst::Predicate Pred = ICI.getPredicate();
1362        if (ICI.isUnsigned()) {
1363          if (!RHSVIsPowerOf2) {
1364            // (1 << X) <  30 -> X <= 4
1365            // (1 << X) <= 30 -> X <= 4
1366            // (1 << X) >= 30 -> X >  4
1367            // (1 << X) >  30 -> X >  4
1368            if (Pred == ICmpInst::ICMP_ULT)
1369              Pred = ICmpInst::ICMP_ULE;
1370            else if (Pred == ICmpInst::ICMP_UGE)
1371              Pred = ICmpInst::ICMP_UGT;
1372          }
1373          unsigned RHSLog2 = RHSV.logBase2();
1374
1375          // (1 << X) >= 2147483648 -> X >= 31 -> X == 31
1376          // (1 << X) >  2147483648 -> X >  31 -> false
1377          // (1 << X) <= 2147483648 -> X <= 31 -> true
1378          // (1 << X) <  2147483648 -> X <  31 -> X != 31
1379          if (RHSLog2 == TypeBits-1) {
1380            if (Pred == ICmpInst::ICMP_UGE)
1381              Pred = ICmpInst::ICMP_EQ;
1382            else if (Pred == ICmpInst::ICMP_UGT)
1383              return ReplaceInstUsesWith(ICI, Builder->getFalse());
1384            else if (Pred == ICmpInst::ICMP_ULE)
1385              return ReplaceInstUsesWith(ICI, Builder->getTrue());
1386            else if (Pred == ICmpInst::ICMP_ULT)
1387              Pred = ICmpInst::ICMP_NE;
1388          }
1389
1390          return new ICmpInst(Pred, X,
1391                              ConstantInt::get(RHS->getType(), RHSLog2));
1392        } else if (ICI.isSigned()) {
1393          if (RHSV.isAllOnesValue()) {
1394            // (1 << X) <= -1 -> X == 31
1395            if (Pred == ICmpInst::ICMP_SLE)
1396              return new ICmpInst(ICmpInst::ICMP_EQ, X,
1397                                  ConstantInt::get(RHS->getType(), TypeBits-1));
1398
1399            // (1 << X) >  -1 -> X != 31
1400            if (Pred == ICmpInst::ICMP_SGT)
1401              return new ICmpInst(ICmpInst::ICMP_NE, X,
1402                                  ConstantInt::get(RHS->getType(), TypeBits-1));
1403          } else if (!RHSV) {
1404            // (1 << X) <  0 -> X == 31
1405            // (1 << X) <= 0 -> X == 31
1406            if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE)
1407              return new ICmpInst(ICmpInst::ICMP_EQ, X,
1408                                  ConstantInt::get(RHS->getType(), TypeBits-1));
1409
1410            // (1 << X) >= 0 -> X != 31
1411            // (1 << X) >  0 -> X != 31
1412            if (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE)
1413              return new ICmpInst(ICmpInst::ICMP_NE, X,
1414                                  ConstantInt::get(RHS->getType(), TypeBits-1));
1415          }
1416        } else if (ICI.isEquality()) {
1417          if (RHSVIsPowerOf2)
1418            return new ICmpInst(
1419                Pred, X, ConstantInt::get(RHS->getType(), RHSV.logBase2()));
1420
1421          return ReplaceInstUsesWith(
1422              ICI, Pred == ICmpInst::ICMP_EQ ? Builder->getFalse()
1423                                             : Builder->getTrue());
1424        }
1425      }
1426      break;
1427    }
1428
1429    // Check that the shift amount is in range.  If not, don't perform
1430    // undefined shifts.  When the shift is visited it will be
1431    // simplified.
1432    if (ShAmt->uge(TypeBits))
1433      break;
1434
1435    if (ICI.isEquality()) {
1436      // If we are comparing against bits always shifted out, the
1437      // comparison cannot succeed.
1438      Constant *Comp =
1439        ConstantExpr::getShl(ConstantExpr::getLShr(RHS, ShAmt),
1440                                                                 ShAmt);
1441      if (Comp != RHS) {// Comparing against a bit that we know is zero.
1442        bool IsICMP_NE = ICI.getPredicate() == ICmpInst::ICMP_NE;
1443        Constant *Cst = Builder->getInt1(IsICMP_NE);
1444        return ReplaceInstUsesWith(ICI, Cst);
1445      }
1446
1447      // If the shift is NUW, then it is just shifting out zeros, no need for an
1448      // AND.
1449      if (cast<BinaryOperator>(LHSI)->hasNoUnsignedWrap())
1450        return new ICmpInst(ICI.getPredicate(), LHSI->getOperand(0),
1451                            ConstantExpr::getLShr(RHS, ShAmt));
1452
1453      // If the shift is NSW and we compare to 0, then it is just shifting out
1454      // sign bits, no need for an AND either.
1455      if (cast<BinaryOperator>(LHSI)->hasNoSignedWrap() && RHSV == 0)
1456        return new ICmpInst(ICI.getPredicate(), LHSI->getOperand(0),
1457                            ConstantExpr::getLShr(RHS, ShAmt));
1458
1459      if (LHSI->hasOneUse()) {
1460        // Otherwise strength reduce the shift into an and.
1461        uint32_t ShAmtVal = (uint32_t)ShAmt->getLimitedValue(TypeBits);
1462        Constant *Mask = Builder->getInt(APInt::getLowBitsSet(TypeBits,
1463                                                          TypeBits - ShAmtVal));
1464
1465        Value *And =
1466          Builder->CreateAnd(LHSI->getOperand(0),Mask, LHSI->getName()+".mask");
1467        return new ICmpInst(ICI.getPredicate(), And,
1468                            ConstantExpr::getLShr(RHS, ShAmt));
1469      }
1470    }
1471
1472    // If this is a signed comparison to 0 and the shift is sign preserving,
1473    // use the shift LHS operand instead.
1474    ICmpInst::Predicate pred = ICI.getPredicate();
1475    if (isSignTest(pred, RHS) &&
1476        cast<BinaryOperator>(LHSI)->hasNoSignedWrap())
1477      return new ICmpInst(pred,
1478                          LHSI->getOperand(0),
1479                          Constant::getNullValue(RHS->getType()));
1480
1481    // Otherwise, if this is a comparison of the sign bit, simplify to and/test.
1482    bool TrueIfSigned = false;
1483    if (LHSI->hasOneUse() &&
1484        isSignBitCheck(ICI.getPredicate(), RHS, TrueIfSigned)) {
1485      // (X << 31) <s 0  --> (X&1) != 0
1486      Constant *Mask = ConstantInt::get(LHSI->getOperand(0)->getType(),
1487                                        APInt::getOneBitSet(TypeBits,
1488                                            TypeBits-ShAmt->getZExtValue()-1));
1489      Value *And =
1490        Builder->CreateAnd(LHSI->getOperand(0), Mask, LHSI->getName()+".mask");
1491      return new ICmpInst(TrueIfSigned ? ICmpInst::ICMP_NE : ICmpInst::ICMP_EQ,
1492                          And, Constant::getNullValue(And->getType()));
1493    }
1494
1495    // Transform (icmp pred iM (shl iM %v, N), CI)
1496    // -> (icmp pred i(M-N) (trunc %v iM to i(M-N)), (trunc (CI>>N))
1497    // Transform the shl to a trunc if (trunc (CI>>N)) has no loss and M-N.
1498    // This enables to get rid of the shift in favor of a trunc which can be
1499    // free on the target. It has the additional benefit of comparing to a
1500    // smaller constant, which will be target friendly.
1501    unsigned Amt = ShAmt->getLimitedValue(TypeBits-1);
1502    if (LHSI->hasOneUse() &&
1503        Amt != 0 && RHSV.countTrailingZeros() >= Amt) {
1504      Type *NTy = IntegerType::get(ICI.getContext(), TypeBits - Amt);
1505      Constant *NCI = ConstantExpr::getTrunc(
1506                        ConstantExpr::getAShr(RHS,
1507                          ConstantInt::get(RHS->getType(), Amt)),
1508                        NTy);
1509      return new ICmpInst(ICI.getPredicate(),
1510                          Builder->CreateTrunc(LHSI->getOperand(0), NTy),
1511                          NCI);
1512    }
1513
1514    break;
1515  }
1516
1517  case Instruction::LShr:         // (icmp pred (shr X, ShAmt), CI)
1518  case Instruction::AShr: {
1519    // Handle equality comparisons of shift-by-constant.
1520    BinaryOperator *BO = cast<BinaryOperator>(LHSI);
1521    if (ConstantInt *ShAmt = dyn_cast<ConstantInt>(LHSI->getOperand(1))) {
1522      if (Instruction *Res = FoldICmpShrCst(ICI, BO, ShAmt))
1523        return Res;
1524    }
1525
1526    // Handle exact shr's.
1527    if (ICI.isEquality() && BO->isExact() && BO->hasOneUse()) {
1528      if (RHSV.isMinValue())
1529        return new ICmpInst(ICI.getPredicate(), BO->getOperand(0), RHS);
1530    }
1531    break;
1532  }
1533
1534  case Instruction::SDiv:
1535  case Instruction::UDiv:
1536    // Fold: icmp pred ([us]div X, C1), C2 -> range test
1537    // Fold this div into the comparison, producing a range check.
1538    // Determine, based on the divide type, what the range is being
1539    // checked.  If there is an overflow on the low or high side, remember
1540    // it, otherwise compute the range [low, hi) bounding the new value.
1541    // See: InsertRangeTest above for the kinds of replacements possible.
1542    if (ConstantInt *DivRHS = dyn_cast<ConstantInt>(LHSI->getOperand(1)))
1543      if (Instruction *R = FoldICmpDivCst(ICI, cast<BinaryOperator>(LHSI),
1544                                          DivRHS))
1545        return R;
1546    break;
1547
1548  case Instruction::Sub: {
1549    ConstantInt *LHSC = dyn_cast<ConstantInt>(LHSI->getOperand(0));
1550    if (!LHSC) break;
1551    const APInt &LHSV = LHSC->getValue();
1552
1553    // C1-X <u C2 -> (X|(C2-1)) == C1
1554    //   iff C1 & (C2-1) == C2-1
1555    //       C2 is a power of 2
1556    if (ICI.getPredicate() == ICmpInst::ICMP_ULT && LHSI->hasOneUse() &&
1557        RHSV.isPowerOf2() && (LHSV & (RHSV - 1)) == (RHSV - 1))
1558      return new ICmpInst(ICmpInst::ICMP_EQ,
1559                          Builder->CreateOr(LHSI->getOperand(1), RHSV - 1),
1560                          LHSC);
1561
1562    // C1-X >u C2 -> (X|C2) != C1
1563    //   iff C1 & C2 == C2
1564    //       C2+1 is a power of 2
1565    if (ICI.getPredicate() == ICmpInst::ICMP_UGT && LHSI->hasOneUse() &&
1566        (RHSV + 1).isPowerOf2() && (LHSV & RHSV) == RHSV)
1567      return new ICmpInst(ICmpInst::ICMP_NE,
1568                          Builder->CreateOr(LHSI->getOperand(1), RHSV), LHSC);
1569    break;
1570  }
1571
1572  case Instruction::Add:
1573    // Fold: icmp pred (add X, C1), C2
1574    if (!ICI.isEquality()) {
1575      ConstantInt *LHSC = dyn_cast<ConstantInt>(LHSI->getOperand(1));
1576      if (!LHSC) break;
1577      const APInt &LHSV = LHSC->getValue();
1578
1579      ConstantRange CR = ICI.makeConstantRange(ICI.getPredicate(), RHSV)
1580                            .subtract(LHSV);
1581
1582      if (ICI.isSigned()) {
1583        if (CR.getLower().isSignBit()) {
1584          return new ICmpInst(ICmpInst::ICMP_SLT, LHSI->getOperand(0),
1585                              Builder->getInt(CR.getUpper()));
1586        } else if (CR.getUpper().isSignBit()) {
1587          return new ICmpInst(ICmpInst::ICMP_SGE, LHSI->getOperand(0),
1588                              Builder->getInt(CR.getLower()));
1589        }
1590      } else {
1591        if (CR.getLower().isMinValue()) {
1592          return new ICmpInst(ICmpInst::ICMP_ULT, LHSI->getOperand(0),
1593                              Builder->getInt(CR.getUpper()));
1594        } else if (CR.getUpper().isMinValue()) {
1595          return new ICmpInst(ICmpInst::ICMP_UGE, LHSI->getOperand(0),
1596                              Builder->getInt(CR.getLower()));
1597        }
1598      }
1599
1600      // X-C1 <u C2 -> (X & -C2) == C1
1601      //   iff C1 & (C2-1) == 0
1602      //       C2 is a power of 2
1603      if (ICI.getPredicate() == ICmpInst::ICMP_ULT && LHSI->hasOneUse() &&
1604          RHSV.isPowerOf2() && (LHSV & (RHSV - 1)) == 0)
1605        return new ICmpInst(ICmpInst::ICMP_EQ,
1606                            Builder->CreateAnd(LHSI->getOperand(0), -RHSV),
1607                            ConstantExpr::getNeg(LHSC));
1608
1609      // X-C1 >u C2 -> (X & ~C2) != C1
1610      //   iff C1 & C2 == 0
1611      //       C2+1 is a power of 2
1612      if (ICI.getPredicate() == ICmpInst::ICMP_UGT && LHSI->hasOneUse() &&
1613          (RHSV + 1).isPowerOf2() && (LHSV & RHSV) == 0)
1614        return new ICmpInst(ICmpInst::ICMP_NE,
1615                            Builder->CreateAnd(LHSI->getOperand(0), ~RHSV),
1616                            ConstantExpr::getNeg(LHSC));
1617    }
1618    break;
1619  }
1620
1621  // Simplify icmp_eq and icmp_ne instructions with integer constant RHS.
1622  if (ICI.isEquality()) {
1623    bool isICMP_NE = ICI.getPredicate() == ICmpInst::ICMP_NE;
1624
1625    // If the first operand is (add|sub|and|or|xor|rem) with a constant, and
1626    // the second operand is a constant, simplify a bit.
1627    if (BinaryOperator *BO = dyn_cast<BinaryOperator>(LHSI)) {
1628      switch (BO->getOpcode()) {
1629      case Instruction::SRem:
1630        // If we have a signed (X % (2^c)) == 0, turn it into an unsigned one.
1631        if (RHSV == 0 && isa<ConstantInt>(BO->getOperand(1)) &&BO->hasOneUse()){
1632          const APInt &V = cast<ConstantInt>(BO->getOperand(1))->getValue();
1633          if (V.sgt(1) && V.isPowerOf2()) {
1634            Value *NewRem =
1635              Builder->CreateURem(BO->getOperand(0), BO->getOperand(1),
1636                                  BO->getName());
1637            return new ICmpInst(ICI.getPredicate(), NewRem,
1638                                Constant::getNullValue(BO->getType()));
1639          }
1640        }
1641        break;
1642      case Instruction::Add:
1643        // Replace ((add A, B) != C) with (A != C-B) if B & C are constants.
1644        if (ConstantInt *BOp1C = dyn_cast<ConstantInt>(BO->getOperand(1))) {
1645          if (BO->hasOneUse())
1646            return new ICmpInst(ICI.getPredicate(), BO->getOperand(0),
1647                                ConstantExpr::getSub(RHS, BOp1C));
1648        } else if (RHSV == 0) {
1649          // Replace ((add A, B) != 0) with (A != -B) if A or B is
1650          // efficiently invertible, or if the add has just this one use.
1651          Value *BOp0 = BO->getOperand(0), *BOp1 = BO->getOperand(1);
1652
1653          if (Value *NegVal = dyn_castNegVal(BOp1))
1654            return new ICmpInst(ICI.getPredicate(), BOp0, NegVal);
1655          if (Value *NegVal = dyn_castNegVal(BOp0))
1656            return new ICmpInst(ICI.getPredicate(), NegVal, BOp1);
1657          if (BO->hasOneUse()) {
1658            Value *Neg = Builder->CreateNeg(BOp1);
1659            Neg->takeName(BO);
1660            return new ICmpInst(ICI.getPredicate(), BOp0, Neg);
1661          }
1662        }
1663        break;
1664      case Instruction::Xor:
1665        // For the xor case, we can xor two constants together, eliminating
1666        // the explicit xor.
1667        if (Constant *BOC = dyn_cast<Constant>(BO->getOperand(1))) {
1668          return new ICmpInst(ICI.getPredicate(), BO->getOperand(0),
1669                              ConstantExpr::getXor(RHS, BOC));
1670        } else if (RHSV == 0) {
1671          // Replace ((xor A, B) != 0) with (A != B)
1672          return new ICmpInst(ICI.getPredicate(), BO->getOperand(0),
1673                              BO->getOperand(1));
1674        }
1675        break;
1676      case Instruction::Sub:
1677        // Replace ((sub A, B) != C) with (B != A-C) if A & C are constants.
1678        if (ConstantInt *BOp0C = dyn_cast<ConstantInt>(BO->getOperand(0))) {
1679          if (BO->hasOneUse())
1680            return new ICmpInst(ICI.getPredicate(), BO->getOperand(1),
1681                                ConstantExpr::getSub(BOp0C, RHS));
1682        } else if (RHSV == 0) {
1683          // Replace ((sub A, B) != 0) with (A != B)
1684          return new ICmpInst(ICI.getPredicate(), BO->getOperand(0),
1685                              BO->getOperand(1));
1686        }
1687        break;
1688      case Instruction::Or:
1689        // If bits are being or'd in that are not present in the constant we
1690        // are comparing against, then the comparison could never succeed!
1691        if (ConstantInt *BOC = dyn_cast<ConstantInt>(BO->getOperand(1))) {
1692          Constant *NotCI = ConstantExpr::getNot(RHS);
1693          if (!ConstantExpr::getAnd(BOC, NotCI)->isNullValue())
1694            return ReplaceInstUsesWith(ICI, Builder->getInt1(isICMP_NE));
1695        }
1696        break;
1697
1698      case Instruction::And:
1699        if (ConstantInt *BOC = dyn_cast<ConstantInt>(BO->getOperand(1))) {
1700          // If bits are being compared against that are and'd out, then the
1701          // comparison can never succeed!
1702          if ((RHSV & ~BOC->getValue()) != 0)
1703            return ReplaceInstUsesWith(ICI, Builder->getInt1(isICMP_NE));
1704
1705          // If we have ((X & C) == C), turn it into ((X & C) != 0).
1706          if (RHS == BOC && RHSV.isPowerOf2())
1707            return new ICmpInst(isICMP_NE ? ICmpInst::ICMP_EQ :
1708                                ICmpInst::ICMP_NE, LHSI,
1709                                Constant::getNullValue(RHS->getType()));
1710
1711          // Don't perform the following transforms if the AND has multiple uses
1712          if (!BO->hasOneUse())
1713            break;
1714
1715          // Replace (and X, (1 << size(X)-1) != 0) with x s< 0
1716          if (BOC->getValue().isSignBit()) {
1717            Value *X = BO->getOperand(0);
1718            Constant *Zero = Constant::getNullValue(X->getType());
1719            ICmpInst::Predicate pred = isICMP_NE ?
1720              ICmpInst::ICMP_SLT : ICmpInst::ICMP_SGE;
1721            return new ICmpInst(pred, X, Zero);
1722          }
1723
1724          // ((X & ~7) == 0) --> X < 8
1725          if (RHSV == 0 && isHighOnes(BOC)) {
1726            Value *X = BO->getOperand(0);
1727            Constant *NegX = ConstantExpr::getNeg(BOC);
1728            ICmpInst::Predicate pred = isICMP_NE ?
1729              ICmpInst::ICMP_UGE : ICmpInst::ICMP_ULT;
1730            return new ICmpInst(pred, X, NegX);
1731          }
1732        }
1733        break;
1734      case Instruction::Mul:
1735        if (RHSV == 0 && BO->hasNoSignedWrap()) {
1736          if (ConstantInt *BOC = dyn_cast<ConstantInt>(BO->getOperand(1))) {
1737            // The trivial case (mul X, 0) is handled by InstSimplify
1738            // General case : (mul X, C) != 0 iff X != 0
1739            //                (mul X, C) == 0 iff X == 0
1740            if (!BOC->isZero())
1741              return new ICmpInst(ICI.getPredicate(), BO->getOperand(0),
1742                                  Constant::getNullValue(RHS->getType()));
1743          }
1744        }
1745        break;
1746      default: break;
1747      }
1748    } else if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(LHSI)) {
1749      // Handle icmp {eq|ne} <intrinsic>, intcst.
1750      switch (II->getIntrinsicID()) {
1751      case Intrinsic::bswap:
1752        Worklist.Add(II);
1753        ICI.setOperand(0, II->getArgOperand(0));
1754        ICI.setOperand(1, Builder->getInt(RHSV.byteSwap()));
1755        return &ICI;
1756      case Intrinsic::ctlz:
1757      case Intrinsic::cttz:
1758        // ctz(A) == bitwidth(a)  ->  A == 0 and likewise for !=
1759        if (RHSV == RHS->getType()->getBitWidth()) {
1760          Worklist.Add(II);
1761          ICI.setOperand(0, II->getArgOperand(0));
1762          ICI.setOperand(1, ConstantInt::get(RHS->getType(), 0));
1763          return &ICI;
1764        }
1765        break;
1766      case Intrinsic::ctpop:
1767        // popcount(A) == 0  ->  A == 0 and likewise for !=
1768        if (RHS->isZero()) {
1769          Worklist.Add(II);
1770          ICI.setOperand(0, II->getArgOperand(0));
1771          ICI.setOperand(1, RHS);
1772          return &ICI;
1773        }
1774        break;
1775      default:
1776        break;
1777      }
1778    }
1779  }
1780  return 0;
1781}
1782
1783/// visitICmpInstWithCastAndCast - Handle icmp (cast x to y), (cast/cst).
1784/// We only handle extending casts so far.
1785///
1786Instruction *InstCombiner::visitICmpInstWithCastAndCast(ICmpInst &ICI) {
1787  const CastInst *LHSCI = cast<CastInst>(ICI.getOperand(0));
1788  Value *LHSCIOp        = LHSCI->getOperand(0);
1789  Type *SrcTy     = LHSCIOp->getType();
1790  Type *DestTy    = LHSCI->getType();
1791  Value *RHSCIOp;
1792
1793  // Turn icmp (ptrtoint x), (ptrtoint/c) into a compare of the input if the
1794  // integer type is the same size as the pointer type.
1795  if (TD && LHSCI->getOpcode() == Instruction::PtrToInt &&
1796      TD->getPointerTypeSizeInBits(SrcTy) == DestTy->getIntegerBitWidth()) {
1797    Value *RHSOp = 0;
1798    if (Constant *RHSC = dyn_cast<Constant>(ICI.getOperand(1))) {
1799      RHSOp = ConstantExpr::getIntToPtr(RHSC, SrcTy);
1800    } else if (PtrToIntInst *RHSC = dyn_cast<PtrToIntInst>(ICI.getOperand(1))) {
1801      RHSOp = RHSC->getOperand(0);
1802      // If the pointer types don't match, insert a bitcast.
1803      if (LHSCIOp->getType() != RHSOp->getType())
1804        RHSOp = Builder->CreateBitCast(RHSOp, LHSCIOp->getType());
1805    }
1806
1807    if (RHSOp)
1808      return new ICmpInst(ICI.getPredicate(), LHSCIOp, RHSOp);
1809  }
1810
1811  // The code below only handles extension cast instructions, so far.
1812  // Enforce this.
1813  if (LHSCI->getOpcode() != Instruction::ZExt &&
1814      LHSCI->getOpcode() != Instruction::SExt)
1815    return 0;
1816
1817  bool isSignedExt = LHSCI->getOpcode() == Instruction::SExt;
1818  bool isSignedCmp = ICI.isSigned();
1819
1820  if (CastInst *CI = dyn_cast<CastInst>(ICI.getOperand(1))) {
1821    // Not an extension from the same type?
1822    RHSCIOp = CI->getOperand(0);
1823    if (RHSCIOp->getType() != LHSCIOp->getType())
1824      return 0;
1825
1826    // If the signedness of the two casts doesn't agree (i.e. one is a sext
1827    // and the other is a zext), then we can't handle this.
1828    if (CI->getOpcode() != LHSCI->getOpcode())
1829      return 0;
1830
1831    // Deal with equality cases early.
1832    if (ICI.isEquality())
1833      return new ICmpInst(ICI.getPredicate(), LHSCIOp, RHSCIOp);
1834
1835    // A signed comparison of sign extended values simplifies into a
1836    // signed comparison.
1837    if (isSignedCmp && isSignedExt)
1838      return new ICmpInst(ICI.getPredicate(), LHSCIOp, RHSCIOp);
1839
1840    // The other three cases all fold into an unsigned comparison.
1841    return new ICmpInst(ICI.getUnsignedPredicate(), LHSCIOp, RHSCIOp);
1842  }
1843
1844  // If we aren't dealing with a constant on the RHS, exit early
1845  ConstantInt *CI = dyn_cast<ConstantInt>(ICI.getOperand(1));
1846  if (!CI)
1847    return 0;
1848
1849  // Compute the constant that would happen if we truncated to SrcTy then
1850  // reextended to DestTy.
1851  Constant *Res1 = ConstantExpr::getTrunc(CI, SrcTy);
1852  Constant *Res2 = ConstantExpr::getCast(LHSCI->getOpcode(),
1853                                                Res1, DestTy);
1854
1855  // If the re-extended constant didn't change...
1856  if (Res2 == CI) {
1857    // Deal with equality cases early.
1858    if (ICI.isEquality())
1859      return new ICmpInst(ICI.getPredicate(), LHSCIOp, Res1);
1860
1861    // A signed comparison of sign extended values simplifies into a
1862    // signed comparison.
1863    if (isSignedExt && isSignedCmp)
1864      return new ICmpInst(ICI.getPredicate(), LHSCIOp, Res1);
1865
1866    // The other three cases all fold into an unsigned comparison.
1867    return new ICmpInst(ICI.getUnsignedPredicate(), LHSCIOp, Res1);
1868  }
1869
1870  // The re-extended constant changed so the constant cannot be represented
1871  // in the shorter type. Consequently, we cannot emit a simple comparison.
1872  // All the cases that fold to true or false will have already been handled
1873  // by SimplifyICmpInst, so only deal with the tricky case.
1874
1875  if (isSignedCmp || !isSignedExt)
1876    return 0;
1877
1878  // Evaluate the comparison for LT (we invert for GT below). LE and GE cases
1879  // should have been folded away previously and not enter in here.
1880
1881  // We're performing an unsigned comp with a sign extended value.
1882  // This is true if the input is >= 0. [aka >s -1]
1883  Constant *NegOne = Constant::getAllOnesValue(SrcTy);
1884  Value *Result = Builder->CreateICmpSGT(LHSCIOp, NegOne, ICI.getName());
1885
1886  // Finally, return the value computed.
1887  if (ICI.getPredicate() == ICmpInst::ICMP_ULT)
1888    return ReplaceInstUsesWith(ICI, Result);
1889
1890  assert(ICI.getPredicate() == ICmpInst::ICMP_UGT && "ICmp should be folded!");
1891  return BinaryOperator::CreateNot(Result);
1892}
1893
1894/// ProcessUGT_ADDCST_ADD - The caller has matched a pattern of the form:
1895///   I = icmp ugt (add (add A, B), CI2), CI1
1896/// If this is of the form:
1897///   sum = a + b
1898///   if (sum+128 >u 255)
1899/// Then replace it with llvm.sadd.with.overflow.i8.
1900///
1901static Instruction *ProcessUGT_ADDCST_ADD(ICmpInst &I, Value *A, Value *B,
1902                                          ConstantInt *CI2, ConstantInt *CI1,
1903                                          InstCombiner &IC) {
1904  // The transformation we're trying to do here is to transform this into an
1905  // llvm.sadd.with.overflow.  To do this, we have to replace the original add
1906  // with a narrower add, and discard the add-with-constant that is part of the
1907  // range check (if we can't eliminate it, this isn't profitable).
1908
1909  // In order to eliminate the add-with-constant, the compare can be its only
1910  // use.
1911  Instruction *AddWithCst = cast<Instruction>(I.getOperand(0));
1912  if (!AddWithCst->hasOneUse()) return 0;
1913
1914  // If CI2 is 2^7, 2^15, 2^31, then it might be an sadd.with.overflow.
1915  if (!CI2->getValue().isPowerOf2()) return 0;
1916  unsigned NewWidth = CI2->getValue().countTrailingZeros();
1917  if (NewWidth != 7 && NewWidth != 15 && NewWidth != 31) return 0;
1918
1919  // The width of the new add formed is 1 more than the bias.
1920  ++NewWidth;
1921
1922  // Check to see that CI1 is an all-ones value with NewWidth bits.
1923  if (CI1->getBitWidth() == NewWidth ||
1924      CI1->getValue() != APInt::getLowBitsSet(CI1->getBitWidth(), NewWidth))
1925    return 0;
1926
1927  // This is only really a signed overflow check if the inputs have been
1928  // sign-extended; check for that condition. For example, if CI2 is 2^31 and
1929  // the operands of the add are 64 bits wide, we need at least 33 sign bits.
1930  unsigned NeededSignBits = CI1->getBitWidth() - NewWidth + 1;
1931  if (IC.ComputeNumSignBits(A) < NeededSignBits ||
1932      IC.ComputeNumSignBits(B) < NeededSignBits)
1933    return 0;
1934
1935  // In order to replace the original add with a narrower
1936  // llvm.sadd.with.overflow, the only uses allowed are the add-with-constant
1937  // and truncates that discard the high bits of the add.  Verify that this is
1938  // the case.
1939  Instruction *OrigAdd = cast<Instruction>(AddWithCst->getOperand(0));
1940  for (Value::use_iterator UI = OrigAdd->use_begin(), E = OrigAdd->use_end();
1941       UI != E; ++UI) {
1942    if (*UI == AddWithCst) continue;
1943
1944    // Only accept truncates for now.  We would really like a nice recursive
1945    // predicate like SimplifyDemandedBits, but which goes downwards the use-def
1946    // chain to see which bits of a value are actually demanded.  If the
1947    // original add had another add which was then immediately truncated, we
1948    // could still do the transformation.
1949    TruncInst *TI = dyn_cast<TruncInst>(*UI);
1950    if (TI == 0 ||
1951        TI->getType()->getPrimitiveSizeInBits() > NewWidth) return 0;
1952  }
1953
1954  // If the pattern matches, truncate the inputs to the narrower type and
1955  // use the sadd_with_overflow intrinsic to efficiently compute both the
1956  // result and the overflow bit.
1957  Module *M = I.getParent()->getParent()->getParent();
1958
1959  Type *NewType = IntegerType::get(OrigAdd->getContext(), NewWidth);
1960  Value *F = Intrinsic::getDeclaration(M, Intrinsic::sadd_with_overflow,
1961                                       NewType);
1962
1963  InstCombiner::BuilderTy *Builder = IC.Builder;
1964
1965  // Put the new code above the original add, in case there are any uses of the
1966  // add between the add and the compare.
1967  Builder->SetInsertPoint(OrigAdd);
1968
1969  Value *TruncA = Builder->CreateTrunc(A, NewType, A->getName()+".trunc");
1970  Value *TruncB = Builder->CreateTrunc(B, NewType, B->getName()+".trunc");
1971  CallInst *Call = Builder->CreateCall2(F, TruncA, TruncB, "sadd");
1972  Value *Add = Builder->CreateExtractValue(Call, 0, "sadd.result");
1973  Value *ZExt = Builder->CreateZExt(Add, OrigAdd->getType());
1974
1975  // The inner add was the result of the narrow add, zero extended to the
1976  // wider type.  Replace it with the result computed by the intrinsic.
1977  IC.ReplaceInstUsesWith(*OrigAdd, ZExt);
1978
1979  // The original icmp gets replaced with the overflow value.
1980  return ExtractValueInst::Create(Call, 1, "sadd.overflow");
1981}
1982
1983static Instruction *ProcessUAddIdiom(Instruction &I, Value *OrigAddV,
1984                                     InstCombiner &IC) {
1985  // Don't bother doing this transformation for pointers, don't do it for
1986  // vectors.
1987  if (!isa<IntegerType>(OrigAddV->getType())) return 0;
1988
1989  // If the add is a constant expr, then we don't bother transforming it.
1990  Instruction *OrigAdd = dyn_cast<Instruction>(OrigAddV);
1991  if (OrigAdd == 0) return 0;
1992
1993  Value *LHS = OrigAdd->getOperand(0), *RHS = OrigAdd->getOperand(1);
1994
1995  // Put the new code above the original add, in case there are any uses of the
1996  // add between the add and the compare.
1997  InstCombiner::BuilderTy *Builder = IC.Builder;
1998  Builder->SetInsertPoint(OrigAdd);
1999
2000  Module *M = I.getParent()->getParent()->getParent();
2001  Type *Ty = LHS->getType();
2002  Value *F = Intrinsic::getDeclaration(M, Intrinsic::uadd_with_overflow, Ty);
2003  CallInst *Call = Builder->CreateCall2(F, LHS, RHS, "uadd");
2004  Value *Add = Builder->CreateExtractValue(Call, 0);
2005
2006  IC.ReplaceInstUsesWith(*OrigAdd, Add);
2007
2008  // The original icmp gets replaced with the overflow value.
2009  return ExtractValueInst::Create(Call, 1, "uadd.overflow");
2010}
2011
2012// DemandedBitsLHSMask - When performing a comparison against a constant,
2013// it is possible that not all the bits in the LHS are demanded.  This helper
2014// method computes the mask that IS demanded.
2015static APInt DemandedBitsLHSMask(ICmpInst &I,
2016                                 unsigned BitWidth, bool isSignCheck) {
2017  if (isSignCheck)
2018    return APInt::getSignBit(BitWidth);
2019
2020  ConstantInt *CI = dyn_cast<ConstantInt>(I.getOperand(1));
2021  if (!CI) return APInt::getAllOnesValue(BitWidth);
2022  const APInt &RHS = CI->getValue();
2023
2024  switch (I.getPredicate()) {
2025  // For a UGT comparison, we don't care about any bits that
2026  // correspond to the trailing ones of the comparand.  The value of these
2027  // bits doesn't impact the outcome of the comparison, because any value
2028  // greater than the RHS must differ in a bit higher than these due to carry.
2029  case ICmpInst::ICMP_UGT: {
2030    unsigned trailingOnes = RHS.countTrailingOnes();
2031    APInt lowBitsSet = APInt::getLowBitsSet(BitWidth, trailingOnes);
2032    return ~lowBitsSet;
2033  }
2034
2035  // Similarly, for a ULT comparison, we don't care about the trailing zeros.
2036  // Any value less than the RHS must differ in a higher bit because of carries.
2037  case ICmpInst::ICMP_ULT: {
2038    unsigned trailingZeros = RHS.countTrailingZeros();
2039    APInt lowBitsSet = APInt::getLowBitsSet(BitWidth, trailingZeros);
2040    return ~lowBitsSet;
2041  }
2042
2043  default:
2044    return APInt::getAllOnesValue(BitWidth);
2045  }
2046
2047}
2048
2049/// \brief Check if the order of \p Op0 and \p Op1 as operand in an ICmpInst
2050/// should be swapped.
2051/// The descision is based on how many times these two operands are reused
2052/// as subtract operands and their positions in those instructions.
2053/// The rational is that several architectures use the same instruction for
2054/// both subtract and cmp, thus it is better if the order of those operands
2055/// match.
2056/// \return true if Op0 and Op1 should be swapped.
2057static bool swapMayExposeCSEOpportunities(const Value * Op0,
2058                                          const Value * Op1) {
2059  // Filter out pointer value as those cannot appears directly in subtract.
2060  // FIXME: we may want to go through inttoptrs or bitcasts.
2061  if (Op0->getType()->isPointerTy())
2062    return false;
2063  // Count every uses of both Op0 and Op1 in a subtract.
2064  // Each time Op0 is the first operand, count -1: swapping is bad, the
2065  // subtract has already the same layout as the compare.
2066  // Each time Op0 is the second operand, count +1: swapping is good, the
2067  // subtract has a diffrent layout as the compare.
2068  // At the end, if the benefit is greater than 0, Op0 should come second to
2069  // expose more CSE opportunities.
2070  int GlobalSwapBenefits = 0;
2071  for (Value::const_use_iterator UI = Op0->use_begin(), UIEnd = Op0->use_end(); UI != UIEnd; ++UI) {
2072    const BinaryOperator *BinOp = dyn_cast<BinaryOperator>(*UI);
2073    if (!BinOp || BinOp->getOpcode() != Instruction::Sub)
2074      continue;
2075    // If Op0 is the first argument, this is not beneficial to swap the
2076    // arguments.
2077    int LocalSwapBenefits = -1;
2078    unsigned Op1Idx = 1;
2079    if (BinOp->getOperand(Op1Idx) == Op0) {
2080      Op1Idx = 0;
2081      LocalSwapBenefits = 1;
2082    }
2083    if (BinOp->getOperand(Op1Idx) != Op1)
2084      continue;
2085    GlobalSwapBenefits += LocalSwapBenefits;
2086  }
2087  return GlobalSwapBenefits > 0;
2088}
2089
2090Instruction *InstCombiner::visitICmpInst(ICmpInst &I) {
2091  bool Changed = false;
2092  Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
2093  unsigned Op0Cplxity = getComplexity(Op0);
2094  unsigned Op1Cplxity = getComplexity(Op1);
2095
2096  /// Orders the operands of the compare so that they are listed from most
2097  /// complex to least complex.  This puts constants before unary operators,
2098  /// before binary operators.
2099  if (Op0Cplxity < Op1Cplxity ||
2100        (Op0Cplxity == Op1Cplxity &&
2101         swapMayExposeCSEOpportunities(Op0, Op1))) {
2102    I.swapOperands();
2103    std::swap(Op0, Op1);
2104    Changed = true;
2105  }
2106
2107  if (Value *V = SimplifyICmpInst(I.getPredicate(), Op0, Op1, TD))
2108    return ReplaceInstUsesWith(I, V);
2109
2110  // comparing -val or val with non-zero is the same as just comparing val
2111  // ie, abs(val) != 0 -> val != 0
2112  if (I.getPredicate() == ICmpInst::ICMP_NE && match(Op1, m_Zero()))
2113  {
2114    Value *Cond, *SelectTrue, *SelectFalse;
2115    if (match(Op0, m_Select(m_Value(Cond), m_Value(SelectTrue),
2116                            m_Value(SelectFalse)))) {
2117      if (Value *V = dyn_castNegVal(SelectTrue)) {
2118        if (V == SelectFalse)
2119          return CmpInst::Create(Instruction::ICmp, I.getPredicate(), V, Op1);
2120      }
2121      else if (Value *V = dyn_castNegVal(SelectFalse)) {
2122        if (V == SelectTrue)
2123          return CmpInst::Create(Instruction::ICmp, I.getPredicate(), V, Op1);
2124      }
2125    }
2126  }
2127
2128  Type *Ty = Op0->getType();
2129
2130  // icmp's with boolean values can always be turned into bitwise operations
2131  if (Ty->isIntegerTy(1)) {
2132    switch (I.getPredicate()) {
2133    default: llvm_unreachable("Invalid icmp instruction!");
2134    case ICmpInst::ICMP_EQ: {               // icmp eq i1 A, B -> ~(A^B)
2135      Value *Xor = Builder->CreateXor(Op0, Op1, I.getName()+"tmp");
2136      return BinaryOperator::CreateNot(Xor);
2137    }
2138    case ICmpInst::ICMP_NE:                  // icmp eq i1 A, B -> A^B
2139      return BinaryOperator::CreateXor(Op0, Op1);
2140
2141    case ICmpInst::ICMP_UGT:
2142      std::swap(Op0, Op1);                   // Change icmp ugt -> icmp ult
2143      // FALL THROUGH
2144    case ICmpInst::ICMP_ULT:{               // icmp ult i1 A, B -> ~A & B
2145      Value *Not = Builder->CreateNot(Op0, I.getName()+"tmp");
2146      return BinaryOperator::CreateAnd(Not, Op1);
2147    }
2148    case ICmpInst::ICMP_SGT:
2149      std::swap(Op0, Op1);                   // Change icmp sgt -> icmp slt
2150      // FALL THROUGH
2151    case ICmpInst::ICMP_SLT: {               // icmp slt i1 A, B -> A & ~B
2152      Value *Not = Builder->CreateNot(Op1, I.getName()+"tmp");
2153      return BinaryOperator::CreateAnd(Not, Op0);
2154    }
2155    case ICmpInst::ICMP_UGE:
2156      std::swap(Op0, Op1);                   // Change icmp uge -> icmp ule
2157      // FALL THROUGH
2158    case ICmpInst::ICMP_ULE: {               //  icmp ule i1 A, B -> ~A | B
2159      Value *Not = Builder->CreateNot(Op0, I.getName()+"tmp");
2160      return BinaryOperator::CreateOr(Not, Op1);
2161    }
2162    case ICmpInst::ICMP_SGE:
2163      std::swap(Op0, Op1);                   // Change icmp sge -> icmp sle
2164      // FALL THROUGH
2165    case ICmpInst::ICMP_SLE: {               //  icmp sle i1 A, B -> A | ~B
2166      Value *Not = Builder->CreateNot(Op1, I.getName()+"tmp");
2167      return BinaryOperator::CreateOr(Not, Op0);
2168    }
2169    }
2170  }
2171
2172  unsigned BitWidth = 0;
2173  if (Ty->isIntOrIntVectorTy())
2174    BitWidth = Ty->getScalarSizeInBits();
2175  else if (TD)  // Pointers require TD info to get their size.
2176    BitWidth = TD->getTypeSizeInBits(Ty->getScalarType());
2177
2178  bool isSignBit = false;
2179
2180  // See if we are doing a comparison with a constant.
2181  if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
2182    Value *A = 0, *B = 0;
2183
2184    // Match the following pattern, which is a common idiom when writing
2185    // overflow-safe integer arithmetic function.  The source performs an
2186    // addition in wider type, and explicitly checks for overflow using
2187    // comparisons against INT_MIN and INT_MAX.  Simplify this by using the
2188    // sadd_with_overflow intrinsic.
2189    //
2190    // TODO: This could probably be generalized to handle other overflow-safe
2191    // operations if we worked out the formulas to compute the appropriate
2192    // magic constants.
2193    //
2194    // sum = a + b
2195    // if (sum+128 >u 255)  ...  -> llvm.sadd.with.overflow.i8
2196    {
2197    ConstantInt *CI2;    // I = icmp ugt (add (add A, B), CI2), CI
2198    if (I.getPredicate() == ICmpInst::ICMP_UGT &&
2199        match(Op0, m_Add(m_Add(m_Value(A), m_Value(B)), m_ConstantInt(CI2))))
2200      if (Instruction *Res = ProcessUGT_ADDCST_ADD(I, A, B, CI2, CI, *this))
2201        return Res;
2202    }
2203
2204    // (icmp ne/eq (sub A B) 0) -> (icmp ne/eq A, B)
2205    if (I.isEquality() && CI->isZero() &&
2206        match(Op0, m_Sub(m_Value(A), m_Value(B)))) {
2207      // (icmp cond A B) if cond is equality
2208      return new ICmpInst(I.getPredicate(), A, B);
2209    }
2210
2211    // If we have an icmp le or icmp ge instruction, turn it into the
2212    // appropriate icmp lt or icmp gt instruction.  This allows us to rely on
2213    // them being folded in the code below.  The SimplifyICmpInst code has
2214    // already handled the edge cases for us, so we just assert on them.
2215    switch (I.getPredicate()) {
2216    default: break;
2217    case ICmpInst::ICMP_ULE:
2218      assert(!CI->isMaxValue(false));                 // A <=u MAX -> TRUE
2219      return new ICmpInst(ICmpInst::ICMP_ULT, Op0,
2220                          Builder->getInt(CI->getValue()+1));
2221    case ICmpInst::ICMP_SLE:
2222      assert(!CI->isMaxValue(true));                  // A <=s MAX -> TRUE
2223      return new ICmpInst(ICmpInst::ICMP_SLT, Op0,
2224                          Builder->getInt(CI->getValue()+1));
2225    case ICmpInst::ICMP_UGE:
2226      assert(!CI->isMinValue(false));                 // A >=u MIN -> TRUE
2227      return new ICmpInst(ICmpInst::ICMP_UGT, Op0,
2228                          Builder->getInt(CI->getValue()-1));
2229    case ICmpInst::ICMP_SGE:
2230      assert(!CI->isMinValue(true));                  // A >=s MIN -> TRUE
2231      return new ICmpInst(ICmpInst::ICMP_SGT, Op0,
2232                          Builder->getInt(CI->getValue()-1));
2233    }
2234
2235    // If this comparison is a normal comparison, it demands all
2236    // bits, if it is a sign bit comparison, it only demands the sign bit.
2237    bool UnusedBit;
2238    isSignBit = isSignBitCheck(I.getPredicate(), CI, UnusedBit);
2239  }
2240
2241  // See if we can fold the comparison based on range information we can get
2242  // by checking whether bits are known to be zero or one in the input.
2243  if (BitWidth != 0) {
2244    APInt Op0KnownZero(BitWidth, 0), Op0KnownOne(BitWidth, 0);
2245    APInt Op1KnownZero(BitWidth, 0), Op1KnownOne(BitWidth, 0);
2246
2247    if (SimplifyDemandedBits(I.getOperandUse(0),
2248                             DemandedBitsLHSMask(I, BitWidth, isSignBit),
2249                             Op0KnownZero, Op0KnownOne, 0))
2250      return &I;
2251    if (SimplifyDemandedBits(I.getOperandUse(1),
2252                             APInt::getAllOnesValue(BitWidth),
2253                             Op1KnownZero, Op1KnownOne, 0))
2254      return &I;
2255
2256    // Given the known and unknown bits, compute a range that the LHS could be
2257    // in.  Compute the Min, Max and RHS values based on the known bits. For the
2258    // EQ and NE we use unsigned values.
2259    APInt Op0Min(BitWidth, 0), Op0Max(BitWidth, 0);
2260    APInt Op1Min(BitWidth, 0), Op1Max(BitWidth, 0);
2261    if (I.isSigned()) {
2262      ComputeSignedMinMaxValuesFromKnownBits(Op0KnownZero, Op0KnownOne,
2263                                             Op0Min, Op0Max);
2264      ComputeSignedMinMaxValuesFromKnownBits(Op1KnownZero, Op1KnownOne,
2265                                             Op1Min, Op1Max);
2266    } else {
2267      ComputeUnsignedMinMaxValuesFromKnownBits(Op0KnownZero, Op0KnownOne,
2268                                               Op0Min, Op0Max);
2269      ComputeUnsignedMinMaxValuesFromKnownBits(Op1KnownZero, Op1KnownOne,
2270                                               Op1Min, Op1Max);
2271    }
2272
2273    // If Min and Max are known to be the same, then SimplifyDemandedBits
2274    // figured out that the LHS is a constant.  Just constant fold this now so
2275    // that code below can assume that Min != Max.
2276    if (!isa<Constant>(Op0) && Op0Min == Op0Max)
2277      return new ICmpInst(I.getPredicate(),
2278                          ConstantInt::get(Op0->getType(), Op0Min), Op1);
2279    if (!isa<Constant>(Op1) && Op1Min == Op1Max)
2280      return new ICmpInst(I.getPredicate(), Op0,
2281                          ConstantInt::get(Op1->getType(), Op1Min));
2282
2283    // Based on the range information we know about the LHS, see if we can
2284    // simplify this comparison.  For example, (x&4) < 8 is always true.
2285    switch (I.getPredicate()) {
2286    default: llvm_unreachable("Unknown icmp opcode!");
2287    case ICmpInst::ICMP_EQ: {
2288      if (Op0Max.ult(Op1Min) || Op0Min.ugt(Op1Max))
2289        return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
2290
2291      // If all bits are known zero except for one, then we know at most one
2292      // bit is set.   If the comparison is against zero, then this is a check
2293      // to see if *that* bit is set.
2294      APInt Op0KnownZeroInverted = ~Op0KnownZero;
2295      if (~Op1KnownZero == 0 && Op0KnownZeroInverted.isPowerOf2()) {
2296        // If the LHS is an AND with the same constant, look through it.
2297        Value *LHS = 0;
2298        ConstantInt *LHSC = 0;
2299        if (!match(Op0, m_And(m_Value(LHS), m_ConstantInt(LHSC))) ||
2300            LHSC->getValue() != Op0KnownZeroInverted)
2301          LHS = Op0;
2302
2303        // If the LHS is 1 << x, and we know the result is a power of 2 like 8,
2304        // then turn "((1 << x)&8) == 0" into "x != 3".
2305        Value *X = 0;
2306        if (match(LHS, m_Shl(m_One(), m_Value(X)))) {
2307          unsigned CmpVal = Op0KnownZeroInverted.countTrailingZeros();
2308          return new ICmpInst(ICmpInst::ICMP_NE, X,
2309                              ConstantInt::get(X->getType(), CmpVal));
2310        }
2311
2312        // If the LHS is 8 >>u x, and we know the result is a power of 2 like 1,
2313        // then turn "((8 >>u x)&1) == 0" into "x != 3".
2314        const APInt *CI;
2315        if (Op0KnownZeroInverted == 1 &&
2316            match(LHS, m_LShr(m_Power2(CI), m_Value(X))))
2317          return new ICmpInst(ICmpInst::ICMP_NE, X,
2318                              ConstantInt::get(X->getType(),
2319                                               CI->countTrailingZeros()));
2320      }
2321
2322      break;
2323    }
2324    case ICmpInst::ICMP_NE: {
2325      if (Op0Max.ult(Op1Min) || Op0Min.ugt(Op1Max))
2326        return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
2327
2328      // If all bits are known zero except for one, then we know at most one
2329      // bit is set.   If the comparison is against zero, then this is a check
2330      // to see if *that* bit is set.
2331      APInt Op0KnownZeroInverted = ~Op0KnownZero;
2332      if (~Op1KnownZero == 0 && Op0KnownZeroInverted.isPowerOf2()) {
2333        // If the LHS is an AND with the same constant, look through it.
2334        Value *LHS = 0;
2335        ConstantInt *LHSC = 0;
2336        if (!match(Op0, m_And(m_Value(LHS), m_ConstantInt(LHSC))) ||
2337            LHSC->getValue() != Op0KnownZeroInverted)
2338          LHS = Op0;
2339
2340        // If the LHS is 1 << x, and we know the result is a power of 2 like 8,
2341        // then turn "((1 << x)&8) != 0" into "x == 3".
2342        Value *X = 0;
2343        if (match(LHS, m_Shl(m_One(), m_Value(X)))) {
2344          unsigned CmpVal = Op0KnownZeroInverted.countTrailingZeros();
2345          return new ICmpInst(ICmpInst::ICMP_EQ, X,
2346                              ConstantInt::get(X->getType(), CmpVal));
2347        }
2348
2349        // If the LHS is 8 >>u x, and we know the result is a power of 2 like 1,
2350        // then turn "((8 >>u x)&1) != 0" into "x == 3".
2351        const APInt *CI;
2352        if (Op0KnownZeroInverted == 1 &&
2353            match(LHS, m_LShr(m_Power2(CI), m_Value(X))))
2354          return new ICmpInst(ICmpInst::ICMP_EQ, X,
2355                              ConstantInt::get(X->getType(),
2356                                               CI->countTrailingZeros()));
2357      }
2358
2359      break;
2360    }
2361    case ICmpInst::ICMP_ULT:
2362      if (Op0Max.ult(Op1Min))          // A <u B -> true if max(A) < min(B)
2363        return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
2364      if (Op0Min.uge(Op1Max))          // A <u B -> false if min(A) >= max(B)
2365        return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
2366      if (Op1Min == Op0Max)            // A <u B -> A != B if max(A) == min(B)
2367        return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1);
2368      if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
2369        if (Op1Max == Op0Min+1)        // A <u C -> A == C-1 if min(A)+1 == C
2370          return new ICmpInst(ICmpInst::ICMP_EQ, Op0,
2371                              Builder->getInt(CI->getValue()-1));
2372
2373        // (x <u 2147483648) -> (x >s -1)  -> true if sign bit clear
2374        if (CI->isMinValue(true))
2375          return new ICmpInst(ICmpInst::ICMP_SGT, Op0,
2376                           Constant::getAllOnesValue(Op0->getType()));
2377      }
2378      break;
2379    case ICmpInst::ICMP_UGT:
2380      if (Op0Min.ugt(Op1Max))          // A >u B -> true if min(A) > max(B)
2381        return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
2382      if (Op0Max.ule(Op1Min))          // A >u B -> false if max(A) <= max(B)
2383        return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
2384
2385      if (Op1Max == Op0Min)            // A >u B -> A != B if min(A) == max(B)
2386        return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1);
2387      if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
2388        if (Op1Min == Op0Max-1)        // A >u C -> A == C+1 if max(a)-1 == C
2389          return new ICmpInst(ICmpInst::ICMP_EQ, Op0,
2390                              Builder->getInt(CI->getValue()+1));
2391
2392        // (x >u 2147483647) -> (x <s 0)  -> true if sign bit set
2393        if (CI->isMaxValue(true))
2394          return new ICmpInst(ICmpInst::ICMP_SLT, Op0,
2395                              Constant::getNullValue(Op0->getType()));
2396      }
2397      break;
2398    case ICmpInst::ICMP_SLT:
2399      if (Op0Max.slt(Op1Min))          // A <s B -> true if max(A) < min(C)
2400        return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
2401      if (Op0Min.sge(Op1Max))          // A <s B -> false if min(A) >= max(C)
2402        return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
2403      if (Op1Min == Op0Max)            // A <s B -> A != B if max(A) == min(B)
2404        return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1);
2405      if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
2406        if (Op1Max == Op0Min+1)        // A <s C -> A == C-1 if min(A)+1 == C
2407          return new ICmpInst(ICmpInst::ICMP_EQ, Op0,
2408                              Builder->getInt(CI->getValue()-1));
2409      }
2410      break;
2411    case ICmpInst::ICMP_SGT:
2412      if (Op0Min.sgt(Op1Max))          // A >s B -> true if min(A) > max(B)
2413        return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
2414      if (Op0Max.sle(Op1Min))          // A >s B -> false if max(A) <= min(B)
2415        return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
2416
2417      if (Op1Max == Op0Min)            // A >s B -> A != B if min(A) == max(B)
2418        return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1);
2419      if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
2420        if (Op1Min == Op0Max-1)        // A >s C -> A == C+1 if max(A)-1 == C
2421          return new ICmpInst(ICmpInst::ICMP_EQ, Op0,
2422                              Builder->getInt(CI->getValue()+1));
2423      }
2424      break;
2425    case ICmpInst::ICMP_SGE:
2426      assert(!isa<ConstantInt>(Op1) && "ICMP_SGE with ConstantInt not folded!");
2427      if (Op0Min.sge(Op1Max))          // A >=s B -> true if min(A) >= max(B)
2428        return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
2429      if (Op0Max.slt(Op1Min))          // A >=s B -> false if max(A) < min(B)
2430        return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
2431      break;
2432    case ICmpInst::ICMP_SLE:
2433      assert(!isa<ConstantInt>(Op1) && "ICMP_SLE with ConstantInt not folded!");
2434      if (Op0Max.sle(Op1Min))          // A <=s B -> true if max(A) <= min(B)
2435        return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
2436      if (Op0Min.sgt(Op1Max))          // A <=s B -> false if min(A) > max(B)
2437        return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
2438      break;
2439    case ICmpInst::ICMP_UGE:
2440      assert(!isa<ConstantInt>(Op1) && "ICMP_UGE with ConstantInt not folded!");
2441      if (Op0Min.uge(Op1Max))          // A >=u B -> true if min(A) >= max(B)
2442        return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
2443      if (Op0Max.ult(Op1Min))          // A >=u B -> false if max(A) < min(B)
2444        return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
2445      break;
2446    case ICmpInst::ICMP_ULE:
2447      assert(!isa<ConstantInt>(Op1) && "ICMP_ULE with ConstantInt not folded!");
2448      if (Op0Max.ule(Op1Min))          // A <=u B -> true if max(A) <= min(B)
2449        return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
2450      if (Op0Min.ugt(Op1Max))          // A <=u B -> false if min(A) > max(B)
2451        return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
2452      break;
2453    }
2454
2455    // Turn a signed comparison into an unsigned one if both operands
2456    // are known to have the same sign.
2457    if (I.isSigned() &&
2458        ((Op0KnownZero.isNegative() && Op1KnownZero.isNegative()) ||
2459         (Op0KnownOne.isNegative() && Op1KnownOne.isNegative())))
2460      return new ICmpInst(I.getUnsignedPredicate(), Op0, Op1);
2461  }
2462
2463  // Test if the ICmpInst instruction is used exclusively by a select as
2464  // part of a minimum or maximum operation. If so, refrain from doing
2465  // any other folding. This helps out other analyses which understand
2466  // non-obfuscated minimum and maximum idioms, such as ScalarEvolution
2467  // and CodeGen. And in this case, at least one of the comparison
2468  // operands has at least one user besides the compare (the select),
2469  // which would often largely negate the benefit of folding anyway.
2470  if (I.hasOneUse())
2471    if (SelectInst *SI = dyn_cast<SelectInst>(*I.use_begin()))
2472      if ((SI->getOperand(1) == Op0 && SI->getOperand(2) == Op1) ||
2473          (SI->getOperand(2) == Op0 && SI->getOperand(1) == Op1))
2474        return 0;
2475
2476  // See if we are doing a comparison between a constant and an instruction that
2477  // can be folded into the comparison.
2478  if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
2479    // Since the RHS is a ConstantInt (CI), if the left hand side is an
2480    // instruction, see if that instruction also has constants so that the
2481    // instruction can be folded into the icmp
2482    if (Instruction *LHSI = dyn_cast<Instruction>(Op0))
2483      if (Instruction *Res = visitICmpInstWithInstAndIntCst(I, LHSI, CI))
2484        return Res;
2485  }
2486
2487  // Handle icmp with constant (but not simple integer constant) RHS
2488  if (Constant *RHSC = dyn_cast<Constant>(Op1)) {
2489    if (Instruction *LHSI = dyn_cast<Instruction>(Op0))
2490      switch (LHSI->getOpcode()) {
2491      case Instruction::GetElementPtr:
2492          // icmp pred GEP (P, int 0, int 0, int 0), null -> icmp pred P, null
2493        if (RHSC->isNullValue() &&
2494            cast<GetElementPtrInst>(LHSI)->hasAllZeroIndices())
2495          return new ICmpInst(I.getPredicate(), LHSI->getOperand(0),
2496                  Constant::getNullValue(LHSI->getOperand(0)->getType()));
2497        break;
2498      case Instruction::PHI:
2499        // Only fold icmp into the PHI if the phi and icmp are in the same
2500        // block.  If in the same block, we're encouraging jump threading.  If
2501        // not, we are just pessimizing the code by making an i1 phi.
2502        if (LHSI->getParent() == I.getParent())
2503          if (Instruction *NV = FoldOpIntoPhi(I))
2504            return NV;
2505        break;
2506      case Instruction::Select: {
2507        // If either operand of the select is a constant, we can fold the
2508        // comparison into the select arms, which will cause one to be
2509        // constant folded and the select turned into a bitwise or.
2510        Value *Op1 = 0, *Op2 = 0;
2511        if (Constant *C = dyn_cast<Constant>(LHSI->getOperand(1)))
2512          Op1 = ConstantExpr::getICmp(I.getPredicate(), C, RHSC);
2513        if (Constant *C = dyn_cast<Constant>(LHSI->getOperand(2)))
2514          Op2 = ConstantExpr::getICmp(I.getPredicate(), C, RHSC);
2515
2516        // We only want to perform this transformation if it will not lead to
2517        // additional code. This is true if either both sides of the select
2518        // fold to a constant (in which case the icmp is replaced with a select
2519        // which will usually simplify) or this is the only user of the
2520        // select (in which case we are trading a select+icmp for a simpler
2521        // select+icmp).
2522        if ((Op1 && Op2) || (LHSI->hasOneUse() && (Op1 || Op2))) {
2523          if (!Op1)
2524            Op1 = Builder->CreateICmp(I.getPredicate(), LHSI->getOperand(1),
2525                                      RHSC, I.getName());
2526          if (!Op2)
2527            Op2 = Builder->CreateICmp(I.getPredicate(), LHSI->getOperand(2),
2528                                      RHSC, I.getName());
2529          return SelectInst::Create(LHSI->getOperand(0), Op1, Op2);
2530        }
2531        break;
2532      }
2533      case Instruction::IntToPtr:
2534        // icmp pred inttoptr(X), null -> icmp pred X, 0
2535        if (RHSC->isNullValue() && TD &&
2536            TD->getIntPtrType(RHSC->getType()) ==
2537               LHSI->getOperand(0)->getType())
2538          return new ICmpInst(I.getPredicate(), LHSI->getOperand(0),
2539                        Constant::getNullValue(LHSI->getOperand(0)->getType()));
2540        break;
2541
2542      case Instruction::Load:
2543        // Try to optimize things like "A[i] > 4" to index computations.
2544        if (GetElementPtrInst *GEP =
2545              dyn_cast<GetElementPtrInst>(LHSI->getOperand(0))) {
2546          if (GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0)))
2547            if (GV->isConstant() && GV->hasDefinitiveInitializer() &&
2548                !cast<LoadInst>(LHSI)->isVolatile())
2549              if (Instruction *Res = FoldCmpLoadFromIndexedGlobal(GEP, GV, I))
2550                return Res;
2551        }
2552        break;
2553      }
2554  }
2555
2556  // If we can optimize a 'icmp GEP, P' or 'icmp P, GEP', do so now.
2557  if (GEPOperator *GEP = dyn_cast<GEPOperator>(Op0))
2558    if (Instruction *NI = FoldGEPICmp(GEP, Op1, I.getPredicate(), I))
2559      return NI;
2560  if (GEPOperator *GEP = dyn_cast<GEPOperator>(Op1))
2561    if (Instruction *NI = FoldGEPICmp(GEP, Op0,
2562                           ICmpInst::getSwappedPredicate(I.getPredicate()), I))
2563      return NI;
2564
2565  // Test to see if the operands of the icmp are casted versions of other
2566  // values.  If the ptr->ptr cast can be stripped off both arguments, we do so
2567  // now.
2568  if (BitCastInst *CI = dyn_cast<BitCastInst>(Op0)) {
2569    if (Op0->getType()->isPointerTy() &&
2570        (isa<Constant>(Op1) || isa<BitCastInst>(Op1))) {
2571      // We keep moving the cast from the left operand over to the right
2572      // operand, where it can often be eliminated completely.
2573      Op0 = CI->getOperand(0);
2574
2575      // If operand #1 is a bitcast instruction, it must also be a ptr->ptr cast
2576      // so eliminate it as well.
2577      if (BitCastInst *CI2 = dyn_cast<BitCastInst>(Op1))
2578        Op1 = CI2->getOperand(0);
2579
2580      // If Op1 is a constant, we can fold the cast into the constant.
2581      if (Op0->getType() != Op1->getType()) {
2582        if (Constant *Op1C = dyn_cast<Constant>(Op1)) {
2583          Op1 = ConstantExpr::getBitCast(Op1C, Op0->getType());
2584        } else {
2585          // Otherwise, cast the RHS right before the icmp
2586          Op1 = Builder->CreateBitCast(Op1, Op0->getType());
2587        }
2588      }
2589      return new ICmpInst(I.getPredicate(), Op0, Op1);
2590    }
2591  }
2592
2593  if (isa<CastInst>(Op0)) {
2594    // Handle the special case of: icmp (cast bool to X), <cst>
2595    // This comes up when you have code like
2596    //   int X = A < B;
2597    //   if (X) ...
2598    // For generality, we handle any zero-extension of any operand comparison
2599    // with a constant or another cast from the same type.
2600    if (isa<Constant>(Op1) || isa<CastInst>(Op1))
2601      if (Instruction *R = visitICmpInstWithCastAndCast(I))
2602        return R;
2603  }
2604
2605  // Special logic for binary operators.
2606  BinaryOperator *BO0 = dyn_cast<BinaryOperator>(Op0);
2607  BinaryOperator *BO1 = dyn_cast<BinaryOperator>(Op1);
2608  if (BO0 || BO1) {
2609    CmpInst::Predicate Pred = I.getPredicate();
2610    bool NoOp0WrapProblem = false, NoOp1WrapProblem = false;
2611    if (BO0 && isa<OverflowingBinaryOperator>(BO0))
2612      NoOp0WrapProblem = ICmpInst::isEquality(Pred) ||
2613        (CmpInst::isUnsigned(Pred) && BO0->hasNoUnsignedWrap()) ||
2614        (CmpInst::isSigned(Pred) && BO0->hasNoSignedWrap());
2615    if (BO1 && isa<OverflowingBinaryOperator>(BO1))
2616      NoOp1WrapProblem = ICmpInst::isEquality(Pred) ||
2617        (CmpInst::isUnsigned(Pred) && BO1->hasNoUnsignedWrap()) ||
2618        (CmpInst::isSigned(Pred) && BO1->hasNoSignedWrap());
2619
2620    // Analyze the case when either Op0 or Op1 is an add instruction.
2621    // Op0 = A + B (or A and B are null); Op1 = C + D (or C and D are null).
2622    Value *A = 0, *B = 0, *C = 0, *D = 0;
2623    if (BO0 && BO0->getOpcode() == Instruction::Add)
2624      A = BO0->getOperand(0), B = BO0->getOperand(1);
2625    if (BO1 && BO1->getOpcode() == Instruction::Add)
2626      C = BO1->getOperand(0), D = BO1->getOperand(1);
2627
2628    // icmp (X+Y), X -> icmp Y, 0 for equalities or if there is no overflow.
2629    if ((A == Op1 || B == Op1) && NoOp0WrapProblem)
2630      return new ICmpInst(Pred, A == Op1 ? B : A,
2631                          Constant::getNullValue(Op1->getType()));
2632
2633    // icmp X, (X+Y) -> icmp 0, Y for equalities or if there is no overflow.
2634    if ((C == Op0 || D == Op0) && NoOp1WrapProblem)
2635      return new ICmpInst(Pred, Constant::getNullValue(Op0->getType()),
2636                          C == Op0 ? D : C);
2637
2638    // icmp (X+Y), (X+Z) -> icmp Y, Z for equalities or if there is no overflow.
2639    if (A && C && (A == C || A == D || B == C || B == D) &&
2640        NoOp0WrapProblem && NoOp1WrapProblem &&
2641        // Try not to increase register pressure.
2642        BO0->hasOneUse() && BO1->hasOneUse()) {
2643      // Determine Y and Z in the form icmp (X+Y), (X+Z).
2644      Value *Y, *Z;
2645      if (A == C) {
2646        // C + B == C + D  ->  B == D
2647        Y = B;
2648        Z = D;
2649      } else if (A == D) {
2650        // D + B == C + D  ->  B == C
2651        Y = B;
2652        Z = C;
2653      } else if (B == C) {
2654        // A + C == C + D  ->  A == D
2655        Y = A;
2656        Z = D;
2657      } else {
2658        assert(B == D);
2659        // A + D == C + D  ->  A == C
2660        Y = A;
2661        Z = C;
2662      }
2663      return new ICmpInst(Pred, Y, Z);
2664    }
2665
2666    // icmp slt (X + -1), Y -> icmp sle X, Y
2667    if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_SLT &&
2668        match(B, m_AllOnes()))
2669      return new ICmpInst(CmpInst::ICMP_SLE, A, Op1);
2670
2671    // icmp sge (X + -1), Y -> icmp sgt X, Y
2672    if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_SGE &&
2673        match(B, m_AllOnes()))
2674      return new ICmpInst(CmpInst::ICMP_SGT, A, Op1);
2675
2676    // icmp sle (X + 1), Y -> icmp slt X, Y
2677    if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_SLE &&
2678        match(B, m_One()))
2679      return new ICmpInst(CmpInst::ICMP_SLT, A, Op1);
2680
2681    // icmp sgt (X + 1), Y -> icmp sge X, Y
2682    if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_SGT &&
2683        match(B, m_One()))
2684      return new ICmpInst(CmpInst::ICMP_SGE, A, Op1);
2685
2686    // if C1 has greater magnitude than C2:
2687    //  icmp (X + C1), (Y + C2) -> icmp (X + C3), Y
2688    //  s.t. C3 = C1 - C2
2689    //
2690    // if C2 has greater magnitude than C1:
2691    //  icmp (X + C1), (Y + C2) -> icmp X, (Y + C3)
2692    //  s.t. C3 = C2 - C1
2693    if (A && C && NoOp0WrapProblem && NoOp1WrapProblem &&
2694        (BO0->hasOneUse() || BO1->hasOneUse()) && !I.isUnsigned())
2695      if (ConstantInt *C1 = dyn_cast<ConstantInt>(B))
2696        if (ConstantInt *C2 = dyn_cast<ConstantInt>(D)) {
2697          const APInt &AP1 = C1->getValue();
2698          const APInt &AP2 = C2->getValue();
2699          if (AP1.isNegative() == AP2.isNegative()) {
2700            APInt AP1Abs = C1->getValue().abs();
2701            APInt AP2Abs = C2->getValue().abs();
2702            if (AP1Abs.uge(AP2Abs)) {
2703              ConstantInt *C3 = Builder->getInt(AP1 - AP2);
2704              Value *NewAdd = Builder->CreateNSWAdd(A, C3);
2705              return new ICmpInst(Pred, NewAdd, C);
2706            } else {
2707              ConstantInt *C3 = Builder->getInt(AP2 - AP1);
2708              Value *NewAdd = Builder->CreateNSWAdd(C, C3);
2709              return new ICmpInst(Pred, A, NewAdd);
2710            }
2711          }
2712        }
2713
2714
2715    // Analyze the case when either Op0 or Op1 is a sub instruction.
2716    // Op0 = A - B (or A and B are null); Op1 = C - D (or C and D are null).
2717    A = 0; B = 0; C = 0; D = 0;
2718    if (BO0 && BO0->getOpcode() == Instruction::Sub)
2719      A = BO0->getOperand(0), B = BO0->getOperand(1);
2720    if (BO1 && BO1->getOpcode() == Instruction::Sub)
2721      C = BO1->getOperand(0), D = BO1->getOperand(1);
2722
2723    // icmp (X-Y), X -> icmp 0, Y for equalities or if there is no overflow.
2724    if (A == Op1 && NoOp0WrapProblem)
2725      return new ICmpInst(Pred, Constant::getNullValue(Op1->getType()), B);
2726
2727    // icmp X, (X-Y) -> icmp Y, 0 for equalities or if there is no overflow.
2728    if (C == Op0 && NoOp1WrapProblem)
2729      return new ICmpInst(Pred, D, Constant::getNullValue(Op0->getType()));
2730
2731    // icmp (Y-X), (Z-X) -> icmp Y, Z for equalities or if there is no overflow.
2732    if (B && D && B == D && NoOp0WrapProblem && NoOp1WrapProblem &&
2733        // Try not to increase register pressure.
2734        BO0->hasOneUse() && BO1->hasOneUse())
2735      return new ICmpInst(Pred, A, C);
2736
2737    // icmp (X-Y), (X-Z) -> icmp Z, Y for equalities or if there is no overflow.
2738    if (A && C && A == C && NoOp0WrapProblem && NoOp1WrapProblem &&
2739        // Try not to increase register pressure.
2740        BO0->hasOneUse() && BO1->hasOneUse())
2741      return new ICmpInst(Pred, D, B);
2742
2743    BinaryOperator *SRem = NULL;
2744    // icmp (srem X, Y), Y
2745    if (BO0 && BO0->getOpcode() == Instruction::SRem &&
2746        Op1 == BO0->getOperand(1))
2747      SRem = BO0;
2748    // icmp Y, (srem X, Y)
2749    else if (BO1 && BO1->getOpcode() == Instruction::SRem &&
2750             Op0 == BO1->getOperand(1))
2751      SRem = BO1;
2752    if (SRem) {
2753      // We don't check hasOneUse to avoid increasing register pressure because
2754      // the value we use is the same value this instruction was already using.
2755      switch (SRem == BO0 ? ICmpInst::getSwappedPredicate(Pred) : Pred) {
2756        default: break;
2757        case ICmpInst::ICMP_EQ:
2758          return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
2759        case ICmpInst::ICMP_NE:
2760          return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
2761        case ICmpInst::ICMP_SGT:
2762        case ICmpInst::ICMP_SGE:
2763          return new ICmpInst(ICmpInst::ICMP_SGT, SRem->getOperand(1),
2764                              Constant::getAllOnesValue(SRem->getType()));
2765        case ICmpInst::ICMP_SLT:
2766        case ICmpInst::ICMP_SLE:
2767          return new ICmpInst(ICmpInst::ICMP_SLT, SRem->getOperand(1),
2768                              Constant::getNullValue(SRem->getType()));
2769      }
2770    }
2771
2772    if (BO0 && BO1 && BO0->getOpcode() == BO1->getOpcode() &&
2773        BO0->hasOneUse() && BO1->hasOneUse() &&
2774        BO0->getOperand(1) == BO1->getOperand(1)) {
2775      switch (BO0->getOpcode()) {
2776      default: break;
2777      case Instruction::Add:
2778      case Instruction::Sub:
2779      case Instruction::Xor:
2780        if (I.isEquality())    // a+x icmp eq/ne b+x --> a icmp b
2781          return new ICmpInst(I.getPredicate(), BO0->getOperand(0),
2782                              BO1->getOperand(0));
2783        // icmp u/s (a ^ signbit), (b ^ signbit) --> icmp s/u a, b
2784        if (ConstantInt *CI = dyn_cast<ConstantInt>(BO0->getOperand(1))) {
2785          if (CI->getValue().isSignBit()) {
2786            ICmpInst::Predicate Pred = I.isSigned()
2787                                           ? I.getUnsignedPredicate()
2788                                           : I.getSignedPredicate();
2789            return new ICmpInst(Pred, BO0->getOperand(0),
2790                                BO1->getOperand(0));
2791          }
2792
2793          if (CI->isMaxValue(true)) {
2794            ICmpInst::Predicate Pred = I.isSigned()
2795                                           ? I.getUnsignedPredicate()
2796                                           : I.getSignedPredicate();
2797            Pred = I.getSwappedPredicate(Pred);
2798            return new ICmpInst(Pred, BO0->getOperand(0),
2799                                BO1->getOperand(0));
2800          }
2801        }
2802        break;
2803      case Instruction::Mul:
2804        if (!I.isEquality())
2805          break;
2806
2807        if (ConstantInt *CI = dyn_cast<ConstantInt>(BO0->getOperand(1))) {
2808          // a * Cst icmp eq/ne b * Cst --> a & Mask icmp b & Mask
2809          // Mask = -1 >> count-trailing-zeros(Cst).
2810          if (!CI->isZero() && !CI->isOne()) {
2811            const APInt &AP = CI->getValue();
2812            ConstantInt *Mask = ConstantInt::get(I.getContext(),
2813                                    APInt::getLowBitsSet(AP.getBitWidth(),
2814                                                         AP.getBitWidth() -
2815                                                    AP.countTrailingZeros()));
2816            Value *And1 = Builder->CreateAnd(BO0->getOperand(0), Mask);
2817            Value *And2 = Builder->CreateAnd(BO1->getOperand(0), Mask);
2818            return new ICmpInst(I.getPredicate(), And1, And2);
2819          }
2820        }
2821        break;
2822      case Instruction::UDiv:
2823      case Instruction::LShr:
2824        if (I.isSigned())
2825          break;
2826        // fall-through
2827      case Instruction::SDiv:
2828      case Instruction::AShr:
2829        if (!BO0->isExact() || !BO1->isExact())
2830          break;
2831        return new ICmpInst(I.getPredicate(), BO0->getOperand(0),
2832                            BO1->getOperand(0));
2833      case Instruction::Shl: {
2834        bool NUW = BO0->hasNoUnsignedWrap() && BO1->hasNoUnsignedWrap();
2835        bool NSW = BO0->hasNoSignedWrap() && BO1->hasNoSignedWrap();
2836        if (!NUW && !NSW)
2837          break;
2838        if (!NSW && I.isSigned())
2839          break;
2840        return new ICmpInst(I.getPredicate(), BO0->getOperand(0),
2841                            BO1->getOperand(0));
2842      }
2843      }
2844    }
2845  }
2846
2847  { Value *A, *B;
2848    // Transform (A & ~B) == 0 --> (A & B) != 0
2849    // and       (A & ~B) != 0 --> (A & B) == 0
2850    // if A is a power of 2.
2851    if (match(Op0, m_And(m_Value(A), m_Not(m_Value(B)))) &&
2852        match(Op1, m_Zero()) && isKnownToBeAPowerOfTwo(A) && I.isEquality())
2853      return new ICmpInst(I.getInversePredicate(),
2854                          Builder->CreateAnd(A, B),
2855                          Op1);
2856
2857    // ~x < ~y --> y < x
2858    // ~x < cst --> ~cst < x
2859    if (match(Op0, m_Not(m_Value(A)))) {
2860      if (match(Op1, m_Not(m_Value(B))))
2861        return new ICmpInst(I.getPredicate(), B, A);
2862      if (ConstantInt *RHSC = dyn_cast<ConstantInt>(Op1))
2863        return new ICmpInst(I.getPredicate(), ConstantExpr::getNot(RHSC), A);
2864    }
2865
2866    // (a+b) <u a  --> llvm.uadd.with.overflow.
2867    // (a+b) <u b  --> llvm.uadd.with.overflow.
2868    if (I.getPredicate() == ICmpInst::ICMP_ULT &&
2869        match(Op0, m_Add(m_Value(A), m_Value(B))) &&
2870        (Op1 == A || Op1 == B))
2871      if (Instruction *R = ProcessUAddIdiom(I, Op0, *this))
2872        return R;
2873
2874    // a >u (a+b)  --> llvm.uadd.with.overflow.
2875    // b >u (a+b)  --> llvm.uadd.with.overflow.
2876    if (I.getPredicate() == ICmpInst::ICMP_UGT &&
2877        match(Op1, m_Add(m_Value(A), m_Value(B))) &&
2878        (Op0 == A || Op0 == B))
2879      if (Instruction *R = ProcessUAddIdiom(I, Op1, *this))
2880        return R;
2881  }
2882
2883  if (I.isEquality()) {
2884    Value *A, *B, *C, *D;
2885
2886    if (match(Op0, m_Xor(m_Value(A), m_Value(B)))) {
2887      if (A == Op1 || B == Op1) {    // (A^B) == A  ->  B == 0
2888        Value *OtherVal = A == Op1 ? B : A;
2889        return new ICmpInst(I.getPredicate(), OtherVal,
2890                            Constant::getNullValue(A->getType()));
2891      }
2892
2893      if (match(Op1, m_Xor(m_Value(C), m_Value(D)))) {
2894        // A^c1 == C^c2 --> A == C^(c1^c2)
2895        ConstantInt *C1, *C2;
2896        if (match(B, m_ConstantInt(C1)) &&
2897            match(D, m_ConstantInt(C2)) && Op1->hasOneUse()) {
2898          Constant *NC = Builder->getInt(C1->getValue() ^ C2->getValue());
2899          Value *Xor = Builder->CreateXor(C, NC);
2900          return new ICmpInst(I.getPredicate(), A, Xor);
2901        }
2902
2903        // A^B == A^D -> B == D
2904        if (A == C) return new ICmpInst(I.getPredicate(), B, D);
2905        if (A == D) return new ICmpInst(I.getPredicate(), B, C);
2906        if (B == C) return new ICmpInst(I.getPredicate(), A, D);
2907        if (B == D) return new ICmpInst(I.getPredicate(), A, C);
2908      }
2909    }
2910
2911    if (match(Op1, m_Xor(m_Value(A), m_Value(B))) &&
2912        (A == Op0 || B == Op0)) {
2913      // A == (A^B)  ->  B == 0
2914      Value *OtherVal = A == Op0 ? B : A;
2915      return new ICmpInst(I.getPredicate(), OtherVal,
2916                          Constant::getNullValue(A->getType()));
2917    }
2918
2919    // (X&Z) == (Y&Z) -> (X^Y) & Z == 0
2920    if (match(Op0, m_OneUse(m_And(m_Value(A), m_Value(B)))) &&
2921        match(Op1, m_OneUse(m_And(m_Value(C), m_Value(D))))) {
2922      Value *X = 0, *Y = 0, *Z = 0;
2923
2924      if (A == C) {
2925        X = B; Y = D; Z = A;
2926      } else if (A == D) {
2927        X = B; Y = C; Z = A;
2928      } else if (B == C) {
2929        X = A; Y = D; Z = B;
2930      } else if (B == D) {
2931        X = A; Y = C; Z = B;
2932      }
2933
2934      if (X) {   // Build (X^Y) & Z
2935        Op1 = Builder->CreateXor(X, Y);
2936        Op1 = Builder->CreateAnd(Op1, Z);
2937        I.setOperand(0, Op1);
2938        I.setOperand(1, Constant::getNullValue(Op1->getType()));
2939        return &I;
2940      }
2941    }
2942
2943    // Transform (zext A) == (B & (1<<X)-1) --> A == (trunc B)
2944    // and       (B & (1<<X)-1) == (zext A) --> A == (trunc B)
2945    ConstantInt *Cst1;
2946    if ((Op0->hasOneUse() &&
2947         match(Op0, m_ZExt(m_Value(A))) &&
2948         match(Op1, m_And(m_Value(B), m_ConstantInt(Cst1)))) ||
2949        (Op1->hasOneUse() &&
2950         match(Op0, m_And(m_Value(B), m_ConstantInt(Cst1))) &&
2951         match(Op1, m_ZExt(m_Value(A))))) {
2952      APInt Pow2 = Cst1->getValue() + 1;
2953      if (Pow2.isPowerOf2() && isa<IntegerType>(A->getType()) &&
2954          Pow2.logBase2() == cast<IntegerType>(A->getType())->getBitWidth())
2955        return new ICmpInst(I.getPredicate(), A,
2956                            Builder->CreateTrunc(B, A->getType()));
2957    }
2958
2959    // (A >> C) == (B >> C) --> (A^B) u< (1 << C)
2960    // For lshr and ashr pairs.
2961    if ((match(Op0, m_OneUse(m_LShr(m_Value(A), m_ConstantInt(Cst1)))) &&
2962         match(Op1, m_OneUse(m_LShr(m_Value(B), m_Specific(Cst1))))) ||
2963        (match(Op0, m_OneUse(m_AShr(m_Value(A), m_ConstantInt(Cst1)))) &&
2964         match(Op1, m_OneUse(m_AShr(m_Value(B), m_Specific(Cst1)))))) {
2965      unsigned TypeBits = Cst1->getBitWidth();
2966      unsigned ShAmt = (unsigned)Cst1->getLimitedValue(TypeBits);
2967      if (ShAmt < TypeBits && ShAmt != 0) {
2968        ICmpInst::Predicate Pred = I.getPredicate() == ICmpInst::ICMP_NE
2969                                       ? ICmpInst::ICMP_UGE
2970                                       : ICmpInst::ICMP_ULT;
2971        Value *Xor = Builder->CreateXor(A, B, I.getName() + ".unshifted");
2972        APInt CmpVal = APInt::getOneBitSet(TypeBits, ShAmt);
2973        return new ICmpInst(Pred, Xor, Builder->getInt(CmpVal));
2974      }
2975    }
2976
2977    // Transform "icmp eq (trunc (lshr(X, cst1)), cst" to
2978    // "icmp (and X, mask), cst"
2979    uint64_t ShAmt = 0;
2980    if (Op0->hasOneUse() &&
2981        match(Op0, m_Trunc(m_OneUse(m_LShr(m_Value(A),
2982                                           m_ConstantInt(ShAmt))))) &&
2983        match(Op1, m_ConstantInt(Cst1)) &&
2984        // Only do this when A has multiple uses.  This is most important to do
2985        // when it exposes other optimizations.
2986        !A->hasOneUse()) {
2987      unsigned ASize =cast<IntegerType>(A->getType())->getPrimitiveSizeInBits();
2988
2989      if (ShAmt < ASize) {
2990        APInt MaskV =
2991          APInt::getLowBitsSet(ASize, Op0->getType()->getPrimitiveSizeInBits());
2992        MaskV <<= ShAmt;
2993
2994        APInt CmpV = Cst1->getValue().zext(ASize);
2995        CmpV <<= ShAmt;
2996
2997        Value *Mask = Builder->CreateAnd(A, Builder->getInt(MaskV));
2998        return new ICmpInst(I.getPredicate(), Mask, Builder->getInt(CmpV));
2999      }
3000    }
3001  }
3002
3003  {
3004    Value *X; ConstantInt *Cst;
3005    // icmp X+Cst, X
3006    if (match(Op0, m_Add(m_Value(X), m_ConstantInt(Cst))) && Op1 == X)
3007      return FoldICmpAddOpCst(I, X, Cst, I.getPredicate());
3008
3009    // icmp X, X+Cst
3010    if (match(Op1, m_Add(m_Value(X), m_ConstantInt(Cst))) && Op0 == X)
3011      return FoldICmpAddOpCst(I, X, Cst, I.getSwappedPredicate());
3012  }
3013  return Changed ? &I : 0;
3014}
3015
3016/// FoldFCmp_IntToFP_Cst - Fold fcmp ([us]itofp x, cst) if possible.
3017///
3018Instruction *InstCombiner::FoldFCmp_IntToFP_Cst(FCmpInst &I,
3019                                                Instruction *LHSI,
3020                                                Constant *RHSC) {
3021  if (!isa<ConstantFP>(RHSC)) return 0;
3022  const APFloat &RHS = cast<ConstantFP>(RHSC)->getValueAPF();
3023
3024  // Get the width of the mantissa.  We don't want to hack on conversions that
3025  // might lose information from the integer, e.g. "i64 -> float"
3026  int MantissaWidth = LHSI->getType()->getFPMantissaWidth();
3027  if (MantissaWidth == -1) return 0;  // Unknown.
3028
3029  // Check to see that the input is converted from an integer type that is small
3030  // enough that preserves all bits.  TODO: check here for "known" sign bits.
3031  // This would allow us to handle (fptosi (x >>s 62) to float) if x is i64 f.e.
3032  unsigned InputSize = LHSI->getOperand(0)->getType()->getScalarSizeInBits();
3033
3034  // If this is a uitofp instruction, we need an extra bit to hold the sign.
3035  bool LHSUnsigned = isa<UIToFPInst>(LHSI);
3036  if (LHSUnsigned)
3037    ++InputSize;
3038
3039  // If the conversion would lose info, don't hack on this.
3040  if ((int)InputSize > MantissaWidth)
3041    return 0;
3042
3043  // Otherwise, we can potentially simplify the comparison.  We know that it
3044  // will always come through as an integer value and we know the constant is
3045  // not a NAN (it would have been previously simplified).
3046  assert(!RHS.isNaN() && "NaN comparison not already folded!");
3047
3048  ICmpInst::Predicate Pred;
3049  switch (I.getPredicate()) {
3050  default: llvm_unreachable("Unexpected predicate!");
3051  case FCmpInst::FCMP_UEQ:
3052  case FCmpInst::FCMP_OEQ:
3053    Pred = ICmpInst::ICMP_EQ;
3054    break;
3055  case FCmpInst::FCMP_UGT:
3056  case FCmpInst::FCMP_OGT:
3057    Pred = LHSUnsigned ? ICmpInst::ICMP_UGT : ICmpInst::ICMP_SGT;
3058    break;
3059  case FCmpInst::FCMP_UGE:
3060  case FCmpInst::FCMP_OGE:
3061    Pred = LHSUnsigned ? ICmpInst::ICMP_UGE : ICmpInst::ICMP_SGE;
3062    break;
3063  case FCmpInst::FCMP_ULT:
3064  case FCmpInst::FCMP_OLT:
3065    Pred = LHSUnsigned ? ICmpInst::ICMP_ULT : ICmpInst::ICMP_SLT;
3066    break;
3067  case FCmpInst::FCMP_ULE:
3068  case FCmpInst::FCMP_OLE:
3069    Pred = LHSUnsigned ? ICmpInst::ICMP_ULE : ICmpInst::ICMP_SLE;
3070    break;
3071  case FCmpInst::FCMP_UNE:
3072  case FCmpInst::FCMP_ONE:
3073    Pred = ICmpInst::ICMP_NE;
3074    break;
3075  case FCmpInst::FCMP_ORD:
3076    return ReplaceInstUsesWith(I, Builder->getTrue());
3077  case FCmpInst::FCMP_UNO:
3078    return ReplaceInstUsesWith(I, Builder->getFalse());
3079  }
3080
3081  IntegerType *IntTy = cast<IntegerType>(LHSI->getOperand(0)->getType());
3082
3083  // Now we know that the APFloat is a normal number, zero or inf.
3084
3085  // See if the FP constant is too large for the integer.  For example,
3086  // comparing an i8 to 300.0.
3087  unsigned IntWidth = IntTy->getScalarSizeInBits();
3088
3089  if (!LHSUnsigned) {
3090    // If the RHS value is > SignedMax, fold the comparison.  This handles +INF
3091    // and large values.
3092    APFloat SMax(RHS.getSemantics());
3093    SMax.convertFromAPInt(APInt::getSignedMaxValue(IntWidth), true,
3094                          APFloat::rmNearestTiesToEven);
3095    if (SMax.compare(RHS) == APFloat::cmpLessThan) {  // smax < 13123.0
3096      if (Pred == ICmpInst::ICMP_NE  || Pred == ICmpInst::ICMP_SLT ||
3097          Pred == ICmpInst::ICMP_SLE)
3098        return ReplaceInstUsesWith(I, Builder->getTrue());
3099      return ReplaceInstUsesWith(I, Builder->getFalse());
3100    }
3101  } else {
3102    // If the RHS value is > UnsignedMax, fold the comparison. This handles
3103    // +INF and large values.
3104    APFloat UMax(RHS.getSemantics());
3105    UMax.convertFromAPInt(APInt::getMaxValue(IntWidth), false,
3106                          APFloat::rmNearestTiesToEven);
3107    if (UMax.compare(RHS) == APFloat::cmpLessThan) {  // umax < 13123.0
3108      if (Pred == ICmpInst::ICMP_NE  || Pred == ICmpInst::ICMP_ULT ||
3109          Pred == ICmpInst::ICMP_ULE)
3110        return ReplaceInstUsesWith(I, Builder->getTrue());
3111      return ReplaceInstUsesWith(I, Builder->getFalse());
3112    }
3113  }
3114
3115  if (!LHSUnsigned) {
3116    // See if the RHS value is < SignedMin.
3117    APFloat SMin(RHS.getSemantics());
3118    SMin.convertFromAPInt(APInt::getSignedMinValue(IntWidth), true,
3119                          APFloat::rmNearestTiesToEven);
3120    if (SMin.compare(RHS) == APFloat::cmpGreaterThan) { // smin > 12312.0
3121      if (Pred == ICmpInst::ICMP_NE || Pred == ICmpInst::ICMP_SGT ||
3122          Pred == ICmpInst::ICMP_SGE)
3123        return ReplaceInstUsesWith(I, Builder->getTrue());
3124      return ReplaceInstUsesWith(I, Builder->getFalse());
3125    }
3126  } else {
3127    // See if the RHS value is < UnsignedMin.
3128    APFloat SMin(RHS.getSemantics());
3129    SMin.convertFromAPInt(APInt::getMinValue(IntWidth), true,
3130                          APFloat::rmNearestTiesToEven);
3131    if (SMin.compare(RHS) == APFloat::cmpGreaterThan) { // umin > 12312.0
3132      if (Pred == ICmpInst::ICMP_NE || Pred == ICmpInst::ICMP_UGT ||
3133          Pred == ICmpInst::ICMP_UGE)
3134        return ReplaceInstUsesWith(I, Builder->getTrue());
3135      return ReplaceInstUsesWith(I, Builder->getFalse());
3136    }
3137  }
3138
3139  // Okay, now we know that the FP constant fits in the range [SMIN, SMAX] or
3140  // [0, UMAX], but it may still be fractional.  See if it is fractional by
3141  // casting the FP value to the integer value and back, checking for equality.
3142  // Don't do this for zero, because -0.0 is not fractional.
3143  Constant *RHSInt = LHSUnsigned
3144    ? ConstantExpr::getFPToUI(RHSC, IntTy)
3145    : ConstantExpr::getFPToSI(RHSC, IntTy);
3146  if (!RHS.isZero()) {
3147    bool Equal = LHSUnsigned
3148      ? ConstantExpr::getUIToFP(RHSInt, RHSC->getType()) == RHSC
3149      : ConstantExpr::getSIToFP(RHSInt, RHSC->getType()) == RHSC;
3150    if (!Equal) {
3151      // If we had a comparison against a fractional value, we have to adjust
3152      // the compare predicate and sometimes the value.  RHSC is rounded towards
3153      // zero at this point.
3154      switch (Pred) {
3155      default: llvm_unreachable("Unexpected integer comparison!");
3156      case ICmpInst::ICMP_NE:  // (float)int != 4.4   --> true
3157        return ReplaceInstUsesWith(I, Builder->getTrue());
3158      case ICmpInst::ICMP_EQ:  // (float)int == 4.4   --> false
3159        return ReplaceInstUsesWith(I, Builder->getFalse());
3160      case ICmpInst::ICMP_ULE:
3161        // (float)int <= 4.4   --> int <= 4
3162        // (float)int <= -4.4  --> false
3163        if (RHS.isNegative())
3164          return ReplaceInstUsesWith(I, Builder->getFalse());
3165        break;
3166      case ICmpInst::ICMP_SLE:
3167        // (float)int <= 4.4   --> int <= 4
3168        // (float)int <= -4.4  --> int < -4
3169        if (RHS.isNegative())
3170          Pred = ICmpInst::ICMP_SLT;
3171        break;
3172      case ICmpInst::ICMP_ULT:
3173        // (float)int < -4.4   --> false
3174        // (float)int < 4.4    --> int <= 4
3175        if (RHS.isNegative())
3176          return ReplaceInstUsesWith(I, Builder->getFalse());
3177        Pred = ICmpInst::ICMP_ULE;
3178        break;
3179      case ICmpInst::ICMP_SLT:
3180        // (float)int < -4.4   --> int < -4
3181        // (float)int < 4.4    --> int <= 4
3182        if (!RHS.isNegative())
3183          Pred = ICmpInst::ICMP_SLE;
3184        break;
3185      case ICmpInst::ICMP_UGT:
3186        // (float)int > 4.4    --> int > 4
3187        // (float)int > -4.4   --> true
3188        if (RHS.isNegative())
3189          return ReplaceInstUsesWith(I, Builder->getTrue());
3190        break;
3191      case ICmpInst::ICMP_SGT:
3192        // (float)int > 4.4    --> int > 4
3193        // (float)int > -4.4   --> int >= -4
3194        if (RHS.isNegative())
3195          Pred = ICmpInst::ICMP_SGE;
3196        break;
3197      case ICmpInst::ICMP_UGE:
3198        // (float)int >= -4.4   --> true
3199        // (float)int >= 4.4    --> int > 4
3200        if (RHS.isNegative())
3201          return ReplaceInstUsesWith(I, Builder->getTrue());
3202        Pred = ICmpInst::ICMP_UGT;
3203        break;
3204      case ICmpInst::ICMP_SGE:
3205        // (float)int >= -4.4   --> int >= -4
3206        // (float)int >= 4.4    --> int > 4
3207        if (!RHS.isNegative())
3208          Pred = ICmpInst::ICMP_SGT;
3209        break;
3210      }
3211    }
3212  }
3213
3214  // Lower this FP comparison into an appropriate integer version of the
3215  // comparison.
3216  return new ICmpInst(Pred, LHSI->getOperand(0), RHSInt);
3217}
3218
3219Instruction *InstCombiner::visitFCmpInst(FCmpInst &I) {
3220  bool Changed = false;
3221
3222  /// Orders the operands of the compare so that they are listed from most
3223  /// complex to least complex.  This puts constants before unary operators,
3224  /// before binary operators.
3225  if (getComplexity(I.getOperand(0)) < getComplexity(I.getOperand(1))) {
3226    I.swapOperands();
3227    Changed = true;
3228  }
3229
3230  Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
3231
3232  if (Value *V = SimplifyFCmpInst(I.getPredicate(), Op0, Op1, TD))
3233    return ReplaceInstUsesWith(I, V);
3234
3235  // Simplify 'fcmp pred X, X'
3236  if (Op0 == Op1) {
3237    switch (I.getPredicate()) {
3238    default: llvm_unreachable("Unknown predicate!");
3239    case FCmpInst::FCMP_UNO:    // True if unordered: isnan(X) | isnan(Y)
3240    case FCmpInst::FCMP_ULT:    // True if unordered or less than
3241    case FCmpInst::FCMP_UGT:    // True if unordered or greater than
3242    case FCmpInst::FCMP_UNE:    // True if unordered or not equal
3243      // Canonicalize these to be 'fcmp uno %X, 0.0'.
3244      I.setPredicate(FCmpInst::FCMP_UNO);
3245      I.setOperand(1, Constant::getNullValue(Op0->getType()));
3246      return &I;
3247
3248    case FCmpInst::FCMP_ORD:    // True if ordered (no nans)
3249    case FCmpInst::FCMP_OEQ:    // True if ordered and equal
3250    case FCmpInst::FCMP_OGE:    // True if ordered and greater than or equal
3251    case FCmpInst::FCMP_OLE:    // True if ordered and less than or equal
3252      // Canonicalize these to be 'fcmp ord %X, 0.0'.
3253      I.setPredicate(FCmpInst::FCMP_ORD);
3254      I.setOperand(1, Constant::getNullValue(Op0->getType()));
3255      return &I;
3256    }
3257  }
3258
3259  // Handle fcmp with constant RHS
3260  if (Constant *RHSC = dyn_cast<Constant>(Op1)) {
3261    if (Instruction *LHSI = dyn_cast<Instruction>(Op0))
3262      switch (LHSI->getOpcode()) {
3263      case Instruction::FPExt: {
3264        // fcmp (fpext x), C -> fcmp x, (fptrunc C) if fptrunc is lossless
3265        FPExtInst *LHSExt = cast<FPExtInst>(LHSI);
3266        ConstantFP *RHSF = dyn_cast<ConstantFP>(RHSC);
3267        if (!RHSF)
3268          break;
3269
3270        const fltSemantics *Sem;
3271        // FIXME: This shouldn't be here.
3272        if (LHSExt->getSrcTy()->isHalfTy())
3273          Sem = &APFloat::IEEEhalf;
3274        else if (LHSExt->getSrcTy()->isFloatTy())
3275          Sem = &APFloat::IEEEsingle;
3276        else if (LHSExt->getSrcTy()->isDoubleTy())
3277          Sem = &APFloat::IEEEdouble;
3278        else if (LHSExt->getSrcTy()->isFP128Ty())
3279          Sem = &APFloat::IEEEquad;
3280        else if (LHSExt->getSrcTy()->isX86_FP80Ty())
3281          Sem = &APFloat::x87DoubleExtended;
3282        else if (LHSExt->getSrcTy()->isPPC_FP128Ty())
3283          Sem = &APFloat::PPCDoubleDouble;
3284        else
3285          break;
3286
3287        bool Lossy;
3288        APFloat F = RHSF->getValueAPF();
3289        F.convert(*Sem, APFloat::rmNearestTiesToEven, &Lossy);
3290
3291        // Avoid lossy conversions and denormals. Zero is a special case
3292        // that's OK to convert.
3293        APFloat Fabs = F;
3294        Fabs.clearSign();
3295        if (!Lossy &&
3296            ((Fabs.compare(APFloat::getSmallestNormalized(*Sem)) !=
3297                 APFloat::cmpLessThan) || Fabs.isZero()))
3298
3299          return new FCmpInst(I.getPredicate(), LHSExt->getOperand(0),
3300                              ConstantFP::get(RHSC->getContext(), F));
3301        break;
3302      }
3303      case Instruction::PHI:
3304        // Only fold fcmp into the PHI if the phi and fcmp are in the same
3305        // block.  If in the same block, we're encouraging jump threading.  If
3306        // not, we are just pessimizing the code by making an i1 phi.
3307        if (LHSI->getParent() == I.getParent())
3308          if (Instruction *NV = FoldOpIntoPhi(I))
3309            return NV;
3310        break;
3311      case Instruction::SIToFP:
3312      case Instruction::UIToFP:
3313        if (Instruction *NV = FoldFCmp_IntToFP_Cst(I, LHSI, RHSC))
3314          return NV;
3315        break;
3316      case Instruction::Select: {
3317        // If either operand of the select is a constant, we can fold the
3318        // comparison into the select arms, which will cause one to be
3319        // constant folded and the select turned into a bitwise or.
3320        Value *Op1 = 0, *Op2 = 0;
3321        if (LHSI->hasOneUse()) {
3322          if (Constant *C = dyn_cast<Constant>(LHSI->getOperand(1))) {
3323            // Fold the known value into the constant operand.
3324            Op1 = ConstantExpr::getCompare(I.getPredicate(), C, RHSC);
3325            // Insert a new FCmp of the other select operand.
3326            Op2 = Builder->CreateFCmp(I.getPredicate(),
3327                                      LHSI->getOperand(2), RHSC, I.getName());
3328          } else if (Constant *C = dyn_cast<Constant>(LHSI->getOperand(2))) {
3329            // Fold the known value into the constant operand.
3330            Op2 = ConstantExpr::getCompare(I.getPredicate(), C, RHSC);
3331            // Insert a new FCmp of the other select operand.
3332            Op1 = Builder->CreateFCmp(I.getPredicate(), LHSI->getOperand(1),
3333                                      RHSC, I.getName());
3334          }
3335        }
3336
3337        if (Op1)
3338          return SelectInst::Create(LHSI->getOperand(0), Op1, Op2);
3339        break;
3340      }
3341      case Instruction::FSub: {
3342        // fcmp pred (fneg x), C -> fcmp swap(pred) x, -C
3343        Value *Op;
3344        if (match(LHSI, m_FNeg(m_Value(Op))))
3345          return new FCmpInst(I.getSwappedPredicate(), Op,
3346                              ConstantExpr::getFNeg(RHSC));
3347        break;
3348      }
3349      case Instruction::Load:
3350        if (GetElementPtrInst *GEP =
3351            dyn_cast<GetElementPtrInst>(LHSI->getOperand(0))) {
3352          if (GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0)))
3353            if (GV->isConstant() && GV->hasDefinitiveInitializer() &&
3354                !cast<LoadInst>(LHSI)->isVolatile())
3355              if (Instruction *Res = FoldCmpLoadFromIndexedGlobal(GEP, GV, I))
3356                return Res;
3357        }
3358        break;
3359      case Instruction::Call: {
3360        CallInst *CI = cast<CallInst>(LHSI);
3361        LibFunc::Func Func;
3362        // Various optimization for fabs compared with zero.
3363        if (RHSC->isNullValue() && CI->getCalledFunction() &&
3364            TLI->getLibFunc(CI->getCalledFunction()->getName(), Func) &&
3365            TLI->has(Func)) {
3366          if (Func == LibFunc::fabs || Func == LibFunc::fabsf ||
3367              Func == LibFunc::fabsl) {
3368            switch (I.getPredicate()) {
3369            default: break;
3370            // fabs(x) < 0 --> false
3371            case FCmpInst::FCMP_OLT:
3372              return ReplaceInstUsesWith(I, Builder->getFalse());
3373            // fabs(x) > 0 --> x != 0
3374            case FCmpInst::FCMP_OGT:
3375              return new FCmpInst(FCmpInst::FCMP_ONE, CI->getArgOperand(0),
3376                                  RHSC);
3377            // fabs(x) <= 0 --> x == 0
3378            case FCmpInst::FCMP_OLE:
3379              return new FCmpInst(FCmpInst::FCMP_OEQ, CI->getArgOperand(0),
3380                                  RHSC);
3381            // fabs(x) >= 0 --> !isnan(x)
3382            case FCmpInst::FCMP_OGE:
3383              return new FCmpInst(FCmpInst::FCMP_ORD, CI->getArgOperand(0),
3384                                  RHSC);
3385            // fabs(x) == 0 --> x == 0
3386            // fabs(x) != 0 --> x != 0
3387            case FCmpInst::FCMP_OEQ:
3388            case FCmpInst::FCMP_UEQ:
3389            case FCmpInst::FCMP_ONE:
3390            case FCmpInst::FCMP_UNE:
3391              return new FCmpInst(I.getPredicate(), CI->getArgOperand(0),
3392                                  RHSC);
3393            }
3394          }
3395        }
3396      }
3397      }
3398  }
3399
3400  // fcmp pred (fneg x), (fneg y) -> fcmp swap(pred) x, y
3401  Value *X, *Y;
3402  if (match(Op0, m_FNeg(m_Value(X))) && match(Op1, m_FNeg(m_Value(Y))))
3403    return new FCmpInst(I.getSwappedPredicate(), X, Y);
3404
3405  // fcmp (fpext x), (fpext y) -> fcmp x, y
3406  if (FPExtInst *LHSExt = dyn_cast<FPExtInst>(Op0))
3407    if (FPExtInst *RHSExt = dyn_cast<FPExtInst>(Op1))
3408      if (LHSExt->getSrcTy() == RHSExt->getSrcTy())
3409        return new FCmpInst(I.getPredicate(), LHSExt->getOperand(0),
3410                            RHSExt->getOperand(0));
3411
3412  return Changed ? &I : 0;
3413}
3414