Inliner.cpp revision 263508
1//===- Inliner.cpp - Code common to all inliners --------------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the mechanics required to implement inlining without
11// missing any calls and updating the call graph.  The decisions of which calls
12// are profitable to inline are implemented elsewhere.
13//
14//===----------------------------------------------------------------------===//
15
16#define DEBUG_TYPE "inline"
17#include "llvm/Transforms/IPO/InlinerPass.h"
18#include "llvm/ADT/SmallPtrSet.h"
19#include "llvm/ADT/Statistic.h"
20#include "llvm/Analysis/CallGraph.h"
21#include "llvm/Analysis/InlineCost.h"
22#include "llvm/IR/DataLayout.h"
23#include "llvm/IR/Instructions.h"
24#include "llvm/IR/IntrinsicInst.h"
25#include "llvm/IR/Module.h"
26#include "llvm/Support/CallSite.h"
27#include "llvm/Support/CommandLine.h"
28#include "llvm/Support/Debug.h"
29#include "llvm/Support/raw_ostream.h"
30#include "llvm/Target/TargetLibraryInfo.h"
31#include "llvm/Transforms/Utils/Cloning.h"
32#include "llvm/Transforms/Utils/Local.h"
33using namespace llvm;
34
35STATISTIC(NumInlined, "Number of functions inlined");
36STATISTIC(NumCallsDeleted, "Number of call sites deleted, not inlined");
37STATISTIC(NumDeleted, "Number of functions deleted because all callers found");
38STATISTIC(NumMergedAllocas, "Number of allocas merged together");
39
40// This weirdly named statistic tracks the number of times that, when attempting
41// to inline a function A into B, we analyze the callers of B in order to see
42// if those would be more profitable and blocked inline steps.
43STATISTIC(NumCallerCallersAnalyzed, "Number of caller-callers analyzed");
44
45static cl::opt<int>
46InlineLimit("inline-threshold", cl::Hidden, cl::init(225), cl::ZeroOrMore,
47        cl::desc("Control the amount of inlining to perform (default = 225)"));
48
49static cl::opt<int>
50HintThreshold("inlinehint-threshold", cl::Hidden, cl::init(325),
51              cl::desc("Threshold for inlining functions with inline hint"));
52
53// Threshold to use when optsize is specified (and there is no -inline-limit).
54const int OptSizeThreshold = 75;
55
56Inliner::Inliner(char &ID)
57  : CallGraphSCCPass(ID), InlineThreshold(InlineLimit), InsertLifetime(true) {}
58
59Inliner::Inliner(char &ID, int Threshold, bool InsertLifetime)
60  : CallGraphSCCPass(ID), InlineThreshold(InlineLimit.getNumOccurrences() > 0 ?
61                                          InlineLimit : Threshold),
62    InsertLifetime(InsertLifetime) {}
63
64/// getAnalysisUsage - For this class, we declare that we require and preserve
65/// the call graph.  If the derived class implements this method, it should
66/// always explicitly call the implementation here.
67void Inliner::getAnalysisUsage(AnalysisUsage &AU) const {
68  CallGraphSCCPass::getAnalysisUsage(AU);
69}
70
71
72typedef DenseMap<ArrayType*, std::vector<AllocaInst*> >
73InlinedArrayAllocasTy;
74
75/// \brief If the inlined function had a higher stack protection level than the
76/// calling function, then bump up the caller's stack protection level.
77static void AdjustCallerSSPLevel(Function *Caller, Function *Callee) {
78  // If upgrading the SSP attribute, clear out the old SSP Attributes first.
79  // Having multiple SSP attributes doesn't actually hurt, but it adds useless
80  // clutter to the IR.
81  AttrBuilder B;
82  B.addAttribute(Attribute::StackProtect)
83    .addAttribute(Attribute::StackProtectStrong);
84  AttributeSet OldSSPAttr = AttributeSet::get(Caller->getContext(),
85                                              AttributeSet::FunctionIndex,
86                                              B);
87  AttributeSet CallerAttr = Caller->getAttributes(),
88               CalleeAttr = Callee->getAttributes();
89
90  if (CalleeAttr.hasAttribute(AttributeSet::FunctionIndex,
91                              Attribute::StackProtectReq)) {
92    Caller->removeAttributes(AttributeSet::FunctionIndex, OldSSPAttr);
93    Caller->addFnAttr(Attribute::StackProtectReq);
94  } else if (CalleeAttr.hasAttribute(AttributeSet::FunctionIndex,
95                                     Attribute::StackProtectStrong) &&
96             !CallerAttr.hasAttribute(AttributeSet::FunctionIndex,
97                                      Attribute::StackProtectReq)) {
98    Caller->removeAttributes(AttributeSet::FunctionIndex, OldSSPAttr);
99    Caller->addFnAttr(Attribute::StackProtectStrong);
100  } else if (CalleeAttr.hasAttribute(AttributeSet::FunctionIndex,
101                                     Attribute::StackProtect) &&
102           !CallerAttr.hasAttribute(AttributeSet::FunctionIndex,
103                                    Attribute::StackProtectReq) &&
104           !CallerAttr.hasAttribute(AttributeSet::FunctionIndex,
105                                    Attribute::StackProtectStrong))
106    Caller->addFnAttr(Attribute::StackProtect);
107}
108
109/// InlineCallIfPossible - If it is possible to inline the specified call site,
110/// do so and update the CallGraph for this operation.
111///
112/// This function also does some basic book-keeping to update the IR.  The
113/// InlinedArrayAllocas map keeps track of any allocas that are already
114/// available from other  functions inlined into the caller.  If we are able to
115/// inline this call site we attempt to reuse already available allocas or add
116/// any new allocas to the set if not possible.
117static bool InlineCallIfPossible(CallSite CS, InlineFunctionInfo &IFI,
118                                 InlinedArrayAllocasTy &InlinedArrayAllocas,
119                                 int InlineHistory, bool InsertLifetime,
120                                 const DataLayout *TD) {
121  Function *Callee = CS.getCalledFunction();
122  Function *Caller = CS.getCaller();
123
124  // Try to inline the function.  Get the list of static allocas that were
125  // inlined.
126  if (!InlineFunction(CS, IFI, InsertLifetime))
127    return false;
128
129  AdjustCallerSSPLevel(Caller, Callee);
130
131  // Look at all of the allocas that we inlined through this call site.  If we
132  // have already inlined other allocas through other calls into this function,
133  // then we know that they have disjoint lifetimes and that we can merge them.
134  //
135  // There are many heuristics possible for merging these allocas, and the
136  // different options have different tradeoffs.  One thing that we *really*
137  // don't want to hurt is SRoA: once inlining happens, often allocas are no
138  // longer address taken and so they can be promoted.
139  //
140  // Our "solution" for that is to only merge allocas whose outermost type is an
141  // array type.  These are usually not promoted because someone is using a
142  // variable index into them.  These are also often the most important ones to
143  // merge.
144  //
145  // A better solution would be to have real memory lifetime markers in the IR
146  // and not have the inliner do any merging of allocas at all.  This would
147  // allow the backend to do proper stack slot coloring of all allocas that
148  // *actually make it to the backend*, which is really what we want.
149  //
150  // Because we don't have this information, we do this simple and useful hack.
151  //
152  SmallPtrSet<AllocaInst*, 16> UsedAllocas;
153
154  // When processing our SCC, check to see if CS was inlined from some other
155  // call site.  For example, if we're processing "A" in this code:
156  //   A() { B() }
157  //   B() { x = alloca ... C() }
158  //   C() { y = alloca ... }
159  // Assume that C was not inlined into B initially, and so we're processing A
160  // and decide to inline B into A.  Doing this makes an alloca available for
161  // reuse and makes a callsite (C) available for inlining.  When we process
162  // the C call site we don't want to do any alloca merging between X and Y
163  // because their scopes are not disjoint.  We could make this smarter by
164  // keeping track of the inline history for each alloca in the
165  // InlinedArrayAllocas but this isn't likely to be a significant win.
166  if (InlineHistory != -1)  // Only do merging for top-level call sites in SCC.
167    return true;
168
169  // Loop over all the allocas we have so far and see if they can be merged with
170  // a previously inlined alloca.  If not, remember that we had it.
171  for (unsigned AllocaNo = 0, e = IFI.StaticAllocas.size();
172       AllocaNo != e; ++AllocaNo) {
173    AllocaInst *AI = IFI.StaticAllocas[AllocaNo];
174
175    // Don't bother trying to merge array allocations (they will usually be
176    // canonicalized to be an allocation *of* an array), or allocations whose
177    // type is not itself an array (because we're afraid of pessimizing SRoA).
178    ArrayType *ATy = dyn_cast<ArrayType>(AI->getAllocatedType());
179    if (ATy == 0 || AI->isArrayAllocation())
180      continue;
181
182    // Get the list of all available allocas for this array type.
183    std::vector<AllocaInst*> &AllocasForType = InlinedArrayAllocas[ATy];
184
185    // Loop over the allocas in AllocasForType to see if we can reuse one.  Note
186    // that we have to be careful not to reuse the same "available" alloca for
187    // multiple different allocas that we just inlined, we use the 'UsedAllocas'
188    // set to keep track of which "available" allocas are being used by this
189    // function.  Also, AllocasForType can be empty of course!
190    bool MergedAwayAlloca = false;
191    for (unsigned i = 0, e = AllocasForType.size(); i != e; ++i) {
192      AllocaInst *AvailableAlloca = AllocasForType[i];
193
194      unsigned Align1 = AI->getAlignment(),
195               Align2 = AvailableAlloca->getAlignment();
196      // If we don't have data layout information, and only one alloca is using
197      // the target default, then we can't safely merge them because we can't
198      // pick the greater alignment.
199      if (!TD && (!Align1 || !Align2) && Align1 != Align2)
200        continue;
201
202      // The available alloca has to be in the right function, not in some other
203      // function in this SCC.
204      if (AvailableAlloca->getParent() != AI->getParent())
205        continue;
206
207      // If the inlined function already uses this alloca then we can't reuse
208      // it.
209      if (!UsedAllocas.insert(AvailableAlloca))
210        continue;
211
212      // Otherwise, we *can* reuse it, RAUW AI into AvailableAlloca and declare
213      // success!
214      DEBUG(dbgs() << "    ***MERGED ALLOCA: " << *AI << "\n\t\tINTO: "
215                   << *AvailableAlloca << '\n');
216
217      AI->replaceAllUsesWith(AvailableAlloca);
218
219      if (Align1 != Align2) {
220        if (!Align1 || !Align2) {
221          assert(TD && "DataLayout required to compare default alignments");
222          unsigned TypeAlign = TD->getABITypeAlignment(AI->getAllocatedType());
223
224          Align1 = Align1 ? Align1 : TypeAlign;
225          Align2 = Align2 ? Align2 : TypeAlign;
226        }
227
228        if (Align1 > Align2)
229          AvailableAlloca->setAlignment(AI->getAlignment());
230      }
231
232      AI->eraseFromParent();
233      MergedAwayAlloca = true;
234      ++NumMergedAllocas;
235      IFI.StaticAllocas[AllocaNo] = 0;
236      break;
237    }
238
239    // If we already nuked the alloca, we're done with it.
240    if (MergedAwayAlloca)
241      continue;
242
243    // If we were unable to merge away the alloca either because there are no
244    // allocas of the right type available or because we reused them all
245    // already, remember that this alloca came from an inlined function and mark
246    // it used so we don't reuse it for other allocas from this inline
247    // operation.
248    AllocasForType.push_back(AI);
249    UsedAllocas.insert(AI);
250  }
251
252  return true;
253}
254
255unsigned Inliner::getInlineThreshold(CallSite CS) const {
256  int thres = InlineThreshold; // -inline-threshold or else selected by
257                               // overall opt level
258
259  // If -inline-threshold is not given, listen to the optsize attribute when it
260  // would decrease the threshold.
261  Function *Caller = CS.getCaller();
262  bool OptSize = Caller && !Caller->isDeclaration() &&
263    Caller->getAttributes().hasAttribute(AttributeSet::FunctionIndex,
264                                         Attribute::OptimizeForSize);
265  if (!(InlineLimit.getNumOccurrences() > 0) && OptSize &&
266      OptSizeThreshold < thres)
267    thres = OptSizeThreshold;
268
269  // Listen to the inlinehint attribute when it would increase the threshold
270  // and the caller does not need to minimize its size.
271  Function *Callee = CS.getCalledFunction();
272  bool InlineHint = Callee && !Callee->isDeclaration() &&
273    Callee->getAttributes().hasAttribute(AttributeSet::FunctionIndex,
274                                         Attribute::InlineHint);
275  if (InlineHint && HintThreshold > thres
276      && !Caller->getAttributes().hasAttribute(AttributeSet::FunctionIndex,
277                                               Attribute::MinSize))
278    thres = HintThreshold;
279
280  return thres;
281}
282
283/// shouldInline - Return true if the inliner should attempt to inline
284/// at the given CallSite.
285bool Inliner::shouldInline(CallSite CS) {
286  InlineCost IC = getInlineCost(CS);
287
288  if (IC.isAlways()) {
289    DEBUG(dbgs() << "    Inlining: cost=always"
290          << ", Call: " << *CS.getInstruction() << "\n");
291    return true;
292  }
293
294  if (IC.isNever()) {
295    DEBUG(dbgs() << "    NOT Inlining: cost=never"
296          << ", Call: " << *CS.getInstruction() << "\n");
297    return false;
298  }
299
300  Function *Caller = CS.getCaller();
301  if (!IC) {
302    DEBUG(dbgs() << "    NOT Inlining: cost=" << IC.getCost()
303          << ", thres=" << (IC.getCostDelta() + IC.getCost())
304          << ", Call: " << *CS.getInstruction() << "\n");
305    return false;
306  }
307
308  // Try to detect the case where the current inlining candidate caller (call
309  // it B) is a static or linkonce-ODR function and is an inlining candidate
310  // elsewhere, and the current candidate callee (call it C) is large enough
311  // that inlining it into B would make B too big to inline later. In these
312  // circumstances it may be best not to inline C into B, but to inline B into
313  // its callers.
314  //
315  // This only applies to static and linkonce-ODR functions because those are
316  // expected to be available for inlining in the translation units where they
317  // are used. Thus we will always have the opportunity to make local inlining
318  // decisions. Importantly the linkonce-ODR linkage covers inline functions
319  // and templates in C++.
320  //
321  // FIXME: All of this logic should be sunk into getInlineCost. It relies on
322  // the internal implementation of the inline cost metrics rather than
323  // treating them as truly abstract units etc.
324  if (Caller->hasLocalLinkage() ||
325      Caller->getLinkage() == GlobalValue::LinkOnceODRLinkage) {
326    int TotalSecondaryCost = 0;
327    // The candidate cost to be imposed upon the current function.
328    int CandidateCost = IC.getCost() - (InlineConstants::CallPenalty + 1);
329    // This bool tracks what happens if we do NOT inline C into B.
330    bool callerWillBeRemoved = Caller->hasLocalLinkage();
331    // This bool tracks what happens if we DO inline C into B.
332    bool inliningPreventsSomeOuterInline = false;
333    for (Value::use_iterator I = Caller->use_begin(), E =Caller->use_end();
334         I != E; ++I) {
335      CallSite CS2(*I);
336
337      // If this isn't a call to Caller (it could be some other sort
338      // of reference) skip it.  Such references will prevent the caller
339      // from being removed.
340      if (!CS2 || CS2.getCalledFunction() != Caller) {
341        callerWillBeRemoved = false;
342        continue;
343      }
344
345      InlineCost IC2 = getInlineCost(CS2);
346      ++NumCallerCallersAnalyzed;
347      if (!IC2) {
348        callerWillBeRemoved = false;
349        continue;
350      }
351      if (IC2.isAlways())
352        continue;
353
354      // See if inlining or original callsite would erase the cost delta of
355      // this callsite. We subtract off the penalty for the call instruction,
356      // which we would be deleting.
357      if (IC2.getCostDelta() <= CandidateCost) {
358        inliningPreventsSomeOuterInline = true;
359        TotalSecondaryCost += IC2.getCost();
360      }
361    }
362    // If all outer calls to Caller would get inlined, the cost for the last
363    // one is set very low by getInlineCost, in anticipation that Caller will
364    // be removed entirely.  We did not account for this above unless there
365    // is only one caller of Caller.
366    if (callerWillBeRemoved && Caller->use_begin() != Caller->use_end())
367      TotalSecondaryCost += InlineConstants::LastCallToStaticBonus;
368
369    if (inliningPreventsSomeOuterInline && TotalSecondaryCost < IC.getCost()) {
370      DEBUG(dbgs() << "    NOT Inlining: " << *CS.getInstruction() <<
371           " Cost = " << IC.getCost() <<
372           ", outer Cost = " << TotalSecondaryCost << '\n');
373      return false;
374    }
375  }
376
377  DEBUG(dbgs() << "    Inlining: cost=" << IC.getCost()
378        << ", thres=" << (IC.getCostDelta() + IC.getCost())
379        << ", Call: " << *CS.getInstruction() << '\n');
380  return true;
381}
382
383/// InlineHistoryIncludes - Return true if the specified inline history ID
384/// indicates an inline history that includes the specified function.
385static bool InlineHistoryIncludes(Function *F, int InlineHistoryID,
386            const SmallVectorImpl<std::pair<Function*, int> > &InlineHistory) {
387  while (InlineHistoryID != -1) {
388    assert(unsigned(InlineHistoryID) < InlineHistory.size() &&
389           "Invalid inline history ID");
390    if (InlineHistory[InlineHistoryID].first == F)
391      return true;
392    InlineHistoryID = InlineHistory[InlineHistoryID].second;
393  }
394  return false;
395}
396
397bool Inliner::runOnSCC(CallGraphSCC &SCC) {
398  CallGraph &CG = getAnalysis<CallGraph>();
399  const DataLayout *TD = getAnalysisIfAvailable<DataLayout>();
400  const TargetLibraryInfo *TLI = getAnalysisIfAvailable<TargetLibraryInfo>();
401
402  SmallPtrSet<Function*, 8> SCCFunctions;
403  DEBUG(dbgs() << "Inliner visiting SCC:");
404  for (CallGraphSCC::iterator I = SCC.begin(), E = SCC.end(); I != E; ++I) {
405    Function *F = (*I)->getFunction();
406    if (F) SCCFunctions.insert(F);
407    DEBUG(dbgs() << " " << (F ? F->getName() : "INDIRECTNODE"));
408  }
409
410  // Scan through and identify all call sites ahead of time so that we only
411  // inline call sites in the original functions, not call sites that result
412  // from inlining other functions.
413  SmallVector<std::pair<CallSite, int>, 16> CallSites;
414
415  // When inlining a callee produces new call sites, we want to keep track of
416  // the fact that they were inlined from the callee.  This allows us to avoid
417  // infinite inlining in some obscure cases.  To represent this, we use an
418  // index into the InlineHistory vector.
419  SmallVector<std::pair<Function*, int>, 8> InlineHistory;
420
421  for (CallGraphSCC::iterator I = SCC.begin(), E = SCC.end(); I != E; ++I) {
422    Function *F = (*I)->getFunction();
423    if (!F) continue;
424
425    for (Function::iterator BB = F->begin(), E = F->end(); BB != E; ++BB)
426      for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) {
427        CallSite CS(cast<Value>(I));
428        // If this isn't a call, or it is a call to an intrinsic, it can
429        // never be inlined.
430        if (!CS || isa<IntrinsicInst>(I))
431          continue;
432
433        // If this is a direct call to an external function, we can never inline
434        // it.  If it is an indirect call, inlining may resolve it to be a
435        // direct call, so we keep it.
436        if (CS.getCalledFunction() && CS.getCalledFunction()->isDeclaration())
437          continue;
438
439        CallSites.push_back(std::make_pair(CS, -1));
440      }
441  }
442
443  DEBUG(dbgs() << ": " << CallSites.size() << " call sites.\n");
444
445  // If there are no calls in this function, exit early.
446  if (CallSites.empty())
447    return false;
448
449  // Now that we have all of the call sites, move the ones to functions in the
450  // current SCC to the end of the list.
451  unsigned FirstCallInSCC = CallSites.size();
452  for (unsigned i = 0; i < FirstCallInSCC; ++i)
453    if (Function *F = CallSites[i].first.getCalledFunction())
454      if (SCCFunctions.count(F))
455        std::swap(CallSites[i--], CallSites[--FirstCallInSCC]);
456
457
458  InlinedArrayAllocasTy InlinedArrayAllocas;
459  InlineFunctionInfo InlineInfo(&CG, TD);
460
461  // Now that we have all of the call sites, loop over them and inline them if
462  // it looks profitable to do so.
463  bool Changed = false;
464  bool LocalChange;
465  do {
466    LocalChange = false;
467    // Iterate over the outer loop because inlining functions can cause indirect
468    // calls to become direct calls.
469    for (unsigned CSi = 0; CSi != CallSites.size(); ++CSi) {
470      CallSite CS = CallSites[CSi].first;
471
472      Function *Caller = CS.getCaller();
473      Function *Callee = CS.getCalledFunction();
474
475      // If this call site is dead and it is to a readonly function, we should
476      // just delete the call instead of trying to inline it, regardless of
477      // size.  This happens because IPSCCP propagates the result out of the
478      // call and then we're left with the dead call.
479      if (isInstructionTriviallyDead(CS.getInstruction(), TLI)) {
480        DEBUG(dbgs() << "    -> Deleting dead call: "
481                     << *CS.getInstruction() << "\n");
482        // Update the call graph by deleting the edge from Callee to Caller.
483        CG[Caller]->removeCallEdgeFor(CS);
484        CS.getInstruction()->eraseFromParent();
485        ++NumCallsDeleted;
486      } else {
487        // We can only inline direct calls to non-declarations.
488        if (Callee == 0 || Callee->isDeclaration()) continue;
489
490        // If this call site was obtained by inlining another function, verify
491        // that the include path for the function did not include the callee
492        // itself.  If so, we'd be recursively inlining the same function,
493        // which would provide the same callsites, which would cause us to
494        // infinitely inline.
495        int InlineHistoryID = CallSites[CSi].second;
496        if (InlineHistoryID != -1 &&
497            InlineHistoryIncludes(Callee, InlineHistoryID, InlineHistory))
498          continue;
499
500
501        // If the policy determines that we should inline this function,
502        // try to do so.
503        if (!shouldInline(CS))
504          continue;
505
506        // Attempt to inline the function.
507        if (!InlineCallIfPossible(CS, InlineInfo, InlinedArrayAllocas,
508                                  InlineHistoryID, InsertLifetime, TD))
509          continue;
510        ++NumInlined;
511
512        // If inlining this function gave us any new call sites, throw them
513        // onto our worklist to process.  They are useful inline candidates.
514        if (!InlineInfo.InlinedCalls.empty()) {
515          // Create a new inline history entry for this, so that we remember
516          // that these new callsites came about due to inlining Callee.
517          int NewHistoryID = InlineHistory.size();
518          InlineHistory.push_back(std::make_pair(Callee, InlineHistoryID));
519
520          for (unsigned i = 0, e = InlineInfo.InlinedCalls.size();
521               i != e; ++i) {
522            Value *Ptr = InlineInfo.InlinedCalls[i];
523            CallSites.push_back(std::make_pair(CallSite(Ptr), NewHistoryID));
524          }
525        }
526      }
527
528      // If we inlined or deleted the last possible call site to the function,
529      // delete the function body now.
530      if (Callee && Callee->use_empty() && Callee->hasLocalLinkage() &&
531          // TODO: Can remove if in SCC now.
532          !SCCFunctions.count(Callee) &&
533
534          // The function may be apparently dead, but if there are indirect
535          // callgraph references to the node, we cannot delete it yet, this
536          // could invalidate the CGSCC iterator.
537          CG[Callee]->getNumReferences() == 0) {
538        DEBUG(dbgs() << "    -> Deleting dead function: "
539              << Callee->getName() << "\n");
540        CallGraphNode *CalleeNode = CG[Callee];
541
542        // Remove any call graph edges from the callee to its callees.
543        CalleeNode->removeAllCalledFunctions();
544
545        // Removing the node for callee from the call graph and delete it.
546        delete CG.removeFunctionFromModule(CalleeNode);
547        ++NumDeleted;
548      }
549
550      // Remove this call site from the list.  If possible, use
551      // swap/pop_back for efficiency, but do not use it if doing so would
552      // move a call site to a function in this SCC before the
553      // 'FirstCallInSCC' barrier.
554      if (SCC.isSingular()) {
555        CallSites[CSi] = CallSites.back();
556        CallSites.pop_back();
557      } else {
558        CallSites.erase(CallSites.begin()+CSi);
559      }
560      --CSi;
561
562      Changed = true;
563      LocalChange = true;
564    }
565  } while (LocalChange);
566
567  return Changed;
568}
569
570// doFinalization - Remove now-dead linkonce functions at the end of
571// processing to avoid breaking the SCC traversal.
572bool Inliner::doFinalization(CallGraph &CG) {
573  return removeDeadFunctions(CG);
574}
575
576/// removeDeadFunctions - Remove dead functions that are not included in
577/// DNR (Do Not Remove) list.
578bool Inliner::removeDeadFunctions(CallGraph &CG, bool AlwaysInlineOnly) {
579  SmallVector<CallGraphNode*, 16> FunctionsToRemove;
580
581  // Scan for all of the functions, looking for ones that should now be removed
582  // from the program.  Insert the dead ones in the FunctionsToRemove set.
583  for (CallGraph::iterator I = CG.begin(), E = CG.end(); I != E; ++I) {
584    CallGraphNode *CGN = I->second;
585    Function *F = CGN->getFunction();
586    if (!F || F->isDeclaration())
587      continue;
588
589    // Handle the case when this function is called and we only want to care
590    // about always-inline functions. This is a bit of a hack to share code
591    // between here and the InlineAlways pass.
592    if (AlwaysInlineOnly &&
593        !F->getAttributes().hasAttribute(AttributeSet::FunctionIndex,
594                                         Attribute::AlwaysInline))
595      continue;
596
597    // If the only remaining users of the function are dead constants, remove
598    // them.
599    F->removeDeadConstantUsers();
600
601    if (!F->isDefTriviallyDead())
602      continue;
603
604    // Remove any call graph edges from the function to its callees.
605    CGN->removeAllCalledFunctions();
606
607    // Remove any edges from the external node to the function's call graph
608    // node.  These edges might have been made irrelegant due to
609    // optimization of the program.
610    CG.getExternalCallingNode()->removeAnyCallEdgeTo(CGN);
611
612    // Removing the node for callee from the call graph and delete it.
613    FunctionsToRemove.push_back(CGN);
614  }
615  if (FunctionsToRemove.empty())
616    return false;
617
618  // Now that we know which functions to delete, do so.  We didn't want to do
619  // this inline, because that would invalidate our CallGraph::iterator
620  // objects. :(
621  //
622  // Note that it doesn't matter that we are iterating over a non-stable order
623  // here to do this, it doesn't matter which order the functions are deleted
624  // in.
625  array_pod_sort(FunctionsToRemove.begin(), FunctionsToRemove.end());
626  FunctionsToRemove.erase(std::unique(FunctionsToRemove.begin(),
627                                      FunctionsToRemove.end()),
628                          FunctionsToRemove.end());
629  for (SmallVectorImpl<CallGraphNode *>::iterator I = FunctionsToRemove.begin(),
630                                                  E = FunctionsToRemove.end();
631       I != E; ++I) {
632    delete CG.removeFunctionFromModule(*I);
633    ++NumDeleted;
634  }
635  return true;
636}
637