X86TargetTransformInfo.cpp revision 263508
1//===-- X86TargetTransformInfo.cpp - X86 specific TTI pass ----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9/// \file
10/// This file implements a TargetTransformInfo analysis pass specific to the
11/// X86 target machine. It uses the target's detailed information to provide
12/// more precise answers to certain TTI queries, while letting the target
13/// independent and default TTI implementations handle the rest.
14///
15//===----------------------------------------------------------------------===//
16
17#define DEBUG_TYPE "x86tti"
18#include "X86.h"
19#include "X86TargetMachine.h"
20#include "llvm/Analysis/TargetTransformInfo.h"
21#include "llvm/Support/Debug.h"
22#include "llvm/Target/TargetLowering.h"
23#include "llvm/Target/CostTable.h"
24using namespace llvm;
25
26// Declare the pass initialization routine locally as target-specific passes
27// don't havve a target-wide initialization entry point, and so we rely on the
28// pass constructor initialization.
29namespace llvm {
30void initializeX86TTIPass(PassRegistry &);
31}
32
33namespace {
34
35class X86TTI : public ImmutablePass, public TargetTransformInfo {
36  const X86Subtarget *ST;
37  const X86TargetLowering *TLI;
38
39  /// Estimate the overhead of scalarizing an instruction. Insert and Extract
40  /// are set if the result needs to be inserted and/or extracted from vectors.
41  unsigned getScalarizationOverhead(Type *Ty, bool Insert, bool Extract) const;
42
43public:
44  X86TTI() : ImmutablePass(ID), ST(0), TLI(0) {
45    llvm_unreachable("This pass cannot be directly constructed");
46  }
47
48  X86TTI(const X86TargetMachine *TM)
49      : ImmutablePass(ID), ST(TM->getSubtargetImpl()),
50        TLI(TM->getTargetLowering()) {
51    initializeX86TTIPass(*PassRegistry::getPassRegistry());
52  }
53
54  virtual void initializePass() {
55    pushTTIStack(this);
56  }
57
58  virtual void finalizePass() {
59    popTTIStack();
60  }
61
62  virtual void getAnalysisUsage(AnalysisUsage &AU) const {
63    TargetTransformInfo::getAnalysisUsage(AU);
64  }
65
66  /// Pass identification.
67  static char ID;
68
69  /// Provide necessary pointer adjustments for the two base classes.
70  virtual void *getAdjustedAnalysisPointer(const void *ID) {
71    if (ID == &TargetTransformInfo::ID)
72      return (TargetTransformInfo*)this;
73    return this;
74  }
75
76  /// \name Scalar TTI Implementations
77  /// @{
78  virtual PopcntSupportKind getPopcntSupport(unsigned TyWidth) const;
79
80  /// @}
81
82  /// \name Vector TTI Implementations
83  /// @{
84
85  virtual unsigned getNumberOfRegisters(bool Vector) const;
86  virtual unsigned getRegisterBitWidth(bool Vector) const;
87  virtual unsigned getMaximumUnrollFactor() const;
88  virtual unsigned getArithmeticInstrCost(unsigned Opcode, Type *Ty,
89                                          OperandValueKind,
90                                          OperandValueKind) const;
91  virtual unsigned getShuffleCost(ShuffleKind Kind, Type *Tp,
92                                  int Index, Type *SubTp) const;
93  virtual unsigned getCastInstrCost(unsigned Opcode, Type *Dst,
94                                    Type *Src) const;
95  virtual unsigned getCmpSelInstrCost(unsigned Opcode, Type *ValTy,
96                                      Type *CondTy) const;
97  virtual unsigned getVectorInstrCost(unsigned Opcode, Type *Val,
98                                      unsigned Index) const;
99  virtual unsigned getMemoryOpCost(unsigned Opcode, Type *Src,
100                                   unsigned Alignment,
101                                   unsigned AddressSpace) const;
102
103  virtual unsigned getAddressComputationCost(Type *PtrTy, bool IsComplex) const;
104
105  virtual unsigned getReductionCost(unsigned Opcode, Type *Ty,
106                                    bool IsPairwiseForm) const;
107
108  /// @}
109};
110
111} // end anonymous namespace
112
113INITIALIZE_AG_PASS(X86TTI, TargetTransformInfo, "x86tti",
114                   "X86 Target Transform Info", true, true, false)
115char X86TTI::ID = 0;
116
117ImmutablePass *
118llvm::createX86TargetTransformInfoPass(const X86TargetMachine *TM) {
119  return new X86TTI(TM);
120}
121
122
123//===----------------------------------------------------------------------===//
124//
125// X86 cost model.
126//
127//===----------------------------------------------------------------------===//
128
129X86TTI::PopcntSupportKind X86TTI::getPopcntSupport(unsigned TyWidth) const {
130  assert(isPowerOf2_32(TyWidth) && "Ty width must be power of 2");
131  // TODO: Currently the __builtin_popcount() implementation using SSE3
132  //   instructions is inefficient. Once the problem is fixed, we should
133  //   call ST->hasSSE3() instead of ST->hasPOPCNT().
134  return ST->hasPOPCNT() ? PSK_FastHardware : PSK_Software;
135}
136
137unsigned X86TTI::getNumberOfRegisters(bool Vector) const {
138  if (Vector && !ST->hasSSE1())
139    return 0;
140
141  if (ST->is64Bit())
142    return 16;
143  return 8;
144}
145
146unsigned X86TTI::getRegisterBitWidth(bool Vector) const {
147  if (Vector) {
148    if (ST->hasAVX()) return 256;
149    if (ST->hasSSE1()) return 128;
150    return 0;
151  }
152
153  if (ST->is64Bit())
154    return 64;
155  return 32;
156
157}
158
159unsigned X86TTI::getMaximumUnrollFactor() const {
160  if (ST->isAtom())
161    return 1;
162
163  // Sandybridge and Haswell have multiple execution ports and pipelined
164  // vector units.
165  if (ST->hasAVX())
166    return 4;
167
168  return 2;
169}
170
171unsigned X86TTI::getArithmeticInstrCost(unsigned Opcode, Type *Ty,
172                                        OperandValueKind Op1Info,
173                                        OperandValueKind Op2Info) const {
174  // Legalize the type.
175  std::pair<unsigned, MVT> LT = TLI->getTypeLegalizationCost(Ty);
176
177  int ISD = TLI->InstructionOpcodeToISD(Opcode);
178  assert(ISD && "Invalid opcode");
179
180  static const CostTblEntry<MVT::SimpleValueType> AVX2CostTable[] = {
181    // Shifts on v4i64/v8i32 on AVX2 is legal even though we declare to
182    // customize them to detect the cases where shift amount is a scalar one.
183    { ISD::SHL,     MVT::v4i32,    1 },
184    { ISD::SRL,     MVT::v4i32,    1 },
185    { ISD::SRA,     MVT::v4i32,    1 },
186    { ISD::SHL,     MVT::v8i32,    1 },
187    { ISD::SRL,     MVT::v8i32,    1 },
188    { ISD::SRA,     MVT::v8i32,    1 },
189    { ISD::SHL,     MVT::v2i64,    1 },
190    { ISD::SRL,     MVT::v2i64,    1 },
191    { ISD::SHL,     MVT::v4i64,    1 },
192    { ISD::SRL,     MVT::v4i64,    1 },
193
194    { ISD::SHL,  MVT::v32i8,  42 }, // cmpeqb sequence.
195    { ISD::SHL,  MVT::v16i16,  16*10 }, // Scalarized.
196
197    { ISD::SRL,  MVT::v32i8,  32*10 }, // Scalarized.
198    { ISD::SRL,  MVT::v16i16,  8*10 }, // Scalarized.
199
200    { ISD::SRA,  MVT::v32i8,  32*10 }, // Scalarized.
201    { ISD::SRA,  MVT::v16i16,  16*10 }, // Scalarized.
202    { ISD::SRA,  MVT::v4i64,  4*10 }, // Scalarized.
203
204    // Vectorizing division is a bad idea. See the SSE2 table for more comments.
205    { ISD::SDIV,  MVT::v32i8,  32*20 },
206    { ISD::SDIV,  MVT::v16i16, 16*20 },
207    { ISD::SDIV,  MVT::v8i32,  8*20 },
208    { ISD::SDIV,  MVT::v4i64,  4*20 },
209    { ISD::UDIV,  MVT::v32i8,  32*20 },
210    { ISD::UDIV,  MVT::v16i16, 16*20 },
211    { ISD::UDIV,  MVT::v8i32,  8*20 },
212    { ISD::UDIV,  MVT::v4i64,  4*20 },
213  };
214
215  // Look for AVX2 lowering tricks.
216  if (ST->hasAVX2()) {
217    int Idx = CostTableLookup(AVX2CostTable, ISD, LT.second);
218    if (Idx != -1)
219      return LT.first * AVX2CostTable[Idx].Cost;
220  }
221
222  static const CostTblEntry<MVT::SimpleValueType>
223  SSE2UniformConstCostTable[] = {
224    // We don't correctly identify costs of casts because they are marked as
225    // custom.
226    // Constant splats are cheaper for the following instructions.
227    { ISD::SHL,  MVT::v16i8,  1 }, // psllw.
228    { ISD::SHL,  MVT::v8i16,  1 }, // psllw.
229    { ISD::SHL,  MVT::v4i32,  1 }, // pslld
230    { ISD::SHL,  MVT::v2i64,  1 }, // psllq.
231
232    { ISD::SRL,  MVT::v16i8,  1 }, // psrlw.
233    { ISD::SRL,  MVT::v8i16,  1 }, // psrlw.
234    { ISD::SRL,  MVT::v4i32,  1 }, // psrld.
235    { ISD::SRL,  MVT::v2i64,  1 }, // psrlq.
236
237    { ISD::SRA,  MVT::v16i8,  4 }, // psrlw, pand, pxor, psubb.
238    { ISD::SRA,  MVT::v8i16,  1 }, // psraw.
239    { ISD::SRA,  MVT::v4i32,  1 }, // psrad.
240  };
241
242  if (Op2Info == TargetTransformInfo::OK_UniformConstantValue &&
243      ST->hasSSE2()) {
244    int Idx = CostTableLookup(SSE2UniformConstCostTable, ISD, LT.second);
245    if (Idx != -1)
246      return LT.first * SSE2UniformConstCostTable[Idx].Cost;
247  }
248
249
250  static const CostTblEntry<MVT::SimpleValueType> SSE2CostTable[] = {
251    // We don't correctly identify costs of casts because they are marked as
252    // custom.
253    // For some cases, where the shift amount is a scalar we would be able
254    // to generate better code. Unfortunately, when this is the case the value
255    // (the splat) will get hoisted out of the loop, thereby making it invisible
256    // to ISel. The cost model must return worst case assumptions because it is
257    // used for vectorization and we don't want to make vectorized code worse
258    // than scalar code.
259    { ISD::SHL,  MVT::v16i8,  30 }, // cmpeqb sequence.
260    { ISD::SHL,  MVT::v8i16,  8*10 }, // Scalarized.
261    { ISD::SHL,  MVT::v4i32,  2*5 }, // We optimized this using mul.
262    { ISD::SHL,  MVT::v2i64,  2*10 }, // Scalarized.
263
264    { ISD::SRL,  MVT::v16i8,  16*10 }, // Scalarized.
265    { ISD::SRL,  MVT::v8i16,  8*10 }, // Scalarized.
266    { ISD::SRL,  MVT::v4i32,  4*10 }, // Scalarized.
267    { ISD::SRL,  MVT::v2i64,  2*10 }, // Scalarized.
268
269    { ISD::SRA,  MVT::v16i8,  16*10 }, // Scalarized.
270    { ISD::SRA,  MVT::v8i16,  8*10 }, // Scalarized.
271    { ISD::SRA,  MVT::v4i32,  4*10 }, // Scalarized.
272    { ISD::SRA,  MVT::v2i64,  2*10 }, // Scalarized.
273
274    // It is not a good idea to vectorize division. We have to scalarize it and
275    // in the process we will often end up having to spilling regular
276    // registers. The overhead of division is going to dominate most kernels
277    // anyways so try hard to prevent vectorization of division - it is
278    // generally a bad idea. Assume somewhat arbitrarily that we have to be able
279    // to hide "20 cycles" for each lane.
280    { ISD::SDIV,  MVT::v16i8,  16*20 },
281    { ISD::SDIV,  MVT::v8i16,  8*20 },
282    { ISD::SDIV,  MVT::v4i32,  4*20 },
283    { ISD::SDIV,  MVT::v2i64,  2*20 },
284    { ISD::UDIV,  MVT::v16i8,  16*20 },
285    { ISD::UDIV,  MVT::v8i16,  8*20 },
286    { ISD::UDIV,  MVT::v4i32,  4*20 },
287    { ISD::UDIV,  MVT::v2i64,  2*20 },
288  };
289
290  if (ST->hasSSE2()) {
291    int Idx = CostTableLookup(SSE2CostTable, ISD, LT.second);
292    if (Idx != -1)
293      return LT.first * SSE2CostTable[Idx].Cost;
294  }
295
296  static const CostTblEntry<MVT::SimpleValueType> AVX1CostTable[] = {
297    // We don't have to scalarize unsupported ops. We can issue two half-sized
298    // operations and we only need to extract the upper YMM half.
299    // Two ops + 1 extract + 1 insert = 4.
300    { ISD::MUL,     MVT::v8i32,    4 },
301    { ISD::SUB,     MVT::v8i32,    4 },
302    { ISD::ADD,     MVT::v8i32,    4 },
303    { ISD::SUB,     MVT::v4i64,    4 },
304    { ISD::ADD,     MVT::v4i64,    4 },
305    // A v4i64 multiply is custom lowered as two split v2i64 vectors that then
306    // are lowered as a series of long multiplies(3), shifts(4) and adds(2)
307    // Because we believe v4i64 to be a legal type, we must also include the
308    // split factor of two in the cost table. Therefore, the cost here is 18
309    // instead of 9.
310    { ISD::MUL,     MVT::v4i64,    18 },
311  };
312
313  // Look for AVX1 lowering tricks.
314  if (ST->hasAVX() && !ST->hasAVX2()) {
315    int Idx = CostTableLookup(AVX1CostTable, ISD, LT.second);
316    if (Idx != -1)
317      return LT.first * AVX1CostTable[Idx].Cost;
318  }
319
320  // Custom lowering of vectors.
321  static const CostTblEntry<MVT::SimpleValueType> CustomLowered[] = {
322    // A v2i64/v4i64 and multiply is custom lowered as a series of long
323    // multiplies(3), shifts(4) and adds(2).
324    { ISD::MUL,     MVT::v2i64,    9 },
325    { ISD::MUL,     MVT::v4i64,    9 },
326  };
327  int Idx = CostTableLookup(CustomLowered, ISD, LT.second);
328  if (Idx != -1)
329    return LT.first * CustomLowered[Idx].Cost;
330
331  // Special lowering of v4i32 mul on sse2, sse3: Lower v4i32 mul as 2x shuffle,
332  // 2x pmuludq, 2x shuffle.
333  if (ISD == ISD::MUL && LT.second == MVT::v4i32 && ST->hasSSE2() &&
334      !ST->hasSSE41())
335    return 6;
336
337  // Fallback to the default implementation.
338  return TargetTransformInfo::getArithmeticInstrCost(Opcode, Ty, Op1Info,
339                                                     Op2Info);
340}
341
342unsigned X86TTI::getShuffleCost(ShuffleKind Kind, Type *Tp, int Index,
343                                Type *SubTp) const {
344  // We only estimate the cost of reverse shuffles.
345  if (Kind != SK_Reverse)
346    return TargetTransformInfo::getShuffleCost(Kind, Tp, Index, SubTp);
347
348  std::pair<unsigned, MVT> LT = TLI->getTypeLegalizationCost(Tp);
349  unsigned Cost = 1;
350  if (LT.second.getSizeInBits() > 128)
351    Cost = 3; // Extract + insert + copy.
352
353  // Multiple by the number of parts.
354  return Cost * LT.first;
355}
356
357unsigned X86TTI::getCastInstrCost(unsigned Opcode, Type *Dst, Type *Src) const {
358  int ISD = TLI->InstructionOpcodeToISD(Opcode);
359  assert(ISD && "Invalid opcode");
360
361  std::pair<unsigned, MVT> LTSrc = TLI->getTypeLegalizationCost(Src);
362  std::pair<unsigned, MVT> LTDest = TLI->getTypeLegalizationCost(Dst);
363
364  static const TypeConversionCostTblEntry<MVT::SimpleValueType>
365  SSE2ConvTbl[] = {
366    // These are somewhat magic numbers justified by looking at the output of
367    // Intel's IACA, running some kernels and making sure when we take
368    // legalization into account the throughput will be overestimated.
369    { ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i64, 2*10 },
370    { ISD::UINT_TO_FP, MVT::v2f64, MVT::v4i32, 4*10 },
371    { ISD::UINT_TO_FP, MVT::v2f64, MVT::v8i16, 8*10 },
372    { ISD::UINT_TO_FP, MVT::v2f64, MVT::v16i8, 16*10 },
373    { ISD::SINT_TO_FP, MVT::v2f64, MVT::v2i64, 2*10 },
374    { ISD::SINT_TO_FP, MVT::v2f64, MVT::v4i32, 4*10 },
375    { ISD::SINT_TO_FP, MVT::v2f64, MVT::v8i16, 8*10 },
376    { ISD::SINT_TO_FP, MVT::v2f64, MVT::v16i8, 16*10 },
377    // There are faster sequences for float conversions.
378    { ISD::UINT_TO_FP, MVT::v4f32, MVT::v2i64, 15 },
379    { ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i32, 15 },
380    { ISD::UINT_TO_FP, MVT::v4f32, MVT::v8i16, 15 },
381    { ISD::UINT_TO_FP, MVT::v4f32, MVT::v16i8, 8 },
382    { ISD::SINT_TO_FP, MVT::v4f32, MVT::v2i64, 15 },
383    { ISD::SINT_TO_FP, MVT::v4f32, MVT::v4i32, 15 },
384    { ISD::SINT_TO_FP, MVT::v4f32, MVT::v8i16, 15 },
385    { ISD::SINT_TO_FP, MVT::v4f32, MVT::v16i8, 8 },
386  };
387
388  if (ST->hasSSE2() && !ST->hasAVX()) {
389    int Idx =
390        ConvertCostTableLookup(SSE2ConvTbl, ISD, LTDest.second, LTSrc.second);
391    if (Idx != -1)
392      return LTSrc.first * SSE2ConvTbl[Idx].Cost;
393  }
394
395  EVT SrcTy = TLI->getValueType(Src);
396  EVT DstTy = TLI->getValueType(Dst);
397
398  // The function getSimpleVT only handles simple value types.
399  if (!SrcTy.isSimple() || !DstTy.isSimple())
400    return TargetTransformInfo::getCastInstrCost(Opcode, Dst, Src);
401
402  static const TypeConversionCostTblEntry<MVT::SimpleValueType>
403  AVXConversionTbl[] = {
404    { ISD::SIGN_EXTEND, MVT::v16i16, MVT::v16i8, 1 },
405    { ISD::ZERO_EXTEND, MVT::v16i16, MVT::v16i8, 1 },
406    { ISD::SIGN_EXTEND, MVT::v8i32, MVT::v8i16, 1 },
407    { ISD::ZERO_EXTEND, MVT::v8i32, MVT::v8i16, 1 },
408    { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i32, 1 },
409    { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i32, 1 },
410    { ISD::TRUNCATE,    MVT::v4i32, MVT::v4i64, 1 },
411    { ISD::TRUNCATE,    MVT::v8i16, MVT::v8i32, 1 },
412    { ISD::TRUNCATE,    MVT::v16i8, MVT::v16i16, 2 },
413
414    { ISD::SINT_TO_FP,  MVT::v8f32, MVT::v8i1,  8 },
415    { ISD::SINT_TO_FP,  MVT::v8f32, MVT::v8i8,  8 },
416    { ISD::SINT_TO_FP,  MVT::v8f32, MVT::v8i16, 5 },
417    { ISD::SINT_TO_FP,  MVT::v8f32, MVT::v8i32, 1 },
418    { ISD::SINT_TO_FP,  MVT::v4f32, MVT::v4i1,  3 },
419    { ISD::SINT_TO_FP,  MVT::v4f32, MVT::v4i8,  3 },
420    { ISD::SINT_TO_FP,  MVT::v4f32, MVT::v4i16, 3 },
421    { ISD::SINT_TO_FP,  MVT::v4f32, MVT::v4i32, 1 },
422    { ISD::SINT_TO_FP,  MVT::v4f64, MVT::v4i1,  3 },
423    { ISD::SINT_TO_FP,  MVT::v4f64, MVT::v4i8,  3 },
424    { ISD::SINT_TO_FP,  MVT::v4f64, MVT::v4i16, 3 },
425    { ISD::SINT_TO_FP,  MVT::v4f64, MVT::v4i32, 1 },
426
427    { ISD::UINT_TO_FP,  MVT::v8f32, MVT::v8i1,  6 },
428    { ISD::UINT_TO_FP,  MVT::v8f32, MVT::v8i8,  5 },
429    { ISD::UINT_TO_FP,  MVT::v8f32, MVT::v8i16, 5 },
430    { ISD::UINT_TO_FP,  MVT::v8f32, MVT::v8i32, 9 },
431    { ISD::UINT_TO_FP,  MVT::v4f32, MVT::v4i1,  7 },
432    { ISD::UINT_TO_FP,  MVT::v4f32, MVT::v4i8,  2 },
433    { ISD::UINT_TO_FP,  MVT::v4f32, MVT::v4i16, 2 },
434    { ISD::UINT_TO_FP,  MVT::v4f32, MVT::v4i32, 6 },
435    { ISD::UINT_TO_FP,  MVT::v4f64, MVT::v4i1,  7 },
436    { ISD::UINT_TO_FP,  MVT::v4f64, MVT::v4i8,  2 },
437    { ISD::UINT_TO_FP,  MVT::v4f64, MVT::v4i16, 2 },
438    { ISD::UINT_TO_FP,  MVT::v4f64, MVT::v4i32, 6 },
439
440    { ISD::FP_TO_SINT,  MVT::v8i8,  MVT::v8f32, 1 },
441    { ISD::FP_TO_SINT,  MVT::v4i8,  MVT::v4f32, 1 },
442    { ISD::ZERO_EXTEND, MVT::v8i32, MVT::v8i1,  6 },
443    { ISD::SIGN_EXTEND, MVT::v8i32, MVT::v8i1,  9 },
444    { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i1,  8 },
445    { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i8,  6 },
446    { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i16, 6 },
447    { ISD::TRUNCATE,    MVT::v8i32, MVT::v8i64, 3 },
448  };
449
450  if (ST->hasAVX()) {
451    int Idx = ConvertCostTableLookup(AVXConversionTbl, ISD, DstTy.getSimpleVT(),
452                                     SrcTy.getSimpleVT());
453    if (Idx != -1)
454      return AVXConversionTbl[Idx].Cost;
455  }
456
457  return TargetTransformInfo::getCastInstrCost(Opcode, Dst, Src);
458}
459
460unsigned X86TTI::getCmpSelInstrCost(unsigned Opcode, Type *ValTy,
461                                    Type *CondTy) const {
462  // Legalize the type.
463  std::pair<unsigned, MVT> LT = TLI->getTypeLegalizationCost(ValTy);
464
465  MVT MTy = LT.second;
466
467  int ISD = TLI->InstructionOpcodeToISD(Opcode);
468  assert(ISD && "Invalid opcode");
469
470  static const CostTblEntry<MVT::SimpleValueType> SSE42CostTbl[] = {
471    { ISD::SETCC,   MVT::v2f64,   1 },
472    { ISD::SETCC,   MVT::v4f32,   1 },
473    { ISD::SETCC,   MVT::v2i64,   1 },
474    { ISD::SETCC,   MVT::v4i32,   1 },
475    { ISD::SETCC,   MVT::v8i16,   1 },
476    { ISD::SETCC,   MVT::v16i8,   1 },
477  };
478
479  static const CostTblEntry<MVT::SimpleValueType> AVX1CostTbl[] = {
480    { ISD::SETCC,   MVT::v4f64,   1 },
481    { ISD::SETCC,   MVT::v8f32,   1 },
482    // AVX1 does not support 8-wide integer compare.
483    { ISD::SETCC,   MVT::v4i64,   4 },
484    { ISD::SETCC,   MVT::v8i32,   4 },
485    { ISD::SETCC,   MVT::v16i16,  4 },
486    { ISD::SETCC,   MVT::v32i8,   4 },
487  };
488
489  static const CostTblEntry<MVT::SimpleValueType> AVX2CostTbl[] = {
490    { ISD::SETCC,   MVT::v4i64,   1 },
491    { ISD::SETCC,   MVT::v8i32,   1 },
492    { ISD::SETCC,   MVT::v16i16,  1 },
493    { ISD::SETCC,   MVT::v32i8,   1 },
494  };
495
496  if (ST->hasAVX2()) {
497    int Idx = CostTableLookup(AVX2CostTbl, ISD, MTy);
498    if (Idx != -1)
499      return LT.first * AVX2CostTbl[Idx].Cost;
500  }
501
502  if (ST->hasAVX()) {
503    int Idx = CostTableLookup(AVX1CostTbl, ISD, MTy);
504    if (Idx != -1)
505      return LT.first * AVX1CostTbl[Idx].Cost;
506  }
507
508  if (ST->hasSSE42()) {
509    int Idx = CostTableLookup(SSE42CostTbl, ISD, MTy);
510    if (Idx != -1)
511      return LT.first * SSE42CostTbl[Idx].Cost;
512  }
513
514  return TargetTransformInfo::getCmpSelInstrCost(Opcode, ValTy, CondTy);
515}
516
517unsigned X86TTI::getVectorInstrCost(unsigned Opcode, Type *Val,
518                                    unsigned Index) const {
519  assert(Val->isVectorTy() && "This must be a vector type");
520
521  if (Index != -1U) {
522    // Legalize the type.
523    std::pair<unsigned, MVT> LT = TLI->getTypeLegalizationCost(Val);
524
525    // This type is legalized to a scalar type.
526    if (!LT.second.isVector())
527      return 0;
528
529    // The type may be split. Normalize the index to the new type.
530    unsigned Width = LT.second.getVectorNumElements();
531    Index = Index % Width;
532
533    // Floating point scalars are already located in index #0.
534    if (Val->getScalarType()->isFloatingPointTy() && Index == 0)
535      return 0;
536  }
537
538  return TargetTransformInfo::getVectorInstrCost(Opcode, Val, Index);
539}
540
541unsigned X86TTI::getScalarizationOverhead(Type *Ty, bool Insert,
542                                            bool Extract) const {
543  assert (Ty->isVectorTy() && "Can only scalarize vectors");
544  unsigned Cost = 0;
545
546  for (int i = 0, e = Ty->getVectorNumElements(); i < e; ++i) {
547    if (Insert)
548      Cost += TopTTI->getVectorInstrCost(Instruction::InsertElement, Ty, i);
549    if (Extract)
550      Cost += TopTTI->getVectorInstrCost(Instruction::ExtractElement, Ty, i);
551  }
552
553  return Cost;
554}
555
556unsigned X86TTI::getMemoryOpCost(unsigned Opcode, Type *Src, unsigned Alignment,
557                                 unsigned AddressSpace) const {
558  // Handle non power of two vectors such as <3 x float>
559  if (VectorType *VTy = dyn_cast<VectorType>(Src)) {
560    unsigned NumElem = VTy->getVectorNumElements();
561
562    // Handle a few common cases:
563    // <3 x float>
564    if (NumElem == 3 && VTy->getScalarSizeInBits() == 32)
565      // Cost = 64 bit store + extract + 32 bit store.
566      return 3;
567
568    // <3 x double>
569    if (NumElem == 3 && VTy->getScalarSizeInBits() == 64)
570      // Cost = 128 bit store + unpack + 64 bit store.
571      return 3;
572
573    // Assume that all other non power-of-two numbers are scalarized.
574    if (!isPowerOf2_32(NumElem)) {
575      unsigned Cost = TargetTransformInfo::getMemoryOpCost(Opcode,
576                                                           VTy->getScalarType(),
577                                                           Alignment,
578                                                           AddressSpace);
579      unsigned SplitCost = getScalarizationOverhead(Src,
580                                                    Opcode == Instruction::Load,
581                                                    Opcode==Instruction::Store);
582      return NumElem * Cost + SplitCost;
583    }
584  }
585
586  // Legalize the type.
587  std::pair<unsigned, MVT> LT = TLI->getTypeLegalizationCost(Src);
588  assert((Opcode == Instruction::Load || Opcode == Instruction::Store) &&
589         "Invalid Opcode");
590
591  // Each load/store unit costs 1.
592  unsigned Cost = LT.first * 1;
593
594  // On Sandybridge 256bit load/stores are double pumped
595  // (but not on Haswell).
596  if (LT.second.getSizeInBits() > 128 && !ST->hasAVX2())
597    Cost*=2;
598
599  return Cost;
600}
601
602unsigned X86TTI::getAddressComputationCost(Type *Ty, bool IsComplex) const {
603  // Address computations in vectorized code with non-consecutive addresses will
604  // likely result in more instructions compared to scalar code where the
605  // computation can more often be merged into the index mode. The resulting
606  // extra micro-ops can significantly decrease throughput.
607  unsigned NumVectorInstToHideOverhead = 10;
608
609  if (Ty->isVectorTy() && IsComplex)
610    return NumVectorInstToHideOverhead;
611
612  return TargetTransformInfo::getAddressComputationCost(Ty, IsComplex);
613}
614
615unsigned X86TTI::getReductionCost(unsigned Opcode, Type *ValTy,
616                                  bool IsPairwise) const {
617
618  std::pair<unsigned, MVT> LT = TLI->getTypeLegalizationCost(ValTy);
619
620  MVT MTy = LT.second;
621
622  int ISD = TLI->InstructionOpcodeToISD(Opcode);
623  assert(ISD && "Invalid opcode");
624
625  // We use the Intel Architecture Code Analyzer(IACA) to measure the throughput
626  // and make it as the cost.
627
628  static const CostTblEntry<MVT::SimpleValueType> SSE42CostTblPairWise[] = {
629    { ISD::FADD,  MVT::v2f64,   2 },
630    { ISD::FADD,  MVT::v4f32,   4 },
631    { ISD::ADD,   MVT::v2i64,   2 },      // The data reported by the IACA tool is "1.6".
632    { ISD::ADD,   MVT::v4i32,   3 },      // The data reported by the IACA tool is "3.5".
633    { ISD::ADD,   MVT::v8i16,   5 },
634  };
635
636  static const CostTblEntry<MVT::SimpleValueType> AVX1CostTblPairWise[] = {
637    { ISD::FADD,  MVT::v4f32,   4 },
638    { ISD::FADD,  MVT::v4f64,   5 },
639    { ISD::FADD,  MVT::v8f32,   7 },
640    { ISD::ADD,   MVT::v2i64,   1 },      // The data reported by the IACA tool is "1.5".
641    { ISD::ADD,   MVT::v4i32,   3 },      // The data reported by the IACA tool is "3.5".
642    { ISD::ADD,   MVT::v4i64,   5 },      // The data reported by the IACA tool is "4.8".
643    { ISD::ADD,   MVT::v8i16,   5 },
644    { ISD::ADD,   MVT::v8i32,   5 },
645  };
646
647  static const CostTblEntry<MVT::SimpleValueType> SSE42CostTblNoPairWise[] = {
648    { ISD::FADD,  MVT::v2f64,   2 },
649    { ISD::FADD,  MVT::v4f32,   4 },
650    { ISD::ADD,   MVT::v2i64,   2 },      // The data reported by the IACA tool is "1.6".
651    { ISD::ADD,   MVT::v4i32,   3 },      // The data reported by the IACA tool is "3.3".
652    { ISD::ADD,   MVT::v8i16,   4 },      // The data reported by the IACA tool is "4.3".
653  };
654
655  static const CostTblEntry<MVT::SimpleValueType> AVX1CostTblNoPairWise[] = {
656    { ISD::FADD,  MVT::v4f32,   3 },
657    { ISD::FADD,  MVT::v4f64,   3 },
658    { ISD::FADD,  MVT::v8f32,   4 },
659    { ISD::ADD,   MVT::v2i64,   1 },      // The data reported by the IACA tool is "1.5".
660    { ISD::ADD,   MVT::v4i32,   3 },      // The data reported by the IACA tool is "2.8".
661    { ISD::ADD,   MVT::v4i64,   3 },
662    { ISD::ADD,   MVT::v8i16,   4 },
663    { ISD::ADD,   MVT::v8i32,   5 },
664  };
665
666  if (IsPairwise) {
667    if (ST->hasAVX()) {
668      int Idx = CostTableLookup(AVX1CostTblPairWise, ISD, MTy);
669      if (Idx != -1)
670        return LT.first * AVX1CostTblPairWise[Idx].Cost;
671    }
672
673    if (ST->hasSSE42()) {
674      int Idx = CostTableLookup(SSE42CostTblPairWise, ISD, MTy);
675      if (Idx != -1)
676        return LT.first * SSE42CostTblPairWise[Idx].Cost;
677    }
678  } else {
679    if (ST->hasAVX()) {
680      int Idx = CostTableLookup(AVX1CostTblNoPairWise, ISD, MTy);
681      if (Idx != -1)
682        return LT.first * AVX1CostTblNoPairWise[Idx].Cost;
683    }
684
685    if (ST->hasSSE42()) {
686      int Idx = CostTableLookup(SSE42CostTblNoPairWise, ISD, MTy);
687      if (Idx != -1)
688        return LT.first * SSE42CostTblNoPairWise[Idx].Cost;
689    }
690  }
691
692  return TargetTransformInfo::getReductionCost(Opcode, ValTy, IsPairwise);
693}
694
695