X86InstrArithmetic.td revision 263508
1//===-- X86InstrArithmetic.td - Integer Arithmetic Instrs --*- tablegen -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file describes the integer arithmetic instructions in the X86
11// architecture.
12//
13//===----------------------------------------------------------------------===//
14
15//===----------------------------------------------------------------------===//
16// LEA - Load Effective Address
17let SchedRW = [WriteLEA] in {
18let neverHasSideEffects = 1 in
19def LEA16r   : I<0x8D, MRMSrcMem,
20                 (outs GR16:$dst), (ins i32mem:$src),
21                 "lea{w}\t{$src|$dst}, {$dst|$src}", [], IIC_LEA_16>, OpSize;
22let isReMaterializable = 1 in
23def LEA32r   : I<0x8D, MRMSrcMem,
24                 (outs GR32:$dst), (ins i32mem:$src),
25                 "lea{l}\t{$src|$dst}, {$dst|$src}",
26                 [(set GR32:$dst, lea32addr:$src)], IIC_LEA>,
27                 Requires<[In32BitMode]>;
28
29def LEA64_32r : I<0x8D, MRMSrcMem,
30                  (outs GR32:$dst), (ins lea64_32mem:$src),
31                  "lea{l}\t{$src|$dst}, {$dst|$src}",
32                  [(set GR32:$dst, lea64_32addr:$src)], IIC_LEA>,
33                  Requires<[In64BitMode]>;
34
35let isReMaterializable = 1 in
36def LEA64r   : RI<0x8D, MRMSrcMem, (outs GR64:$dst), (ins lea64mem:$src),
37                  "lea{q}\t{$src|$dst}, {$dst|$src}",
38                  [(set GR64:$dst, lea64addr:$src)], IIC_LEA>;
39} // SchedRW
40
41//===----------------------------------------------------------------------===//
42//  Fixed-Register Multiplication and Division Instructions.
43//
44
45// SchedModel info for instruction that loads one value and gets the second
46// (and possibly third) value from a register.
47// This is used for instructions that put the memory operands before other
48// uses.
49class SchedLoadReg<SchedWrite SW> : Sched<[SW,
50  // Memory operand.
51  ReadDefault, ReadDefault, ReadDefault, ReadDefault, ReadDefault,
52  // Register reads (implicit or explicit).
53  ReadAfterLd, ReadAfterLd]>;
54
55// Extra precision multiplication
56
57// AL is really implied by AX, but the registers in Defs must match the
58// SDNode results (i8, i32).
59// AL,AH = AL*GR8
60let Defs = [AL,EFLAGS,AX], Uses = [AL] in
61def MUL8r  : I<0xF6, MRM4r, (outs),  (ins GR8:$src), "mul{b}\t$src",
62               // FIXME: Used for 8-bit mul, ignore result upper 8 bits.
63               // This probably ought to be moved to a def : Pat<> if the
64               // syntax can be accepted.
65               [(set AL, (mul AL, GR8:$src)),
66                (implicit EFLAGS)], IIC_MUL8>, Sched<[WriteIMul]>;
67// AX,DX = AX*GR16
68let Defs = [AX,DX,EFLAGS], Uses = [AX], neverHasSideEffects = 1 in
69def MUL16r : I<0xF7, MRM4r, (outs),  (ins GR16:$src),
70               "mul{w}\t$src",
71               [], IIC_MUL16_REG>, OpSize, Sched<[WriteIMul]>;
72// EAX,EDX = EAX*GR32
73let Defs = [EAX,EDX,EFLAGS], Uses = [EAX], neverHasSideEffects = 1 in
74def MUL32r : I<0xF7, MRM4r, (outs),  (ins GR32:$src),
75               "mul{l}\t$src",
76               [/*(set EAX, EDX, EFLAGS, (X86umul_flag EAX, GR32:$src))*/],
77               IIC_MUL32_REG>, Sched<[WriteIMul]>;
78// RAX,RDX = RAX*GR64
79let Defs = [RAX,RDX,EFLAGS], Uses = [RAX], neverHasSideEffects = 1 in
80def MUL64r : RI<0xF7, MRM4r, (outs), (ins GR64:$src),
81                "mul{q}\t$src",
82                [/*(set RAX, RDX, EFLAGS, (X86umul_flag RAX, GR64:$src))*/],
83                IIC_MUL64>, Sched<[WriteIMul]>;
84// AL,AH = AL*[mem8]
85let Defs = [AL,EFLAGS,AX], Uses = [AL] in
86def MUL8m  : I<0xF6, MRM4m, (outs), (ins i8mem :$src),
87               "mul{b}\t$src",
88               // FIXME: Used for 8-bit mul, ignore result upper 8 bits.
89               // This probably ought to be moved to a def : Pat<> if the
90               // syntax can be accepted.
91               [(set AL, (mul AL, (loadi8 addr:$src))),
92                (implicit EFLAGS)], IIC_MUL8>, SchedLoadReg<WriteIMulLd>;
93// AX,DX = AX*[mem16]
94let mayLoad = 1, neverHasSideEffects = 1 in {
95let Defs = [AX,DX,EFLAGS], Uses = [AX] in
96def MUL16m : I<0xF7, MRM4m, (outs), (ins i16mem:$src),
97               "mul{w}\t$src",
98               [], IIC_MUL16_MEM>, OpSize, SchedLoadReg<WriteIMulLd>;
99// EAX,EDX = EAX*[mem32]
100let Defs = [EAX,EDX,EFLAGS], Uses = [EAX] in
101def MUL32m : I<0xF7, MRM4m, (outs), (ins i32mem:$src),
102              "mul{l}\t$src",
103              [], IIC_MUL32_MEM>, SchedLoadReg<WriteIMulLd>;
104// RAX,RDX = RAX*[mem64]
105let Defs = [RAX,RDX,EFLAGS], Uses = [RAX] in
106def MUL64m : RI<0xF7, MRM4m, (outs), (ins i64mem:$src),
107                "mul{q}\t$src", [], IIC_MUL64>, SchedLoadReg<WriteIMulLd>;
108}
109
110let neverHasSideEffects = 1 in {
111// AL,AH = AL*GR8
112let Defs = [AL,EFLAGS,AX], Uses = [AL] in
113def IMUL8r  : I<0xF6, MRM5r, (outs),  (ins GR8:$src), "imul{b}\t$src", [],
114              IIC_IMUL8>, Sched<[WriteIMul]>;
115// AX,DX = AX*GR16
116let Defs = [AX,DX,EFLAGS], Uses = [AX] in
117def IMUL16r : I<0xF7, MRM5r, (outs),  (ins GR16:$src), "imul{w}\t$src", [],
118              IIC_IMUL16_RR>, OpSize, Sched<[WriteIMul]>;
119// EAX,EDX = EAX*GR32
120let Defs = [EAX,EDX,EFLAGS], Uses = [EAX] in
121def IMUL32r : I<0xF7, MRM5r, (outs),  (ins GR32:$src), "imul{l}\t$src", [],
122              IIC_IMUL32_RR>, Sched<[WriteIMul]>;
123// RAX,RDX = RAX*GR64
124let Defs = [RAX,RDX,EFLAGS], Uses = [RAX] in
125def IMUL64r : RI<0xF7, MRM5r, (outs), (ins GR64:$src), "imul{q}\t$src", [],
126              IIC_IMUL64_RR>, Sched<[WriteIMul]>;
127
128let mayLoad = 1 in {
129// AL,AH = AL*[mem8]
130let Defs = [AL,EFLAGS,AX], Uses = [AL] in
131def IMUL8m  : I<0xF6, MRM5m, (outs), (ins i8mem :$src),
132                "imul{b}\t$src", [], IIC_IMUL8>, SchedLoadReg<WriteIMulLd>;
133// AX,DX = AX*[mem16]
134let Defs = [AX,DX,EFLAGS], Uses = [AX] in
135def IMUL16m : I<0xF7, MRM5m, (outs), (ins i16mem:$src),
136                "imul{w}\t$src", [], IIC_IMUL16_MEM>, OpSize,
137              SchedLoadReg<WriteIMulLd>;
138// EAX,EDX = EAX*[mem32]
139let Defs = [EAX,EDX,EFLAGS], Uses = [EAX] in
140def IMUL32m : I<0xF7, MRM5m, (outs), (ins i32mem:$src),
141                "imul{l}\t$src", [], IIC_IMUL32_MEM>, SchedLoadReg<WriteIMulLd>;
142// RAX,RDX = RAX*[mem64]
143let Defs = [RAX,RDX,EFLAGS], Uses = [RAX] in
144def IMUL64m : RI<0xF7, MRM5m, (outs), (ins i64mem:$src),
145                 "imul{q}\t$src", [], IIC_IMUL64>, SchedLoadReg<WriteIMulLd>;
146}
147} // neverHasSideEffects
148
149
150let Defs = [EFLAGS] in {
151let Constraints = "$src1 = $dst" in {
152
153let isCommutable = 1, SchedRW = [WriteIMul] in {
154// X = IMUL Y, Z --> X = IMUL Z, Y
155// Register-Register Signed Integer Multiply
156def IMUL16rr : I<0xAF, MRMSrcReg, (outs GR16:$dst), (ins GR16:$src1,GR16:$src2),
157                 "imul{w}\t{$src2, $dst|$dst, $src2}",
158                 [(set GR16:$dst, EFLAGS,
159                       (X86smul_flag GR16:$src1, GR16:$src2))], IIC_IMUL16_RR>,
160                       TB, OpSize;
161def IMUL32rr : I<0xAF, MRMSrcReg, (outs GR32:$dst), (ins GR32:$src1,GR32:$src2),
162                 "imul{l}\t{$src2, $dst|$dst, $src2}",
163                 [(set GR32:$dst, EFLAGS,
164                       (X86smul_flag GR32:$src1, GR32:$src2))], IIC_IMUL32_RR>,
165                 TB;
166def IMUL64rr : RI<0xAF, MRMSrcReg, (outs GR64:$dst),
167                                   (ins GR64:$src1, GR64:$src2),
168                  "imul{q}\t{$src2, $dst|$dst, $src2}",
169                  [(set GR64:$dst, EFLAGS,
170                        (X86smul_flag GR64:$src1, GR64:$src2))], IIC_IMUL64_RR>,
171                 TB;
172} // isCommutable, SchedRW
173
174// Register-Memory Signed Integer Multiply
175let SchedRW = [WriteIMulLd, ReadAfterLd] in {
176def IMUL16rm : I<0xAF, MRMSrcMem, (outs GR16:$dst),
177                                  (ins GR16:$src1, i16mem:$src2),
178                 "imul{w}\t{$src2, $dst|$dst, $src2}",
179                 [(set GR16:$dst, EFLAGS,
180                       (X86smul_flag GR16:$src1, (load addr:$src2)))],
181                       IIC_IMUL16_RM>,
182               TB, OpSize;
183def IMUL32rm : I<0xAF, MRMSrcMem, (outs GR32:$dst),
184                 (ins GR32:$src1, i32mem:$src2),
185                 "imul{l}\t{$src2, $dst|$dst, $src2}",
186                 [(set GR32:$dst, EFLAGS,
187                       (X86smul_flag GR32:$src1, (load addr:$src2)))],
188                       IIC_IMUL32_RM>,
189               TB;
190def IMUL64rm : RI<0xAF, MRMSrcMem, (outs GR64:$dst),
191                                   (ins GR64:$src1, i64mem:$src2),
192                  "imul{q}\t{$src2, $dst|$dst, $src2}",
193                  [(set GR64:$dst, EFLAGS,
194                        (X86smul_flag GR64:$src1, (load addr:$src2)))],
195                        IIC_IMUL64_RM>,
196               TB;
197} // SchedRW
198} // Constraints = "$src1 = $dst"
199
200} // Defs = [EFLAGS]
201
202// Surprisingly enough, these are not two address instructions!
203let Defs = [EFLAGS] in {
204let SchedRW = [WriteIMul] in {
205// Register-Integer Signed Integer Multiply
206def IMUL16rri  : Ii16<0x69, MRMSrcReg,                      // GR16 = GR16*I16
207                      (outs GR16:$dst), (ins GR16:$src1, i16imm:$src2),
208                      "imul{w}\t{$src2, $src1, $dst|$dst, $src1, $src2}",
209                      [(set GR16:$dst, EFLAGS,
210                            (X86smul_flag GR16:$src1, imm:$src2))],
211                            IIC_IMUL16_RRI>, OpSize;
212def IMUL16rri8 : Ii8<0x6B, MRMSrcReg,                       // GR16 = GR16*I8
213                     (outs GR16:$dst), (ins GR16:$src1, i16i8imm:$src2),
214                     "imul{w}\t{$src2, $src1, $dst|$dst, $src1, $src2}",
215                     [(set GR16:$dst, EFLAGS,
216                           (X86smul_flag GR16:$src1, i16immSExt8:$src2))],
217                           IIC_IMUL16_RRI>,
218                 OpSize;
219def IMUL32rri  : Ii32<0x69, MRMSrcReg,                      // GR32 = GR32*I32
220                      (outs GR32:$dst), (ins GR32:$src1, i32imm:$src2),
221                      "imul{l}\t{$src2, $src1, $dst|$dst, $src1, $src2}",
222                      [(set GR32:$dst, EFLAGS,
223                            (X86smul_flag GR32:$src1, imm:$src2))],
224                            IIC_IMUL32_RRI>;
225def IMUL32rri8 : Ii8<0x6B, MRMSrcReg,                       // GR32 = GR32*I8
226                     (outs GR32:$dst), (ins GR32:$src1, i32i8imm:$src2),
227                     "imul{l}\t{$src2, $src1, $dst|$dst, $src1, $src2}",
228                     [(set GR32:$dst, EFLAGS,
229                           (X86smul_flag GR32:$src1, i32immSExt8:$src2))],
230                           IIC_IMUL32_RRI>;
231def IMUL64rri32 : RIi32<0x69, MRMSrcReg,                    // GR64 = GR64*I32
232                        (outs GR64:$dst), (ins GR64:$src1, i64i32imm:$src2),
233                        "imul{q}\t{$src2, $src1, $dst|$dst, $src1, $src2}",
234                       [(set GR64:$dst, EFLAGS,
235                             (X86smul_flag GR64:$src1, i64immSExt32:$src2))],
236                             IIC_IMUL64_RRI>;
237def IMUL64rri8 : RIi8<0x6B, MRMSrcReg,                      // GR64 = GR64*I8
238                      (outs GR64:$dst), (ins GR64:$src1, i64i8imm:$src2),
239                      "imul{q}\t{$src2, $src1, $dst|$dst, $src1, $src2}",
240                      [(set GR64:$dst, EFLAGS,
241                            (X86smul_flag GR64:$src1, i64immSExt8:$src2))],
242                            IIC_IMUL64_RRI>;
243} // SchedRW
244
245// Memory-Integer Signed Integer Multiply
246let SchedRW = [WriteIMulLd] in {
247def IMUL16rmi  : Ii16<0x69, MRMSrcMem,                     // GR16 = [mem16]*I16
248                      (outs GR16:$dst), (ins i16mem:$src1, i16imm:$src2),
249                      "imul{w}\t{$src2, $src1, $dst|$dst, $src1, $src2}",
250                      [(set GR16:$dst, EFLAGS,
251                            (X86smul_flag (load addr:$src1), imm:$src2))],
252                            IIC_IMUL16_RMI>,
253                 OpSize;
254def IMUL16rmi8 : Ii8<0x6B, MRMSrcMem,                       // GR16 = [mem16]*I8
255                     (outs GR16:$dst), (ins i16mem:$src1, i16i8imm :$src2),
256                     "imul{w}\t{$src2, $src1, $dst|$dst, $src1, $src2}",
257                     [(set GR16:$dst, EFLAGS,
258                           (X86smul_flag (load addr:$src1),
259                                         i16immSExt8:$src2))], IIC_IMUL16_RMI>,
260                                         OpSize;
261def IMUL32rmi  : Ii32<0x69, MRMSrcMem,                     // GR32 = [mem32]*I32
262                      (outs GR32:$dst), (ins i32mem:$src1, i32imm:$src2),
263                      "imul{l}\t{$src2, $src1, $dst|$dst, $src1, $src2}",
264                      [(set GR32:$dst, EFLAGS,
265                            (X86smul_flag (load addr:$src1), imm:$src2))],
266                            IIC_IMUL32_RMI>;
267def IMUL32rmi8 : Ii8<0x6B, MRMSrcMem,                       // GR32 = [mem32]*I8
268                     (outs GR32:$dst), (ins i32mem:$src1, i32i8imm: $src2),
269                     "imul{l}\t{$src2, $src1, $dst|$dst, $src1, $src2}",
270                     [(set GR32:$dst, EFLAGS,
271                           (X86smul_flag (load addr:$src1),
272                                         i32immSExt8:$src2))],
273                                         IIC_IMUL32_RMI>;
274def IMUL64rmi32 : RIi32<0x69, MRMSrcMem,                   // GR64 = [mem64]*I32
275                        (outs GR64:$dst), (ins i64mem:$src1, i64i32imm:$src2),
276                        "imul{q}\t{$src2, $src1, $dst|$dst, $src1, $src2}",
277                        [(set GR64:$dst, EFLAGS,
278                              (X86smul_flag (load addr:$src1),
279                                            i64immSExt32:$src2))],
280                                            IIC_IMUL64_RMI>;
281def IMUL64rmi8 : RIi8<0x6B, MRMSrcMem,                      // GR64 = [mem64]*I8
282                      (outs GR64:$dst), (ins i64mem:$src1, i64i8imm: $src2),
283                      "imul{q}\t{$src2, $src1, $dst|$dst, $src1, $src2}",
284                      [(set GR64:$dst, EFLAGS,
285                            (X86smul_flag (load addr:$src1),
286                                          i64immSExt8:$src2))],
287                                          IIC_IMUL64_RMI>;
288} // SchedRW
289} // Defs = [EFLAGS]
290
291
292
293
294// unsigned division/remainder
295let hasSideEffects = 1 in { // so that we don't speculatively execute
296let SchedRW = [WriteIDiv] in {
297let Defs = [AL,AH,EFLAGS], Uses = [AX] in
298def DIV8r  : I<0xF6, MRM6r, (outs),  (ins GR8:$src),    // AX/r8 = AL,AH
299               "div{b}\t$src", [], IIC_DIV8_REG>;
300let Defs = [AX,DX,EFLAGS], Uses = [AX,DX] in
301def DIV16r : I<0xF7, MRM6r, (outs),  (ins GR16:$src),   // DX:AX/r16 = AX,DX
302               "div{w}\t$src", [], IIC_DIV16>, OpSize;
303let Defs = [EAX,EDX,EFLAGS], Uses = [EAX,EDX] in
304def DIV32r : I<0xF7, MRM6r, (outs),  (ins GR32:$src),   // EDX:EAX/r32 = EAX,EDX
305               "div{l}\t$src", [], IIC_DIV32>;
306// RDX:RAX/r64 = RAX,RDX
307let Defs = [RAX,RDX,EFLAGS], Uses = [RAX,RDX] in
308def DIV64r : RI<0xF7, MRM6r, (outs), (ins GR64:$src),
309                "div{q}\t$src", [], IIC_DIV64>;
310} // SchedRW
311
312let mayLoad = 1 in {
313let Defs = [AL,AH,EFLAGS], Uses = [AX] in
314def DIV8m  : I<0xF6, MRM6m, (outs), (ins i8mem:$src),   // AX/[mem8] = AL,AH
315               "div{b}\t$src", [], IIC_DIV8_MEM>,
316             SchedLoadReg<WriteIDivLd>;
317let Defs = [AX,DX,EFLAGS], Uses = [AX,DX] in
318def DIV16m : I<0xF7, MRM6m, (outs), (ins i16mem:$src),  // DX:AX/[mem16] = AX,DX
319               "div{w}\t$src", [], IIC_DIV16>, OpSize,
320             SchedLoadReg<WriteIDivLd>;
321let Defs = [EAX,EDX,EFLAGS], Uses = [EAX,EDX] in    // EDX:EAX/[mem32] = EAX,EDX
322def DIV32m : I<0xF7, MRM6m, (outs), (ins i32mem:$src),
323               "div{l}\t$src", [], IIC_DIV32>,
324             SchedLoadReg<WriteIDivLd>;
325// RDX:RAX/[mem64] = RAX,RDX
326let Defs = [RAX,RDX,EFLAGS], Uses = [RAX,RDX] in
327def DIV64m : RI<0xF7, MRM6m, (outs), (ins i64mem:$src),
328                "div{q}\t$src", [], IIC_DIV64>,
329             SchedLoadReg<WriteIDivLd>;
330}
331
332// Signed division/remainder.
333let SchedRW = [WriteIDiv] in {
334let Defs = [AL,AH,EFLAGS], Uses = [AX] in
335def IDIV8r : I<0xF6, MRM7r, (outs),  (ins GR8:$src),    // AX/r8 = AL,AH
336               "idiv{b}\t$src", [], IIC_IDIV8>;
337let Defs = [AX,DX,EFLAGS], Uses = [AX,DX] in
338def IDIV16r: I<0xF7, MRM7r, (outs),  (ins GR16:$src),   // DX:AX/r16 = AX,DX
339               "idiv{w}\t$src", [], IIC_IDIV16>, OpSize;
340let Defs = [EAX,EDX,EFLAGS], Uses = [EAX,EDX] in
341def IDIV32r: I<0xF7, MRM7r, (outs),  (ins GR32:$src),   // EDX:EAX/r32 = EAX,EDX
342               "idiv{l}\t$src", [], IIC_IDIV32>;
343// RDX:RAX/r64 = RAX,RDX
344let Defs = [RAX,RDX,EFLAGS], Uses = [RAX,RDX] in
345def IDIV64r: RI<0xF7, MRM7r, (outs), (ins GR64:$src),
346                "idiv{q}\t$src", [], IIC_IDIV64>;
347} // SchedRW
348
349let mayLoad = 1 in {
350let Defs = [AL,AH,EFLAGS], Uses = [AX] in
351def IDIV8m : I<0xF6, MRM7m, (outs), (ins i8mem:$src),   // AX/[mem8] = AL,AH
352               "idiv{b}\t$src", [], IIC_IDIV8>,
353             SchedLoadReg<WriteIDivLd>;
354let Defs = [AX,DX,EFLAGS], Uses = [AX,DX] in
355def IDIV16m: I<0xF7, MRM7m, (outs), (ins i16mem:$src),  // DX:AX/[mem16] = AX,DX
356               "idiv{w}\t$src", [], IIC_IDIV16>, OpSize,
357             SchedLoadReg<WriteIDivLd>;
358let Defs = [EAX,EDX,EFLAGS], Uses = [EAX,EDX] in    // EDX:EAX/[mem32] = EAX,EDX
359def IDIV32m: I<0xF7, MRM7m, (outs), (ins i32mem:$src),
360               "idiv{l}\t$src", [], IIC_IDIV32>,
361             SchedLoadReg<WriteIDivLd>;
362let Defs = [RAX,RDX,EFLAGS], Uses = [RAX,RDX] in // RDX:RAX/[mem64] = RAX,RDX
363def IDIV64m: RI<0xF7, MRM7m, (outs), (ins i64mem:$src),
364                "idiv{q}\t$src", [], IIC_IDIV64>,
365             SchedLoadReg<WriteIDivLd>;
366}
367} // hasSideEffects = 0
368
369//===----------------------------------------------------------------------===//
370//  Two address Instructions.
371//
372
373// unary instructions
374let CodeSize = 2 in {
375let Defs = [EFLAGS] in {
376let Constraints = "$src1 = $dst", SchedRW = [WriteALU] in {
377def NEG8r  : I<0xF6, MRM3r, (outs GR8 :$dst), (ins GR8 :$src1),
378               "neg{b}\t$dst",
379               [(set GR8:$dst, (ineg GR8:$src1)),
380                (implicit EFLAGS)], IIC_UNARY_REG>;
381def NEG16r : I<0xF7, MRM3r, (outs GR16:$dst), (ins GR16:$src1),
382               "neg{w}\t$dst",
383               [(set GR16:$dst, (ineg GR16:$src1)),
384                (implicit EFLAGS)], IIC_UNARY_REG>, OpSize;
385def NEG32r : I<0xF7, MRM3r, (outs GR32:$dst), (ins GR32:$src1),
386               "neg{l}\t$dst",
387               [(set GR32:$dst, (ineg GR32:$src1)),
388                (implicit EFLAGS)], IIC_UNARY_REG>;
389def NEG64r : RI<0xF7, MRM3r, (outs GR64:$dst), (ins GR64:$src1), "neg{q}\t$dst",
390                [(set GR64:$dst, (ineg GR64:$src1)),
391                 (implicit EFLAGS)], IIC_UNARY_REG>;
392} // Constraints = "$src1 = $dst", SchedRW
393
394// Read-modify-write negate.
395let SchedRW = [WriteALULd, WriteRMW] in {
396def NEG8m  : I<0xF6, MRM3m, (outs), (ins i8mem :$dst),
397               "neg{b}\t$dst",
398               [(store (ineg (loadi8 addr:$dst)), addr:$dst),
399                (implicit EFLAGS)], IIC_UNARY_MEM>;
400def NEG16m : I<0xF7, MRM3m, (outs), (ins i16mem:$dst),
401               "neg{w}\t$dst",
402               [(store (ineg (loadi16 addr:$dst)), addr:$dst),
403                (implicit EFLAGS)], IIC_UNARY_MEM>, OpSize;
404def NEG32m : I<0xF7, MRM3m, (outs), (ins i32mem:$dst),
405               "neg{l}\t$dst",
406               [(store (ineg (loadi32 addr:$dst)), addr:$dst),
407                (implicit EFLAGS)], IIC_UNARY_MEM>;
408def NEG64m : RI<0xF7, MRM3m, (outs), (ins i64mem:$dst), "neg{q}\t$dst",
409                [(store (ineg (loadi64 addr:$dst)), addr:$dst),
410                 (implicit EFLAGS)], IIC_UNARY_MEM>;
411} // SchedRW
412} // Defs = [EFLAGS]
413
414
415// Note: NOT does not set EFLAGS!
416
417let Constraints = "$src1 = $dst", SchedRW = [WriteALU] in {
418// Match xor -1 to not. Favors these over a move imm + xor to save code size.
419let AddedComplexity = 15 in {
420def NOT8r  : I<0xF6, MRM2r, (outs GR8 :$dst), (ins GR8 :$src1),
421               "not{b}\t$dst",
422               [(set GR8:$dst, (not GR8:$src1))], IIC_UNARY_REG>;
423def NOT16r : I<0xF7, MRM2r, (outs GR16:$dst), (ins GR16:$src1),
424               "not{w}\t$dst",
425               [(set GR16:$dst, (not GR16:$src1))], IIC_UNARY_REG>, OpSize;
426def NOT32r : I<0xF7, MRM2r, (outs GR32:$dst), (ins GR32:$src1),
427               "not{l}\t$dst",
428               [(set GR32:$dst, (not GR32:$src1))], IIC_UNARY_REG>;
429def NOT64r : RI<0xF7, MRM2r, (outs GR64:$dst), (ins GR64:$src1), "not{q}\t$dst",
430                [(set GR64:$dst, (not GR64:$src1))], IIC_UNARY_REG>;
431}
432} // Constraints = "$src1 = $dst", SchedRW
433
434let SchedRW = [WriteALULd, WriteRMW] in {
435def NOT8m  : I<0xF6, MRM2m, (outs), (ins i8mem :$dst),
436               "not{b}\t$dst",
437               [(store (not (loadi8 addr:$dst)), addr:$dst)], IIC_UNARY_MEM>;
438def NOT16m : I<0xF7, MRM2m, (outs), (ins i16mem:$dst),
439               "not{w}\t$dst",
440               [(store (not (loadi16 addr:$dst)), addr:$dst)], IIC_UNARY_MEM>,
441               OpSize;
442def NOT32m : I<0xF7, MRM2m, (outs), (ins i32mem:$dst),
443               "not{l}\t$dst",
444               [(store (not (loadi32 addr:$dst)), addr:$dst)], IIC_UNARY_MEM>;
445def NOT64m : RI<0xF7, MRM2m, (outs), (ins i64mem:$dst), "not{q}\t$dst",
446                [(store (not (loadi64 addr:$dst)), addr:$dst)], IIC_UNARY_MEM>;
447} // SchedRW
448} // CodeSize
449
450// TODO: inc/dec is slow for P4, but fast for Pentium-M.
451let Defs = [EFLAGS] in {
452let Constraints = "$src1 = $dst", SchedRW = [WriteALU] in {
453let CodeSize = 2 in
454def INC8r  : I<0xFE, MRM0r, (outs GR8 :$dst), (ins GR8 :$src1),
455               "inc{b}\t$dst",
456               [(set GR8:$dst, EFLAGS, (X86inc_flag GR8:$src1))],
457               IIC_UNARY_REG>;
458
459let isConvertibleToThreeAddress = 1, CodeSize = 1 in {  // Can xform into LEA.
460def INC16r : I<0x40, AddRegFrm, (outs GR16:$dst), (ins GR16:$src1),
461               "inc{w}\t$dst",
462               [(set GR16:$dst, EFLAGS, (X86inc_flag GR16:$src1))], IIC_UNARY_REG>,
463             OpSize, Requires<[In32BitMode]>;
464def INC32r : I<0x40, AddRegFrm, (outs GR32:$dst), (ins GR32:$src1),
465               "inc{l}\t$dst",
466               [(set GR32:$dst, EFLAGS, (X86inc_flag GR32:$src1))],
467               IIC_UNARY_REG>,
468             Requires<[In32BitMode]>;
469def INC64r : RI<0xFF, MRM0r, (outs GR64:$dst), (ins GR64:$src1), "inc{q}\t$dst",
470                [(set GR64:$dst, EFLAGS, (X86inc_flag GR64:$src1))],
471                IIC_UNARY_REG>;
472} // isConvertibleToThreeAddress = 1, CodeSize = 1
473
474
475// In 64-bit mode, single byte INC and DEC cannot be encoded.
476let isConvertibleToThreeAddress = 1, CodeSize = 2 in {
477// Can transform into LEA.
478def INC64_16r : I<0xFF, MRM0r, (outs GR16:$dst), (ins GR16:$src1),
479                  "inc{w}\t$dst",
480                  [(set GR16:$dst, EFLAGS, (X86inc_flag GR16:$src1))],
481                  IIC_UNARY_REG>,
482                OpSize, Requires<[In64BitMode]>;
483def INC64_32r : I<0xFF, MRM0r, (outs GR32:$dst), (ins GR32:$src1),
484                  "inc{l}\t$dst",
485                  [(set GR32:$dst, EFLAGS, (X86inc_flag GR32:$src1))],
486                  IIC_UNARY_REG>,
487                Requires<[In64BitMode]>;
488def DEC64_16r : I<0xFF, MRM1r, (outs GR16:$dst), (ins GR16:$src1),
489                  "dec{w}\t$dst",
490                  [(set GR16:$dst, EFLAGS, (X86dec_flag GR16:$src1))],
491                  IIC_UNARY_REG>,
492                OpSize, Requires<[In64BitMode]>;
493def DEC64_32r : I<0xFF, MRM1r, (outs GR32:$dst), (ins GR32:$src1),
494                  "dec{l}\t$dst",
495                  [(set GR32:$dst, EFLAGS, (X86dec_flag GR32:$src1))],
496                  IIC_UNARY_REG>,
497                Requires<[In64BitMode]>;
498} // isConvertibleToThreeAddress = 1, CodeSize = 2
499
500let isCodeGenOnly = 1, CodeSize = 2 in {
501def INC32_16r : I<0xFF, MRM0r, (outs GR16:$dst), (ins GR16:$src1),
502                  "inc{w}\t$dst", [], IIC_UNARY_REG>,
503                OpSize, Requires<[In32BitMode]>;
504def INC32_32r : I<0xFF, MRM0r, (outs GR32:$dst), (ins GR32:$src1),
505                  "inc{l}\t$dst", [], IIC_UNARY_REG>,
506                Requires<[In32BitMode]>;
507def DEC32_16r : I<0xFF, MRM1r, (outs GR16:$dst), (ins GR16:$src1),
508                  "dec{w}\t$dst", [], IIC_UNARY_REG>,
509                OpSize, Requires<[In32BitMode]>;
510def DEC32_32r : I<0xFF, MRM1r, (outs GR32:$dst), (ins GR32:$src1),
511                  "dec{l}\t$dst", [], IIC_UNARY_REG>,
512                Requires<[In32BitMode]>;
513} // isCodeGenOnly = 1, CodeSize = 2
514
515} // Constraints = "$src1 = $dst", SchedRW
516
517let CodeSize = 2, SchedRW = [WriteALULd, WriteRMW] in {
518  def INC8m  : I<0xFE, MRM0m, (outs), (ins i8mem :$dst), "inc{b}\t$dst",
519               [(store (add (loadi8 addr:$dst), 1), addr:$dst),
520                (implicit EFLAGS)], IIC_UNARY_MEM>;
521  def INC16m : I<0xFF, MRM0m, (outs), (ins i16mem:$dst), "inc{w}\t$dst",
522               [(store (add (loadi16 addr:$dst), 1), addr:$dst),
523                (implicit EFLAGS)], IIC_UNARY_MEM>,
524               OpSize, Requires<[In32BitMode]>;
525  def INC32m : I<0xFF, MRM0m, (outs), (ins i32mem:$dst), "inc{l}\t$dst",
526               [(store (add (loadi32 addr:$dst), 1), addr:$dst),
527                (implicit EFLAGS)], IIC_UNARY_MEM>,
528               Requires<[In32BitMode]>;
529  def INC64m : RI<0xFF, MRM0m, (outs), (ins i64mem:$dst), "inc{q}\t$dst",
530                  [(store (add (loadi64 addr:$dst), 1), addr:$dst),
531                   (implicit EFLAGS)], IIC_UNARY_MEM>;
532
533// These are duplicates of their 32-bit counterparts. Only needed so X86 knows
534// how to unfold them.
535// FIXME: What is this for??
536def INC64_16m : I<0xFF, MRM0m, (outs), (ins i16mem:$dst), "inc{w}\t$dst",
537                  [(store (add (loadi16 addr:$dst), 1), addr:$dst),
538                    (implicit EFLAGS)], IIC_UNARY_MEM>,
539                OpSize, Requires<[In64BitMode]>;
540def INC64_32m : I<0xFF, MRM0m, (outs), (ins i32mem:$dst), "inc{l}\t$dst",
541                  [(store (add (loadi32 addr:$dst), 1), addr:$dst),
542                    (implicit EFLAGS)], IIC_UNARY_MEM>,
543                Requires<[In64BitMode]>;
544def DEC64_16m : I<0xFF, MRM1m, (outs), (ins i16mem:$dst), "dec{w}\t$dst",
545                  [(store (add (loadi16 addr:$dst), -1), addr:$dst),
546                    (implicit EFLAGS)], IIC_UNARY_MEM>,
547                OpSize, Requires<[In64BitMode]>;
548def DEC64_32m : I<0xFF, MRM1m, (outs), (ins i32mem:$dst), "dec{l}\t$dst",
549                  [(store (add (loadi32 addr:$dst), -1), addr:$dst),
550                    (implicit EFLAGS)], IIC_UNARY_MEM>,
551                Requires<[In64BitMode]>;
552} // CodeSize = 2, SchedRW
553
554let Constraints = "$src1 = $dst", SchedRW = [WriteALU] in {
555let CodeSize = 2 in
556def DEC8r  : I<0xFE, MRM1r, (outs GR8 :$dst), (ins GR8 :$src1),
557               "dec{b}\t$dst",
558               [(set GR8:$dst, EFLAGS, (X86dec_flag GR8:$src1))],
559               IIC_UNARY_REG>;
560let isConvertibleToThreeAddress = 1, CodeSize = 1 in {   // Can xform into LEA.
561def DEC16r : I<0x48, AddRegFrm, (outs GR16:$dst), (ins GR16:$src1),
562               "dec{w}\t$dst",
563               [(set GR16:$dst, EFLAGS, (X86dec_flag GR16:$src1))],
564               IIC_UNARY_REG>,
565             OpSize, Requires<[In32BitMode]>;
566def DEC32r : I<0x48, AddRegFrm, (outs GR32:$dst), (ins GR32:$src1),
567               "dec{l}\t$dst",
568               [(set GR32:$dst, EFLAGS, (X86dec_flag GR32:$src1))],
569               IIC_UNARY_REG>,
570             Requires<[In32BitMode]>;
571def DEC64r : RI<0xFF, MRM1r, (outs GR64:$dst), (ins GR64:$src1), "dec{q}\t$dst",
572                [(set GR64:$dst, EFLAGS, (X86dec_flag GR64:$src1))],
573                IIC_UNARY_REG>;
574} // CodeSize = 2
575} // Constraints = "$src1 = $dst", SchedRW
576
577
578let CodeSize = 2, SchedRW = [WriteALULd, WriteRMW] in {
579  def DEC8m  : I<0xFE, MRM1m, (outs), (ins i8mem :$dst), "dec{b}\t$dst",
580               [(store (add (loadi8 addr:$dst), -1), addr:$dst),
581                (implicit EFLAGS)], IIC_UNARY_MEM>;
582  def DEC16m : I<0xFF, MRM1m, (outs), (ins i16mem:$dst), "dec{w}\t$dst",
583               [(store (add (loadi16 addr:$dst), -1), addr:$dst),
584                (implicit EFLAGS)], IIC_UNARY_MEM>,
585               OpSize, Requires<[In32BitMode]>;
586  def DEC32m : I<0xFF, MRM1m, (outs), (ins i32mem:$dst), "dec{l}\t$dst",
587               [(store (add (loadi32 addr:$dst), -1), addr:$dst),
588                (implicit EFLAGS)], IIC_UNARY_MEM>,
589               Requires<[In32BitMode]>;
590  def DEC64m : RI<0xFF, MRM1m, (outs), (ins i64mem:$dst), "dec{q}\t$dst",
591                  [(store (add (loadi64 addr:$dst), -1), addr:$dst),
592                   (implicit EFLAGS)], IIC_UNARY_MEM>;
593} // CodeSize = 2, SchedRW
594} // Defs = [EFLAGS]
595
596/// X86TypeInfo - This is a bunch of information that describes relevant X86
597/// information about value types.  For example, it can tell you what the
598/// register class and preferred load to use.
599class X86TypeInfo<ValueType vt, string instrsuffix, RegisterClass regclass,
600                  PatFrag loadnode, X86MemOperand memoperand, ImmType immkind,
601                  Operand immoperand, SDPatternOperator immoperator,
602                  Operand imm8operand, SDPatternOperator imm8operator,
603                  bit hasOddOpcode, bit hasOpSizePrefix, bit hasREX_WPrefix> {
604  /// VT - This is the value type itself.
605  ValueType VT = vt;
606
607  /// InstrSuffix - This is the suffix used on instructions with this type.  For
608  /// example, i8 -> "b", i16 -> "w", i32 -> "l", i64 -> "q".
609  string InstrSuffix = instrsuffix;
610
611  /// RegClass - This is the register class associated with this type.  For
612  /// example, i8 -> GR8, i16 -> GR16, i32 -> GR32, i64 -> GR64.
613  RegisterClass RegClass = regclass;
614
615  /// LoadNode - This is the load node associated with this type.  For
616  /// example, i8 -> loadi8, i16 -> loadi16, i32 -> loadi32, i64 -> loadi64.
617  PatFrag LoadNode = loadnode;
618
619  /// MemOperand - This is the memory operand associated with this type.  For
620  /// example, i8 -> i8mem, i16 -> i16mem, i32 -> i32mem, i64 -> i64mem.
621  X86MemOperand MemOperand = memoperand;
622
623  /// ImmEncoding - This is the encoding of an immediate of this type.  For
624  /// example, i8 -> Imm8, i16 -> Imm16, i32 -> Imm32.  Note that i64 -> Imm32
625  /// since the immediate fields of i64 instructions is a 32-bit sign extended
626  /// value.
627  ImmType ImmEncoding = immkind;
628
629  /// ImmOperand - This is the operand kind of an immediate of this type.  For
630  /// example, i8 -> i8imm, i16 -> i16imm, i32 -> i32imm.  Note that i64 ->
631  /// i64i32imm since the immediate fields of i64 instructions is a 32-bit sign
632  /// extended value.
633  Operand ImmOperand = immoperand;
634
635  /// ImmOperator - This is the operator that should be used to match an
636  /// immediate of this kind in a pattern (e.g. imm, or i64immSExt32).
637  SDPatternOperator ImmOperator = immoperator;
638
639  /// Imm8Operand - This is the operand kind to use for an imm8 of this type.
640  /// For example, i8 -> <invalid>, i16 -> i16i8imm, i32 -> i32i8imm.  This is
641  /// only used for instructions that have a sign-extended imm8 field form.
642  Operand Imm8Operand = imm8operand;
643
644  /// Imm8Operator - This is the operator that should be used to match an 8-bit
645  /// sign extended immediate of this kind in a pattern (e.g. imm16immSExt8).
646  SDPatternOperator Imm8Operator = imm8operator;
647
648  /// HasOddOpcode - This bit is true if the instruction should have an odd (as
649  /// opposed to even) opcode.  Operations on i8 are usually even, operations on
650  /// other datatypes are odd.
651  bit HasOddOpcode = hasOddOpcode;
652
653  /// HasOpSizePrefix - This bit is set to true if the instruction should have
654  /// the 0x66 operand size prefix.  This is set for i16 types.
655  bit HasOpSizePrefix = hasOpSizePrefix;
656
657  /// HasREX_WPrefix - This bit is set to true if the instruction should have
658  /// the 0x40 REX prefix.  This is set for i64 types.
659  bit HasREX_WPrefix = hasREX_WPrefix;
660}
661
662def invalid_node : SDNode<"<<invalid_node>>", SDTIntLeaf,[],"<<invalid_node>>">;
663
664
665def Xi8  : X86TypeInfo<i8 , "b", GR8 , loadi8 , i8mem ,
666                       Imm8 , i8imm ,    imm,          i8imm   , invalid_node,
667                       0, 0, 0>;
668def Xi16 : X86TypeInfo<i16, "w", GR16, loadi16, i16mem,
669                       Imm16, i16imm,    imm,          i16i8imm, i16immSExt8,
670                       1, 1, 0>;
671def Xi32 : X86TypeInfo<i32, "l", GR32, loadi32, i32mem,
672                       Imm32, i32imm,    imm,          i32i8imm, i32immSExt8,
673                       1, 0, 0>;
674def Xi64 : X86TypeInfo<i64, "q", GR64, loadi64, i64mem,
675                       Imm32, i64i32imm, i64immSExt32, i64i8imm, i64immSExt8,
676                       1, 0, 1>;
677
678/// ITy - This instruction base class takes the type info for the instruction.
679/// Using this, it:
680/// 1. Concatenates together the instruction mnemonic with the appropriate
681///    suffix letter, a tab, and the arguments.
682/// 2. Infers whether the instruction should have a 0x66 prefix byte.
683/// 3. Infers whether the instruction should have a 0x40 REX_W prefix.
684/// 4. Infers whether the low bit of the opcode should be 0 (for i8 operations)
685///    or 1 (for i16,i32,i64 operations).
686class ITy<bits<8> opcode, Format f, X86TypeInfo typeinfo, dag outs, dag ins,
687          string mnemonic, string args, list<dag> pattern,
688          InstrItinClass itin = IIC_BIN_NONMEM>
689  : I<{opcode{7}, opcode{6}, opcode{5}, opcode{4},
690       opcode{3}, opcode{2}, opcode{1}, typeinfo.HasOddOpcode },
691      f, outs, ins,
692      !strconcat(mnemonic, "{", typeinfo.InstrSuffix, "}\t", args), pattern,
693      itin> {
694
695  // Infer instruction prefixes from type info.
696  let hasOpSizePrefix = typeinfo.HasOpSizePrefix;
697  let hasREX_WPrefix  = typeinfo.HasREX_WPrefix;
698}
699
700// BinOpRR - Instructions like "add reg, reg, reg".
701class BinOpRR<bits<8> opcode, string mnemonic, X86TypeInfo typeinfo,
702              dag outlist, list<dag> pattern, InstrItinClass itin,
703              Format f = MRMDestReg>
704  : ITy<opcode, f, typeinfo, outlist,
705        (ins typeinfo.RegClass:$src1, typeinfo.RegClass:$src2),
706        mnemonic, "{$src2, $src1|$src1, $src2}", pattern, itin>,
707    Sched<[WriteALU]>;
708
709// BinOpRR_R - Instructions like "add reg, reg, reg", where the pattern has
710// just a regclass (no eflags) as a result.
711class BinOpRR_R<bits<8> opcode, string mnemonic, X86TypeInfo typeinfo,
712                SDNode opnode>
713  : BinOpRR<opcode, mnemonic, typeinfo, (outs typeinfo.RegClass:$dst),
714            [(set typeinfo.RegClass:$dst,
715                  (opnode typeinfo.RegClass:$src1, typeinfo.RegClass:$src2))],
716                  IIC_BIN_NONMEM>;
717
718// BinOpRR_F - Instructions like "cmp reg, Reg", where the pattern has
719// just a EFLAGS as a result.
720class BinOpRR_F<bits<8> opcode, string mnemonic, X86TypeInfo typeinfo,
721                SDPatternOperator opnode, Format f = MRMDestReg>
722  : BinOpRR<opcode, mnemonic, typeinfo, (outs),
723            [(set EFLAGS,
724                  (opnode typeinfo.RegClass:$src1, typeinfo.RegClass:$src2))],
725            IIC_BIN_NONMEM, f>;
726
727// BinOpRR_RF - Instructions like "add reg, reg, reg", where the pattern has
728// both a regclass and EFLAGS as a result.
729class BinOpRR_RF<bits<8> opcode, string mnemonic, X86TypeInfo typeinfo,
730                 SDNode opnode>
731  : BinOpRR<opcode, mnemonic, typeinfo, (outs typeinfo.RegClass:$dst),
732            [(set typeinfo.RegClass:$dst, EFLAGS,
733                  (opnode typeinfo.RegClass:$src1, typeinfo.RegClass:$src2))],
734                  IIC_BIN_NONMEM>;
735
736// BinOpRR_RFF - Instructions like "adc reg, reg, reg", where the pattern has
737// both a regclass and EFLAGS as a result, and has EFLAGS as input.
738class BinOpRR_RFF<bits<8> opcode, string mnemonic, X86TypeInfo typeinfo,
739                  SDNode opnode>
740  : BinOpRR<opcode, mnemonic, typeinfo, (outs typeinfo.RegClass:$dst),
741            [(set typeinfo.RegClass:$dst, EFLAGS,
742                  (opnode typeinfo.RegClass:$src1, typeinfo.RegClass:$src2,
743                          EFLAGS))], IIC_BIN_CARRY_NONMEM>;
744
745// BinOpRR_Rev - Instructions like "add reg, reg, reg" (reversed encoding).
746class BinOpRR_Rev<bits<8> opcode, string mnemonic, X86TypeInfo typeinfo,
747                 InstrItinClass itin = IIC_BIN_NONMEM>
748  : ITy<opcode, MRMSrcReg, typeinfo,
749        (outs typeinfo.RegClass:$dst),
750        (ins typeinfo.RegClass:$src1, typeinfo.RegClass:$src2),
751        mnemonic, "{$src2, $dst|$dst, $src2}", [], itin>,
752    Sched<[WriteALU]> {
753  // The disassembler should know about this, but not the asmparser.
754  let isCodeGenOnly = 1;
755  let hasSideEffects = 0;
756}
757
758// BinOpRR_RDD_Rev - Instructions like "adc reg, reg, reg" (reversed encoding).
759class BinOpRR_RFF_Rev<bits<8> opcode, string mnemonic, X86TypeInfo typeinfo>
760  : BinOpRR_Rev<opcode, mnemonic, typeinfo, IIC_BIN_CARRY_NONMEM>;
761
762// BinOpRR_F_Rev - Instructions like "cmp reg, reg" (reversed encoding).
763class BinOpRR_F_Rev<bits<8> opcode, string mnemonic, X86TypeInfo typeinfo>
764  : ITy<opcode, MRMSrcReg, typeinfo, (outs),
765        (ins typeinfo.RegClass:$src1, typeinfo.RegClass:$src2),
766        mnemonic, "{$src2, $src1|$src1, $src2}", [], IIC_BIN_NONMEM>,
767    Sched<[WriteALU]> {
768  // The disassembler should know about this, but not the asmparser.
769  let isCodeGenOnly = 1;
770  let hasSideEffects = 0;
771}
772
773// BinOpRM - Instructions like "add reg, reg, [mem]".
774class BinOpRM<bits<8> opcode, string mnemonic, X86TypeInfo typeinfo,
775              dag outlist, list<dag> pattern,
776              InstrItinClass itin = IIC_BIN_MEM>
777  : ITy<opcode, MRMSrcMem, typeinfo, outlist,
778        (ins typeinfo.RegClass:$src1, typeinfo.MemOperand:$src2),
779        mnemonic, "{$src2, $src1|$src1, $src2}", pattern, itin>,
780    Sched<[WriteALULd, ReadAfterLd]>;
781
782// BinOpRM_R - Instructions like "add reg, reg, [mem]".
783class BinOpRM_R<bits<8> opcode, string mnemonic, X86TypeInfo typeinfo,
784              SDNode opnode>
785  : BinOpRM<opcode, mnemonic, typeinfo, (outs typeinfo.RegClass:$dst),
786            [(set typeinfo.RegClass:$dst,
787            (opnode typeinfo.RegClass:$src1, (typeinfo.LoadNode addr:$src2)))]>;
788
789// BinOpRM_F - Instructions like "cmp reg, [mem]".
790class BinOpRM_F<bits<8> opcode, string mnemonic, X86TypeInfo typeinfo,
791              SDPatternOperator opnode>
792  : BinOpRM<opcode, mnemonic, typeinfo, (outs),
793            [(set EFLAGS,
794            (opnode typeinfo.RegClass:$src1, (typeinfo.LoadNode addr:$src2)))]>;
795
796// BinOpRM_RF - Instructions like "add reg, reg, [mem]".
797class BinOpRM_RF<bits<8> opcode, string mnemonic, X86TypeInfo typeinfo,
798                 SDNode opnode>
799  : BinOpRM<opcode, mnemonic, typeinfo, (outs typeinfo.RegClass:$dst),
800            [(set typeinfo.RegClass:$dst, EFLAGS,
801            (opnode typeinfo.RegClass:$src1, (typeinfo.LoadNode addr:$src2)))]>;
802
803// BinOpRM_RFF - Instructions like "adc reg, reg, [mem]".
804class BinOpRM_RFF<bits<8> opcode, string mnemonic, X86TypeInfo typeinfo,
805                 SDNode opnode>
806  : BinOpRM<opcode, mnemonic, typeinfo, (outs typeinfo.RegClass:$dst),
807            [(set typeinfo.RegClass:$dst, EFLAGS,
808            (opnode typeinfo.RegClass:$src1, (typeinfo.LoadNode addr:$src2),
809                    EFLAGS))], IIC_BIN_CARRY_MEM>;
810
811// BinOpRI - Instructions like "add reg, reg, imm".
812class BinOpRI<bits<8> opcode, string mnemonic, X86TypeInfo typeinfo,
813              Format f, dag outlist, list<dag> pattern,
814              InstrItinClass itin = IIC_BIN_NONMEM>
815  : ITy<opcode, f, typeinfo, outlist,
816        (ins typeinfo.RegClass:$src1, typeinfo.ImmOperand:$src2),
817        mnemonic, "{$src2, $src1|$src1, $src2}", pattern, itin>,
818    Sched<[WriteALU]> {
819  let ImmT = typeinfo.ImmEncoding;
820}
821
822// BinOpRI_R - Instructions like "add reg, reg, imm".
823class BinOpRI_R<bits<8> opcode, string mnemonic, X86TypeInfo typeinfo,
824                SDNode opnode, Format f>
825  : BinOpRI<opcode, mnemonic, typeinfo, f, (outs typeinfo.RegClass:$dst),
826            [(set typeinfo.RegClass:$dst,
827                (opnode typeinfo.RegClass:$src1, typeinfo.ImmOperator:$src2))]>;
828
829// BinOpRI_F - Instructions like "cmp reg, imm".
830class BinOpRI_F<bits<8> opcode, string mnemonic, X86TypeInfo typeinfo,
831                SDPatternOperator opnode, Format f>
832  : BinOpRI<opcode, mnemonic, typeinfo, f, (outs),
833            [(set EFLAGS,
834                (opnode typeinfo.RegClass:$src1, typeinfo.ImmOperator:$src2))]>;
835
836// BinOpRI_RF - Instructions like "add reg, reg, imm".
837class BinOpRI_RF<bits<8> opcode, string mnemonic, X86TypeInfo typeinfo,
838                 SDNode opnode, Format f>
839  : BinOpRI<opcode, mnemonic, typeinfo, f, (outs typeinfo.RegClass:$dst),
840            [(set typeinfo.RegClass:$dst, EFLAGS,
841                (opnode typeinfo.RegClass:$src1, typeinfo.ImmOperator:$src2))]>;
842// BinOpRI_RFF - Instructions like "adc reg, reg, imm".
843class BinOpRI_RFF<bits<8> opcode, string mnemonic, X86TypeInfo typeinfo,
844                 SDNode opnode, Format f>
845  : BinOpRI<opcode, mnemonic, typeinfo, f, (outs typeinfo.RegClass:$dst),
846            [(set typeinfo.RegClass:$dst, EFLAGS,
847                (opnode typeinfo.RegClass:$src1, typeinfo.ImmOperator:$src2,
848                        EFLAGS))], IIC_BIN_CARRY_NONMEM>;
849
850// BinOpRI8 - Instructions like "add reg, reg, imm8".
851class BinOpRI8<bits<8> opcode, string mnemonic, X86TypeInfo typeinfo,
852               Format f, dag outlist, list<dag> pattern,
853               InstrItinClass itin = IIC_BIN_NONMEM>
854  : ITy<opcode, f, typeinfo, outlist,
855        (ins typeinfo.RegClass:$src1, typeinfo.Imm8Operand:$src2),
856        mnemonic, "{$src2, $src1|$src1, $src2}", pattern, itin>,
857    Sched<[WriteALU]> {
858  let ImmT = Imm8; // Always 8-bit immediate.
859}
860
861// BinOpRI8_R - Instructions like "add reg, reg, imm8".
862class BinOpRI8_R<bits<8> opcode, string mnemonic, X86TypeInfo typeinfo,
863                  SDNode opnode, Format f>
864  : BinOpRI8<opcode, mnemonic, typeinfo, f, (outs typeinfo.RegClass:$dst),
865             [(set typeinfo.RegClass:$dst,
866               (opnode typeinfo.RegClass:$src1, typeinfo.Imm8Operator:$src2))]>;
867
868// BinOpRI8_F - Instructions like "cmp reg, imm8".
869class BinOpRI8_F<bits<8> opcode, string mnemonic, X86TypeInfo typeinfo,
870                  SDNode opnode, Format f>
871  : BinOpRI8<opcode, mnemonic, typeinfo, f, (outs),
872             [(set EFLAGS,
873               (opnode typeinfo.RegClass:$src1, typeinfo.Imm8Operator:$src2))]>;
874
875// BinOpRI8_RF - Instructions like "add reg, reg, imm8".
876class BinOpRI8_RF<bits<8> opcode, string mnemonic, X86TypeInfo typeinfo,
877                  SDNode opnode, Format f>
878  : BinOpRI8<opcode, mnemonic, typeinfo, f, (outs typeinfo.RegClass:$dst),
879             [(set typeinfo.RegClass:$dst, EFLAGS,
880               (opnode typeinfo.RegClass:$src1, typeinfo.Imm8Operator:$src2))]>;
881
882// BinOpRI8_RFF - Instructions like "adc reg, reg, imm8".
883class BinOpRI8_RFF<bits<8> opcode, string mnemonic, X86TypeInfo typeinfo,
884                   SDNode opnode, Format f>
885  : BinOpRI8<opcode, mnemonic, typeinfo, f, (outs typeinfo.RegClass:$dst),
886             [(set typeinfo.RegClass:$dst, EFLAGS,
887               (opnode typeinfo.RegClass:$src1, typeinfo.Imm8Operator:$src2,
888                       EFLAGS))], IIC_BIN_CARRY_NONMEM>;
889
890// BinOpMR - Instructions like "add [mem], reg".
891class BinOpMR<bits<8> opcode, string mnemonic, X86TypeInfo typeinfo,
892              list<dag> pattern, InstrItinClass itin = IIC_BIN_MEM>
893  : ITy<opcode, MRMDestMem, typeinfo,
894        (outs), (ins typeinfo.MemOperand:$dst, typeinfo.RegClass:$src),
895        mnemonic, "{$src, $dst|$dst, $src}", pattern, itin>,
896    Sched<[WriteALULd, WriteRMW]>;
897
898// BinOpMR_RMW - Instructions like "add [mem], reg".
899class BinOpMR_RMW<bits<8> opcode, string mnemonic, X86TypeInfo typeinfo,
900                  SDNode opnode>
901  : BinOpMR<opcode, mnemonic, typeinfo,
902          [(store (opnode (load addr:$dst), typeinfo.RegClass:$src), addr:$dst),
903           (implicit EFLAGS)]>;
904
905// BinOpMR_RMW_FF - Instructions like "adc [mem], reg".
906class BinOpMR_RMW_FF<bits<8> opcode, string mnemonic, X86TypeInfo typeinfo,
907                    SDNode opnode>
908  : BinOpMR<opcode, mnemonic, typeinfo,
909          [(store (opnode (load addr:$dst), typeinfo.RegClass:$src, EFLAGS),
910                  addr:$dst),
911           (implicit EFLAGS)], IIC_BIN_CARRY_MEM>;
912
913// BinOpMR_F - Instructions like "cmp [mem], reg".
914class BinOpMR_F<bits<8> opcode, string mnemonic, X86TypeInfo typeinfo,
915                  SDNode opnode>
916  : BinOpMR<opcode, mnemonic, typeinfo,
917            [(set EFLAGS, (opnode (load addr:$dst), typeinfo.RegClass:$src))]>;
918
919// BinOpMI - Instructions like "add [mem], imm".
920class BinOpMI<string mnemonic, X86TypeInfo typeinfo,
921              Format f, list<dag> pattern, bits<8> opcode = 0x80,
922              InstrItinClass itin = IIC_BIN_MEM>
923  : ITy<opcode, f, typeinfo,
924        (outs), (ins typeinfo.MemOperand:$dst, typeinfo.ImmOperand:$src),
925        mnemonic, "{$src, $dst|$dst, $src}", pattern, itin>,
926    Sched<[WriteALULd, WriteRMW]> {
927  let ImmT = typeinfo.ImmEncoding;
928}
929
930// BinOpMI_RMW - Instructions like "add [mem], imm".
931class BinOpMI_RMW<string mnemonic, X86TypeInfo typeinfo,
932                  SDNode opnode, Format f>
933  : BinOpMI<mnemonic, typeinfo, f,
934            [(store (opnode (typeinfo.VT (load addr:$dst)),
935                            typeinfo.ImmOperator:$src), addr:$dst),
936             (implicit EFLAGS)]>;
937// BinOpMI_RMW_FF - Instructions like "adc [mem], imm".
938class BinOpMI_RMW_FF<string mnemonic, X86TypeInfo typeinfo,
939                  SDNode opnode, Format f>
940  : BinOpMI<mnemonic, typeinfo, f,
941            [(store (opnode (typeinfo.VT (load addr:$dst)),
942                            typeinfo.ImmOperator:$src, EFLAGS), addr:$dst),
943             (implicit EFLAGS)], 0x80, IIC_BIN_CARRY_MEM>;
944
945// BinOpMI_F - Instructions like "cmp [mem], imm".
946class BinOpMI_F<string mnemonic, X86TypeInfo typeinfo,
947                SDPatternOperator opnode, Format f, bits<8> opcode = 0x80>
948  : BinOpMI<mnemonic, typeinfo, f,
949            [(set EFLAGS, (opnode (typeinfo.VT (load addr:$dst)),
950                                               typeinfo.ImmOperator:$src))],
951            opcode>;
952
953// BinOpMI8 - Instructions like "add [mem], imm8".
954class BinOpMI8<string mnemonic, X86TypeInfo typeinfo,
955               Format f, list<dag> pattern,
956               InstrItinClass itin = IIC_BIN_MEM>
957  : ITy<0x82, f, typeinfo,
958        (outs), (ins typeinfo.MemOperand:$dst, typeinfo.Imm8Operand:$src),
959        mnemonic, "{$src, $dst|$dst, $src}", pattern, itin>,
960    Sched<[WriteALULd, WriteRMW]> {
961  let ImmT = Imm8; // Always 8-bit immediate.
962}
963
964// BinOpMI8_RMW - Instructions like "add [mem], imm8".
965class BinOpMI8_RMW<string mnemonic, X86TypeInfo typeinfo,
966                   SDNode opnode, Format f>
967  : BinOpMI8<mnemonic, typeinfo, f,
968             [(store (opnode (load addr:$dst),
969                             typeinfo.Imm8Operator:$src), addr:$dst),
970              (implicit EFLAGS)]>;
971
972// BinOpMI8_RMW_FF - Instructions like "adc [mem], imm8".
973class BinOpMI8_RMW_FF<string mnemonic, X86TypeInfo typeinfo,
974                   SDNode opnode, Format f>
975  : BinOpMI8<mnemonic, typeinfo, f,
976             [(store (opnode (load addr:$dst),
977                             typeinfo.Imm8Operator:$src, EFLAGS), addr:$dst),
978              (implicit EFLAGS)], IIC_BIN_CARRY_MEM>;
979
980// BinOpMI8_F - Instructions like "cmp [mem], imm8".
981class BinOpMI8_F<string mnemonic, X86TypeInfo typeinfo,
982                 SDNode opnode, Format f>
983  : BinOpMI8<mnemonic, typeinfo, f,
984             [(set EFLAGS, (opnode (load addr:$dst),
985                                   typeinfo.Imm8Operator:$src))]>;
986
987// BinOpAI - Instructions like "add %eax, %eax, imm", that imp-def EFLAGS.
988class BinOpAI<bits<8> opcode, string mnemonic, X86TypeInfo typeinfo,
989              Register areg, string operands,
990              InstrItinClass itin = IIC_BIN_NONMEM>
991  : ITy<opcode, RawFrm, typeinfo,
992        (outs), (ins typeinfo.ImmOperand:$src),
993        mnemonic, operands, [], itin>, Sched<[WriteALU]> {
994  let ImmT = typeinfo.ImmEncoding;
995  let Uses = [areg];
996  let Defs = [areg, EFLAGS];
997  let hasSideEffects = 0;
998}
999
1000// BinOpAI_FF - Instructions like "adc %eax, %eax, imm", that implicitly define
1001// and use EFLAGS.
1002class BinOpAI_FF<bits<8> opcode, string mnemonic, X86TypeInfo typeinfo,
1003                Register areg, string operands>
1004  : BinOpAI<opcode, mnemonic, typeinfo, areg, operands,
1005            IIC_BIN_CARRY_NONMEM> {
1006  let Uses = [areg, EFLAGS];
1007}
1008
1009/// ArithBinOp_RF - This is an arithmetic binary operator where the pattern is
1010/// defined with "(set GPR:$dst, EFLAGS, (...".
1011///
1012/// It would be nice to get rid of the second and third argument here, but
1013/// tblgen can't handle dependent type references aggressively enough: PR8330
1014multiclass ArithBinOp_RF<bits<8> BaseOpc, bits<8> BaseOpc2, bits<8> BaseOpc4,
1015                         string mnemonic, Format RegMRM, Format MemMRM,
1016                         SDNode opnodeflag, SDNode opnode,
1017                         bit CommutableRR, bit ConvertibleToThreeAddress> {
1018  let Defs = [EFLAGS] in {
1019    let Constraints = "$src1 = $dst" in {
1020      let isCommutable = CommutableRR,
1021          isConvertibleToThreeAddress = ConvertibleToThreeAddress in {
1022        def NAME#8rr  : BinOpRR_RF<BaseOpc, mnemonic, Xi8 , opnodeflag>;
1023        def NAME#16rr : BinOpRR_RF<BaseOpc, mnemonic, Xi16, opnodeflag>;
1024        def NAME#32rr : BinOpRR_RF<BaseOpc, mnemonic, Xi32, opnodeflag>;
1025        def NAME#64rr : BinOpRR_RF<BaseOpc, mnemonic, Xi64, opnodeflag>;
1026      } // isCommutable
1027
1028      def NAME#8rr_REV  : BinOpRR_Rev<BaseOpc2, mnemonic, Xi8>;
1029      def NAME#16rr_REV : BinOpRR_Rev<BaseOpc2, mnemonic, Xi16>;
1030      def NAME#32rr_REV : BinOpRR_Rev<BaseOpc2, mnemonic, Xi32>;
1031      def NAME#64rr_REV : BinOpRR_Rev<BaseOpc2, mnemonic, Xi64>;
1032
1033      def NAME#8rm   : BinOpRM_RF<BaseOpc2, mnemonic, Xi8 , opnodeflag>;
1034      def NAME#16rm  : BinOpRM_RF<BaseOpc2, mnemonic, Xi16, opnodeflag>;
1035      def NAME#32rm  : BinOpRM_RF<BaseOpc2, mnemonic, Xi32, opnodeflag>;
1036      def NAME#64rm  : BinOpRM_RF<BaseOpc2, mnemonic, Xi64, opnodeflag>;
1037
1038      let isConvertibleToThreeAddress = ConvertibleToThreeAddress in {
1039        // NOTE: These are order specific, we want the ri8 forms to be listed
1040        // first so that they are slightly preferred to the ri forms.
1041        def NAME#16ri8 : BinOpRI8_RF<0x82, mnemonic, Xi16, opnodeflag, RegMRM>;
1042        def NAME#32ri8 : BinOpRI8_RF<0x82, mnemonic, Xi32, opnodeflag, RegMRM>;
1043        def NAME#64ri8 : BinOpRI8_RF<0x82, mnemonic, Xi64, opnodeflag, RegMRM>;
1044
1045        def NAME#8ri   : BinOpRI_RF<0x80, mnemonic, Xi8 , opnodeflag, RegMRM>;
1046        def NAME#16ri  : BinOpRI_RF<0x80, mnemonic, Xi16, opnodeflag, RegMRM>;
1047        def NAME#32ri  : BinOpRI_RF<0x80, mnemonic, Xi32, opnodeflag, RegMRM>;
1048        def NAME#64ri32: BinOpRI_RF<0x80, mnemonic, Xi64, opnodeflag, RegMRM>;
1049      }
1050    } // Constraints = "$src1 = $dst"
1051
1052    def NAME#8mr    : BinOpMR_RMW<BaseOpc, mnemonic, Xi8 , opnode>;
1053    def NAME#16mr   : BinOpMR_RMW<BaseOpc, mnemonic, Xi16, opnode>;
1054    def NAME#32mr   : BinOpMR_RMW<BaseOpc, mnemonic, Xi32, opnode>;
1055    def NAME#64mr   : BinOpMR_RMW<BaseOpc, mnemonic, Xi64, opnode>;
1056
1057    // NOTE: These are order specific, we want the mi8 forms to be listed
1058    // first so that they are slightly preferred to the mi forms.
1059    def NAME#16mi8  : BinOpMI8_RMW<mnemonic, Xi16, opnode, MemMRM>;
1060    def NAME#32mi8  : BinOpMI8_RMW<mnemonic, Xi32, opnode, MemMRM>;
1061    def NAME#64mi8  : BinOpMI8_RMW<mnemonic, Xi64, opnode, MemMRM>;
1062
1063    def NAME#8mi    : BinOpMI_RMW<mnemonic, Xi8 , opnode, MemMRM>;
1064    def NAME#16mi   : BinOpMI_RMW<mnemonic, Xi16, opnode, MemMRM>;
1065    def NAME#32mi   : BinOpMI_RMW<mnemonic, Xi32, opnode, MemMRM>;
1066    def NAME#64mi32 : BinOpMI_RMW<mnemonic, Xi64, opnode, MemMRM>;
1067  } // Defs = [EFLAGS]
1068
1069  def NAME#8i8   : BinOpAI<BaseOpc4, mnemonic, Xi8 , AL,
1070                           "{$src, %al|al, $src}">;
1071  def NAME#16i16 : BinOpAI<BaseOpc4, mnemonic, Xi16, AX,
1072                           "{$src, %ax|ax, $src}">;
1073  def NAME#32i32 : BinOpAI<BaseOpc4, mnemonic, Xi32, EAX,
1074                           "{$src, %eax|eax, $src}">;
1075  def NAME#64i32 : BinOpAI<BaseOpc4, mnemonic, Xi64, RAX,
1076                           "{$src, %rax|rax, $src}">;
1077}
1078
1079/// ArithBinOp_RFF - This is an arithmetic binary operator where the pattern is
1080/// defined with "(set GPR:$dst, EFLAGS, (node LHS, RHS, EFLAGS))" like ADC and
1081/// SBB.
1082///
1083/// It would be nice to get rid of the second and third argument here, but
1084/// tblgen can't handle dependent type references aggressively enough: PR8330
1085multiclass ArithBinOp_RFF<bits<8> BaseOpc, bits<8> BaseOpc2, bits<8> BaseOpc4,
1086                          string mnemonic, Format RegMRM, Format MemMRM,
1087                          SDNode opnode, bit CommutableRR,
1088                           bit ConvertibleToThreeAddress> {
1089  let Uses = [EFLAGS], Defs = [EFLAGS] in {
1090    let Constraints = "$src1 = $dst" in {
1091      let isCommutable = CommutableRR,
1092          isConvertibleToThreeAddress = ConvertibleToThreeAddress in {
1093        def NAME#8rr  : BinOpRR_RFF<BaseOpc, mnemonic, Xi8 , opnode>;
1094        def NAME#16rr : BinOpRR_RFF<BaseOpc, mnemonic, Xi16, opnode>;
1095        def NAME#32rr : BinOpRR_RFF<BaseOpc, mnemonic, Xi32, opnode>;
1096        def NAME#64rr : BinOpRR_RFF<BaseOpc, mnemonic, Xi64, opnode>;
1097      } // isCommutable
1098
1099      def NAME#8rr_REV  : BinOpRR_RFF_Rev<BaseOpc2, mnemonic, Xi8>;
1100      def NAME#16rr_REV : BinOpRR_RFF_Rev<BaseOpc2, mnemonic, Xi16>;
1101      def NAME#32rr_REV : BinOpRR_RFF_Rev<BaseOpc2, mnemonic, Xi32>;
1102      def NAME#64rr_REV : BinOpRR_RFF_Rev<BaseOpc2, mnemonic, Xi64>;
1103
1104      def NAME#8rm   : BinOpRM_RFF<BaseOpc2, mnemonic, Xi8 , opnode>;
1105      def NAME#16rm  : BinOpRM_RFF<BaseOpc2, mnemonic, Xi16, opnode>;
1106      def NAME#32rm  : BinOpRM_RFF<BaseOpc2, mnemonic, Xi32, opnode>;
1107      def NAME#64rm  : BinOpRM_RFF<BaseOpc2, mnemonic, Xi64, opnode>;
1108
1109      let isConvertibleToThreeAddress = ConvertibleToThreeAddress in {
1110        // NOTE: These are order specific, we want the ri8 forms to be listed
1111        // first so that they are slightly preferred to the ri forms.
1112        def NAME#16ri8 : BinOpRI8_RFF<0x82, mnemonic, Xi16, opnode, RegMRM>;
1113        def NAME#32ri8 : BinOpRI8_RFF<0x82, mnemonic, Xi32, opnode, RegMRM>;
1114        def NAME#64ri8 : BinOpRI8_RFF<0x82, mnemonic, Xi64, opnode, RegMRM>;
1115
1116        def NAME#8ri   : BinOpRI_RFF<0x80, mnemonic, Xi8 , opnode, RegMRM>;
1117        def NAME#16ri  : BinOpRI_RFF<0x80, mnemonic, Xi16, opnode, RegMRM>;
1118        def NAME#32ri  : BinOpRI_RFF<0x80, mnemonic, Xi32, opnode, RegMRM>;
1119        def NAME#64ri32: BinOpRI_RFF<0x80, mnemonic, Xi64, opnode, RegMRM>;
1120      }
1121    } // Constraints = "$src1 = $dst"
1122
1123    def NAME#8mr    : BinOpMR_RMW_FF<BaseOpc, mnemonic, Xi8 , opnode>;
1124    def NAME#16mr   : BinOpMR_RMW_FF<BaseOpc, mnemonic, Xi16, opnode>;
1125    def NAME#32mr   : BinOpMR_RMW_FF<BaseOpc, mnemonic, Xi32, opnode>;
1126    def NAME#64mr   : BinOpMR_RMW_FF<BaseOpc, mnemonic, Xi64, opnode>;
1127
1128    // NOTE: These are order specific, we want the mi8 forms to be listed
1129    // first so that they are slightly preferred to the mi forms.
1130    def NAME#16mi8  : BinOpMI8_RMW_FF<mnemonic, Xi16, opnode, MemMRM>;
1131    def NAME#32mi8  : BinOpMI8_RMW_FF<mnemonic, Xi32, opnode, MemMRM>;
1132    def NAME#64mi8  : BinOpMI8_RMW_FF<mnemonic, Xi64, opnode, MemMRM>;
1133
1134    def NAME#8mi    : BinOpMI_RMW_FF<mnemonic, Xi8 , opnode, MemMRM>;
1135    def NAME#16mi   : BinOpMI_RMW_FF<mnemonic, Xi16, opnode, MemMRM>;
1136    def NAME#32mi   : BinOpMI_RMW_FF<mnemonic, Xi32, opnode, MemMRM>;
1137    def NAME#64mi32 : BinOpMI_RMW_FF<mnemonic, Xi64, opnode, MemMRM>;
1138  } // Uses = [EFLAGS], Defs = [EFLAGS]
1139
1140  def NAME#8i8   : BinOpAI_FF<BaseOpc4, mnemonic, Xi8 , AL,
1141                              "{$src, %al|al, $src}">;
1142  def NAME#16i16 : BinOpAI_FF<BaseOpc4, mnemonic, Xi16, AX,
1143                              "{$src, %ax|ax, $src}">;
1144  def NAME#32i32 : BinOpAI_FF<BaseOpc4, mnemonic, Xi32, EAX,
1145                              "{$src, %eax|eax, $src}">;
1146  def NAME#64i32 : BinOpAI_FF<BaseOpc4, mnemonic, Xi64, RAX,
1147                              "{$src, %rax|rax, $src}">;
1148}
1149
1150/// ArithBinOp_F - This is an arithmetic binary operator where the pattern is
1151/// defined with "(set EFLAGS, (...".  It would be really nice to find a way
1152/// to factor this with the other ArithBinOp_*.
1153///
1154multiclass ArithBinOp_F<bits<8> BaseOpc, bits<8> BaseOpc2, bits<8> BaseOpc4,
1155                        string mnemonic, Format RegMRM, Format MemMRM,
1156                        SDNode opnode,
1157                        bit CommutableRR, bit ConvertibleToThreeAddress> {
1158  let Defs = [EFLAGS] in {
1159    let isCommutable = CommutableRR,
1160        isConvertibleToThreeAddress = ConvertibleToThreeAddress in {
1161      def NAME#8rr  : BinOpRR_F<BaseOpc, mnemonic, Xi8 , opnode>;
1162      def NAME#16rr : BinOpRR_F<BaseOpc, mnemonic, Xi16, opnode>;
1163      def NAME#32rr : BinOpRR_F<BaseOpc, mnemonic, Xi32, opnode>;
1164      def NAME#64rr : BinOpRR_F<BaseOpc, mnemonic, Xi64, opnode>;
1165    } // isCommutable
1166
1167    def NAME#8rr_REV  : BinOpRR_F_Rev<BaseOpc2, mnemonic, Xi8>;
1168    def NAME#16rr_REV : BinOpRR_F_Rev<BaseOpc2, mnemonic, Xi16>;
1169    def NAME#32rr_REV : BinOpRR_F_Rev<BaseOpc2, mnemonic, Xi32>;
1170    def NAME#64rr_REV : BinOpRR_F_Rev<BaseOpc2, mnemonic, Xi64>;
1171
1172    def NAME#8rm   : BinOpRM_F<BaseOpc2, mnemonic, Xi8 , opnode>;
1173    def NAME#16rm  : BinOpRM_F<BaseOpc2, mnemonic, Xi16, opnode>;
1174    def NAME#32rm  : BinOpRM_F<BaseOpc2, mnemonic, Xi32, opnode>;
1175    def NAME#64rm  : BinOpRM_F<BaseOpc2, mnemonic, Xi64, opnode>;
1176
1177    let isConvertibleToThreeAddress = ConvertibleToThreeAddress in {
1178      // NOTE: These are order specific, we want the ri8 forms to be listed
1179      // first so that they are slightly preferred to the ri forms.
1180      def NAME#16ri8 : BinOpRI8_F<0x82, mnemonic, Xi16, opnode, RegMRM>;
1181      def NAME#32ri8 : BinOpRI8_F<0x82, mnemonic, Xi32, opnode, RegMRM>;
1182      def NAME#64ri8 : BinOpRI8_F<0x82, mnemonic, Xi64, opnode, RegMRM>;
1183
1184      def NAME#8ri   : BinOpRI_F<0x80, mnemonic, Xi8 , opnode, RegMRM>;
1185      def NAME#16ri  : BinOpRI_F<0x80, mnemonic, Xi16, opnode, RegMRM>;
1186      def NAME#32ri  : BinOpRI_F<0x80, mnemonic, Xi32, opnode, RegMRM>;
1187      def NAME#64ri32: BinOpRI_F<0x80, mnemonic, Xi64, opnode, RegMRM>;
1188    }
1189
1190    def NAME#8mr    : BinOpMR_F<BaseOpc, mnemonic, Xi8 , opnode>;
1191    def NAME#16mr   : BinOpMR_F<BaseOpc, mnemonic, Xi16, opnode>;
1192    def NAME#32mr   : BinOpMR_F<BaseOpc, mnemonic, Xi32, opnode>;
1193    def NAME#64mr   : BinOpMR_F<BaseOpc, mnemonic, Xi64, opnode>;
1194
1195    // NOTE: These are order specific, we want the mi8 forms to be listed
1196    // first so that they are slightly preferred to the mi forms.
1197    def NAME#16mi8  : BinOpMI8_F<mnemonic, Xi16, opnode, MemMRM>;
1198    def NAME#32mi8  : BinOpMI8_F<mnemonic, Xi32, opnode, MemMRM>;
1199    def NAME#64mi8  : BinOpMI8_F<mnemonic, Xi64, opnode, MemMRM>;
1200
1201    def NAME#8mi    : BinOpMI_F<mnemonic, Xi8 , opnode, MemMRM>;
1202    def NAME#16mi   : BinOpMI_F<mnemonic, Xi16, opnode, MemMRM>;
1203    def NAME#32mi   : BinOpMI_F<mnemonic, Xi32, opnode, MemMRM>;
1204    def NAME#64mi32 : BinOpMI_F<mnemonic, Xi64, opnode, MemMRM>;
1205  } // Defs = [EFLAGS]
1206
1207  def NAME#8i8   : BinOpAI<BaseOpc4, mnemonic, Xi8 , AL,
1208                           "{$src, %al|al, $src}">;
1209  def NAME#16i16 : BinOpAI<BaseOpc4, mnemonic, Xi16, AX,
1210                           "{$src, %ax|ax, $src}">;
1211  def NAME#32i32 : BinOpAI<BaseOpc4, mnemonic, Xi32, EAX,
1212                           "{$src, %eax|eax, $src}">;
1213  def NAME#64i32 : BinOpAI<BaseOpc4, mnemonic, Xi64, RAX,
1214                           "{$src, %rax|rax, $src}">;
1215}
1216
1217
1218defm AND : ArithBinOp_RF<0x20, 0x22, 0x24, "and", MRM4r, MRM4m,
1219                         X86and_flag, and, 1, 0>;
1220defm OR  : ArithBinOp_RF<0x08, 0x0A, 0x0C, "or", MRM1r, MRM1m,
1221                         X86or_flag, or, 1, 0>;
1222defm XOR : ArithBinOp_RF<0x30, 0x32, 0x34, "xor", MRM6r, MRM6m,
1223                         X86xor_flag, xor, 1, 0>;
1224defm ADD : ArithBinOp_RF<0x00, 0x02, 0x04, "add", MRM0r, MRM0m,
1225                         X86add_flag, add, 1, 1>;
1226let isCompare = 1 in {
1227defm SUB : ArithBinOp_RF<0x28, 0x2A, 0x2C, "sub", MRM5r, MRM5m,
1228                         X86sub_flag, sub, 0, 0>;
1229}
1230
1231// Arithmetic.
1232defm ADC : ArithBinOp_RFF<0x10, 0x12, 0x14, "adc", MRM2r, MRM2m, X86adc_flag,
1233                          1, 0>;
1234defm SBB : ArithBinOp_RFF<0x18, 0x1A, 0x1C, "sbb", MRM3r, MRM3m, X86sbb_flag,
1235                          0, 0>;
1236
1237let isCompare = 1 in {
1238defm CMP : ArithBinOp_F<0x38, 0x3A, 0x3C, "cmp", MRM7r, MRM7m, X86cmp, 0, 0>;
1239}
1240
1241
1242//===----------------------------------------------------------------------===//
1243// Semantically, test instructions are similar like AND, except they don't
1244// generate a result.  From an encoding perspective, they are very different:
1245// they don't have all the usual imm8 and REV forms, and are encoded into a
1246// different space.
1247def X86testpat : PatFrag<(ops node:$lhs, node:$rhs),
1248                         (X86cmp (and_su node:$lhs, node:$rhs), 0)>;
1249
1250let isCompare = 1 in {
1251  let Defs = [EFLAGS] in {
1252    let isCommutable = 1 in {
1253      def TEST8rr  : BinOpRR_F<0x84, "test", Xi8 , X86testpat, MRMSrcReg>;
1254      def TEST16rr : BinOpRR_F<0x84, "test", Xi16, X86testpat, MRMSrcReg>;
1255      def TEST32rr : BinOpRR_F<0x84, "test", Xi32, X86testpat, MRMSrcReg>;
1256      def TEST64rr : BinOpRR_F<0x84, "test", Xi64, X86testpat, MRMSrcReg>;
1257    } // isCommutable
1258
1259    def TEST8rm    : BinOpRM_F<0x84, "test", Xi8 , X86testpat>;
1260    def TEST16rm   : BinOpRM_F<0x84, "test", Xi16, X86testpat>;
1261    def TEST32rm   : BinOpRM_F<0x84, "test", Xi32, X86testpat>;
1262    def TEST64rm   : BinOpRM_F<0x84, "test", Xi64, X86testpat>;
1263
1264    def TEST8ri    : BinOpRI_F<0xF6, "test", Xi8 , X86testpat, MRM0r>;
1265    def TEST16ri   : BinOpRI_F<0xF6, "test", Xi16, X86testpat, MRM0r>;
1266    def TEST32ri   : BinOpRI_F<0xF6, "test", Xi32, X86testpat, MRM0r>;
1267    def TEST64ri32 : BinOpRI_F<0xF6, "test", Xi64, X86testpat, MRM0r>;
1268
1269    def TEST8mi    : BinOpMI_F<"test", Xi8 , X86testpat, MRM0m, 0xF6>;
1270    def TEST16mi   : BinOpMI_F<"test", Xi16, X86testpat, MRM0m, 0xF6>;
1271    def TEST32mi   : BinOpMI_F<"test", Xi32, X86testpat, MRM0m, 0xF6>;
1272    def TEST64mi32 : BinOpMI_F<"test", Xi64, X86testpat, MRM0m, 0xF6>;
1273
1274    // When testing the result of EXTRACT_SUBREG sub_8bit_hi, make sure the
1275    // register class is constrained to GR8_NOREX.
1276    let isPseudo = 1 in
1277    def TEST8ri_NOREX : I<0, Pseudo, (outs), (ins GR8_NOREX:$src, i8imm:$mask),
1278                          "", [], IIC_BIN_NONMEM>, Sched<[WriteALU]>;
1279  } // Defs = [EFLAGS]
1280
1281  def TEST8i8    : BinOpAI<0xA8, "test", Xi8 , AL,
1282                           "{$src, %al|al, $src}">;
1283  def TEST16i16  : BinOpAI<0xA8, "test", Xi16, AX,
1284                           "{$src, %ax|ax, $src}">;
1285  def TEST32i32  : BinOpAI<0xA8, "test", Xi32, EAX,
1286                           "{$src, %eax|eax, $src}">;
1287  def TEST64i32  : BinOpAI<0xA8, "test", Xi64, RAX,
1288                           "{$src, %rax|rax, $src}">;
1289} // isCompare
1290
1291//===----------------------------------------------------------------------===//
1292// ANDN Instruction
1293//
1294multiclass bmi_andn<string mnemonic, RegisterClass RC, X86MemOperand x86memop,
1295                    PatFrag ld_frag> {
1296  def rr : I<0xF2, MRMSrcReg, (outs RC:$dst), (ins RC:$src1, RC:$src2),
1297            !strconcat(mnemonic, "\t{$src2, $src1, $dst|$dst, $src1, $src2}"),
1298            [(set RC:$dst, EFLAGS, (X86and_flag (not RC:$src1), RC:$src2))],
1299            IIC_BIN_NONMEM>, Sched<[WriteALU]>;
1300  def rm : I<0xF2, MRMSrcMem, (outs RC:$dst), (ins RC:$src1, x86memop:$src2),
1301            !strconcat(mnemonic, "\t{$src2, $src1, $dst|$dst, $src1, $src2}"),
1302            [(set RC:$dst, EFLAGS,
1303             (X86and_flag (not RC:$src1), (ld_frag addr:$src2)))], IIC_BIN_MEM>,
1304           Sched<[WriteALULd, ReadAfterLd]>;
1305}
1306
1307let Predicates = [HasBMI], Defs = [EFLAGS] in {
1308  defm ANDN32 : bmi_andn<"andn{l}", GR32, i32mem, loadi32>, T8, VEX_4V;
1309  defm ANDN64 : bmi_andn<"andn{q}", GR64, i64mem, loadi64>, T8, VEX_4V, VEX_W;
1310}
1311
1312let Predicates = [HasBMI] in {
1313  def : Pat<(and (not GR32:$src1), GR32:$src2),
1314            (ANDN32rr GR32:$src1, GR32:$src2)>;
1315  def : Pat<(and (not GR64:$src1), GR64:$src2),
1316            (ANDN64rr GR64:$src1, GR64:$src2)>;
1317  def : Pat<(and (not GR32:$src1), (loadi32 addr:$src2)),
1318            (ANDN32rm GR32:$src1, addr:$src2)>;
1319  def : Pat<(and (not GR64:$src1), (loadi64 addr:$src2)),
1320            (ANDN64rm GR64:$src1, addr:$src2)>;
1321}
1322
1323//===----------------------------------------------------------------------===//
1324// MULX Instruction
1325//
1326multiclass bmi_mulx<string mnemonic, RegisterClass RC, X86MemOperand x86memop> {
1327let neverHasSideEffects = 1 in {
1328  let isCommutable = 1 in
1329  def rr : I<0xF6, MRMSrcReg, (outs RC:$dst1, RC:$dst2), (ins RC:$src),
1330             !strconcat(mnemonic, "\t{$src, $dst2, $dst1|$dst1, $dst2, $src}"),
1331             [], IIC_MUL8>, T8XD, VEX_4V, Sched<[WriteIMul, WriteIMulH]>;
1332
1333  let mayLoad = 1 in
1334  def rm : I<0xF6, MRMSrcMem, (outs RC:$dst1, RC:$dst2), (ins x86memop:$src),
1335             !strconcat(mnemonic, "\t{$src, $dst2, $dst1|$dst1, $dst2, $src}"),
1336             [], IIC_MUL8>, T8XD, VEX_4V, Sched<[WriteIMulLd, WriteIMulH]>;
1337}
1338}
1339
1340let Predicates = [HasBMI2] in {
1341  let Uses = [EDX] in
1342    defm MULX32 : bmi_mulx<"mulx{l}", GR32, i32mem>;
1343  let Uses = [RDX] in
1344    defm MULX64 : bmi_mulx<"mulx{q}", GR64, i64mem>, VEX_W;
1345}
1346
1347//===----------------------------------------------------------------------===//
1348// ADCX Instruction
1349//
1350let hasSideEffects = 0, Predicates = [HasADX], Defs = [EFLAGS] in {
1351  let SchedRW = [WriteALU] in {
1352  def ADCX32rr : I<0xF6, MRMSrcReg, (outs GR32:$dst), (ins GR32:$src),
1353             "adcx{l}\t{$src, $dst|$dst, $src}",
1354             [], IIC_BIN_NONMEM>, T8, OpSize;
1355
1356  def ADCX64rr : I<0xF6, MRMSrcReg, (outs GR64:$dst), (ins GR64:$src),
1357             "adcx{q}\t{$src, $dst|$dst, $src}",
1358             [], IIC_BIN_NONMEM>, T8, OpSize, REX_W, Requires<[In64BitMode]>;
1359  } // SchedRW
1360
1361  let mayLoad = 1, SchedRW = [WriteALULd] in {
1362  def ADCX32rm : I<0xF6, MRMSrcMem, (outs GR32:$dst), (ins i32mem:$src),
1363             "adcx{l}\t{$src, $dst|$dst, $src}",
1364             [], IIC_BIN_MEM>, T8, OpSize;
1365
1366  def ADCX64rm : I<0xF6, MRMSrcMem, (outs GR64:$dst), (ins i64mem:$src),
1367             "adcx{q}\t{$src, $dst|$dst, $src}",
1368             [], IIC_BIN_MEM>, T8, OpSize, REX_W, Requires<[In64BitMode]>;
1369  }
1370}
1371
1372//===----------------------------------------------------------------------===//
1373// ADOX Instruction
1374//
1375let hasSideEffects = 0, Predicates = [HasADX], Defs = [EFLAGS] in {
1376  let SchedRW = [WriteALU] in {
1377  def ADOX32rr : I<0xF6, MRMSrcReg, (outs GR32:$dst), (ins GR32:$src),
1378             "adox{l}\t{$src, $dst|$dst, $src}",
1379             [], IIC_BIN_NONMEM>, T8XS;
1380
1381  def ADOX64rr : I<0xF6, MRMSrcReg, (outs GR64:$dst), (ins GR64:$src),
1382             "adox{q}\t{$src, $dst|$dst, $src}",
1383             [], IIC_BIN_NONMEM>, T8XS, REX_W, Requires<[In64BitMode]>;
1384  } // SchedRW
1385
1386  let mayLoad = 1, SchedRW = [WriteALULd] in {
1387  def ADOX32rm : I<0xF6, MRMSrcMem, (outs GR32:$dst), (ins i32mem:$src),
1388             "adox{l}\t{$src, $dst|$dst, $src}",
1389             [], IIC_BIN_MEM>, T8XS;
1390
1391  def ADOX64rm : I<0xF6, MRMSrcMem, (outs GR64:$dst), (ins i64mem:$src),
1392             "adox{q}\t{$src, $dst|$dst, $src}",
1393             [], IIC_BIN_MEM>, T8XS, REX_W, Requires<[In64BitMode]>;
1394  }
1395}
1396