X86ISelLowering.cpp revision 263247
1//===-- X86ISelLowering.cpp - X86 DAG Lowering Implementation -------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the interfaces that X86 uses to lower LLVM code into a
11// selection DAG.
12//
13//===----------------------------------------------------------------------===//
14
15#define DEBUG_TYPE "x86-isel"
16#include "X86ISelLowering.h"
17#include "Utils/X86ShuffleDecode.h"
18#include "X86.h"
19#include "X86InstrBuilder.h"
20#include "X86TargetMachine.h"
21#include "X86TargetObjectFile.h"
22#include "llvm/ADT/SmallSet.h"
23#include "llvm/ADT/Statistic.h"
24#include "llvm/ADT/StringExtras.h"
25#include "llvm/ADT/VariadicFunction.h"
26#include "llvm/CodeGen/IntrinsicLowering.h"
27#include "llvm/CodeGen/MachineFrameInfo.h"
28#include "llvm/CodeGen/MachineFunction.h"
29#include "llvm/CodeGen/MachineInstrBuilder.h"
30#include "llvm/CodeGen/MachineJumpTableInfo.h"
31#include "llvm/CodeGen/MachineModuleInfo.h"
32#include "llvm/CodeGen/MachineRegisterInfo.h"
33#include "llvm/IR/CallingConv.h"
34#include "llvm/IR/Constants.h"
35#include "llvm/IR/DerivedTypes.h"
36#include "llvm/IR/Function.h"
37#include "llvm/IR/GlobalAlias.h"
38#include "llvm/IR/GlobalVariable.h"
39#include "llvm/IR/Instructions.h"
40#include "llvm/IR/Intrinsics.h"
41#include "llvm/IR/LLVMContext.h"
42#include "llvm/MC/MCAsmInfo.h"
43#include "llvm/MC/MCContext.h"
44#include "llvm/MC/MCExpr.h"
45#include "llvm/MC/MCSymbol.h"
46#include "llvm/Support/CallSite.h"
47#include "llvm/Support/Debug.h"
48#include "llvm/Support/ErrorHandling.h"
49#include "llvm/Support/MathExtras.h"
50#include "llvm/Target/TargetOptions.h"
51#include <bitset>
52#include <cctype>
53using namespace llvm;
54
55STATISTIC(NumTailCalls, "Number of tail calls");
56
57// Forward declarations.
58static SDValue getMOVL(SelectionDAG &DAG, DebugLoc dl, EVT VT, SDValue V1,
59                       SDValue V2);
60
61/// Generate a DAG to grab 128-bits from a vector > 128 bits.  This
62/// sets things up to match to an AVX VEXTRACTF128 instruction or a
63/// simple subregister reference.  Idx is an index in the 128 bits we
64/// want.  It need not be aligned to a 128-bit bounday.  That makes
65/// lowering EXTRACT_VECTOR_ELT operations easier.
66static SDValue Extract128BitVector(SDValue Vec, unsigned IdxVal,
67                                   SelectionDAG &DAG, DebugLoc dl) {
68  EVT VT = Vec.getValueType();
69  assert(VT.is256BitVector() && "Unexpected vector size!");
70  EVT ElVT = VT.getVectorElementType();
71  unsigned Factor = VT.getSizeInBits()/128;
72  EVT ResultVT = EVT::getVectorVT(*DAG.getContext(), ElVT,
73                                  VT.getVectorNumElements()/Factor);
74
75  // Extract from UNDEF is UNDEF.
76  if (Vec.getOpcode() == ISD::UNDEF)
77    return DAG.getUNDEF(ResultVT);
78
79  // Extract the relevant 128 bits.  Generate an EXTRACT_SUBVECTOR
80  // we can match to VEXTRACTF128.
81  unsigned ElemsPerChunk = 128 / ElVT.getSizeInBits();
82
83  // This is the index of the first element of the 128-bit chunk
84  // we want.
85  unsigned NormalizedIdxVal = (((IdxVal * ElVT.getSizeInBits()) / 128)
86                               * ElemsPerChunk);
87
88  // If the input is a buildvector just emit a smaller one.
89  if (Vec.getOpcode() == ISD::BUILD_VECTOR)
90    return DAG.getNode(ISD::BUILD_VECTOR, dl, ResultVT,
91                       Vec->op_begin()+NormalizedIdxVal, ElemsPerChunk);
92
93  SDValue VecIdx = DAG.getIntPtrConstant(NormalizedIdxVal);
94  SDValue Result = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, ResultVT, Vec,
95                               VecIdx);
96
97  return Result;
98}
99
100/// Generate a DAG to put 128-bits into a vector > 128 bits.  This
101/// sets things up to match to an AVX VINSERTF128 instruction or a
102/// simple superregister reference.  Idx is an index in the 128 bits
103/// we want.  It need not be aligned to a 128-bit bounday.  That makes
104/// lowering INSERT_VECTOR_ELT operations easier.
105static SDValue Insert128BitVector(SDValue Result, SDValue Vec,
106                                  unsigned IdxVal, SelectionDAG &DAG,
107                                  DebugLoc dl) {
108  // Inserting UNDEF is Result
109  if (Vec.getOpcode() == ISD::UNDEF)
110    return Result;
111
112  EVT VT = Vec.getValueType();
113  assert(VT.is128BitVector() && "Unexpected vector size!");
114
115  EVT ElVT = VT.getVectorElementType();
116  EVT ResultVT = Result.getValueType();
117
118  // Insert the relevant 128 bits.
119  unsigned ElemsPerChunk = 128/ElVT.getSizeInBits();
120
121  // This is the index of the first element of the 128-bit chunk
122  // we want.
123  unsigned NormalizedIdxVal = (((IdxVal * ElVT.getSizeInBits())/128)
124                               * ElemsPerChunk);
125
126  SDValue VecIdx = DAG.getIntPtrConstant(NormalizedIdxVal);
127  return DAG.getNode(ISD::INSERT_SUBVECTOR, dl, ResultVT, Result, Vec,
128                     VecIdx);
129}
130
131/// Concat two 128-bit vectors into a 256 bit vector using VINSERTF128
132/// instructions. This is used because creating CONCAT_VECTOR nodes of
133/// BUILD_VECTORS returns a larger BUILD_VECTOR while we're trying to lower
134/// large BUILD_VECTORS.
135static SDValue Concat128BitVectors(SDValue V1, SDValue V2, EVT VT,
136                                   unsigned NumElems, SelectionDAG &DAG,
137                                   DebugLoc dl) {
138  SDValue V = Insert128BitVector(DAG.getUNDEF(VT), V1, 0, DAG, dl);
139  return Insert128BitVector(V, V2, NumElems/2, DAG, dl);
140}
141
142static TargetLoweringObjectFile *createTLOF(X86TargetMachine &TM) {
143  const X86Subtarget *Subtarget = &TM.getSubtarget<X86Subtarget>();
144  bool is64Bit = Subtarget->is64Bit();
145
146  if (Subtarget->isTargetEnvMacho()) {
147    if (is64Bit)
148      return new X86_64MachoTargetObjectFile();
149    return new TargetLoweringObjectFileMachO();
150  }
151
152  if (Subtarget->isTargetLinux())
153    return new X86LinuxTargetObjectFile();
154  if (Subtarget->isTargetELF())
155    return new TargetLoweringObjectFileELF();
156  if (Subtarget->isTargetCOFF() && !Subtarget->isTargetEnvMacho())
157    return new TargetLoweringObjectFileCOFF();
158  llvm_unreachable("unknown subtarget type");
159}
160
161X86TargetLowering::X86TargetLowering(X86TargetMachine &TM)
162  : TargetLowering(TM, createTLOF(TM)) {
163  Subtarget = &TM.getSubtarget<X86Subtarget>();
164  X86ScalarSSEf64 = Subtarget->hasSSE2();
165  X86ScalarSSEf32 = Subtarget->hasSSE1();
166  RegInfo = TM.getRegisterInfo();
167  TD = getDataLayout();
168
169  resetOperationActions();
170}
171
172void X86TargetLowering::resetOperationActions() {
173  const TargetMachine &TM = getTargetMachine();
174  static bool FirstTimeThrough = true;
175
176  // If none of the target options have changed, then we don't need to reset the
177  // operation actions.
178  if (!FirstTimeThrough && TO == TM.Options) return;
179
180  if (!FirstTimeThrough) {
181    // Reinitialize the actions.
182    initActions();
183    FirstTimeThrough = false;
184  }
185
186  TO = TM.Options;
187
188  // Set up the TargetLowering object.
189  static const MVT IntVTs[] = { MVT::i8, MVT::i16, MVT::i32, MVT::i64 };
190
191  // X86 is weird, it always uses i8 for shift amounts and setcc results.
192  setBooleanContents(ZeroOrOneBooleanContent);
193  // X86-SSE is even stranger. It uses -1 or 0 for vector masks.
194  setBooleanVectorContents(ZeroOrNegativeOneBooleanContent);
195
196  // For 64-bit since we have so many registers use the ILP scheduler, for
197  // 32-bit code use the register pressure specific scheduling.
198  // For Atom, always use ILP scheduling.
199  if (Subtarget->isAtom())
200    setSchedulingPreference(Sched::ILP);
201  else if (Subtarget->is64Bit())
202    setSchedulingPreference(Sched::ILP);
203  else
204    setSchedulingPreference(Sched::RegPressure);
205  setStackPointerRegisterToSaveRestore(RegInfo->getStackRegister());
206
207  // Bypass expensive divides on Atom when compiling with O2
208  if (Subtarget->hasSlowDivide() && TM.getOptLevel() >= CodeGenOpt::Default) {
209    addBypassSlowDiv(32, 8);
210    if (Subtarget->is64Bit())
211      addBypassSlowDiv(64, 16);
212  }
213
214  if (Subtarget->isTargetWindows() && !Subtarget->isTargetCygMing()) {
215    // Setup Windows compiler runtime calls.
216    setLibcallName(RTLIB::SDIV_I64, "_alldiv");
217    setLibcallName(RTLIB::UDIV_I64, "_aulldiv");
218    setLibcallName(RTLIB::SREM_I64, "_allrem");
219    setLibcallName(RTLIB::UREM_I64, "_aullrem");
220    setLibcallName(RTLIB::MUL_I64, "_allmul");
221    setLibcallCallingConv(RTLIB::SDIV_I64, CallingConv::X86_StdCall);
222    setLibcallCallingConv(RTLIB::UDIV_I64, CallingConv::X86_StdCall);
223    setLibcallCallingConv(RTLIB::SREM_I64, CallingConv::X86_StdCall);
224    setLibcallCallingConv(RTLIB::UREM_I64, CallingConv::X86_StdCall);
225    setLibcallCallingConv(RTLIB::MUL_I64, CallingConv::X86_StdCall);
226
227    // The _ftol2 runtime function has an unusual calling conv, which
228    // is modeled by a special pseudo-instruction.
229    setLibcallName(RTLIB::FPTOUINT_F64_I64, 0);
230    setLibcallName(RTLIB::FPTOUINT_F32_I64, 0);
231    setLibcallName(RTLIB::FPTOUINT_F64_I32, 0);
232    setLibcallName(RTLIB::FPTOUINT_F32_I32, 0);
233  }
234
235  if (Subtarget->isTargetDarwin()) {
236    // Darwin should use _setjmp/_longjmp instead of setjmp/longjmp.
237    setUseUnderscoreSetJmp(false);
238    setUseUnderscoreLongJmp(false);
239  } else if (Subtarget->isTargetMingw()) {
240    // MS runtime is weird: it exports _setjmp, but longjmp!
241    setUseUnderscoreSetJmp(true);
242    setUseUnderscoreLongJmp(false);
243  } else {
244    setUseUnderscoreSetJmp(true);
245    setUseUnderscoreLongJmp(true);
246  }
247
248  // Set up the register classes.
249  addRegisterClass(MVT::i8, &X86::GR8RegClass);
250  addRegisterClass(MVT::i16, &X86::GR16RegClass);
251  addRegisterClass(MVT::i32, &X86::GR32RegClass);
252  if (Subtarget->is64Bit())
253    addRegisterClass(MVT::i64, &X86::GR64RegClass);
254
255  setLoadExtAction(ISD::SEXTLOAD, MVT::i1, Promote);
256
257  // We don't accept any truncstore of integer registers.
258  setTruncStoreAction(MVT::i64, MVT::i32, Expand);
259  setTruncStoreAction(MVT::i64, MVT::i16, Expand);
260  setTruncStoreAction(MVT::i64, MVT::i8 , Expand);
261  setTruncStoreAction(MVT::i32, MVT::i16, Expand);
262  setTruncStoreAction(MVT::i32, MVT::i8 , Expand);
263  setTruncStoreAction(MVT::i16, MVT::i8,  Expand);
264
265  // SETOEQ and SETUNE require checking two conditions.
266  setCondCodeAction(ISD::SETOEQ, MVT::f32, Expand);
267  setCondCodeAction(ISD::SETOEQ, MVT::f64, Expand);
268  setCondCodeAction(ISD::SETOEQ, MVT::f80, Expand);
269  setCondCodeAction(ISD::SETUNE, MVT::f32, Expand);
270  setCondCodeAction(ISD::SETUNE, MVT::f64, Expand);
271  setCondCodeAction(ISD::SETUNE, MVT::f80, Expand);
272
273  // Promote all UINT_TO_FP to larger SINT_TO_FP's, as X86 doesn't have this
274  // operation.
275  setOperationAction(ISD::UINT_TO_FP       , MVT::i1   , Promote);
276  setOperationAction(ISD::UINT_TO_FP       , MVT::i8   , Promote);
277  setOperationAction(ISD::UINT_TO_FP       , MVT::i16  , Promote);
278
279  if (Subtarget->is64Bit()) {
280    setOperationAction(ISD::UINT_TO_FP     , MVT::i32  , Promote);
281    setOperationAction(ISD::UINT_TO_FP     , MVT::i64  , Custom);
282  } else if (!TM.Options.UseSoftFloat) {
283    // We have an algorithm for SSE2->double, and we turn this into a
284    // 64-bit FILD followed by conditional FADD for other targets.
285    setOperationAction(ISD::UINT_TO_FP     , MVT::i64  , Custom);
286    // We have an algorithm for SSE2, and we turn this into a 64-bit
287    // FILD for other targets.
288    setOperationAction(ISD::UINT_TO_FP     , MVT::i32  , Custom);
289  }
290
291  // Promote i1/i8 SINT_TO_FP to larger SINT_TO_FP's, as X86 doesn't have
292  // this operation.
293  setOperationAction(ISD::SINT_TO_FP       , MVT::i1   , Promote);
294  setOperationAction(ISD::SINT_TO_FP       , MVT::i8   , Promote);
295
296  if (!TM.Options.UseSoftFloat) {
297    // SSE has no i16 to fp conversion, only i32
298    if (X86ScalarSSEf32) {
299      setOperationAction(ISD::SINT_TO_FP     , MVT::i16  , Promote);
300      // f32 and f64 cases are Legal, f80 case is not
301      setOperationAction(ISD::SINT_TO_FP     , MVT::i32  , Custom);
302    } else {
303      setOperationAction(ISD::SINT_TO_FP     , MVT::i16  , Custom);
304      setOperationAction(ISD::SINT_TO_FP     , MVT::i32  , Custom);
305    }
306  } else {
307    setOperationAction(ISD::SINT_TO_FP     , MVT::i16  , Promote);
308    setOperationAction(ISD::SINT_TO_FP     , MVT::i32  , Promote);
309  }
310
311  // In 32-bit mode these are custom lowered.  In 64-bit mode F32 and F64
312  // are Legal, f80 is custom lowered.
313  setOperationAction(ISD::FP_TO_SINT     , MVT::i64  , Custom);
314  setOperationAction(ISD::SINT_TO_FP     , MVT::i64  , Custom);
315
316  // Promote i1/i8 FP_TO_SINT to larger FP_TO_SINTS's, as X86 doesn't have
317  // this operation.
318  setOperationAction(ISD::FP_TO_SINT       , MVT::i1   , Promote);
319  setOperationAction(ISD::FP_TO_SINT       , MVT::i8   , Promote);
320
321  if (X86ScalarSSEf32) {
322    setOperationAction(ISD::FP_TO_SINT     , MVT::i16  , Promote);
323    // f32 and f64 cases are Legal, f80 case is not
324    setOperationAction(ISD::FP_TO_SINT     , MVT::i32  , Custom);
325  } else {
326    setOperationAction(ISD::FP_TO_SINT     , MVT::i16  , Custom);
327    setOperationAction(ISD::FP_TO_SINT     , MVT::i32  , Custom);
328  }
329
330  // Handle FP_TO_UINT by promoting the destination to a larger signed
331  // conversion.
332  setOperationAction(ISD::FP_TO_UINT       , MVT::i1   , Promote);
333  setOperationAction(ISD::FP_TO_UINT       , MVT::i8   , Promote);
334  setOperationAction(ISD::FP_TO_UINT       , MVT::i16  , Promote);
335
336  if (Subtarget->is64Bit()) {
337    setOperationAction(ISD::FP_TO_UINT     , MVT::i64  , Expand);
338    setOperationAction(ISD::FP_TO_UINT     , MVT::i32  , Promote);
339  } else if (!TM.Options.UseSoftFloat) {
340    // Since AVX is a superset of SSE3, only check for SSE here.
341    if (Subtarget->hasSSE1() && !Subtarget->hasSSE3())
342      // Expand FP_TO_UINT into a select.
343      // FIXME: We would like to use a Custom expander here eventually to do
344      // the optimal thing for SSE vs. the default expansion in the legalizer.
345      setOperationAction(ISD::FP_TO_UINT   , MVT::i32  , Expand);
346    else
347      // With SSE3 we can use fisttpll to convert to a signed i64; without
348      // SSE, we're stuck with a fistpll.
349      setOperationAction(ISD::FP_TO_UINT   , MVT::i32  , Custom);
350  }
351
352  if (isTargetFTOL()) {
353    // Use the _ftol2 runtime function, which has a pseudo-instruction
354    // to handle its weird calling convention.
355    setOperationAction(ISD::FP_TO_UINT     , MVT::i64  , Custom);
356  }
357
358  // TODO: when we have SSE, these could be more efficient, by using movd/movq.
359  if (!X86ScalarSSEf64) {
360    setOperationAction(ISD::BITCAST        , MVT::f32  , Expand);
361    setOperationAction(ISD::BITCAST        , MVT::i32  , Expand);
362    if (Subtarget->is64Bit()) {
363      setOperationAction(ISD::BITCAST      , MVT::f64  , Expand);
364      // Without SSE, i64->f64 goes through memory.
365      setOperationAction(ISD::BITCAST      , MVT::i64  , Expand);
366    }
367  }
368
369  // Scalar integer divide and remainder are lowered to use operations that
370  // produce two results, to match the available instructions. This exposes
371  // the two-result form to trivial CSE, which is able to combine x/y and x%y
372  // into a single instruction.
373  //
374  // Scalar integer multiply-high is also lowered to use two-result
375  // operations, to match the available instructions. However, plain multiply
376  // (low) operations are left as Legal, as there are single-result
377  // instructions for this in x86. Using the two-result multiply instructions
378  // when both high and low results are needed must be arranged by dagcombine.
379  for (unsigned i = 0; i != array_lengthof(IntVTs); ++i) {
380    MVT VT = IntVTs[i];
381    setOperationAction(ISD::MULHS, VT, Expand);
382    setOperationAction(ISD::MULHU, VT, Expand);
383    setOperationAction(ISD::SDIV, VT, Expand);
384    setOperationAction(ISD::UDIV, VT, Expand);
385    setOperationAction(ISD::SREM, VT, Expand);
386    setOperationAction(ISD::UREM, VT, Expand);
387
388    // Add/Sub overflow ops with MVT::Glues are lowered to EFLAGS dependences.
389    setOperationAction(ISD::ADDC, VT, Custom);
390    setOperationAction(ISD::ADDE, VT, Custom);
391    setOperationAction(ISD::SUBC, VT, Custom);
392    setOperationAction(ISD::SUBE, VT, Custom);
393  }
394
395  setOperationAction(ISD::BR_JT            , MVT::Other, Expand);
396  setOperationAction(ISD::BRCOND           , MVT::Other, Custom);
397  setOperationAction(ISD::BR_CC            , MVT::f32,   Expand);
398  setOperationAction(ISD::BR_CC            , MVT::f64,   Expand);
399  setOperationAction(ISD::BR_CC            , MVT::f80,   Expand);
400  setOperationAction(ISD::BR_CC            , MVT::i8,    Expand);
401  setOperationAction(ISD::BR_CC            , MVT::i16,   Expand);
402  setOperationAction(ISD::BR_CC            , MVT::i32,   Expand);
403  setOperationAction(ISD::BR_CC            , MVT::i64,   Expand);
404  setOperationAction(ISD::SELECT_CC        , MVT::Other, Expand);
405  if (Subtarget->is64Bit())
406    setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i32, Legal);
407  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16  , Legal);
408  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8   , Legal);
409  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1   , Expand);
410  setOperationAction(ISD::FP_ROUND_INREG   , MVT::f32  , Expand);
411  setOperationAction(ISD::FREM             , MVT::f32  , Expand);
412  setOperationAction(ISD::FREM             , MVT::f64  , Expand);
413  setOperationAction(ISD::FREM             , MVT::f80  , Expand);
414  setOperationAction(ISD::FLT_ROUNDS_      , MVT::i32  , Custom);
415
416  // Promote the i8 variants and force them on up to i32 which has a shorter
417  // encoding.
418  setOperationAction(ISD::CTTZ             , MVT::i8   , Promote);
419  AddPromotedToType (ISD::CTTZ             , MVT::i8   , MVT::i32);
420  setOperationAction(ISD::CTTZ_ZERO_UNDEF  , MVT::i8   , Promote);
421  AddPromotedToType (ISD::CTTZ_ZERO_UNDEF  , MVT::i8   , MVT::i32);
422  if (Subtarget->hasBMI()) {
423    setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i16  , Expand);
424    setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i32  , Expand);
425    if (Subtarget->is64Bit())
426      setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i64, Expand);
427  } else {
428    setOperationAction(ISD::CTTZ           , MVT::i16  , Custom);
429    setOperationAction(ISD::CTTZ           , MVT::i32  , Custom);
430    if (Subtarget->is64Bit())
431      setOperationAction(ISD::CTTZ         , MVT::i64  , Custom);
432  }
433
434  if (Subtarget->hasLZCNT()) {
435    // When promoting the i8 variants, force them to i32 for a shorter
436    // encoding.
437    setOperationAction(ISD::CTLZ           , MVT::i8   , Promote);
438    AddPromotedToType (ISD::CTLZ           , MVT::i8   , MVT::i32);
439    setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i8   , Promote);
440    AddPromotedToType (ISD::CTLZ_ZERO_UNDEF, MVT::i8   , MVT::i32);
441    setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i16  , Expand);
442    setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i32  , Expand);
443    if (Subtarget->is64Bit())
444      setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i64, Expand);
445  } else {
446    setOperationAction(ISD::CTLZ           , MVT::i8   , Custom);
447    setOperationAction(ISD::CTLZ           , MVT::i16  , Custom);
448    setOperationAction(ISD::CTLZ           , MVT::i32  , Custom);
449    setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i8   , Custom);
450    setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i16  , Custom);
451    setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i32  , Custom);
452    if (Subtarget->is64Bit()) {
453      setOperationAction(ISD::CTLZ         , MVT::i64  , Custom);
454      setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i64, Custom);
455    }
456  }
457
458  if (Subtarget->hasPOPCNT()) {
459    setOperationAction(ISD::CTPOP          , MVT::i8   , Promote);
460  } else {
461    setOperationAction(ISD::CTPOP          , MVT::i8   , Expand);
462    setOperationAction(ISD::CTPOP          , MVT::i16  , Expand);
463    setOperationAction(ISD::CTPOP          , MVT::i32  , Expand);
464    if (Subtarget->is64Bit())
465      setOperationAction(ISD::CTPOP        , MVT::i64  , Expand);
466  }
467
468  setOperationAction(ISD::READCYCLECOUNTER , MVT::i64  , Custom);
469  setOperationAction(ISD::BSWAP            , MVT::i16  , Expand);
470
471  // These should be promoted to a larger select which is supported.
472  setOperationAction(ISD::SELECT          , MVT::i1   , Promote);
473  // X86 wants to expand cmov itself.
474  setOperationAction(ISD::SELECT          , MVT::i8   , Custom);
475  setOperationAction(ISD::SELECT          , MVT::i16  , Custom);
476  setOperationAction(ISD::SELECT          , MVT::i32  , Custom);
477  setOperationAction(ISD::SELECT          , MVT::f32  , Custom);
478  setOperationAction(ISD::SELECT          , MVT::f64  , Custom);
479  setOperationAction(ISD::SELECT          , MVT::f80  , Custom);
480  setOperationAction(ISD::SETCC           , MVT::i8   , Custom);
481  setOperationAction(ISD::SETCC           , MVT::i16  , Custom);
482  setOperationAction(ISD::SETCC           , MVT::i32  , Custom);
483  setOperationAction(ISD::SETCC           , MVT::f32  , Custom);
484  setOperationAction(ISD::SETCC           , MVT::f64  , Custom);
485  setOperationAction(ISD::SETCC           , MVT::f80  , Custom);
486  if (Subtarget->is64Bit()) {
487    setOperationAction(ISD::SELECT        , MVT::i64  , Custom);
488    setOperationAction(ISD::SETCC         , MVT::i64  , Custom);
489  }
490  setOperationAction(ISD::EH_RETURN       , MVT::Other, Custom);
491  // NOTE: EH_SJLJ_SETJMP/_LONGJMP supported here is NOT intended to support
492  // SjLj exception handling but a light-weight setjmp/longjmp replacement to
493  // support continuation, user-level threading, and etc.. As a result, no
494  // other SjLj exception interfaces are implemented and please don't build
495  // your own exception handling based on them.
496  // LLVM/Clang supports zero-cost DWARF exception handling.
497  setOperationAction(ISD::EH_SJLJ_SETJMP, MVT::i32, Custom);
498  setOperationAction(ISD::EH_SJLJ_LONGJMP, MVT::Other, Custom);
499
500  // Darwin ABI issue.
501  setOperationAction(ISD::ConstantPool    , MVT::i32  , Custom);
502  setOperationAction(ISD::JumpTable       , MVT::i32  , Custom);
503  setOperationAction(ISD::GlobalAddress   , MVT::i32  , Custom);
504  setOperationAction(ISD::GlobalTLSAddress, MVT::i32  , Custom);
505  if (Subtarget->is64Bit())
506    setOperationAction(ISD::GlobalTLSAddress, MVT::i64, Custom);
507  setOperationAction(ISD::ExternalSymbol  , MVT::i32  , Custom);
508  setOperationAction(ISD::BlockAddress    , MVT::i32  , Custom);
509  if (Subtarget->is64Bit()) {
510    setOperationAction(ISD::ConstantPool  , MVT::i64  , Custom);
511    setOperationAction(ISD::JumpTable     , MVT::i64  , Custom);
512    setOperationAction(ISD::GlobalAddress , MVT::i64  , Custom);
513    setOperationAction(ISD::ExternalSymbol, MVT::i64  , Custom);
514    setOperationAction(ISD::BlockAddress  , MVT::i64  , Custom);
515  }
516  // 64-bit addm sub, shl, sra, srl (iff 32-bit x86)
517  setOperationAction(ISD::SHL_PARTS       , MVT::i32  , Custom);
518  setOperationAction(ISD::SRA_PARTS       , MVT::i32  , Custom);
519  setOperationAction(ISD::SRL_PARTS       , MVT::i32  , Custom);
520  if (Subtarget->is64Bit()) {
521    setOperationAction(ISD::SHL_PARTS     , MVT::i64  , Custom);
522    setOperationAction(ISD::SRA_PARTS     , MVT::i64  , Custom);
523    setOperationAction(ISD::SRL_PARTS     , MVT::i64  , Custom);
524  }
525
526  if (Subtarget->hasSSE1())
527    setOperationAction(ISD::PREFETCH      , MVT::Other, Legal);
528
529  setOperationAction(ISD::ATOMIC_FENCE  , MVT::Other, Custom);
530
531  // Expand certain atomics
532  for (unsigned i = 0; i != array_lengthof(IntVTs); ++i) {
533    MVT VT = IntVTs[i];
534    setOperationAction(ISD::ATOMIC_CMP_SWAP, VT, Custom);
535    setOperationAction(ISD::ATOMIC_LOAD_SUB, VT, Custom);
536    setOperationAction(ISD::ATOMIC_STORE, VT, Custom);
537  }
538
539  if (!Subtarget->is64Bit()) {
540    setOperationAction(ISD::ATOMIC_LOAD, MVT::i64, Custom);
541    setOperationAction(ISD::ATOMIC_LOAD_ADD, MVT::i64, Custom);
542    setOperationAction(ISD::ATOMIC_LOAD_SUB, MVT::i64, Custom);
543    setOperationAction(ISD::ATOMIC_LOAD_AND, MVT::i64, Custom);
544    setOperationAction(ISD::ATOMIC_LOAD_OR, MVT::i64, Custom);
545    setOperationAction(ISD::ATOMIC_LOAD_XOR, MVT::i64, Custom);
546    setOperationAction(ISD::ATOMIC_LOAD_NAND, MVT::i64, Custom);
547    setOperationAction(ISD::ATOMIC_SWAP, MVT::i64, Custom);
548    setOperationAction(ISD::ATOMIC_LOAD_MAX, MVT::i64, Custom);
549    setOperationAction(ISD::ATOMIC_LOAD_MIN, MVT::i64, Custom);
550    setOperationAction(ISD::ATOMIC_LOAD_UMAX, MVT::i64, Custom);
551    setOperationAction(ISD::ATOMIC_LOAD_UMIN, MVT::i64, Custom);
552  }
553
554  if (Subtarget->hasCmpxchg16b()) {
555    setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i128, Custom);
556  }
557
558  // FIXME - use subtarget debug flags
559  if (!Subtarget->isTargetDarwin() &&
560      !Subtarget->isTargetELF() &&
561      !Subtarget->isTargetCygMing()) {
562    setOperationAction(ISD::EH_LABEL, MVT::Other, Expand);
563  }
564
565  setOperationAction(ISD::EXCEPTIONADDR, MVT::i64, Expand);
566  setOperationAction(ISD::EHSELECTION,   MVT::i64, Expand);
567  setOperationAction(ISD::EXCEPTIONADDR, MVT::i32, Expand);
568  setOperationAction(ISD::EHSELECTION,   MVT::i32, Expand);
569  if (Subtarget->is64Bit()) {
570    setExceptionPointerRegister(X86::RAX);
571    setExceptionSelectorRegister(X86::RDX);
572  } else {
573    setExceptionPointerRegister(X86::EAX);
574    setExceptionSelectorRegister(X86::EDX);
575  }
576  setOperationAction(ISD::FRAME_TO_ARGS_OFFSET, MVT::i32, Custom);
577  setOperationAction(ISD::FRAME_TO_ARGS_OFFSET, MVT::i64, Custom);
578
579  setOperationAction(ISD::INIT_TRAMPOLINE, MVT::Other, Custom);
580  setOperationAction(ISD::ADJUST_TRAMPOLINE, MVT::Other, Custom);
581
582  setOperationAction(ISD::TRAP, MVT::Other, Legal);
583  setOperationAction(ISD::DEBUGTRAP, MVT::Other, Legal);
584
585  // VASTART needs to be custom lowered to use the VarArgsFrameIndex
586  setOperationAction(ISD::VASTART           , MVT::Other, Custom);
587  setOperationAction(ISD::VAEND             , MVT::Other, Expand);
588  if (Subtarget->is64Bit()) {
589    setOperationAction(ISD::VAARG           , MVT::Other, Custom);
590    setOperationAction(ISD::VACOPY          , MVT::Other, Custom);
591  } else {
592    setOperationAction(ISD::VAARG           , MVT::Other, Expand);
593    setOperationAction(ISD::VACOPY          , MVT::Other, Expand);
594  }
595
596  setOperationAction(ISD::STACKSAVE,          MVT::Other, Expand);
597  setOperationAction(ISD::STACKRESTORE,       MVT::Other, Expand);
598
599  if (Subtarget->isTargetCOFF() && !Subtarget->isTargetEnvMacho())
600    setOperationAction(ISD::DYNAMIC_STACKALLOC, Subtarget->is64Bit() ?
601                       MVT::i64 : MVT::i32, Custom);
602  else if (TM.Options.EnableSegmentedStacks)
603    setOperationAction(ISD::DYNAMIC_STACKALLOC, Subtarget->is64Bit() ?
604                       MVT::i64 : MVT::i32, Custom);
605  else
606    setOperationAction(ISD::DYNAMIC_STACKALLOC, Subtarget->is64Bit() ?
607                       MVT::i64 : MVT::i32, Expand);
608
609  if (!TM.Options.UseSoftFloat && X86ScalarSSEf64) {
610    // f32 and f64 use SSE.
611    // Set up the FP register classes.
612    addRegisterClass(MVT::f32, &X86::FR32RegClass);
613    addRegisterClass(MVT::f64, &X86::FR64RegClass);
614
615    // Use ANDPD to simulate FABS.
616    setOperationAction(ISD::FABS , MVT::f64, Custom);
617    setOperationAction(ISD::FABS , MVT::f32, Custom);
618
619    // Use XORP to simulate FNEG.
620    setOperationAction(ISD::FNEG , MVT::f64, Custom);
621    setOperationAction(ISD::FNEG , MVT::f32, Custom);
622
623    // Use ANDPD and ORPD to simulate FCOPYSIGN.
624    setOperationAction(ISD::FCOPYSIGN, MVT::f64, Custom);
625    setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom);
626
627    // Lower this to FGETSIGNx86 plus an AND.
628    setOperationAction(ISD::FGETSIGN, MVT::i64, Custom);
629    setOperationAction(ISD::FGETSIGN, MVT::i32, Custom);
630
631    // We don't support sin/cos/fmod
632    setOperationAction(ISD::FSIN   , MVT::f64, Expand);
633    setOperationAction(ISD::FCOS   , MVT::f64, Expand);
634    setOperationAction(ISD::FSINCOS, MVT::f64, Expand);
635    setOperationAction(ISD::FSIN   , MVT::f32, Expand);
636    setOperationAction(ISD::FCOS   , MVT::f32, Expand);
637    setOperationAction(ISD::FSINCOS, MVT::f32, Expand);
638
639    // Expand FP immediates into loads from the stack, except for the special
640    // cases we handle.
641    addLegalFPImmediate(APFloat(+0.0)); // xorpd
642    addLegalFPImmediate(APFloat(+0.0f)); // xorps
643  } else if (!TM.Options.UseSoftFloat && X86ScalarSSEf32) {
644    // Use SSE for f32, x87 for f64.
645    // Set up the FP register classes.
646    addRegisterClass(MVT::f32, &X86::FR32RegClass);
647    addRegisterClass(MVT::f64, &X86::RFP64RegClass);
648
649    // Use ANDPS to simulate FABS.
650    setOperationAction(ISD::FABS , MVT::f32, Custom);
651
652    // Use XORP to simulate FNEG.
653    setOperationAction(ISD::FNEG , MVT::f32, Custom);
654
655    setOperationAction(ISD::UNDEF,     MVT::f64, Expand);
656
657    // Use ANDPS and ORPS to simulate FCOPYSIGN.
658    setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
659    setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom);
660
661    // We don't support sin/cos/fmod
662    setOperationAction(ISD::FSIN   , MVT::f32, Expand);
663    setOperationAction(ISD::FCOS   , MVT::f32, Expand);
664    setOperationAction(ISD::FSINCOS, MVT::f32, Expand);
665
666    // Special cases we handle for FP constants.
667    addLegalFPImmediate(APFloat(+0.0f)); // xorps
668    addLegalFPImmediate(APFloat(+0.0)); // FLD0
669    addLegalFPImmediate(APFloat(+1.0)); // FLD1
670    addLegalFPImmediate(APFloat(-0.0)); // FLD0/FCHS
671    addLegalFPImmediate(APFloat(-1.0)); // FLD1/FCHS
672
673    if (!TM.Options.UnsafeFPMath) {
674      setOperationAction(ISD::FSIN   , MVT::f64, Expand);
675      setOperationAction(ISD::FCOS   , MVT::f64, Expand);
676      setOperationAction(ISD::FSINCOS, MVT::f64, Expand);
677    }
678  } else if (!TM.Options.UseSoftFloat) {
679    // f32 and f64 in x87.
680    // Set up the FP register classes.
681    addRegisterClass(MVT::f64, &X86::RFP64RegClass);
682    addRegisterClass(MVT::f32, &X86::RFP32RegClass);
683
684    setOperationAction(ISD::UNDEF,     MVT::f64, Expand);
685    setOperationAction(ISD::UNDEF,     MVT::f32, Expand);
686    setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
687    setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand);
688
689    if (!TM.Options.UnsafeFPMath) {
690      setOperationAction(ISD::FSIN   , MVT::f64, Expand);
691      setOperationAction(ISD::FSIN   , MVT::f32, Expand);
692      setOperationAction(ISD::FCOS   , MVT::f64, Expand);
693      setOperationAction(ISD::FCOS   , MVT::f32, Expand);
694      setOperationAction(ISD::FSINCOS, MVT::f64, Expand);
695      setOperationAction(ISD::FSINCOS, MVT::f32, Expand);
696    }
697    addLegalFPImmediate(APFloat(+0.0)); // FLD0
698    addLegalFPImmediate(APFloat(+1.0)); // FLD1
699    addLegalFPImmediate(APFloat(-0.0)); // FLD0/FCHS
700    addLegalFPImmediate(APFloat(-1.0)); // FLD1/FCHS
701    addLegalFPImmediate(APFloat(+0.0f)); // FLD0
702    addLegalFPImmediate(APFloat(+1.0f)); // FLD1
703    addLegalFPImmediate(APFloat(-0.0f)); // FLD0/FCHS
704    addLegalFPImmediate(APFloat(-1.0f)); // FLD1/FCHS
705  }
706
707  // We don't support FMA.
708  setOperationAction(ISD::FMA, MVT::f64, Expand);
709  setOperationAction(ISD::FMA, MVT::f32, Expand);
710
711  // Long double always uses X87.
712  if (!TM.Options.UseSoftFloat) {
713    addRegisterClass(MVT::f80, &X86::RFP80RegClass);
714    setOperationAction(ISD::UNDEF,     MVT::f80, Expand);
715    setOperationAction(ISD::FCOPYSIGN, MVT::f80, Expand);
716    {
717      APFloat TmpFlt = APFloat::getZero(APFloat::x87DoubleExtended);
718      addLegalFPImmediate(TmpFlt);  // FLD0
719      TmpFlt.changeSign();
720      addLegalFPImmediate(TmpFlt);  // FLD0/FCHS
721
722      bool ignored;
723      APFloat TmpFlt2(+1.0);
724      TmpFlt2.convert(APFloat::x87DoubleExtended, APFloat::rmNearestTiesToEven,
725                      &ignored);
726      addLegalFPImmediate(TmpFlt2);  // FLD1
727      TmpFlt2.changeSign();
728      addLegalFPImmediate(TmpFlt2);  // FLD1/FCHS
729    }
730
731    if (!TM.Options.UnsafeFPMath) {
732      setOperationAction(ISD::FSIN   , MVT::f80, Expand);
733      setOperationAction(ISD::FCOS   , MVT::f80, Expand);
734      setOperationAction(ISD::FSINCOS, MVT::f80, Expand);
735    }
736
737    setOperationAction(ISD::FFLOOR, MVT::f80, Expand);
738    setOperationAction(ISD::FCEIL,  MVT::f80, Expand);
739    setOperationAction(ISD::FTRUNC, MVT::f80, Expand);
740    setOperationAction(ISD::FRINT,  MVT::f80, Expand);
741    setOperationAction(ISD::FNEARBYINT, MVT::f80, Expand);
742    setOperationAction(ISD::FMA, MVT::f80, Expand);
743  }
744
745  // Always use a library call for pow.
746  setOperationAction(ISD::FPOW             , MVT::f32  , Expand);
747  setOperationAction(ISD::FPOW             , MVT::f64  , Expand);
748  setOperationAction(ISD::FPOW             , MVT::f80  , Expand);
749
750  setOperationAction(ISD::FLOG, MVT::f80, Expand);
751  setOperationAction(ISD::FLOG2, MVT::f80, Expand);
752  setOperationAction(ISD::FLOG10, MVT::f80, Expand);
753  setOperationAction(ISD::FEXP, MVT::f80, Expand);
754  setOperationAction(ISD::FEXP2, MVT::f80, Expand);
755
756  // First set operation action for all vector types to either promote
757  // (for widening) or expand (for scalarization). Then we will selectively
758  // turn on ones that can be effectively codegen'd.
759  for (int i = MVT::FIRST_VECTOR_VALUETYPE;
760           i <= MVT::LAST_VECTOR_VALUETYPE; ++i) {
761    MVT VT = (MVT::SimpleValueType)i;
762    setOperationAction(ISD::ADD , VT, Expand);
763    setOperationAction(ISD::SUB , VT, Expand);
764    setOperationAction(ISD::FADD, VT, Expand);
765    setOperationAction(ISD::FNEG, VT, Expand);
766    setOperationAction(ISD::FSUB, VT, Expand);
767    setOperationAction(ISD::MUL , VT, Expand);
768    setOperationAction(ISD::FMUL, VT, Expand);
769    setOperationAction(ISD::SDIV, VT, Expand);
770    setOperationAction(ISD::UDIV, VT, Expand);
771    setOperationAction(ISD::FDIV, VT, Expand);
772    setOperationAction(ISD::SREM, VT, Expand);
773    setOperationAction(ISD::UREM, VT, Expand);
774    setOperationAction(ISD::LOAD, VT, Expand);
775    setOperationAction(ISD::VECTOR_SHUFFLE, VT, Expand);
776    setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT,Expand);
777    setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Expand);
778    setOperationAction(ISD::EXTRACT_SUBVECTOR, VT,Expand);
779    setOperationAction(ISD::INSERT_SUBVECTOR, VT,Expand);
780    setOperationAction(ISD::FABS, VT, Expand);
781    setOperationAction(ISD::FSIN, VT, Expand);
782    setOperationAction(ISD::FSINCOS, VT, Expand);
783    setOperationAction(ISD::FCOS, VT, Expand);
784    setOperationAction(ISD::FSINCOS, VT, Expand);
785    setOperationAction(ISD::FREM, VT, Expand);
786    setOperationAction(ISD::FMA,  VT, Expand);
787    setOperationAction(ISD::FPOWI, VT, Expand);
788    setOperationAction(ISD::FSQRT, VT, Expand);
789    setOperationAction(ISD::FCOPYSIGN, VT, Expand);
790    setOperationAction(ISD::FFLOOR, VT, Expand);
791    setOperationAction(ISD::FCEIL, VT, Expand);
792    setOperationAction(ISD::FTRUNC, VT, Expand);
793    setOperationAction(ISD::FRINT, VT, Expand);
794    setOperationAction(ISD::FNEARBYINT, VT, Expand);
795    setOperationAction(ISD::SMUL_LOHI, VT, Expand);
796    setOperationAction(ISD::UMUL_LOHI, VT, Expand);
797    setOperationAction(ISD::SDIVREM, VT, Expand);
798    setOperationAction(ISD::UDIVREM, VT, Expand);
799    setOperationAction(ISD::FPOW, VT, Expand);
800    setOperationAction(ISD::CTPOP, VT, Expand);
801    setOperationAction(ISD::CTTZ, VT, Expand);
802    setOperationAction(ISD::CTTZ_ZERO_UNDEF, VT, Expand);
803    setOperationAction(ISD::CTLZ, VT, Expand);
804    setOperationAction(ISD::CTLZ_ZERO_UNDEF, VT, Expand);
805    setOperationAction(ISD::SHL, VT, Expand);
806    setOperationAction(ISD::SRA, VT, Expand);
807    setOperationAction(ISD::SRL, VT, Expand);
808    setOperationAction(ISD::ROTL, VT, Expand);
809    setOperationAction(ISD::ROTR, VT, Expand);
810    setOperationAction(ISD::BSWAP, VT, Expand);
811    setOperationAction(ISD::SETCC, VT, Expand);
812    setOperationAction(ISD::FLOG, VT, Expand);
813    setOperationAction(ISD::FLOG2, VT, Expand);
814    setOperationAction(ISD::FLOG10, VT, Expand);
815    setOperationAction(ISD::FEXP, VT, Expand);
816    setOperationAction(ISD::FEXP2, VT, Expand);
817    setOperationAction(ISD::FP_TO_UINT, VT, Expand);
818    setOperationAction(ISD::FP_TO_SINT, VT, Expand);
819    setOperationAction(ISD::UINT_TO_FP, VT, Expand);
820    setOperationAction(ISD::SINT_TO_FP, VT, Expand);
821    setOperationAction(ISD::SIGN_EXTEND_INREG, VT,Expand);
822    setOperationAction(ISD::TRUNCATE, VT, Expand);
823    setOperationAction(ISD::SIGN_EXTEND, VT, Expand);
824    setOperationAction(ISD::ZERO_EXTEND, VT, Expand);
825    setOperationAction(ISD::ANY_EXTEND, VT, Expand);
826    setOperationAction(ISD::VSELECT, VT, Expand);
827    for (int InnerVT = MVT::FIRST_VECTOR_VALUETYPE;
828             InnerVT <= MVT::LAST_VECTOR_VALUETYPE; ++InnerVT)
829      setTruncStoreAction(VT,
830                          (MVT::SimpleValueType)InnerVT, Expand);
831    setLoadExtAction(ISD::SEXTLOAD, VT, Expand);
832    setLoadExtAction(ISD::ZEXTLOAD, VT, Expand);
833    setLoadExtAction(ISD::EXTLOAD, VT, Expand);
834  }
835
836  // FIXME: In order to prevent SSE instructions being expanded to MMX ones
837  // with -msoft-float, disable use of MMX as well.
838  if (!TM.Options.UseSoftFloat && Subtarget->hasMMX()) {
839    addRegisterClass(MVT::x86mmx, &X86::VR64RegClass);
840    // No operations on x86mmx supported, everything uses intrinsics.
841  }
842
843  // MMX-sized vectors (other than x86mmx) are expected to be expanded
844  // into smaller operations.
845  setOperationAction(ISD::MULHS,              MVT::v8i8,  Expand);
846  setOperationAction(ISD::MULHS,              MVT::v4i16, Expand);
847  setOperationAction(ISD::MULHS,              MVT::v2i32, Expand);
848  setOperationAction(ISD::MULHS,              MVT::v1i64, Expand);
849  setOperationAction(ISD::AND,                MVT::v8i8,  Expand);
850  setOperationAction(ISD::AND,                MVT::v4i16, Expand);
851  setOperationAction(ISD::AND,                MVT::v2i32, Expand);
852  setOperationAction(ISD::AND,                MVT::v1i64, Expand);
853  setOperationAction(ISD::OR,                 MVT::v8i8,  Expand);
854  setOperationAction(ISD::OR,                 MVT::v4i16, Expand);
855  setOperationAction(ISD::OR,                 MVT::v2i32, Expand);
856  setOperationAction(ISD::OR,                 MVT::v1i64, Expand);
857  setOperationAction(ISD::XOR,                MVT::v8i8,  Expand);
858  setOperationAction(ISD::XOR,                MVT::v4i16, Expand);
859  setOperationAction(ISD::XOR,                MVT::v2i32, Expand);
860  setOperationAction(ISD::XOR,                MVT::v1i64, Expand);
861  setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v8i8,  Expand);
862  setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v4i16, Expand);
863  setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v2i32, Expand);
864  setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v1i64, Expand);
865  setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v1i64, Expand);
866  setOperationAction(ISD::SELECT,             MVT::v8i8,  Expand);
867  setOperationAction(ISD::SELECT,             MVT::v4i16, Expand);
868  setOperationAction(ISD::SELECT,             MVT::v2i32, Expand);
869  setOperationAction(ISD::SELECT,             MVT::v1i64, Expand);
870  setOperationAction(ISD::BITCAST,            MVT::v8i8,  Expand);
871  setOperationAction(ISD::BITCAST,            MVT::v4i16, Expand);
872  setOperationAction(ISD::BITCAST,            MVT::v2i32, Expand);
873  setOperationAction(ISD::BITCAST,            MVT::v1i64, Expand);
874
875  if (!TM.Options.UseSoftFloat && Subtarget->hasSSE1()) {
876    addRegisterClass(MVT::v4f32, &X86::VR128RegClass);
877
878    setOperationAction(ISD::FADD,               MVT::v4f32, Legal);
879    setOperationAction(ISD::FSUB,               MVT::v4f32, Legal);
880    setOperationAction(ISD::FMUL,               MVT::v4f32, Legal);
881    setOperationAction(ISD::FDIV,               MVT::v4f32, Legal);
882    setOperationAction(ISD::FSQRT,              MVT::v4f32, Legal);
883    setOperationAction(ISD::FNEG,               MVT::v4f32, Custom);
884    setOperationAction(ISD::FABS,               MVT::v4f32, Custom);
885    setOperationAction(ISD::LOAD,               MVT::v4f32, Legal);
886    setOperationAction(ISD::BUILD_VECTOR,       MVT::v4f32, Custom);
887    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v4f32, Custom);
888    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Custom);
889    setOperationAction(ISD::SELECT,             MVT::v4f32, Custom);
890  }
891
892  if (!TM.Options.UseSoftFloat && Subtarget->hasSSE2()) {
893    addRegisterClass(MVT::v2f64, &X86::VR128RegClass);
894
895    // FIXME: Unfortunately -soft-float and -no-implicit-float means XMM
896    // registers cannot be used even for integer operations.
897    addRegisterClass(MVT::v16i8, &X86::VR128RegClass);
898    addRegisterClass(MVT::v8i16, &X86::VR128RegClass);
899    addRegisterClass(MVT::v4i32, &X86::VR128RegClass);
900    addRegisterClass(MVT::v2i64, &X86::VR128RegClass);
901
902    setOperationAction(ISD::ADD,                MVT::v16i8, Legal);
903    setOperationAction(ISD::ADD,                MVT::v8i16, Legal);
904    setOperationAction(ISD::ADD,                MVT::v4i32, Legal);
905    setOperationAction(ISD::ADD,                MVT::v2i64, Legal);
906    setOperationAction(ISD::MUL,                MVT::v4i32, Custom);
907    setOperationAction(ISD::MUL,                MVT::v2i64, Custom);
908    setOperationAction(ISD::SUB,                MVT::v16i8, Legal);
909    setOperationAction(ISD::SUB,                MVT::v8i16, Legal);
910    setOperationAction(ISD::SUB,                MVT::v4i32, Legal);
911    setOperationAction(ISD::SUB,                MVT::v2i64, Legal);
912    setOperationAction(ISD::MUL,                MVT::v8i16, Legal);
913    setOperationAction(ISD::FADD,               MVT::v2f64, Legal);
914    setOperationAction(ISD::FSUB,               MVT::v2f64, Legal);
915    setOperationAction(ISD::FMUL,               MVT::v2f64, Legal);
916    setOperationAction(ISD::FDIV,               MVT::v2f64, Legal);
917    setOperationAction(ISD::FSQRT,              MVT::v2f64, Legal);
918    setOperationAction(ISD::FNEG,               MVT::v2f64, Custom);
919    setOperationAction(ISD::FABS,               MVT::v2f64, Custom);
920
921    setOperationAction(ISD::SETCC,              MVT::v2i64, Custom);
922    setOperationAction(ISD::SETCC,              MVT::v16i8, Custom);
923    setOperationAction(ISD::SETCC,              MVT::v8i16, Custom);
924    setOperationAction(ISD::SETCC,              MVT::v4i32, Custom);
925
926    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v16i8, Custom);
927    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v8i16, Custom);
928    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v8i16, Custom);
929    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4i32, Custom);
930    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4f32, Custom);
931
932    // Custom lower build_vector, vector_shuffle, and extract_vector_elt.
933    for (int i = MVT::v16i8; i != MVT::v2i64; ++i) {
934      MVT VT = (MVT::SimpleValueType)i;
935      // Do not attempt to custom lower non-power-of-2 vectors
936      if (!isPowerOf2_32(VT.getVectorNumElements()))
937        continue;
938      // Do not attempt to custom lower non-128-bit vectors
939      if (!VT.is128BitVector())
940        continue;
941      setOperationAction(ISD::BUILD_VECTOR,       VT, Custom);
942      setOperationAction(ISD::VECTOR_SHUFFLE,     VT, Custom);
943      setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom);
944    }
945
946    setOperationAction(ISD::BUILD_VECTOR,       MVT::v2f64, Custom);
947    setOperationAction(ISD::BUILD_VECTOR,       MVT::v2i64, Custom);
948    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v2f64, Custom);
949    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v2i64, Custom);
950    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v2f64, Custom);
951    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Custom);
952
953    if (Subtarget->is64Bit()) {
954      setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v2i64, Custom);
955      setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i64, Custom);
956    }
957
958    // Promote v16i8, v8i16, v4i32 load, select, and, or, xor to v2i64.
959    for (int i = MVT::v16i8; i != MVT::v2i64; ++i) {
960      MVT VT = (MVT::SimpleValueType)i;
961
962      // Do not attempt to promote non-128-bit vectors
963      if (!VT.is128BitVector())
964        continue;
965
966      setOperationAction(ISD::AND,    VT, Promote);
967      AddPromotedToType (ISD::AND,    VT, MVT::v2i64);
968      setOperationAction(ISD::OR,     VT, Promote);
969      AddPromotedToType (ISD::OR,     VT, MVT::v2i64);
970      setOperationAction(ISD::XOR,    VT, Promote);
971      AddPromotedToType (ISD::XOR,    VT, MVT::v2i64);
972      setOperationAction(ISD::LOAD,   VT, Promote);
973      AddPromotedToType (ISD::LOAD,   VT, MVT::v2i64);
974      setOperationAction(ISD::SELECT, VT, Promote);
975      AddPromotedToType (ISD::SELECT, VT, MVT::v2i64);
976    }
977
978    setTruncStoreAction(MVT::f64, MVT::f32, Expand);
979
980    // Custom lower v2i64 and v2f64 selects.
981    setOperationAction(ISD::LOAD,               MVT::v2f64, Legal);
982    setOperationAction(ISD::LOAD,               MVT::v2i64, Legal);
983    setOperationAction(ISD::SELECT,             MVT::v2f64, Custom);
984    setOperationAction(ISD::SELECT,             MVT::v2i64, Custom);
985
986    setOperationAction(ISD::FP_TO_SINT,         MVT::v4i32, Legal);
987    setOperationAction(ISD::SINT_TO_FP,         MVT::v4i32, Legal);
988
989    setOperationAction(ISD::UINT_TO_FP,         MVT::v4i8,  Custom);
990    setOperationAction(ISD::UINT_TO_FP,         MVT::v4i16, Custom);
991    // As there is no 64-bit GPR available, we need build a special custom
992    // sequence to convert from v2i32 to v2f32.
993    if (!Subtarget->is64Bit())
994      setOperationAction(ISD::UINT_TO_FP,       MVT::v2f32, Custom);
995
996    setOperationAction(ISD::FP_EXTEND,          MVT::v2f32, Custom);
997    setOperationAction(ISD::FP_ROUND,           MVT::v2f32, Custom);
998
999    setLoadExtAction(ISD::EXTLOAD,              MVT::v2f32, Legal);
1000  }
1001
1002  if (Subtarget->hasSSE41()) {
1003    setOperationAction(ISD::FFLOOR,             MVT::f32,   Legal);
1004    setOperationAction(ISD::FCEIL,              MVT::f32,   Legal);
1005    setOperationAction(ISD::FTRUNC,             MVT::f32,   Legal);
1006    setOperationAction(ISD::FRINT,              MVT::f32,   Legal);
1007    setOperationAction(ISD::FNEARBYINT,         MVT::f32,   Legal);
1008    setOperationAction(ISD::FFLOOR,             MVT::f64,   Legal);
1009    setOperationAction(ISD::FCEIL,              MVT::f64,   Legal);
1010    setOperationAction(ISD::FTRUNC,             MVT::f64,   Legal);
1011    setOperationAction(ISD::FRINT,              MVT::f64,   Legal);
1012    setOperationAction(ISD::FNEARBYINT,         MVT::f64,   Legal);
1013
1014    setOperationAction(ISD::FFLOOR,             MVT::v4f32, Legal);
1015    setOperationAction(ISD::FCEIL,              MVT::v4f32, Legal);
1016    setOperationAction(ISD::FTRUNC,             MVT::v4f32, Legal);
1017    setOperationAction(ISD::FRINT,              MVT::v4f32, Legal);
1018    setOperationAction(ISD::FNEARBYINT,         MVT::v4f32, Legal);
1019    setOperationAction(ISD::FFLOOR,             MVT::v2f64, Legal);
1020    setOperationAction(ISD::FCEIL,              MVT::v2f64, Legal);
1021    setOperationAction(ISD::FTRUNC,             MVT::v2f64, Legal);
1022    setOperationAction(ISD::FRINT,              MVT::v2f64, Legal);
1023    setOperationAction(ISD::FNEARBYINT,         MVT::v2f64, Legal);
1024
1025    // FIXME: Do we need to handle scalar-to-vector here?
1026    setOperationAction(ISD::MUL,                MVT::v4i32, Legal);
1027
1028    setOperationAction(ISD::VSELECT,            MVT::v2f64, Legal);
1029    setOperationAction(ISD::VSELECT,            MVT::v2i64, Legal);
1030    setOperationAction(ISD::VSELECT,            MVT::v16i8, Legal);
1031    setOperationAction(ISD::VSELECT,            MVT::v4i32, Legal);
1032    setOperationAction(ISD::VSELECT,            MVT::v4f32, Legal);
1033
1034    // i8 and i16 vectors are custom , because the source register and source
1035    // source memory operand types are not the same width.  f32 vectors are
1036    // custom since the immediate controlling the insert encodes additional
1037    // information.
1038    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v16i8, Custom);
1039    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v8i16, Custom);
1040    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4i32, Custom);
1041    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4f32, Custom);
1042
1043    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v16i8, Custom);
1044    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v8i16, Custom);
1045    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4i32, Custom);
1046    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Custom);
1047
1048    // FIXME: these should be Legal but thats only for the case where
1049    // the index is constant.  For now custom expand to deal with that.
1050    if (Subtarget->is64Bit()) {
1051      setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v2i64, Custom);
1052      setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i64, Custom);
1053    }
1054  }
1055
1056  if (Subtarget->hasSSE2()) {
1057    setOperationAction(ISD::SRL,               MVT::v8i16, Custom);
1058    setOperationAction(ISD::SRL,               MVT::v16i8, Custom);
1059
1060    setOperationAction(ISD::SHL,               MVT::v8i16, Custom);
1061    setOperationAction(ISD::SHL,               MVT::v16i8, Custom);
1062
1063    setOperationAction(ISD::SRA,               MVT::v8i16, Custom);
1064    setOperationAction(ISD::SRA,               MVT::v16i8, Custom);
1065
1066    // In the customized shift lowering, the legal cases in AVX2 will be
1067    // recognized.
1068    setOperationAction(ISD::SRL,               MVT::v2i64, Custom);
1069    setOperationAction(ISD::SRL,               MVT::v4i32, Custom);
1070
1071    setOperationAction(ISD::SHL,               MVT::v2i64, Custom);
1072    setOperationAction(ISD::SHL,               MVT::v4i32, Custom);
1073
1074    setOperationAction(ISD::SRA,               MVT::v4i32, Custom);
1075
1076    setOperationAction(ISD::SDIV,              MVT::v8i16, Custom);
1077    setOperationAction(ISD::SDIV,              MVT::v4i32, Custom);
1078  }
1079
1080  if (!TM.Options.UseSoftFloat && Subtarget->hasFp256()) {
1081    addRegisterClass(MVT::v32i8,  &X86::VR256RegClass);
1082    addRegisterClass(MVT::v16i16, &X86::VR256RegClass);
1083    addRegisterClass(MVT::v8i32,  &X86::VR256RegClass);
1084    addRegisterClass(MVT::v8f32,  &X86::VR256RegClass);
1085    addRegisterClass(MVT::v4i64,  &X86::VR256RegClass);
1086    addRegisterClass(MVT::v4f64,  &X86::VR256RegClass);
1087
1088    setOperationAction(ISD::LOAD,               MVT::v8f32, Legal);
1089    setOperationAction(ISD::LOAD,               MVT::v4f64, Legal);
1090    setOperationAction(ISD::LOAD,               MVT::v4i64, Legal);
1091
1092    setOperationAction(ISD::FADD,               MVT::v8f32, Legal);
1093    setOperationAction(ISD::FSUB,               MVT::v8f32, Legal);
1094    setOperationAction(ISD::FMUL,               MVT::v8f32, Legal);
1095    setOperationAction(ISD::FDIV,               MVT::v8f32, Legal);
1096    setOperationAction(ISD::FSQRT,              MVT::v8f32, Legal);
1097    setOperationAction(ISD::FFLOOR,             MVT::v8f32, Legal);
1098    setOperationAction(ISD::FCEIL,              MVT::v8f32, Legal);
1099    setOperationAction(ISD::FTRUNC,             MVT::v8f32, Legal);
1100    setOperationAction(ISD::FRINT,              MVT::v8f32, Legal);
1101    setOperationAction(ISD::FNEARBYINT,         MVT::v8f32, Legal);
1102    setOperationAction(ISD::FNEG,               MVT::v8f32, Custom);
1103    setOperationAction(ISD::FABS,               MVT::v8f32, Custom);
1104
1105    setOperationAction(ISD::FADD,               MVT::v4f64, Legal);
1106    setOperationAction(ISD::FSUB,               MVT::v4f64, Legal);
1107    setOperationAction(ISD::FMUL,               MVT::v4f64, Legal);
1108    setOperationAction(ISD::FDIV,               MVT::v4f64, Legal);
1109    setOperationAction(ISD::FSQRT,              MVT::v4f64, Legal);
1110    setOperationAction(ISD::FFLOOR,             MVT::v4f64, Legal);
1111    setOperationAction(ISD::FCEIL,              MVT::v4f64, Legal);
1112    setOperationAction(ISD::FTRUNC,             MVT::v4f64, Legal);
1113    setOperationAction(ISD::FRINT,              MVT::v4f64, Legal);
1114    setOperationAction(ISD::FNEARBYINT,         MVT::v4f64, Legal);
1115    setOperationAction(ISD::FNEG,               MVT::v4f64, Custom);
1116    setOperationAction(ISD::FABS,               MVT::v4f64, Custom);
1117
1118    setOperationAction(ISD::TRUNCATE,           MVT::v8i16, Custom);
1119    setOperationAction(ISD::TRUNCATE,           MVT::v4i32, Custom);
1120
1121    setOperationAction(ISD::FP_TO_SINT,         MVT::v8i16, Custom);
1122
1123    setOperationAction(ISD::FP_TO_SINT,         MVT::v8i32, Legal);
1124    setOperationAction(ISD::SINT_TO_FP,         MVT::v8i16, Promote);
1125    setOperationAction(ISD::SINT_TO_FP,         MVT::v8i32, Legal);
1126    setOperationAction(ISD::FP_ROUND,           MVT::v4f32, Legal);
1127
1128    setOperationAction(ISD::ZERO_EXTEND,        MVT::v8i32, Custom);
1129    setOperationAction(ISD::UINT_TO_FP,         MVT::v8i8,  Custom);
1130    setOperationAction(ISD::UINT_TO_FP,         MVT::v8i16, Custom);
1131
1132    setLoadExtAction(ISD::EXTLOAD,              MVT::v4f32, Legal);
1133
1134    setOperationAction(ISD::SRL,               MVT::v16i16, Custom);
1135    setOperationAction(ISD::SRL,               MVT::v32i8, Custom);
1136
1137    setOperationAction(ISD::SHL,               MVT::v16i16, Custom);
1138    setOperationAction(ISD::SHL,               MVT::v32i8, Custom);
1139
1140    setOperationAction(ISD::SRA,               MVT::v16i16, Custom);
1141    setOperationAction(ISD::SRA,               MVT::v32i8, Custom);
1142
1143    setOperationAction(ISD::SDIV,              MVT::v16i16, Custom);
1144
1145    setOperationAction(ISD::SETCC,             MVT::v32i8, Custom);
1146    setOperationAction(ISD::SETCC,             MVT::v16i16, Custom);
1147    setOperationAction(ISD::SETCC,             MVT::v8i32, Custom);
1148    setOperationAction(ISD::SETCC,             MVT::v4i64, Custom);
1149
1150    setOperationAction(ISD::SELECT,            MVT::v4f64, Custom);
1151    setOperationAction(ISD::SELECT,            MVT::v4i64, Custom);
1152    setOperationAction(ISD::SELECT,            MVT::v8f32, Custom);
1153
1154    setOperationAction(ISD::VSELECT,           MVT::v4f64, Legal);
1155    setOperationAction(ISD::VSELECT,           MVT::v4i64, Legal);
1156    setOperationAction(ISD::VSELECT,           MVT::v8i32, Legal);
1157    setOperationAction(ISD::VSELECT,           MVT::v8f32, Legal);
1158
1159    setOperationAction(ISD::SIGN_EXTEND,       MVT::v4i64, Custom);
1160    setOperationAction(ISD::SIGN_EXTEND,       MVT::v8i32, Custom);
1161    setOperationAction(ISD::ZERO_EXTEND,       MVT::v4i64, Custom);
1162    setOperationAction(ISD::ZERO_EXTEND,       MVT::v8i32, Custom);
1163    setOperationAction(ISD::ANY_EXTEND,        MVT::v4i64, Custom);
1164    setOperationAction(ISD::ANY_EXTEND,        MVT::v8i32, Custom);
1165
1166    if (Subtarget->hasFMA() || Subtarget->hasFMA4()) {
1167      setOperationAction(ISD::FMA,             MVT::v8f32, Legal);
1168      setOperationAction(ISD::FMA,             MVT::v4f64, Legal);
1169      setOperationAction(ISD::FMA,             MVT::v4f32, Legal);
1170      setOperationAction(ISD::FMA,             MVT::v2f64, Legal);
1171      setOperationAction(ISD::FMA,             MVT::f32, Legal);
1172      setOperationAction(ISD::FMA,             MVT::f64, Legal);
1173    }
1174
1175    if (Subtarget->hasInt256()) {
1176      setOperationAction(ISD::ADD,             MVT::v4i64, Legal);
1177      setOperationAction(ISD::ADD,             MVT::v8i32, Legal);
1178      setOperationAction(ISD::ADD,             MVT::v16i16, Legal);
1179      setOperationAction(ISD::ADD,             MVT::v32i8, Legal);
1180
1181      setOperationAction(ISD::SUB,             MVT::v4i64, Legal);
1182      setOperationAction(ISD::SUB,             MVT::v8i32, Legal);
1183      setOperationAction(ISD::SUB,             MVT::v16i16, Legal);
1184      setOperationAction(ISD::SUB,             MVT::v32i8, Legal);
1185
1186      setOperationAction(ISD::MUL,             MVT::v4i64, Custom);
1187      setOperationAction(ISD::MUL,             MVT::v8i32, Legal);
1188      setOperationAction(ISD::MUL,             MVT::v16i16, Legal);
1189      // Don't lower v32i8 because there is no 128-bit byte mul
1190
1191      setOperationAction(ISD::VSELECT,         MVT::v32i8, Legal);
1192
1193      setOperationAction(ISD::SDIV,            MVT::v8i32, Custom);
1194    } else {
1195      setOperationAction(ISD::ADD,             MVT::v4i64, Custom);
1196      setOperationAction(ISD::ADD,             MVT::v8i32, Custom);
1197      setOperationAction(ISD::ADD,             MVT::v16i16, Custom);
1198      setOperationAction(ISD::ADD,             MVT::v32i8, Custom);
1199
1200      setOperationAction(ISD::SUB,             MVT::v4i64, Custom);
1201      setOperationAction(ISD::SUB,             MVT::v8i32, Custom);
1202      setOperationAction(ISD::SUB,             MVT::v16i16, Custom);
1203      setOperationAction(ISD::SUB,             MVT::v32i8, Custom);
1204
1205      setOperationAction(ISD::MUL,             MVT::v4i64, Custom);
1206      setOperationAction(ISD::MUL,             MVT::v8i32, Custom);
1207      setOperationAction(ISD::MUL,             MVT::v16i16, Custom);
1208      // Don't lower v32i8 because there is no 128-bit byte mul
1209    }
1210
1211    // In the customized shift lowering, the legal cases in AVX2 will be
1212    // recognized.
1213    setOperationAction(ISD::SRL,               MVT::v4i64, Custom);
1214    setOperationAction(ISD::SRL,               MVT::v8i32, Custom);
1215
1216    setOperationAction(ISD::SHL,               MVT::v4i64, Custom);
1217    setOperationAction(ISD::SHL,               MVT::v8i32, Custom);
1218
1219    setOperationAction(ISD::SRA,               MVT::v8i32, Custom);
1220
1221    // Custom lower several nodes for 256-bit types.
1222    for (int i = MVT::FIRST_VECTOR_VALUETYPE;
1223             i <= MVT::LAST_VECTOR_VALUETYPE; ++i) {
1224      MVT VT = (MVT::SimpleValueType)i;
1225
1226      // Extract subvector is special because the value type
1227      // (result) is 128-bit but the source is 256-bit wide.
1228      if (VT.is128BitVector())
1229        setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom);
1230
1231      // Do not attempt to custom lower other non-256-bit vectors
1232      if (!VT.is256BitVector())
1233        continue;
1234
1235      setOperationAction(ISD::BUILD_VECTOR,       VT, Custom);
1236      setOperationAction(ISD::VECTOR_SHUFFLE,     VT, Custom);
1237      setOperationAction(ISD::INSERT_VECTOR_ELT,  VT, Custom);
1238      setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom);
1239      setOperationAction(ISD::SCALAR_TO_VECTOR,   VT, Custom);
1240      setOperationAction(ISD::INSERT_SUBVECTOR,   VT, Custom);
1241      setOperationAction(ISD::CONCAT_VECTORS,     VT, Custom);
1242    }
1243
1244    // Promote v32i8, v16i16, v8i32 select, and, or, xor to v4i64.
1245    for (int i = MVT::v32i8; i != MVT::v4i64; ++i) {
1246      MVT VT = (MVT::SimpleValueType)i;
1247
1248      // Do not attempt to promote non-256-bit vectors
1249      if (!VT.is256BitVector())
1250        continue;
1251
1252      setOperationAction(ISD::AND,    VT, Promote);
1253      AddPromotedToType (ISD::AND,    VT, MVT::v4i64);
1254      setOperationAction(ISD::OR,     VT, Promote);
1255      AddPromotedToType (ISD::OR,     VT, MVT::v4i64);
1256      setOperationAction(ISD::XOR,    VT, Promote);
1257      AddPromotedToType (ISD::XOR,    VT, MVT::v4i64);
1258      setOperationAction(ISD::LOAD,   VT, Promote);
1259      AddPromotedToType (ISD::LOAD,   VT, MVT::v4i64);
1260      setOperationAction(ISD::SELECT, VT, Promote);
1261      AddPromotedToType (ISD::SELECT, VT, MVT::v4i64);
1262    }
1263  }
1264
1265  // SIGN_EXTEND_INREGs are evaluated by the extend type. Handle the expansion
1266  // of this type with custom code.
1267  for (int VT = MVT::FIRST_VECTOR_VALUETYPE;
1268           VT != MVT::LAST_VECTOR_VALUETYPE; VT++) {
1269    setOperationAction(ISD::SIGN_EXTEND_INREG, (MVT::SimpleValueType)VT,
1270                       Custom);
1271  }
1272
1273  // We want to custom lower some of our intrinsics.
1274  setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
1275  setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::Other, Custom);
1276
1277  // Only custom-lower 64-bit SADDO and friends on 64-bit because we don't
1278  // handle type legalization for these operations here.
1279  //
1280  // FIXME: We really should do custom legalization for addition and
1281  // subtraction on x86-32 once PR3203 is fixed.  We really can't do much better
1282  // than generic legalization for 64-bit multiplication-with-overflow, though.
1283  for (unsigned i = 0, e = 3+Subtarget->is64Bit(); i != e; ++i) {
1284    // Add/Sub/Mul with overflow operations are custom lowered.
1285    MVT VT = IntVTs[i];
1286    setOperationAction(ISD::SADDO, VT, Custom);
1287    setOperationAction(ISD::UADDO, VT, Custom);
1288    setOperationAction(ISD::SSUBO, VT, Custom);
1289    setOperationAction(ISD::USUBO, VT, Custom);
1290    setOperationAction(ISD::SMULO, VT, Custom);
1291    setOperationAction(ISD::UMULO, VT, Custom);
1292  }
1293
1294  // There are no 8-bit 3-address imul/mul instructions
1295  setOperationAction(ISD::SMULO, MVT::i8, Expand);
1296  setOperationAction(ISD::UMULO, MVT::i8, Expand);
1297
1298  if (!Subtarget->is64Bit()) {
1299    // These libcalls are not available in 32-bit.
1300    setLibcallName(RTLIB::SHL_I128, 0);
1301    setLibcallName(RTLIB::SRL_I128, 0);
1302    setLibcallName(RTLIB::SRA_I128, 0);
1303  }
1304
1305  // Combine sin / cos into one node or libcall if possible.
1306  if (Subtarget->hasSinCos()) {
1307    setLibcallName(RTLIB::SINCOS_F32, "sincosf");
1308    setLibcallName(RTLIB::SINCOS_F64, "sincos");
1309    if (Subtarget->isTargetDarwin()) {
1310      // For MacOSX, we don't want to the normal expansion of a libcall to
1311      // sincos. We want to issue a libcall to __sincos_stret to avoid memory
1312      // traffic.
1313      setOperationAction(ISD::FSINCOS, MVT::f64, Custom);
1314      setOperationAction(ISD::FSINCOS, MVT::f32, Custom);
1315    }
1316  }
1317
1318  // We have target-specific dag combine patterns for the following nodes:
1319  setTargetDAGCombine(ISD::VECTOR_SHUFFLE);
1320  setTargetDAGCombine(ISD::EXTRACT_VECTOR_ELT);
1321  setTargetDAGCombine(ISD::VSELECT);
1322  setTargetDAGCombine(ISD::SELECT);
1323  setTargetDAGCombine(ISD::SHL);
1324  setTargetDAGCombine(ISD::SRA);
1325  setTargetDAGCombine(ISD::SRL);
1326  setTargetDAGCombine(ISD::OR);
1327  setTargetDAGCombine(ISD::AND);
1328  setTargetDAGCombine(ISD::ADD);
1329  setTargetDAGCombine(ISD::FADD);
1330  setTargetDAGCombine(ISD::FSUB);
1331  setTargetDAGCombine(ISD::FMA);
1332  setTargetDAGCombine(ISD::SUB);
1333  setTargetDAGCombine(ISD::LOAD);
1334  setTargetDAGCombine(ISD::STORE);
1335  setTargetDAGCombine(ISD::ZERO_EXTEND);
1336  setTargetDAGCombine(ISD::ANY_EXTEND);
1337  setTargetDAGCombine(ISD::SIGN_EXTEND);
1338  setTargetDAGCombine(ISD::SIGN_EXTEND_INREG);
1339  setTargetDAGCombine(ISD::TRUNCATE);
1340  setTargetDAGCombine(ISD::SINT_TO_FP);
1341  setTargetDAGCombine(ISD::SETCC);
1342  if (Subtarget->is64Bit())
1343    setTargetDAGCombine(ISD::MUL);
1344  setTargetDAGCombine(ISD::XOR);
1345
1346  computeRegisterProperties();
1347
1348  // On Darwin, -Os means optimize for size without hurting performance,
1349  // do not reduce the limit.
1350  MaxStoresPerMemset = 16; // For @llvm.memset -> sequence of stores
1351  MaxStoresPerMemsetOptSize = Subtarget->isTargetDarwin() ? 16 : 8;
1352  MaxStoresPerMemcpy = 8; // For @llvm.memcpy -> sequence of stores
1353  MaxStoresPerMemcpyOptSize = Subtarget->isTargetDarwin() ? 8 : 4;
1354  MaxStoresPerMemmove = 8; // For @llvm.memmove -> sequence of stores
1355  MaxStoresPerMemmoveOptSize = Subtarget->isTargetDarwin() ? 8 : 4;
1356  setPrefLoopAlignment(4); // 2^4 bytes.
1357
1358  // Predictable cmov don't hurt on atom because it's in-order.
1359  PredictableSelectIsExpensive = !Subtarget->isAtom();
1360
1361  setPrefFunctionAlignment(4); // 2^4 bytes.
1362}
1363
1364EVT X86TargetLowering::getSetCCResultType(EVT VT) const {
1365  if (!VT.isVector()) return MVT::i8;
1366  return VT.changeVectorElementTypeToInteger();
1367}
1368
1369/// getMaxByValAlign - Helper for getByValTypeAlignment to determine
1370/// the desired ByVal argument alignment.
1371static void getMaxByValAlign(Type *Ty, unsigned &MaxAlign) {
1372  if (MaxAlign == 16)
1373    return;
1374  if (VectorType *VTy = dyn_cast<VectorType>(Ty)) {
1375    if (VTy->getBitWidth() == 128)
1376      MaxAlign = 16;
1377  } else if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
1378    unsigned EltAlign = 0;
1379    getMaxByValAlign(ATy->getElementType(), EltAlign);
1380    if (EltAlign > MaxAlign)
1381      MaxAlign = EltAlign;
1382  } else if (StructType *STy = dyn_cast<StructType>(Ty)) {
1383    for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
1384      unsigned EltAlign = 0;
1385      getMaxByValAlign(STy->getElementType(i), EltAlign);
1386      if (EltAlign > MaxAlign)
1387        MaxAlign = EltAlign;
1388      if (MaxAlign == 16)
1389        break;
1390    }
1391  }
1392}
1393
1394/// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
1395/// function arguments in the caller parameter area. For X86, aggregates
1396/// that contain SSE vectors are placed at 16-byte boundaries while the rest
1397/// are at 4-byte boundaries.
1398unsigned X86TargetLowering::getByValTypeAlignment(Type *Ty) const {
1399  if (Subtarget->is64Bit()) {
1400    // Max of 8 and alignment of type.
1401    unsigned TyAlign = TD->getABITypeAlignment(Ty);
1402    if (TyAlign > 8)
1403      return TyAlign;
1404    return 8;
1405  }
1406
1407  unsigned Align = 4;
1408  if (Subtarget->hasSSE1())
1409    getMaxByValAlign(Ty, Align);
1410  return Align;
1411}
1412
1413/// getOptimalMemOpType - Returns the target specific optimal type for load
1414/// and store operations as a result of memset, memcpy, and memmove
1415/// lowering. If DstAlign is zero that means it's safe to destination
1416/// alignment can satisfy any constraint. Similarly if SrcAlign is zero it
1417/// means there isn't a need to check it against alignment requirement,
1418/// probably because the source does not need to be loaded. If 'IsMemset' is
1419/// true, that means it's expanding a memset. If 'ZeroMemset' is true, that
1420/// means it's a memset of zero. 'MemcpyStrSrc' indicates whether the memcpy
1421/// source is constant so it does not need to be loaded.
1422/// It returns EVT::Other if the type should be determined using generic
1423/// target-independent logic.
1424EVT
1425X86TargetLowering::getOptimalMemOpType(uint64_t Size,
1426                                       unsigned DstAlign, unsigned SrcAlign,
1427                                       bool IsMemset, bool ZeroMemset,
1428                                       bool MemcpyStrSrc,
1429                                       MachineFunction &MF) const {
1430  const Function *F = MF.getFunction();
1431  if ((!IsMemset || ZeroMemset) &&
1432      !F->getAttributes().hasAttribute(AttributeSet::FunctionIndex,
1433                                       Attribute::NoImplicitFloat)) {
1434    if (Size >= 16 &&
1435        (Subtarget->isUnalignedMemAccessFast() ||
1436         ((DstAlign == 0 || DstAlign >= 16) &&
1437          (SrcAlign == 0 || SrcAlign >= 16)))) {
1438      if (Size >= 32) {
1439        if (Subtarget->hasInt256())
1440          return MVT::v8i32;
1441        if (Subtarget->hasFp256())
1442          return MVT::v8f32;
1443      }
1444      if (Subtarget->hasSSE2())
1445        return MVT::v4i32;
1446      if (Subtarget->hasSSE1())
1447        return MVT::v4f32;
1448    } else if (!MemcpyStrSrc && Size >= 8 &&
1449               !Subtarget->is64Bit() &&
1450               Subtarget->hasSSE2()) {
1451      // Do not use f64 to lower memcpy if source is string constant. It's
1452      // better to use i32 to avoid the loads.
1453      return MVT::f64;
1454    }
1455  }
1456  if (Subtarget->is64Bit() && Size >= 8)
1457    return MVT::i64;
1458  return MVT::i32;
1459}
1460
1461bool X86TargetLowering::isSafeMemOpType(MVT VT) const {
1462  if (VT == MVT::f32)
1463    return X86ScalarSSEf32;
1464  else if (VT == MVT::f64)
1465    return X86ScalarSSEf64;
1466  return true;
1467}
1468
1469bool
1470X86TargetLowering::allowsUnalignedMemoryAccesses(EVT VT, bool *Fast) const {
1471  if (Fast)
1472    *Fast = Subtarget->isUnalignedMemAccessFast();
1473  return true;
1474}
1475
1476/// getJumpTableEncoding - Return the entry encoding for a jump table in the
1477/// current function.  The returned value is a member of the
1478/// MachineJumpTableInfo::JTEntryKind enum.
1479unsigned X86TargetLowering::getJumpTableEncoding() const {
1480  // In GOT pic mode, each entry in the jump table is emitted as a @GOTOFF
1481  // symbol.
1482  if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
1483      Subtarget->isPICStyleGOT())
1484    return MachineJumpTableInfo::EK_Custom32;
1485
1486  // Otherwise, use the normal jump table encoding heuristics.
1487  return TargetLowering::getJumpTableEncoding();
1488}
1489
1490const MCExpr *
1491X86TargetLowering::LowerCustomJumpTableEntry(const MachineJumpTableInfo *MJTI,
1492                                             const MachineBasicBlock *MBB,
1493                                             unsigned uid,MCContext &Ctx) const{
1494  assert(getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
1495         Subtarget->isPICStyleGOT());
1496  // In 32-bit ELF systems, our jump table entries are formed with @GOTOFF
1497  // entries.
1498  return MCSymbolRefExpr::Create(MBB->getSymbol(),
1499                                 MCSymbolRefExpr::VK_GOTOFF, Ctx);
1500}
1501
1502/// getPICJumpTableRelocaBase - Returns relocation base for the given PIC
1503/// jumptable.
1504SDValue X86TargetLowering::getPICJumpTableRelocBase(SDValue Table,
1505                                                    SelectionDAG &DAG) const {
1506  if (!Subtarget->is64Bit())
1507    // This doesn't have DebugLoc associated with it, but is not really the
1508    // same as a Register.
1509    return DAG.getNode(X86ISD::GlobalBaseReg, DebugLoc(), getPointerTy());
1510  return Table;
1511}
1512
1513/// getPICJumpTableRelocBaseExpr - This returns the relocation base for the
1514/// given PIC jumptable, the same as getPICJumpTableRelocBase, but as an
1515/// MCExpr.
1516const MCExpr *X86TargetLowering::
1517getPICJumpTableRelocBaseExpr(const MachineFunction *MF, unsigned JTI,
1518                             MCContext &Ctx) const {
1519  // X86-64 uses RIP relative addressing based on the jump table label.
1520  if (Subtarget->isPICStyleRIPRel())
1521    return TargetLowering::getPICJumpTableRelocBaseExpr(MF, JTI, Ctx);
1522
1523  // Otherwise, the reference is relative to the PIC base.
1524  return MCSymbolRefExpr::Create(MF->getPICBaseSymbol(), Ctx);
1525}
1526
1527// FIXME: Why this routine is here? Move to RegInfo!
1528std::pair<const TargetRegisterClass*, uint8_t>
1529X86TargetLowering::findRepresentativeClass(MVT VT) const{
1530  const TargetRegisterClass *RRC = 0;
1531  uint8_t Cost = 1;
1532  switch (VT.SimpleTy) {
1533  default:
1534    return TargetLowering::findRepresentativeClass(VT);
1535  case MVT::i8: case MVT::i16: case MVT::i32: case MVT::i64:
1536    RRC = Subtarget->is64Bit() ?
1537      (const TargetRegisterClass*)&X86::GR64RegClass :
1538      (const TargetRegisterClass*)&X86::GR32RegClass;
1539    break;
1540  case MVT::x86mmx:
1541    RRC = &X86::VR64RegClass;
1542    break;
1543  case MVT::f32: case MVT::f64:
1544  case MVT::v16i8: case MVT::v8i16: case MVT::v4i32: case MVT::v2i64:
1545  case MVT::v4f32: case MVT::v2f64:
1546  case MVT::v32i8: case MVT::v8i32: case MVT::v4i64: case MVT::v8f32:
1547  case MVT::v4f64:
1548    RRC = &X86::VR128RegClass;
1549    break;
1550  }
1551  return std::make_pair(RRC, Cost);
1552}
1553
1554bool X86TargetLowering::getStackCookieLocation(unsigned &AddressSpace,
1555                                               unsigned &Offset) const {
1556  if (!Subtarget->isTargetLinux())
1557    return false;
1558
1559  if (Subtarget->is64Bit()) {
1560    // %fs:0x28, unless we're using a Kernel code model, in which case it's %gs:
1561    Offset = 0x28;
1562    if (getTargetMachine().getCodeModel() == CodeModel::Kernel)
1563      AddressSpace = 256;
1564    else
1565      AddressSpace = 257;
1566  } else {
1567    // %gs:0x14 on i386
1568    Offset = 0x14;
1569    AddressSpace = 256;
1570  }
1571  return true;
1572}
1573
1574//===----------------------------------------------------------------------===//
1575//               Return Value Calling Convention Implementation
1576//===----------------------------------------------------------------------===//
1577
1578#include "X86GenCallingConv.inc"
1579
1580bool
1581X86TargetLowering::CanLowerReturn(CallingConv::ID CallConv,
1582                                  MachineFunction &MF, bool isVarArg,
1583                        const SmallVectorImpl<ISD::OutputArg> &Outs,
1584                        LLVMContext &Context) const {
1585  SmallVector<CCValAssign, 16> RVLocs;
1586  CCState CCInfo(CallConv, isVarArg, MF, getTargetMachine(),
1587                 RVLocs, Context);
1588  return CCInfo.CheckReturn(Outs, RetCC_X86);
1589}
1590
1591SDValue
1592X86TargetLowering::LowerReturn(SDValue Chain,
1593                               CallingConv::ID CallConv, bool isVarArg,
1594                               const SmallVectorImpl<ISD::OutputArg> &Outs,
1595                               const SmallVectorImpl<SDValue> &OutVals,
1596                               DebugLoc dl, SelectionDAG &DAG) const {
1597  MachineFunction &MF = DAG.getMachineFunction();
1598  X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1599
1600  SmallVector<CCValAssign, 16> RVLocs;
1601  CCState CCInfo(CallConv, isVarArg, MF, getTargetMachine(),
1602                 RVLocs, *DAG.getContext());
1603  CCInfo.AnalyzeReturn(Outs, RetCC_X86);
1604
1605  SDValue Flag;
1606  SmallVector<SDValue, 6> RetOps;
1607  RetOps.push_back(Chain); // Operand #0 = Chain (updated below)
1608  // Operand #1 = Bytes To Pop
1609  RetOps.push_back(DAG.getTargetConstant(FuncInfo->getBytesToPopOnReturn(),
1610                   MVT::i16));
1611
1612  // Copy the result values into the output registers.
1613  for (unsigned i = 0; i != RVLocs.size(); ++i) {
1614    CCValAssign &VA = RVLocs[i];
1615    assert(VA.isRegLoc() && "Can only return in registers!");
1616    SDValue ValToCopy = OutVals[i];
1617    EVT ValVT = ValToCopy.getValueType();
1618
1619    // Promote values to the appropriate types
1620    if (VA.getLocInfo() == CCValAssign::SExt)
1621      ValToCopy = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), ValToCopy);
1622    else if (VA.getLocInfo() == CCValAssign::ZExt)
1623      ValToCopy = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), ValToCopy);
1624    else if (VA.getLocInfo() == CCValAssign::AExt)
1625      ValToCopy = DAG.getNode(ISD::ANY_EXTEND, dl, VA.getLocVT(), ValToCopy);
1626    else if (VA.getLocInfo() == CCValAssign::BCvt)
1627      ValToCopy = DAG.getNode(ISD::BITCAST, dl, VA.getLocVT(), ValToCopy);
1628
1629    // If this is x86-64, and we disabled SSE, we can't return FP values,
1630    // or SSE or MMX vectors.
1631    if ((ValVT == MVT::f32 || ValVT == MVT::f64 ||
1632         VA.getLocReg() == X86::XMM0 || VA.getLocReg() == X86::XMM1) &&
1633          (Subtarget->is64Bit() && !Subtarget->hasSSE1())) {
1634      report_fatal_error("SSE register return with SSE disabled");
1635    }
1636    // Likewise we can't return F64 values with SSE1 only.  gcc does so, but
1637    // llvm-gcc has never done it right and no one has noticed, so this
1638    // should be OK for now.
1639    if (ValVT == MVT::f64 &&
1640        (Subtarget->is64Bit() && !Subtarget->hasSSE2()))
1641      report_fatal_error("SSE2 register return with SSE2 disabled");
1642
1643    // Returns in ST0/ST1 are handled specially: these are pushed as operands to
1644    // the RET instruction and handled by the FP Stackifier.
1645    if (VA.getLocReg() == X86::ST0 ||
1646        VA.getLocReg() == X86::ST1) {
1647      // If this is a copy from an xmm register to ST(0), use an FPExtend to
1648      // change the value to the FP stack register class.
1649      if (isScalarFPTypeInSSEReg(VA.getValVT()))
1650        ValToCopy = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f80, ValToCopy);
1651      RetOps.push_back(ValToCopy);
1652      // Don't emit a copytoreg.
1653      continue;
1654    }
1655
1656    // 64-bit vector (MMX) values are returned in XMM0 / XMM1 except for v1i64
1657    // which is returned in RAX / RDX.
1658    if (Subtarget->is64Bit()) {
1659      if (ValVT == MVT::x86mmx) {
1660        if (VA.getLocReg() == X86::XMM0 || VA.getLocReg() == X86::XMM1) {
1661          ValToCopy = DAG.getNode(ISD::BITCAST, dl, MVT::i64, ValToCopy);
1662          ValToCopy = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2i64,
1663                                  ValToCopy);
1664          // If we don't have SSE2 available, convert to v4f32 so the generated
1665          // register is legal.
1666          if (!Subtarget->hasSSE2())
1667            ValToCopy = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32,ValToCopy);
1668        }
1669      }
1670    }
1671
1672    Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), ValToCopy, Flag);
1673    Flag = Chain.getValue(1);
1674    RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
1675  }
1676
1677  // The x86-64 ABIs require that for returning structs by value we copy
1678  // the sret argument into %rax/%eax (depending on ABI) for the return.
1679  // Win32 requires us to put the sret argument to %eax as well.
1680  // We saved the argument into a virtual register in the entry block,
1681  // so now we copy the value out and into %rax/%eax.
1682  if (DAG.getMachineFunction().getFunction()->hasStructRetAttr() &&
1683      (Subtarget->is64Bit() || Subtarget->isTargetWindows())) {
1684    MachineFunction &MF = DAG.getMachineFunction();
1685    X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1686    unsigned Reg = FuncInfo->getSRetReturnReg();
1687    assert(Reg &&
1688           "SRetReturnReg should have been set in LowerFormalArguments().");
1689    SDValue Val = DAG.getCopyFromReg(Chain, dl, Reg, getPointerTy());
1690
1691    unsigned RetValReg
1692        = (Subtarget->is64Bit() && !Subtarget->isTarget64BitILP32()) ?
1693          X86::RAX : X86::EAX;
1694    Chain = DAG.getCopyToReg(Chain, dl, RetValReg, Val, Flag);
1695    Flag = Chain.getValue(1);
1696
1697    // RAX/EAX now acts like a return value.
1698    RetOps.push_back(DAG.getRegister(RetValReg, getPointerTy()));
1699  }
1700
1701  RetOps[0] = Chain;  // Update chain.
1702
1703  // Add the flag if we have it.
1704  if (Flag.getNode())
1705    RetOps.push_back(Flag);
1706
1707  return DAG.getNode(X86ISD::RET_FLAG, dl,
1708                     MVT::Other, &RetOps[0], RetOps.size());
1709}
1710
1711bool X86TargetLowering::isUsedByReturnOnly(SDNode *N, SDValue &Chain) const {
1712  if (N->getNumValues() != 1)
1713    return false;
1714  if (!N->hasNUsesOfValue(1, 0))
1715    return false;
1716
1717  SDValue TCChain = Chain;
1718  SDNode *Copy = *N->use_begin();
1719  if (Copy->getOpcode() == ISD::CopyToReg) {
1720    // If the copy has a glue operand, we conservatively assume it isn't safe to
1721    // perform a tail call.
1722    if (Copy->getOperand(Copy->getNumOperands()-1).getValueType() == MVT::Glue)
1723      return false;
1724    TCChain = Copy->getOperand(0);
1725  } else if (Copy->getOpcode() != ISD::FP_EXTEND)
1726    return false;
1727
1728  bool HasRet = false;
1729  for (SDNode::use_iterator UI = Copy->use_begin(), UE = Copy->use_end();
1730       UI != UE; ++UI) {
1731    if (UI->getOpcode() != X86ISD::RET_FLAG)
1732      return false;
1733    HasRet = true;
1734  }
1735
1736  if (!HasRet)
1737    return false;
1738
1739  Chain = TCChain;
1740  return true;
1741}
1742
1743MVT
1744X86TargetLowering::getTypeForExtArgOrReturn(MVT VT,
1745                                            ISD::NodeType ExtendKind) const {
1746  MVT ReturnMVT;
1747  // TODO: Is this also valid on 32-bit?
1748  if (Subtarget->is64Bit() && VT == MVT::i1 && ExtendKind == ISD::ZERO_EXTEND)
1749    ReturnMVT = MVT::i8;
1750  else
1751    ReturnMVT = MVT::i32;
1752
1753  MVT MinVT = getRegisterType(ReturnMVT);
1754  return VT.bitsLT(MinVT) ? MinVT : VT;
1755}
1756
1757/// LowerCallResult - Lower the result values of a call into the
1758/// appropriate copies out of appropriate physical registers.
1759///
1760SDValue
1761X86TargetLowering::LowerCallResult(SDValue Chain, SDValue InFlag,
1762                                   CallingConv::ID CallConv, bool isVarArg,
1763                                   const SmallVectorImpl<ISD::InputArg> &Ins,
1764                                   DebugLoc dl, SelectionDAG &DAG,
1765                                   SmallVectorImpl<SDValue> &InVals) const {
1766
1767  // Assign locations to each value returned by this call.
1768  SmallVector<CCValAssign, 16> RVLocs;
1769  bool Is64Bit = Subtarget->is64Bit();
1770  CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(),
1771                 getTargetMachine(), RVLocs, *DAG.getContext());
1772  CCInfo.AnalyzeCallResult(Ins, RetCC_X86);
1773
1774  // Copy all of the result registers out of their specified physreg.
1775  for (unsigned i = 0, e = RVLocs.size(); i != e; ++i) {
1776    CCValAssign &VA = RVLocs[i];
1777    EVT CopyVT = VA.getValVT();
1778
1779    // If this is x86-64, and we disabled SSE, we can't return FP values
1780    if ((CopyVT == MVT::f32 || CopyVT == MVT::f64) &&
1781        ((Is64Bit || Ins[i].Flags.isInReg()) && !Subtarget->hasSSE1())) {
1782      report_fatal_error("SSE register return with SSE disabled");
1783    }
1784
1785    SDValue Val;
1786
1787    // If this is a call to a function that returns an fp value on the floating
1788    // point stack, we must guarantee the value is popped from the stack, so
1789    // a CopyFromReg is not good enough - the copy instruction may be eliminated
1790    // if the return value is not used. We use the FpPOP_RETVAL instruction
1791    // instead.
1792    if (VA.getLocReg() == X86::ST0 || VA.getLocReg() == X86::ST1) {
1793      // If we prefer to use the value in xmm registers, copy it out as f80 and
1794      // use a truncate to move it from fp stack reg to xmm reg.
1795      if (isScalarFPTypeInSSEReg(VA.getValVT())) CopyVT = MVT::f80;
1796      SDValue Ops[] = { Chain, InFlag };
1797      Chain = SDValue(DAG.getMachineNode(X86::FpPOP_RETVAL, dl, CopyVT,
1798                                         MVT::Other, MVT::Glue, Ops), 1);
1799      Val = Chain.getValue(0);
1800
1801      // Round the f80 to the right size, which also moves it to the appropriate
1802      // xmm register.
1803      if (CopyVT != VA.getValVT())
1804        Val = DAG.getNode(ISD::FP_ROUND, dl, VA.getValVT(), Val,
1805                          // This truncation won't change the value.
1806                          DAG.getIntPtrConstant(1));
1807    } else {
1808      Chain = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(),
1809                                 CopyVT, InFlag).getValue(1);
1810      Val = Chain.getValue(0);
1811    }
1812    InFlag = Chain.getValue(2);
1813    InVals.push_back(Val);
1814  }
1815
1816  return Chain;
1817}
1818
1819//===----------------------------------------------------------------------===//
1820//                C & StdCall & Fast Calling Convention implementation
1821//===----------------------------------------------------------------------===//
1822//  StdCall calling convention seems to be standard for many Windows' API
1823//  routines and around. It differs from C calling convention just a little:
1824//  callee should clean up the stack, not caller. Symbols should be also
1825//  decorated in some fancy way :) It doesn't support any vector arguments.
1826//  For info on fast calling convention see Fast Calling Convention (tail call)
1827//  implementation LowerX86_32FastCCCallTo.
1828
1829/// CallIsStructReturn - Determines whether a call uses struct return
1830/// semantics.
1831enum StructReturnType {
1832  NotStructReturn,
1833  RegStructReturn,
1834  StackStructReturn
1835};
1836static StructReturnType
1837callIsStructReturn(const SmallVectorImpl<ISD::OutputArg> &Outs) {
1838  if (Outs.empty())
1839    return NotStructReturn;
1840
1841  const ISD::ArgFlagsTy &Flags = Outs[0].Flags;
1842  if (!Flags.isSRet())
1843    return NotStructReturn;
1844  if (Flags.isInReg())
1845    return RegStructReturn;
1846  return StackStructReturn;
1847}
1848
1849/// ArgsAreStructReturn - Determines whether a function uses struct
1850/// return semantics.
1851static StructReturnType
1852argsAreStructReturn(const SmallVectorImpl<ISD::InputArg> &Ins) {
1853  if (Ins.empty())
1854    return NotStructReturn;
1855
1856  const ISD::ArgFlagsTy &Flags = Ins[0].Flags;
1857  if (!Flags.isSRet())
1858    return NotStructReturn;
1859  if (Flags.isInReg())
1860    return RegStructReturn;
1861  return StackStructReturn;
1862}
1863
1864/// CreateCopyOfByValArgument - Make a copy of an aggregate at address specified
1865/// by "Src" to address "Dst" with size and alignment information specified by
1866/// the specific parameter attribute. The copy will be passed as a byval
1867/// function parameter.
1868static SDValue
1869CreateCopyOfByValArgument(SDValue Src, SDValue Dst, SDValue Chain,
1870                          ISD::ArgFlagsTy Flags, SelectionDAG &DAG,
1871                          DebugLoc dl) {
1872  SDValue SizeNode = DAG.getConstant(Flags.getByValSize(), MVT::i32);
1873
1874  return DAG.getMemcpy(Chain, dl, Dst, Src, SizeNode, Flags.getByValAlign(),
1875                       /*isVolatile*/false, /*AlwaysInline=*/true,
1876                       MachinePointerInfo(), MachinePointerInfo());
1877}
1878
1879/// IsTailCallConvention - Return true if the calling convention is one that
1880/// supports tail call optimization.
1881static bool IsTailCallConvention(CallingConv::ID CC) {
1882  return (CC == CallingConv::Fast || CC == CallingConv::GHC ||
1883          CC == CallingConv::HiPE);
1884}
1885
1886/// \brief Return true if the calling convention is a C calling convention.
1887static bool IsCCallConvention(CallingConv::ID CC) {
1888  return (CC == CallingConv::C || CC == CallingConv::X86_64_Win64 ||
1889          CC == CallingConv::X86_64_SysV);
1890}
1891
1892bool X86TargetLowering::mayBeEmittedAsTailCall(CallInst *CI) const {
1893  if (!CI->isTailCall() || getTargetMachine().Options.DisableTailCalls)
1894    return false;
1895
1896  CallSite CS(CI);
1897  CallingConv::ID CalleeCC = CS.getCallingConv();
1898  if (!IsTailCallConvention(CalleeCC) && !IsCCallConvention(CalleeCC))
1899    return false;
1900
1901  return true;
1902}
1903
1904/// FuncIsMadeTailCallSafe - Return true if the function is being made into
1905/// a tailcall target by changing its ABI.
1906static bool FuncIsMadeTailCallSafe(CallingConv::ID CC,
1907                                   bool GuaranteedTailCallOpt) {
1908  return GuaranteedTailCallOpt && IsTailCallConvention(CC);
1909}
1910
1911SDValue
1912X86TargetLowering::LowerMemArgument(SDValue Chain,
1913                                    CallingConv::ID CallConv,
1914                                    const SmallVectorImpl<ISD::InputArg> &Ins,
1915                                    DebugLoc dl, SelectionDAG &DAG,
1916                                    const CCValAssign &VA,
1917                                    MachineFrameInfo *MFI,
1918                                    unsigned i) const {
1919  // Create the nodes corresponding to a load from this parameter slot.
1920  ISD::ArgFlagsTy Flags = Ins[i].Flags;
1921  bool AlwaysUseMutable = FuncIsMadeTailCallSafe(CallConv,
1922                              getTargetMachine().Options.GuaranteedTailCallOpt);
1923  bool isImmutable = !AlwaysUseMutable && !Flags.isByVal();
1924  EVT ValVT;
1925
1926  // If value is passed by pointer we have address passed instead of the value
1927  // itself.
1928  if (VA.getLocInfo() == CCValAssign::Indirect)
1929    ValVT = VA.getLocVT();
1930  else
1931    ValVT = VA.getValVT();
1932
1933  // FIXME: For now, all byval parameter objects are marked mutable. This can be
1934  // changed with more analysis.
1935  // In case of tail call optimization mark all arguments mutable. Since they
1936  // could be overwritten by lowering of arguments in case of a tail call.
1937  if (Flags.isByVal()) {
1938    unsigned Bytes = Flags.getByValSize();
1939    if (Bytes == 0) Bytes = 1; // Don't create zero-sized stack objects.
1940    int FI = MFI->CreateFixedObject(Bytes, VA.getLocMemOffset(), isImmutable);
1941    return DAG.getFrameIndex(FI, getPointerTy());
1942  } else {
1943    int FI = MFI->CreateFixedObject(ValVT.getSizeInBits()/8,
1944                                    VA.getLocMemOffset(), isImmutable);
1945    SDValue FIN = DAG.getFrameIndex(FI, getPointerTy());
1946    return DAG.getLoad(ValVT, dl, Chain, FIN,
1947                       MachinePointerInfo::getFixedStack(FI),
1948                       false, false, false, 0);
1949  }
1950}
1951
1952SDValue
1953X86TargetLowering::LowerFormalArguments(SDValue Chain,
1954                                        CallingConv::ID CallConv,
1955                                        bool isVarArg,
1956                                      const SmallVectorImpl<ISD::InputArg> &Ins,
1957                                        DebugLoc dl,
1958                                        SelectionDAG &DAG,
1959                                        SmallVectorImpl<SDValue> &InVals)
1960                                          const {
1961  MachineFunction &MF = DAG.getMachineFunction();
1962  X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1963
1964  const Function* Fn = MF.getFunction();
1965  if (Fn->hasExternalLinkage() &&
1966      Subtarget->isTargetCygMing() &&
1967      Fn->getName() == "main")
1968    FuncInfo->setForceFramePointer(true);
1969
1970  MachineFrameInfo *MFI = MF.getFrameInfo();
1971  bool Is64Bit = Subtarget->is64Bit();
1972  bool IsWindows = Subtarget->isTargetWindows();
1973  bool IsWin64 = Subtarget->isCallingConvWin64(CallConv);
1974
1975  assert(!(isVarArg && IsTailCallConvention(CallConv)) &&
1976         "Var args not supported with calling convention fastcc, ghc or hipe");
1977
1978  // Assign locations to all of the incoming arguments.
1979  SmallVector<CCValAssign, 16> ArgLocs;
1980  CCState CCInfo(CallConv, isVarArg, MF, getTargetMachine(),
1981                 ArgLocs, *DAG.getContext());
1982
1983  // Allocate shadow area for Win64
1984  if (IsWin64)
1985    CCInfo.AllocateStack(32, 8);
1986
1987  CCInfo.AnalyzeFormalArguments(Ins, CC_X86);
1988
1989  unsigned LastVal = ~0U;
1990  SDValue ArgValue;
1991  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1992    CCValAssign &VA = ArgLocs[i];
1993    // TODO: If an arg is passed in two places (e.g. reg and stack), skip later
1994    // places.
1995    assert(VA.getValNo() != LastVal &&
1996           "Don't support value assigned to multiple locs yet");
1997    (void)LastVal;
1998    LastVal = VA.getValNo();
1999
2000    if (VA.isRegLoc()) {
2001      EVT RegVT = VA.getLocVT();
2002      const TargetRegisterClass *RC;
2003      if (RegVT == MVT::i32)
2004        RC = &X86::GR32RegClass;
2005      else if (Is64Bit && RegVT == MVT::i64)
2006        RC = &X86::GR64RegClass;
2007      else if (RegVT == MVT::f32)
2008        RC = &X86::FR32RegClass;
2009      else if (RegVT == MVT::f64)
2010        RC = &X86::FR64RegClass;
2011      else if (RegVT.is256BitVector())
2012        RC = &X86::VR256RegClass;
2013      else if (RegVT.is128BitVector())
2014        RC = &X86::VR128RegClass;
2015      else if (RegVT == MVT::x86mmx)
2016        RC = &X86::VR64RegClass;
2017      else
2018        llvm_unreachable("Unknown argument type!");
2019
2020      unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC);
2021      ArgValue = DAG.getCopyFromReg(Chain, dl, Reg, RegVT);
2022
2023      // If this is an 8 or 16-bit value, it is really passed promoted to 32
2024      // bits.  Insert an assert[sz]ext to capture this, then truncate to the
2025      // right size.
2026      if (VA.getLocInfo() == CCValAssign::SExt)
2027        ArgValue = DAG.getNode(ISD::AssertSext, dl, RegVT, ArgValue,
2028                               DAG.getValueType(VA.getValVT()));
2029      else if (VA.getLocInfo() == CCValAssign::ZExt)
2030        ArgValue = DAG.getNode(ISD::AssertZext, dl, RegVT, ArgValue,
2031                               DAG.getValueType(VA.getValVT()));
2032      else if (VA.getLocInfo() == CCValAssign::BCvt)
2033        ArgValue = DAG.getNode(ISD::BITCAST, dl, VA.getValVT(), ArgValue);
2034
2035      if (VA.isExtInLoc()) {
2036        // Handle MMX values passed in XMM regs.
2037        if (RegVT.isVector())
2038          ArgValue = DAG.getNode(X86ISD::MOVDQ2Q, dl, VA.getValVT(), ArgValue);
2039        else
2040          ArgValue = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), ArgValue);
2041      }
2042    } else {
2043      assert(VA.isMemLoc());
2044      ArgValue = LowerMemArgument(Chain, CallConv, Ins, dl, DAG, VA, MFI, i);
2045    }
2046
2047    // If value is passed via pointer - do a load.
2048    if (VA.getLocInfo() == CCValAssign::Indirect)
2049      ArgValue = DAG.getLoad(VA.getValVT(), dl, Chain, ArgValue,
2050                             MachinePointerInfo(), false, false, false, 0);
2051
2052    InVals.push_back(ArgValue);
2053  }
2054
2055  // The x86-64 ABIs require that for returning structs by value we copy
2056  // the sret argument into %rax/%eax (depending on ABI) for the return.
2057  // Win32 requires us to put the sret argument to %eax as well.
2058  // Save the argument into a virtual register so that we can access it
2059  // from the return points.
2060  if (MF.getFunction()->hasStructRetAttr() &&
2061      (Subtarget->is64Bit() || Subtarget->isTargetWindows())) {
2062    X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
2063    unsigned Reg = FuncInfo->getSRetReturnReg();
2064    if (!Reg) {
2065      MVT PtrTy = getPointerTy();
2066      Reg = MF.getRegInfo().createVirtualRegister(getRegClassFor(PtrTy));
2067      FuncInfo->setSRetReturnReg(Reg);
2068    }
2069    SDValue Copy = DAG.getCopyToReg(DAG.getEntryNode(), dl, Reg, InVals[0]);
2070    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Copy, Chain);
2071  }
2072
2073  unsigned StackSize = CCInfo.getNextStackOffset();
2074  // Align stack specially for tail calls.
2075  if (FuncIsMadeTailCallSafe(CallConv,
2076                             MF.getTarget().Options.GuaranteedTailCallOpt))
2077    StackSize = GetAlignedArgumentStackSize(StackSize, DAG);
2078
2079  // If the function takes variable number of arguments, make a frame index for
2080  // the start of the first vararg value... for expansion of llvm.va_start.
2081  if (isVarArg) {
2082    if (Is64Bit || (CallConv != CallingConv::X86_FastCall &&
2083                    CallConv != CallingConv::X86_ThisCall)) {
2084      FuncInfo->setVarArgsFrameIndex(MFI->CreateFixedObject(1, StackSize,true));
2085    }
2086    if (Is64Bit) {
2087      unsigned TotalNumIntRegs = 0, TotalNumXMMRegs = 0;
2088
2089      // FIXME: We should really autogenerate these arrays
2090      static const uint16_t GPR64ArgRegsWin64[] = {
2091        X86::RCX, X86::RDX, X86::R8,  X86::R9
2092      };
2093      static const uint16_t GPR64ArgRegs64Bit[] = {
2094        X86::RDI, X86::RSI, X86::RDX, X86::RCX, X86::R8, X86::R9
2095      };
2096      static const uint16_t XMMArgRegs64Bit[] = {
2097        X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3,
2098        X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7
2099      };
2100      const uint16_t *GPR64ArgRegs;
2101      unsigned NumXMMRegs = 0;
2102
2103      if (IsWin64) {
2104        // The XMM registers which might contain var arg parameters are shadowed
2105        // in their paired GPR.  So we only need to save the GPR to their home
2106        // slots.
2107        TotalNumIntRegs = 4;
2108        GPR64ArgRegs = GPR64ArgRegsWin64;
2109      } else {
2110        TotalNumIntRegs = 6; TotalNumXMMRegs = 8;
2111        GPR64ArgRegs = GPR64ArgRegs64Bit;
2112
2113        NumXMMRegs = CCInfo.getFirstUnallocated(XMMArgRegs64Bit,
2114                                                TotalNumXMMRegs);
2115      }
2116      unsigned NumIntRegs = CCInfo.getFirstUnallocated(GPR64ArgRegs,
2117                                                       TotalNumIntRegs);
2118
2119      bool NoImplicitFloatOps = Fn->getAttributes().
2120        hasAttribute(AttributeSet::FunctionIndex, Attribute::NoImplicitFloat);
2121      assert(!(NumXMMRegs && !Subtarget->hasSSE1()) &&
2122             "SSE register cannot be used when SSE is disabled!");
2123      assert(!(NumXMMRegs && MF.getTarget().Options.UseSoftFloat &&
2124               NoImplicitFloatOps) &&
2125             "SSE register cannot be used when SSE is disabled!");
2126      if (MF.getTarget().Options.UseSoftFloat || NoImplicitFloatOps ||
2127          !Subtarget->hasSSE1())
2128        // Kernel mode asks for SSE to be disabled, so don't push them
2129        // on the stack.
2130        TotalNumXMMRegs = 0;
2131
2132      if (IsWin64) {
2133        const TargetFrameLowering &TFI = *getTargetMachine().getFrameLowering();
2134        // Get to the caller-allocated home save location.  Add 8 to account
2135        // for the return address.
2136        int HomeOffset = TFI.getOffsetOfLocalArea() + 8;
2137        FuncInfo->setRegSaveFrameIndex(
2138          MFI->CreateFixedObject(1, NumIntRegs * 8 + HomeOffset, false));
2139        // Fixup to set vararg frame on shadow area (4 x i64).
2140        if (NumIntRegs < 4)
2141          FuncInfo->setVarArgsFrameIndex(FuncInfo->getRegSaveFrameIndex());
2142      } else {
2143        // For X86-64, if there are vararg parameters that are passed via
2144        // registers, then we must store them to their spots on the stack so
2145        // they may be loaded by deferencing the result of va_next.
2146        FuncInfo->setVarArgsGPOffset(NumIntRegs * 8);
2147        FuncInfo->setVarArgsFPOffset(TotalNumIntRegs * 8 + NumXMMRegs * 16);
2148        FuncInfo->setRegSaveFrameIndex(
2149          MFI->CreateStackObject(TotalNumIntRegs * 8 + TotalNumXMMRegs * 16, 16,
2150                               false));
2151      }
2152
2153      // Store the integer parameter registers.
2154      SmallVector<SDValue, 8> MemOps;
2155      SDValue RSFIN = DAG.getFrameIndex(FuncInfo->getRegSaveFrameIndex(),
2156                                        getPointerTy());
2157      unsigned Offset = FuncInfo->getVarArgsGPOffset();
2158      for (; NumIntRegs != TotalNumIntRegs; ++NumIntRegs) {
2159        SDValue FIN = DAG.getNode(ISD::ADD, dl, getPointerTy(), RSFIN,
2160                                  DAG.getIntPtrConstant(Offset));
2161        unsigned VReg = MF.addLiveIn(GPR64ArgRegs[NumIntRegs],
2162                                     &X86::GR64RegClass);
2163        SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64);
2164        SDValue Store =
2165          DAG.getStore(Val.getValue(1), dl, Val, FIN,
2166                       MachinePointerInfo::getFixedStack(
2167                         FuncInfo->getRegSaveFrameIndex(), Offset),
2168                       false, false, 0);
2169        MemOps.push_back(Store);
2170        Offset += 8;
2171      }
2172
2173      if (TotalNumXMMRegs != 0 && NumXMMRegs != TotalNumXMMRegs) {
2174        // Now store the XMM (fp + vector) parameter registers.
2175        SmallVector<SDValue, 11> SaveXMMOps;
2176        SaveXMMOps.push_back(Chain);
2177
2178        unsigned AL = MF.addLiveIn(X86::AL, &X86::GR8RegClass);
2179        SDValue ALVal = DAG.getCopyFromReg(DAG.getEntryNode(), dl, AL, MVT::i8);
2180        SaveXMMOps.push_back(ALVal);
2181
2182        SaveXMMOps.push_back(DAG.getIntPtrConstant(
2183                               FuncInfo->getRegSaveFrameIndex()));
2184        SaveXMMOps.push_back(DAG.getIntPtrConstant(
2185                               FuncInfo->getVarArgsFPOffset()));
2186
2187        for (; NumXMMRegs != TotalNumXMMRegs; ++NumXMMRegs) {
2188          unsigned VReg = MF.addLiveIn(XMMArgRegs64Bit[NumXMMRegs],
2189                                       &X86::VR128RegClass);
2190          SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::v4f32);
2191          SaveXMMOps.push_back(Val);
2192        }
2193        MemOps.push_back(DAG.getNode(X86ISD::VASTART_SAVE_XMM_REGS, dl,
2194                                     MVT::Other,
2195                                     &SaveXMMOps[0], SaveXMMOps.size()));
2196      }
2197
2198      if (!MemOps.empty())
2199        Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
2200                            &MemOps[0], MemOps.size());
2201    }
2202  }
2203
2204  // Some CCs need callee pop.
2205  if (X86::isCalleePop(CallConv, Is64Bit, isVarArg,
2206                       MF.getTarget().Options.GuaranteedTailCallOpt)) {
2207    FuncInfo->setBytesToPopOnReturn(StackSize); // Callee pops everything.
2208  } else {
2209    FuncInfo->setBytesToPopOnReturn(0); // Callee pops nothing.
2210    // If this is an sret function, the return should pop the hidden pointer.
2211    if (!Is64Bit && !IsTailCallConvention(CallConv) && !IsWindows &&
2212        argsAreStructReturn(Ins) == StackStructReturn)
2213      FuncInfo->setBytesToPopOnReturn(4);
2214  }
2215
2216  if (!Is64Bit) {
2217    // RegSaveFrameIndex is X86-64 only.
2218    FuncInfo->setRegSaveFrameIndex(0xAAAAAAA);
2219    if (CallConv == CallingConv::X86_FastCall ||
2220        CallConv == CallingConv::X86_ThisCall)
2221      // fastcc functions can't have varargs.
2222      FuncInfo->setVarArgsFrameIndex(0xAAAAAAA);
2223  }
2224
2225  FuncInfo->setArgumentStackSize(StackSize);
2226
2227  return Chain;
2228}
2229
2230SDValue
2231X86TargetLowering::LowerMemOpCallTo(SDValue Chain,
2232                                    SDValue StackPtr, SDValue Arg,
2233                                    DebugLoc dl, SelectionDAG &DAG,
2234                                    const CCValAssign &VA,
2235                                    ISD::ArgFlagsTy Flags) const {
2236  unsigned LocMemOffset = VA.getLocMemOffset();
2237  SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset);
2238  PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr, PtrOff);
2239  if (Flags.isByVal())
2240    return CreateCopyOfByValArgument(Arg, PtrOff, Chain, Flags, DAG, dl);
2241
2242  return DAG.getStore(Chain, dl, Arg, PtrOff,
2243                      MachinePointerInfo::getStack(LocMemOffset),
2244                      false, false, 0);
2245}
2246
2247/// EmitTailCallLoadRetAddr - Emit a load of return address if tail call
2248/// optimization is performed and it is required.
2249SDValue
2250X86TargetLowering::EmitTailCallLoadRetAddr(SelectionDAG &DAG,
2251                                           SDValue &OutRetAddr, SDValue Chain,
2252                                           bool IsTailCall, bool Is64Bit,
2253                                           int FPDiff, DebugLoc dl) const {
2254  // Adjust the Return address stack slot.
2255  EVT VT = getPointerTy();
2256  OutRetAddr = getReturnAddressFrameIndex(DAG);
2257
2258  // Load the "old" Return address.
2259  OutRetAddr = DAG.getLoad(VT, dl, Chain, OutRetAddr, MachinePointerInfo(),
2260                           false, false, false, 0);
2261  return SDValue(OutRetAddr.getNode(), 1);
2262}
2263
2264/// EmitTailCallStoreRetAddr - Emit a store of the return address if tail call
2265/// optimization is performed and it is required (FPDiff!=0).
2266static SDValue
2267EmitTailCallStoreRetAddr(SelectionDAG & DAG, MachineFunction &MF,
2268                         SDValue Chain, SDValue RetAddrFrIdx, EVT PtrVT,
2269                         unsigned SlotSize, int FPDiff, DebugLoc dl) {
2270  // Store the return address to the appropriate stack slot.
2271  if (!FPDiff) return Chain;
2272  // Calculate the new stack slot for the return address.
2273  int NewReturnAddrFI =
2274    MF.getFrameInfo()->CreateFixedObject(SlotSize, FPDiff-SlotSize, false);
2275  SDValue NewRetAddrFrIdx = DAG.getFrameIndex(NewReturnAddrFI, PtrVT);
2276  Chain = DAG.getStore(Chain, dl, RetAddrFrIdx, NewRetAddrFrIdx,
2277                       MachinePointerInfo::getFixedStack(NewReturnAddrFI),
2278                       false, false, 0);
2279  return Chain;
2280}
2281
2282SDValue
2283X86TargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI,
2284                             SmallVectorImpl<SDValue> &InVals) const {
2285  SelectionDAG &DAG                     = CLI.DAG;
2286  DebugLoc &dl                          = CLI.DL;
2287  SmallVector<ISD::OutputArg, 32> &Outs = CLI.Outs;
2288  SmallVector<SDValue, 32> &OutVals     = CLI.OutVals;
2289  SmallVector<ISD::InputArg, 32> &Ins   = CLI.Ins;
2290  SDValue Chain                         = CLI.Chain;
2291  SDValue Callee                        = CLI.Callee;
2292  CallingConv::ID CallConv              = CLI.CallConv;
2293  bool &isTailCall                      = CLI.IsTailCall;
2294  bool isVarArg                         = CLI.IsVarArg;
2295
2296  MachineFunction &MF = DAG.getMachineFunction();
2297  bool Is64Bit        = Subtarget->is64Bit();
2298  bool IsWin64        = Subtarget->isCallingConvWin64(CallConv);
2299  bool IsWindows      = Subtarget->isTargetWindows();
2300  StructReturnType SR = callIsStructReturn(Outs);
2301  bool IsSibcall      = false;
2302
2303  if (MF.getTarget().Options.DisableTailCalls)
2304    isTailCall = false;
2305
2306  if (isTailCall) {
2307    // Check if it's really possible to do a tail call.
2308    isTailCall = IsEligibleForTailCallOptimization(Callee, CallConv,
2309                    isVarArg, SR != NotStructReturn,
2310                    MF.getFunction()->hasStructRetAttr(), CLI.RetTy,
2311                    Outs, OutVals, Ins, DAG);
2312
2313    // Sibcalls are automatically detected tailcalls which do not require
2314    // ABI changes.
2315    if (!MF.getTarget().Options.GuaranteedTailCallOpt && isTailCall)
2316      IsSibcall = true;
2317
2318    if (isTailCall)
2319      ++NumTailCalls;
2320  }
2321
2322  assert(!(isVarArg && IsTailCallConvention(CallConv)) &&
2323         "Var args not supported with calling convention fastcc, ghc or hipe");
2324
2325  // Analyze operands of the call, assigning locations to each operand.
2326  SmallVector<CCValAssign, 16> ArgLocs;
2327  CCState CCInfo(CallConv, isVarArg, MF, getTargetMachine(),
2328                 ArgLocs, *DAG.getContext());
2329
2330  // Allocate shadow area for Win64
2331  if (IsWin64)
2332    CCInfo.AllocateStack(32, 8);
2333
2334  CCInfo.AnalyzeCallOperands(Outs, CC_X86);
2335
2336  // Get a count of how many bytes are to be pushed on the stack.
2337  unsigned NumBytes = CCInfo.getNextStackOffset();
2338  if (IsSibcall)
2339    // This is a sibcall. The memory operands are available in caller's
2340    // own caller's stack.
2341    NumBytes = 0;
2342  else if (getTargetMachine().Options.GuaranteedTailCallOpt &&
2343           IsTailCallConvention(CallConv))
2344    NumBytes = GetAlignedArgumentStackSize(NumBytes, DAG);
2345
2346  int FPDiff = 0;
2347  if (isTailCall && !IsSibcall) {
2348    // Lower arguments at fp - stackoffset + fpdiff.
2349    X86MachineFunctionInfo *X86Info = MF.getInfo<X86MachineFunctionInfo>();
2350    unsigned NumBytesCallerPushed = X86Info->getBytesToPopOnReturn();
2351
2352    FPDiff = NumBytesCallerPushed - NumBytes;
2353
2354    // Set the delta of movement of the returnaddr stackslot.
2355    // But only set if delta is greater than previous delta.
2356    if (FPDiff < X86Info->getTCReturnAddrDelta())
2357      X86Info->setTCReturnAddrDelta(FPDiff);
2358  }
2359
2360  if (!IsSibcall)
2361    Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(NumBytes, true));
2362
2363  SDValue RetAddrFrIdx;
2364  // Load return address for tail calls.
2365  if (isTailCall && FPDiff)
2366    Chain = EmitTailCallLoadRetAddr(DAG, RetAddrFrIdx, Chain, isTailCall,
2367                                    Is64Bit, FPDiff, dl);
2368
2369  SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
2370  SmallVector<SDValue, 8> MemOpChains;
2371  SDValue StackPtr;
2372
2373  // Walk the register/memloc assignments, inserting copies/loads.  In the case
2374  // of tail call optimization arguments are handle later.
2375  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
2376    CCValAssign &VA = ArgLocs[i];
2377    EVT RegVT = VA.getLocVT();
2378    SDValue Arg = OutVals[i];
2379    ISD::ArgFlagsTy Flags = Outs[i].Flags;
2380    bool isByVal = Flags.isByVal();
2381
2382    // Promote the value if needed.
2383    switch (VA.getLocInfo()) {
2384    default: llvm_unreachable("Unknown loc info!");
2385    case CCValAssign::Full: break;
2386    case CCValAssign::SExt:
2387      Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, RegVT, Arg);
2388      break;
2389    case CCValAssign::ZExt:
2390      Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, RegVT, Arg);
2391      break;
2392    case CCValAssign::AExt:
2393      if (RegVT.is128BitVector()) {
2394        // Special case: passing MMX values in XMM registers.
2395        Arg = DAG.getNode(ISD::BITCAST, dl, MVT::i64, Arg);
2396        Arg = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2i64, Arg);
2397        Arg = getMOVL(DAG, dl, MVT::v2i64, DAG.getUNDEF(MVT::v2i64), Arg);
2398      } else
2399        Arg = DAG.getNode(ISD::ANY_EXTEND, dl, RegVT, Arg);
2400      break;
2401    case CCValAssign::BCvt:
2402      Arg = DAG.getNode(ISD::BITCAST, dl, RegVT, Arg);
2403      break;
2404    case CCValAssign::Indirect: {
2405      // Store the argument.
2406      SDValue SpillSlot = DAG.CreateStackTemporary(VA.getValVT());
2407      int FI = cast<FrameIndexSDNode>(SpillSlot)->getIndex();
2408      Chain = DAG.getStore(Chain, dl, Arg, SpillSlot,
2409                           MachinePointerInfo::getFixedStack(FI),
2410                           false, false, 0);
2411      Arg = SpillSlot;
2412      break;
2413    }
2414    }
2415
2416    if (VA.isRegLoc()) {
2417      RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
2418      if (isVarArg && IsWin64) {
2419        // Win64 ABI requires argument XMM reg to be copied to the corresponding
2420        // shadow reg if callee is a varargs function.
2421        unsigned ShadowReg = 0;
2422        switch (VA.getLocReg()) {
2423        case X86::XMM0: ShadowReg = X86::RCX; break;
2424        case X86::XMM1: ShadowReg = X86::RDX; break;
2425        case X86::XMM2: ShadowReg = X86::R8; break;
2426        case X86::XMM3: ShadowReg = X86::R9; break;
2427        }
2428        if (ShadowReg)
2429          RegsToPass.push_back(std::make_pair(ShadowReg, Arg));
2430      }
2431    } else if (!IsSibcall && (!isTailCall || isByVal)) {
2432      assert(VA.isMemLoc());
2433      if (StackPtr.getNode() == 0)
2434        StackPtr = DAG.getCopyFromReg(Chain, dl, RegInfo->getStackRegister(),
2435                                      getPointerTy());
2436      MemOpChains.push_back(LowerMemOpCallTo(Chain, StackPtr, Arg,
2437                                             dl, DAG, VA, Flags));
2438    }
2439  }
2440
2441  if (!MemOpChains.empty())
2442    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
2443                        &MemOpChains[0], MemOpChains.size());
2444
2445  if (Subtarget->isPICStyleGOT()) {
2446    // ELF / PIC requires GOT in the EBX register before function calls via PLT
2447    // GOT pointer.
2448    if (!isTailCall) {
2449      RegsToPass.push_back(std::make_pair(unsigned(X86::EBX),
2450               DAG.getNode(X86ISD::GlobalBaseReg, DebugLoc(), getPointerTy())));
2451    } else {
2452      // If we are tail calling and generating PIC/GOT style code load the
2453      // address of the callee into ECX. The value in ecx is used as target of
2454      // the tail jump. This is done to circumvent the ebx/callee-saved problem
2455      // for tail calls on PIC/GOT architectures. Normally we would just put the
2456      // address of GOT into ebx and then call target@PLT. But for tail calls
2457      // ebx would be restored (since ebx is callee saved) before jumping to the
2458      // target@PLT.
2459
2460      // Note: The actual moving to ECX is done further down.
2461      GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee);
2462      if (G && !G->getGlobal()->hasHiddenVisibility() &&
2463          !G->getGlobal()->hasProtectedVisibility())
2464        Callee = LowerGlobalAddress(Callee, DAG);
2465      else if (isa<ExternalSymbolSDNode>(Callee))
2466        Callee = LowerExternalSymbol(Callee, DAG);
2467    }
2468  }
2469
2470  if (Is64Bit && isVarArg && !IsWin64) {
2471    // From AMD64 ABI document:
2472    // For calls that may call functions that use varargs or stdargs
2473    // (prototype-less calls or calls to functions containing ellipsis (...) in
2474    // the declaration) %al is used as hidden argument to specify the number
2475    // of SSE registers used. The contents of %al do not need to match exactly
2476    // the number of registers, but must be an ubound on the number of SSE
2477    // registers used and is in the range 0 - 8 inclusive.
2478
2479    // Count the number of XMM registers allocated.
2480    static const uint16_t XMMArgRegs[] = {
2481      X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3,
2482      X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7
2483    };
2484    unsigned NumXMMRegs = CCInfo.getFirstUnallocated(XMMArgRegs, 8);
2485    assert((Subtarget->hasSSE1() || !NumXMMRegs)
2486           && "SSE registers cannot be used when SSE is disabled");
2487
2488    RegsToPass.push_back(std::make_pair(unsigned(X86::AL),
2489                                        DAG.getConstant(NumXMMRegs, MVT::i8)));
2490  }
2491
2492  // For tail calls lower the arguments to the 'real' stack slot.
2493  if (isTailCall) {
2494    // Force all the incoming stack arguments to be loaded from the stack
2495    // before any new outgoing arguments are stored to the stack, because the
2496    // outgoing stack slots may alias the incoming argument stack slots, and
2497    // the alias isn't otherwise explicit. This is slightly more conservative
2498    // than necessary, because it means that each store effectively depends
2499    // on every argument instead of just those arguments it would clobber.
2500    SDValue ArgChain = DAG.getStackArgumentTokenFactor(Chain);
2501
2502    SmallVector<SDValue, 8> MemOpChains2;
2503    SDValue FIN;
2504    int FI = 0;
2505    if (getTargetMachine().Options.GuaranteedTailCallOpt) {
2506      for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
2507        CCValAssign &VA = ArgLocs[i];
2508        if (VA.isRegLoc())
2509          continue;
2510        assert(VA.isMemLoc());
2511        SDValue Arg = OutVals[i];
2512        ISD::ArgFlagsTy Flags = Outs[i].Flags;
2513        // Create frame index.
2514        int32_t Offset = VA.getLocMemOffset()+FPDiff;
2515        uint32_t OpSize = (VA.getLocVT().getSizeInBits()+7)/8;
2516        FI = MF.getFrameInfo()->CreateFixedObject(OpSize, Offset, true);
2517        FIN = DAG.getFrameIndex(FI, getPointerTy());
2518
2519        if (Flags.isByVal()) {
2520          // Copy relative to framepointer.
2521          SDValue Source = DAG.getIntPtrConstant(VA.getLocMemOffset());
2522          if (StackPtr.getNode() == 0)
2523            StackPtr = DAG.getCopyFromReg(Chain, dl,
2524                                          RegInfo->getStackRegister(),
2525                                          getPointerTy());
2526          Source = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr, Source);
2527
2528          MemOpChains2.push_back(CreateCopyOfByValArgument(Source, FIN,
2529                                                           ArgChain,
2530                                                           Flags, DAG, dl));
2531        } else {
2532          // Store relative to framepointer.
2533          MemOpChains2.push_back(
2534            DAG.getStore(ArgChain, dl, Arg, FIN,
2535                         MachinePointerInfo::getFixedStack(FI),
2536                         false, false, 0));
2537        }
2538      }
2539    }
2540
2541    if (!MemOpChains2.empty())
2542      Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
2543                          &MemOpChains2[0], MemOpChains2.size());
2544
2545    // Store the return address to the appropriate stack slot.
2546    Chain = EmitTailCallStoreRetAddr(DAG, MF, Chain, RetAddrFrIdx,
2547                                     getPointerTy(), RegInfo->getSlotSize(),
2548                                     FPDiff, dl);
2549  }
2550
2551  // Build a sequence of copy-to-reg nodes chained together with token chain
2552  // and flag operands which copy the outgoing args into registers.
2553  SDValue InFlag;
2554  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
2555    Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
2556                             RegsToPass[i].second, InFlag);
2557    InFlag = Chain.getValue(1);
2558  }
2559
2560  if (getTargetMachine().getCodeModel() == CodeModel::Large) {
2561    assert(Is64Bit && "Large code model is only legal in 64-bit mode.");
2562    // In the 64-bit large code model, we have to make all calls
2563    // through a register, since the call instruction's 32-bit
2564    // pc-relative offset may not be large enough to hold the whole
2565    // address.
2566  } else if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
2567    // If the callee is a GlobalAddress node (quite common, every direct call
2568    // is) turn it into a TargetGlobalAddress node so that legalize doesn't hack
2569    // it.
2570
2571    // We should use extra load for direct calls to dllimported functions in
2572    // non-JIT mode.
2573    const GlobalValue *GV = G->getGlobal();
2574    if (!GV->hasDLLImportLinkage()) {
2575      unsigned char OpFlags = 0;
2576      bool ExtraLoad = false;
2577      unsigned WrapperKind = ISD::DELETED_NODE;
2578
2579      // On ELF targets, in both X86-64 and X86-32 mode, direct calls to
2580      // external symbols most go through the PLT in PIC mode.  If the symbol
2581      // has hidden or protected visibility, or if it is static or local, then
2582      // we don't need to use the PLT - we can directly call it.
2583      if (Subtarget->isTargetELF() &&
2584          getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
2585          GV->hasDefaultVisibility() && !GV->hasLocalLinkage()) {
2586        OpFlags = X86II::MO_PLT;
2587      } else if (Subtarget->isPICStyleStubAny() &&
2588                 (GV->isDeclaration() || GV->isWeakForLinker()) &&
2589                 (!Subtarget->getTargetTriple().isMacOSX() ||
2590                  Subtarget->getTargetTriple().isMacOSXVersionLT(10, 5))) {
2591        // PC-relative references to external symbols should go through $stub,
2592        // unless we're building with the leopard linker or later, which
2593        // automatically synthesizes these stubs.
2594        OpFlags = X86II::MO_DARWIN_STUB;
2595      } else if (Subtarget->isPICStyleRIPRel() &&
2596                 isa<Function>(GV) &&
2597                 cast<Function>(GV)->getAttributes().
2598                   hasAttribute(AttributeSet::FunctionIndex,
2599                                Attribute::NonLazyBind)) {
2600        // If the function is marked as non-lazy, generate an indirect call
2601        // which loads from the GOT directly. This avoids runtime overhead
2602        // at the cost of eager binding (and one extra byte of encoding).
2603        OpFlags = X86II::MO_GOTPCREL;
2604        WrapperKind = X86ISD::WrapperRIP;
2605        ExtraLoad = true;
2606      }
2607
2608      Callee = DAG.getTargetGlobalAddress(GV, dl, getPointerTy(),
2609                                          G->getOffset(), OpFlags);
2610
2611      // Add a wrapper if needed.
2612      if (WrapperKind != ISD::DELETED_NODE)
2613        Callee = DAG.getNode(X86ISD::WrapperRIP, dl, getPointerTy(), Callee);
2614      // Add extra indirection if needed.
2615      if (ExtraLoad)
2616        Callee = DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(), Callee,
2617                             MachinePointerInfo::getGOT(),
2618                             false, false, false, 0);
2619    }
2620  } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
2621    unsigned char OpFlags = 0;
2622
2623    // On ELF targets, in either X86-64 or X86-32 mode, direct calls to
2624    // external symbols should go through the PLT.
2625    if (Subtarget->isTargetELF() &&
2626        getTargetMachine().getRelocationModel() == Reloc::PIC_) {
2627      OpFlags = X86II::MO_PLT;
2628    } else if (Subtarget->isPICStyleStubAny() &&
2629               (!Subtarget->getTargetTriple().isMacOSX() ||
2630                Subtarget->getTargetTriple().isMacOSXVersionLT(10, 5))) {
2631      // PC-relative references to external symbols should go through $stub,
2632      // unless we're building with the leopard linker or later, which
2633      // automatically synthesizes these stubs.
2634      OpFlags = X86II::MO_DARWIN_STUB;
2635    }
2636
2637    Callee = DAG.getTargetExternalSymbol(S->getSymbol(), getPointerTy(),
2638                                         OpFlags);
2639  }
2640
2641  // Returns a chain & a flag for retval copy to use.
2642  SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
2643  SmallVector<SDValue, 8> Ops;
2644
2645  if (!IsSibcall && isTailCall) {
2646    Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, true),
2647                           DAG.getIntPtrConstant(0, true), InFlag);
2648    InFlag = Chain.getValue(1);
2649  }
2650
2651  Ops.push_back(Chain);
2652  Ops.push_back(Callee);
2653
2654  if (isTailCall)
2655    Ops.push_back(DAG.getConstant(FPDiff, MVT::i32));
2656
2657  // Add argument registers to the end of the list so that they are known live
2658  // into the call.
2659  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
2660    Ops.push_back(DAG.getRegister(RegsToPass[i].first,
2661                                  RegsToPass[i].second.getValueType()));
2662
2663  // Add a register mask operand representing the call-preserved registers.
2664  const TargetRegisterInfo *TRI = getTargetMachine().getRegisterInfo();
2665  const uint32_t *Mask = TRI->getCallPreservedMask(CallConv);
2666  assert(Mask && "Missing call preserved mask for calling convention");
2667  Ops.push_back(DAG.getRegisterMask(Mask));
2668
2669  if (InFlag.getNode())
2670    Ops.push_back(InFlag);
2671
2672  if (isTailCall) {
2673    // We used to do:
2674    //// If this is the first return lowered for this function, add the regs
2675    //// to the liveout set for the function.
2676    // This isn't right, although it's probably harmless on x86; liveouts
2677    // should be computed from returns not tail calls.  Consider a void
2678    // function making a tail call to a function returning int.
2679    return DAG.getNode(X86ISD::TC_RETURN, dl, NodeTys, &Ops[0], Ops.size());
2680  }
2681
2682  Chain = DAG.getNode(X86ISD::CALL, dl, NodeTys, &Ops[0], Ops.size());
2683  InFlag = Chain.getValue(1);
2684
2685  // Create the CALLSEQ_END node.
2686  unsigned NumBytesForCalleeToPush;
2687  if (X86::isCalleePop(CallConv, Is64Bit, isVarArg,
2688                       getTargetMachine().Options.GuaranteedTailCallOpt))
2689    NumBytesForCalleeToPush = NumBytes;    // Callee pops everything
2690  else if (!Is64Bit && !IsTailCallConvention(CallConv) && !IsWindows &&
2691           SR == StackStructReturn)
2692    // If this is a call to a struct-return function, the callee
2693    // pops the hidden struct pointer, so we have to push it back.
2694    // This is common for Darwin/X86, Linux & Mingw32 targets.
2695    // For MSVC Win32 targets, the caller pops the hidden struct pointer.
2696    NumBytesForCalleeToPush = 4;
2697  else
2698    NumBytesForCalleeToPush = 0;  // Callee pops nothing.
2699
2700  // Returns a flag for retval copy to use.
2701  if (!IsSibcall) {
2702    Chain = DAG.getCALLSEQ_END(Chain,
2703                               DAG.getIntPtrConstant(NumBytes, true),
2704                               DAG.getIntPtrConstant(NumBytesForCalleeToPush,
2705                                                     true),
2706                               InFlag);
2707    InFlag = Chain.getValue(1);
2708  }
2709
2710  // Handle result values, copying them out of physregs into vregs that we
2711  // return.
2712  return LowerCallResult(Chain, InFlag, CallConv, isVarArg,
2713                         Ins, dl, DAG, InVals);
2714}
2715
2716//===----------------------------------------------------------------------===//
2717//                Fast Calling Convention (tail call) implementation
2718//===----------------------------------------------------------------------===//
2719
2720//  Like std call, callee cleans arguments, convention except that ECX is
2721//  reserved for storing the tail called function address. Only 2 registers are
2722//  free for argument passing (inreg). Tail call optimization is performed
2723//  provided:
2724//                * tailcallopt is enabled
2725//                * caller/callee are fastcc
2726//  On X86_64 architecture with GOT-style position independent code only local
2727//  (within module) calls are supported at the moment.
2728//  To keep the stack aligned according to platform abi the function
2729//  GetAlignedArgumentStackSize ensures that argument delta is always multiples
2730//  of stack alignment. (Dynamic linkers need this - darwin's dyld for example)
2731//  If a tail called function callee has more arguments than the caller the
2732//  caller needs to make sure that there is room to move the RETADDR to. This is
2733//  achieved by reserving an area the size of the argument delta right after the
2734//  original REtADDR, but before the saved framepointer or the spilled registers
2735//  e.g. caller(arg1, arg2) calls callee(arg1, arg2,arg3,arg4)
2736//  stack layout:
2737//    arg1
2738//    arg2
2739//    RETADDR
2740//    [ new RETADDR
2741//      move area ]
2742//    (possible EBP)
2743//    ESI
2744//    EDI
2745//    local1 ..
2746
2747/// GetAlignedArgumentStackSize - Make the stack size align e.g 16n + 12 aligned
2748/// for a 16 byte align requirement.
2749unsigned
2750X86TargetLowering::GetAlignedArgumentStackSize(unsigned StackSize,
2751                                               SelectionDAG& DAG) const {
2752  MachineFunction &MF = DAG.getMachineFunction();
2753  const TargetMachine &TM = MF.getTarget();
2754  const TargetFrameLowering &TFI = *TM.getFrameLowering();
2755  unsigned StackAlignment = TFI.getStackAlignment();
2756  uint64_t AlignMask = StackAlignment - 1;
2757  int64_t Offset = StackSize;
2758  unsigned SlotSize = RegInfo->getSlotSize();
2759  if ( (Offset & AlignMask) <= (StackAlignment - SlotSize) ) {
2760    // Number smaller than 12 so just add the difference.
2761    Offset += ((StackAlignment - SlotSize) - (Offset & AlignMask));
2762  } else {
2763    // Mask out lower bits, add stackalignment once plus the 12 bytes.
2764    Offset = ((~AlignMask) & Offset) + StackAlignment +
2765      (StackAlignment-SlotSize);
2766  }
2767  return Offset;
2768}
2769
2770/// MatchingStackOffset - Return true if the given stack call argument is
2771/// already available in the same position (relatively) of the caller's
2772/// incoming argument stack.
2773static
2774bool MatchingStackOffset(SDValue Arg, unsigned Offset, ISD::ArgFlagsTy Flags,
2775                         MachineFrameInfo *MFI, const MachineRegisterInfo *MRI,
2776                         const X86InstrInfo *TII) {
2777  unsigned Bytes = Arg.getValueType().getSizeInBits() / 8;
2778  int FI = INT_MAX;
2779  if (Arg.getOpcode() == ISD::CopyFromReg) {
2780    unsigned VR = cast<RegisterSDNode>(Arg.getOperand(1))->getReg();
2781    if (!TargetRegisterInfo::isVirtualRegister(VR))
2782      return false;
2783    MachineInstr *Def = MRI->getVRegDef(VR);
2784    if (!Def)
2785      return false;
2786    if (!Flags.isByVal()) {
2787      if (!TII->isLoadFromStackSlot(Def, FI))
2788        return false;
2789    } else {
2790      unsigned Opcode = Def->getOpcode();
2791      if ((Opcode == X86::LEA32r || Opcode == X86::LEA64r) &&
2792          Def->getOperand(1).isFI()) {
2793        FI = Def->getOperand(1).getIndex();
2794        Bytes = Flags.getByValSize();
2795      } else
2796        return false;
2797    }
2798  } else if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(Arg)) {
2799    if (Flags.isByVal())
2800      // ByVal argument is passed in as a pointer but it's now being
2801      // dereferenced. e.g.
2802      // define @foo(%struct.X* %A) {
2803      //   tail call @bar(%struct.X* byval %A)
2804      // }
2805      return false;
2806    SDValue Ptr = Ld->getBasePtr();
2807    FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(Ptr);
2808    if (!FINode)
2809      return false;
2810    FI = FINode->getIndex();
2811  } else if (Arg.getOpcode() == ISD::FrameIndex && Flags.isByVal()) {
2812    FrameIndexSDNode *FINode = cast<FrameIndexSDNode>(Arg);
2813    FI = FINode->getIndex();
2814    Bytes = Flags.getByValSize();
2815  } else
2816    return false;
2817
2818  assert(FI != INT_MAX);
2819  if (!MFI->isFixedObjectIndex(FI))
2820    return false;
2821  return Offset == MFI->getObjectOffset(FI) && Bytes == MFI->getObjectSize(FI);
2822}
2823
2824/// IsEligibleForTailCallOptimization - Check whether the call is eligible
2825/// for tail call optimization. Targets which want to do tail call
2826/// optimization should implement this function.
2827bool
2828X86TargetLowering::IsEligibleForTailCallOptimization(SDValue Callee,
2829                                                     CallingConv::ID CalleeCC,
2830                                                     bool isVarArg,
2831                                                     bool isCalleeStructRet,
2832                                                     bool isCallerStructRet,
2833                                                     Type *RetTy,
2834                                    const SmallVectorImpl<ISD::OutputArg> &Outs,
2835                                    const SmallVectorImpl<SDValue> &OutVals,
2836                                    const SmallVectorImpl<ISD::InputArg> &Ins,
2837                                                     SelectionDAG &DAG) const {
2838  if (!IsTailCallConvention(CalleeCC) && !IsCCallConvention(CalleeCC))
2839    return false;
2840
2841  // If -tailcallopt is specified, make fastcc functions tail-callable.
2842  const MachineFunction &MF = DAG.getMachineFunction();
2843  const Function *CallerF = MF.getFunction();
2844
2845  // If the function return type is x86_fp80 and the callee return type is not,
2846  // then the FP_EXTEND of the call result is not a nop. It's not safe to
2847  // perform a tailcall optimization here.
2848  if (CallerF->getReturnType()->isX86_FP80Ty() && !RetTy->isX86_FP80Ty())
2849    return false;
2850
2851  CallingConv::ID CallerCC = CallerF->getCallingConv();
2852  bool CCMatch = CallerCC == CalleeCC;
2853  bool IsCalleeWin64 = Subtarget->isCallingConvWin64(CalleeCC);
2854  bool IsCallerWin64 = Subtarget->isCallingConvWin64(CallerCC);
2855
2856  if (getTargetMachine().Options.GuaranteedTailCallOpt) {
2857    if (IsTailCallConvention(CalleeCC) && CCMatch)
2858      return true;
2859    return false;
2860  }
2861
2862  // Look for obvious safe cases to perform tail call optimization that do not
2863  // require ABI changes. This is what gcc calls sibcall.
2864
2865  // Can't do sibcall if stack needs to be dynamically re-aligned. PEI needs to
2866  // emit a special epilogue.
2867  if (RegInfo->needsStackRealignment(MF))
2868    return false;
2869
2870  // Also avoid sibcall optimization if either caller or callee uses struct
2871  // return semantics.
2872  if (isCalleeStructRet || isCallerStructRet)
2873    return false;
2874
2875  // An stdcall caller is expected to clean up its arguments; the callee
2876  // isn't going to do that.
2877  if (!CCMatch && CallerCC == CallingConv::X86_StdCall)
2878    return false;
2879
2880  // Do not sibcall optimize vararg calls unless all arguments are passed via
2881  // registers.
2882  if (isVarArg && !Outs.empty()) {
2883
2884    // Optimizing for varargs on Win64 is unlikely to be safe without
2885    // additional testing.
2886    if (IsCalleeWin64 || IsCallerWin64)
2887      return false;
2888
2889    SmallVector<CCValAssign, 16> ArgLocs;
2890    CCState CCInfo(CalleeCC, isVarArg, DAG.getMachineFunction(),
2891                   getTargetMachine(), ArgLocs, *DAG.getContext());
2892
2893    CCInfo.AnalyzeCallOperands(Outs, CC_X86);
2894    for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i)
2895      if (!ArgLocs[i].isRegLoc())
2896        return false;
2897  }
2898
2899  // If the call result is in ST0 / ST1, it needs to be popped off the x87
2900  // stack.  Therefore, if it's not used by the call it is not safe to optimize
2901  // this into a sibcall.
2902  bool Unused = false;
2903  for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
2904    if (!Ins[i].Used) {
2905      Unused = true;
2906      break;
2907    }
2908  }
2909  if (Unused) {
2910    SmallVector<CCValAssign, 16> RVLocs;
2911    CCState CCInfo(CalleeCC, false, DAG.getMachineFunction(),
2912                   getTargetMachine(), RVLocs, *DAG.getContext());
2913    CCInfo.AnalyzeCallResult(Ins, RetCC_X86);
2914    for (unsigned i = 0, e = RVLocs.size(); i != e; ++i) {
2915      CCValAssign &VA = RVLocs[i];
2916      if (VA.getLocReg() == X86::ST0 || VA.getLocReg() == X86::ST1)
2917        return false;
2918    }
2919  }
2920
2921  // If the calling conventions do not match, then we'd better make sure the
2922  // results are returned in the same way as what the caller expects.
2923  if (!CCMatch) {
2924    SmallVector<CCValAssign, 16> RVLocs1;
2925    CCState CCInfo1(CalleeCC, false, DAG.getMachineFunction(),
2926                    getTargetMachine(), RVLocs1, *DAG.getContext());
2927    CCInfo1.AnalyzeCallResult(Ins, RetCC_X86);
2928
2929    SmallVector<CCValAssign, 16> RVLocs2;
2930    CCState CCInfo2(CallerCC, false, DAG.getMachineFunction(),
2931                    getTargetMachine(), RVLocs2, *DAG.getContext());
2932    CCInfo2.AnalyzeCallResult(Ins, RetCC_X86);
2933
2934    if (RVLocs1.size() != RVLocs2.size())
2935      return false;
2936    for (unsigned i = 0, e = RVLocs1.size(); i != e; ++i) {
2937      if (RVLocs1[i].isRegLoc() != RVLocs2[i].isRegLoc())
2938        return false;
2939      if (RVLocs1[i].getLocInfo() != RVLocs2[i].getLocInfo())
2940        return false;
2941      if (RVLocs1[i].isRegLoc()) {
2942        if (RVLocs1[i].getLocReg() != RVLocs2[i].getLocReg())
2943          return false;
2944      } else {
2945        if (RVLocs1[i].getLocMemOffset() != RVLocs2[i].getLocMemOffset())
2946          return false;
2947      }
2948    }
2949  }
2950
2951  // If the callee takes no arguments then go on to check the results of the
2952  // call.
2953  if (!Outs.empty()) {
2954    // Check if stack adjustment is needed. For now, do not do this if any
2955    // argument is passed on the stack.
2956    SmallVector<CCValAssign, 16> ArgLocs;
2957    CCState CCInfo(CalleeCC, isVarArg, DAG.getMachineFunction(),
2958                   getTargetMachine(), ArgLocs, *DAG.getContext());
2959
2960    // Allocate shadow area for Win64
2961    if (IsCalleeWin64)
2962      CCInfo.AllocateStack(32, 8);
2963
2964    CCInfo.AnalyzeCallOperands(Outs, CC_X86);
2965    if (CCInfo.getNextStackOffset()) {
2966      MachineFunction &MF = DAG.getMachineFunction();
2967      if (MF.getInfo<X86MachineFunctionInfo>()->getBytesToPopOnReturn())
2968        return false;
2969
2970      // Check if the arguments are already laid out in the right way as
2971      // the caller's fixed stack objects.
2972      MachineFrameInfo *MFI = MF.getFrameInfo();
2973      const MachineRegisterInfo *MRI = &MF.getRegInfo();
2974      const X86InstrInfo *TII =
2975        ((const X86TargetMachine&)getTargetMachine()).getInstrInfo();
2976      for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
2977        CCValAssign &VA = ArgLocs[i];
2978        SDValue Arg = OutVals[i];
2979        ISD::ArgFlagsTy Flags = Outs[i].Flags;
2980        if (VA.getLocInfo() == CCValAssign::Indirect)
2981          return false;
2982        if (!VA.isRegLoc()) {
2983          if (!MatchingStackOffset(Arg, VA.getLocMemOffset(), Flags,
2984                                   MFI, MRI, TII))
2985            return false;
2986        }
2987      }
2988    }
2989
2990    // If the tailcall address may be in a register, then make sure it's
2991    // possible to register allocate for it. In 32-bit, the call address can
2992    // only target EAX, EDX, or ECX since the tail call must be scheduled after
2993    // callee-saved registers are restored. These happen to be the same
2994    // registers used to pass 'inreg' arguments so watch out for those.
2995    if (!Subtarget->is64Bit() &&
2996        ((!isa<GlobalAddressSDNode>(Callee) &&
2997          !isa<ExternalSymbolSDNode>(Callee)) ||
2998         getTargetMachine().getRelocationModel() == Reloc::PIC_)) {
2999      unsigned NumInRegs = 0;
3000      // In PIC we need an extra register to formulate the address computation
3001      // for the callee.
3002      unsigned MaxInRegs =
3003          (getTargetMachine().getRelocationModel() == Reloc::PIC_) ? 2 : 3;
3004
3005      for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
3006        CCValAssign &VA = ArgLocs[i];
3007        if (!VA.isRegLoc())
3008          continue;
3009        unsigned Reg = VA.getLocReg();
3010        switch (Reg) {
3011        default: break;
3012        case X86::EAX: case X86::EDX: case X86::ECX:
3013          if (++NumInRegs == MaxInRegs)
3014            return false;
3015          break;
3016        }
3017      }
3018    }
3019  }
3020
3021  return true;
3022}
3023
3024FastISel *
3025X86TargetLowering::createFastISel(FunctionLoweringInfo &funcInfo,
3026                                  const TargetLibraryInfo *libInfo) const {
3027  return X86::createFastISel(funcInfo, libInfo);
3028}
3029
3030//===----------------------------------------------------------------------===//
3031//                           Other Lowering Hooks
3032//===----------------------------------------------------------------------===//
3033
3034static bool MayFoldLoad(SDValue Op) {
3035  return Op.hasOneUse() && ISD::isNormalLoad(Op.getNode());
3036}
3037
3038static bool MayFoldIntoStore(SDValue Op) {
3039  return Op.hasOneUse() && ISD::isNormalStore(*Op.getNode()->use_begin());
3040}
3041
3042static bool isTargetShuffle(unsigned Opcode) {
3043  switch(Opcode) {
3044  default: return false;
3045  case X86ISD::PSHUFD:
3046  case X86ISD::PSHUFHW:
3047  case X86ISD::PSHUFLW:
3048  case X86ISD::SHUFP:
3049  case X86ISD::PALIGNR:
3050  case X86ISD::MOVLHPS:
3051  case X86ISD::MOVLHPD:
3052  case X86ISD::MOVHLPS:
3053  case X86ISD::MOVLPS:
3054  case X86ISD::MOVLPD:
3055  case X86ISD::MOVSHDUP:
3056  case X86ISD::MOVSLDUP:
3057  case X86ISD::MOVDDUP:
3058  case X86ISD::MOVSS:
3059  case X86ISD::MOVSD:
3060  case X86ISD::UNPCKL:
3061  case X86ISD::UNPCKH:
3062  case X86ISD::VPERMILP:
3063  case X86ISD::VPERM2X128:
3064  case X86ISD::VPERMI:
3065    return true;
3066  }
3067}
3068
3069static SDValue getTargetShuffleNode(unsigned Opc, DebugLoc dl, EVT VT,
3070                                    SDValue V1, SelectionDAG &DAG) {
3071  switch(Opc) {
3072  default: llvm_unreachable("Unknown x86 shuffle node");
3073  case X86ISD::MOVSHDUP:
3074  case X86ISD::MOVSLDUP:
3075  case X86ISD::MOVDDUP:
3076    return DAG.getNode(Opc, dl, VT, V1);
3077  }
3078}
3079
3080static SDValue getTargetShuffleNode(unsigned Opc, DebugLoc dl, EVT VT,
3081                                    SDValue V1, unsigned TargetMask,
3082                                    SelectionDAG &DAG) {
3083  switch(Opc) {
3084  default: llvm_unreachable("Unknown x86 shuffle node");
3085  case X86ISD::PSHUFD:
3086  case X86ISD::PSHUFHW:
3087  case X86ISD::PSHUFLW:
3088  case X86ISD::VPERMILP:
3089  case X86ISD::VPERMI:
3090    return DAG.getNode(Opc, dl, VT, V1, DAG.getConstant(TargetMask, MVT::i8));
3091  }
3092}
3093
3094static SDValue getTargetShuffleNode(unsigned Opc, DebugLoc dl, EVT VT,
3095                                    SDValue V1, SDValue V2, unsigned TargetMask,
3096                                    SelectionDAG &DAG) {
3097  switch(Opc) {
3098  default: llvm_unreachable("Unknown x86 shuffle node");
3099  case X86ISD::PALIGNR:
3100  case X86ISD::SHUFP:
3101  case X86ISD::VPERM2X128:
3102    return DAG.getNode(Opc, dl, VT, V1, V2,
3103                       DAG.getConstant(TargetMask, MVT::i8));
3104  }
3105}
3106
3107static SDValue getTargetShuffleNode(unsigned Opc, DebugLoc dl, EVT VT,
3108                                    SDValue V1, SDValue V2, SelectionDAG &DAG) {
3109  switch(Opc) {
3110  default: llvm_unreachable("Unknown x86 shuffle node");
3111  case X86ISD::MOVLHPS:
3112  case X86ISD::MOVLHPD:
3113  case X86ISD::MOVHLPS:
3114  case X86ISD::MOVLPS:
3115  case X86ISD::MOVLPD:
3116  case X86ISD::MOVSS:
3117  case X86ISD::MOVSD:
3118  case X86ISD::UNPCKL:
3119  case X86ISD::UNPCKH:
3120    return DAG.getNode(Opc, dl, VT, V1, V2);
3121  }
3122}
3123
3124SDValue X86TargetLowering::getReturnAddressFrameIndex(SelectionDAG &DAG) const {
3125  MachineFunction &MF = DAG.getMachineFunction();
3126  X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
3127  int ReturnAddrIndex = FuncInfo->getRAIndex();
3128
3129  if (ReturnAddrIndex == 0) {
3130    // Set up a frame object for the return address.
3131    unsigned SlotSize = RegInfo->getSlotSize();
3132    ReturnAddrIndex = MF.getFrameInfo()->CreateFixedObject(SlotSize, -SlotSize,
3133                                                           false);
3134    FuncInfo->setRAIndex(ReturnAddrIndex);
3135  }
3136
3137  return DAG.getFrameIndex(ReturnAddrIndex, getPointerTy());
3138}
3139
3140bool X86::isOffsetSuitableForCodeModel(int64_t Offset, CodeModel::Model M,
3141                                       bool hasSymbolicDisplacement) {
3142  // Offset should fit into 32 bit immediate field.
3143  if (!isInt<32>(Offset))
3144    return false;
3145
3146  // If we don't have a symbolic displacement - we don't have any extra
3147  // restrictions.
3148  if (!hasSymbolicDisplacement)
3149    return true;
3150
3151  // FIXME: Some tweaks might be needed for medium code model.
3152  if (M != CodeModel::Small && M != CodeModel::Kernel)
3153    return false;
3154
3155  // For small code model we assume that latest object is 16MB before end of 31
3156  // bits boundary. We may also accept pretty large negative constants knowing
3157  // that all objects are in the positive half of address space.
3158  if (M == CodeModel::Small && Offset < 16*1024*1024)
3159    return true;
3160
3161  // For kernel code model we know that all object resist in the negative half
3162  // of 32bits address space. We may not accept negative offsets, since they may
3163  // be just off and we may accept pretty large positive ones.
3164  if (M == CodeModel::Kernel && Offset > 0)
3165    return true;
3166
3167  return false;
3168}
3169
3170/// isCalleePop - Determines whether the callee is required to pop its
3171/// own arguments. Callee pop is necessary to support tail calls.
3172bool X86::isCalleePop(CallingConv::ID CallingConv,
3173                      bool is64Bit, bool IsVarArg, bool TailCallOpt) {
3174  if (IsVarArg)
3175    return false;
3176
3177  switch (CallingConv) {
3178  default:
3179    return false;
3180  case CallingConv::X86_StdCall:
3181    return !is64Bit;
3182  case CallingConv::X86_FastCall:
3183    return !is64Bit;
3184  case CallingConv::X86_ThisCall:
3185    return !is64Bit;
3186  case CallingConv::Fast:
3187    return TailCallOpt;
3188  case CallingConv::GHC:
3189    return TailCallOpt;
3190  case CallingConv::HiPE:
3191    return TailCallOpt;
3192  }
3193}
3194
3195/// TranslateX86CC - do a one to one translation of a ISD::CondCode to the X86
3196/// specific condition code, returning the condition code and the LHS/RHS of the
3197/// comparison to make.
3198static unsigned TranslateX86CC(ISD::CondCode SetCCOpcode, bool isFP,
3199                               SDValue &LHS, SDValue &RHS, SelectionDAG &DAG) {
3200  if (!isFP) {
3201    if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) {
3202      if (SetCCOpcode == ISD::SETGT && RHSC->isAllOnesValue()) {
3203        // X > -1   -> X == 0, jump !sign.
3204        RHS = DAG.getConstant(0, RHS.getValueType());
3205        return X86::COND_NS;
3206      }
3207      if (SetCCOpcode == ISD::SETLT && RHSC->isNullValue()) {
3208        // X < 0   -> X == 0, jump on sign.
3209        return X86::COND_S;
3210      }
3211      if (SetCCOpcode == ISD::SETLT && RHSC->getZExtValue() == 1) {
3212        // X < 1   -> X <= 0
3213        RHS = DAG.getConstant(0, RHS.getValueType());
3214        return X86::COND_LE;
3215      }
3216    }
3217
3218    switch (SetCCOpcode) {
3219    default: llvm_unreachable("Invalid integer condition!");
3220    case ISD::SETEQ:  return X86::COND_E;
3221    case ISD::SETGT:  return X86::COND_G;
3222    case ISD::SETGE:  return X86::COND_GE;
3223    case ISD::SETLT:  return X86::COND_L;
3224    case ISD::SETLE:  return X86::COND_LE;
3225    case ISD::SETNE:  return X86::COND_NE;
3226    case ISD::SETULT: return X86::COND_B;
3227    case ISD::SETUGT: return X86::COND_A;
3228    case ISD::SETULE: return X86::COND_BE;
3229    case ISD::SETUGE: return X86::COND_AE;
3230    }
3231  }
3232
3233  // First determine if it is required or is profitable to flip the operands.
3234
3235  // If LHS is a foldable load, but RHS is not, flip the condition.
3236  if (ISD::isNON_EXTLoad(LHS.getNode()) &&
3237      !ISD::isNON_EXTLoad(RHS.getNode())) {
3238    SetCCOpcode = getSetCCSwappedOperands(SetCCOpcode);
3239    std::swap(LHS, RHS);
3240  }
3241
3242  switch (SetCCOpcode) {
3243  default: break;
3244  case ISD::SETOLT:
3245  case ISD::SETOLE:
3246  case ISD::SETUGT:
3247  case ISD::SETUGE:
3248    std::swap(LHS, RHS);
3249    break;
3250  }
3251
3252  // On a floating point condition, the flags are set as follows:
3253  // ZF  PF  CF   op
3254  //  0 | 0 | 0 | X > Y
3255  //  0 | 0 | 1 | X < Y
3256  //  1 | 0 | 0 | X == Y
3257  //  1 | 1 | 1 | unordered
3258  switch (SetCCOpcode) {
3259  default: llvm_unreachable("Condcode should be pre-legalized away");
3260  case ISD::SETUEQ:
3261  case ISD::SETEQ:   return X86::COND_E;
3262  case ISD::SETOLT:              // flipped
3263  case ISD::SETOGT:
3264  case ISD::SETGT:   return X86::COND_A;
3265  case ISD::SETOLE:              // flipped
3266  case ISD::SETOGE:
3267  case ISD::SETGE:   return X86::COND_AE;
3268  case ISD::SETUGT:              // flipped
3269  case ISD::SETULT:
3270  case ISD::SETLT:   return X86::COND_B;
3271  case ISD::SETUGE:              // flipped
3272  case ISD::SETULE:
3273  case ISD::SETLE:   return X86::COND_BE;
3274  case ISD::SETONE:
3275  case ISD::SETNE:   return X86::COND_NE;
3276  case ISD::SETUO:   return X86::COND_P;
3277  case ISD::SETO:    return X86::COND_NP;
3278  case ISD::SETOEQ:
3279  case ISD::SETUNE:  return X86::COND_INVALID;
3280  }
3281}
3282
3283/// hasFPCMov - is there a floating point cmov for the specific X86 condition
3284/// code. Current x86 isa includes the following FP cmov instructions:
3285/// fcmovb, fcomvbe, fcomve, fcmovu, fcmovae, fcmova, fcmovne, fcmovnu.
3286static bool hasFPCMov(unsigned X86CC) {
3287  switch (X86CC) {
3288  default:
3289    return false;
3290  case X86::COND_B:
3291  case X86::COND_BE:
3292  case X86::COND_E:
3293  case X86::COND_P:
3294  case X86::COND_A:
3295  case X86::COND_AE:
3296  case X86::COND_NE:
3297  case X86::COND_NP:
3298    return true;
3299  }
3300}
3301
3302/// isFPImmLegal - Returns true if the target can instruction select the
3303/// specified FP immediate natively. If false, the legalizer will
3304/// materialize the FP immediate as a load from a constant pool.
3305bool X86TargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT) const {
3306  for (unsigned i = 0, e = LegalFPImmediates.size(); i != e; ++i) {
3307    if (Imm.bitwiseIsEqual(LegalFPImmediates[i]))
3308      return true;
3309  }
3310  return false;
3311}
3312
3313/// isUndefOrInRange - Return true if Val is undef or if its value falls within
3314/// the specified range (L, H].
3315static bool isUndefOrInRange(int Val, int Low, int Hi) {
3316  return (Val < 0) || (Val >= Low && Val < Hi);
3317}
3318
3319/// isUndefOrEqual - Val is either less than zero (undef) or equal to the
3320/// specified value.
3321static bool isUndefOrEqual(int Val, int CmpVal) {
3322  return (Val < 0 || Val == CmpVal);
3323}
3324
3325/// isSequentialOrUndefInRange - Return true if every element in Mask, beginning
3326/// from position Pos and ending in Pos+Size, falls within the specified
3327/// sequential range (L, L+Pos]. or is undef.
3328static bool isSequentialOrUndefInRange(ArrayRef<int> Mask,
3329                                       unsigned Pos, unsigned Size, int Low) {
3330  for (unsigned i = Pos, e = Pos+Size; i != e; ++i, ++Low)
3331    if (!isUndefOrEqual(Mask[i], Low))
3332      return false;
3333  return true;
3334}
3335
3336/// isPSHUFDMask - Return true if the node specifies a shuffle of elements that
3337/// is suitable for input to PSHUFD or PSHUFW.  That is, it doesn't reference
3338/// the second operand.
3339static bool isPSHUFDMask(ArrayRef<int> Mask, EVT VT) {
3340  if (VT == MVT::v4f32 || VT == MVT::v4i32 )
3341    return (Mask[0] < 4 && Mask[1] < 4 && Mask[2] < 4 && Mask[3] < 4);
3342  if (VT == MVT::v2f64 || VT == MVT::v2i64)
3343    return (Mask[0] < 2 && Mask[1] < 2);
3344  return false;
3345}
3346
3347/// isPSHUFHWMask - Return true if the node specifies a shuffle of elements that
3348/// is suitable for input to PSHUFHW.
3349static bool isPSHUFHWMask(ArrayRef<int> Mask, EVT VT, bool HasInt256) {
3350  if (VT != MVT::v8i16 && (!HasInt256 || VT != MVT::v16i16))
3351    return false;
3352
3353  // Lower quadword copied in order or undef.
3354  if (!isSequentialOrUndefInRange(Mask, 0, 4, 0))
3355    return false;
3356
3357  // Upper quadword shuffled.
3358  for (unsigned i = 4; i != 8; ++i)
3359    if (!isUndefOrInRange(Mask[i], 4, 8))
3360      return false;
3361
3362  if (VT == MVT::v16i16) {
3363    // Lower quadword copied in order or undef.
3364    if (!isSequentialOrUndefInRange(Mask, 8, 4, 8))
3365      return false;
3366
3367    // Upper quadword shuffled.
3368    for (unsigned i = 12; i != 16; ++i)
3369      if (!isUndefOrInRange(Mask[i], 12, 16))
3370        return false;
3371  }
3372
3373  return true;
3374}
3375
3376/// isPSHUFLWMask - Return true if the node specifies a shuffle of elements that
3377/// is suitable for input to PSHUFLW.
3378static bool isPSHUFLWMask(ArrayRef<int> Mask, EVT VT, bool HasInt256) {
3379  if (VT != MVT::v8i16 && (!HasInt256 || VT != MVT::v16i16))
3380    return false;
3381
3382  // Upper quadword copied in order.
3383  if (!isSequentialOrUndefInRange(Mask, 4, 4, 4))
3384    return false;
3385
3386  // Lower quadword shuffled.
3387  for (unsigned i = 0; i != 4; ++i)
3388    if (!isUndefOrInRange(Mask[i], 0, 4))
3389      return false;
3390
3391  if (VT == MVT::v16i16) {
3392    // Upper quadword copied in order.
3393    if (!isSequentialOrUndefInRange(Mask, 12, 4, 12))
3394      return false;
3395
3396    // Lower quadword shuffled.
3397    for (unsigned i = 8; i != 12; ++i)
3398      if (!isUndefOrInRange(Mask[i], 8, 12))
3399        return false;
3400  }
3401
3402  return true;
3403}
3404
3405/// isPALIGNRMask - Return true if the node specifies a shuffle of elements that
3406/// is suitable for input to PALIGNR.
3407static bool isPALIGNRMask(ArrayRef<int> Mask, EVT VT,
3408                          const X86Subtarget *Subtarget) {
3409  if ((VT.is128BitVector() && !Subtarget->hasSSSE3()) ||
3410      (VT.is256BitVector() && !Subtarget->hasInt256()))
3411    return false;
3412
3413  unsigned NumElts = VT.getVectorNumElements();
3414  unsigned NumLanes = VT.getSizeInBits()/128;
3415  unsigned NumLaneElts = NumElts/NumLanes;
3416
3417  // Do not handle 64-bit element shuffles with palignr.
3418  if (NumLaneElts == 2)
3419    return false;
3420
3421  for (unsigned l = 0; l != NumElts; l+=NumLaneElts) {
3422    unsigned i;
3423    for (i = 0; i != NumLaneElts; ++i) {
3424      if (Mask[i+l] >= 0)
3425        break;
3426    }
3427
3428    // Lane is all undef, go to next lane
3429    if (i == NumLaneElts)
3430      continue;
3431
3432    int Start = Mask[i+l];
3433
3434    // Make sure its in this lane in one of the sources
3435    if (!isUndefOrInRange(Start, l, l+NumLaneElts) &&
3436        !isUndefOrInRange(Start, l+NumElts, l+NumElts+NumLaneElts))
3437      return false;
3438
3439    // If not lane 0, then we must match lane 0
3440    if (l != 0 && Mask[i] >= 0 && !isUndefOrEqual(Start, Mask[i]+l))
3441      return false;
3442
3443    // Correct second source to be contiguous with first source
3444    if (Start >= (int)NumElts)
3445      Start -= NumElts - NumLaneElts;
3446
3447    // Make sure we're shifting in the right direction.
3448    if (Start <= (int)(i+l))
3449      return false;
3450
3451    Start -= i;
3452
3453    // Check the rest of the elements to see if they are consecutive.
3454    for (++i; i != NumLaneElts; ++i) {
3455      int Idx = Mask[i+l];
3456
3457      // Make sure its in this lane
3458      if (!isUndefOrInRange(Idx, l, l+NumLaneElts) &&
3459          !isUndefOrInRange(Idx, l+NumElts, l+NumElts+NumLaneElts))
3460        return false;
3461
3462      // If not lane 0, then we must match lane 0
3463      if (l != 0 && Mask[i] >= 0 && !isUndefOrEqual(Idx, Mask[i]+l))
3464        return false;
3465
3466      if (Idx >= (int)NumElts)
3467        Idx -= NumElts - NumLaneElts;
3468
3469      if (!isUndefOrEqual(Idx, Start+i))
3470        return false;
3471
3472    }
3473  }
3474
3475  return true;
3476}
3477
3478/// CommuteVectorShuffleMask - Change values in a shuffle permute mask assuming
3479/// the two vector operands have swapped position.
3480static void CommuteVectorShuffleMask(SmallVectorImpl<int> &Mask,
3481                                     unsigned NumElems) {
3482  for (unsigned i = 0; i != NumElems; ++i) {
3483    int idx = Mask[i];
3484    if (idx < 0)
3485      continue;
3486    else if (idx < (int)NumElems)
3487      Mask[i] = idx + NumElems;
3488    else
3489      Mask[i] = idx - NumElems;
3490  }
3491}
3492
3493/// isSHUFPMask - Return true if the specified VECTOR_SHUFFLE operand
3494/// specifies a shuffle of elements that is suitable for input to 128/256-bit
3495/// SHUFPS and SHUFPD. If Commuted is true, then it checks for sources to be
3496/// reverse of what x86 shuffles want.
3497static bool isSHUFPMask(ArrayRef<int> Mask, EVT VT, bool HasFp256,
3498                        bool Commuted = false) {
3499  if (!HasFp256 && VT.is256BitVector())
3500    return false;
3501
3502  unsigned NumElems = VT.getVectorNumElements();
3503  unsigned NumLanes = VT.getSizeInBits()/128;
3504  unsigned NumLaneElems = NumElems/NumLanes;
3505
3506  if (NumLaneElems != 2 && NumLaneElems != 4)
3507    return false;
3508
3509  // VSHUFPSY divides the resulting vector into 4 chunks.
3510  // The sources are also splitted into 4 chunks, and each destination
3511  // chunk must come from a different source chunk.
3512  //
3513  //  SRC1 =>   X7    X6    X5    X4    X3    X2    X1    X0
3514  //  SRC2 =>   Y7    Y6    Y5    Y4    Y3    Y2    Y1    Y9
3515  //
3516  //  DST  =>  Y7..Y4,   Y7..Y4,   X7..X4,   X7..X4,
3517  //           Y3..Y0,   Y3..Y0,   X3..X0,   X3..X0
3518  //
3519  // VSHUFPDY divides the resulting vector into 4 chunks.
3520  // The sources are also splitted into 4 chunks, and each destination
3521  // chunk must come from a different source chunk.
3522  //
3523  //  SRC1 =>      X3       X2       X1       X0
3524  //  SRC2 =>      Y3       Y2       Y1       Y0
3525  //
3526  //  DST  =>  Y3..Y2,  X3..X2,  Y1..Y0,  X1..X0
3527  //
3528  unsigned HalfLaneElems = NumLaneElems/2;
3529  for (unsigned l = 0; l != NumElems; l += NumLaneElems) {
3530    for (unsigned i = 0; i != NumLaneElems; ++i) {
3531      int Idx = Mask[i+l];
3532      unsigned RngStart = l + ((Commuted == (i<HalfLaneElems)) ? NumElems : 0);
3533      if (!isUndefOrInRange(Idx, RngStart, RngStart+NumLaneElems))
3534        return false;
3535      // For VSHUFPSY, the mask of the second half must be the same as the
3536      // first but with the appropriate offsets. This works in the same way as
3537      // VPERMILPS works with masks.
3538      if (NumElems != 8 || l == 0 || Mask[i] < 0)
3539        continue;
3540      if (!isUndefOrEqual(Idx, Mask[i]+l))
3541        return false;
3542    }
3543  }
3544
3545  return true;
3546}
3547
3548/// isMOVHLPSMask - Return true if the specified VECTOR_SHUFFLE operand
3549/// specifies a shuffle of elements that is suitable for input to MOVHLPS.
3550static bool isMOVHLPSMask(ArrayRef<int> Mask, EVT VT) {
3551  if (!VT.is128BitVector())
3552    return false;
3553
3554  unsigned NumElems = VT.getVectorNumElements();
3555
3556  if (NumElems != 4)
3557    return false;
3558
3559  // Expect bit0 == 6, bit1 == 7, bit2 == 2, bit3 == 3
3560  return isUndefOrEqual(Mask[0], 6) &&
3561         isUndefOrEqual(Mask[1], 7) &&
3562         isUndefOrEqual(Mask[2], 2) &&
3563         isUndefOrEqual(Mask[3], 3);
3564}
3565
3566/// isMOVHLPS_v_undef_Mask - Special case of isMOVHLPSMask for canonical form
3567/// of vector_shuffle v, v, <2, 3, 2, 3>, i.e. vector_shuffle v, undef,
3568/// <2, 3, 2, 3>
3569static bool isMOVHLPS_v_undef_Mask(ArrayRef<int> Mask, EVT VT) {
3570  if (!VT.is128BitVector())
3571    return false;
3572
3573  unsigned NumElems = VT.getVectorNumElements();
3574
3575  if (NumElems != 4)
3576    return false;
3577
3578  return isUndefOrEqual(Mask[0], 2) &&
3579         isUndefOrEqual(Mask[1], 3) &&
3580         isUndefOrEqual(Mask[2], 2) &&
3581         isUndefOrEqual(Mask[3], 3);
3582}
3583
3584/// isMOVLPMask - Return true if the specified VECTOR_SHUFFLE operand
3585/// specifies a shuffle of elements that is suitable for input to MOVLP{S|D}.
3586static bool isMOVLPMask(ArrayRef<int> Mask, EVT VT) {
3587  if (!VT.is128BitVector())
3588    return false;
3589
3590  unsigned NumElems = VT.getVectorNumElements();
3591
3592  if (NumElems != 2 && NumElems != 4)
3593    return false;
3594
3595  for (unsigned i = 0, e = NumElems/2; i != e; ++i)
3596    if (!isUndefOrEqual(Mask[i], i + NumElems))
3597      return false;
3598
3599  for (unsigned i = NumElems/2, e = NumElems; i != e; ++i)
3600    if (!isUndefOrEqual(Mask[i], i))
3601      return false;
3602
3603  return true;
3604}
3605
3606/// isMOVLHPSMask - Return true if the specified VECTOR_SHUFFLE operand
3607/// specifies a shuffle of elements that is suitable for input to MOVLHPS.
3608static bool isMOVLHPSMask(ArrayRef<int> Mask, EVT VT) {
3609  if (!VT.is128BitVector())
3610    return false;
3611
3612  unsigned NumElems = VT.getVectorNumElements();
3613
3614  if (NumElems != 2 && NumElems != 4)
3615    return false;
3616
3617  for (unsigned i = 0, e = NumElems/2; i != e; ++i)
3618    if (!isUndefOrEqual(Mask[i], i))
3619      return false;
3620
3621  for (unsigned i = 0, e = NumElems/2; i != e; ++i)
3622    if (!isUndefOrEqual(Mask[i + e], i + NumElems))
3623      return false;
3624
3625  return true;
3626}
3627
3628//
3629// Some special combinations that can be optimized.
3630//
3631static
3632SDValue Compact8x32ShuffleNode(ShuffleVectorSDNode *SVOp,
3633                               SelectionDAG &DAG) {
3634  MVT VT = SVOp->getValueType(0).getSimpleVT();
3635  DebugLoc dl = SVOp->getDebugLoc();
3636
3637  if (VT != MVT::v8i32 && VT != MVT::v8f32)
3638    return SDValue();
3639
3640  ArrayRef<int> Mask = SVOp->getMask();
3641
3642  // These are the special masks that may be optimized.
3643  static const int MaskToOptimizeEven[] = {0, 8, 2, 10, 4, 12, 6, 14};
3644  static const int MaskToOptimizeOdd[]  = {1, 9, 3, 11, 5, 13, 7, 15};
3645  bool MatchEvenMask = true;
3646  bool MatchOddMask  = true;
3647  for (int i=0; i<8; ++i) {
3648    if (!isUndefOrEqual(Mask[i], MaskToOptimizeEven[i]))
3649      MatchEvenMask = false;
3650    if (!isUndefOrEqual(Mask[i], MaskToOptimizeOdd[i]))
3651      MatchOddMask = false;
3652  }
3653
3654  if (!MatchEvenMask && !MatchOddMask)
3655    return SDValue();
3656
3657  SDValue UndefNode = DAG.getNode(ISD::UNDEF, dl, VT);
3658
3659  SDValue Op0 = SVOp->getOperand(0);
3660  SDValue Op1 = SVOp->getOperand(1);
3661
3662  if (MatchEvenMask) {
3663    // Shift the second operand right to 32 bits.
3664    static const int ShiftRightMask[] = {-1, 0, -1, 2, -1, 4, -1, 6 };
3665    Op1 = DAG.getVectorShuffle(VT, dl, Op1, UndefNode, ShiftRightMask);
3666  } else {
3667    // Shift the first operand left to 32 bits.
3668    static const int ShiftLeftMask[] = {1, -1, 3, -1, 5, -1, 7, -1 };
3669    Op0 = DAG.getVectorShuffle(VT, dl, Op0, UndefNode, ShiftLeftMask);
3670  }
3671  static const int BlendMask[] = {0, 9, 2, 11, 4, 13, 6, 15};
3672  return DAG.getVectorShuffle(VT, dl, Op0, Op1, BlendMask);
3673}
3674
3675/// isUNPCKLMask - Return true if the specified VECTOR_SHUFFLE operand
3676/// specifies a shuffle of elements that is suitable for input to UNPCKL.
3677static bool isUNPCKLMask(ArrayRef<int> Mask, EVT VT,
3678                         bool HasInt256, bool V2IsSplat = false) {
3679  unsigned NumElts = VT.getVectorNumElements();
3680
3681  assert((VT.is128BitVector() || VT.is256BitVector()) &&
3682         "Unsupported vector type for unpckh");
3683
3684  if (VT.is256BitVector() && NumElts != 4 && NumElts != 8 &&
3685      (!HasInt256 || (NumElts != 16 && NumElts != 32)))
3686    return false;
3687
3688  // Handle 128 and 256-bit vector lengths. AVX defines UNPCK* to operate
3689  // independently on 128-bit lanes.
3690  unsigned NumLanes = VT.getSizeInBits()/128;
3691  unsigned NumLaneElts = NumElts/NumLanes;
3692
3693  for (unsigned l = 0; l != NumLanes; ++l) {
3694    for (unsigned i = l*NumLaneElts, j = l*NumLaneElts;
3695         i != (l+1)*NumLaneElts;
3696         i += 2, ++j) {
3697      int BitI  = Mask[i];
3698      int BitI1 = Mask[i+1];
3699      if (!isUndefOrEqual(BitI, j))
3700        return false;
3701      if (V2IsSplat) {
3702        if (!isUndefOrEqual(BitI1, NumElts))
3703          return false;
3704      } else {
3705        if (!isUndefOrEqual(BitI1, j + NumElts))
3706          return false;
3707      }
3708    }
3709  }
3710
3711  return true;
3712}
3713
3714/// isUNPCKHMask - Return true if the specified VECTOR_SHUFFLE operand
3715/// specifies a shuffle of elements that is suitable for input to UNPCKH.
3716static bool isUNPCKHMask(ArrayRef<int> Mask, EVT VT,
3717                         bool HasInt256, bool V2IsSplat = false) {
3718  unsigned NumElts = VT.getVectorNumElements();
3719
3720  assert((VT.is128BitVector() || VT.is256BitVector()) &&
3721         "Unsupported vector type for unpckh");
3722
3723  if (VT.is256BitVector() && NumElts != 4 && NumElts != 8 &&
3724      (!HasInt256 || (NumElts != 16 && NumElts != 32)))
3725    return false;
3726
3727  // Handle 128 and 256-bit vector lengths. AVX defines UNPCK* to operate
3728  // independently on 128-bit lanes.
3729  unsigned NumLanes = VT.getSizeInBits()/128;
3730  unsigned NumLaneElts = NumElts/NumLanes;
3731
3732  for (unsigned l = 0; l != NumLanes; ++l) {
3733    for (unsigned i = l*NumLaneElts, j = (l*NumLaneElts)+NumLaneElts/2;
3734         i != (l+1)*NumLaneElts; i += 2, ++j) {
3735      int BitI  = Mask[i];
3736      int BitI1 = Mask[i+1];
3737      if (!isUndefOrEqual(BitI, j))
3738        return false;
3739      if (V2IsSplat) {
3740        if (isUndefOrEqual(BitI1, NumElts))
3741          return false;
3742      } else {
3743        if (!isUndefOrEqual(BitI1, j+NumElts))
3744          return false;
3745      }
3746    }
3747  }
3748  return true;
3749}
3750
3751/// isUNPCKL_v_undef_Mask - Special case of isUNPCKLMask for canonical form
3752/// of vector_shuffle v, v, <0, 4, 1, 5>, i.e. vector_shuffle v, undef,
3753/// <0, 0, 1, 1>
3754static bool isUNPCKL_v_undef_Mask(ArrayRef<int> Mask, EVT VT, bool HasInt256) {
3755  unsigned NumElts = VT.getVectorNumElements();
3756  bool Is256BitVec = VT.is256BitVector();
3757
3758  assert((VT.is128BitVector() || VT.is256BitVector()) &&
3759         "Unsupported vector type for unpckh");
3760
3761  if (Is256BitVec && NumElts != 4 && NumElts != 8 &&
3762      (!HasInt256 || (NumElts != 16 && NumElts != 32)))
3763    return false;
3764
3765  // For 256-bit i64/f64, use MOVDDUPY instead, so reject the matching pattern
3766  // FIXME: Need a better way to get rid of this, there's no latency difference
3767  // between UNPCKLPD and MOVDDUP, the later should always be checked first and
3768  // the former later. We should also remove the "_undef" special mask.
3769  if (NumElts == 4 && Is256BitVec)
3770    return false;
3771
3772  // Handle 128 and 256-bit vector lengths. AVX defines UNPCK* to operate
3773  // independently on 128-bit lanes.
3774  unsigned NumLanes = VT.getSizeInBits()/128;
3775  unsigned NumLaneElts = NumElts/NumLanes;
3776
3777  for (unsigned l = 0; l != NumLanes; ++l) {
3778    for (unsigned i = l*NumLaneElts, j = l*NumLaneElts;
3779         i != (l+1)*NumLaneElts;
3780         i += 2, ++j) {
3781      int BitI  = Mask[i];
3782      int BitI1 = Mask[i+1];
3783
3784      if (!isUndefOrEqual(BitI, j))
3785        return false;
3786      if (!isUndefOrEqual(BitI1, j))
3787        return false;
3788    }
3789  }
3790
3791  return true;
3792}
3793
3794/// isUNPCKH_v_undef_Mask - Special case of isUNPCKHMask for canonical form
3795/// of vector_shuffle v, v, <2, 6, 3, 7>, i.e. vector_shuffle v, undef,
3796/// <2, 2, 3, 3>
3797static bool isUNPCKH_v_undef_Mask(ArrayRef<int> Mask, EVT VT, bool HasInt256) {
3798  unsigned NumElts = VT.getVectorNumElements();
3799
3800  assert((VT.is128BitVector() || VT.is256BitVector()) &&
3801         "Unsupported vector type for unpckh");
3802
3803  if (VT.is256BitVector() && NumElts != 4 && NumElts != 8 &&
3804      (!HasInt256 || (NumElts != 16 && NumElts != 32)))
3805    return false;
3806
3807  // Handle 128 and 256-bit vector lengths. AVX defines UNPCK* to operate
3808  // independently on 128-bit lanes.
3809  unsigned NumLanes = VT.getSizeInBits()/128;
3810  unsigned NumLaneElts = NumElts/NumLanes;
3811
3812  for (unsigned l = 0; l != NumLanes; ++l) {
3813    for (unsigned i = l*NumLaneElts, j = (l*NumLaneElts)+NumLaneElts/2;
3814         i != (l+1)*NumLaneElts; i += 2, ++j) {
3815      int BitI  = Mask[i];
3816      int BitI1 = Mask[i+1];
3817      if (!isUndefOrEqual(BitI, j))
3818        return false;
3819      if (!isUndefOrEqual(BitI1, j))
3820        return false;
3821    }
3822  }
3823  return true;
3824}
3825
3826/// isMOVLMask - Return true if the specified VECTOR_SHUFFLE operand
3827/// specifies a shuffle of elements that is suitable for input to MOVSS,
3828/// MOVSD, and MOVD, i.e. setting the lowest element.
3829static bool isMOVLMask(ArrayRef<int> Mask, EVT VT) {
3830  if (VT.getVectorElementType().getSizeInBits() < 32)
3831    return false;
3832  if (!VT.is128BitVector())
3833    return false;
3834
3835  unsigned NumElts = VT.getVectorNumElements();
3836
3837  if (!isUndefOrEqual(Mask[0], NumElts))
3838    return false;
3839
3840  for (unsigned i = 1; i != NumElts; ++i)
3841    if (!isUndefOrEqual(Mask[i], i))
3842      return false;
3843
3844  return true;
3845}
3846
3847/// isVPERM2X128Mask - Match 256-bit shuffles where the elements are considered
3848/// as permutations between 128-bit chunks or halves. As an example: this
3849/// shuffle bellow:
3850///   vector_shuffle <4, 5, 6, 7, 12, 13, 14, 15>
3851/// The first half comes from the second half of V1 and the second half from the
3852/// the second half of V2.
3853static bool isVPERM2X128Mask(ArrayRef<int> Mask, EVT VT, bool HasFp256) {
3854  if (!HasFp256 || !VT.is256BitVector())
3855    return false;
3856
3857  // The shuffle result is divided into half A and half B. In total the two
3858  // sources have 4 halves, namely: C, D, E, F. The final values of A and
3859  // B must come from C, D, E or F.
3860  unsigned HalfSize = VT.getVectorNumElements()/2;
3861  bool MatchA = false, MatchB = false;
3862
3863  // Check if A comes from one of C, D, E, F.
3864  for (unsigned Half = 0; Half != 4; ++Half) {
3865    if (isSequentialOrUndefInRange(Mask, 0, HalfSize, Half*HalfSize)) {
3866      MatchA = true;
3867      break;
3868    }
3869  }
3870
3871  // Check if B comes from one of C, D, E, F.
3872  for (unsigned Half = 0; Half != 4; ++Half) {
3873    if (isSequentialOrUndefInRange(Mask, HalfSize, HalfSize, Half*HalfSize)) {
3874      MatchB = true;
3875      break;
3876    }
3877  }
3878
3879  return MatchA && MatchB;
3880}
3881
3882/// getShuffleVPERM2X128Immediate - Return the appropriate immediate to shuffle
3883/// the specified VECTOR_MASK mask with VPERM2F128/VPERM2I128 instructions.
3884static unsigned getShuffleVPERM2X128Immediate(ShuffleVectorSDNode *SVOp) {
3885  MVT VT = SVOp->getValueType(0).getSimpleVT();
3886
3887  unsigned HalfSize = VT.getVectorNumElements()/2;
3888
3889  unsigned FstHalf = 0, SndHalf = 0;
3890  for (unsigned i = 0; i < HalfSize; ++i) {
3891    if (SVOp->getMaskElt(i) > 0) {
3892      FstHalf = SVOp->getMaskElt(i)/HalfSize;
3893      break;
3894    }
3895  }
3896  for (unsigned i = HalfSize; i < HalfSize*2; ++i) {
3897    if (SVOp->getMaskElt(i) > 0) {
3898      SndHalf = SVOp->getMaskElt(i)/HalfSize;
3899      break;
3900    }
3901  }
3902
3903  return (FstHalf | (SndHalf << 4));
3904}
3905
3906/// isVPERMILPMask - Return true if the specified VECTOR_SHUFFLE operand
3907/// specifies a shuffle of elements that is suitable for input to VPERMILPD*.
3908/// Note that VPERMIL mask matching is different depending whether theunderlying
3909/// type is 32 or 64. In the VPERMILPS the high half of the mask should point
3910/// to the same elements of the low, but to the higher half of the source.
3911/// In VPERMILPD the two lanes could be shuffled independently of each other
3912/// with the same restriction that lanes can't be crossed. Also handles PSHUFDY.
3913static bool isVPERMILPMask(ArrayRef<int> Mask, EVT VT, bool HasFp256) {
3914  if (!HasFp256)
3915    return false;
3916
3917  unsigned NumElts = VT.getVectorNumElements();
3918  // Only match 256-bit with 32/64-bit types
3919  if (!VT.is256BitVector() || (NumElts != 4 && NumElts != 8))
3920    return false;
3921
3922  unsigned NumLanes = VT.getSizeInBits()/128;
3923  unsigned LaneSize = NumElts/NumLanes;
3924  for (unsigned l = 0; l != NumElts; l += LaneSize) {
3925    for (unsigned i = 0; i != LaneSize; ++i) {
3926      if (!isUndefOrInRange(Mask[i+l], l, l+LaneSize))
3927        return false;
3928      if (NumElts != 8 || l == 0)
3929        continue;
3930      // VPERMILPS handling
3931      if (Mask[i] < 0)
3932        continue;
3933      if (!isUndefOrEqual(Mask[i+l], Mask[i]+l))
3934        return false;
3935    }
3936  }
3937
3938  return true;
3939}
3940
3941/// isCommutedMOVLMask - Returns true if the shuffle mask is except the reverse
3942/// of what x86 movss want. X86 movs requires the lowest  element to be lowest
3943/// element of vector 2 and the other elements to come from vector 1 in order.
3944static bool isCommutedMOVLMask(ArrayRef<int> Mask, EVT VT,
3945                               bool V2IsSplat = false, bool V2IsUndef = false) {
3946  if (!VT.is128BitVector())
3947    return false;
3948
3949  unsigned NumOps = VT.getVectorNumElements();
3950  if (NumOps != 2 && NumOps != 4 && NumOps != 8 && NumOps != 16)
3951    return false;
3952
3953  if (!isUndefOrEqual(Mask[0], 0))
3954    return false;
3955
3956  for (unsigned i = 1; i != NumOps; ++i)
3957    if (!(isUndefOrEqual(Mask[i], i+NumOps) ||
3958          (V2IsUndef && isUndefOrInRange(Mask[i], NumOps, NumOps*2)) ||
3959          (V2IsSplat && isUndefOrEqual(Mask[i], NumOps))))
3960      return false;
3961
3962  return true;
3963}
3964
3965/// isMOVSHDUPMask - Return true if the specified VECTOR_SHUFFLE operand
3966/// specifies a shuffle of elements that is suitable for input to MOVSHDUP.
3967/// Masks to match: <1, 1, 3, 3> or <1, 1, 3, 3, 5, 5, 7, 7>
3968static bool isMOVSHDUPMask(ArrayRef<int> Mask, EVT VT,
3969                           const X86Subtarget *Subtarget) {
3970  if (!Subtarget->hasSSE3())
3971    return false;
3972
3973  unsigned NumElems = VT.getVectorNumElements();
3974
3975  if ((VT.is128BitVector() && NumElems != 4) ||
3976      (VT.is256BitVector() && NumElems != 8))
3977    return false;
3978
3979  // "i+1" is the value the indexed mask element must have
3980  for (unsigned i = 0; i != NumElems; i += 2)
3981    if (!isUndefOrEqual(Mask[i], i+1) ||
3982        !isUndefOrEqual(Mask[i+1], i+1))
3983      return false;
3984
3985  return true;
3986}
3987
3988/// isMOVSLDUPMask - Return true if the specified VECTOR_SHUFFLE operand
3989/// specifies a shuffle of elements that is suitable for input to MOVSLDUP.
3990/// Masks to match: <0, 0, 2, 2> or <0, 0, 2, 2, 4, 4, 6, 6>
3991static bool isMOVSLDUPMask(ArrayRef<int> Mask, EVT VT,
3992                           const X86Subtarget *Subtarget) {
3993  if (!Subtarget->hasSSE3())
3994    return false;
3995
3996  unsigned NumElems = VT.getVectorNumElements();
3997
3998  if ((VT.is128BitVector() && NumElems != 4) ||
3999      (VT.is256BitVector() && NumElems != 8))
4000    return false;
4001
4002  // "i" is the value the indexed mask element must have
4003  for (unsigned i = 0; i != NumElems; i += 2)
4004    if (!isUndefOrEqual(Mask[i], i) ||
4005        !isUndefOrEqual(Mask[i+1], i))
4006      return false;
4007
4008  return true;
4009}
4010
4011/// isMOVDDUPYMask - Return true if the specified VECTOR_SHUFFLE operand
4012/// specifies a shuffle of elements that is suitable for input to 256-bit
4013/// version of MOVDDUP.
4014static bool isMOVDDUPYMask(ArrayRef<int> Mask, EVT VT, bool HasFp256) {
4015  if (!HasFp256 || !VT.is256BitVector())
4016    return false;
4017
4018  unsigned NumElts = VT.getVectorNumElements();
4019  if (NumElts != 4)
4020    return false;
4021
4022  for (unsigned i = 0; i != NumElts/2; ++i)
4023    if (!isUndefOrEqual(Mask[i], 0))
4024      return false;
4025  for (unsigned i = NumElts/2; i != NumElts; ++i)
4026    if (!isUndefOrEqual(Mask[i], NumElts/2))
4027      return false;
4028  return true;
4029}
4030
4031/// isMOVDDUPMask - Return true if the specified VECTOR_SHUFFLE operand
4032/// specifies a shuffle of elements that is suitable for input to 128-bit
4033/// version of MOVDDUP.
4034static bool isMOVDDUPMask(ArrayRef<int> Mask, EVT VT) {
4035  if (!VT.is128BitVector())
4036    return false;
4037
4038  unsigned e = VT.getVectorNumElements() / 2;
4039  for (unsigned i = 0; i != e; ++i)
4040    if (!isUndefOrEqual(Mask[i], i))
4041      return false;
4042  for (unsigned i = 0; i != e; ++i)
4043    if (!isUndefOrEqual(Mask[e+i], i))
4044      return false;
4045  return true;
4046}
4047
4048/// isVEXTRACTF128Index - Return true if the specified
4049/// EXTRACT_SUBVECTOR operand specifies a vector extract that is
4050/// suitable for input to VEXTRACTF128.
4051bool X86::isVEXTRACTF128Index(SDNode *N) {
4052  if (!isa<ConstantSDNode>(N->getOperand(1).getNode()))
4053    return false;
4054
4055  // The index should be aligned on a 128-bit boundary.
4056  uint64_t Index =
4057    cast<ConstantSDNode>(N->getOperand(1).getNode())->getZExtValue();
4058
4059  MVT VT = N->getValueType(0).getSimpleVT();
4060  unsigned ElSize = VT.getVectorElementType().getSizeInBits();
4061  bool Result = (Index * ElSize) % 128 == 0;
4062
4063  return Result;
4064}
4065
4066/// isVINSERTF128Index - Return true if the specified INSERT_SUBVECTOR
4067/// operand specifies a subvector insert that is suitable for input to
4068/// VINSERTF128.
4069bool X86::isVINSERTF128Index(SDNode *N) {
4070  if (!isa<ConstantSDNode>(N->getOperand(2).getNode()))
4071    return false;
4072
4073  // The index should be aligned on a 128-bit boundary.
4074  uint64_t Index =
4075    cast<ConstantSDNode>(N->getOperand(2).getNode())->getZExtValue();
4076
4077  MVT VT = N->getValueType(0).getSimpleVT();
4078  unsigned ElSize = VT.getVectorElementType().getSizeInBits();
4079  bool Result = (Index * ElSize) % 128 == 0;
4080
4081  return Result;
4082}
4083
4084/// getShuffleSHUFImmediate - Return the appropriate immediate to shuffle
4085/// the specified VECTOR_SHUFFLE mask with PSHUF* and SHUFP* instructions.
4086/// Handles 128-bit and 256-bit.
4087static unsigned getShuffleSHUFImmediate(ShuffleVectorSDNode *N) {
4088  MVT VT = N->getValueType(0).getSimpleVT();
4089
4090  assert((VT.is128BitVector() || VT.is256BitVector()) &&
4091         "Unsupported vector type for PSHUF/SHUFP");
4092
4093  // Handle 128 and 256-bit vector lengths. AVX defines PSHUF/SHUFP to operate
4094  // independently on 128-bit lanes.
4095  unsigned NumElts = VT.getVectorNumElements();
4096  unsigned NumLanes = VT.getSizeInBits()/128;
4097  unsigned NumLaneElts = NumElts/NumLanes;
4098
4099  assert((NumLaneElts == 2 || NumLaneElts == 4) &&
4100         "Only supports 2 or 4 elements per lane");
4101
4102  unsigned Shift = (NumLaneElts == 4) ? 1 : 0;
4103  unsigned Mask = 0;
4104  for (unsigned i = 0; i != NumElts; ++i) {
4105    int Elt = N->getMaskElt(i);
4106    if (Elt < 0) continue;
4107    Elt &= NumLaneElts - 1;
4108    unsigned ShAmt = (i << Shift) % 8;
4109    Mask |= Elt << ShAmt;
4110  }
4111
4112  return Mask;
4113}
4114
4115/// getShufflePSHUFHWImmediate - Return the appropriate immediate to shuffle
4116/// the specified VECTOR_SHUFFLE mask with the PSHUFHW instruction.
4117static unsigned getShufflePSHUFHWImmediate(ShuffleVectorSDNode *N) {
4118  MVT VT = N->getValueType(0).getSimpleVT();
4119
4120  assert((VT == MVT::v8i16 || VT == MVT::v16i16) &&
4121         "Unsupported vector type for PSHUFHW");
4122
4123  unsigned NumElts = VT.getVectorNumElements();
4124
4125  unsigned Mask = 0;
4126  for (unsigned l = 0; l != NumElts; l += 8) {
4127    // 8 nodes per lane, but we only care about the last 4.
4128    for (unsigned i = 0; i < 4; ++i) {
4129      int Elt = N->getMaskElt(l+i+4);
4130      if (Elt < 0) continue;
4131      Elt &= 0x3; // only 2-bits.
4132      Mask |= Elt << (i * 2);
4133    }
4134  }
4135
4136  return Mask;
4137}
4138
4139/// getShufflePSHUFLWImmediate - Return the appropriate immediate to shuffle
4140/// the specified VECTOR_SHUFFLE mask with the PSHUFLW instruction.
4141static unsigned getShufflePSHUFLWImmediate(ShuffleVectorSDNode *N) {
4142  MVT VT = N->getValueType(0).getSimpleVT();
4143
4144  assert((VT == MVT::v8i16 || VT == MVT::v16i16) &&
4145         "Unsupported vector type for PSHUFHW");
4146
4147  unsigned NumElts = VT.getVectorNumElements();
4148
4149  unsigned Mask = 0;
4150  for (unsigned l = 0; l != NumElts; l += 8) {
4151    // 8 nodes per lane, but we only care about the first 4.
4152    for (unsigned i = 0; i < 4; ++i) {
4153      int Elt = N->getMaskElt(l+i);
4154      if (Elt < 0) continue;
4155      Elt &= 0x3; // only 2-bits
4156      Mask |= Elt << (i * 2);
4157    }
4158  }
4159
4160  return Mask;
4161}
4162
4163/// getShufflePALIGNRImmediate - Return the appropriate immediate to shuffle
4164/// the specified VECTOR_SHUFFLE mask with the PALIGNR instruction.
4165static unsigned getShufflePALIGNRImmediate(ShuffleVectorSDNode *SVOp) {
4166  MVT VT = SVOp->getValueType(0).getSimpleVT();
4167  unsigned EltSize = VT.getVectorElementType().getSizeInBits() >> 3;
4168
4169  unsigned NumElts = VT.getVectorNumElements();
4170  unsigned NumLanes = VT.getSizeInBits()/128;
4171  unsigned NumLaneElts = NumElts/NumLanes;
4172
4173  int Val = 0;
4174  unsigned i;
4175  for (i = 0; i != NumElts; ++i) {
4176    Val = SVOp->getMaskElt(i);
4177    if (Val >= 0)
4178      break;
4179  }
4180  if (Val >= (int)NumElts)
4181    Val -= NumElts - NumLaneElts;
4182
4183  assert(Val - i > 0 && "PALIGNR imm should be positive");
4184  return (Val - i) * EltSize;
4185}
4186
4187/// getExtractVEXTRACTF128Immediate - Return the appropriate immediate
4188/// to extract the specified EXTRACT_SUBVECTOR index with VEXTRACTF128
4189/// instructions.
4190unsigned X86::getExtractVEXTRACTF128Immediate(SDNode *N) {
4191  if (!isa<ConstantSDNode>(N->getOperand(1).getNode()))
4192    llvm_unreachable("Illegal extract subvector for VEXTRACTF128");
4193
4194  uint64_t Index =
4195    cast<ConstantSDNode>(N->getOperand(1).getNode())->getZExtValue();
4196
4197  MVT VecVT = N->getOperand(0).getValueType().getSimpleVT();
4198  MVT ElVT = VecVT.getVectorElementType();
4199
4200  unsigned NumElemsPerChunk = 128 / ElVT.getSizeInBits();
4201  return Index / NumElemsPerChunk;
4202}
4203
4204/// getInsertVINSERTF128Immediate - Return the appropriate immediate
4205/// to insert at the specified INSERT_SUBVECTOR index with VINSERTF128
4206/// instructions.
4207unsigned X86::getInsertVINSERTF128Immediate(SDNode *N) {
4208  if (!isa<ConstantSDNode>(N->getOperand(2).getNode()))
4209    llvm_unreachable("Illegal insert subvector for VINSERTF128");
4210
4211  uint64_t Index =
4212    cast<ConstantSDNode>(N->getOperand(2).getNode())->getZExtValue();
4213
4214  MVT VecVT = N->getValueType(0).getSimpleVT();
4215  MVT ElVT = VecVT.getVectorElementType();
4216
4217  unsigned NumElemsPerChunk = 128 / ElVT.getSizeInBits();
4218  return Index / NumElemsPerChunk;
4219}
4220
4221/// getShuffleCLImmediate - Return the appropriate immediate to shuffle
4222/// the specified VECTOR_SHUFFLE mask with VPERMQ and VPERMPD instructions.
4223/// Handles 256-bit.
4224static unsigned getShuffleCLImmediate(ShuffleVectorSDNode *N) {
4225  MVT VT = N->getValueType(0).getSimpleVT();
4226
4227  unsigned NumElts = VT.getVectorNumElements();
4228
4229  assert((VT.is256BitVector() && NumElts == 4) &&
4230         "Unsupported vector type for VPERMQ/VPERMPD");
4231
4232  unsigned Mask = 0;
4233  for (unsigned i = 0; i != NumElts; ++i) {
4234    int Elt = N->getMaskElt(i);
4235    if (Elt < 0)
4236      continue;
4237    Mask |= Elt << (i*2);
4238  }
4239
4240  return Mask;
4241}
4242/// isZeroNode - Returns true if Elt is a constant zero or a floating point
4243/// constant +0.0.
4244bool X86::isZeroNode(SDValue Elt) {
4245  if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(Elt))
4246    return CN->isNullValue();
4247  if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(Elt))
4248    return CFP->getValueAPF().isPosZero();
4249  return false;
4250}
4251
4252/// CommuteVectorShuffle - Swap vector_shuffle operands as well as values in
4253/// their permute mask.
4254static SDValue CommuteVectorShuffle(ShuffleVectorSDNode *SVOp,
4255                                    SelectionDAG &DAG) {
4256  MVT VT = SVOp->getValueType(0).getSimpleVT();
4257  unsigned NumElems = VT.getVectorNumElements();
4258  SmallVector<int, 8> MaskVec;
4259
4260  for (unsigned i = 0; i != NumElems; ++i) {
4261    int Idx = SVOp->getMaskElt(i);
4262    if (Idx >= 0) {
4263      if (Idx < (int)NumElems)
4264        Idx += NumElems;
4265      else
4266        Idx -= NumElems;
4267    }
4268    MaskVec.push_back(Idx);
4269  }
4270  return DAG.getVectorShuffle(VT, SVOp->getDebugLoc(), SVOp->getOperand(1),
4271                              SVOp->getOperand(0), &MaskVec[0]);
4272}
4273
4274/// ShouldXformToMOVHLPS - Return true if the node should be transformed to
4275/// match movhlps. The lower half elements should come from upper half of
4276/// V1 (and in order), and the upper half elements should come from the upper
4277/// half of V2 (and in order).
4278static bool ShouldXformToMOVHLPS(ArrayRef<int> Mask, EVT VT) {
4279  if (!VT.is128BitVector())
4280    return false;
4281  if (VT.getVectorNumElements() != 4)
4282    return false;
4283  for (unsigned i = 0, e = 2; i != e; ++i)
4284    if (!isUndefOrEqual(Mask[i], i+2))
4285      return false;
4286  for (unsigned i = 2; i != 4; ++i)
4287    if (!isUndefOrEqual(Mask[i], i+4))
4288      return false;
4289  return true;
4290}
4291
4292/// isScalarLoadToVector - Returns true if the node is a scalar load that
4293/// is promoted to a vector. It also returns the LoadSDNode by reference if
4294/// required.
4295static bool isScalarLoadToVector(SDNode *N, LoadSDNode **LD = NULL) {
4296  if (N->getOpcode() != ISD::SCALAR_TO_VECTOR)
4297    return false;
4298  N = N->getOperand(0).getNode();
4299  if (!ISD::isNON_EXTLoad(N))
4300    return false;
4301  if (LD)
4302    *LD = cast<LoadSDNode>(N);
4303  return true;
4304}
4305
4306// Test whether the given value is a vector value which will be legalized
4307// into a load.
4308static bool WillBeConstantPoolLoad(SDNode *N) {
4309  if (N->getOpcode() != ISD::BUILD_VECTOR)
4310    return false;
4311
4312  // Check for any non-constant elements.
4313  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
4314    switch (N->getOperand(i).getNode()->getOpcode()) {
4315    case ISD::UNDEF:
4316    case ISD::ConstantFP:
4317    case ISD::Constant:
4318      break;
4319    default:
4320      return false;
4321    }
4322
4323  // Vectors of all-zeros and all-ones are materialized with special
4324  // instructions rather than being loaded.
4325  return !ISD::isBuildVectorAllZeros(N) &&
4326         !ISD::isBuildVectorAllOnes(N);
4327}
4328
4329/// ShouldXformToMOVLP{S|D} - Return true if the node should be transformed to
4330/// match movlp{s|d}. The lower half elements should come from lower half of
4331/// V1 (and in order), and the upper half elements should come from the upper
4332/// half of V2 (and in order). And since V1 will become the source of the
4333/// MOVLP, it must be either a vector load or a scalar load to vector.
4334static bool ShouldXformToMOVLP(SDNode *V1, SDNode *V2,
4335                               ArrayRef<int> Mask, EVT VT) {
4336  if (!VT.is128BitVector())
4337    return false;
4338
4339  if (!ISD::isNON_EXTLoad(V1) && !isScalarLoadToVector(V1))
4340    return false;
4341  // Is V2 is a vector load, don't do this transformation. We will try to use
4342  // load folding shufps op.
4343  if (ISD::isNON_EXTLoad(V2) || WillBeConstantPoolLoad(V2))
4344    return false;
4345
4346  unsigned NumElems = VT.getVectorNumElements();
4347
4348  if (NumElems != 2 && NumElems != 4)
4349    return false;
4350  for (unsigned i = 0, e = NumElems/2; i != e; ++i)
4351    if (!isUndefOrEqual(Mask[i], i))
4352      return false;
4353  for (unsigned i = NumElems/2, e = NumElems; i != e; ++i)
4354    if (!isUndefOrEqual(Mask[i], i+NumElems))
4355      return false;
4356  return true;
4357}
4358
4359/// isSplatVector - Returns true if N is a BUILD_VECTOR node whose elements are
4360/// all the same.
4361static bool isSplatVector(SDNode *N) {
4362  if (N->getOpcode() != ISD::BUILD_VECTOR)
4363    return false;
4364
4365  SDValue SplatValue = N->getOperand(0);
4366  for (unsigned i = 1, e = N->getNumOperands(); i != e; ++i)
4367    if (N->getOperand(i) != SplatValue)
4368      return false;
4369  return true;
4370}
4371
4372/// isZeroShuffle - Returns true if N is a VECTOR_SHUFFLE that can be resolved
4373/// to an zero vector.
4374/// FIXME: move to dag combiner / method on ShuffleVectorSDNode
4375static bool isZeroShuffle(ShuffleVectorSDNode *N) {
4376  SDValue V1 = N->getOperand(0);
4377  SDValue V2 = N->getOperand(1);
4378  unsigned NumElems = N->getValueType(0).getVectorNumElements();
4379  for (unsigned i = 0; i != NumElems; ++i) {
4380    int Idx = N->getMaskElt(i);
4381    if (Idx >= (int)NumElems) {
4382      unsigned Opc = V2.getOpcode();
4383      if (Opc == ISD::UNDEF || ISD::isBuildVectorAllZeros(V2.getNode()))
4384        continue;
4385      if (Opc != ISD::BUILD_VECTOR ||
4386          !X86::isZeroNode(V2.getOperand(Idx-NumElems)))
4387        return false;
4388    } else if (Idx >= 0) {
4389      unsigned Opc = V1.getOpcode();
4390      if (Opc == ISD::UNDEF || ISD::isBuildVectorAllZeros(V1.getNode()))
4391        continue;
4392      if (Opc != ISD::BUILD_VECTOR ||
4393          !X86::isZeroNode(V1.getOperand(Idx)))
4394        return false;
4395    }
4396  }
4397  return true;
4398}
4399
4400/// getZeroVector - Returns a vector of specified type with all zero elements.
4401///
4402static SDValue getZeroVector(EVT VT, const X86Subtarget *Subtarget,
4403                             SelectionDAG &DAG, DebugLoc dl) {
4404  assert(VT.isVector() && "Expected a vector type");
4405
4406  // Always build SSE zero vectors as <4 x i32> bitcasted
4407  // to their dest type. This ensures they get CSE'd.
4408  SDValue Vec;
4409  if (VT.is128BitVector()) {  // SSE
4410    if (Subtarget->hasSSE2()) {  // SSE2
4411      SDValue Cst = DAG.getTargetConstant(0, MVT::i32);
4412      Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, Cst, Cst, Cst, Cst);
4413    } else { // SSE1
4414      SDValue Cst = DAG.getTargetConstantFP(+0.0, MVT::f32);
4415      Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4f32, Cst, Cst, Cst, Cst);
4416    }
4417  } else if (VT.is256BitVector()) { // AVX
4418    if (Subtarget->hasInt256()) { // AVX2
4419      SDValue Cst = DAG.getTargetConstant(0, MVT::i32);
4420      SDValue Ops[] = { Cst, Cst, Cst, Cst, Cst, Cst, Cst, Cst };
4421      Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v8i32, Ops,
4422                        array_lengthof(Ops));
4423    } else {
4424      // 256-bit logic and arithmetic instructions in AVX are all
4425      // floating-point, no support for integer ops. Emit fp zeroed vectors.
4426      SDValue Cst = DAG.getTargetConstantFP(+0.0, MVT::f32);
4427      SDValue Ops[] = { Cst, Cst, Cst, Cst, Cst, Cst, Cst, Cst };
4428      Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v8f32, Ops,
4429                        array_lengthof(Ops));
4430    }
4431  } else
4432    llvm_unreachable("Unexpected vector type");
4433
4434  return DAG.getNode(ISD::BITCAST, dl, VT, Vec);
4435}
4436
4437/// getOnesVector - Returns a vector of specified type with all bits set.
4438/// Always build ones vectors as <4 x i32> or <8 x i32>. For 256-bit types with
4439/// no AVX2 supprt, use two <4 x i32> inserted in a <8 x i32> appropriately.
4440/// Then bitcast to their original type, ensuring they get CSE'd.
4441static SDValue getOnesVector(MVT VT, bool HasInt256, SelectionDAG &DAG,
4442                             DebugLoc dl) {
4443  assert(VT.isVector() && "Expected a vector type");
4444
4445  SDValue Cst = DAG.getTargetConstant(~0U, MVT::i32);
4446  SDValue Vec;
4447  if (VT.is256BitVector()) {
4448    if (HasInt256) { // AVX2
4449      SDValue Ops[] = { Cst, Cst, Cst, Cst, Cst, Cst, Cst, Cst };
4450      Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v8i32, Ops,
4451                        array_lengthof(Ops));
4452    } else { // AVX
4453      Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, Cst, Cst, Cst, Cst);
4454      Vec = Concat128BitVectors(Vec, Vec, MVT::v8i32, 8, DAG, dl);
4455    }
4456  } else if (VT.is128BitVector()) {
4457    Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, Cst, Cst, Cst, Cst);
4458  } else
4459    llvm_unreachable("Unexpected vector type");
4460
4461  return DAG.getNode(ISD::BITCAST, dl, VT, Vec);
4462}
4463
4464/// NormalizeMask - V2 is a splat, modify the mask (if needed) so all elements
4465/// that point to V2 points to its first element.
4466static void NormalizeMask(SmallVectorImpl<int> &Mask, unsigned NumElems) {
4467  for (unsigned i = 0; i != NumElems; ++i) {
4468    if (Mask[i] > (int)NumElems) {
4469      Mask[i] = NumElems;
4470    }
4471  }
4472}
4473
4474/// getMOVLMask - Returns a vector_shuffle mask for an movs{s|d}, movd
4475/// operation of specified width.
4476static SDValue getMOVL(SelectionDAG &DAG, DebugLoc dl, EVT VT, SDValue V1,
4477                       SDValue V2) {
4478  unsigned NumElems = VT.getVectorNumElements();
4479  SmallVector<int, 8> Mask;
4480  Mask.push_back(NumElems);
4481  for (unsigned i = 1; i != NumElems; ++i)
4482    Mask.push_back(i);
4483  return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask[0]);
4484}
4485
4486/// getUnpackl - Returns a vector_shuffle node for an unpackl operation.
4487static SDValue getUnpackl(SelectionDAG &DAG, DebugLoc dl, EVT VT, SDValue V1,
4488                          SDValue V2) {
4489  unsigned NumElems = VT.getVectorNumElements();
4490  SmallVector<int, 8> Mask;
4491  for (unsigned i = 0, e = NumElems/2; i != e; ++i) {
4492    Mask.push_back(i);
4493    Mask.push_back(i + NumElems);
4494  }
4495  return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask[0]);
4496}
4497
4498/// getUnpackh - Returns a vector_shuffle node for an unpackh operation.
4499static SDValue getUnpackh(SelectionDAG &DAG, DebugLoc dl, EVT VT, SDValue V1,
4500                          SDValue V2) {
4501  unsigned NumElems = VT.getVectorNumElements();
4502  SmallVector<int, 8> Mask;
4503  for (unsigned i = 0, Half = NumElems/2; i != Half; ++i) {
4504    Mask.push_back(i + Half);
4505    Mask.push_back(i + NumElems + Half);
4506  }
4507  return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask[0]);
4508}
4509
4510// PromoteSplati8i16 - All i16 and i8 vector types can't be used directly by
4511// a generic shuffle instruction because the target has no such instructions.
4512// Generate shuffles which repeat i16 and i8 several times until they can be
4513// represented by v4f32 and then be manipulated by target suported shuffles.
4514static SDValue PromoteSplati8i16(SDValue V, SelectionDAG &DAG, int &EltNo) {
4515  EVT VT = V.getValueType();
4516  int NumElems = VT.getVectorNumElements();
4517  DebugLoc dl = V.getDebugLoc();
4518
4519  while (NumElems > 4) {
4520    if (EltNo < NumElems/2) {
4521      V = getUnpackl(DAG, dl, VT, V, V);
4522    } else {
4523      V = getUnpackh(DAG, dl, VT, V, V);
4524      EltNo -= NumElems/2;
4525    }
4526    NumElems >>= 1;
4527  }
4528  return V;
4529}
4530
4531/// getLegalSplat - Generate a legal splat with supported x86 shuffles
4532static SDValue getLegalSplat(SelectionDAG &DAG, SDValue V, int EltNo) {
4533  EVT VT = V.getValueType();
4534  DebugLoc dl = V.getDebugLoc();
4535
4536  if (VT.is128BitVector()) {
4537    V = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, V);
4538    int SplatMask[4] = { EltNo, EltNo, EltNo, EltNo };
4539    V = DAG.getVectorShuffle(MVT::v4f32, dl, V, DAG.getUNDEF(MVT::v4f32),
4540                             &SplatMask[0]);
4541  } else if (VT.is256BitVector()) {
4542    // To use VPERMILPS to splat scalars, the second half of indicies must
4543    // refer to the higher part, which is a duplication of the lower one,
4544    // because VPERMILPS can only handle in-lane permutations.
4545    int SplatMask[8] = { EltNo, EltNo, EltNo, EltNo,
4546                         EltNo+4, EltNo+4, EltNo+4, EltNo+4 };
4547
4548    V = DAG.getNode(ISD::BITCAST, dl, MVT::v8f32, V);
4549    V = DAG.getVectorShuffle(MVT::v8f32, dl, V, DAG.getUNDEF(MVT::v8f32),
4550                             &SplatMask[0]);
4551  } else
4552    llvm_unreachable("Vector size not supported");
4553
4554  return DAG.getNode(ISD::BITCAST, dl, VT, V);
4555}
4556
4557/// PromoteSplat - Splat is promoted to target supported vector shuffles.
4558static SDValue PromoteSplat(ShuffleVectorSDNode *SV, SelectionDAG &DAG) {
4559  EVT SrcVT = SV->getValueType(0);
4560  SDValue V1 = SV->getOperand(0);
4561  DebugLoc dl = SV->getDebugLoc();
4562
4563  int EltNo = SV->getSplatIndex();
4564  int NumElems = SrcVT.getVectorNumElements();
4565  bool Is256BitVec = SrcVT.is256BitVector();
4566
4567  assert(((SrcVT.is128BitVector() && NumElems > 4) || Is256BitVec) &&
4568         "Unknown how to promote splat for type");
4569
4570  // Extract the 128-bit part containing the splat element and update
4571  // the splat element index when it refers to the higher register.
4572  if (Is256BitVec) {
4573    V1 = Extract128BitVector(V1, EltNo, DAG, dl);
4574    if (EltNo >= NumElems/2)
4575      EltNo -= NumElems/2;
4576  }
4577
4578  // All i16 and i8 vector types can't be used directly by a generic shuffle
4579  // instruction because the target has no such instruction. Generate shuffles
4580  // which repeat i16 and i8 several times until they fit in i32, and then can
4581  // be manipulated by target suported shuffles.
4582  EVT EltVT = SrcVT.getVectorElementType();
4583  if (EltVT == MVT::i8 || EltVT == MVT::i16)
4584    V1 = PromoteSplati8i16(V1, DAG, EltNo);
4585
4586  // Recreate the 256-bit vector and place the same 128-bit vector
4587  // into the low and high part. This is necessary because we want
4588  // to use VPERM* to shuffle the vectors
4589  if (Is256BitVec) {
4590    V1 = DAG.getNode(ISD::CONCAT_VECTORS, dl, SrcVT, V1, V1);
4591  }
4592
4593  return getLegalSplat(DAG, V1, EltNo);
4594}
4595
4596/// getShuffleVectorZeroOrUndef - Return a vector_shuffle of the specified
4597/// vector of zero or undef vector.  This produces a shuffle where the low
4598/// element of V2 is swizzled into the zero/undef vector, landing at element
4599/// Idx.  This produces a shuffle mask like 4,1,2,3 (idx=0) or  0,1,2,4 (idx=3).
4600static SDValue getShuffleVectorZeroOrUndef(SDValue V2, unsigned Idx,
4601                                           bool IsZero,
4602                                           const X86Subtarget *Subtarget,
4603                                           SelectionDAG &DAG) {
4604  EVT VT = V2.getValueType();
4605  SDValue V1 = IsZero
4606    ? getZeroVector(VT, Subtarget, DAG, V2.getDebugLoc()) : DAG.getUNDEF(VT);
4607  unsigned NumElems = VT.getVectorNumElements();
4608  SmallVector<int, 16> MaskVec;
4609  for (unsigned i = 0; i != NumElems; ++i)
4610    // If this is the insertion idx, put the low elt of V2 here.
4611    MaskVec.push_back(i == Idx ? NumElems : i);
4612  return DAG.getVectorShuffle(VT, V2.getDebugLoc(), V1, V2, &MaskVec[0]);
4613}
4614
4615/// getTargetShuffleMask - Calculates the shuffle mask corresponding to the
4616/// target specific opcode. Returns true if the Mask could be calculated.
4617/// Sets IsUnary to true if only uses one source.
4618static bool getTargetShuffleMask(SDNode *N, MVT VT,
4619                                 SmallVectorImpl<int> &Mask, bool &IsUnary) {
4620  unsigned NumElems = VT.getVectorNumElements();
4621  SDValue ImmN;
4622
4623  IsUnary = false;
4624  switch(N->getOpcode()) {
4625  case X86ISD::SHUFP:
4626    ImmN = N->getOperand(N->getNumOperands()-1);
4627    DecodeSHUFPMask(VT, cast<ConstantSDNode>(ImmN)->getZExtValue(), Mask);
4628    break;
4629  case X86ISD::UNPCKH:
4630    DecodeUNPCKHMask(VT, Mask);
4631    break;
4632  case X86ISD::UNPCKL:
4633    DecodeUNPCKLMask(VT, Mask);
4634    break;
4635  case X86ISD::MOVHLPS:
4636    DecodeMOVHLPSMask(NumElems, Mask);
4637    break;
4638  case X86ISD::MOVLHPS:
4639    DecodeMOVLHPSMask(NumElems, Mask);
4640    break;
4641  case X86ISD::PALIGNR:
4642    ImmN = N->getOperand(N->getNumOperands()-1);
4643    DecodePALIGNRMask(VT, cast<ConstantSDNode>(ImmN)->getZExtValue(), Mask);
4644    break;
4645  case X86ISD::PSHUFD:
4646  case X86ISD::VPERMILP:
4647    ImmN = N->getOperand(N->getNumOperands()-1);
4648    DecodePSHUFMask(VT, cast<ConstantSDNode>(ImmN)->getZExtValue(), Mask);
4649    IsUnary = true;
4650    break;
4651  case X86ISD::PSHUFHW:
4652    ImmN = N->getOperand(N->getNumOperands()-1);
4653    DecodePSHUFHWMask(VT, cast<ConstantSDNode>(ImmN)->getZExtValue(), Mask);
4654    IsUnary = true;
4655    break;
4656  case X86ISD::PSHUFLW:
4657    ImmN = N->getOperand(N->getNumOperands()-1);
4658    DecodePSHUFLWMask(VT, cast<ConstantSDNode>(ImmN)->getZExtValue(), Mask);
4659    IsUnary = true;
4660    break;
4661  case X86ISD::VPERMI:
4662    ImmN = N->getOperand(N->getNumOperands()-1);
4663    DecodeVPERMMask(cast<ConstantSDNode>(ImmN)->getZExtValue(), Mask);
4664    IsUnary = true;
4665    break;
4666  case X86ISD::MOVSS:
4667  case X86ISD::MOVSD: {
4668    // The index 0 always comes from the first element of the second source,
4669    // this is why MOVSS and MOVSD are used in the first place. The other
4670    // elements come from the other positions of the first source vector
4671    Mask.push_back(NumElems);
4672    for (unsigned i = 1; i != NumElems; ++i) {
4673      Mask.push_back(i);
4674    }
4675    break;
4676  }
4677  case X86ISD::VPERM2X128:
4678    ImmN = N->getOperand(N->getNumOperands()-1);
4679    DecodeVPERM2X128Mask(VT, cast<ConstantSDNode>(ImmN)->getZExtValue(), Mask);
4680    if (Mask.empty()) return false;
4681    break;
4682  case X86ISD::MOVDDUP:
4683  case X86ISD::MOVLHPD:
4684  case X86ISD::MOVLPD:
4685  case X86ISD::MOVLPS:
4686  case X86ISD::MOVSHDUP:
4687  case X86ISD::MOVSLDUP:
4688    // Not yet implemented
4689    return false;
4690  default: llvm_unreachable("unknown target shuffle node");
4691  }
4692
4693  return true;
4694}
4695
4696/// getShuffleScalarElt - Returns the scalar element that will make up the ith
4697/// element of the result of the vector shuffle.
4698static SDValue getShuffleScalarElt(SDNode *N, unsigned Index, SelectionDAG &DAG,
4699                                   unsigned Depth) {
4700  if (Depth == 6)
4701    return SDValue();  // Limit search depth.
4702
4703  SDValue V = SDValue(N, 0);
4704  EVT VT = V.getValueType();
4705  unsigned Opcode = V.getOpcode();
4706
4707  // Recurse into ISD::VECTOR_SHUFFLE node to find scalars.
4708  if (const ShuffleVectorSDNode *SV = dyn_cast<ShuffleVectorSDNode>(N)) {
4709    int Elt = SV->getMaskElt(Index);
4710
4711    if (Elt < 0)
4712      return DAG.getUNDEF(VT.getVectorElementType());
4713
4714    unsigned NumElems = VT.getVectorNumElements();
4715    SDValue NewV = (Elt < (int)NumElems) ? SV->getOperand(0)
4716                                         : SV->getOperand(1);
4717    return getShuffleScalarElt(NewV.getNode(), Elt % NumElems, DAG, Depth+1);
4718  }
4719
4720  // Recurse into target specific vector shuffles to find scalars.
4721  if (isTargetShuffle(Opcode)) {
4722    MVT ShufVT = V.getValueType().getSimpleVT();
4723    unsigned NumElems = ShufVT.getVectorNumElements();
4724    SmallVector<int, 16> ShuffleMask;
4725    bool IsUnary;
4726
4727    if (!getTargetShuffleMask(N, ShufVT, ShuffleMask, IsUnary))
4728      return SDValue();
4729
4730    int Elt = ShuffleMask[Index];
4731    if (Elt < 0)
4732      return DAG.getUNDEF(ShufVT.getVectorElementType());
4733
4734    SDValue NewV = (Elt < (int)NumElems) ? N->getOperand(0)
4735                                         : N->getOperand(1);
4736    return getShuffleScalarElt(NewV.getNode(), Elt % NumElems, DAG,
4737                               Depth+1);
4738  }
4739
4740  // Actual nodes that may contain scalar elements
4741  if (Opcode == ISD::BITCAST) {
4742    V = V.getOperand(0);
4743    EVT SrcVT = V.getValueType();
4744    unsigned NumElems = VT.getVectorNumElements();
4745
4746    if (!SrcVT.isVector() || SrcVT.getVectorNumElements() != NumElems)
4747      return SDValue();
4748  }
4749
4750  if (V.getOpcode() == ISD::SCALAR_TO_VECTOR)
4751    return (Index == 0) ? V.getOperand(0)
4752                        : DAG.getUNDEF(VT.getVectorElementType());
4753
4754  if (V.getOpcode() == ISD::BUILD_VECTOR)
4755    return V.getOperand(Index);
4756
4757  return SDValue();
4758}
4759
4760/// getNumOfConsecutiveZeros - Return the number of elements of a vector
4761/// shuffle operation which come from a consecutively from a zero. The
4762/// search can start in two different directions, from left or right.
4763static
4764unsigned getNumOfConsecutiveZeros(ShuffleVectorSDNode *SVOp, unsigned NumElems,
4765                                  bool ZerosFromLeft, SelectionDAG &DAG) {
4766  unsigned i;
4767  for (i = 0; i != NumElems; ++i) {
4768    unsigned Index = ZerosFromLeft ? i : NumElems-i-1;
4769    SDValue Elt = getShuffleScalarElt(SVOp, Index, DAG, 0);
4770    if (!(Elt.getNode() &&
4771         (Elt.getOpcode() == ISD::UNDEF || X86::isZeroNode(Elt))))
4772      break;
4773  }
4774
4775  return i;
4776}
4777
4778/// isShuffleMaskConsecutive - Check if the shuffle mask indicies [MaskI, MaskE)
4779/// correspond consecutively to elements from one of the vector operands,
4780/// starting from its index OpIdx. Also tell OpNum which source vector operand.
4781static
4782bool isShuffleMaskConsecutive(ShuffleVectorSDNode *SVOp,
4783                              unsigned MaskI, unsigned MaskE, unsigned OpIdx,
4784                              unsigned NumElems, unsigned &OpNum) {
4785  bool SeenV1 = false;
4786  bool SeenV2 = false;
4787
4788  for (unsigned i = MaskI; i != MaskE; ++i, ++OpIdx) {
4789    int Idx = SVOp->getMaskElt(i);
4790    // Ignore undef indicies
4791    if (Idx < 0)
4792      continue;
4793
4794    if (Idx < (int)NumElems)
4795      SeenV1 = true;
4796    else
4797      SeenV2 = true;
4798
4799    // Only accept consecutive elements from the same vector
4800    if ((Idx % NumElems != OpIdx) || (SeenV1 && SeenV2))
4801      return false;
4802  }
4803
4804  OpNum = SeenV1 ? 0 : 1;
4805  return true;
4806}
4807
4808/// isVectorShiftRight - Returns true if the shuffle can be implemented as a
4809/// logical left shift of a vector.
4810static bool isVectorShiftRight(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG,
4811                               bool &isLeft, SDValue &ShVal, unsigned &ShAmt) {
4812  unsigned NumElems = SVOp->getValueType(0).getVectorNumElements();
4813  unsigned NumZeros = getNumOfConsecutiveZeros(SVOp, NumElems,
4814              false /* check zeros from right */, DAG);
4815  unsigned OpSrc;
4816
4817  if (!NumZeros)
4818    return false;
4819
4820  // Considering the elements in the mask that are not consecutive zeros,
4821  // check if they consecutively come from only one of the source vectors.
4822  //
4823  //               V1 = {X, A, B, C}     0
4824  //                         \  \  \    /
4825  //   vector_shuffle V1, V2 <1, 2, 3, X>
4826  //
4827  if (!isShuffleMaskConsecutive(SVOp,
4828            0,                   // Mask Start Index
4829            NumElems-NumZeros,   // Mask End Index(exclusive)
4830            NumZeros,            // Where to start looking in the src vector
4831            NumElems,            // Number of elements in vector
4832            OpSrc))              // Which source operand ?
4833    return false;
4834
4835  isLeft = false;
4836  ShAmt = NumZeros;
4837  ShVal = SVOp->getOperand(OpSrc);
4838  return true;
4839}
4840
4841/// isVectorShiftLeft - Returns true if the shuffle can be implemented as a
4842/// logical left shift of a vector.
4843static bool isVectorShiftLeft(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG,
4844                              bool &isLeft, SDValue &ShVal, unsigned &ShAmt) {
4845  unsigned NumElems = SVOp->getValueType(0).getVectorNumElements();
4846  unsigned NumZeros = getNumOfConsecutiveZeros(SVOp, NumElems,
4847              true /* check zeros from left */, DAG);
4848  unsigned OpSrc;
4849
4850  if (!NumZeros)
4851    return false;
4852
4853  // Considering the elements in the mask that are not consecutive zeros,
4854  // check if they consecutively come from only one of the source vectors.
4855  //
4856  //                           0    { A, B, X, X } = V2
4857  //                          / \    /  /
4858  //   vector_shuffle V1, V2 <X, X, 4, 5>
4859  //
4860  if (!isShuffleMaskConsecutive(SVOp,
4861            NumZeros,     // Mask Start Index
4862            NumElems,     // Mask End Index(exclusive)
4863            0,            // Where to start looking in the src vector
4864            NumElems,     // Number of elements in vector
4865            OpSrc))       // Which source operand ?
4866    return false;
4867
4868  isLeft = true;
4869  ShAmt = NumZeros;
4870  ShVal = SVOp->getOperand(OpSrc);
4871  return true;
4872}
4873
4874/// isVectorShift - Returns true if the shuffle can be implemented as a
4875/// logical left or right shift of a vector.
4876static bool isVectorShift(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG,
4877                          bool &isLeft, SDValue &ShVal, unsigned &ShAmt) {
4878  // Although the logic below support any bitwidth size, there are no
4879  // shift instructions which handle more than 128-bit vectors.
4880  if (!SVOp->getValueType(0).is128BitVector())
4881    return false;
4882
4883  if (isVectorShiftLeft(SVOp, DAG, isLeft, ShVal, ShAmt) ||
4884      isVectorShiftRight(SVOp, DAG, isLeft, ShVal, ShAmt))
4885    return true;
4886
4887  return false;
4888}
4889
4890/// LowerBuildVectorv16i8 - Custom lower build_vector of v16i8.
4891///
4892static SDValue LowerBuildVectorv16i8(SDValue Op, unsigned NonZeros,
4893                                       unsigned NumNonZero, unsigned NumZero,
4894                                       SelectionDAG &DAG,
4895                                       const X86Subtarget* Subtarget,
4896                                       const TargetLowering &TLI) {
4897  if (NumNonZero > 8)
4898    return SDValue();
4899
4900  DebugLoc dl = Op.getDebugLoc();
4901  SDValue V(0, 0);
4902  bool First = true;
4903  for (unsigned i = 0; i < 16; ++i) {
4904    bool ThisIsNonZero = (NonZeros & (1 << i)) != 0;
4905    if (ThisIsNonZero && First) {
4906      if (NumZero)
4907        V = getZeroVector(MVT::v8i16, Subtarget, DAG, dl);
4908      else
4909        V = DAG.getUNDEF(MVT::v8i16);
4910      First = false;
4911    }
4912
4913    if ((i & 1) != 0) {
4914      SDValue ThisElt(0, 0), LastElt(0, 0);
4915      bool LastIsNonZero = (NonZeros & (1 << (i-1))) != 0;
4916      if (LastIsNonZero) {
4917        LastElt = DAG.getNode(ISD::ZERO_EXTEND, dl,
4918                              MVT::i16, Op.getOperand(i-1));
4919      }
4920      if (ThisIsNonZero) {
4921        ThisElt = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i16, Op.getOperand(i));
4922        ThisElt = DAG.getNode(ISD::SHL, dl, MVT::i16,
4923                              ThisElt, DAG.getConstant(8, MVT::i8));
4924        if (LastIsNonZero)
4925          ThisElt = DAG.getNode(ISD::OR, dl, MVT::i16, ThisElt, LastElt);
4926      } else
4927        ThisElt = LastElt;
4928
4929      if (ThisElt.getNode())
4930        V = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, V, ThisElt,
4931                        DAG.getIntPtrConstant(i/2));
4932    }
4933  }
4934
4935  return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, V);
4936}
4937
4938/// LowerBuildVectorv8i16 - Custom lower build_vector of v8i16.
4939///
4940static SDValue LowerBuildVectorv8i16(SDValue Op, unsigned NonZeros,
4941                                     unsigned NumNonZero, unsigned NumZero,
4942                                     SelectionDAG &DAG,
4943                                     const X86Subtarget* Subtarget,
4944                                     const TargetLowering &TLI) {
4945  if (NumNonZero > 4)
4946    return SDValue();
4947
4948  DebugLoc dl = Op.getDebugLoc();
4949  SDValue V(0, 0);
4950  bool First = true;
4951  for (unsigned i = 0; i < 8; ++i) {
4952    bool isNonZero = (NonZeros & (1 << i)) != 0;
4953    if (isNonZero) {
4954      if (First) {
4955        if (NumZero)
4956          V = getZeroVector(MVT::v8i16, Subtarget, DAG, dl);
4957        else
4958          V = DAG.getUNDEF(MVT::v8i16);
4959        First = false;
4960      }
4961      V = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl,
4962                      MVT::v8i16, V, Op.getOperand(i),
4963                      DAG.getIntPtrConstant(i));
4964    }
4965  }
4966
4967  return V;
4968}
4969
4970/// getVShift - Return a vector logical shift node.
4971///
4972static SDValue getVShift(bool isLeft, EVT VT, SDValue SrcOp,
4973                         unsigned NumBits, SelectionDAG &DAG,
4974                         const TargetLowering &TLI, DebugLoc dl) {
4975  assert(VT.is128BitVector() && "Unknown type for VShift");
4976  EVT ShVT = MVT::v2i64;
4977  unsigned Opc = isLeft ? X86ISD::VSHLDQ : X86ISD::VSRLDQ;
4978  SrcOp = DAG.getNode(ISD::BITCAST, dl, ShVT, SrcOp);
4979  return DAG.getNode(ISD::BITCAST, dl, VT,
4980                     DAG.getNode(Opc, dl, ShVT, SrcOp,
4981                             DAG.getConstant(NumBits,
4982                                  TLI.getScalarShiftAmountTy(SrcOp.getValueType()))));
4983}
4984
4985SDValue
4986X86TargetLowering::LowerAsSplatVectorLoad(SDValue SrcOp, EVT VT, DebugLoc dl,
4987                                          SelectionDAG &DAG) const {
4988
4989  // Check if the scalar load can be widened into a vector load. And if
4990  // the address is "base + cst" see if the cst can be "absorbed" into
4991  // the shuffle mask.
4992  if (LoadSDNode *LD = dyn_cast<LoadSDNode>(SrcOp)) {
4993    SDValue Ptr = LD->getBasePtr();
4994    if (!ISD::isNormalLoad(LD) || LD->isVolatile())
4995      return SDValue();
4996    EVT PVT = LD->getValueType(0);
4997    if (PVT != MVT::i32 && PVT != MVT::f32)
4998      return SDValue();
4999
5000    int FI = -1;
5001    int64_t Offset = 0;
5002    if (FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(Ptr)) {
5003      FI = FINode->getIndex();
5004      Offset = 0;
5005    } else if (DAG.isBaseWithConstantOffset(Ptr) &&
5006               isa<FrameIndexSDNode>(Ptr.getOperand(0))) {
5007      FI = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex();
5008      Offset = Ptr.getConstantOperandVal(1);
5009      Ptr = Ptr.getOperand(0);
5010    } else {
5011      return SDValue();
5012    }
5013
5014    // FIXME: 256-bit vector instructions don't require a strict alignment,
5015    // improve this code to support it better.
5016    unsigned RequiredAlign = VT.getSizeInBits()/8;
5017    SDValue Chain = LD->getChain();
5018    // Make sure the stack object alignment is at least 16 or 32.
5019    MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
5020    if (DAG.InferPtrAlignment(Ptr) < RequiredAlign) {
5021      if (MFI->isFixedObjectIndex(FI)) {
5022        // Can't change the alignment. FIXME: It's possible to compute
5023        // the exact stack offset and reference FI + adjust offset instead.
5024        // If someone *really* cares about this. That's the way to implement it.
5025        return SDValue();
5026      } else {
5027        MFI->setObjectAlignment(FI, RequiredAlign);
5028      }
5029    }
5030
5031    // (Offset % 16 or 32) must be multiple of 4. Then address is then
5032    // Ptr + (Offset & ~15).
5033    if (Offset < 0)
5034      return SDValue();
5035    if ((Offset % RequiredAlign) & 3)
5036      return SDValue();
5037    int64_t StartOffset = Offset & ~(RequiredAlign-1);
5038    if (StartOffset)
5039      Ptr = DAG.getNode(ISD::ADD, Ptr.getDebugLoc(), Ptr.getValueType(),
5040                        Ptr,DAG.getConstant(StartOffset, Ptr.getValueType()));
5041
5042    int EltNo = (Offset - StartOffset) >> 2;
5043    unsigned NumElems = VT.getVectorNumElements();
5044
5045    EVT NVT = EVT::getVectorVT(*DAG.getContext(), PVT, NumElems);
5046    SDValue V1 = DAG.getLoad(NVT, dl, Chain, Ptr,
5047                             LD->getPointerInfo().getWithOffset(StartOffset),
5048                             false, false, false, 0);
5049
5050    SmallVector<int, 8> Mask;
5051    for (unsigned i = 0; i != NumElems; ++i)
5052      Mask.push_back(EltNo);
5053
5054    return DAG.getVectorShuffle(NVT, dl, V1, DAG.getUNDEF(NVT), &Mask[0]);
5055  }
5056
5057  return SDValue();
5058}
5059
5060/// EltsFromConsecutiveLoads - Given the initializing elements 'Elts' of a
5061/// vector of type 'VT', see if the elements can be replaced by a single large
5062/// load which has the same value as a build_vector whose operands are 'elts'.
5063///
5064/// Example: <load i32 *a, load i32 *a+4, undef, undef> -> zextload a
5065///
5066/// FIXME: we'd also like to handle the case where the last elements are zero
5067/// rather than undef via VZEXT_LOAD, but we do not detect that case today.
5068/// There's even a handy isZeroNode for that purpose.
5069static SDValue EltsFromConsecutiveLoads(EVT VT, SmallVectorImpl<SDValue> &Elts,
5070                                        DebugLoc &DL, SelectionDAG &DAG) {
5071  EVT EltVT = VT.getVectorElementType();
5072  unsigned NumElems = Elts.size();
5073
5074  LoadSDNode *LDBase = NULL;
5075  unsigned LastLoadedElt = -1U;
5076
5077  // For each element in the initializer, see if we've found a load or an undef.
5078  // If we don't find an initial load element, or later load elements are
5079  // non-consecutive, bail out.
5080  for (unsigned i = 0; i < NumElems; ++i) {
5081    SDValue Elt = Elts[i];
5082
5083    if (!Elt.getNode() ||
5084        (Elt.getOpcode() != ISD::UNDEF && !ISD::isNON_EXTLoad(Elt.getNode())))
5085      return SDValue();
5086    if (!LDBase) {
5087      if (Elt.getNode()->getOpcode() == ISD::UNDEF)
5088        return SDValue();
5089      LDBase = cast<LoadSDNode>(Elt.getNode());
5090      LastLoadedElt = i;
5091      continue;
5092    }
5093    if (Elt.getOpcode() == ISD::UNDEF)
5094      continue;
5095
5096    LoadSDNode *LD = cast<LoadSDNode>(Elt);
5097    if (!DAG.isConsecutiveLoad(LD, LDBase, EltVT.getSizeInBits()/8, i))
5098      return SDValue();
5099    LastLoadedElt = i;
5100  }
5101
5102  // If we have found an entire vector of loads and undefs, then return a large
5103  // load of the entire vector width starting at the base pointer.  If we found
5104  // consecutive loads for the low half, generate a vzext_load node.
5105  if (LastLoadedElt == NumElems - 1) {
5106    if (DAG.InferPtrAlignment(LDBase->getBasePtr()) >= 16)
5107      return DAG.getLoad(VT, DL, LDBase->getChain(), LDBase->getBasePtr(),
5108                         LDBase->getPointerInfo(),
5109                         LDBase->isVolatile(), LDBase->isNonTemporal(),
5110                         LDBase->isInvariant(), 0);
5111    return DAG.getLoad(VT, DL, LDBase->getChain(), LDBase->getBasePtr(),
5112                       LDBase->getPointerInfo(),
5113                       LDBase->isVolatile(), LDBase->isNonTemporal(),
5114                       LDBase->isInvariant(), LDBase->getAlignment());
5115  }
5116  if (NumElems == 4 && LastLoadedElt == 1 &&
5117      DAG.getTargetLoweringInfo().isTypeLegal(MVT::v2i64)) {
5118    SDVTList Tys = DAG.getVTList(MVT::v2i64, MVT::Other);
5119    SDValue Ops[] = { LDBase->getChain(), LDBase->getBasePtr() };
5120    SDValue ResNode =
5121        DAG.getMemIntrinsicNode(X86ISD::VZEXT_LOAD, DL, Tys, Ops,
5122                                array_lengthof(Ops), MVT::i64,
5123                                LDBase->getPointerInfo(),
5124                                LDBase->getAlignment(),
5125                                false/*isVolatile*/, true/*ReadMem*/,
5126                                false/*WriteMem*/);
5127
5128    // Make sure the newly-created LOAD is in the same position as LDBase in
5129    // terms of dependency. We create a TokenFactor for LDBase and ResNode, and
5130    // update uses of LDBase's output chain to use the TokenFactor.
5131    if (LDBase->hasAnyUseOfValue(1)) {
5132      SDValue NewChain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other,
5133                             SDValue(LDBase, 1), SDValue(ResNode.getNode(), 1));
5134      DAG.ReplaceAllUsesOfValueWith(SDValue(LDBase, 1), NewChain);
5135      DAG.UpdateNodeOperands(NewChain.getNode(), SDValue(LDBase, 1),
5136                             SDValue(ResNode.getNode(), 1));
5137    }
5138
5139    return DAG.getNode(ISD::BITCAST, DL, VT, ResNode);
5140  }
5141  return SDValue();
5142}
5143
5144/// LowerVectorBroadcast - Attempt to use the vbroadcast instruction
5145/// to generate a splat value for the following cases:
5146/// 1. A splat BUILD_VECTOR which uses a single scalar load, or a constant.
5147/// 2. A splat shuffle which uses a scalar_to_vector node which comes from
5148/// a scalar load, or a constant.
5149/// The VBROADCAST node is returned when a pattern is found,
5150/// or SDValue() otherwise.
5151SDValue
5152X86TargetLowering::LowerVectorBroadcast(SDValue Op, SelectionDAG &DAG) const {
5153  if (!Subtarget->hasFp256())
5154    return SDValue();
5155
5156  MVT VT = Op.getValueType().getSimpleVT();
5157  DebugLoc dl = Op.getDebugLoc();
5158
5159  assert((VT.is128BitVector() || VT.is256BitVector()) &&
5160         "Unsupported vector type for broadcast.");
5161
5162  SDValue Ld;
5163  bool ConstSplatVal;
5164
5165  switch (Op.getOpcode()) {
5166    default:
5167      // Unknown pattern found.
5168      return SDValue();
5169
5170    case ISD::BUILD_VECTOR: {
5171      // The BUILD_VECTOR node must be a splat.
5172      if (!isSplatVector(Op.getNode()))
5173        return SDValue();
5174
5175      Ld = Op.getOperand(0);
5176      ConstSplatVal = (Ld.getOpcode() == ISD::Constant ||
5177                     Ld.getOpcode() == ISD::ConstantFP);
5178
5179      // The suspected load node has several users. Make sure that all
5180      // of its users are from the BUILD_VECTOR node.
5181      // Constants may have multiple users.
5182      if (!ConstSplatVal && !Ld->hasNUsesOfValue(VT.getVectorNumElements(), 0))
5183        return SDValue();
5184      break;
5185    }
5186
5187    case ISD::VECTOR_SHUFFLE: {
5188      ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
5189
5190      // Shuffles must have a splat mask where the first element is
5191      // broadcasted.
5192      if ((!SVOp->isSplat()) || SVOp->getMaskElt(0) != 0)
5193        return SDValue();
5194
5195      SDValue Sc = Op.getOperand(0);
5196      if (Sc.getOpcode() != ISD::SCALAR_TO_VECTOR &&
5197          Sc.getOpcode() != ISD::BUILD_VECTOR) {
5198
5199        if (!Subtarget->hasInt256())
5200          return SDValue();
5201
5202        // Use the register form of the broadcast instruction available on AVX2.
5203        if (VT.is256BitVector())
5204          Sc = Extract128BitVector(Sc, 0, DAG, dl);
5205        return DAG.getNode(X86ISD::VBROADCAST, dl, VT, Sc);
5206      }
5207
5208      Ld = Sc.getOperand(0);
5209      ConstSplatVal = (Ld.getOpcode() == ISD::Constant ||
5210                       Ld.getOpcode() == ISD::ConstantFP);
5211
5212      // The scalar_to_vector node and the suspected
5213      // load node must have exactly one user.
5214      // Constants may have multiple users.
5215      if (!ConstSplatVal && (!Sc.hasOneUse() || !Ld.hasOneUse()))
5216        return SDValue();
5217      break;
5218    }
5219  }
5220
5221  bool Is256 = VT.is256BitVector();
5222
5223  // Handle the broadcasting a single constant scalar from the constant pool
5224  // into a vector. On Sandybridge it is still better to load a constant vector
5225  // from the constant pool and not to broadcast it from a scalar.
5226  if (ConstSplatVal && Subtarget->hasInt256()) {
5227    EVT CVT = Ld.getValueType();
5228    assert(!CVT.isVector() && "Must not broadcast a vector type");
5229    unsigned ScalarSize = CVT.getSizeInBits();
5230
5231    if (ScalarSize == 32 || (Is256 && ScalarSize == 64)) {
5232      const Constant *C = 0;
5233      if (ConstantSDNode *CI = dyn_cast<ConstantSDNode>(Ld))
5234        C = CI->getConstantIntValue();
5235      else if (ConstantFPSDNode *CF = dyn_cast<ConstantFPSDNode>(Ld))
5236        C = CF->getConstantFPValue();
5237
5238      assert(C && "Invalid constant type");
5239
5240      SDValue CP = DAG.getConstantPool(C, getPointerTy());
5241      unsigned Alignment = cast<ConstantPoolSDNode>(CP)->getAlignment();
5242      Ld = DAG.getLoad(CVT, dl, DAG.getEntryNode(), CP,
5243                       MachinePointerInfo::getConstantPool(),
5244                       false, false, false, Alignment);
5245
5246      return DAG.getNode(X86ISD::VBROADCAST, dl, VT, Ld);
5247    }
5248  }
5249
5250  bool IsLoad = ISD::isNormalLoad(Ld.getNode());
5251  unsigned ScalarSize = Ld.getValueType().getSizeInBits();
5252
5253  // Handle AVX2 in-register broadcasts.
5254  if (!IsLoad && Subtarget->hasInt256() &&
5255      (ScalarSize == 32 || (Is256 && ScalarSize == 64)))
5256    return DAG.getNode(X86ISD::VBROADCAST, dl, VT, Ld);
5257
5258  // The scalar source must be a normal load.
5259  if (!IsLoad)
5260    return SDValue();
5261
5262  if (ScalarSize == 32 || (Is256 && ScalarSize == 64))
5263    return DAG.getNode(X86ISD::VBROADCAST, dl, VT, Ld);
5264
5265  // The integer check is needed for the 64-bit into 128-bit so it doesn't match
5266  // double since there is no vbroadcastsd xmm
5267  if (Subtarget->hasInt256() && Ld.getValueType().isInteger()) {
5268    if (ScalarSize == 8 || ScalarSize == 16 || ScalarSize == 64)
5269      return DAG.getNode(X86ISD::VBROADCAST, dl, VT, Ld);
5270  }
5271
5272  // Unsupported broadcast.
5273  return SDValue();
5274}
5275
5276SDValue
5277X86TargetLowering::buildFromShuffleMostly(SDValue Op, SelectionDAG &DAG) const {
5278  EVT VT = Op.getValueType();
5279
5280  // Skip if insert_vec_elt is not supported.
5281  if (!isOperationLegalOrCustom(ISD::INSERT_VECTOR_ELT, VT))
5282    return SDValue();
5283
5284  DebugLoc DL = Op.getDebugLoc();
5285  unsigned NumElems = Op.getNumOperands();
5286
5287  SDValue VecIn1;
5288  SDValue VecIn2;
5289  SmallVector<unsigned, 4> InsertIndices;
5290  SmallVector<int, 8> Mask(NumElems, -1);
5291
5292  for (unsigned i = 0; i != NumElems; ++i) {
5293    unsigned Opc = Op.getOperand(i).getOpcode();
5294
5295    if (Opc == ISD::UNDEF)
5296      continue;
5297
5298    if (Opc != ISD::EXTRACT_VECTOR_ELT) {
5299      // Quit if more than 1 elements need inserting.
5300      if (InsertIndices.size() > 1)
5301        return SDValue();
5302
5303      InsertIndices.push_back(i);
5304      continue;
5305    }
5306
5307    SDValue ExtractedFromVec = Op.getOperand(i).getOperand(0);
5308    SDValue ExtIdx = Op.getOperand(i).getOperand(1);
5309
5310    // Quit if extracted from vector of different type.
5311    if (ExtractedFromVec.getValueType() != VT)
5312      return SDValue();
5313
5314    // Quit if non-constant index.
5315    if (!isa<ConstantSDNode>(ExtIdx))
5316      return SDValue();
5317
5318    if (VecIn1.getNode() == 0)
5319      VecIn1 = ExtractedFromVec;
5320    else if (VecIn1 != ExtractedFromVec) {
5321      if (VecIn2.getNode() == 0)
5322        VecIn2 = ExtractedFromVec;
5323      else if (VecIn2 != ExtractedFromVec)
5324        // Quit if more than 2 vectors to shuffle
5325        return SDValue();
5326    }
5327
5328    unsigned Idx = cast<ConstantSDNode>(ExtIdx)->getZExtValue();
5329
5330    if (ExtractedFromVec == VecIn1)
5331      Mask[i] = Idx;
5332    else if (ExtractedFromVec == VecIn2)
5333      Mask[i] = Idx + NumElems;
5334  }
5335
5336  if (VecIn1.getNode() == 0)
5337    return SDValue();
5338
5339  VecIn2 = VecIn2.getNode() ? VecIn2 : DAG.getUNDEF(VT);
5340  SDValue NV = DAG.getVectorShuffle(VT, DL, VecIn1, VecIn2, &Mask[0]);
5341  for (unsigned i = 0, e = InsertIndices.size(); i != e; ++i) {
5342    unsigned Idx = InsertIndices[i];
5343    NV = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, VT, NV, Op.getOperand(Idx),
5344                     DAG.getIntPtrConstant(Idx));
5345  }
5346
5347  return NV;
5348}
5349
5350SDValue
5351X86TargetLowering::LowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG) const {
5352  DebugLoc dl = Op.getDebugLoc();
5353
5354  MVT VT = Op.getValueType().getSimpleVT();
5355  MVT ExtVT = VT.getVectorElementType();
5356  unsigned NumElems = Op.getNumOperands();
5357
5358  // Vectors containing all zeros can be matched by pxor and xorps later
5359  if (ISD::isBuildVectorAllZeros(Op.getNode())) {
5360    // Canonicalize this to <4 x i32> to 1) ensure the zero vectors are CSE'd
5361    // and 2) ensure that i64 scalars are eliminated on x86-32 hosts.
5362    if (VT == MVT::v4i32 || VT == MVT::v8i32)
5363      return Op;
5364
5365    return getZeroVector(VT, Subtarget, DAG, dl);
5366  }
5367
5368  // Vectors containing all ones can be matched by pcmpeqd on 128-bit width
5369  // vectors or broken into v4i32 operations on 256-bit vectors. AVX2 can use
5370  // vpcmpeqd on 256-bit vectors.
5371  if (Subtarget->hasSSE2() && ISD::isBuildVectorAllOnes(Op.getNode())) {
5372    if (VT == MVT::v4i32 || (VT == MVT::v8i32 && Subtarget->hasInt256()))
5373      return Op;
5374
5375    return getOnesVector(VT, Subtarget->hasInt256(), DAG, dl);
5376  }
5377
5378  SDValue Broadcast = LowerVectorBroadcast(Op, DAG);
5379  if (Broadcast.getNode())
5380    return Broadcast;
5381
5382  unsigned EVTBits = ExtVT.getSizeInBits();
5383
5384  unsigned NumZero  = 0;
5385  unsigned NumNonZero = 0;
5386  unsigned NonZeros = 0;
5387  bool IsAllConstants = true;
5388  SmallSet<SDValue, 8> Values;
5389  for (unsigned i = 0; i < NumElems; ++i) {
5390    SDValue Elt = Op.getOperand(i);
5391    if (Elt.getOpcode() == ISD::UNDEF)
5392      continue;
5393    Values.insert(Elt);
5394    if (Elt.getOpcode() != ISD::Constant &&
5395        Elt.getOpcode() != ISD::ConstantFP)
5396      IsAllConstants = false;
5397    if (X86::isZeroNode(Elt))
5398      NumZero++;
5399    else {
5400      NonZeros |= (1 << i);
5401      NumNonZero++;
5402    }
5403  }
5404
5405  // All undef vector. Return an UNDEF.  All zero vectors were handled above.
5406  if (NumNonZero == 0)
5407    return DAG.getUNDEF(VT);
5408
5409  // Special case for single non-zero, non-undef, element.
5410  if (NumNonZero == 1) {
5411    unsigned Idx = CountTrailingZeros_32(NonZeros);
5412    SDValue Item = Op.getOperand(Idx);
5413
5414    // If this is an insertion of an i64 value on x86-32, and if the top bits of
5415    // the value are obviously zero, truncate the value to i32 and do the
5416    // insertion that way.  Only do this if the value is non-constant or if the
5417    // value is a constant being inserted into element 0.  It is cheaper to do
5418    // a constant pool load than it is to do a movd + shuffle.
5419    if (ExtVT == MVT::i64 && !Subtarget->is64Bit() &&
5420        (!IsAllConstants || Idx == 0)) {
5421      if (DAG.MaskedValueIsZero(Item, APInt::getBitsSet(64, 32, 64))) {
5422        // Handle SSE only.
5423        assert(VT == MVT::v2i64 && "Expected an SSE value type!");
5424        EVT VecVT = MVT::v4i32;
5425        unsigned VecElts = 4;
5426
5427        // Truncate the value (which may itself be a constant) to i32, and
5428        // convert it to a vector with movd (S2V+shuffle to zero extend).
5429        Item = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Item);
5430        Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VecVT, Item);
5431        Item = getShuffleVectorZeroOrUndef(Item, 0, true, Subtarget, DAG);
5432
5433        // Now we have our 32-bit value zero extended in the low element of
5434        // a vector.  If Idx != 0, swizzle it into place.
5435        if (Idx != 0) {
5436          SmallVector<int, 4> Mask;
5437          Mask.push_back(Idx);
5438          for (unsigned i = 1; i != VecElts; ++i)
5439            Mask.push_back(i);
5440          Item = DAG.getVectorShuffle(VecVT, dl, Item, DAG.getUNDEF(VecVT),
5441                                      &Mask[0]);
5442        }
5443        return DAG.getNode(ISD::BITCAST, dl, VT, Item);
5444      }
5445    }
5446
5447    // If we have a constant or non-constant insertion into the low element of
5448    // a vector, we can do this with SCALAR_TO_VECTOR + shuffle of zero into
5449    // the rest of the elements.  This will be matched as movd/movq/movss/movsd
5450    // depending on what the source datatype is.
5451    if (Idx == 0) {
5452      if (NumZero == 0)
5453        return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Item);
5454
5455      if (ExtVT == MVT::i32 || ExtVT == MVT::f32 || ExtVT == MVT::f64 ||
5456          (ExtVT == MVT::i64 && Subtarget->is64Bit())) {
5457        if (VT.is256BitVector()) {
5458          SDValue ZeroVec = getZeroVector(VT, Subtarget, DAG, dl);
5459          return DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, ZeroVec,
5460                             Item, DAG.getIntPtrConstant(0));
5461        }
5462        assert(VT.is128BitVector() && "Expected an SSE value type!");
5463        Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Item);
5464        // Turn it into a MOVL (i.e. movss, movsd, or movd) to a zero vector.
5465        return getShuffleVectorZeroOrUndef(Item, 0, true, Subtarget, DAG);
5466      }
5467
5468      if (ExtVT == MVT::i16 || ExtVT == MVT::i8) {
5469        Item = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, Item);
5470        Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32, Item);
5471        if (VT.is256BitVector()) {
5472          SDValue ZeroVec = getZeroVector(MVT::v8i32, Subtarget, DAG, dl);
5473          Item = Insert128BitVector(ZeroVec, Item, 0, DAG, dl);
5474        } else {
5475          assert(VT.is128BitVector() && "Expected an SSE value type!");
5476          Item = getShuffleVectorZeroOrUndef(Item, 0, true, Subtarget, DAG);
5477        }
5478        return DAG.getNode(ISD::BITCAST, dl, VT, Item);
5479      }
5480    }
5481
5482    // Is it a vector logical left shift?
5483    if (NumElems == 2 && Idx == 1 &&
5484        X86::isZeroNode(Op.getOperand(0)) &&
5485        !X86::isZeroNode(Op.getOperand(1))) {
5486      unsigned NumBits = VT.getSizeInBits();
5487      return getVShift(true, VT,
5488                       DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
5489                                   VT, Op.getOperand(1)),
5490                       NumBits/2, DAG, *this, dl);
5491    }
5492
5493    if (IsAllConstants) // Otherwise, it's better to do a constpool load.
5494      return SDValue();
5495
5496    // Otherwise, if this is a vector with i32 or f32 elements, and the element
5497    // is a non-constant being inserted into an element other than the low one,
5498    // we can't use a constant pool load.  Instead, use SCALAR_TO_VECTOR (aka
5499    // movd/movss) to move this into the low element, then shuffle it into
5500    // place.
5501    if (EVTBits == 32) {
5502      Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Item);
5503
5504      // Turn it into a shuffle of zero and zero-extended scalar to vector.
5505      Item = getShuffleVectorZeroOrUndef(Item, 0, NumZero > 0, Subtarget, DAG);
5506      SmallVector<int, 8> MaskVec;
5507      for (unsigned i = 0; i != NumElems; ++i)
5508        MaskVec.push_back(i == Idx ? 0 : 1);
5509      return DAG.getVectorShuffle(VT, dl, Item, DAG.getUNDEF(VT), &MaskVec[0]);
5510    }
5511  }
5512
5513  // Splat is obviously ok. Let legalizer expand it to a shuffle.
5514  if (Values.size() == 1) {
5515    if (EVTBits == 32) {
5516      // Instead of a shuffle like this:
5517      // shuffle (scalar_to_vector (load (ptr + 4))), undef, <0, 0, 0, 0>
5518      // Check if it's possible to issue this instead.
5519      // shuffle (vload ptr)), undef, <1, 1, 1, 1>
5520      unsigned Idx = CountTrailingZeros_32(NonZeros);
5521      SDValue Item = Op.getOperand(Idx);
5522      if (Op.getNode()->isOnlyUserOf(Item.getNode()))
5523        return LowerAsSplatVectorLoad(Item, VT, dl, DAG);
5524    }
5525    return SDValue();
5526  }
5527
5528  // A vector full of immediates; various special cases are already
5529  // handled, so this is best done with a single constant-pool load.
5530  if (IsAllConstants)
5531    return SDValue();
5532
5533  // For AVX-length vectors, build the individual 128-bit pieces and use
5534  // shuffles to put them in place.
5535  if (VT.is256BitVector()) {
5536    SmallVector<SDValue, 32> V;
5537    for (unsigned i = 0; i != NumElems; ++i)
5538      V.push_back(Op.getOperand(i));
5539
5540    EVT HVT = EVT::getVectorVT(*DAG.getContext(), ExtVT, NumElems/2);
5541
5542    // Build both the lower and upper subvector.
5543    SDValue Lower = DAG.getNode(ISD::BUILD_VECTOR, dl, HVT, &V[0], NumElems/2);
5544    SDValue Upper = DAG.getNode(ISD::BUILD_VECTOR, dl, HVT, &V[NumElems / 2],
5545                                NumElems/2);
5546
5547    // Recreate the wider vector with the lower and upper part.
5548    return Concat128BitVectors(Lower, Upper, VT, NumElems, DAG, dl);
5549  }
5550
5551  // Let legalizer expand 2-wide build_vectors.
5552  if (EVTBits == 64) {
5553    if (NumNonZero == 1) {
5554      // One half is zero or undef.
5555      unsigned Idx = CountTrailingZeros_32(NonZeros);
5556      SDValue V2 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT,
5557                                 Op.getOperand(Idx));
5558      return getShuffleVectorZeroOrUndef(V2, Idx, true, Subtarget, DAG);
5559    }
5560    return SDValue();
5561  }
5562
5563  // If element VT is < 32 bits, convert it to inserts into a zero vector.
5564  if (EVTBits == 8 && NumElems == 16) {
5565    SDValue V = LowerBuildVectorv16i8(Op, NonZeros,NumNonZero,NumZero, DAG,
5566                                        Subtarget, *this);
5567    if (V.getNode()) return V;
5568  }
5569
5570  if (EVTBits == 16 && NumElems == 8) {
5571    SDValue V = LowerBuildVectorv8i16(Op, NonZeros,NumNonZero,NumZero, DAG,
5572                                      Subtarget, *this);
5573    if (V.getNode()) return V;
5574  }
5575
5576  // If element VT is == 32 bits, turn it into a number of shuffles.
5577  SmallVector<SDValue, 8> V(NumElems);
5578  if (NumElems == 4 && NumZero > 0) {
5579    for (unsigned i = 0; i < 4; ++i) {
5580      bool isZero = !(NonZeros & (1 << i));
5581      if (isZero)
5582        V[i] = getZeroVector(VT, Subtarget, DAG, dl);
5583      else
5584        V[i] = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Op.getOperand(i));
5585    }
5586
5587    for (unsigned i = 0; i < 2; ++i) {
5588      switch ((NonZeros & (0x3 << i*2)) >> (i*2)) {
5589        default: break;
5590        case 0:
5591          V[i] = V[i*2];  // Must be a zero vector.
5592          break;
5593        case 1:
5594          V[i] = getMOVL(DAG, dl, VT, V[i*2+1], V[i*2]);
5595          break;
5596        case 2:
5597          V[i] = getMOVL(DAG, dl, VT, V[i*2], V[i*2+1]);
5598          break;
5599        case 3:
5600          V[i] = getUnpackl(DAG, dl, VT, V[i*2], V[i*2+1]);
5601          break;
5602      }
5603    }
5604
5605    bool Reverse1 = (NonZeros & 0x3) == 2;
5606    bool Reverse2 = ((NonZeros & (0x3 << 2)) >> 2) == 2;
5607    int MaskVec[] = {
5608      Reverse1 ? 1 : 0,
5609      Reverse1 ? 0 : 1,
5610      static_cast<int>(Reverse2 ? NumElems+1 : NumElems),
5611      static_cast<int>(Reverse2 ? NumElems   : NumElems+1)
5612    };
5613    return DAG.getVectorShuffle(VT, dl, V[0], V[1], &MaskVec[0]);
5614  }
5615
5616  if (Values.size() > 1 && VT.is128BitVector()) {
5617    // Check for a build vector of consecutive loads.
5618    for (unsigned i = 0; i < NumElems; ++i)
5619      V[i] = Op.getOperand(i);
5620
5621    // Check for elements which are consecutive loads.
5622    SDValue LD = EltsFromConsecutiveLoads(VT, V, dl, DAG);
5623    if (LD.getNode())
5624      return LD;
5625
5626    // Check for a build vector from mostly shuffle plus few inserting.
5627    SDValue Sh = buildFromShuffleMostly(Op, DAG);
5628    if (Sh.getNode())
5629      return Sh;
5630
5631    // For SSE 4.1, use insertps to put the high elements into the low element.
5632    if (getSubtarget()->hasSSE41()) {
5633      SDValue Result;
5634      if (Op.getOperand(0).getOpcode() != ISD::UNDEF)
5635        Result = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Op.getOperand(0));
5636      else
5637        Result = DAG.getUNDEF(VT);
5638
5639      for (unsigned i = 1; i < NumElems; ++i) {
5640        if (Op.getOperand(i).getOpcode() == ISD::UNDEF) continue;
5641        Result = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, Result,
5642                             Op.getOperand(i), DAG.getIntPtrConstant(i));
5643      }
5644      return Result;
5645    }
5646
5647    // Otherwise, expand into a number of unpckl*, start by extending each of
5648    // our (non-undef) elements to the full vector width with the element in the
5649    // bottom slot of the vector (which generates no code for SSE).
5650    for (unsigned i = 0; i < NumElems; ++i) {
5651      if (Op.getOperand(i).getOpcode() != ISD::UNDEF)
5652        V[i] = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Op.getOperand(i));
5653      else
5654        V[i] = DAG.getUNDEF(VT);
5655    }
5656
5657    // Next, we iteratively mix elements, e.g. for v4f32:
5658    //   Step 1: unpcklps 0, 2 ==> X: <?, ?, 2, 0>
5659    //         : unpcklps 1, 3 ==> Y: <?, ?, 3, 1>
5660    //   Step 2: unpcklps X, Y ==>    <3, 2, 1, 0>
5661    unsigned EltStride = NumElems >> 1;
5662    while (EltStride != 0) {
5663      for (unsigned i = 0; i < EltStride; ++i) {
5664        // If V[i+EltStride] is undef and this is the first round of mixing,
5665        // then it is safe to just drop this shuffle: V[i] is already in the
5666        // right place, the one element (since it's the first round) being
5667        // inserted as undef can be dropped.  This isn't safe for successive
5668        // rounds because they will permute elements within both vectors.
5669        if (V[i+EltStride].getOpcode() == ISD::UNDEF &&
5670            EltStride == NumElems/2)
5671          continue;
5672
5673        V[i] = getUnpackl(DAG, dl, VT, V[i], V[i + EltStride]);
5674      }
5675      EltStride >>= 1;
5676    }
5677    return V[0];
5678  }
5679  return SDValue();
5680}
5681
5682// LowerAVXCONCAT_VECTORS - 256-bit AVX can use the vinsertf128 instruction
5683// to create 256-bit vectors from two other 128-bit ones.
5684static SDValue LowerAVXCONCAT_VECTORS(SDValue Op, SelectionDAG &DAG) {
5685  DebugLoc dl = Op.getDebugLoc();
5686  MVT ResVT = Op.getValueType().getSimpleVT();
5687
5688  assert(ResVT.is256BitVector() && "Value type must be 256-bit wide");
5689
5690  SDValue V1 = Op.getOperand(0);
5691  SDValue V2 = Op.getOperand(1);
5692  unsigned NumElems = ResVT.getVectorNumElements();
5693
5694  return Concat128BitVectors(V1, V2, ResVT, NumElems, DAG, dl);
5695}
5696
5697static SDValue LowerCONCAT_VECTORS(SDValue Op, SelectionDAG &DAG) {
5698  assert(Op.getNumOperands() == 2);
5699
5700  // 256-bit AVX can use the vinsertf128 instruction to create 256-bit vectors
5701  // from two other 128-bit ones.
5702  return LowerAVXCONCAT_VECTORS(Op, DAG);
5703}
5704
5705// Try to lower a shuffle node into a simple blend instruction.
5706static SDValue
5707LowerVECTOR_SHUFFLEtoBlend(ShuffleVectorSDNode *SVOp,
5708                           const X86Subtarget *Subtarget, SelectionDAG &DAG) {
5709  SDValue V1 = SVOp->getOperand(0);
5710  SDValue V2 = SVOp->getOperand(1);
5711  DebugLoc dl = SVOp->getDebugLoc();
5712  MVT VT = SVOp->getValueType(0).getSimpleVT();
5713  MVT EltVT = VT.getVectorElementType();
5714  unsigned NumElems = VT.getVectorNumElements();
5715
5716  if (!Subtarget->hasSSE41() || EltVT == MVT::i8)
5717    return SDValue();
5718  if (!Subtarget->hasInt256() && VT == MVT::v16i16)
5719    return SDValue();
5720
5721  // Check the mask for BLEND and build the value.
5722  unsigned MaskValue = 0;
5723  // There are 2 lanes if (NumElems > 8), and 1 lane otherwise.
5724  unsigned NumLanes = (NumElems-1)/8 + 1;
5725  unsigned NumElemsInLane = NumElems / NumLanes;
5726
5727  // Blend for v16i16 should be symetric for the both lanes.
5728  for (unsigned i = 0; i < NumElemsInLane; ++i) {
5729
5730    int SndLaneEltIdx = (NumLanes == 2) ?
5731      SVOp->getMaskElt(i + NumElemsInLane) : -1;
5732    int EltIdx = SVOp->getMaskElt(i);
5733
5734    if ((EltIdx < 0 || EltIdx == (int)i) &&
5735        (SndLaneEltIdx < 0 || SndLaneEltIdx == (int)(i + NumElemsInLane)))
5736      continue;
5737
5738    if (((unsigned)EltIdx == (i + NumElems)) &&
5739        (SndLaneEltIdx < 0 ||
5740         (unsigned)SndLaneEltIdx == i + NumElems + NumElemsInLane))
5741      MaskValue |= (1<<i);
5742    else
5743      return SDValue();
5744  }
5745
5746  // Convert i32 vectors to floating point if it is not AVX2.
5747  // AVX2 introduced VPBLENDD instruction for 128 and 256-bit vectors.
5748  MVT BlendVT = VT;
5749  if (EltVT == MVT::i64 || (EltVT == MVT::i32 && !Subtarget->hasInt256())) {
5750    BlendVT = MVT::getVectorVT(MVT::getFloatingPointVT(EltVT.getSizeInBits()),
5751                               NumElems);
5752    V1 = DAG.getNode(ISD::BITCAST, dl, VT, V1);
5753    V2 = DAG.getNode(ISD::BITCAST, dl, VT, V2);
5754  }
5755
5756  SDValue Ret = DAG.getNode(X86ISD::BLENDI, dl, BlendVT, V1, V2,
5757                            DAG.getConstant(MaskValue, MVT::i32));
5758  return DAG.getNode(ISD::BITCAST, dl, VT, Ret);
5759}
5760
5761// v8i16 shuffles - Prefer shuffles in the following order:
5762// 1. [all]   pshuflw, pshufhw, optional move
5763// 2. [ssse3] 1 x pshufb
5764// 3. [ssse3] 2 x pshufb + 1 x por
5765// 4. [all]   mov + pshuflw + pshufhw + N x (pextrw + pinsrw)
5766static SDValue
5767LowerVECTOR_SHUFFLEv8i16(SDValue Op, const X86Subtarget *Subtarget,
5768                         SelectionDAG &DAG) {
5769  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
5770  SDValue V1 = SVOp->getOperand(0);
5771  SDValue V2 = SVOp->getOperand(1);
5772  DebugLoc dl = SVOp->getDebugLoc();
5773  SmallVector<int, 8> MaskVals;
5774
5775  // Determine if more than 1 of the words in each of the low and high quadwords
5776  // of the result come from the same quadword of one of the two inputs.  Undef
5777  // mask values count as coming from any quadword, for better codegen.
5778  unsigned LoQuad[] = { 0, 0, 0, 0 };
5779  unsigned HiQuad[] = { 0, 0, 0, 0 };
5780  std::bitset<4> InputQuads;
5781  for (unsigned i = 0; i < 8; ++i) {
5782    unsigned *Quad = i < 4 ? LoQuad : HiQuad;
5783    int EltIdx = SVOp->getMaskElt(i);
5784    MaskVals.push_back(EltIdx);
5785    if (EltIdx < 0) {
5786      ++Quad[0];
5787      ++Quad[1];
5788      ++Quad[2];
5789      ++Quad[3];
5790      continue;
5791    }
5792    ++Quad[EltIdx / 4];
5793    InputQuads.set(EltIdx / 4);
5794  }
5795
5796  int BestLoQuad = -1;
5797  unsigned MaxQuad = 1;
5798  for (unsigned i = 0; i < 4; ++i) {
5799    if (LoQuad[i] > MaxQuad) {
5800      BestLoQuad = i;
5801      MaxQuad = LoQuad[i];
5802    }
5803  }
5804
5805  int BestHiQuad = -1;
5806  MaxQuad = 1;
5807  for (unsigned i = 0; i < 4; ++i) {
5808    if (HiQuad[i] > MaxQuad) {
5809      BestHiQuad = i;
5810      MaxQuad = HiQuad[i];
5811    }
5812  }
5813
5814  // For SSSE3, If all 8 words of the result come from only 1 quadword of each
5815  // of the two input vectors, shuffle them into one input vector so only a
5816  // single pshufb instruction is necessary. If There are more than 2 input
5817  // quads, disable the next transformation since it does not help SSSE3.
5818  bool V1Used = InputQuads[0] || InputQuads[1];
5819  bool V2Used = InputQuads[2] || InputQuads[3];
5820  if (Subtarget->hasSSSE3()) {
5821    if (InputQuads.count() == 2 && V1Used && V2Used) {
5822      BestLoQuad = InputQuads[0] ? 0 : 1;
5823      BestHiQuad = InputQuads[2] ? 2 : 3;
5824    }
5825    if (InputQuads.count() > 2) {
5826      BestLoQuad = -1;
5827      BestHiQuad = -1;
5828    }
5829  }
5830
5831  // If BestLoQuad or BestHiQuad are set, shuffle the quads together and update
5832  // the shuffle mask.  If a quad is scored as -1, that means that it contains
5833  // words from all 4 input quadwords.
5834  SDValue NewV;
5835  if (BestLoQuad >= 0 || BestHiQuad >= 0) {
5836    int MaskV[] = {
5837      BestLoQuad < 0 ? 0 : BestLoQuad,
5838      BestHiQuad < 0 ? 1 : BestHiQuad
5839    };
5840    NewV = DAG.getVectorShuffle(MVT::v2i64, dl,
5841                  DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, V1),
5842                  DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, V2), &MaskV[0]);
5843    NewV = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, NewV);
5844
5845    // Rewrite the MaskVals and assign NewV to V1 if NewV now contains all the
5846    // source words for the shuffle, to aid later transformations.
5847    bool AllWordsInNewV = true;
5848    bool InOrder[2] = { true, true };
5849    for (unsigned i = 0; i != 8; ++i) {
5850      int idx = MaskVals[i];
5851      if (idx != (int)i)
5852        InOrder[i/4] = false;
5853      if (idx < 0 || (idx/4) == BestLoQuad || (idx/4) == BestHiQuad)
5854        continue;
5855      AllWordsInNewV = false;
5856      break;
5857    }
5858
5859    bool pshuflw = AllWordsInNewV, pshufhw = AllWordsInNewV;
5860    if (AllWordsInNewV) {
5861      for (int i = 0; i != 8; ++i) {
5862        int idx = MaskVals[i];
5863        if (idx < 0)
5864          continue;
5865        idx = MaskVals[i] = (idx / 4) == BestLoQuad ? (idx & 3) : (idx & 3) + 4;
5866        if ((idx != i) && idx < 4)
5867          pshufhw = false;
5868        if ((idx != i) && idx > 3)
5869          pshuflw = false;
5870      }
5871      V1 = NewV;
5872      V2Used = false;
5873      BestLoQuad = 0;
5874      BestHiQuad = 1;
5875    }
5876
5877    // If we've eliminated the use of V2, and the new mask is a pshuflw or
5878    // pshufhw, that's as cheap as it gets.  Return the new shuffle.
5879    if ((pshufhw && InOrder[0]) || (pshuflw && InOrder[1])) {
5880      unsigned Opc = pshufhw ? X86ISD::PSHUFHW : X86ISD::PSHUFLW;
5881      unsigned TargetMask = 0;
5882      NewV = DAG.getVectorShuffle(MVT::v8i16, dl, NewV,
5883                                  DAG.getUNDEF(MVT::v8i16), &MaskVals[0]);
5884      ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(NewV.getNode());
5885      TargetMask = pshufhw ? getShufflePSHUFHWImmediate(SVOp):
5886                             getShufflePSHUFLWImmediate(SVOp);
5887      V1 = NewV.getOperand(0);
5888      return getTargetShuffleNode(Opc, dl, MVT::v8i16, V1, TargetMask, DAG);
5889    }
5890  }
5891
5892  // Promote splats to a larger type which usually leads to more efficient code.
5893  // FIXME: Is this true if pshufb is available?
5894  if (SVOp->isSplat())
5895    return PromoteSplat(SVOp, DAG);
5896
5897  // If we have SSSE3, and all words of the result are from 1 input vector,
5898  // case 2 is generated, otherwise case 3 is generated.  If no SSSE3
5899  // is present, fall back to case 4.
5900  if (Subtarget->hasSSSE3()) {
5901    SmallVector<SDValue,16> pshufbMask;
5902
5903    // If we have elements from both input vectors, set the high bit of the
5904    // shuffle mask element to zero out elements that come from V2 in the V1
5905    // mask, and elements that come from V1 in the V2 mask, so that the two
5906    // results can be OR'd together.
5907    bool TwoInputs = V1Used && V2Used;
5908    for (unsigned i = 0; i != 8; ++i) {
5909      int EltIdx = MaskVals[i] * 2;
5910      int Idx0 = (TwoInputs && (EltIdx >= 16)) ? 0x80 : EltIdx;
5911      int Idx1 = (TwoInputs && (EltIdx >= 16)) ? 0x80 : EltIdx+1;
5912      pshufbMask.push_back(DAG.getConstant(Idx0, MVT::i8));
5913      pshufbMask.push_back(DAG.getConstant(Idx1, MVT::i8));
5914    }
5915    V1 = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, V1);
5916    V1 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V1,
5917                     DAG.getNode(ISD::BUILD_VECTOR, dl,
5918                                 MVT::v16i8, &pshufbMask[0], 16));
5919    if (!TwoInputs)
5920      return DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V1);
5921
5922    // Calculate the shuffle mask for the second input, shuffle it, and
5923    // OR it with the first shuffled input.
5924    pshufbMask.clear();
5925    for (unsigned i = 0; i != 8; ++i) {
5926      int EltIdx = MaskVals[i] * 2;
5927      int Idx0 = (EltIdx < 16) ? 0x80 : EltIdx - 16;
5928      int Idx1 = (EltIdx < 16) ? 0x80 : EltIdx - 15;
5929      pshufbMask.push_back(DAG.getConstant(Idx0, MVT::i8));
5930      pshufbMask.push_back(DAG.getConstant(Idx1, MVT::i8));
5931    }
5932    V2 = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, V2);
5933    V2 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V2,
5934                     DAG.getNode(ISD::BUILD_VECTOR, dl,
5935                                 MVT::v16i8, &pshufbMask[0], 16));
5936    V1 = DAG.getNode(ISD::OR, dl, MVT::v16i8, V1, V2);
5937    return DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V1);
5938  }
5939
5940  // If BestLoQuad >= 0, generate a pshuflw to put the low elements in order,
5941  // and update MaskVals with new element order.
5942  std::bitset<8> InOrder;
5943  if (BestLoQuad >= 0) {
5944    int MaskV[] = { -1, -1, -1, -1, 4, 5, 6, 7 };
5945    for (int i = 0; i != 4; ++i) {
5946      int idx = MaskVals[i];
5947      if (idx < 0) {
5948        InOrder.set(i);
5949      } else if ((idx / 4) == BestLoQuad) {
5950        MaskV[i] = idx & 3;
5951        InOrder.set(i);
5952      }
5953    }
5954    NewV = DAG.getVectorShuffle(MVT::v8i16, dl, NewV, DAG.getUNDEF(MVT::v8i16),
5955                                &MaskV[0]);
5956
5957    if (NewV.getOpcode() == ISD::VECTOR_SHUFFLE && Subtarget->hasSSSE3()) {
5958      ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(NewV.getNode());
5959      NewV = getTargetShuffleNode(X86ISD::PSHUFLW, dl, MVT::v8i16,
5960                                  NewV.getOperand(0),
5961                                  getShufflePSHUFLWImmediate(SVOp), DAG);
5962    }
5963  }
5964
5965  // If BestHi >= 0, generate a pshufhw to put the high elements in order,
5966  // and update MaskVals with the new element order.
5967  if (BestHiQuad >= 0) {
5968    int MaskV[] = { 0, 1, 2, 3, -1, -1, -1, -1 };
5969    for (unsigned i = 4; i != 8; ++i) {
5970      int idx = MaskVals[i];
5971      if (idx < 0) {
5972        InOrder.set(i);
5973      } else if ((idx / 4) == BestHiQuad) {
5974        MaskV[i] = (idx & 3) + 4;
5975        InOrder.set(i);
5976      }
5977    }
5978    NewV = DAG.getVectorShuffle(MVT::v8i16, dl, NewV, DAG.getUNDEF(MVT::v8i16),
5979                                &MaskV[0]);
5980
5981    if (NewV.getOpcode() == ISD::VECTOR_SHUFFLE && Subtarget->hasSSSE3()) {
5982      ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(NewV.getNode());
5983      NewV = getTargetShuffleNode(X86ISD::PSHUFHW, dl, MVT::v8i16,
5984                                  NewV.getOperand(0),
5985                                  getShufflePSHUFHWImmediate(SVOp), DAG);
5986    }
5987  }
5988
5989  // In case BestHi & BestLo were both -1, which means each quadword has a word
5990  // from each of the four input quadwords, calculate the InOrder bitvector now
5991  // before falling through to the insert/extract cleanup.
5992  if (BestLoQuad == -1 && BestHiQuad == -1) {
5993    NewV = V1;
5994    for (int i = 0; i != 8; ++i)
5995      if (MaskVals[i] < 0 || MaskVals[i] == i)
5996        InOrder.set(i);
5997  }
5998
5999  // The other elements are put in the right place using pextrw and pinsrw.
6000  for (unsigned i = 0; i != 8; ++i) {
6001    if (InOrder[i])
6002      continue;
6003    int EltIdx = MaskVals[i];
6004    if (EltIdx < 0)
6005      continue;
6006    SDValue ExtOp = (EltIdx < 8) ?
6007      DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, V1,
6008                  DAG.getIntPtrConstant(EltIdx)) :
6009      DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, V2,
6010                  DAG.getIntPtrConstant(EltIdx - 8));
6011    NewV = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, NewV, ExtOp,
6012                       DAG.getIntPtrConstant(i));
6013  }
6014  return NewV;
6015}
6016
6017// v16i8 shuffles - Prefer shuffles in the following order:
6018// 1. [ssse3] 1 x pshufb
6019// 2. [ssse3] 2 x pshufb + 1 x por
6020// 3. [all]   v8i16 shuffle + N x pextrw + rotate + pinsrw
6021static
6022SDValue LowerVECTOR_SHUFFLEv16i8(ShuffleVectorSDNode *SVOp,
6023                                 SelectionDAG &DAG,
6024                                 const X86TargetLowering &TLI) {
6025  SDValue V1 = SVOp->getOperand(0);
6026  SDValue V2 = SVOp->getOperand(1);
6027  DebugLoc dl = SVOp->getDebugLoc();
6028  ArrayRef<int> MaskVals = SVOp->getMask();
6029
6030  // Promote splats to a larger type which usually leads to more efficient code.
6031  // FIXME: Is this true if pshufb is available?
6032  if (SVOp->isSplat())
6033    return PromoteSplat(SVOp, DAG);
6034
6035  // If we have SSSE3, case 1 is generated when all result bytes come from
6036  // one of  the inputs.  Otherwise, case 2 is generated.  If no SSSE3 is
6037  // present, fall back to case 3.
6038
6039  // If SSSE3, use 1 pshufb instruction per vector with elements in the result.
6040  if (TLI.getSubtarget()->hasSSSE3()) {
6041    SmallVector<SDValue,16> pshufbMask;
6042
6043    // If all result elements are from one input vector, then only translate
6044    // undef mask values to 0x80 (zero out result) in the pshufb mask.
6045    //
6046    // Otherwise, we have elements from both input vectors, and must zero out
6047    // elements that come from V2 in the first mask, and V1 in the second mask
6048    // so that we can OR them together.
6049    for (unsigned i = 0; i != 16; ++i) {
6050      int EltIdx = MaskVals[i];
6051      if (EltIdx < 0 || EltIdx >= 16)
6052        EltIdx = 0x80;
6053      pshufbMask.push_back(DAG.getConstant(EltIdx, MVT::i8));
6054    }
6055    V1 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V1,
6056                     DAG.getNode(ISD::BUILD_VECTOR, dl,
6057                                 MVT::v16i8, &pshufbMask[0], 16));
6058
6059    // As PSHUFB will zero elements with negative indices, it's safe to ignore
6060    // the 2nd operand if it's undefined or zero.
6061    if (V2.getOpcode() == ISD::UNDEF ||
6062        ISD::isBuildVectorAllZeros(V2.getNode()))
6063      return V1;
6064
6065    // Calculate the shuffle mask for the second input, shuffle it, and
6066    // OR it with the first shuffled input.
6067    pshufbMask.clear();
6068    for (unsigned i = 0; i != 16; ++i) {
6069      int EltIdx = MaskVals[i];
6070      EltIdx = (EltIdx < 16) ? 0x80 : EltIdx - 16;
6071      pshufbMask.push_back(DAG.getConstant(EltIdx, MVT::i8));
6072    }
6073    V2 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V2,
6074                     DAG.getNode(ISD::BUILD_VECTOR, dl,
6075                                 MVT::v16i8, &pshufbMask[0], 16));
6076    return DAG.getNode(ISD::OR, dl, MVT::v16i8, V1, V2);
6077  }
6078
6079  // No SSSE3 - Calculate in place words and then fix all out of place words
6080  // With 0-16 extracts & inserts.  Worst case is 16 bytes out of order from
6081  // the 16 different words that comprise the two doublequadword input vectors.
6082  V1 = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V1);
6083  V2 = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V2);
6084  SDValue NewV = V1;
6085  for (int i = 0; i != 8; ++i) {
6086    int Elt0 = MaskVals[i*2];
6087    int Elt1 = MaskVals[i*2+1];
6088
6089    // This word of the result is all undef, skip it.
6090    if (Elt0 < 0 && Elt1 < 0)
6091      continue;
6092
6093    // This word of the result is already in the correct place, skip it.
6094    if ((Elt0 == i*2) && (Elt1 == i*2+1))
6095      continue;
6096
6097    SDValue Elt0Src = Elt0 < 16 ? V1 : V2;
6098    SDValue Elt1Src = Elt1 < 16 ? V1 : V2;
6099    SDValue InsElt;
6100
6101    // If Elt0 and Elt1 are defined, are consecutive, and can be load
6102    // using a single extract together, load it and store it.
6103    if ((Elt0 >= 0) && ((Elt0 + 1) == Elt1) && ((Elt0 & 1) == 0)) {
6104      InsElt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, Elt1Src,
6105                           DAG.getIntPtrConstant(Elt1 / 2));
6106      NewV = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, NewV, InsElt,
6107                        DAG.getIntPtrConstant(i));
6108      continue;
6109    }
6110
6111    // If Elt1 is defined, extract it from the appropriate source.  If the
6112    // source byte is not also odd, shift the extracted word left 8 bits
6113    // otherwise clear the bottom 8 bits if we need to do an or.
6114    if (Elt1 >= 0) {
6115      InsElt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, Elt1Src,
6116                           DAG.getIntPtrConstant(Elt1 / 2));
6117      if ((Elt1 & 1) == 0)
6118        InsElt = DAG.getNode(ISD::SHL, dl, MVT::i16, InsElt,
6119                             DAG.getConstant(8,
6120                                  TLI.getShiftAmountTy(InsElt.getValueType())));
6121      else if (Elt0 >= 0)
6122        InsElt = DAG.getNode(ISD::AND, dl, MVT::i16, InsElt,
6123                             DAG.getConstant(0xFF00, MVT::i16));
6124    }
6125    // If Elt0 is defined, extract it from the appropriate source.  If the
6126    // source byte is not also even, shift the extracted word right 8 bits. If
6127    // Elt1 was also defined, OR the extracted values together before
6128    // inserting them in the result.
6129    if (Elt0 >= 0) {
6130      SDValue InsElt0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16,
6131                                    Elt0Src, DAG.getIntPtrConstant(Elt0 / 2));
6132      if ((Elt0 & 1) != 0)
6133        InsElt0 = DAG.getNode(ISD::SRL, dl, MVT::i16, InsElt0,
6134                              DAG.getConstant(8,
6135                                 TLI.getShiftAmountTy(InsElt0.getValueType())));
6136      else if (Elt1 >= 0)
6137        InsElt0 = DAG.getNode(ISD::AND, dl, MVT::i16, InsElt0,
6138                             DAG.getConstant(0x00FF, MVT::i16));
6139      InsElt = Elt1 >= 0 ? DAG.getNode(ISD::OR, dl, MVT::i16, InsElt, InsElt0)
6140                         : InsElt0;
6141    }
6142    NewV = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, NewV, InsElt,
6143                       DAG.getIntPtrConstant(i));
6144  }
6145  return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, NewV);
6146}
6147
6148// v32i8 shuffles - Translate to VPSHUFB if possible.
6149static
6150SDValue LowerVECTOR_SHUFFLEv32i8(ShuffleVectorSDNode *SVOp,
6151                                 const X86Subtarget *Subtarget,
6152                                 SelectionDAG &DAG) {
6153  MVT VT = SVOp->getValueType(0).getSimpleVT();
6154  SDValue V1 = SVOp->getOperand(0);
6155  SDValue V2 = SVOp->getOperand(1);
6156  DebugLoc dl = SVOp->getDebugLoc();
6157  SmallVector<int, 32> MaskVals(SVOp->getMask().begin(), SVOp->getMask().end());
6158
6159  bool V2IsUndef = V2.getOpcode() == ISD::UNDEF;
6160  bool V1IsAllZero = ISD::isBuildVectorAllZeros(V1.getNode());
6161  bool V2IsAllZero = ISD::isBuildVectorAllZeros(V2.getNode());
6162
6163  // VPSHUFB may be generated if
6164  // (1) one of input vector is undefined or zeroinitializer.
6165  // The mask value 0x80 puts 0 in the corresponding slot of the vector.
6166  // And (2) the mask indexes don't cross the 128-bit lane.
6167  if (VT != MVT::v32i8 || !Subtarget->hasInt256() ||
6168      (!V2IsUndef && !V2IsAllZero && !V1IsAllZero))
6169    return SDValue();
6170
6171  if (V1IsAllZero && !V2IsAllZero) {
6172    CommuteVectorShuffleMask(MaskVals, 32);
6173    V1 = V2;
6174  }
6175  SmallVector<SDValue, 32> pshufbMask;
6176  for (unsigned i = 0; i != 32; i++) {
6177    int EltIdx = MaskVals[i];
6178    if (EltIdx < 0 || EltIdx >= 32)
6179      EltIdx = 0x80;
6180    else {
6181      if ((EltIdx >= 16 && i < 16) || (EltIdx < 16 && i >= 16))
6182        // Cross lane is not allowed.
6183        return SDValue();
6184      EltIdx &= 0xf;
6185    }
6186    pshufbMask.push_back(DAG.getConstant(EltIdx, MVT::i8));
6187  }
6188  return DAG.getNode(X86ISD::PSHUFB, dl, MVT::v32i8, V1,
6189                      DAG.getNode(ISD::BUILD_VECTOR, dl,
6190                                  MVT::v32i8, &pshufbMask[0], 32));
6191}
6192
6193/// RewriteAsNarrowerShuffle - Try rewriting v8i16 and v16i8 shuffles as 4 wide
6194/// ones, or rewriting v4i32 / v4f32 as 2 wide ones if possible. This can be
6195/// done when every pair / quad of shuffle mask elements point to elements in
6196/// the right sequence. e.g.
6197/// vector_shuffle X, Y, <2, 3, | 10, 11, | 0, 1, | 14, 15>
6198static
6199SDValue RewriteAsNarrowerShuffle(ShuffleVectorSDNode *SVOp,
6200                                 SelectionDAG &DAG) {
6201  MVT VT = SVOp->getValueType(0).getSimpleVT();
6202  DebugLoc dl = SVOp->getDebugLoc();
6203  unsigned NumElems = VT.getVectorNumElements();
6204  MVT NewVT;
6205  unsigned Scale;
6206  switch (VT.SimpleTy) {
6207  default: llvm_unreachable("Unexpected!");
6208  case MVT::v4f32:  NewVT = MVT::v2f64; Scale = 2; break;
6209  case MVT::v4i32:  NewVT = MVT::v2i64; Scale = 2; break;
6210  case MVT::v8i16:  NewVT = MVT::v4i32; Scale = 2; break;
6211  case MVT::v16i8:  NewVT = MVT::v4i32; Scale = 4; break;
6212  case MVT::v16i16: NewVT = MVT::v8i32; Scale = 2; break;
6213  case MVT::v32i8:  NewVT = MVT::v8i32; Scale = 4; break;
6214  }
6215
6216  SmallVector<int, 8> MaskVec;
6217  for (unsigned i = 0; i != NumElems; i += Scale) {
6218    int StartIdx = -1;
6219    for (unsigned j = 0; j != Scale; ++j) {
6220      int EltIdx = SVOp->getMaskElt(i+j);
6221      if (EltIdx < 0)
6222        continue;
6223      if (StartIdx < 0)
6224        StartIdx = (EltIdx / Scale);
6225      if (EltIdx != (int)(StartIdx*Scale + j))
6226        return SDValue();
6227    }
6228    MaskVec.push_back(StartIdx);
6229  }
6230
6231  SDValue V1 = DAG.getNode(ISD::BITCAST, dl, NewVT, SVOp->getOperand(0));
6232  SDValue V2 = DAG.getNode(ISD::BITCAST, dl, NewVT, SVOp->getOperand(1));
6233  return DAG.getVectorShuffle(NewVT, dl, V1, V2, &MaskVec[0]);
6234}
6235
6236/// getVZextMovL - Return a zero-extending vector move low node.
6237///
6238static SDValue getVZextMovL(MVT VT, EVT OpVT,
6239                            SDValue SrcOp, SelectionDAG &DAG,
6240                            const X86Subtarget *Subtarget, DebugLoc dl) {
6241  if (VT == MVT::v2f64 || VT == MVT::v4f32) {
6242    LoadSDNode *LD = NULL;
6243    if (!isScalarLoadToVector(SrcOp.getNode(), &LD))
6244      LD = dyn_cast<LoadSDNode>(SrcOp);
6245    if (!LD) {
6246      // movssrr and movsdrr do not clear top bits. Try to use movd, movq
6247      // instead.
6248      MVT ExtVT = (OpVT == MVT::v2f64) ? MVT::i64 : MVT::i32;
6249      if ((ExtVT != MVT::i64 || Subtarget->is64Bit()) &&
6250          SrcOp.getOpcode() == ISD::SCALAR_TO_VECTOR &&
6251          SrcOp.getOperand(0).getOpcode() == ISD::BITCAST &&
6252          SrcOp.getOperand(0).getOperand(0).getValueType() == ExtVT) {
6253        // PR2108
6254        OpVT = (OpVT == MVT::v2f64) ? MVT::v2i64 : MVT::v4i32;
6255        return DAG.getNode(ISD::BITCAST, dl, VT,
6256                           DAG.getNode(X86ISD::VZEXT_MOVL, dl, OpVT,
6257                                       DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
6258                                                   OpVT,
6259                                                   SrcOp.getOperand(0)
6260                                                          .getOperand(0))));
6261      }
6262    }
6263  }
6264
6265  return DAG.getNode(ISD::BITCAST, dl, VT,
6266                     DAG.getNode(X86ISD::VZEXT_MOVL, dl, OpVT,
6267                                 DAG.getNode(ISD::BITCAST, dl,
6268                                             OpVT, SrcOp)));
6269}
6270
6271/// LowerVECTOR_SHUFFLE_256 - Handle all 256-bit wide vectors shuffles
6272/// which could not be matched by any known target speficic shuffle
6273static SDValue
6274LowerVECTOR_SHUFFLE_256(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG) {
6275
6276  SDValue NewOp = Compact8x32ShuffleNode(SVOp, DAG);
6277  if (NewOp.getNode())
6278    return NewOp;
6279
6280  MVT VT = SVOp->getValueType(0).getSimpleVT();
6281
6282  unsigned NumElems = VT.getVectorNumElements();
6283  unsigned NumLaneElems = NumElems / 2;
6284
6285  DebugLoc dl = SVOp->getDebugLoc();
6286  MVT EltVT = VT.getVectorElementType();
6287  MVT NVT = MVT::getVectorVT(EltVT, NumLaneElems);
6288  SDValue Output[2];
6289
6290  SmallVector<int, 16> Mask;
6291  for (unsigned l = 0; l < 2; ++l) {
6292    // Build a shuffle mask for the output, discovering on the fly which
6293    // input vectors to use as shuffle operands (recorded in InputUsed).
6294    // If building a suitable shuffle vector proves too hard, then bail
6295    // out with UseBuildVector set.
6296    bool UseBuildVector = false;
6297    int InputUsed[2] = { -1, -1 }; // Not yet discovered.
6298    unsigned LaneStart = l * NumLaneElems;
6299    for (unsigned i = 0; i != NumLaneElems; ++i) {
6300      // The mask element.  This indexes into the input.
6301      int Idx = SVOp->getMaskElt(i+LaneStart);
6302      if (Idx < 0) {
6303        // the mask element does not index into any input vector.
6304        Mask.push_back(-1);
6305        continue;
6306      }
6307
6308      // The input vector this mask element indexes into.
6309      int Input = Idx / NumLaneElems;
6310
6311      // Turn the index into an offset from the start of the input vector.
6312      Idx -= Input * NumLaneElems;
6313
6314      // Find or create a shuffle vector operand to hold this input.
6315      unsigned OpNo;
6316      for (OpNo = 0; OpNo < array_lengthof(InputUsed); ++OpNo) {
6317        if (InputUsed[OpNo] == Input)
6318          // This input vector is already an operand.
6319          break;
6320        if (InputUsed[OpNo] < 0) {
6321          // Create a new operand for this input vector.
6322          InputUsed[OpNo] = Input;
6323          break;
6324        }
6325      }
6326
6327      if (OpNo >= array_lengthof(InputUsed)) {
6328        // More than two input vectors used!  Give up on trying to create a
6329        // shuffle vector.  Insert all elements into a BUILD_VECTOR instead.
6330        UseBuildVector = true;
6331        break;
6332      }
6333
6334      // Add the mask index for the new shuffle vector.
6335      Mask.push_back(Idx + OpNo * NumLaneElems);
6336    }
6337
6338    if (UseBuildVector) {
6339      SmallVector<SDValue, 16> SVOps;
6340      for (unsigned i = 0; i != NumLaneElems; ++i) {
6341        // The mask element.  This indexes into the input.
6342        int Idx = SVOp->getMaskElt(i+LaneStart);
6343        if (Idx < 0) {
6344          SVOps.push_back(DAG.getUNDEF(EltVT));
6345          continue;
6346        }
6347
6348        // The input vector this mask element indexes into.
6349        int Input = Idx / NumElems;
6350
6351        // Turn the index into an offset from the start of the input vector.
6352        Idx -= Input * NumElems;
6353
6354        // Extract the vector element by hand.
6355        SVOps.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT,
6356                                    SVOp->getOperand(Input),
6357                                    DAG.getIntPtrConstant(Idx)));
6358      }
6359
6360      // Construct the output using a BUILD_VECTOR.
6361      Output[l] = DAG.getNode(ISD::BUILD_VECTOR, dl, NVT, &SVOps[0],
6362                              SVOps.size());
6363    } else if (InputUsed[0] < 0) {
6364      // No input vectors were used! The result is undefined.
6365      Output[l] = DAG.getUNDEF(NVT);
6366    } else {
6367      SDValue Op0 = Extract128BitVector(SVOp->getOperand(InputUsed[0] / 2),
6368                                        (InputUsed[0] % 2) * NumLaneElems,
6369                                        DAG, dl);
6370      // If only one input was used, use an undefined vector for the other.
6371      SDValue Op1 = (InputUsed[1] < 0) ? DAG.getUNDEF(NVT) :
6372        Extract128BitVector(SVOp->getOperand(InputUsed[1] / 2),
6373                            (InputUsed[1] % 2) * NumLaneElems, DAG, dl);
6374      // At least one input vector was used. Create a new shuffle vector.
6375      Output[l] = DAG.getVectorShuffle(NVT, dl, Op0, Op1, &Mask[0]);
6376    }
6377
6378    Mask.clear();
6379  }
6380
6381  // Concatenate the result back
6382  return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT, Output[0], Output[1]);
6383}
6384
6385/// LowerVECTOR_SHUFFLE_128v4 - Handle all 128-bit wide vectors with
6386/// 4 elements, and match them with several different shuffle types.
6387static SDValue
6388LowerVECTOR_SHUFFLE_128v4(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG) {
6389  SDValue V1 = SVOp->getOperand(0);
6390  SDValue V2 = SVOp->getOperand(1);
6391  DebugLoc dl = SVOp->getDebugLoc();
6392  MVT VT = SVOp->getValueType(0).getSimpleVT();
6393
6394  assert(VT.is128BitVector() && "Unsupported vector size");
6395
6396  std::pair<int, int> Locs[4];
6397  int Mask1[] = { -1, -1, -1, -1 };
6398  SmallVector<int, 8> PermMask(SVOp->getMask().begin(), SVOp->getMask().end());
6399
6400  unsigned NumHi = 0;
6401  unsigned NumLo = 0;
6402  for (unsigned i = 0; i != 4; ++i) {
6403    int Idx = PermMask[i];
6404    if (Idx < 0) {
6405      Locs[i] = std::make_pair(-1, -1);
6406    } else {
6407      assert(Idx < 8 && "Invalid VECTOR_SHUFFLE index!");
6408      if (Idx < 4) {
6409        Locs[i] = std::make_pair(0, NumLo);
6410        Mask1[NumLo] = Idx;
6411        NumLo++;
6412      } else {
6413        Locs[i] = std::make_pair(1, NumHi);
6414        if (2+NumHi < 4)
6415          Mask1[2+NumHi] = Idx;
6416        NumHi++;
6417      }
6418    }
6419  }
6420
6421  if (NumLo <= 2 && NumHi <= 2) {
6422    // If no more than two elements come from either vector. This can be
6423    // implemented with two shuffles. First shuffle gather the elements.
6424    // The second shuffle, which takes the first shuffle as both of its
6425    // vector operands, put the elements into the right order.
6426    V1 = DAG.getVectorShuffle(VT, dl, V1, V2, &Mask1[0]);
6427
6428    int Mask2[] = { -1, -1, -1, -1 };
6429
6430    for (unsigned i = 0; i != 4; ++i)
6431      if (Locs[i].first != -1) {
6432        unsigned Idx = (i < 2) ? 0 : 4;
6433        Idx += Locs[i].first * 2 + Locs[i].second;
6434        Mask2[i] = Idx;
6435      }
6436
6437    return DAG.getVectorShuffle(VT, dl, V1, V1, &Mask2[0]);
6438  }
6439
6440  if (NumLo == 3 || NumHi == 3) {
6441    // Otherwise, we must have three elements from one vector, call it X, and
6442    // one element from the other, call it Y.  First, use a shufps to build an
6443    // intermediate vector with the one element from Y and the element from X
6444    // that will be in the same half in the final destination (the indexes don't
6445    // matter). Then, use a shufps to build the final vector, taking the half
6446    // containing the element from Y from the intermediate, and the other half
6447    // from X.
6448    if (NumHi == 3) {
6449      // Normalize it so the 3 elements come from V1.
6450      CommuteVectorShuffleMask(PermMask, 4);
6451      std::swap(V1, V2);
6452    }
6453
6454    // Find the element from V2.
6455    unsigned HiIndex;
6456    for (HiIndex = 0; HiIndex < 3; ++HiIndex) {
6457      int Val = PermMask[HiIndex];
6458      if (Val < 0)
6459        continue;
6460      if (Val >= 4)
6461        break;
6462    }
6463
6464    Mask1[0] = PermMask[HiIndex];
6465    Mask1[1] = -1;
6466    Mask1[2] = PermMask[HiIndex^1];
6467    Mask1[3] = -1;
6468    V2 = DAG.getVectorShuffle(VT, dl, V1, V2, &Mask1[0]);
6469
6470    if (HiIndex >= 2) {
6471      Mask1[0] = PermMask[0];
6472      Mask1[1] = PermMask[1];
6473      Mask1[2] = HiIndex & 1 ? 6 : 4;
6474      Mask1[3] = HiIndex & 1 ? 4 : 6;
6475      return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask1[0]);
6476    }
6477
6478    Mask1[0] = HiIndex & 1 ? 2 : 0;
6479    Mask1[1] = HiIndex & 1 ? 0 : 2;
6480    Mask1[2] = PermMask[2];
6481    Mask1[3] = PermMask[3];
6482    if (Mask1[2] >= 0)
6483      Mask1[2] += 4;
6484    if (Mask1[3] >= 0)
6485      Mask1[3] += 4;
6486    return DAG.getVectorShuffle(VT, dl, V2, V1, &Mask1[0]);
6487  }
6488
6489  // Break it into (shuffle shuffle_hi, shuffle_lo).
6490  int LoMask[] = { -1, -1, -1, -1 };
6491  int HiMask[] = { -1, -1, -1, -1 };
6492
6493  int *MaskPtr = LoMask;
6494  unsigned MaskIdx = 0;
6495  unsigned LoIdx = 0;
6496  unsigned HiIdx = 2;
6497  for (unsigned i = 0; i != 4; ++i) {
6498    if (i == 2) {
6499      MaskPtr = HiMask;
6500      MaskIdx = 1;
6501      LoIdx = 0;
6502      HiIdx = 2;
6503    }
6504    int Idx = PermMask[i];
6505    if (Idx < 0) {
6506      Locs[i] = std::make_pair(-1, -1);
6507    } else if (Idx < 4) {
6508      Locs[i] = std::make_pair(MaskIdx, LoIdx);
6509      MaskPtr[LoIdx] = Idx;
6510      LoIdx++;
6511    } else {
6512      Locs[i] = std::make_pair(MaskIdx, HiIdx);
6513      MaskPtr[HiIdx] = Idx;
6514      HiIdx++;
6515    }
6516  }
6517
6518  SDValue LoShuffle = DAG.getVectorShuffle(VT, dl, V1, V2, &LoMask[0]);
6519  SDValue HiShuffle = DAG.getVectorShuffle(VT, dl, V1, V2, &HiMask[0]);
6520  int MaskOps[] = { -1, -1, -1, -1 };
6521  for (unsigned i = 0; i != 4; ++i)
6522    if (Locs[i].first != -1)
6523      MaskOps[i] = Locs[i].first * 4 + Locs[i].second;
6524  return DAG.getVectorShuffle(VT, dl, LoShuffle, HiShuffle, &MaskOps[0]);
6525}
6526
6527static bool MayFoldVectorLoad(SDValue V) {
6528  while (V.hasOneUse() && V.getOpcode() == ISD::BITCAST)
6529    V = V.getOperand(0);
6530
6531  if (V.hasOneUse() && V.getOpcode() == ISD::SCALAR_TO_VECTOR)
6532    V = V.getOperand(0);
6533  if (V.hasOneUse() && V.getOpcode() == ISD::BUILD_VECTOR &&
6534      V.getNumOperands() == 2 && V.getOperand(1).getOpcode() == ISD::UNDEF)
6535    // BUILD_VECTOR (load), undef
6536    V = V.getOperand(0);
6537
6538  return MayFoldLoad(V);
6539}
6540
6541static
6542SDValue getMOVDDup(SDValue &Op, DebugLoc &dl, SDValue V1, SelectionDAG &DAG) {
6543  EVT VT = Op.getValueType();
6544
6545  // Canonizalize to v2f64.
6546  V1 = DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, V1);
6547  return DAG.getNode(ISD::BITCAST, dl, VT,
6548                     getTargetShuffleNode(X86ISD::MOVDDUP, dl, MVT::v2f64,
6549                                          V1, DAG));
6550}
6551
6552static
6553SDValue getMOVLowToHigh(SDValue &Op, DebugLoc &dl, SelectionDAG &DAG,
6554                        bool HasSSE2) {
6555  SDValue V1 = Op.getOperand(0);
6556  SDValue V2 = Op.getOperand(1);
6557  EVT VT = Op.getValueType();
6558
6559  assert(VT != MVT::v2i64 && "unsupported shuffle type");
6560
6561  if (HasSSE2 && VT == MVT::v2f64)
6562    return getTargetShuffleNode(X86ISD::MOVLHPD, dl, VT, V1, V2, DAG);
6563
6564  // v4f32 or v4i32: canonizalized to v4f32 (which is legal for SSE1)
6565  return DAG.getNode(ISD::BITCAST, dl, VT,
6566                     getTargetShuffleNode(X86ISD::MOVLHPS, dl, MVT::v4f32,
6567                           DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, V1),
6568                           DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, V2), DAG));
6569}
6570
6571static
6572SDValue getMOVHighToLow(SDValue &Op, DebugLoc &dl, SelectionDAG &DAG) {
6573  SDValue V1 = Op.getOperand(0);
6574  SDValue V2 = Op.getOperand(1);
6575  EVT VT = Op.getValueType();
6576
6577  assert((VT == MVT::v4i32 || VT == MVT::v4f32) &&
6578         "unsupported shuffle type");
6579
6580  if (V2.getOpcode() == ISD::UNDEF)
6581    V2 = V1;
6582
6583  // v4i32 or v4f32
6584  return getTargetShuffleNode(X86ISD::MOVHLPS, dl, VT, V1, V2, DAG);
6585}
6586
6587static
6588SDValue getMOVLP(SDValue &Op, DebugLoc &dl, SelectionDAG &DAG, bool HasSSE2) {
6589  SDValue V1 = Op.getOperand(0);
6590  SDValue V2 = Op.getOperand(1);
6591  EVT VT = Op.getValueType();
6592  unsigned NumElems = VT.getVectorNumElements();
6593
6594  // Use MOVLPS and MOVLPD in case V1 or V2 are loads. During isel, the second
6595  // operand of these instructions is only memory, so check if there's a
6596  // potencial load folding here, otherwise use SHUFPS or MOVSD to match the
6597  // same masks.
6598  bool CanFoldLoad = false;
6599
6600  // Trivial case, when V2 comes from a load.
6601  if (MayFoldVectorLoad(V2))
6602    CanFoldLoad = true;
6603
6604  // When V1 is a load, it can be folded later into a store in isel, example:
6605  //  (store (v4f32 (X86Movlps (load addr:$src1), VR128:$src2)), addr:$src1)
6606  //    turns into:
6607  //  (MOVLPSmr addr:$src1, VR128:$src2)
6608  // So, recognize this potential and also use MOVLPS or MOVLPD
6609  else if (MayFoldVectorLoad(V1) && MayFoldIntoStore(Op))
6610    CanFoldLoad = true;
6611
6612  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
6613  if (CanFoldLoad) {
6614    if (HasSSE2 && NumElems == 2)
6615      return getTargetShuffleNode(X86ISD::MOVLPD, dl, VT, V1, V2, DAG);
6616
6617    if (NumElems == 4)
6618      // If we don't care about the second element, proceed to use movss.
6619      if (SVOp->getMaskElt(1) != -1)
6620        return getTargetShuffleNode(X86ISD::MOVLPS, dl, VT, V1, V2, DAG);
6621  }
6622
6623  // movl and movlp will both match v2i64, but v2i64 is never matched by
6624  // movl earlier because we make it strict to avoid messing with the movlp load
6625  // folding logic (see the code above getMOVLP call). Match it here then,
6626  // this is horrible, but will stay like this until we move all shuffle
6627  // matching to x86 specific nodes. Note that for the 1st condition all
6628  // types are matched with movsd.
6629  if (HasSSE2) {
6630    // FIXME: isMOVLMask should be checked and matched before getMOVLP,
6631    // as to remove this logic from here, as much as possible
6632    if (NumElems == 2 || !isMOVLMask(SVOp->getMask(), VT))
6633      return getTargetShuffleNode(X86ISD::MOVSD, dl, VT, V1, V2, DAG);
6634    return getTargetShuffleNode(X86ISD::MOVSS, dl, VT, V1, V2, DAG);
6635  }
6636
6637  assert(VT != MVT::v4i32 && "unsupported shuffle type");
6638
6639  // Invert the operand order and use SHUFPS to match it.
6640  return getTargetShuffleNode(X86ISD::SHUFP, dl, VT, V2, V1,
6641                              getShuffleSHUFImmediate(SVOp), DAG);
6642}
6643
6644// Reduce a vector shuffle to zext.
6645SDValue
6646X86TargetLowering::LowerVectorIntExtend(SDValue Op, SelectionDAG &DAG) const {
6647  // PMOVZX is only available from SSE41.
6648  if (!Subtarget->hasSSE41())
6649    return SDValue();
6650
6651  EVT VT = Op.getValueType();
6652
6653  // Only AVX2 support 256-bit vector integer extending.
6654  if (!Subtarget->hasInt256() && VT.is256BitVector())
6655    return SDValue();
6656
6657  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
6658  DebugLoc DL = Op.getDebugLoc();
6659  SDValue V1 = Op.getOperand(0);
6660  SDValue V2 = Op.getOperand(1);
6661  unsigned NumElems = VT.getVectorNumElements();
6662
6663  // Extending is an unary operation and the element type of the source vector
6664  // won't be equal to or larger than i64.
6665  if (V2.getOpcode() != ISD::UNDEF || !VT.isInteger() ||
6666      VT.getVectorElementType() == MVT::i64)
6667    return SDValue();
6668
6669  // Find the expansion ratio, e.g. expanding from i8 to i32 has a ratio of 4.
6670  unsigned Shift = 1; // Start from 2, i.e. 1 << 1.
6671  while ((1U << Shift) < NumElems) {
6672    if (SVOp->getMaskElt(1U << Shift) == 1)
6673      break;
6674    Shift += 1;
6675    // The maximal ratio is 8, i.e. from i8 to i64.
6676    if (Shift > 3)
6677      return SDValue();
6678  }
6679
6680  // Check the shuffle mask.
6681  unsigned Mask = (1U << Shift) - 1;
6682  for (unsigned i = 0; i != NumElems; ++i) {
6683    int EltIdx = SVOp->getMaskElt(i);
6684    if ((i & Mask) != 0 && EltIdx != -1)
6685      return SDValue();
6686    if ((i & Mask) == 0 && (unsigned)EltIdx != (i >> Shift))
6687      return SDValue();
6688  }
6689
6690  LLVMContext *Context = DAG.getContext();
6691  unsigned NBits = VT.getVectorElementType().getSizeInBits() << Shift;
6692  EVT NeVT = EVT::getIntegerVT(*Context, NBits);
6693  EVT NVT = EVT::getVectorVT(*Context, NeVT, NumElems >> Shift);
6694
6695  if (!isTypeLegal(NVT))
6696    return SDValue();
6697
6698  // Simplify the operand as it's prepared to be fed into shuffle.
6699  unsigned SignificantBits = NVT.getSizeInBits() >> Shift;
6700  if (V1.getOpcode() == ISD::BITCAST &&
6701      V1.getOperand(0).getOpcode() == ISD::SCALAR_TO_VECTOR &&
6702      V1.getOperand(0).getOperand(0).getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
6703      V1.getOperand(0)
6704        .getOperand(0).getValueType().getSizeInBits() == SignificantBits) {
6705    // (bitcast (sclr2vec (ext_vec_elt x))) -> (bitcast x)
6706    SDValue V = V1.getOperand(0).getOperand(0).getOperand(0);
6707    ConstantSDNode *CIdx =
6708      dyn_cast<ConstantSDNode>(V1.getOperand(0).getOperand(0).getOperand(1));
6709    // If it's foldable, i.e. normal load with single use, we will let code
6710    // selection to fold it. Otherwise, we will short the conversion sequence.
6711    if (CIdx && CIdx->getZExtValue() == 0 &&
6712        (!ISD::isNormalLoad(V.getNode()) || !V.hasOneUse())) {
6713      if (V.getValueSizeInBits() > V1.getValueSizeInBits()) {
6714        // The "ext_vec_elt" node is wider than the result node.
6715        // In this case we should extract subvector from V.
6716        // (bitcast (sclr2vec (ext_vec_elt x))) -> (bitcast (extract_subvector x)).
6717        unsigned Ratio = V.getValueSizeInBits() / V1.getValueSizeInBits();
6718        EVT FullVT = V.getValueType();
6719        EVT SubVecVT = EVT::getVectorVT(*Context,
6720                                        FullVT.getVectorElementType(),
6721                                        FullVT.getVectorNumElements()/Ratio);
6722        V = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, SubVecVT, V,
6723                        DAG.getIntPtrConstant(0));
6724      }
6725      V1 = DAG.getNode(ISD::BITCAST, DL, V1.getValueType(), V);
6726    }
6727  }
6728
6729  return DAG.getNode(ISD::BITCAST, DL, VT,
6730                     DAG.getNode(X86ISD::VZEXT, DL, NVT, V1));
6731}
6732
6733SDValue
6734X86TargetLowering::NormalizeVectorShuffle(SDValue Op, SelectionDAG &DAG) const {
6735  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
6736  MVT VT = Op.getValueType().getSimpleVT();
6737  DebugLoc dl = Op.getDebugLoc();
6738  SDValue V1 = Op.getOperand(0);
6739  SDValue V2 = Op.getOperand(1);
6740
6741  if (isZeroShuffle(SVOp))
6742    return getZeroVector(VT, Subtarget, DAG, dl);
6743
6744  // Handle splat operations
6745  if (SVOp->isSplat()) {
6746    // Use vbroadcast whenever the splat comes from a foldable load
6747    SDValue Broadcast = LowerVectorBroadcast(Op, DAG);
6748    if (Broadcast.getNode())
6749      return Broadcast;
6750  }
6751
6752  // Check integer expanding shuffles.
6753  SDValue NewOp = LowerVectorIntExtend(Op, DAG);
6754  if (NewOp.getNode())
6755    return NewOp;
6756
6757  // If the shuffle can be profitably rewritten as a narrower shuffle, then
6758  // do it!
6759  if (VT == MVT::v8i16  || VT == MVT::v16i8 ||
6760      VT == MVT::v16i16 || VT == MVT::v32i8) {
6761    SDValue NewOp = RewriteAsNarrowerShuffle(SVOp, DAG);
6762    if (NewOp.getNode())
6763      return DAG.getNode(ISD::BITCAST, dl, VT, NewOp);
6764  } else if ((VT == MVT::v4i32 ||
6765             (VT == MVT::v4f32 && Subtarget->hasSSE2()))) {
6766    // FIXME: Figure out a cleaner way to do this.
6767    // Try to make use of movq to zero out the top part.
6768    if (ISD::isBuildVectorAllZeros(V2.getNode())) {
6769      SDValue NewOp = RewriteAsNarrowerShuffle(SVOp, DAG);
6770      if (NewOp.getNode()) {
6771        MVT NewVT = NewOp.getValueType().getSimpleVT();
6772        if (isCommutedMOVLMask(cast<ShuffleVectorSDNode>(NewOp)->getMask(),
6773                               NewVT, true, false))
6774          return getVZextMovL(VT, NewVT, NewOp.getOperand(0),
6775                              DAG, Subtarget, dl);
6776      }
6777    } else if (ISD::isBuildVectorAllZeros(V1.getNode())) {
6778      SDValue NewOp = RewriteAsNarrowerShuffle(SVOp, DAG);
6779      if (NewOp.getNode()) {
6780        MVT NewVT = NewOp.getValueType().getSimpleVT();
6781        if (isMOVLMask(cast<ShuffleVectorSDNode>(NewOp)->getMask(), NewVT))
6782          return getVZextMovL(VT, NewVT, NewOp.getOperand(1),
6783                              DAG, Subtarget, dl);
6784      }
6785    }
6786  }
6787  return SDValue();
6788}
6789
6790SDValue
6791X86TargetLowering::LowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG) const {
6792  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
6793  SDValue V1 = Op.getOperand(0);
6794  SDValue V2 = Op.getOperand(1);
6795  MVT VT = Op.getValueType().getSimpleVT();
6796  DebugLoc dl = Op.getDebugLoc();
6797  unsigned NumElems = VT.getVectorNumElements();
6798  bool V1IsUndef = V1.getOpcode() == ISD::UNDEF;
6799  bool V2IsUndef = V2.getOpcode() == ISD::UNDEF;
6800  bool V1IsSplat = false;
6801  bool V2IsSplat = false;
6802  bool HasSSE2 = Subtarget->hasSSE2();
6803  bool HasFp256    = Subtarget->hasFp256();
6804  bool HasInt256   = Subtarget->hasInt256();
6805  MachineFunction &MF = DAG.getMachineFunction();
6806  bool OptForSize = MF.getFunction()->getAttributes().
6807    hasAttribute(AttributeSet::FunctionIndex, Attribute::OptimizeForSize);
6808
6809  assert(VT.getSizeInBits() != 64 && "Can't lower MMX shuffles");
6810
6811  if (V1IsUndef && V2IsUndef)
6812    return DAG.getUNDEF(VT);
6813
6814  assert(!V1IsUndef && "Op 1 of shuffle should not be undef");
6815
6816  // Vector shuffle lowering takes 3 steps:
6817  //
6818  // 1) Normalize the input vectors. Here splats, zeroed vectors, profitable
6819  //    narrowing and commutation of operands should be handled.
6820  // 2) Matching of shuffles with known shuffle masks to x86 target specific
6821  //    shuffle nodes.
6822  // 3) Rewriting of unmatched masks into new generic shuffle operations,
6823  //    so the shuffle can be broken into other shuffles and the legalizer can
6824  //    try the lowering again.
6825  //
6826  // The general idea is that no vector_shuffle operation should be left to
6827  // be matched during isel, all of them must be converted to a target specific
6828  // node here.
6829
6830  // Normalize the input vectors. Here splats, zeroed vectors, profitable
6831  // narrowing and commutation of operands should be handled. The actual code
6832  // doesn't include all of those, work in progress...
6833  SDValue NewOp = NormalizeVectorShuffle(Op, DAG);
6834  if (NewOp.getNode())
6835    return NewOp;
6836
6837  SmallVector<int, 8> M(SVOp->getMask().begin(), SVOp->getMask().end());
6838
6839  // NOTE: isPSHUFDMask can also match both masks below (unpckl_undef and
6840  // unpckh_undef). Only use pshufd if speed is more important than size.
6841  if (OptForSize && isUNPCKL_v_undef_Mask(M, VT, HasInt256))
6842    return getTargetShuffleNode(X86ISD::UNPCKL, dl, VT, V1, V1, DAG);
6843  if (OptForSize && isUNPCKH_v_undef_Mask(M, VT, HasInt256))
6844    return getTargetShuffleNode(X86ISD::UNPCKH, dl, VT, V1, V1, DAG);
6845
6846  if (isMOVDDUPMask(M, VT) && Subtarget->hasSSE3() &&
6847      V2IsUndef && MayFoldVectorLoad(V1))
6848    return getMOVDDup(Op, dl, V1, DAG);
6849
6850  if (isMOVHLPS_v_undef_Mask(M, VT))
6851    return getMOVHighToLow(Op, dl, DAG);
6852
6853  // Use to match splats
6854  if (HasSSE2 && isUNPCKHMask(M, VT, HasInt256) && V2IsUndef &&
6855      (VT == MVT::v2f64 || VT == MVT::v2i64))
6856    return getTargetShuffleNode(X86ISD::UNPCKH, dl, VT, V1, V1, DAG);
6857
6858  if (isPSHUFDMask(M, VT)) {
6859    // The actual implementation will match the mask in the if above and then
6860    // during isel it can match several different instructions, not only pshufd
6861    // as its name says, sad but true, emulate the behavior for now...
6862    if (isMOVDDUPMask(M, VT) && ((VT == MVT::v4f32 || VT == MVT::v2i64)))
6863      return getTargetShuffleNode(X86ISD::MOVLHPS, dl, VT, V1, V1, DAG);
6864
6865    unsigned TargetMask = getShuffleSHUFImmediate(SVOp);
6866
6867    if (HasSSE2 && (VT == MVT::v4f32 || VT == MVT::v4i32))
6868      return getTargetShuffleNode(X86ISD::PSHUFD, dl, VT, V1, TargetMask, DAG);
6869
6870    if (HasFp256 && (VT == MVT::v4f32 || VT == MVT::v2f64))
6871      return getTargetShuffleNode(X86ISD::VPERMILP, dl, VT, V1, TargetMask,
6872                                  DAG);
6873
6874    return getTargetShuffleNode(X86ISD::SHUFP, dl, VT, V1, V1,
6875                                TargetMask, DAG);
6876  }
6877
6878  // Check if this can be converted into a logical shift.
6879  bool isLeft = false;
6880  unsigned ShAmt = 0;
6881  SDValue ShVal;
6882  bool isShift = HasSSE2 && isVectorShift(SVOp, DAG, isLeft, ShVal, ShAmt);
6883  if (isShift && ShVal.hasOneUse()) {
6884    // If the shifted value has multiple uses, it may be cheaper to use
6885    // v_set0 + movlhps or movhlps, etc.
6886    MVT EltVT = VT.getVectorElementType();
6887    ShAmt *= EltVT.getSizeInBits();
6888    return getVShift(isLeft, VT, ShVal, ShAmt, DAG, *this, dl);
6889  }
6890
6891  if (isMOVLMask(M, VT)) {
6892    if (ISD::isBuildVectorAllZeros(V1.getNode()))
6893      return getVZextMovL(VT, VT, V2, DAG, Subtarget, dl);
6894    if (!isMOVLPMask(M, VT)) {
6895      if (HasSSE2 && (VT == MVT::v2i64 || VT == MVT::v2f64))
6896        return getTargetShuffleNode(X86ISD::MOVSD, dl, VT, V1, V2, DAG);
6897
6898      if (VT == MVT::v4i32 || VT == MVT::v4f32)
6899        return getTargetShuffleNode(X86ISD::MOVSS, dl, VT, V1, V2, DAG);
6900    }
6901  }
6902
6903  // FIXME: fold these into legal mask.
6904  if (isMOVLHPSMask(M, VT) && !isUNPCKLMask(M, VT, HasInt256))
6905    return getMOVLowToHigh(Op, dl, DAG, HasSSE2);
6906
6907  if (isMOVHLPSMask(M, VT))
6908    return getMOVHighToLow(Op, dl, DAG);
6909
6910  if (V2IsUndef && isMOVSHDUPMask(M, VT, Subtarget))
6911    return getTargetShuffleNode(X86ISD::MOVSHDUP, dl, VT, V1, DAG);
6912
6913  if (V2IsUndef && isMOVSLDUPMask(M, VT, Subtarget))
6914    return getTargetShuffleNode(X86ISD::MOVSLDUP, dl, VT, V1, DAG);
6915
6916  if (isMOVLPMask(M, VT))
6917    return getMOVLP(Op, dl, DAG, HasSSE2);
6918
6919  if (ShouldXformToMOVHLPS(M, VT) ||
6920      ShouldXformToMOVLP(V1.getNode(), V2.getNode(), M, VT))
6921    return CommuteVectorShuffle(SVOp, DAG);
6922
6923  if (isShift) {
6924    // No better options. Use a vshldq / vsrldq.
6925    MVT EltVT = VT.getVectorElementType();
6926    ShAmt *= EltVT.getSizeInBits();
6927    return getVShift(isLeft, VT, ShVal, ShAmt, DAG, *this, dl);
6928  }
6929
6930  bool Commuted = false;
6931  // FIXME: This should also accept a bitcast of a splat?  Be careful, not
6932  // 1,1,1,1 -> v8i16 though.
6933  V1IsSplat = isSplatVector(V1.getNode());
6934  V2IsSplat = isSplatVector(V2.getNode());
6935
6936  // Canonicalize the splat or undef, if present, to be on the RHS.
6937  if (!V2IsUndef && V1IsSplat && !V2IsSplat) {
6938    CommuteVectorShuffleMask(M, NumElems);
6939    std::swap(V1, V2);
6940    std::swap(V1IsSplat, V2IsSplat);
6941    Commuted = true;
6942  }
6943
6944  if (isCommutedMOVLMask(M, VT, V2IsSplat, V2IsUndef)) {
6945    // Shuffling low element of v1 into undef, just return v1.
6946    if (V2IsUndef)
6947      return V1;
6948    // If V2 is a splat, the mask may be malformed such as <4,3,3,3>, which
6949    // the instruction selector will not match, so get a canonical MOVL with
6950    // swapped operands to undo the commute.
6951    return getMOVL(DAG, dl, VT, V2, V1);
6952  }
6953
6954  if (isUNPCKLMask(M, VT, HasInt256))
6955    return getTargetShuffleNode(X86ISD::UNPCKL, dl, VT, V1, V2, DAG);
6956
6957  if (isUNPCKHMask(M, VT, HasInt256))
6958    return getTargetShuffleNode(X86ISD::UNPCKH, dl, VT, V1, V2, DAG);
6959
6960  if (V2IsSplat) {
6961    // Normalize mask so all entries that point to V2 points to its first
6962    // element then try to match unpck{h|l} again. If match, return a
6963    // new vector_shuffle with the corrected mask.p
6964    SmallVector<int, 8> NewMask(M.begin(), M.end());
6965    NormalizeMask(NewMask, NumElems);
6966    if (isUNPCKLMask(NewMask, VT, HasInt256, true))
6967      return getTargetShuffleNode(X86ISD::UNPCKL, dl, VT, V1, V2, DAG);
6968    if (isUNPCKHMask(NewMask, VT, HasInt256, true))
6969      return getTargetShuffleNode(X86ISD::UNPCKH, dl, VT, V1, V2, DAG);
6970  }
6971
6972  if (Commuted) {
6973    // Commute is back and try unpck* again.
6974    // FIXME: this seems wrong.
6975    CommuteVectorShuffleMask(M, NumElems);
6976    std::swap(V1, V2);
6977    std::swap(V1IsSplat, V2IsSplat);
6978    Commuted = false;
6979
6980    if (isUNPCKLMask(M, VT, HasInt256))
6981      return getTargetShuffleNode(X86ISD::UNPCKL, dl, VT, V1, V2, DAG);
6982
6983    if (isUNPCKHMask(M, VT, HasInt256))
6984      return getTargetShuffleNode(X86ISD::UNPCKH, dl, VT, V1, V2, DAG);
6985  }
6986
6987  // Normalize the node to match x86 shuffle ops if needed
6988  if (!V2IsUndef && (isSHUFPMask(M, VT, HasFp256, /* Commuted */ true)))
6989    return CommuteVectorShuffle(SVOp, DAG);
6990
6991  // The checks below are all present in isShuffleMaskLegal, but they are
6992  // inlined here right now to enable us to directly emit target specific
6993  // nodes, and remove one by one until they don't return Op anymore.
6994
6995  if (isPALIGNRMask(M, VT, Subtarget))
6996    return getTargetShuffleNode(X86ISD::PALIGNR, dl, VT, V1, V2,
6997                                getShufflePALIGNRImmediate(SVOp),
6998                                DAG);
6999
7000  if (ShuffleVectorSDNode::isSplatMask(&M[0], VT) &&
7001      SVOp->getSplatIndex() == 0 && V2IsUndef) {
7002    if (VT == MVT::v2f64 || VT == MVT::v2i64)
7003      return getTargetShuffleNode(X86ISD::UNPCKL, dl, VT, V1, V1, DAG);
7004  }
7005
7006  if (isPSHUFHWMask(M, VT, HasInt256))
7007    return getTargetShuffleNode(X86ISD::PSHUFHW, dl, VT, V1,
7008                                getShufflePSHUFHWImmediate(SVOp),
7009                                DAG);
7010
7011  if (isPSHUFLWMask(M, VT, HasInt256))
7012    return getTargetShuffleNode(X86ISD::PSHUFLW, dl, VT, V1,
7013                                getShufflePSHUFLWImmediate(SVOp),
7014                                DAG);
7015
7016  if (isSHUFPMask(M, VT, HasFp256))
7017    return getTargetShuffleNode(X86ISD::SHUFP, dl, VT, V1, V2,
7018                                getShuffleSHUFImmediate(SVOp), DAG);
7019
7020  if (isUNPCKL_v_undef_Mask(M, VT, HasInt256))
7021    return getTargetShuffleNode(X86ISD::UNPCKL, dl, VT, V1, V1, DAG);
7022  if (isUNPCKH_v_undef_Mask(M, VT, HasInt256))
7023    return getTargetShuffleNode(X86ISD::UNPCKH, dl, VT, V1, V1, DAG);
7024
7025  //===--------------------------------------------------------------------===//
7026  // Generate target specific nodes for 128 or 256-bit shuffles only
7027  // supported in the AVX instruction set.
7028  //
7029
7030  // Handle VMOVDDUPY permutations
7031  if (V2IsUndef && isMOVDDUPYMask(M, VT, HasFp256))
7032    return getTargetShuffleNode(X86ISD::MOVDDUP, dl, VT, V1, DAG);
7033
7034  // Handle VPERMILPS/D* permutations
7035  if (isVPERMILPMask(M, VT, HasFp256)) {
7036    if (HasInt256 && VT == MVT::v8i32)
7037      return getTargetShuffleNode(X86ISD::PSHUFD, dl, VT, V1,
7038                                  getShuffleSHUFImmediate(SVOp), DAG);
7039    return getTargetShuffleNode(X86ISD::VPERMILP, dl, VT, V1,
7040                                getShuffleSHUFImmediate(SVOp), DAG);
7041  }
7042
7043  // Handle VPERM2F128/VPERM2I128 permutations
7044  if (isVPERM2X128Mask(M, VT, HasFp256))
7045    return getTargetShuffleNode(X86ISD::VPERM2X128, dl, VT, V1,
7046                                V2, getShuffleVPERM2X128Immediate(SVOp), DAG);
7047
7048  SDValue BlendOp = LowerVECTOR_SHUFFLEtoBlend(SVOp, Subtarget, DAG);
7049  if (BlendOp.getNode())
7050    return BlendOp;
7051
7052  if (V2IsUndef && HasInt256 && (VT == MVT::v8i32 || VT == MVT::v8f32)) {
7053    SmallVector<SDValue, 8> permclMask;
7054    for (unsigned i = 0; i != 8; ++i) {
7055      permclMask.push_back(DAG.getConstant((M[i]>=0) ? M[i] : 0, MVT::i32));
7056    }
7057    SDValue Mask = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v8i32,
7058                               &permclMask[0], 8);
7059    // Bitcast is for VPERMPS since mask is v8i32 but node takes v8f32
7060    return DAG.getNode(X86ISD::VPERMV, dl, VT,
7061                       DAG.getNode(ISD::BITCAST, dl, VT, Mask), V1);
7062  }
7063
7064  if (V2IsUndef && HasInt256 && (VT == MVT::v4i64 || VT == MVT::v4f64))
7065    return getTargetShuffleNode(X86ISD::VPERMI, dl, VT, V1,
7066                                getShuffleCLImmediate(SVOp), DAG);
7067
7068  //===--------------------------------------------------------------------===//
7069  // Since no target specific shuffle was selected for this generic one,
7070  // lower it into other known shuffles. FIXME: this isn't true yet, but
7071  // this is the plan.
7072  //
7073
7074  // Handle v8i16 specifically since SSE can do byte extraction and insertion.
7075  if (VT == MVT::v8i16) {
7076    SDValue NewOp = LowerVECTOR_SHUFFLEv8i16(Op, Subtarget, DAG);
7077    if (NewOp.getNode())
7078      return NewOp;
7079  }
7080
7081  if (VT == MVT::v16i8) {
7082    SDValue NewOp = LowerVECTOR_SHUFFLEv16i8(SVOp, DAG, *this);
7083    if (NewOp.getNode())
7084      return NewOp;
7085  }
7086
7087  if (VT == MVT::v32i8) {
7088    SDValue NewOp = LowerVECTOR_SHUFFLEv32i8(SVOp, Subtarget, DAG);
7089    if (NewOp.getNode())
7090      return NewOp;
7091  }
7092
7093  // Handle all 128-bit wide vectors with 4 elements, and match them with
7094  // several different shuffle types.
7095  if (NumElems == 4 && VT.is128BitVector())
7096    return LowerVECTOR_SHUFFLE_128v4(SVOp, DAG);
7097
7098  // Handle general 256-bit shuffles
7099  if (VT.is256BitVector())
7100    return LowerVECTOR_SHUFFLE_256(SVOp, DAG);
7101
7102  return SDValue();
7103}
7104
7105static SDValue LowerEXTRACT_VECTOR_ELT_SSE4(SDValue Op, SelectionDAG &DAG) {
7106  MVT VT = Op.getValueType().getSimpleVT();
7107  DebugLoc dl = Op.getDebugLoc();
7108
7109  if (!Op.getOperand(0).getValueType().getSimpleVT().is128BitVector())
7110    return SDValue();
7111
7112  if (VT.getSizeInBits() == 8) {
7113    SDValue Extract = DAG.getNode(X86ISD::PEXTRB, dl, MVT::i32,
7114                                  Op.getOperand(0), Op.getOperand(1));
7115    SDValue Assert  = DAG.getNode(ISD::AssertZext, dl, MVT::i32, Extract,
7116                                  DAG.getValueType(VT));
7117    return DAG.getNode(ISD::TRUNCATE, dl, VT, Assert);
7118  }
7119
7120  if (VT.getSizeInBits() == 16) {
7121    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
7122    // If Idx is 0, it's cheaper to do a move instead of a pextrw.
7123    if (Idx == 0)
7124      return DAG.getNode(ISD::TRUNCATE, dl, MVT::i16,
7125                         DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32,
7126                                     DAG.getNode(ISD::BITCAST, dl,
7127                                                 MVT::v4i32,
7128                                                 Op.getOperand(0)),
7129                                     Op.getOperand(1)));
7130    SDValue Extract = DAG.getNode(X86ISD::PEXTRW, dl, MVT::i32,
7131                                  Op.getOperand(0), Op.getOperand(1));
7132    SDValue Assert  = DAG.getNode(ISD::AssertZext, dl, MVT::i32, Extract,
7133                                  DAG.getValueType(VT));
7134    return DAG.getNode(ISD::TRUNCATE, dl, VT, Assert);
7135  }
7136
7137  if (VT == MVT::f32) {
7138    // EXTRACTPS outputs to a GPR32 register which will require a movd to copy
7139    // the result back to FR32 register. It's only worth matching if the
7140    // result has a single use which is a store or a bitcast to i32.  And in
7141    // the case of a store, it's not worth it if the index is a constant 0,
7142    // because a MOVSSmr can be used instead, which is smaller and faster.
7143    if (!Op.hasOneUse())
7144      return SDValue();
7145    SDNode *User = *Op.getNode()->use_begin();
7146    if ((User->getOpcode() != ISD::STORE ||
7147         (isa<ConstantSDNode>(Op.getOperand(1)) &&
7148          cast<ConstantSDNode>(Op.getOperand(1))->isNullValue())) &&
7149        (User->getOpcode() != ISD::BITCAST ||
7150         User->getValueType(0) != MVT::i32))
7151      return SDValue();
7152    SDValue Extract = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32,
7153                                  DAG.getNode(ISD::BITCAST, dl, MVT::v4i32,
7154                                              Op.getOperand(0)),
7155                                              Op.getOperand(1));
7156    return DAG.getNode(ISD::BITCAST, dl, MVT::f32, Extract);
7157  }
7158
7159  if (VT == MVT::i32 || VT == MVT::i64) {
7160    // ExtractPS/pextrq works with constant index.
7161    if (isa<ConstantSDNode>(Op.getOperand(1)))
7162      return Op;
7163  }
7164  return SDValue();
7165}
7166
7167SDValue
7168X86TargetLowering::LowerEXTRACT_VECTOR_ELT(SDValue Op,
7169                                           SelectionDAG &DAG) const {
7170  if (!isa<ConstantSDNode>(Op.getOperand(1)))
7171    return SDValue();
7172
7173  SDValue Vec = Op.getOperand(0);
7174  MVT VecVT = Vec.getValueType().getSimpleVT();
7175
7176  // If this is a 256-bit vector result, first extract the 128-bit vector and
7177  // then extract the element from the 128-bit vector.
7178  if (VecVT.is256BitVector()) {
7179    DebugLoc dl = Op.getNode()->getDebugLoc();
7180    unsigned NumElems = VecVT.getVectorNumElements();
7181    SDValue Idx = Op.getOperand(1);
7182    unsigned IdxVal = cast<ConstantSDNode>(Idx)->getZExtValue();
7183
7184    // Get the 128-bit vector.
7185    Vec = Extract128BitVector(Vec, IdxVal, DAG, dl);
7186
7187    if (IdxVal >= NumElems/2)
7188      IdxVal -= NumElems/2;
7189    return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, Op.getValueType(), Vec,
7190                       DAG.getConstant(IdxVal, MVT::i32));
7191  }
7192
7193  assert(VecVT.is128BitVector() && "Unexpected vector length");
7194
7195  if (Subtarget->hasSSE41()) {
7196    SDValue Res = LowerEXTRACT_VECTOR_ELT_SSE4(Op, DAG);
7197    if (Res.getNode())
7198      return Res;
7199  }
7200
7201  MVT VT = Op.getValueType().getSimpleVT();
7202  DebugLoc dl = Op.getDebugLoc();
7203  // TODO: handle v16i8.
7204  if (VT.getSizeInBits() == 16) {
7205    SDValue Vec = Op.getOperand(0);
7206    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
7207    if (Idx == 0)
7208      return DAG.getNode(ISD::TRUNCATE, dl, MVT::i16,
7209                         DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32,
7210                                     DAG.getNode(ISD::BITCAST, dl,
7211                                                 MVT::v4i32, Vec),
7212                                     Op.getOperand(1)));
7213    // Transform it so it match pextrw which produces a 32-bit result.
7214    MVT EltVT = MVT::i32;
7215    SDValue Extract = DAG.getNode(X86ISD::PEXTRW, dl, EltVT,
7216                                  Op.getOperand(0), Op.getOperand(1));
7217    SDValue Assert  = DAG.getNode(ISD::AssertZext, dl, EltVT, Extract,
7218                                  DAG.getValueType(VT));
7219    return DAG.getNode(ISD::TRUNCATE, dl, VT, Assert);
7220  }
7221
7222  if (VT.getSizeInBits() == 32) {
7223    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
7224    if (Idx == 0)
7225      return Op;
7226
7227    // SHUFPS the element to the lowest double word, then movss.
7228    int Mask[4] = { static_cast<int>(Idx), -1, -1, -1 };
7229    MVT VVT = Op.getOperand(0).getValueType().getSimpleVT();
7230    SDValue Vec = DAG.getVectorShuffle(VVT, dl, Op.getOperand(0),
7231                                       DAG.getUNDEF(VVT), Mask);
7232    return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, VT, Vec,
7233                       DAG.getIntPtrConstant(0));
7234  }
7235
7236  if (VT.getSizeInBits() == 64) {
7237    // FIXME: .td only matches this for <2 x f64>, not <2 x i64> on 32b
7238    // FIXME: seems like this should be unnecessary if mov{h,l}pd were taught
7239    //        to match extract_elt for f64.
7240    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
7241    if (Idx == 0)
7242      return Op;
7243
7244    // UNPCKHPD the element to the lowest double word, then movsd.
7245    // Note if the lower 64 bits of the result of the UNPCKHPD is then stored
7246    // to a f64mem, the whole operation is folded into a single MOVHPDmr.
7247    int Mask[2] = { 1, -1 };
7248    MVT VVT = Op.getOperand(0).getValueType().getSimpleVT();
7249    SDValue Vec = DAG.getVectorShuffle(VVT, dl, Op.getOperand(0),
7250                                       DAG.getUNDEF(VVT), Mask);
7251    return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, VT, Vec,
7252                       DAG.getIntPtrConstant(0));
7253  }
7254
7255  return SDValue();
7256}
7257
7258static SDValue LowerINSERT_VECTOR_ELT_SSE4(SDValue Op, SelectionDAG &DAG) {
7259  MVT VT = Op.getValueType().getSimpleVT();
7260  MVT EltVT = VT.getVectorElementType();
7261  DebugLoc dl = Op.getDebugLoc();
7262
7263  SDValue N0 = Op.getOperand(0);
7264  SDValue N1 = Op.getOperand(1);
7265  SDValue N2 = Op.getOperand(2);
7266
7267  if (!VT.is128BitVector())
7268    return SDValue();
7269
7270  if ((EltVT.getSizeInBits() == 8 || EltVT.getSizeInBits() == 16) &&
7271      isa<ConstantSDNode>(N2)) {
7272    unsigned Opc;
7273    if (VT == MVT::v8i16)
7274      Opc = X86ISD::PINSRW;
7275    else if (VT == MVT::v16i8)
7276      Opc = X86ISD::PINSRB;
7277    else
7278      Opc = X86ISD::PINSRB;
7279
7280    // Transform it so it match pinsr{b,w} which expects a GR32 as its second
7281    // argument.
7282    if (N1.getValueType() != MVT::i32)
7283      N1 = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, N1);
7284    if (N2.getValueType() != MVT::i32)
7285      N2 = DAG.getIntPtrConstant(cast<ConstantSDNode>(N2)->getZExtValue());
7286    return DAG.getNode(Opc, dl, VT, N0, N1, N2);
7287  }
7288
7289  if (EltVT == MVT::f32 && isa<ConstantSDNode>(N2)) {
7290    // Bits [7:6] of the constant are the source select.  This will always be
7291    //  zero here.  The DAG Combiner may combine an extract_elt index into these
7292    //  bits.  For example (insert (extract, 3), 2) could be matched by putting
7293    //  the '3' into bits [7:6] of X86ISD::INSERTPS.
7294    // Bits [5:4] of the constant are the destination select.  This is the
7295    //  value of the incoming immediate.
7296    // Bits [3:0] of the constant are the zero mask.  The DAG Combiner may
7297    //   combine either bitwise AND or insert of float 0.0 to set these bits.
7298    N2 = DAG.getIntPtrConstant(cast<ConstantSDNode>(N2)->getZExtValue() << 4);
7299    // Create this as a scalar to vector..
7300    N1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4f32, N1);
7301    return DAG.getNode(X86ISD::INSERTPS, dl, VT, N0, N1, N2);
7302  }
7303
7304  if ((EltVT == MVT::i32 || EltVT == MVT::i64) && isa<ConstantSDNode>(N2)) {
7305    // PINSR* works with constant index.
7306    return Op;
7307  }
7308  return SDValue();
7309}
7310
7311SDValue
7312X86TargetLowering::LowerINSERT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) const {
7313  MVT VT = Op.getValueType().getSimpleVT();
7314  MVT EltVT = VT.getVectorElementType();
7315
7316  DebugLoc dl = Op.getDebugLoc();
7317  SDValue N0 = Op.getOperand(0);
7318  SDValue N1 = Op.getOperand(1);
7319  SDValue N2 = Op.getOperand(2);
7320
7321  // If this is a 256-bit vector result, first extract the 128-bit vector,
7322  // insert the element into the extracted half and then place it back.
7323  if (VT.is256BitVector()) {
7324    if (!isa<ConstantSDNode>(N2))
7325      return SDValue();
7326
7327    // Get the desired 128-bit vector half.
7328    unsigned NumElems = VT.getVectorNumElements();
7329    unsigned IdxVal = cast<ConstantSDNode>(N2)->getZExtValue();
7330    SDValue V = Extract128BitVector(N0, IdxVal, DAG, dl);
7331
7332    // Insert the element into the desired half.
7333    bool Upper = IdxVal >= NumElems/2;
7334    V = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, V.getValueType(), V, N1,
7335                 DAG.getConstant(Upper ? IdxVal-NumElems/2 : IdxVal, MVT::i32));
7336
7337    // Insert the changed part back to the 256-bit vector
7338    return Insert128BitVector(N0, V, IdxVal, DAG, dl);
7339  }
7340
7341  if (Subtarget->hasSSE41())
7342    return LowerINSERT_VECTOR_ELT_SSE4(Op, DAG);
7343
7344  if (EltVT == MVT::i8)
7345    return SDValue();
7346
7347  if (EltVT.getSizeInBits() == 16 && isa<ConstantSDNode>(N2)) {
7348    // Transform it so it match pinsrw which expects a 16-bit value in a GR32
7349    // as its second argument.
7350    if (N1.getValueType() != MVT::i32)
7351      N1 = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, N1);
7352    if (N2.getValueType() != MVT::i32)
7353      N2 = DAG.getIntPtrConstant(cast<ConstantSDNode>(N2)->getZExtValue());
7354    return DAG.getNode(X86ISD::PINSRW, dl, VT, N0, N1, N2);
7355  }
7356  return SDValue();
7357}
7358
7359static SDValue LowerSCALAR_TO_VECTOR(SDValue Op, SelectionDAG &DAG) {
7360  LLVMContext *Context = DAG.getContext();
7361  DebugLoc dl = Op.getDebugLoc();
7362  MVT OpVT = Op.getValueType().getSimpleVT();
7363
7364  // If this is a 256-bit vector result, first insert into a 128-bit
7365  // vector and then insert into the 256-bit vector.
7366  if (!OpVT.is128BitVector()) {
7367    // Insert into a 128-bit vector.
7368    EVT VT128 = EVT::getVectorVT(*Context,
7369                                 OpVT.getVectorElementType(),
7370                                 OpVT.getVectorNumElements() / 2);
7371
7372    Op = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT128, Op.getOperand(0));
7373
7374    // Insert the 128-bit vector.
7375    return Insert128BitVector(DAG.getUNDEF(OpVT), Op, 0, DAG, dl);
7376  }
7377
7378  if (OpVT == MVT::v1i64 &&
7379      Op.getOperand(0).getValueType() == MVT::i64)
7380    return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v1i64, Op.getOperand(0));
7381
7382  SDValue AnyExt = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, Op.getOperand(0));
7383  assert(OpVT.is128BitVector() && "Expected an SSE type!");
7384  return DAG.getNode(ISD::BITCAST, dl, OpVT,
7385                     DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32,AnyExt));
7386}
7387
7388// Lower a node with an EXTRACT_SUBVECTOR opcode.  This may result in
7389// a simple subregister reference or explicit instructions to grab
7390// upper bits of a vector.
7391static SDValue LowerEXTRACT_SUBVECTOR(SDValue Op, const X86Subtarget *Subtarget,
7392                                      SelectionDAG &DAG) {
7393  if (Subtarget->hasFp256()) {
7394    DebugLoc dl = Op.getNode()->getDebugLoc();
7395    SDValue Vec = Op.getNode()->getOperand(0);
7396    SDValue Idx = Op.getNode()->getOperand(1);
7397
7398    if (Op.getNode()->getValueType(0).is128BitVector() &&
7399        Vec.getNode()->getValueType(0).is256BitVector() &&
7400        isa<ConstantSDNode>(Idx)) {
7401      unsigned IdxVal = cast<ConstantSDNode>(Idx)->getZExtValue();
7402      return Extract128BitVector(Vec, IdxVal, DAG, dl);
7403    }
7404  }
7405  return SDValue();
7406}
7407
7408// Lower a node with an INSERT_SUBVECTOR opcode.  This may result in a
7409// simple superregister reference or explicit instructions to insert
7410// the upper bits of a vector.
7411static SDValue LowerINSERT_SUBVECTOR(SDValue Op, const X86Subtarget *Subtarget,
7412                                     SelectionDAG &DAG) {
7413  if (Subtarget->hasFp256()) {
7414    DebugLoc dl = Op.getNode()->getDebugLoc();
7415    SDValue Vec = Op.getNode()->getOperand(0);
7416    SDValue SubVec = Op.getNode()->getOperand(1);
7417    SDValue Idx = Op.getNode()->getOperand(2);
7418
7419    if (Op.getNode()->getValueType(0).is256BitVector() &&
7420        SubVec.getNode()->getValueType(0).is128BitVector() &&
7421        isa<ConstantSDNode>(Idx)) {
7422      unsigned IdxVal = cast<ConstantSDNode>(Idx)->getZExtValue();
7423      return Insert128BitVector(Vec, SubVec, IdxVal, DAG, dl);
7424    }
7425  }
7426  return SDValue();
7427}
7428
7429// ConstantPool, JumpTable, GlobalAddress, and ExternalSymbol are lowered as
7430// their target countpart wrapped in the X86ISD::Wrapper node. Suppose N is
7431// one of the above mentioned nodes. It has to be wrapped because otherwise
7432// Select(N) returns N. So the raw TargetGlobalAddress nodes, etc. can only
7433// be used to form addressing mode. These wrapped nodes will be selected
7434// into MOV32ri.
7435SDValue
7436X86TargetLowering::LowerConstantPool(SDValue Op, SelectionDAG &DAG) const {
7437  ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
7438
7439  // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
7440  // global base reg.
7441  unsigned char OpFlag = 0;
7442  unsigned WrapperKind = X86ISD::Wrapper;
7443  CodeModel::Model M = getTargetMachine().getCodeModel();
7444
7445  if (Subtarget->isPICStyleRIPRel() &&
7446      (M == CodeModel::Small || M == CodeModel::Kernel))
7447    WrapperKind = X86ISD::WrapperRIP;
7448  else if (Subtarget->isPICStyleGOT())
7449    OpFlag = X86II::MO_GOTOFF;
7450  else if (Subtarget->isPICStyleStubPIC())
7451    OpFlag = X86II::MO_PIC_BASE_OFFSET;
7452
7453  SDValue Result = DAG.getTargetConstantPool(CP->getConstVal(), getPointerTy(),
7454                                             CP->getAlignment(),
7455                                             CP->getOffset(), OpFlag);
7456  DebugLoc DL = CP->getDebugLoc();
7457  Result = DAG.getNode(WrapperKind, DL, getPointerTy(), Result);
7458  // With PIC, the address is actually $g + Offset.
7459  if (OpFlag) {
7460    Result = DAG.getNode(ISD::ADD, DL, getPointerTy(),
7461                         DAG.getNode(X86ISD::GlobalBaseReg,
7462                                     DebugLoc(), getPointerTy()),
7463                         Result);
7464  }
7465
7466  return Result;
7467}
7468
7469SDValue X86TargetLowering::LowerJumpTable(SDValue Op, SelectionDAG &DAG) const {
7470  JumpTableSDNode *JT = cast<JumpTableSDNode>(Op);
7471
7472  // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
7473  // global base reg.
7474  unsigned char OpFlag = 0;
7475  unsigned WrapperKind = X86ISD::Wrapper;
7476  CodeModel::Model M = getTargetMachine().getCodeModel();
7477
7478  if (Subtarget->isPICStyleRIPRel() &&
7479      (M == CodeModel::Small || M == CodeModel::Kernel))
7480    WrapperKind = X86ISD::WrapperRIP;
7481  else if (Subtarget->isPICStyleGOT())
7482    OpFlag = X86II::MO_GOTOFF;
7483  else if (Subtarget->isPICStyleStubPIC())
7484    OpFlag = X86II::MO_PIC_BASE_OFFSET;
7485
7486  SDValue Result = DAG.getTargetJumpTable(JT->getIndex(), getPointerTy(),
7487                                          OpFlag);
7488  DebugLoc DL = JT->getDebugLoc();
7489  Result = DAG.getNode(WrapperKind, DL, getPointerTy(), Result);
7490
7491  // With PIC, the address is actually $g + Offset.
7492  if (OpFlag)
7493    Result = DAG.getNode(ISD::ADD, DL, getPointerTy(),
7494                         DAG.getNode(X86ISD::GlobalBaseReg,
7495                                     DebugLoc(), getPointerTy()),
7496                         Result);
7497
7498  return Result;
7499}
7500
7501SDValue
7502X86TargetLowering::LowerExternalSymbol(SDValue Op, SelectionDAG &DAG) const {
7503  const char *Sym = cast<ExternalSymbolSDNode>(Op)->getSymbol();
7504
7505  // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
7506  // global base reg.
7507  unsigned char OpFlag = 0;
7508  unsigned WrapperKind = X86ISD::Wrapper;
7509  CodeModel::Model M = getTargetMachine().getCodeModel();
7510
7511  if (Subtarget->isPICStyleRIPRel() &&
7512      (M == CodeModel::Small || M == CodeModel::Kernel)) {
7513    if (Subtarget->isTargetDarwin() || Subtarget->isTargetELF())
7514      OpFlag = X86II::MO_GOTPCREL;
7515    WrapperKind = X86ISD::WrapperRIP;
7516  } else if (Subtarget->isPICStyleGOT()) {
7517    OpFlag = X86II::MO_GOT;
7518  } else if (Subtarget->isPICStyleStubPIC()) {
7519    OpFlag = X86II::MO_DARWIN_NONLAZY_PIC_BASE;
7520  } else if (Subtarget->isPICStyleStubNoDynamic()) {
7521    OpFlag = X86II::MO_DARWIN_NONLAZY;
7522  }
7523
7524  SDValue Result = DAG.getTargetExternalSymbol(Sym, getPointerTy(), OpFlag);
7525
7526  DebugLoc DL = Op.getDebugLoc();
7527  Result = DAG.getNode(WrapperKind, DL, getPointerTy(), Result);
7528
7529  // With PIC, the address is actually $g + Offset.
7530  if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
7531      !Subtarget->is64Bit()) {
7532    Result = DAG.getNode(ISD::ADD, DL, getPointerTy(),
7533                         DAG.getNode(X86ISD::GlobalBaseReg,
7534                                     DebugLoc(), getPointerTy()),
7535                         Result);
7536  }
7537
7538  // For symbols that require a load from a stub to get the address, emit the
7539  // load.
7540  if (isGlobalStubReference(OpFlag))
7541    Result = DAG.getLoad(getPointerTy(), DL, DAG.getEntryNode(), Result,
7542                         MachinePointerInfo::getGOT(), false, false, false, 0);
7543
7544  return Result;
7545}
7546
7547SDValue
7548X86TargetLowering::LowerBlockAddress(SDValue Op, SelectionDAG &DAG) const {
7549  // Create the TargetBlockAddressAddress node.
7550  unsigned char OpFlags =
7551    Subtarget->ClassifyBlockAddressReference();
7552  CodeModel::Model M = getTargetMachine().getCodeModel();
7553  const BlockAddress *BA = cast<BlockAddressSDNode>(Op)->getBlockAddress();
7554  int64_t Offset = cast<BlockAddressSDNode>(Op)->getOffset();
7555  DebugLoc dl = Op.getDebugLoc();
7556  SDValue Result = DAG.getTargetBlockAddress(BA, getPointerTy(), Offset,
7557                                             OpFlags);
7558
7559  if (Subtarget->isPICStyleRIPRel() &&
7560      (M == CodeModel::Small || M == CodeModel::Kernel))
7561    Result = DAG.getNode(X86ISD::WrapperRIP, dl, getPointerTy(), Result);
7562  else
7563    Result = DAG.getNode(X86ISD::Wrapper, dl, getPointerTy(), Result);
7564
7565  // With PIC, the address is actually $g + Offset.
7566  if (isGlobalRelativeToPICBase(OpFlags)) {
7567    Result = DAG.getNode(ISD::ADD, dl, getPointerTy(),
7568                         DAG.getNode(X86ISD::GlobalBaseReg, dl, getPointerTy()),
7569                         Result);
7570  }
7571
7572  return Result;
7573}
7574
7575SDValue
7576X86TargetLowering::LowerGlobalAddress(const GlobalValue *GV, DebugLoc dl,
7577                                      int64_t Offset, SelectionDAG &DAG) const {
7578  // Create the TargetGlobalAddress node, folding in the constant
7579  // offset if it is legal.
7580  unsigned char OpFlags =
7581    Subtarget->ClassifyGlobalReference(GV, getTargetMachine());
7582  CodeModel::Model M = getTargetMachine().getCodeModel();
7583  SDValue Result;
7584  if (OpFlags == X86II::MO_NO_FLAG &&
7585      X86::isOffsetSuitableForCodeModel(Offset, M)) {
7586    // A direct static reference to a global.
7587    Result = DAG.getTargetGlobalAddress(GV, dl, getPointerTy(), Offset);
7588    Offset = 0;
7589  } else {
7590    Result = DAG.getTargetGlobalAddress(GV, dl, getPointerTy(), 0, OpFlags);
7591  }
7592
7593  if (Subtarget->isPICStyleRIPRel() &&
7594      (M == CodeModel::Small || M == CodeModel::Kernel))
7595    Result = DAG.getNode(X86ISD::WrapperRIP, dl, getPointerTy(), Result);
7596  else
7597    Result = DAG.getNode(X86ISD::Wrapper, dl, getPointerTy(), Result);
7598
7599  // With PIC, the address is actually $g + Offset.
7600  if (isGlobalRelativeToPICBase(OpFlags)) {
7601    Result = DAG.getNode(ISD::ADD, dl, getPointerTy(),
7602                         DAG.getNode(X86ISD::GlobalBaseReg, dl, getPointerTy()),
7603                         Result);
7604  }
7605
7606  // For globals that require a load from a stub to get the address, emit the
7607  // load.
7608  if (isGlobalStubReference(OpFlags))
7609    Result = DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(), Result,
7610                         MachinePointerInfo::getGOT(), false, false, false, 0);
7611
7612  // If there was a non-zero offset that we didn't fold, create an explicit
7613  // addition for it.
7614  if (Offset != 0)
7615    Result = DAG.getNode(ISD::ADD, dl, getPointerTy(), Result,
7616                         DAG.getConstant(Offset, getPointerTy()));
7617
7618  return Result;
7619}
7620
7621SDValue
7622X86TargetLowering::LowerGlobalAddress(SDValue Op, SelectionDAG &DAG) const {
7623  const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
7624  int64_t Offset = cast<GlobalAddressSDNode>(Op)->getOffset();
7625  return LowerGlobalAddress(GV, Op.getDebugLoc(), Offset, DAG);
7626}
7627
7628static SDValue
7629GetTLSADDR(SelectionDAG &DAG, SDValue Chain, GlobalAddressSDNode *GA,
7630           SDValue *InFlag, const EVT PtrVT, unsigned ReturnReg,
7631           unsigned char OperandFlags, bool LocalDynamic = false) {
7632  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
7633  SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
7634  DebugLoc dl = GA->getDebugLoc();
7635  SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(), dl,
7636                                           GA->getValueType(0),
7637                                           GA->getOffset(),
7638                                           OperandFlags);
7639
7640  X86ISD::NodeType CallType = LocalDynamic ? X86ISD::TLSBASEADDR
7641                                           : X86ISD::TLSADDR;
7642
7643  if (InFlag) {
7644    SDValue Ops[] = { Chain,  TGA, *InFlag };
7645    Chain = DAG.getNode(CallType, dl, NodeTys, Ops, array_lengthof(Ops));
7646  } else {
7647    SDValue Ops[]  = { Chain, TGA };
7648    Chain = DAG.getNode(CallType, dl, NodeTys, Ops, array_lengthof(Ops));
7649  }
7650
7651  // TLSADDR will be codegen'ed as call. Inform MFI that function has calls.
7652  MFI->setAdjustsStack(true);
7653
7654  SDValue Flag = Chain.getValue(1);
7655  return DAG.getCopyFromReg(Chain, dl, ReturnReg, PtrVT, Flag);
7656}
7657
7658// Lower ISD::GlobalTLSAddress using the "general dynamic" model, 32 bit
7659static SDValue
7660LowerToTLSGeneralDynamicModel32(GlobalAddressSDNode *GA, SelectionDAG &DAG,
7661                                const EVT PtrVT) {
7662  SDValue InFlag;
7663  DebugLoc dl = GA->getDebugLoc();  // ? function entry point might be better
7664  SDValue Chain = DAG.getCopyToReg(DAG.getEntryNode(), dl, X86::EBX,
7665                                   DAG.getNode(X86ISD::GlobalBaseReg,
7666                                               DebugLoc(), PtrVT), InFlag);
7667  InFlag = Chain.getValue(1);
7668
7669  return GetTLSADDR(DAG, Chain, GA, &InFlag, PtrVT, X86::EAX, X86II::MO_TLSGD);
7670}
7671
7672// Lower ISD::GlobalTLSAddress using the "general dynamic" model, 64 bit
7673static SDValue
7674LowerToTLSGeneralDynamicModel64(GlobalAddressSDNode *GA, SelectionDAG &DAG,
7675                                const EVT PtrVT) {
7676  return GetTLSADDR(DAG, DAG.getEntryNode(), GA, NULL, PtrVT,
7677                    X86::RAX, X86II::MO_TLSGD);
7678}
7679
7680static SDValue LowerToTLSLocalDynamicModel(GlobalAddressSDNode *GA,
7681                                           SelectionDAG &DAG,
7682                                           const EVT PtrVT,
7683                                           bool is64Bit) {
7684  DebugLoc dl = GA->getDebugLoc();
7685
7686  // Get the start address of the TLS block for this module.
7687  X86MachineFunctionInfo* MFI = DAG.getMachineFunction()
7688      .getInfo<X86MachineFunctionInfo>();
7689  MFI->incNumLocalDynamicTLSAccesses();
7690
7691  SDValue Base;
7692  if (is64Bit) {
7693    Base = GetTLSADDR(DAG, DAG.getEntryNode(), GA, NULL, PtrVT, X86::RAX,
7694                      X86II::MO_TLSLD, /*LocalDynamic=*/true);
7695  } else {
7696    SDValue InFlag;
7697    SDValue Chain = DAG.getCopyToReg(DAG.getEntryNode(), dl, X86::EBX,
7698        DAG.getNode(X86ISD::GlobalBaseReg, DebugLoc(), PtrVT), InFlag);
7699    InFlag = Chain.getValue(1);
7700    Base = GetTLSADDR(DAG, Chain, GA, &InFlag, PtrVT, X86::EAX,
7701                      X86II::MO_TLSLDM, /*LocalDynamic=*/true);
7702  }
7703
7704  // Note: the CleanupLocalDynamicTLSPass will remove redundant computations
7705  // of Base.
7706
7707  // Build x@dtpoff.
7708  unsigned char OperandFlags = X86II::MO_DTPOFF;
7709  unsigned WrapperKind = X86ISD::Wrapper;
7710  SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(), dl,
7711                                           GA->getValueType(0),
7712                                           GA->getOffset(), OperandFlags);
7713  SDValue Offset = DAG.getNode(WrapperKind, dl, PtrVT, TGA);
7714
7715  // Add x@dtpoff with the base.
7716  return DAG.getNode(ISD::ADD, dl, PtrVT, Offset, Base);
7717}
7718
7719// Lower ISD::GlobalTLSAddress using the "initial exec" or "local exec" model.
7720static SDValue LowerToTLSExecModel(GlobalAddressSDNode *GA, SelectionDAG &DAG,
7721                                   const EVT PtrVT, TLSModel::Model model,
7722                                   bool is64Bit, bool isPIC) {
7723  DebugLoc dl = GA->getDebugLoc();
7724
7725  // Get the Thread Pointer, which is %gs:0 (32-bit) or %fs:0 (64-bit).
7726  Value *Ptr = Constant::getNullValue(Type::getInt8PtrTy(*DAG.getContext(),
7727                                                         is64Bit ? 257 : 256));
7728
7729  SDValue ThreadPointer = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(),
7730                                      DAG.getIntPtrConstant(0),
7731                                      MachinePointerInfo(Ptr),
7732                                      false, false, false, 0);
7733
7734  unsigned char OperandFlags = 0;
7735  // Most TLS accesses are not RIP relative, even on x86-64.  One exception is
7736  // initialexec.
7737  unsigned WrapperKind = X86ISD::Wrapper;
7738  if (model == TLSModel::LocalExec) {
7739    OperandFlags = is64Bit ? X86II::MO_TPOFF : X86II::MO_NTPOFF;
7740  } else if (model == TLSModel::InitialExec) {
7741    if (is64Bit) {
7742      OperandFlags = X86II::MO_GOTTPOFF;
7743      WrapperKind = X86ISD::WrapperRIP;
7744    } else {
7745      OperandFlags = isPIC ? X86II::MO_GOTNTPOFF : X86II::MO_INDNTPOFF;
7746    }
7747  } else {
7748    llvm_unreachable("Unexpected model");
7749  }
7750
7751  // emit "addl x@ntpoff,%eax" (local exec)
7752  // or "addl x@indntpoff,%eax" (initial exec)
7753  // or "addl x@gotntpoff(%ebx) ,%eax" (initial exec, 32-bit pic)
7754  SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(), dl,
7755                                           GA->getValueType(0),
7756                                           GA->getOffset(), OperandFlags);
7757  SDValue Offset = DAG.getNode(WrapperKind, dl, PtrVT, TGA);
7758
7759  if (model == TLSModel::InitialExec) {
7760    if (isPIC && !is64Bit) {
7761      Offset = DAG.getNode(ISD::ADD, dl, PtrVT,
7762                          DAG.getNode(X86ISD::GlobalBaseReg, DebugLoc(), PtrVT),
7763                           Offset);
7764    }
7765
7766    Offset = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), Offset,
7767                         MachinePointerInfo::getGOT(), false, false, false,
7768                         0);
7769  }
7770
7771  // The address of the thread local variable is the add of the thread
7772  // pointer with the offset of the variable.
7773  return DAG.getNode(ISD::ADD, dl, PtrVT, ThreadPointer, Offset);
7774}
7775
7776SDValue
7777X86TargetLowering::LowerGlobalTLSAddress(SDValue Op, SelectionDAG &DAG) const {
7778
7779  GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
7780  const GlobalValue *GV = GA->getGlobal();
7781
7782  if (Subtarget->isTargetELF()) {
7783    TLSModel::Model model = getTargetMachine().getTLSModel(GV);
7784
7785    switch (model) {
7786      case TLSModel::GeneralDynamic:
7787        if (Subtarget->is64Bit())
7788          return LowerToTLSGeneralDynamicModel64(GA, DAG, getPointerTy());
7789        return LowerToTLSGeneralDynamicModel32(GA, DAG, getPointerTy());
7790      case TLSModel::LocalDynamic:
7791        return LowerToTLSLocalDynamicModel(GA, DAG, getPointerTy(),
7792                                           Subtarget->is64Bit());
7793      case TLSModel::InitialExec:
7794      case TLSModel::LocalExec:
7795        return LowerToTLSExecModel(GA, DAG, getPointerTy(), model,
7796                                   Subtarget->is64Bit(),
7797                        getTargetMachine().getRelocationModel() == Reloc::PIC_);
7798    }
7799    llvm_unreachable("Unknown TLS model.");
7800  }
7801
7802  if (Subtarget->isTargetDarwin()) {
7803    // Darwin only has one model of TLS.  Lower to that.
7804    unsigned char OpFlag = 0;
7805    unsigned WrapperKind = Subtarget->isPICStyleRIPRel() ?
7806                           X86ISD::WrapperRIP : X86ISD::Wrapper;
7807
7808    // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
7809    // global base reg.
7810    bool PIC32 = (getTargetMachine().getRelocationModel() == Reloc::PIC_) &&
7811                  !Subtarget->is64Bit();
7812    if (PIC32)
7813      OpFlag = X86II::MO_TLVP_PIC_BASE;
7814    else
7815      OpFlag = X86II::MO_TLVP;
7816    DebugLoc DL = Op.getDebugLoc();
7817    SDValue Result = DAG.getTargetGlobalAddress(GA->getGlobal(), DL,
7818                                                GA->getValueType(0),
7819                                                GA->getOffset(), OpFlag);
7820    SDValue Offset = DAG.getNode(WrapperKind, DL, getPointerTy(), Result);
7821
7822    // With PIC32, the address is actually $g + Offset.
7823    if (PIC32)
7824      Offset = DAG.getNode(ISD::ADD, DL, getPointerTy(),
7825                           DAG.getNode(X86ISD::GlobalBaseReg,
7826                                       DebugLoc(), getPointerTy()),
7827                           Offset);
7828
7829    // Lowering the machine isd will make sure everything is in the right
7830    // location.
7831    SDValue Chain = DAG.getEntryNode();
7832    SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
7833    SDValue Args[] = { Chain, Offset };
7834    Chain = DAG.getNode(X86ISD::TLSCALL, DL, NodeTys, Args, 2);
7835
7836    // TLSCALL will be codegen'ed as call. Inform MFI that function has calls.
7837    MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
7838    MFI->setAdjustsStack(true);
7839
7840    // And our return value (tls address) is in the standard call return value
7841    // location.
7842    unsigned Reg = Subtarget->is64Bit() ? X86::RAX : X86::EAX;
7843    return DAG.getCopyFromReg(Chain, DL, Reg, getPointerTy(),
7844                              Chain.getValue(1));
7845  }
7846
7847  if (Subtarget->isTargetWindows() || Subtarget->isTargetMingw()) {
7848    // Just use the implicit TLS architecture
7849    // Need to generate someting similar to:
7850    //   mov     rdx, qword [gs:abs 58H]; Load pointer to ThreadLocalStorage
7851    //                                  ; from TEB
7852    //   mov     ecx, dword [rel _tls_index]: Load index (from C runtime)
7853    //   mov     rcx, qword [rdx+rcx*8]
7854    //   mov     eax, .tls$:tlsvar
7855    //   [rax+rcx] contains the address
7856    // Windows 64bit: gs:0x58
7857    // Windows 32bit: fs:__tls_array
7858
7859    // If GV is an alias then use the aliasee for determining
7860    // thread-localness.
7861    if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(GV))
7862      GV = GA->resolveAliasedGlobal(false);
7863    DebugLoc dl = GA->getDebugLoc();
7864    SDValue Chain = DAG.getEntryNode();
7865
7866    // Get the Thread Pointer, which is %fs:__tls_array (32-bit) or
7867    // %gs:0x58 (64-bit). On MinGW, __tls_array is not available, so directly
7868    // use its literal value of 0x2C.
7869    Value *Ptr = Constant::getNullValue(Subtarget->is64Bit()
7870                                        ? Type::getInt8PtrTy(*DAG.getContext(),
7871                                                             256)
7872                                        : Type::getInt32PtrTy(*DAG.getContext(),
7873                                                              257));
7874
7875    SDValue TlsArray = Subtarget->is64Bit() ? DAG.getIntPtrConstant(0x58) :
7876      (Subtarget->isTargetMingw() ? DAG.getIntPtrConstant(0x2C) :
7877        DAG.getExternalSymbol("_tls_array", getPointerTy()));
7878
7879    SDValue ThreadPointer = DAG.getLoad(getPointerTy(), dl, Chain, TlsArray,
7880                                        MachinePointerInfo(Ptr),
7881                                        false, false, false, 0);
7882
7883    // Load the _tls_index variable
7884    SDValue IDX = DAG.getExternalSymbol("_tls_index", getPointerTy());
7885    if (Subtarget->is64Bit())
7886      IDX = DAG.getExtLoad(ISD::ZEXTLOAD, dl, getPointerTy(), Chain,
7887                           IDX, MachinePointerInfo(), MVT::i32,
7888                           false, false, 0);
7889    else
7890      IDX = DAG.getLoad(getPointerTy(), dl, Chain, IDX, MachinePointerInfo(),
7891                        false, false, false, 0);
7892
7893    SDValue Scale = DAG.getConstant(Log2_64_Ceil(TD->getPointerSize()),
7894                                    getPointerTy());
7895    IDX = DAG.getNode(ISD::SHL, dl, getPointerTy(), IDX, Scale);
7896
7897    SDValue res = DAG.getNode(ISD::ADD, dl, getPointerTy(), ThreadPointer, IDX);
7898    res = DAG.getLoad(getPointerTy(), dl, Chain, res, MachinePointerInfo(),
7899                      false, false, false, 0);
7900
7901    // Get the offset of start of .tls section
7902    SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(), dl,
7903                                             GA->getValueType(0),
7904                                             GA->getOffset(), X86II::MO_SECREL);
7905    SDValue Offset = DAG.getNode(X86ISD::Wrapper, dl, getPointerTy(), TGA);
7906
7907    // The address of the thread local variable is the add of the thread
7908    // pointer with the offset of the variable.
7909    return DAG.getNode(ISD::ADD, dl, getPointerTy(), res, Offset);
7910  }
7911
7912  llvm_unreachable("TLS not implemented for this target.");
7913}
7914
7915/// LowerShiftParts - Lower SRA_PARTS and friends, which return two i32 values
7916/// and take a 2 x i32 value to shift plus a shift amount.
7917SDValue X86TargetLowering::LowerShiftParts(SDValue Op, SelectionDAG &DAG) const{
7918  assert(Op.getNumOperands() == 3 && "Not a double-shift!");
7919  EVT VT = Op.getValueType();
7920  unsigned VTBits = VT.getSizeInBits();
7921  DebugLoc dl = Op.getDebugLoc();
7922  bool isSRA = Op.getOpcode() == ISD::SRA_PARTS;
7923  SDValue ShOpLo = Op.getOperand(0);
7924  SDValue ShOpHi = Op.getOperand(1);
7925  SDValue ShAmt  = Op.getOperand(2);
7926  SDValue Tmp1 = isSRA ? DAG.getNode(ISD::SRA, dl, VT, ShOpHi,
7927                                     DAG.getConstant(VTBits - 1, MVT::i8))
7928                       : DAG.getConstant(0, VT);
7929
7930  SDValue Tmp2, Tmp3;
7931  if (Op.getOpcode() == ISD::SHL_PARTS) {
7932    Tmp2 = DAG.getNode(X86ISD::SHLD, dl, VT, ShOpHi, ShOpLo, ShAmt);
7933    Tmp3 = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, ShAmt);
7934  } else {
7935    Tmp2 = DAG.getNode(X86ISD::SHRD, dl, VT, ShOpLo, ShOpHi, ShAmt);
7936    Tmp3 = DAG.getNode(isSRA ? ISD::SRA : ISD::SRL, dl, VT, ShOpHi, ShAmt);
7937  }
7938
7939  SDValue AndNode = DAG.getNode(ISD::AND, dl, MVT::i8, ShAmt,
7940                                DAG.getConstant(VTBits, MVT::i8));
7941  SDValue Cond = DAG.getNode(X86ISD::CMP, dl, MVT::i32,
7942                             AndNode, DAG.getConstant(0, MVT::i8));
7943
7944  SDValue Hi, Lo;
7945  SDValue CC = DAG.getConstant(X86::COND_NE, MVT::i8);
7946  SDValue Ops0[4] = { Tmp2, Tmp3, CC, Cond };
7947  SDValue Ops1[4] = { Tmp3, Tmp1, CC, Cond };
7948
7949  if (Op.getOpcode() == ISD::SHL_PARTS) {
7950    Hi = DAG.getNode(X86ISD::CMOV, dl, VT, Ops0, 4);
7951    Lo = DAG.getNode(X86ISD::CMOV, dl, VT, Ops1, 4);
7952  } else {
7953    Lo = DAG.getNode(X86ISD::CMOV, dl, VT, Ops0, 4);
7954    Hi = DAG.getNode(X86ISD::CMOV, dl, VT, Ops1, 4);
7955  }
7956
7957  SDValue Ops[2] = { Lo, Hi };
7958  return DAG.getMergeValues(Ops, array_lengthof(Ops), dl);
7959}
7960
7961SDValue X86TargetLowering::LowerSINT_TO_FP(SDValue Op,
7962                                           SelectionDAG &DAG) const {
7963  EVT SrcVT = Op.getOperand(0).getValueType();
7964
7965  if (SrcVT.isVector())
7966    return SDValue();
7967
7968  assert(SrcVT.getSimpleVT() <= MVT::i64 && SrcVT.getSimpleVT() >= MVT::i16 &&
7969         "Unknown SINT_TO_FP to lower!");
7970
7971  // These are really Legal; return the operand so the caller accepts it as
7972  // Legal.
7973  if (SrcVT == MVT::i32 && isScalarFPTypeInSSEReg(Op.getValueType()))
7974    return Op;
7975  if (SrcVT == MVT::i64 && isScalarFPTypeInSSEReg(Op.getValueType()) &&
7976      Subtarget->is64Bit()) {
7977    return Op;
7978  }
7979
7980  DebugLoc dl = Op.getDebugLoc();
7981  unsigned Size = SrcVT.getSizeInBits()/8;
7982  MachineFunction &MF = DAG.getMachineFunction();
7983  int SSFI = MF.getFrameInfo()->CreateStackObject(Size, Size, false);
7984  SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
7985  SDValue Chain = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0),
7986                               StackSlot,
7987                               MachinePointerInfo::getFixedStack(SSFI),
7988                               false, false, 0);
7989  return BuildFILD(Op, SrcVT, Chain, StackSlot, DAG);
7990}
7991
7992SDValue X86TargetLowering::BuildFILD(SDValue Op, EVT SrcVT, SDValue Chain,
7993                                     SDValue StackSlot,
7994                                     SelectionDAG &DAG) const {
7995  // Build the FILD
7996  DebugLoc DL = Op.getDebugLoc();
7997  SDVTList Tys;
7998  bool useSSE = isScalarFPTypeInSSEReg(Op.getValueType());
7999  if (useSSE)
8000    Tys = DAG.getVTList(MVT::f64, MVT::Other, MVT::Glue);
8001  else
8002    Tys = DAG.getVTList(Op.getValueType(), MVT::Other);
8003
8004  unsigned ByteSize = SrcVT.getSizeInBits()/8;
8005
8006  FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(StackSlot);
8007  MachineMemOperand *MMO;
8008  if (FI) {
8009    int SSFI = FI->getIndex();
8010    MMO =
8011      DAG.getMachineFunction()
8012      .getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
8013                            MachineMemOperand::MOLoad, ByteSize, ByteSize);
8014  } else {
8015    MMO = cast<LoadSDNode>(StackSlot)->getMemOperand();
8016    StackSlot = StackSlot.getOperand(1);
8017  }
8018  SDValue Ops[] = { Chain, StackSlot, DAG.getValueType(SrcVT) };
8019  SDValue Result = DAG.getMemIntrinsicNode(useSSE ? X86ISD::FILD_FLAG :
8020                                           X86ISD::FILD, DL,
8021                                           Tys, Ops, array_lengthof(Ops),
8022                                           SrcVT, MMO);
8023
8024  if (useSSE) {
8025    Chain = Result.getValue(1);
8026    SDValue InFlag = Result.getValue(2);
8027
8028    // FIXME: Currently the FST is flagged to the FILD_FLAG. This
8029    // shouldn't be necessary except that RFP cannot be live across
8030    // multiple blocks. When stackifier is fixed, they can be uncoupled.
8031    MachineFunction &MF = DAG.getMachineFunction();
8032    unsigned SSFISize = Op.getValueType().getSizeInBits()/8;
8033    int SSFI = MF.getFrameInfo()->CreateStackObject(SSFISize, SSFISize, false);
8034    SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
8035    Tys = DAG.getVTList(MVT::Other);
8036    SDValue Ops[] = {
8037      Chain, Result, StackSlot, DAG.getValueType(Op.getValueType()), InFlag
8038    };
8039    MachineMemOperand *MMO =
8040      DAG.getMachineFunction()
8041      .getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
8042                            MachineMemOperand::MOStore, SSFISize, SSFISize);
8043
8044    Chain = DAG.getMemIntrinsicNode(X86ISD::FST, DL, Tys,
8045                                    Ops, array_lengthof(Ops),
8046                                    Op.getValueType(), MMO);
8047    Result = DAG.getLoad(Op.getValueType(), DL, Chain, StackSlot,
8048                         MachinePointerInfo::getFixedStack(SSFI),
8049                         false, false, false, 0);
8050  }
8051
8052  return Result;
8053}
8054
8055// LowerUINT_TO_FP_i64 - 64-bit unsigned integer to double expansion.
8056SDValue X86TargetLowering::LowerUINT_TO_FP_i64(SDValue Op,
8057                                               SelectionDAG &DAG) const {
8058  // This algorithm is not obvious. Here it is what we're trying to output:
8059  /*
8060     movq       %rax,  %xmm0
8061     punpckldq  (c0),  %xmm0  // c0: (uint4){ 0x43300000U, 0x45300000U, 0U, 0U }
8062     subpd      (c1),  %xmm0  // c1: (double2){ 0x1.0p52, 0x1.0p52 * 0x1.0p32 }
8063     #ifdef __SSE3__
8064       haddpd   %xmm0, %xmm0
8065     #else
8066       pshufd   $0x4e, %xmm0, %xmm1
8067       addpd    %xmm1, %xmm0
8068     #endif
8069  */
8070
8071  DebugLoc dl = Op.getDebugLoc();
8072  LLVMContext *Context = DAG.getContext();
8073
8074  // Build some magic constants.
8075  const uint32_t CV0[] = { 0x43300000, 0x45300000, 0, 0 };
8076  Constant *C0 = ConstantDataVector::get(*Context, CV0);
8077  SDValue CPIdx0 = DAG.getConstantPool(C0, getPointerTy(), 16);
8078
8079  SmallVector<Constant*,2> CV1;
8080  CV1.push_back(
8081    ConstantFP::get(*Context, APFloat(APFloat::IEEEdouble,
8082                                      APInt(64, 0x4330000000000000ULL))));
8083  CV1.push_back(
8084    ConstantFP::get(*Context, APFloat(APFloat::IEEEdouble,
8085                                      APInt(64, 0x4530000000000000ULL))));
8086  Constant *C1 = ConstantVector::get(CV1);
8087  SDValue CPIdx1 = DAG.getConstantPool(C1, getPointerTy(), 16);
8088
8089  // Load the 64-bit value into an XMM register.
8090  SDValue XR1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2i64,
8091                            Op.getOperand(0));
8092  SDValue CLod0 = DAG.getLoad(MVT::v4i32, dl, DAG.getEntryNode(), CPIdx0,
8093                              MachinePointerInfo::getConstantPool(),
8094                              false, false, false, 16);
8095  SDValue Unpck1 = getUnpackl(DAG, dl, MVT::v4i32,
8096                              DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, XR1),
8097                              CLod0);
8098
8099  SDValue CLod1 = DAG.getLoad(MVT::v2f64, dl, CLod0.getValue(1), CPIdx1,
8100                              MachinePointerInfo::getConstantPool(),
8101                              false, false, false, 16);
8102  SDValue XR2F = DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, Unpck1);
8103  SDValue Sub = DAG.getNode(ISD::FSUB, dl, MVT::v2f64, XR2F, CLod1);
8104  SDValue Result;
8105
8106  if (Subtarget->hasSSE3()) {
8107    // FIXME: The 'haddpd' instruction may be slower than 'movhlps + addsd'.
8108    Result = DAG.getNode(X86ISD::FHADD, dl, MVT::v2f64, Sub, Sub);
8109  } else {
8110    SDValue S2F = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, Sub);
8111    SDValue Shuffle = getTargetShuffleNode(X86ISD::PSHUFD, dl, MVT::v4i32,
8112                                           S2F, 0x4E, DAG);
8113    Result = DAG.getNode(ISD::FADD, dl, MVT::v2f64,
8114                         DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, Shuffle),
8115                         Sub);
8116  }
8117
8118  return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Result,
8119                     DAG.getIntPtrConstant(0));
8120}
8121
8122// LowerUINT_TO_FP_i32 - 32-bit unsigned integer to float expansion.
8123SDValue X86TargetLowering::LowerUINT_TO_FP_i32(SDValue Op,
8124                                               SelectionDAG &DAG) const {
8125  DebugLoc dl = Op.getDebugLoc();
8126  // FP constant to bias correct the final result.
8127  SDValue Bias = DAG.getConstantFP(BitsToDouble(0x4330000000000000ULL),
8128                                   MVT::f64);
8129
8130  // Load the 32-bit value into an XMM register.
8131  SDValue Load = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32,
8132                             Op.getOperand(0));
8133
8134  // Zero out the upper parts of the register.
8135  Load = getShuffleVectorZeroOrUndef(Load, 0, true, Subtarget, DAG);
8136
8137  Load = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64,
8138                     DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, Load),
8139                     DAG.getIntPtrConstant(0));
8140
8141  // Or the load with the bias.
8142  SDValue Or = DAG.getNode(ISD::OR, dl, MVT::v2i64,
8143                           DAG.getNode(ISD::BITCAST, dl, MVT::v2i64,
8144                                       DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
8145                                                   MVT::v2f64, Load)),
8146                           DAG.getNode(ISD::BITCAST, dl, MVT::v2i64,
8147                                       DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
8148                                                   MVT::v2f64, Bias)));
8149  Or = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64,
8150                   DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, Or),
8151                   DAG.getIntPtrConstant(0));
8152
8153  // Subtract the bias.
8154  SDValue Sub = DAG.getNode(ISD::FSUB, dl, MVT::f64, Or, Bias);
8155
8156  // Handle final rounding.
8157  EVT DestVT = Op.getValueType();
8158
8159  if (DestVT.bitsLT(MVT::f64))
8160    return DAG.getNode(ISD::FP_ROUND, dl, DestVT, Sub,
8161                       DAG.getIntPtrConstant(0));
8162  if (DestVT.bitsGT(MVT::f64))
8163    return DAG.getNode(ISD::FP_EXTEND, dl, DestVT, Sub);
8164
8165  // Handle final rounding.
8166  return Sub;
8167}
8168
8169SDValue X86TargetLowering::lowerUINT_TO_FP_vec(SDValue Op,
8170                                               SelectionDAG &DAG) const {
8171  SDValue N0 = Op.getOperand(0);
8172  EVT SVT = N0.getValueType();
8173  DebugLoc dl = Op.getDebugLoc();
8174
8175  assert((SVT == MVT::v4i8 || SVT == MVT::v4i16 ||
8176          SVT == MVT::v8i8 || SVT == MVT::v8i16) &&
8177         "Custom UINT_TO_FP is not supported!");
8178
8179  EVT NVT = EVT::getVectorVT(*DAG.getContext(), MVT::i32,
8180                             SVT.getVectorNumElements());
8181  return DAG.getNode(ISD::SINT_TO_FP, dl, Op.getValueType(),
8182                     DAG.getNode(ISD::ZERO_EXTEND, dl, NVT, N0));
8183}
8184
8185SDValue X86TargetLowering::LowerUINT_TO_FP(SDValue Op,
8186                                           SelectionDAG &DAG) const {
8187  SDValue N0 = Op.getOperand(0);
8188  DebugLoc dl = Op.getDebugLoc();
8189
8190  if (Op.getValueType().isVector())
8191    return lowerUINT_TO_FP_vec(Op, DAG);
8192
8193  // Since UINT_TO_FP is legal (it's marked custom), dag combiner won't
8194  // optimize it to a SINT_TO_FP when the sign bit is known zero. Perform
8195  // the optimization here.
8196  if (DAG.SignBitIsZero(N0))
8197    return DAG.getNode(ISD::SINT_TO_FP, dl, Op.getValueType(), N0);
8198
8199  EVT SrcVT = N0.getValueType();
8200  EVT DstVT = Op.getValueType();
8201  if (SrcVT == MVT::i64 && DstVT == MVT::f64 && X86ScalarSSEf64)
8202    return LowerUINT_TO_FP_i64(Op, DAG);
8203  if (SrcVT == MVT::i32 && X86ScalarSSEf64)
8204    return LowerUINT_TO_FP_i32(Op, DAG);
8205  if (Subtarget->is64Bit() && SrcVT == MVT::i64 && DstVT == MVT::f32)
8206    return SDValue();
8207
8208  // Make a 64-bit buffer, and use it to build an FILD.
8209  SDValue StackSlot = DAG.CreateStackTemporary(MVT::i64);
8210  if (SrcVT == MVT::i32) {
8211    SDValue WordOff = DAG.getConstant(4, getPointerTy());
8212    SDValue OffsetSlot = DAG.getNode(ISD::ADD, dl,
8213                                     getPointerTy(), StackSlot, WordOff);
8214    SDValue Store1 = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0),
8215                                  StackSlot, MachinePointerInfo(),
8216                                  false, false, 0);
8217    SDValue Store2 = DAG.getStore(Store1, dl, DAG.getConstant(0, MVT::i32),
8218                                  OffsetSlot, MachinePointerInfo(),
8219                                  false, false, 0);
8220    SDValue Fild = BuildFILD(Op, MVT::i64, Store2, StackSlot, DAG);
8221    return Fild;
8222  }
8223
8224  assert(SrcVT == MVT::i64 && "Unexpected type in UINT_TO_FP");
8225  SDValue Store = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0),
8226                               StackSlot, MachinePointerInfo(),
8227                               false, false, 0);
8228  // For i64 source, we need to add the appropriate power of 2 if the input
8229  // was negative.  This is the same as the optimization in
8230  // DAGTypeLegalizer::ExpandIntOp_UNIT_TO_FP, and for it to be safe here,
8231  // we must be careful to do the computation in x87 extended precision, not
8232  // in SSE. (The generic code can't know it's OK to do this, or how to.)
8233  int SSFI = cast<FrameIndexSDNode>(StackSlot)->getIndex();
8234  MachineMemOperand *MMO =
8235    DAG.getMachineFunction()
8236    .getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
8237                          MachineMemOperand::MOLoad, 8, 8);
8238
8239  SDVTList Tys = DAG.getVTList(MVT::f80, MVT::Other);
8240  SDValue Ops[] = { Store, StackSlot, DAG.getValueType(MVT::i64) };
8241  SDValue Fild = DAG.getMemIntrinsicNode(X86ISD::FILD, dl, Tys, Ops,
8242                                         array_lengthof(Ops), MVT::i64, MMO);
8243
8244  APInt FF(32, 0x5F800000ULL);
8245
8246  // Check whether the sign bit is set.
8247  SDValue SignSet = DAG.getSetCC(dl, getSetCCResultType(MVT::i64),
8248                                 Op.getOperand(0), DAG.getConstant(0, MVT::i64),
8249                                 ISD::SETLT);
8250
8251  // Build a 64 bit pair (0, FF) in the constant pool, with FF in the lo bits.
8252  SDValue FudgePtr = DAG.getConstantPool(
8253                             ConstantInt::get(*DAG.getContext(), FF.zext(64)),
8254                                         getPointerTy());
8255
8256  // Get a pointer to FF if the sign bit was set, or to 0 otherwise.
8257  SDValue Zero = DAG.getIntPtrConstant(0);
8258  SDValue Four = DAG.getIntPtrConstant(4);
8259  SDValue Offset = DAG.getNode(ISD::SELECT, dl, Zero.getValueType(), SignSet,
8260                               Zero, Four);
8261  FudgePtr = DAG.getNode(ISD::ADD, dl, getPointerTy(), FudgePtr, Offset);
8262
8263  // Load the value out, extending it from f32 to f80.
8264  // FIXME: Avoid the extend by constructing the right constant pool?
8265  SDValue Fudge = DAG.getExtLoad(ISD::EXTLOAD, dl, MVT::f80, DAG.getEntryNode(),
8266                                 FudgePtr, MachinePointerInfo::getConstantPool(),
8267                                 MVT::f32, false, false, 4);
8268  // Extend everything to 80 bits to force it to be done on x87.
8269  SDValue Add = DAG.getNode(ISD::FADD, dl, MVT::f80, Fild, Fudge);
8270  return DAG.getNode(ISD::FP_ROUND, dl, DstVT, Add, DAG.getIntPtrConstant(0));
8271}
8272
8273std::pair<SDValue,SDValue>
8274X86TargetLowering:: FP_TO_INTHelper(SDValue Op, SelectionDAG &DAG,
8275                                    bool IsSigned, bool IsReplace) const {
8276  DebugLoc DL = Op.getDebugLoc();
8277
8278  EVT DstTy = Op.getValueType();
8279
8280  if (!IsSigned && !isIntegerTypeFTOL(DstTy)) {
8281    assert(DstTy == MVT::i32 && "Unexpected FP_TO_UINT");
8282    DstTy = MVT::i64;
8283  }
8284
8285  assert(DstTy.getSimpleVT() <= MVT::i64 &&
8286         DstTy.getSimpleVT() >= MVT::i16 &&
8287         "Unknown FP_TO_INT to lower!");
8288
8289  // These are really Legal.
8290  if (DstTy == MVT::i32 &&
8291      isScalarFPTypeInSSEReg(Op.getOperand(0).getValueType()))
8292    return std::make_pair(SDValue(), SDValue());
8293  if (Subtarget->is64Bit() &&
8294      DstTy == MVT::i64 &&
8295      isScalarFPTypeInSSEReg(Op.getOperand(0).getValueType()))
8296    return std::make_pair(SDValue(), SDValue());
8297
8298  // We lower FP->int64 either into FISTP64 followed by a load from a temporary
8299  // stack slot, or into the FTOL runtime function.
8300  MachineFunction &MF = DAG.getMachineFunction();
8301  unsigned MemSize = DstTy.getSizeInBits()/8;
8302  int SSFI = MF.getFrameInfo()->CreateStackObject(MemSize, MemSize, false);
8303  SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
8304
8305  unsigned Opc;
8306  if (!IsSigned && isIntegerTypeFTOL(DstTy))
8307    Opc = X86ISD::WIN_FTOL;
8308  else
8309    switch (DstTy.getSimpleVT().SimpleTy) {
8310    default: llvm_unreachable("Invalid FP_TO_SINT to lower!");
8311    case MVT::i16: Opc = X86ISD::FP_TO_INT16_IN_MEM; break;
8312    case MVT::i32: Opc = X86ISD::FP_TO_INT32_IN_MEM; break;
8313    case MVT::i64: Opc = X86ISD::FP_TO_INT64_IN_MEM; break;
8314    }
8315
8316  SDValue Chain = DAG.getEntryNode();
8317  SDValue Value = Op.getOperand(0);
8318  EVT TheVT = Op.getOperand(0).getValueType();
8319  // FIXME This causes a redundant load/store if the SSE-class value is already
8320  // in memory, such as if it is on the callstack.
8321  if (isScalarFPTypeInSSEReg(TheVT)) {
8322    assert(DstTy == MVT::i64 && "Invalid FP_TO_SINT to lower!");
8323    Chain = DAG.getStore(Chain, DL, Value, StackSlot,
8324                         MachinePointerInfo::getFixedStack(SSFI),
8325                         false, false, 0);
8326    SDVTList Tys = DAG.getVTList(Op.getOperand(0).getValueType(), MVT::Other);
8327    SDValue Ops[] = {
8328      Chain, StackSlot, DAG.getValueType(TheVT)
8329    };
8330
8331    MachineMemOperand *MMO =
8332      MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
8333                              MachineMemOperand::MOLoad, MemSize, MemSize);
8334    Value = DAG.getMemIntrinsicNode(X86ISD::FLD, DL, Tys, Ops,
8335                                    array_lengthof(Ops), DstTy, MMO);
8336    Chain = Value.getValue(1);
8337    SSFI = MF.getFrameInfo()->CreateStackObject(MemSize, MemSize, false);
8338    StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
8339  }
8340
8341  MachineMemOperand *MMO =
8342    MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
8343                            MachineMemOperand::MOStore, MemSize, MemSize);
8344
8345  if (Opc != X86ISD::WIN_FTOL) {
8346    // Build the FP_TO_INT*_IN_MEM
8347    SDValue Ops[] = { Chain, Value, StackSlot };
8348    SDValue FIST = DAG.getMemIntrinsicNode(Opc, DL, DAG.getVTList(MVT::Other),
8349                                           Ops, array_lengthof(Ops), DstTy,
8350                                           MMO);
8351    return std::make_pair(FIST, StackSlot);
8352  } else {
8353    SDValue ftol = DAG.getNode(X86ISD::WIN_FTOL, DL,
8354      DAG.getVTList(MVT::Other, MVT::Glue),
8355      Chain, Value);
8356    SDValue eax = DAG.getCopyFromReg(ftol, DL, X86::EAX,
8357      MVT::i32, ftol.getValue(1));
8358    SDValue edx = DAG.getCopyFromReg(eax.getValue(1), DL, X86::EDX,
8359      MVT::i32, eax.getValue(2));
8360    SDValue Ops[] = { eax, edx };
8361    SDValue pair = IsReplace
8362      ? DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, Ops, array_lengthof(Ops))
8363      : DAG.getMergeValues(Ops, array_lengthof(Ops), DL);
8364    return std::make_pair(pair, SDValue());
8365  }
8366}
8367
8368static SDValue LowerAVXExtend(SDValue Op, SelectionDAG &DAG,
8369                              const X86Subtarget *Subtarget) {
8370  MVT VT = Op->getValueType(0).getSimpleVT();
8371  SDValue In = Op->getOperand(0);
8372  MVT InVT = In.getValueType().getSimpleVT();
8373  DebugLoc dl = Op->getDebugLoc();
8374
8375  // Optimize vectors in AVX mode:
8376  //
8377  //   v8i16 -> v8i32
8378  //   Use vpunpcklwd for 4 lower elements  v8i16 -> v4i32.
8379  //   Use vpunpckhwd for 4 upper elements  v8i16 -> v4i32.
8380  //   Concat upper and lower parts.
8381  //
8382  //   v4i32 -> v4i64
8383  //   Use vpunpckldq for 4 lower elements  v4i32 -> v2i64.
8384  //   Use vpunpckhdq for 4 upper elements  v4i32 -> v2i64.
8385  //   Concat upper and lower parts.
8386  //
8387
8388  if (((VT != MVT::v8i32) || (InVT != MVT::v8i16)) &&
8389      ((VT != MVT::v4i64) || (InVT != MVT::v4i32)))
8390    return SDValue();
8391
8392  if (Subtarget->hasInt256())
8393    return DAG.getNode(X86ISD::VZEXT_MOVL, dl, VT, In);
8394
8395  SDValue ZeroVec = getZeroVector(InVT, Subtarget, DAG, dl);
8396  SDValue Undef = DAG.getUNDEF(InVT);
8397  bool NeedZero = Op.getOpcode() == ISD::ZERO_EXTEND;
8398  SDValue OpLo = getUnpackl(DAG, dl, InVT, In, NeedZero ? ZeroVec : Undef);
8399  SDValue OpHi = getUnpackh(DAG, dl, InVT, In, NeedZero ? ZeroVec : Undef);
8400
8401  MVT HVT = MVT::getVectorVT(VT.getVectorElementType(),
8402                             VT.getVectorNumElements()/2);
8403
8404  OpLo = DAG.getNode(ISD::BITCAST, dl, HVT, OpLo);
8405  OpHi = DAG.getNode(ISD::BITCAST, dl, HVT, OpHi);
8406
8407  return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT, OpLo, OpHi);
8408}
8409
8410SDValue X86TargetLowering::LowerANY_EXTEND(SDValue Op,
8411                                           SelectionDAG &DAG) const {
8412  if (Subtarget->hasFp256()) {
8413    SDValue Res = LowerAVXExtend(Op, DAG, Subtarget);
8414    if (Res.getNode())
8415      return Res;
8416  }
8417
8418  return SDValue();
8419}
8420SDValue X86TargetLowering::LowerZERO_EXTEND(SDValue Op,
8421                                            SelectionDAG &DAG) const {
8422  DebugLoc DL = Op.getDebugLoc();
8423  MVT VT = Op.getValueType().getSimpleVT();
8424  SDValue In = Op.getOperand(0);
8425  MVT SVT = In.getValueType().getSimpleVT();
8426
8427  if (Subtarget->hasFp256()) {
8428    SDValue Res = LowerAVXExtend(Op, DAG, Subtarget);
8429    if (Res.getNode())
8430      return Res;
8431  }
8432
8433  if (!VT.is256BitVector() || !SVT.is128BitVector() ||
8434      VT.getVectorNumElements() != SVT.getVectorNumElements())
8435    return SDValue();
8436
8437  assert(Subtarget->hasFp256() && "256-bit vector is observed without AVX!");
8438
8439  // AVX2 has better support of integer extending.
8440  if (Subtarget->hasInt256())
8441    return DAG.getNode(X86ISD::VZEXT, DL, VT, In);
8442
8443  SDValue Lo = DAG.getNode(X86ISD::VZEXT, DL, MVT::v4i32, In);
8444  static const int Mask[] = {4, 5, 6, 7, -1, -1, -1, -1};
8445  SDValue Hi = DAG.getNode(X86ISD::VZEXT, DL, MVT::v4i32,
8446                           DAG.getVectorShuffle(MVT::v8i16, DL, In,
8447                                                DAG.getUNDEF(MVT::v8i16),
8448                                                &Mask[0]));
8449
8450  return DAG.getNode(ISD::CONCAT_VECTORS, DL, MVT::v8i32, Lo, Hi);
8451}
8452
8453SDValue X86TargetLowering::LowerTRUNCATE(SDValue Op, SelectionDAG &DAG) const {
8454  DebugLoc DL = Op.getDebugLoc();
8455  MVT VT = Op.getValueType().getSimpleVT();
8456  SDValue In = Op.getOperand(0);
8457  MVT SVT = In.getValueType().getSimpleVT();
8458
8459  if ((VT == MVT::v4i32) && (SVT == MVT::v4i64)) {
8460    // On AVX2, v4i64 -> v4i32 becomes VPERMD.
8461    if (Subtarget->hasInt256()) {
8462      static const int ShufMask[] = {0, 2, 4, 6, -1, -1, -1, -1};
8463      In = DAG.getNode(ISD::BITCAST, DL, MVT::v8i32, In);
8464      In = DAG.getVectorShuffle(MVT::v8i32, DL, In, DAG.getUNDEF(MVT::v8i32),
8465                                ShufMask);
8466      return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, In,
8467                         DAG.getIntPtrConstant(0));
8468    }
8469
8470    // On AVX, v4i64 -> v4i32 becomes a sequence that uses PSHUFD and MOVLHPS.
8471    SDValue OpLo = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, MVT::v2i64, In,
8472                               DAG.getIntPtrConstant(0));
8473    SDValue OpHi = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, MVT::v2i64, In,
8474                               DAG.getIntPtrConstant(2));
8475
8476    OpLo = DAG.getNode(ISD::BITCAST, DL, MVT::v4i32, OpLo);
8477    OpHi = DAG.getNode(ISD::BITCAST, DL, MVT::v4i32, OpHi);
8478
8479    // The PSHUFD mask:
8480    static const int ShufMask1[] = {0, 2, 0, 0};
8481    SDValue Undef = DAG.getUNDEF(VT);
8482    OpLo = DAG.getVectorShuffle(VT, DL, OpLo, Undef, ShufMask1);
8483    OpHi = DAG.getVectorShuffle(VT, DL, OpHi, Undef, ShufMask1);
8484
8485    // The MOVLHPS mask:
8486    static const int ShufMask2[] = {0, 1, 4, 5};
8487    return DAG.getVectorShuffle(VT, DL, OpLo, OpHi, ShufMask2);
8488  }
8489
8490  if ((VT == MVT::v8i16) && (SVT == MVT::v8i32)) {
8491    // On AVX2, v8i32 -> v8i16 becomed PSHUFB.
8492    if (Subtarget->hasInt256()) {
8493      In = DAG.getNode(ISD::BITCAST, DL, MVT::v32i8, In);
8494
8495      SmallVector<SDValue,32> pshufbMask;
8496      for (unsigned i = 0; i < 2; ++i) {
8497        pshufbMask.push_back(DAG.getConstant(0x0, MVT::i8));
8498        pshufbMask.push_back(DAG.getConstant(0x1, MVT::i8));
8499        pshufbMask.push_back(DAG.getConstant(0x4, MVT::i8));
8500        pshufbMask.push_back(DAG.getConstant(0x5, MVT::i8));
8501        pshufbMask.push_back(DAG.getConstant(0x8, MVT::i8));
8502        pshufbMask.push_back(DAG.getConstant(0x9, MVT::i8));
8503        pshufbMask.push_back(DAG.getConstant(0xc, MVT::i8));
8504        pshufbMask.push_back(DAG.getConstant(0xd, MVT::i8));
8505        for (unsigned j = 0; j < 8; ++j)
8506          pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
8507      }
8508      SDValue BV = DAG.getNode(ISD::BUILD_VECTOR, DL, MVT::v32i8,
8509                               &pshufbMask[0], 32);
8510      In = DAG.getNode(X86ISD::PSHUFB, DL, MVT::v32i8, In, BV);
8511      In = DAG.getNode(ISD::BITCAST, DL, MVT::v4i64, In);
8512
8513      static const int ShufMask[] = {0,  2,  -1,  -1};
8514      In = DAG.getVectorShuffle(MVT::v4i64, DL,  In, DAG.getUNDEF(MVT::v4i64),
8515                                &ShufMask[0]);
8516      In = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, MVT::v2i64, In,
8517                       DAG.getIntPtrConstant(0));
8518      return DAG.getNode(ISD::BITCAST, DL, VT, In);
8519    }
8520
8521    SDValue OpLo = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, MVT::v4i32, In,
8522                               DAG.getIntPtrConstant(0));
8523
8524    SDValue OpHi = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, MVT::v4i32, In,
8525                               DAG.getIntPtrConstant(4));
8526
8527    OpLo = DAG.getNode(ISD::BITCAST, DL, MVT::v16i8, OpLo);
8528    OpHi = DAG.getNode(ISD::BITCAST, DL, MVT::v16i8, OpHi);
8529
8530    // The PSHUFB mask:
8531    static const int ShufMask1[] = {0,  1,  4,  5,  8,  9, 12, 13,
8532                                   -1, -1, -1, -1, -1, -1, -1, -1};
8533
8534    SDValue Undef = DAG.getUNDEF(MVT::v16i8);
8535    OpLo = DAG.getVectorShuffle(MVT::v16i8, DL, OpLo, Undef, ShufMask1);
8536    OpHi = DAG.getVectorShuffle(MVT::v16i8, DL, OpHi, Undef, ShufMask1);
8537
8538    OpLo = DAG.getNode(ISD::BITCAST, DL, MVT::v4i32, OpLo);
8539    OpHi = DAG.getNode(ISD::BITCAST, DL, MVT::v4i32, OpHi);
8540
8541    // The MOVLHPS Mask:
8542    static const int ShufMask2[] = {0, 1, 4, 5};
8543    SDValue res = DAG.getVectorShuffle(MVT::v4i32, DL, OpLo, OpHi, ShufMask2);
8544    return DAG.getNode(ISD::BITCAST, DL, MVT::v8i16, res);
8545  }
8546
8547  // Handle truncation of V256 to V128 using shuffles.
8548  if (!VT.is128BitVector() || !SVT.is256BitVector())
8549    return SDValue();
8550
8551  assert(VT.getVectorNumElements() != SVT.getVectorNumElements() &&
8552         "Invalid op");
8553  assert(Subtarget->hasFp256() && "256-bit vector without AVX!");
8554
8555  unsigned NumElems = VT.getVectorNumElements();
8556  EVT NVT = EVT::getVectorVT(*DAG.getContext(), VT.getVectorElementType(),
8557                             NumElems * 2);
8558
8559  SmallVector<int, 16> MaskVec(NumElems * 2, -1);
8560  // Prepare truncation shuffle mask
8561  for (unsigned i = 0; i != NumElems; ++i)
8562    MaskVec[i] = i * 2;
8563  SDValue V = DAG.getVectorShuffle(NVT, DL,
8564                                   DAG.getNode(ISD::BITCAST, DL, NVT, In),
8565                                   DAG.getUNDEF(NVT), &MaskVec[0]);
8566  return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, V,
8567                     DAG.getIntPtrConstant(0));
8568}
8569
8570SDValue X86TargetLowering::LowerFP_TO_SINT(SDValue Op,
8571                                           SelectionDAG &DAG) const {
8572  MVT VT = Op.getValueType().getSimpleVT();
8573  if (VT.isVector()) {
8574    if (VT == MVT::v8i16)
8575      return DAG.getNode(ISD::TRUNCATE, Op.getDebugLoc(), VT,
8576                         DAG.getNode(ISD::FP_TO_SINT, Op.getDebugLoc(),
8577                                     MVT::v8i32, Op.getOperand(0)));
8578    return SDValue();
8579  }
8580
8581  std::pair<SDValue,SDValue> Vals = FP_TO_INTHelper(Op, DAG,
8582    /*IsSigned=*/ true, /*IsReplace=*/ false);
8583  SDValue FIST = Vals.first, StackSlot = Vals.second;
8584  // If FP_TO_INTHelper failed, the node is actually supposed to be Legal.
8585  if (FIST.getNode() == 0) return Op;
8586
8587  if (StackSlot.getNode())
8588    // Load the result.
8589    return DAG.getLoad(Op.getValueType(), Op.getDebugLoc(),
8590                       FIST, StackSlot, MachinePointerInfo(),
8591                       false, false, false, 0);
8592
8593  // The node is the result.
8594  return FIST;
8595}
8596
8597SDValue X86TargetLowering::LowerFP_TO_UINT(SDValue Op,
8598                                           SelectionDAG &DAG) const {
8599  std::pair<SDValue,SDValue> Vals = FP_TO_INTHelper(Op, DAG,
8600    /*IsSigned=*/ false, /*IsReplace=*/ false);
8601  SDValue FIST = Vals.first, StackSlot = Vals.second;
8602  assert(FIST.getNode() && "Unexpected failure");
8603
8604  if (StackSlot.getNode())
8605    // Load the result.
8606    return DAG.getLoad(Op.getValueType(), Op.getDebugLoc(),
8607                       FIST, StackSlot, MachinePointerInfo(),
8608                       false, false, false, 0);
8609
8610  // The node is the result.
8611  return FIST;
8612}
8613
8614static SDValue LowerFP_EXTEND(SDValue Op, SelectionDAG &DAG) {
8615  DebugLoc DL = Op.getDebugLoc();
8616  MVT VT = Op.getValueType().getSimpleVT();
8617  SDValue In = Op.getOperand(0);
8618  MVT SVT = In.getValueType().getSimpleVT();
8619
8620  assert(SVT == MVT::v2f32 && "Only customize MVT::v2f32 type legalization!");
8621
8622  return DAG.getNode(X86ISD::VFPEXT, DL, VT,
8623                     DAG.getNode(ISD::CONCAT_VECTORS, DL, MVT::v4f32,
8624                                 In, DAG.getUNDEF(SVT)));
8625}
8626
8627SDValue X86TargetLowering::LowerFABS(SDValue Op, SelectionDAG &DAG) const {
8628  LLVMContext *Context = DAG.getContext();
8629  DebugLoc dl = Op.getDebugLoc();
8630  MVT VT = Op.getValueType().getSimpleVT();
8631  MVT EltVT = VT;
8632  unsigned NumElts = VT == MVT::f64 ? 2 : 4;
8633  if (VT.isVector()) {
8634    EltVT = VT.getVectorElementType();
8635    NumElts = VT.getVectorNumElements();
8636  }
8637  Constant *C;
8638  if (EltVT == MVT::f64)
8639    C = ConstantFP::get(*Context, APFloat(APFloat::IEEEdouble,
8640                                          APInt(64, ~(1ULL << 63))));
8641  else
8642    C = ConstantFP::get(*Context, APFloat(APFloat::IEEEsingle,
8643                                          APInt(32, ~(1U << 31))));
8644  C = ConstantVector::getSplat(NumElts, C);
8645  SDValue CPIdx = DAG.getConstantPool(C, getPointerTy());
8646  unsigned Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlignment();
8647  SDValue Mask = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
8648                             MachinePointerInfo::getConstantPool(),
8649                             false, false, false, Alignment);
8650  if (VT.isVector()) {
8651    MVT ANDVT = VT.is128BitVector() ? MVT::v2i64 : MVT::v4i64;
8652    return DAG.getNode(ISD::BITCAST, dl, VT,
8653                       DAG.getNode(ISD::AND, dl, ANDVT,
8654                                   DAG.getNode(ISD::BITCAST, dl, ANDVT,
8655                                               Op.getOperand(0)),
8656                                   DAG.getNode(ISD::BITCAST, dl, ANDVT, Mask)));
8657  }
8658  return DAG.getNode(X86ISD::FAND, dl, VT, Op.getOperand(0), Mask);
8659}
8660
8661SDValue X86TargetLowering::LowerFNEG(SDValue Op, SelectionDAG &DAG) const {
8662  LLVMContext *Context = DAG.getContext();
8663  DebugLoc dl = Op.getDebugLoc();
8664  MVT VT = Op.getValueType().getSimpleVT();
8665  MVT EltVT = VT;
8666  unsigned NumElts = VT == MVT::f64 ? 2 : 4;
8667  if (VT.isVector()) {
8668    EltVT = VT.getVectorElementType();
8669    NumElts = VT.getVectorNumElements();
8670  }
8671  Constant *C;
8672  if (EltVT == MVT::f64)
8673    C = ConstantFP::get(*Context, APFloat(APFloat::IEEEdouble,
8674                                          APInt(64, 1ULL << 63)));
8675  else
8676    C = ConstantFP::get(*Context, APFloat(APFloat::IEEEsingle,
8677                                          APInt(32, 1U << 31)));
8678  C = ConstantVector::getSplat(NumElts, C);
8679  SDValue CPIdx = DAG.getConstantPool(C, getPointerTy());
8680  unsigned Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlignment();
8681  SDValue Mask = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
8682                             MachinePointerInfo::getConstantPool(),
8683                             false, false, false, Alignment);
8684  if (VT.isVector()) {
8685    MVT XORVT = VT.is128BitVector() ? MVT::v2i64 : MVT::v4i64;
8686    return DAG.getNode(ISD::BITCAST, dl, VT,
8687                       DAG.getNode(ISD::XOR, dl, XORVT,
8688                                   DAG.getNode(ISD::BITCAST, dl, XORVT,
8689                                               Op.getOperand(0)),
8690                                   DAG.getNode(ISD::BITCAST, dl, XORVT, Mask)));
8691  }
8692
8693  return DAG.getNode(X86ISD::FXOR, dl, VT, Op.getOperand(0), Mask);
8694}
8695
8696SDValue X86TargetLowering::LowerFCOPYSIGN(SDValue Op, SelectionDAG &DAG) const {
8697  LLVMContext *Context = DAG.getContext();
8698  SDValue Op0 = Op.getOperand(0);
8699  SDValue Op1 = Op.getOperand(1);
8700  DebugLoc dl = Op.getDebugLoc();
8701  MVT VT = Op.getValueType().getSimpleVT();
8702  MVT SrcVT = Op1.getValueType().getSimpleVT();
8703
8704  // If second operand is smaller, extend it first.
8705  if (SrcVT.bitsLT(VT)) {
8706    Op1 = DAG.getNode(ISD::FP_EXTEND, dl, VT, Op1);
8707    SrcVT = VT;
8708  }
8709  // And if it is bigger, shrink it first.
8710  if (SrcVT.bitsGT(VT)) {
8711    Op1 = DAG.getNode(ISD::FP_ROUND, dl, VT, Op1, DAG.getIntPtrConstant(1));
8712    SrcVT = VT;
8713  }
8714
8715  // At this point the operands and the result should have the same
8716  // type, and that won't be f80 since that is not custom lowered.
8717
8718  // First get the sign bit of second operand.
8719  SmallVector<Constant*,4> CV;
8720  if (SrcVT == MVT::f64) {
8721    const fltSemantics &Sem = APFloat::IEEEdouble;
8722    CV.push_back(ConstantFP::get(*Context, APFloat(Sem, APInt(64, 1ULL << 63))));
8723    CV.push_back(ConstantFP::get(*Context, APFloat(Sem, APInt(64, 0))));
8724  } else {
8725    const fltSemantics &Sem = APFloat::IEEEsingle;
8726    CV.push_back(ConstantFP::get(*Context, APFloat(Sem, APInt(32, 1U << 31))));
8727    CV.push_back(ConstantFP::get(*Context, APFloat(Sem, APInt(32, 0))));
8728    CV.push_back(ConstantFP::get(*Context, APFloat(Sem, APInt(32, 0))));
8729    CV.push_back(ConstantFP::get(*Context, APFloat(Sem, APInt(32, 0))));
8730  }
8731  Constant *C = ConstantVector::get(CV);
8732  SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
8733  SDValue Mask1 = DAG.getLoad(SrcVT, dl, DAG.getEntryNode(), CPIdx,
8734                              MachinePointerInfo::getConstantPool(),
8735                              false, false, false, 16);
8736  SDValue SignBit = DAG.getNode(X86ISD::FAND, dl, SrcVT, Op1, Mask1);
8737
8738  // Shift sign bit right or left if the two operands have different types.
8739  if (SrcVT.bitsGT(VT)) {
8740    // Op0 is MVT::f32, Op1 is MVT::f64.
8741    SignBit = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2f64, SignBit);
8742    SignBit = DAG.getNode(X86ISD::FSRL, dl, MVT::v2f64, SignBit,
8743                          DAG.getConstant(32, MVT::i32));
8744    SignBit = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, SignBit);
8745    SignBit = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f32, SignBit,
8746                          DAG.getIntPtrConstant(0));
8747  }
8748
8749  // Clear first operand sign bit.
8750  CV.clear();
8751  if (VT == MVT::f64) {
8752    const fltSemantics &Sem = APFloat::IEEEdouble;
8753    CV.push_back(ConstantFP::get(*Context, APFloat(Sem,
8754                                                   APInt(64, ~(1ULL << 63)))));
8755    CV.push_back(ConstantFP::get(*Context, APFloat(Sem, APInt(64, 0))));
8756  } else {
8757    const fltSemantics &Sem = APFloat::IEEEsingle;
8758    CV.push_back(ConstantFP::get(*Context, APFloat(Sem,
8759                                                   APInt(32, ~(1U << 31)))));
8760    CV.push_back(ConstantFP::get(*Context, APFloat(Sem, APInt(32, 0))));
8761    CV.push_back(ConstantFP::get(*Context, APFloat(Sem, APInt(32, 0))));
8762    CV.push_back(ConstantFP::get(*Context, APFloat(Sem, APInt(32, 0))));
8763  }
8764  C = ConstantVector::get(CV);
8765  CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
8766  SDValue Mask2 = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
8767                              MachinePointerInfo::getConstantPool(),
8768                              false, false, false, 16);
8769  SDValue Val = DAG.getNode(X86ISD::FAND, dl, VT, Op0, Mask2);
8770
8771  // Or the value with the sign bit.
8772  return DAG.getNode(X86ISD::FOR, dl, VT, Val, SignBit);
8773}
8774
8775static SDValue LowerFGETSIGN(SDValue Op, SelectionDAG &DAG) {
8776  SDValue N0 = Op.getOperand(0);
8777  DebugLoc dl = Op.getDebugLoc();
8778  MVT VT = Op.getValueType().getSimpleVT();
8779
8780  // Lower ISD::FGETSIGN to (AND (X86ISD::FGETSIGNx86 ...) 1).
8781  SDValue xFGETSIGN = DAG.getNode(X86ISD::FGETSIGNx86, dl, VT, N0,
8782                                  DAG.getConstant(1, VT));
8783  return DAG.getNode(ISD::AND, dl, VT, xFGETSIGN, DAG.getConstant(1, VT));
8784}
8785
8786// LowerVectorAllZeroTest - Check whether an OR'd tree is PTEST-able.
8787//
8788SDValue X86TargetLowering::LowerVectorAllZeroTest(SDValue Op,
8789                                                  SelectionDAG &DAG) const {
8790  assert(Op.getOpcode() == ISD::OR && "Only check OR'd tree.");
8791
8792  if (!Subtarget->hasSSE41())
8793    return SDValue();
8794
8795  if (!Op->hasOneUse())
8796    return SDValue();
8797
8798  SDNode *N = Op.getNode();
8799  DebugLoc DL = N->getDebugLoc();
8800
8801  SmallVector<SDValue, 8> Opnds;
8802  DenseMap<SDValue, unsigned> VecInMap;
8803  EVT VT = MVT::Other;
8804
8805  // Recognize a special case where a vector is casted into wide integer to
8806  // test all 0s.
8807  Opnds.push_back(N->getOperand(0));
8808  Opnds.push_back(N->getOperand(1));
8809
8810  for (unsigned Slot = 0, e = Opnds.size(); Slot < e; ++Slot) {
8811    SmallVector<SDValue, 8>::const_iterator I = Opnds.begin() + Slot;
8812    // BFS traverse all OR'd operands.
8813    if (I->getOpcode() == ISD::OR) {
8814      Opnds.push_back(I->getOperand(0));
8815      Opnds.push_back(I->getOperand(1));
8816      // Re-evaluate the number of nodes to be traversed.
8817      e += 2; // 2 more nodes (LHS and RHS) are pushed.
8818      continue;
8819    }
8820
8821    // Quit if a non-EXTRACT_VECTOR_ELT
8822    if (I->getOpcode() != ISD::EXTRACT_VECTOR_ELT)
8823      return SDValue();
8824
8825    // Quit if without a constant index.
8826    SDValue Idx = I->getOperand(1);
8827    if (!isa<ConstantSDNode>(Idx))
8828      return SDValue();
8829
8830    SDValue ExtractedFromVec = I->getOperand(0);
8831    DenseMap<SDValue, unsigned>::iterator M = VecInMap.find(ExtractedFromVec);
8832    if (M == VecInMap.end()) {
8833      VT = ExtractedFromVec.getValueType();
8834      // Quit if not 128/256-bit vector.
8835      if (!VT.is128BitVector() && !VT.is256BitVector())
8836        return SDValue();
8837      // Quit if not the same type.
8838      if (VecInMap.begin() != VecInMap.end() &&
8839          VT != VecInMap.begin()->first.getValueType())
8840        return SDValue();
8841      M = VecInMap.insert(std::make_pair(ExtractedFromVec, 0)).first;
8842    }
8843    M->second |= 1U << cast<ConstantSDNode>(Idx)->getZExtValue();
8844  }
8845
8846  assert((VT.is128BitVector() || VT.is256BitVector()) &&
8847         "Not extracted from 128-/256-bit vector.");
8848
8849  unsigned FullMask = (1U << VT.getVectorNumElements()) - 1U;
8850  SmallVector<SDValue, 8> VecIns;
8851
8852  for (DenseMap<SDValue, unsigned>::const_iterator
8853        I = VecInMap.begin(), E = VecInMap.end(); I != E; ++I) {
8854    // Quit if not all elements are used.
8855    if (I->second != FullMask)
8856      return SDValue();
8857    VecIns.push_back(I->first);
8858  }
8859
8860  EVT TestVT = VT.is128BitVector() ? MVT::v2i64 : MVT::v4i64;
8861
8862  // Cast all vectors into TestVT for PTEST.
8863  for (unsigned i = 0, e = VecIns.size(); i < e; ++i)
8864    VecIns[i] = DAG.getNode(ISD::BITCAST, DL, TestVT, VecIns[i]);
8865
8866  // If more than one full vectors are evaluated, OR them first before PTEST.
8867  for (unsigned Slot = 0, e = VecIns.size(); e - Slot > 1; Slot += 2, e += 1) {
8868    // Each iteration will OR 2 nodes and append the result until there is only
8869    // 1 node left, i.e. the final OR'd value of all vectors.
8870    SDValue LHS = VecIns[Slot];
8871    SDValue RHS = VecIns[Slot + 1];
8872    VecIns.push_back(DAG.getNode(ISD::OR, DL, TestVT, LHS, RHS));
8873  }
8874
8875  return DAG.getNode(X86ISD::PTEST, DL, MVT::i32,
8876                     VecIns.back(), VecIns.back());
8877}
8878
8879/// Emit nodes that will be selected as "test Op0,Op0", or something
8880/// equivalent.
8881SDValue X86TargetLowering::EmitTest(SDValue Op, unsigned X86CC,
8882                                    SelectionDAG &DAG) const {
8883  DebugLoc dl = Op.getDebugLoc();
8884
8885  // CF and OF aren't always set the way we want. Determine which
8886  // of these we need.
8887  bool NeedCF = false;
8888  bool NeedOF = false;
8889  switch (X86CC) {
8890  default: break;
8891  case X86::COND_A: case X86::COND_AE:
8892  case X86::COND_B: case X86::COND_BE:
8893    NeedCF = true;
8894    break;
8895  case X86::COND_G: case X86::COND_GE:
8896  case X86::COND_L: case X86::COND_LE:
8897  case X86::COND_O: case X86::COND_NO:
8898    NeedOF = true;
8899    break;
8900  }
8901
8902  // See if we can use the EFLAGS value from the operand instead of
8903  // doing a separate TEST. TEST always sets OF and CF to 0, so unless
8904  // we prove that the arithmetic won't overflow, we can't use OF or CF.
8905  if (Op.getResNo() != 0 || NeedOF || NeedCF)
8906    // Emit a CMP with 0, which is the TEST pattern.
8907    return DAG.getNode(X86ISD::CMP, dl, MVT::i32, Op,
8908                       DAG.getConstant(0, Op.getValueType()));
8909
8910  unsigned Opcode = 0;
8911  unsigned NumOperands = 0;
8912
8913  // Truncate operations may prevent the merge of the SETCC instruction
8914  // and the arithmetic intruction before it. Attempt to truncate the operands
8915  // of the arithmetic instruction and use a reduced bit-width instruction.
8916  bool NeedTruncation = false;
8917  SDValue ArithOp = Op;
8918  if (Op->getOpcode() == ISD::TRUNCATE && Op->hasOneUse()) {
8919    SDValue Arith = Op->getOperand(0);
8920    // Both the trunc and the arithmetic op need to have one user each.
8921    if (Arith->hasOneUse())
8922      switch (Arith.getOpcode()) {
8923        default: break;
8924        case ISD::ADD:
8925        case ISD::SUB:
8926        case ISD::AND:
8927        case ISD::OR:
8928        case ISD::XOR: {
8929          NeedTruncation = true;
8930          ArithOp = Arith;
8931        }
8932      }
8933  }
8934
8935  // NOTICE: In the code below we use ArithOp to hold the arithmetic operation
8936  // which may be the result of a CAST.  We use the variable 'Op', which is the
8937  // non-casted variable when we check for possible users.
8938  switch (ArithOp.getOpcode()) {
8939  case ISD::ADD:
8940    // Due to an isel shortcoming, be conservative if this add is likely to be
8941    // selected as part of a load-modify-store instruction. When the root node
8942    // in a match is a store, isel doesn't know how to remap non-chain non-flag
8943    // uses of other nodes in the match, such as the ADD in this case. This
8944    // leads to the ADD being left around and reselected, with the result being
8945    // two adds in the output.  Alas, even if none our users are stores, that
8946    // doesn't prove we're O.K.  Ergo, if we have any parents that aren't
8947    // CopyToReg or SETCC, eschew INC/DEC.  A better fix seems to require
8948    // climbing the DAG back to the root, and it doesn't seem to be worth the
8949    // effort.
8950    for (SDNode::use_iterator UI = Op.getNode()->use_begin(),
8951         UE = Op.getNode()->use_end(); UI != UE; ++UI)
8952      if (UI->getOpcode() != ISD::CopyToReg &&
8953          UI->getOpcode() != ISD::SETCC &&
8954          UI->getOpcode() != ISD::STORE)
8955        goto default_case;
8956
8957    if (ConstantSDNode *C =
8958        dyn_cast<ConstantSDNode>(ArithOp.getNode()->getOperand(1))) {
8959      // An add of one will be selected as an INC.
8960      if (C->getAPIntValue() == 1) {
8961        Opcode = X86ISD::INC;
8962        NumOperands = 1;
8963        break;
8964      }
8965
8966      // An add of negative one (subtract of one) will be selected as a DEC.
8967      if (C->getAPIntValue().isAllOnesValue()) {
8968        Opcode = X86ISD::DEC;
8969        NumOperands = 1;
8970        break;
8971      }
8972    }
8973
8974    // Otherwise use a regular EFLAGS-setting add.
8975    Opcode = X86ISD::ADD;
8976    NumOperands = 2;
8977    break;
8978  case ISD::AND: {
8979    // If the primary and result isn't used, don't bother using X86ISD::AND,
8980    // because a TEST instruction will be better.
8981    bool NonFlagUse = false;
8982    for (SDNode::use_iterator UI = Op.getNode()->use_begin(),
8983           UE = Op.getNode()->use_end(); UI != UE; ++UI) {
8984      SDNode *User = *UI;
8985      unsigned UOpNo = UI.getOperandNo();
8986      if (User->getOpcode() == ISD::TRUNCATE && User->hasOneUse()) {
8987        // Look pass truncate.
8988        UOpNo = User->use_begin().getOperandNo();
8989        User = *User->use_begin();
8990      }
8991
8992      if (User->getOpcode() != ISD::BRCOND &&
8993          User->getOpcode() != ISD::SETCC &&
8994          !(User->getOpcode() == ISD::SELECT && UOpNo == 0)) {
8995        NonFlagUse = true;
8996        break;
8997      }
8998    }
8999
9000    if (!NonFlagUse)
9001      break;
9002  }
9003    // FALL THROUGH
9004  case ISD::SUB:
9005  case ISD::OR:
9006  case ISD::XOR:
9007    // Due to the ISEL shortcoming noted above, be conservative if this op is
9008    // likely to be selected as part of a load-modify-store instruction.
9009    for (SDNode::use_iterator UI = Op.getNode()->use_begin(),
9010           UE = Op.getNode()->use_end(); UI != UE; ++UI)
9011      if (UI->getOpcode() == ISD::STORE)
9012        goto default_case;
9013
9014    // Otherwise use a regular EFLAGS-setting instruction.
9015    switch (ArithOp.getOpcode()) {
9016    default: llvm_unreachable("unexpected operator!");
9017    case ISD::SUB: Opcode = X86ISD::SUB; break;
9018    case ISD::XOR: Opcode = X86ISD::XOR; break;
9019    case ISD::AND: Opcode = X86ISD::AND; break;
9020    case ISD::OR: {
9021      if (!NeedTruncation && (X86CC == X86::COND_E || X86CC == X86::COND_NE)) {
9022        SDValue EFLAGS = LowerVectorAllZeroTest(Op, DAG);
9023        if (EFLAGS.getNode())
9024          return EFLAGS;
9025      }
9026      Opcode = X86ISD::OR;
9027      break;
9028    }
9029    }
9030
9031    NumOperands = 2;
9032    break;
9033  case X86ISD::ADD:
9034  case X86ISD::SUB:
9035  case X86ISD::INC:
9036  case X86ISD::DEC:
9037  case X86ISD::OR:
9038  case X86ISD::XOR:
9039  case X86ISD::AND:
9040    return SDValue(Op.getNode(), 1);
9041  default:
9042  default_case:
9043    break;
9044  }
9045
9046  // If we found that truncation is beneficial, perform the truncation and
9047  // update 'Op'.
9048  if (NeedTruncation) {
9049    EVT VT = Op.getValueType();
9050    SDValue WideVal = Op->getOperand(0);
9051    EVT WideVT = WideVal.getValueType();
9052    unsigned ConvertedOp = 0;
9053    // Use a target machine opcode to prevent further DAGCombine
9054    // optimizations that may separate the arithmetic operations
9055    // from the setcc node.
9056    switch (WideVal.getOpcode()) {
9057      default: break;
9058      case ISD::ADD: ConvertedOp = X86ISD::ADD; break;
9059      case ISD::SUB: ConvertedOp = X86ISD::SUB; break;
9060      case ISD::AND: ConvertedOp = X86ISD::AND; break;
9061      case ISD::OR:  ConvertedOp = X86ISD::OR;  break;
9062      case ISD::XOR: ConvertedOp = X86ISD::XOR; break;
9063    }
9064
9065    if (ConvertedOp) {
9066      const TargetLowering &TLI = DAG.getTargetLoweringInfo();
9067      if (TLI.isOperationLegal(WideVal.getOpcode(), WideVT)) {
9068        SDValue V0 = DAG.getNode(ISD::TRUNCATE, dl, VT, WideVal.getOperand(0));
9069        SDValue V1 = DAG.getNode(ISD::TRUNCATE, dl, VT, WideVal.getOperand(1));
9070        Op = DAG.getNode(ConvertedOp, dl, VT, V0, V1);
9071      }
9072    }
9073  }
9074
9075  if (Opcode == 0)
9076    // Emit a CMP with 0, which is the TEST pattern.
9077    return DAG.getNode(X86ISD::CMP, dl, MVT::i32, Op,
9078                       DAG.getConstant(0, Op.getValueType()));
9079
9080  SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::i32);
9081  SmallVector<SDValue, 4> Ops;
9082  for (unsigned i = 0; i != NumOperands; ++i)
9083    Ops.push_back(Op.getOperand(i));
9084
9085  SDValue New = DAG.getNode(Opcode, dl, VTs, &Ops[0], NumOperands);
9086  DAG.ReplaceAllUsesWith(Op, New);
9087  return SDValue(New.getNode(), 1);
9088}
9089
9090/// Emit nodes that will be selected as "cmp Op0,Op1", or something
9091/// equivalent.
9092SDValue X86TargetLowering::EmitCmp(SDValue Op0, SDValue Op1, unsigned X86CC,
9093                                   SelectionDAG &DAG) const {
9094  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op1))
9095    if (C->getAPIntValue() == 0)
9096      return EmitTest(Op0, X86CC, DAG);
9097
9098  DebugLoc dl = Op0.getDebugLoc();
9099  if ((Op0.getValueType() == MVT::i8 || Op0.getValueType() == MVT::i16 ||
9100       Op0.getValueType() == MVT::i32 || Op0.getValueType() == MVT::i64)) {
9101    // Use SUB instead of CMP to enable CSE between SUB and CMP.
9102    SDVTList VTs = DAG.getVTList(Op0.getValueType(), MVT::i32);
9103    SDValue Sub = DAG.getNode(X86ISD::SUB, dl, VTs,
9104                              Op0, Op1);
9105    return SDValue(Sub.getNode(), 1);
9106  }
9107  return DAG.getNode(X86ISD::CMP, dl, MVT::i32, Op0, Op1);
9108}
9109
9110/// Convert a comparison if required by the subtarget.
9111SDValue X86TargetLowering::ConvertCmpIfNecessary(SDValue Cmp,
9112                                                 SelectionDAG &DAG) const {
9113  // If the subtarget does not support the FUCOMI instruction, floating-point
9114  // comparisons have to be converted.
9115  if (Subtarget->hasCMov() ||
9116      Cmp.getOpcode() != X86ISD::CMP ||
9117      !Cmp.getOperand(0).getValueType().isFloatingPoint() ||
9118      !Cmp.getOperand(1).getValueType().isFloatingPoint())
9119    return Cmp;
9120
9121  // The instruction selector will select an FUCOM instruction instead of
9122  // FUCOMI, which writes the comparison result to FPSW instead of EFLAGS. Hence
9123  // build an SDNode sequence that transfers the result from FPSW into EFLAGS:
9124  // (X86sahf (trunc (srl (X86fp_stsw (trunc (X86cmp ...)), 8))))
9125  DebugLoc dl = Cmp.getDebugLoc();
9126  SDValue TruncFPSW = DAG.getNode(ISD::TRUNCATE, dl, MVT::i16, Cmp);
9127  SDValue FNStSW = DAG.getNode(X86ISD::FNSTSW16r, dl, MVT::i16, TruncFPSW);
9128  SDValue Srl = DAG.getNode(ISD::SRL, dl, MVT::i16, FNStSW,
9129                            DAG.getConstant(8, MVT::i8));
9130  SDValue TruncSrl = DAG.getNode(ISD::TRUNCATE, dl, MVT::i8, Srl);
9131  return DAG.getNode(X86ISD::SAHF, dl, MVT::i32, TruncSrl);
9132}
9133
9134static bool isAllOnes(SDValue V) {
9135  ConstantSDNode *C = dyn_cast<ConstantSDNode>(V);
9136  return C && C->isAllOnesValue();
9137}
9138
9139/// LowerToBT - Result of 'and' is compared against zero. Turn it into a BT node
9140/// if it's possible.
9141SDValue X86TargetLowering::LowerToBT(SDValue And, ISD::CondCode CC,
9142                                     DebugLoc dl, SelectionDAG &DAG) const {
9143  SDValue Op0 = And.getOperand(0);
9144  SDValue Op1 = And.getOperand(1);
9145  if (Op0.getOpcode() == ISD::TRUNCATE)
9146    Op0 = Op0.getOperand(0);
9147  if (Op1.getOpcode() == ISD::TRUNCATE)
9148    Op1 = Op1.getOperand(0);
9149
9150  SDValue LHS, RHS;
9151  if (Op1.getOpcode() == ISD::SHL)
9152    std::swap(Op0, Op1);
9153  if (Op0.getOpcode() == ISD::SHL) {
9154    if (ConstantSDNode *And00C = dyn_cast<ConstantSDNode>(Op0.getOperand(0)))
9155      if (And00C->getZExtValue() == 1) {
9156        // If we looked past a truncate, check that it's only truncating away
9157        // known zeros.
9158        unsigned BitWidth = Op0.getValueSizeInBits();
9159        unsigned AndBitWidth = And.getValueSizeInBits();
9160        if (BitWidth > AndBitWidth) {
9161          APInt Zeros, Ones;
9162          DAG.ComputeMaskedBits(Op0, Zeros, Ones);
9163          if (Zeros.countLeadingOnes() < BitWidth - AndBitWidth)
9164            return SDValue();
9165        }
9166        LHS = Op1;
9167        RHS = Op0.getOperand(1);
9168      }
9169  } else if (Op1.getOpcode() == ISD::Constant) {
9170    ConstantSDNode *AndRHS = cast<ConstantSDNode>(Op1);
9171    uint64_t AndRHSVal = AndRHS->getZExtValue();
9172    SDValue AndLHS = Op0;
9173
9174    if (AndRHSVal == 1 && AndLHS.getOpcode() == ISD::SRL) {
9175      LHS = AndLHS.getOperand(0);
9176      RHS = AndLHS.getOperand(1);
9177    }
9178
9179    // Use BT if the immediate can't be encoded in a TEST instruction.
9180    if (!isUInt<32>(AndRHSVal) && isPowerOf2_64(AndRHSVal)) {
9181      LHS = AndLHS;
9182      RHS = DAG.getConstant(Log2_64_Ceil(AndRHSVal), LHS.getValueType());
9183    }
9184  }
9185
9186  if (LHS.getNode()) {
9187    // If LHS is i8, promote it to i32 with any_extend.  There is no i8 BT
9188    // instruction.  Since the shift amount is in-range-or-undefined, we know
9189    // that doing a bittest on the i32 value is ok.  We extend to i32 because
9190    // the encoding for the i16 version is larger than the i32 version.
9191    // Also promote i16 to i32 for performance / code size reason.
9192    if (LHS.getValueType() == MVT::i8 ||
9193        LHS.getValueType() == MVT::i16)
9194      LHS = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, LHS);
9195
9196    // If the operand types disagree, extend the shift amount to match.  Since
9197    // BT ignores high bits (like shifts) we can use anyextend.
9198    if (LHS.getValueType() != RHS.getValueType())
9199      RHS = DAG.getNode(ISD::ANY_EXTEND, dl, LHS.getValueType(), RHS);
9200
9201    SDValue BT = DAG.getNode(X86ISD::BT, dl, MVT::i32, LHS, RHS);
9202    X86::CondCode Cond = CC == ISD::SETEQ ? X86::COND_AE : X86::COND_B;
9203    return DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
9204                       DAG.getConstant(Cond, MVT::i8), BT);
9205  }
9206
9207  return SDValue();
9208}
9209
9210// Lower256IntVSETCC - Break a VSETCC 256-bit integer VSETCC into two new 128
9211// ones, and then concatenate the result back.
9212static SDValue Lower256IntVSETCC(SDValue Op, SelectionDAG &DAG) {
9213  MVT VT = Op.getValueType().getSimpleVT();
9214
9215  assert(VT.is256BitVector() && Op.getOpcode() == ISD::SETCC &&
9216         "Unsupported value type for operation");
9217
9218  unsigned NumElems = VT.getVectorNumElements();
9219  DebugLoc dl = Op.getDebugLoc();
9220  SDValue CC = Op.getOperand(2);
9221
9222  // Extract the LHS vectors
9223  SDValue LHS = Op.getOperand(0);
9224  SDValue LHS1 = Extract128BitVector(LHS, 0, DAG, dl);
9225  SDValue LHS2 = Extract128BitVector(LHS, NumElems/2, DAG, dl);
9226
9227  // Extract the RHS vectors
9228  SDValue RHS = Op.getOperand(1);
9229  SDValue RHS1 = Extract128BitVector(RHS, 0, DAG, dl);
9230  SDValue RHS2 = Extract128BitVector(RHS, NumElems/2, DAG, dl);
9231
9232  // Issue the operation on the smaller types and concatenate the result back
9233  MVT EltVT = VT.getVectorElementType();
9234  MVT NewVT = MVT::getVectorVT(EltVT, NumElems/2);
9235  return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT,
9236                     DAG.getNode(Op.getOpcode(), dl, NewVT, LHS1, RHS1, CC),
9237                     DAG.getNode(Op.getOpcode(), dl, NewVT, LHS2, RHS2, CC));
9238}
9239
9240static SDValue LowerVSETCC(SDValue Op, const X86Subtarget *Subtarget,
9241                           SelectionDAG &DAG) {
9242  SDValue Cond;
9243  SDValue Op0 = Op.getOperand(0);
9244  SDValue Op1 = Op.getOperand(1);
9245  SDValue CC = Op.getOperand(2);
9246  MVT VT = Op.getValueType().getSimpleVT();
9247  ISD::CondCode SetCCOpcode = cast<CondCodeSDNode>(CC)->get();
9248  bool isFP = Op.getOperand(1).getValueType().getSimpleVT().isFloatingPoint();
9249  DebugLoc dl = Op.getDebugLoc();
9250
9251  if (isFP) {
9252#ifndef NDEBUG
9253    MVT EltVT = Op0.getValueType().getVectorElementType().getSimpleVT();
9254    assert(EltVT == MVT::f32 || EltVT == MVT::f64);
9255#endif
9256
9257    unsigned SSECC;
9258    bool Swap = false;
9259
9260    // SSE Condition code mapping:
9261    //  0 - EQ
9262    //  1 - LT
9263    //  2 - LE
9264    //  3 - UNORD
9265    //  4 - NEQ
9266    //  5 - NLT
9267    //  6 - NLE
9268    //  7 - ORD
9269    switch (SetCCOpcode) {
9270    default: llvm_unreachable("Unexpected SETCC condition");
9271    case ISD::SETOEQ:
9272    case ISD::SETEQ:  SSECC = 0; break;
9273    case ISD::SETOGT:
9274    case ISD::SETGT: Swap = true; // Fallthrough
9275    case ISD::SETLT:
9276    case ISD::SETOLT: SSECC = 1; break;
9277    case ISD::SETOGE:
9278    case ISD::SETGE: Swap = true; // Fallthrough
9279    case ISD::SETLE:
9280    case ISD::SETOLE: SSECC = 2; break;
9281    case ISD::SETUO:  SSECC = 3; break;
9282    case ISD::SETUNE:
9283    case ISD::SETNE:  SSECC = 4; break;
9284    case ISD::SETULE: Swap = true; // Fallthrough
9285    case ISD::SETUGE: SSECC = 5; break;
9286    case ISD::SETULT: Swap = true; // Fallthrough
9287    case ISD::SETUGT: SSECC = 6; break;
9288    case ISD::SETO:   SSECC = 7; break;
9289    case ISD::SETUEQ:
9290    case ISD::SETONE: SSECC = 8; break;
9291    }
9292    if (Swap)
9293      std::swap(Op0, Op1);
9294
9295    // In the two special cases we can't handle, emit two comparisons.
9296    if (SSECC == 8) {
9297      unsigned CC0, CC1;
9298      unsigned CombineOpc;
9299      if (SetCCOpcode == ISD::SETUEQ) {
9300        CC0 = 3; CC1 = 0; CombineOpc = ISD::OR;
9301      } else {
9302        assert(SetCCOpcode == ISD::SETONE);
9303        CC0 = 7; CC1 = 4; CombineOpc = ISD::AND;
9304      }
9305
9306      SDValue Cmp0 = DAG.getNode(X86ISD::CMPP, dl, VT, Op0, Op1,
9307                                 DAG.getConstant(CC0, MVT::i8));
9308      SDValue Cmp1 = DAG.getNode(X86ISD::CMPP, dl, VT, Op0, Op1,
9309                                 DAG.getConstant(CC1, MVT::i8));
9310      return DAG.getNode(CombineOpc, dl, VT, Cmp0, Cmp1);
9311    }
9312    // Handle all other FP comparisons here.
9313    return DAG.getNode(X86ISD::CMPP, dl, VT, Op0, Op1,
9314                       DAG.getConstant(SSECC, MVT::i8));
9315  }
9316
9317  // Break 256-bit integer vector compare into smaller ones.
9318  if (VT.is256BitVector() && !Subtarget->hasInt256())
9319    return Lower256IntVSETCC(Op, DAG);
9320
9321  // We are handling one of the integer comparisons here.  Since SSE only has
9322  // GT and EQ comparisons for integer, swapping operands and multiple
9323  // operations may be required for some comparisons.
9324  unsigned Opc;
9325  bool Swap = false, Invert = false, FlipSigns = false;
9326
9327  switch (SetCCOpcode) {
9328  default: llvm_unreachable("Unexpected SETCC condition");
9329  case ISD::SETNE:  Invert = true;
9330  case ISD::SETEQ:  Opc = X86ISD::PCMPEQ; break;
9331  case ISD::SETLT:  Swap = true;
9332  case ISD::SETGT:  Opc = X86ISD::PCMPGT; break;
9333  case ISD::SETGE:  Swap = true;
9334  case ISD::SETLE:  Opc = X86ISD::PCMPGT; Invert = true; break;
9335  case ISD::SETULT: Swap = true;
9336  case ISD::SETUGT: Opc = X86ISD::PCMPGT; FlipSigns = true; break;
9337  case ISD::SETUGE: Swap = true;
9338  case ISD::SETULE: Opc = X86ISD::PCMPGT; FlipSigns = true; Invert = true; break;
9339  }
9340  if (Swap)
9341    std::swap(Op0, Op1);
9342
9343  // Check that the operation in question is available (most are plain SSE2,
9344  // but PCMPGTQ and PCMPEQQ have different requirements).
9345  if (VT == MVT::v2i64) {
9346    if (Opc == X86ISD::PCMPGT && !Subtarget->hasSSE42()) {
9347      assert(Subtarget->hasSSE2() && "Don't know how to lower!");
9348
9349      // First cast everything to the right type.
9350      Op0 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, Op0);
9351      Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, Op1);
9352
9353      // Since SSE has no unsigned integer comparisons, we need to flip the sign
9354      // bits of the inputs before performing those operations. The lower
9355      // compare is always unsigned.
9356      SDValue SB;
9357      if (FlipSigns) {
9358        SB = DAG.getConstant(0x80000000U, MVT::v4i32);
9359      } else {
9360        SDValue Sign = DAG.getConstant(0x80000000U, MVT::i32);
9361        SDValue Zero = DAG.getConstant(0x00000000U, MVT::i32);
9362        SB = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32,
9363                         Sign, Zero, Sign, Zero);
9364      }
9365      Op0 = DAG.getNode(ISD::XOR, dl, MVT::v4i32, Op0, SB);
9366      Op1 = DAG.getNode(ISD::XOR, dl, MVT::v4i32, Op1, SB);
9367
9368      // Emulate PCMPGTQ with (hi1 > hi2) | ((hi1 == hi2) & (lo1 > lo2))
9369      SDValue GT = DAG.getNode(X86ISD::PCMPGT, dl, MVT::v4i32, Op0, Op1);
9370      SDValue EQ = DAG.getNode(X86ISD::PCMPEQ, dl, MVT::v4i32, Op0, Op1);
9371
9372      // Create masks for only the low parts/high parts of the 64 bit integers.
9373      const int MaskHi[] = { 1, 1, 3, 3 };
9374      const int MaskLo[] = { 0, 0, 2, 2 };
9375      SDValue EQHi = DAG.getVectorShuffle(MVT::v4i32, dl, EQ, EQ, MaskHi);
9376      SDValue GTLo = DAG.getVectorShuffle(MVT::v4i32, dl, GT, GT, MaskLo);
9377      SDValue GTHi = DAG.getVectorShuffle(MVT::v4i32, dl, GT, GT, MaskHi);
9378
9379      SDValue Result = DAG.getNode(ISD::AND, dl, MVT::v4i32, EQHi, GTLo);
9380      Result = DAG.getNode(ISD::OR, dl, MVT::v4i32, Result, GTHi);
9381
9382      if (Invert)
9383        Result = DAG.getNOT(dl, Result, MVT::v4i32);
9384
9385      return DAG.getNode(ISD::BITCAST, dl, VT, Result);
9386    }
9387
9388    if (Opc == X86ISD::PCMPEQ && !Subtarget->hasSSE41()) {
9389      // If pcmpeqq is missing but pcmpeqd is available synthesize pcmpeqq with
9390      // pcmpeqd + pshufd + pand.
9391      assert(Subtarget->hasSSE2() && !FlipSigns && "Don't know how to lower!");
9392
9393      // First cast everything to the right type.
9394      Op0 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, Op0);
9395      Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, Op1);
9396
9397      // Do the compare.
9398      SDValue Result = DAG.getNode(Opc, dl, MVT::v4i32, Op0, Op1);
9399
9400      // Make sure the lower and upper halves are both all-ones.
9401      const int Mask[] = { 1, 0, 3, 2 };
9402      SDValue Shuf = DAG.getVectorShuffle(MVT::v4i32, dl, Result, Result, Mask);
9403      Result = DAG.getNode(ISD::AND, dl, MVT::v4i32, Result, Shuf);
9404
9405      if (Invert)
9406        Result = DAG.getNOT(dl, Result, MVT::v4i32);
9407
9408      return DAG.getNode(ISD::BITCAST, dl, VT, Result);
9409    }
9410  }
9411
9412  // Since SSE has no unsigned integer comparisons, we need to flip the sign
9413  // bits of the inputs before performing those operations.
9414  if (FlipSigns) {
9415    EVT EltVT = VT.getVectorElementType();
9416    SDValue SB = DAG.getConstant(APInt::getSignBit(EltVT.getSizeInBits()), VT);
9417    Op0 = DAG.getNode(ISD::XOR, dl, VT, Op0, SB);
9418    Op1 = DAG.getNode(ISD::XOR, dl, VT, Op1, SB);
9419  }
9420
9421  SDValue Result = DAG.getNode(Opc, dl, VT, Op0, Op1);
9422
9423  // If the logical-not of the result is required, perform that now.
9424  if (Invert)
9425    Result = DAG.getNOT(dl, Result, VT);
9426
9427  return Result;
9428}
9429
9430SDValue X86TargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) const {
9431
9432  MVT VT = Op.getValueType().getSimpleVT();
9433
9434  if (VT.isVector()) return LowerVSETCC(Op, Subtarget, DAG);
9435
9436  assert(VT == MVT::i8 && "SetCC type must be 8-bit integer");
9437  SDValue Op0 = Op.getOperand(0);
9438  SDValue Op1 = Op.getOperand(1);
9439  DebugLoc dl = Op.getDebugLoc();
9440  ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
9441
9442  // Optimize to BT if possible.
9443  // Lower (X & (1 << N)) == 0 to BT(X, N).
9444  // Lower ((X >>u N) & 1) != 0 to BT(X, N).
9445  // Lower ((X >>s N) & 1) != 0 to BT(X, N).
9446  if (Op0.getOpcode() == ISD::AND && Op0.hasOneUse() &&
9447      Op1.getOpcode() == ISD::Constant &&
9448      cast<ConstantSDNode>(Op1)->isNullValue() &&
9449      (CC == ISD::SETEQ || CC == ISD::SETNE)) {
9450    SDValue NewSetCC = LowerToBT(Op0, CC, dl, DAG);
9451    if (NewSetCC.getNode())
9452      return NewSetCC;
9453  }
9454
9455  // Look for X == 0, X == 1, X != 0, or X != 1.  We can simplify some forms of
9456  // these.
9457  if (Op1.getOpcode() == ISD::Constant &&
9458      (cast<ConstantSDNode>(Op1)->getZExtValue() == 1 ||
9459       cast<ConstantSDNode>(Op1)->isNullValue()) &&
9460      (CC == ISD::SETEQ || CC == ISD::SETNE)) {
9461
9462    // If the input is a setcc, then reuse the input setcc or use a new one with
9463    // the inverted condition.
9464    if (Op0.getOpcode() == X86ISD::SETCC) {
9465      X86::CondCode CCode = (X86::CondCode)Op0.getConstantOperandVal(0);
9466      bool Invert = (CC == ISD::SETNE) ^
9467        cast<ConstantSDNode>(Op1)->isNullValue();
9468      if (!Invert) return Op0;
9469
9470      CCode = X86::GetOppositeBranchCondition(CCode);
9471      return DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
9472                         DAG.getConstant(CCode, MVT::i8), Op0.getOperand(1));
9473    }
9474  }
9475
9476  bool isFP = Op1.getValueType().getSimpleVT().isFloatingPoint();
9477  unsigned X86CC = TranslateX86CC(CC, isFP, Op0, Op1, DAG);
9478  if (X86CC == X86::COND_INVALID)
9479    return SDValue();
9480
9481  SDValue EFLAGS = EmitCmp(Op0, Op1, X86CC, DAG);
9482  EFLAGS = ConvertCmpIfNecessary(EFLAGS, DAG);
9483  return DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
9484                     DAG.getConstant(X86CC, MVT::i8), EFLAGS);
9485}
9486
9487// isX86LogicalCmp - Return true if opcode is a X86 logical comparison.
9488static bool isX86LogicalCmp(SDValue Op) {
9489  unsigned Opc = Op.getNode()->getOpcode();
9490  if (Opc == X86ISD::CMP || Opc == X86ISD::COMI || Opc == X86ISD::UCOMI ||
9491      Opc == X86ISD::SAHF)
9492    return true;
9493  if (Op.getResNo() == 1 &&
9494      (Opc == X86ISD::ADD ||
9495       Opc == X86ISD::SUB ||
9496       Opc == X86ISD::ADC ||
9497       Opc == X86ISD::SBB ||
9498       Opc == X86ISD::SMUL ||
9499       Opc == X86ISD::UMUL ||
9500       Opc == X86ISD::INC ||
9501       Opc == X86ISD::DEC ||
9502       Opc == X86ISD::OR ||
9503       Opc == X86ISD::XOR ||
9504       Opc == X86ISD::AND))
9505    return true;
9506
9507  if (Op.getResNo() == 2 && Opc == X86ISD::UMUL)
9508    return true;
9509
9510  return false;
9511}
9512
9513static bool isZero(SDValue V) {
9514  ConstantSDNode *C = dyn_cast<ConstantSDNode>(V);
9515  return C && C->isNullValue();
9516}
9517
9518static bool isTruncWithZeroHighBitsInput(SDValue V, SelectionDAG &DAG) {
9519  if (V.getOpcode() != ISD::TRUNCATE)
9520    return false;
9521
9522  SDValue VOp0 = V.getOperand(0);
9523  unsigned InBits = VOp0.getValueSizeInBits();
9524  unsigned Bits = V.getValueSizeInBits();
9525  return DAG.MaskedValueIsZero(VOp0, APInt::getHighBitsSet(InBits,InBits-Bits));
9526}
9527
9528SDValue X86TargetLowering::LowerSELECT(SDValue Op, SelectionDAG &DAG) const {
9529  bool addTest = true;
9530  SDValue Cond  = Op.getOperand(0);
9531  SDValue Op1 = Op.getOperand(1);
9532  SDValue Op2 = Op.getOperand(2);
9533  DebugLoc DL = Op.getDebugLoc();
9534  SDValue CC;
9535
9536  if (Cond.getOpcode() == ISD::SETCC) {
9537    SDValue NewCond = LowerSETCC(Cond, DAG);
9538    if (NewCond.getNode())
9539      Cond = NewCond;
9540  }
9541
9542  // (select (x == 0), -1, y) -> (sign_bit (x - 1)) | y
9543  // (select (x == 0), y, -1) -> ~(sign_bit (x - 1)) | y
9544  // (select (x != 0), y, -1) -> (sign_bit (x - 1)) | y
9545  // (select (x != 0), -1, y) -> ~(sign_bit (x - 1)) | y
9546  if (Cond.getOpcode() == X86ISD::SETCC &&
9547      Cond.getOperand(1).getOpcode() == X86ISD::CMP &&
9548      isZero(Cond.getOperand(1).getOperand(1))) {
9549    SDValue Cmp = Cond.getOperand(1);
9550
9551    unsigned CondCode =cast<ConstantSDNode>(Cond.getOperand(0))->getZExtValue();
9552
9553    if ((isAllOnes(Op1) || isAllOnes(Op2)) &&
9554        (CondCode == X86::COND_E || CondCode == X86::COND_NE)) {
9555      SDValue Y = isAllOnes(Op2) ? Op1 : Op2;
9556
9557      SDValue CmpOp0 = Cmp.getOperand(0);
9558      // Apply further optimizations for special cases
9559      // (select (x != 0), -1, 0) -> neg & sbb
9560      // (select (x == 0), 0, -1) -> neg & sbb
9561      if (ConstantSDNode *YC = dyn_cast<ConstantSDNode>(Y))
9562        if (YC->isNullValue() &&
9563            (isAllOnes(Op1) == (CondCode == X86::COND_NE))) {
9564          SDVTList VTs = DAG.getVTList(CmpOp0.getValueType(), MVT::i32);
9565          SDValue Neg = DAG.getNode(X86ISD::SUB, DL, VTs,
9566                                    DAG.getConstant(0, CmpOp0.getValueType()),
9567                                    CmpOp0);
9568          SDValue Res = DAG.getNode(X86ISD::SETCC_CARRY, DL, Op.getValueType(),
9569                                    DAG.getConstant(X86::COND_B, MVT::i8),
9570                                    SDValue(Neg.getNode(), 1));
9571          return Res;
9572        }
9573
9574      Cmp = DAG.getNode(X86ISD::CMP, DL, MVT::i32,
9575                        CmpOp0, DAG.getConstant(1, CmpOp0.getValueType()));
9576      Cmp = ConvertCmpIfNecessary(Cmp, DAG);
9577
9578      SDValue Res =   // Res = 0 or -1.
9579        DAG.getNode(X86ISD::SETCC_CARRY, DL, Op.getValueType(),
9580                    DAG.getConstant(X86::COND_B, MVT::i8), Cmp);
9581
9582      if (isAllOnes(Op1) != (CondCode == X86::COND_E))
9583        Res = DAG.getNOT(DL, Res, Res.getValueType());
9584
9585      ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(Op2);
9586      if (N2C == 0 || !N2C->isNullValue())
9587        Res = DAG.getNode(ISD::OR, DL, Res.getValueType(), Res, Y);
9588      return Res;
9589    }
9590  }
9591
9592  // Look past (and (setcc_carry (cmp ...)), 1).
9593  if (Cond.getOpcode() == ISD::AND &&
9594      Cond.getOperand(0).getOpcode() == X86ISD::SETCC_CARRY) {
9595    ConstantSDNode *C = dyn_cast<ConstantSDNode>(Cond.getOperand(1));
9596    if (C && C->getAPIntValue() == 1)
9597      Cond = Cond.getOperand(0);
9598  }
9599
9600  // If condition flag is set by a X86ISD::CMP, then use it as the condition
9601  // setting operand in place of the X86ISD::SETCC.
9602  unsigned CondOpcode = Cond.getOpcode();
9603  if (CondOpcode == X86ISD::SETCC ||
9604      CondOpcode == X86ISD::SETCC_CARRY) {
9605    CC = Cond.getOperand(0);
9606
9607    SDValue Cmp = Cond.getOperand(1);
9608    unsigned Opc = Cmp.getOpcode();
9609    MVT VT = Op.getValueType().getSimpleVT();
9610
9611    bool IllegalFPCMov = false;
9612    if (VT.isFloatingPoint() && !VT.isVector() &&
9613        !isScalarFPTypeInSSEReg(VT))  // FPStack?
9614      IllegalFPCMov = !hasFPCMov(cast<ConstantSDNode>(CC)->getSExtValue());
9615
9616    if ((isX86LogicalCmp(Cmp) && !IllegalFPCMov) ||
9617        Opc == X86ISD::BT) { // FIXME
9618      Cond = Cmp;
9619      addTest = false;
9620    }
9621  } else if (CondOpcode == ISD::USUBO || CondOpcode == ISD::SSUBO ||
9622             CondOpcode == ISD::UADDO || CondOpcode == ISD::SADDO ||
9623             ((CondOpcode == ISD::UMULO || CondOpcode == ISD::SMULO) &&
9624              Cond.getOperand(0).getValueType() != MVT::i8)) {
9625    SDValue LHS = Cond.getOperand(0);
9626    SDValue RHS = Cond.getOperand(1);
9627    unsigned X86Opcode;
9628    unsigned X86Cond;
9629    SDVTList VTs;
9630    switch (CondOpcode) {
9631    case ISD::UADDO: X86Opcode = X86ISD::ADD; X86Cond = X86::COND_B; break;
9632    case ISD::SADDO: X86Opcode = X86ISD::ADD; X86Cond = X86::COND_O; break;
9633    case ISD::USUBO: X86Opcode = X86ISD::SUB; X86Cond = X86::COND_B; break;
9634    case ISD::SSUBO: X86Opcode = X86ISD::SUB; X86Cond = X86::COND_O; break;
9635    case ISD::UMULO: X86Opcode = X86ISD::UMUL; X86Cond = X86::COND_O; break;
9636    case ISD::SMULO: X86Opcode = X86ISD::SMUL; X86Cond = X86::COND_O; break;
9637    default: llvm_unreachable("unexpected overflowing operator");
9638    }
9639    if (CondOpcode == ISD::UMULO)
9640      VTs = DAG.getVTList(LHS.getValueType(), LHS.getValueType(),
9641                          MVT::i32);
9642    else
9643      VTs = DAG.getVTList(LHS.getValueType(), MVT::i32);
9644
9645    SDValue X86Op = DAG.getNode(X86Opcode, DL, VTs, LHS, RHS);
9646
9647    if (CondOpcode == ISD::UMULO)
9648      Cond = X86Op.getValue(2);
9649    else
9650      Cond = X86Op.getValue(1);
9651
9652    CC = DAG.getConstant(X86Cond, MVT::i8);
9653    addTest = false;
9654  }
9655
9656  if (addTest) {
9657    // Look pass the truncate if the high bits are known zero.
9658    if (isTruncWithZeroHighBitsInput(Cond, DAG))
9659        Cond = Cond.getOperand(0);
9660
9661    // We know the result of AND is compared against zero. Try to match
9662    // it to BT.
9663    if (Cond.getOpcode() == ISD::AND && Cond.hasOneUse()) {
9664      SDValue NewSetCC = LowerToBT(Cond, ISD::SETNE, DL, DAG);
9665      if (NewSetCC.getNode()) {
9666        CC = NewSetCC.getOperand(0);
9667        Cond = NewSetCC.getOperand(1);
9668        addTest = false;
9669      }
9670    }
9671  }
9672
9673  if (addTest) {
9674    CC = DAG.getConstant(X86::COND_NE, MVT::i8);
9675    Cond = EmitTest(Cond, X86::COND_NE, DAG);
9676  }
9677
9678  // a <  b ? -1 :  0 -> RES = ~setcc_carry
9679  // a <  b ?  0 : -1 -> RES = setcc_carry
9680  // a >= b ? -1 :  0 -> RES = setcc_carry
9681  // a >= b ?  0 : -1 -> RES = ~setcc_carry
9682  if (Cond.getOpcode() == X86ISD::SUB) {
9683    Cond = ConvertCmpIfNecessary(Cond, DAG);
9684    unsigned CondCode = cast<ConstantSDNode>(CC)->getZExtValue();
9685
9686    if ((CondCode == X86::COND_AE || CondCode == X86::COND_B) &&
9687        (isAllOnes(Op1) || isAllOnes(Op2)) && (isZero(Op1) || isZero(Op2))) {
9688      SDValue Res = DAG.getNode(X86ISD::SETCC_CARRY, DL, Op.getValueType(),
9689                                DAG.getConstant(X86::COND_B, MVT::i8), Cond);
9690      if (isAllOnes(Op1) != (CondCode == X86::COND_B))
9691        return DAG.getNOT(DL, Res, Res.getValueType());
9692      return Res;
9693    }
9694  }
9695
9696  // X86 doesn't have an i8 cmov. If both operands are the result of a truncate
9697  // widen the cmov and push the truncate through. This avoids introducing a new
9698  // branch during isel and doesn't add any extensions.
9699  if (Op.getValueType() == MVT::i8 &&
9700      Op1.getOpcode() == ISD::TRUNCATE && Op2.getOpcode() == ISD::TRUNCATE) {
9701    SDValue T1 = Op1.getOperand(0), T2 = Op2.getOperand(0);
9702    if (T1.getValueType() == T2.getValueType() &&
9703        // Blacklist CopyFromReg to avoid partial register stalls.
9704        T1.getOpcode() != ISD::CopyFromReg && T2.getOpcode()!=ISD::CopyFromReg){
9705      SDVTList VTs = DAG.getVTList(T1.getValueType(), MVT::Glue);
9706      SDValue Cmov = DAG.getNode(X86ISD::CMOV, DL, VTs, T2, T1, CC, Cond);
9707      return DAG.getNode(ISD::TRUNCATE, DL, Op.getValueType(), Cmov);
9708    }
9709  }
9710
9711  // X86ISD::CMOV means set the result (which is operand 1) to the RHS if
9712  // condition is true.
9713  SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::Glue);
9714  SDValue Ops[] = { Op2, Op1, CC, Cond };
9715  return DAG.getNode(X86ISD::CMOV, DL, VTs, Ops, array_lengthof(Ops));
9716}
9717
9718SDValue X86TargetLowering::LowerSIGN_EXTEND(SDValue Op,
9719                                            SelectionDAG &DAG) const {
9720  MVT VT = Op->getValueType(0).getSimpleVT();
9721  SDValue In = Op->getOperand(0);
9722  MVT InVT = In.getValueType().getSimpleVT();
9723  DebugLoc dl = Op->getDebugLoc();
9724
9725  if ((VT != MVT::v4i64 || InVT != MVT::v4i32) &&
9726      (VT != MVT::v8i32 || InVT != MVT::v8i16))
9727    return SDValue();
9728
9729  if (Subtarget->hasInt256())
9730    return DAG.getNode(X86ISD::VSEXT_MOVL, dl, VT, In);
9731
9732  // Optimize vectors in AVX mode
9733  // Sign extend  v8i16 to v8i32 and
9734  //              v4i32 to v4i64
9735  //
9736  // Divide input vector into two parts
9737  // for v4i32 the shuffle mask will be { 0, 1, -1, -1} {2, 3, -1, -1}
9738  // use vpmovsx instruction to extend v4i32 -> v2i64; v8i16 -> v4i32
9739  // concat the vectors to original VT
9740
9741  unsigned NumElems = InVT.getVectorNumElements();
9742  SDValue Undef = DAG.getUNDEF(InVT);
9743
9744  SmallVector<int,8> ShufMask1(NumElems, -1);
9745  for (unsigned i = 0; i != NumElems/2; ++i)
9746    ShufMask1[i] = i;
9747
9748  SDValue OpLo = DAG.getVectorShuffle(InVT, dl, In, Undef, &ShufMask1[0]);
9749
9750  SmallVector<int,8> ShufMask2(NumElems, -1);
9751  for (unsigned i = 0; i != NumElems/2; ++i)
9752    ShufMask2[i] = i + NumElems/2;
9753
9754  SDValue OpHi = DAG.getVectorShuffle(InVT, dl, In, Undef, &ShufMask2[0]);
9755
9756  MVT HalfVT = MVT::getVectorVT(VT.getScalarType(),
9757                                VT.getVectorNumElements()/2);
9758
9759  OpLo = DAG.getNode(X86ISD::VSEXT_MOVL, dl, HalfVT, OpLo);
9760  OpHi = DAG.getNode(X86ISD::VSEXT_MOVL, dl, HalfVT, OpHi);
9761
9762  return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT, OpLo, OpHi);
9763}
9764
9765// isAndOrOfSingleUseSetCCs - Return true if node is an ISD::AND or
9766// ISD::OR of two X86ISD::SETCC nodes each of which has no other use apart
9767// from the AND / OR.
9768static bool isAndOrOfSetCCs(SDValue Op, unsigned &Opc) {
9769  Opc = Op.getOpcode();
9770  if (Opc != ISD::OR && Opc != ISD::AND)
9771    return false;
9772  return (Op.getOperand(0).getOpcode() == X86ISD::SETCC &&
9773          Op.getOperand(0).hasOneUse() &&
9774          Op.getOperand(1).getOpcode() == X86ISD::SETCC &&
9775          Op.getOperand(1).hasOneUse());
9776}
9777
9778// isXor1OfSetCC - Return true if node is an ISD::XOR of a X86ISD::SETCC and
9779// 1 and that the SETCC node has a single use.
9780static bool isXor1OfSetCC(SDValue Op) {
9781  if (Op.getOpcode() != ISD::XOR)
9782    return false;
9783  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
9784  if (N1C && N1C->getAPIntValue() == 1) {
9785    return Op.getOperand(0).getOpcode() == X86ISD::SETCC &&
9786      Op.getOperand(0).hasOneUse();
9787  }
9788  return false;
9789}
9790
9791SDValue X86TargetLowering::LowerBRCOND(SDValue Op, SelectionDAG &DAG) const {
9792  bool addTest = true;
9793  SDValue Chain = Op.getOperand(0);
9794  SDValue Cond  = Op.getOperand(1);
9795  SDValue Dest  = Op.getOperand(2);
9796  DebugLoc dl = Op.getDebugLoc();
9797  SDValue CC;
9798  bool Inverted = false;
9799
9800  if (Cond.getOpcode() == ISD::SETCC) {
9801    // Check for setcc([su]{add,sub,mul}o == 0).
9802    if (cast<CondCodeSDNode>(Cond.getOperand(2))->get() == ISD::SETEQ &&
9803        isa<ConstantSDNode>(Cond.getOperand(1)) &&
9804        cast<ConstantSDNode>(Cond.getOperand(1))->isNullValue() &&
9805        Cond.getOperand(0).getResNo() == 1 &&
9806        (Cond.getOperand(0).getOpcode() == ISD::SADDO ||
9807         Cond.getOperand(0).getOpcode() == ISD::UADDO ||
9808         Cond.getOperand(0).getOpcode() == ISD::SSUBO ||
9809         Cond.getOperand(0).getOpcode() == ISD::USUBO ||
9810         Cond.getOperand(0).getOpcode() == ISD::SMULO ||
9811         Cond.getOperand(0).getOpcode() == ISD::UMULO)) {
9812      Inverted = true;
9813      Cond = Cond.getOperand(0);
9814    } else {
9815      SDValue NewCond = LowerSETCC(Cond, DAG);
9816      if (NewCond.getNode())
9817        Cond = NewCond;
9818    }
9819  }
9820#if 0
9821  // FIXME: LowerXALUO doesn't handle these!!
9822  else if (Cond.getOpcode() == X86ISD::ADD  ||
9823           Cond.getOpcode() == X86ISD::SUB  ||
9824           Cond.getOpcode() == X86ISD::SMUL ||
9825           Cond.getOpcode() == X86ISD::UMUL)
9826    Cond = LowerXALUO(Cond, DAG);
9827#endif
9828
9829  // Look pass (and (setcc_carry (cmp ...)), 1).
9830  if (Cond.getOpcode() == ISD::AND &&
9831      Cond.getOperand(0).getOpcode() == X86ISD::SETCC_CARRY) {
9832    ConstantSDNode *C = dyn_cast<ConstantSDNode>(Cond.getOperand(1));
9833    if (C && C->getAPIntValue() == 1)
9834      Cond = Cond.getOperand(0);
9835  }
9836
9837  // If condition flag is set by a X86ISD::CMP, then use it as the condition
9838  // setting operand in place of the X86ISD::SETCC.
9839  unsigned CondOpcode = Cond.getOpcode();
9840  if (CondOpcode == X86ISD::SETCC ||
9841      CondOpcode == X86ISD::SETCC_CARRY) {
9842    CC = Cond.getOperand(0);
9843
9844    SDValue Cmp = Cond.getOperand(1);
9845    unsigned Opc = Cmp.getOpcode();
9846    // FIXME: WHY THE SPECIAL CASING OF LogicalCmp??
9847    if (isX86LogicalCmp(Cmp) || Opc == X86ISD::BT) {
9848      Cond = Cmp;
9849      addTest = false;
9850    } else {
9851      switch (cast<ConstantSDNode>(CC)->getZExtValue()) {
9852      default: break;
9853      case X86::COND_O:
9854      case X86::COND_B:
9855        // These can only come from an arithmetic instruction with overflow,
9856        // e.g. SADDO, UADDO.
9857        Cond = Cond.getNode()->getOperand(1);
9858        addTest = false;
9859        break;
9860      }
9861    }
9862  }
9863  CondOpcode = Cond.getOpcode();
9864  if (CondOpcode == ISD::UADDO || CondOpcode == ISD::SADDO ||
9865      CondOpcode == ISD::USUBO || CondOpcode == ISD::SSUBO ||
9866      ((CondOpcode == ISD::UMULO || CondOpcode == ISD::SMULO) &&
9867       Cond.getOperand(0).getValueType() != MVT::i8)) {
9868    SDValue LHS = Cond.getOperand(0);
9869    SDValue RHS = Cond.getOperand(1);
9870    unsigned X86Opcode;
9871    unsigned X86Cond;
9872    SDVTList VTs;
9873    switch (CondOpcode) {
9874    case ISD::UADDO: X86Opcode = X86ISD::ADD; X86Cond = X86::COND_B; break;
9875    case ISD::SADDO: X86Opcode = X86ISD::ADD; X86Cond = X86::COND_O; break;
9876    case ISD::USUBO: X86Opcode = X86ISD::SUB; X86Cond = X86::COND_B; break;
9877    case ISD::SSUBO: X86Opcode = X86ISD::SUB; X86Cond = X86::COND_O; break;
9878    case ISD::UMULO: X86Opcode = X86ISD::UMUL; X86Cond = X86::COND_O; break;
9879    case ISD::SMULO: X86Opcode = X86ISD::SMUL; X86Cond = X86::COND_O; break;
9880    default: llvm_unreachable("unexpected overflowing operator");
9881    }
9882    if (Inverted)
9883      X86Cond = X86::GetOppositeBranchCondition((X86::CondCode)X86Cond);
9884    if (CondOpcode == ISD::UMULO)
9885      VTs = DAG.getVTList(LHS.getValueType(), LHS.getValueType(),
9886                          MVT::i32);
9887    else
9888      VTs = DAG.getVTList(LHS.getValueType(), MVT::i32);
9889
9890    SDValue X86Op = DAG.getNode(X86Opcode, dl, VTs, LHS, RHS);
9891
9892    if (CondOpcode == ISD::UMULO)
9893      Cond = X86Op.getValue(2);
9894    else
9895      Cond = X86Op.getValue(1);
9896
9897    CC = DAG.getConstant(X86Cond, MVT::i8);
9898    addTest = false;
9899  } else {
9900    unsigned CondOpc;
9901    if (Cond.hasOneUse() && isAndOrOfSetCCs(Cond, CondOpc)) {
9902      SDValue Cmp = Cond.getOperand(0).getOperand(1);
9903      if (CondOpc == ISD::OR) {
9904        // Also, recognize the pattern generated by an FCMP_UNE. We can emit
9905        // two branches instead of an explicit OR instruction with a
9906        // separate test.
9907        if (Cmp == Cond.getOperand(1).getOperand(1) &&
9908            isX86LogicalCmp(Cmp)) {
9909          CC = Cond.getOperand(0).getOperand(0);
9910          Chain = DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
9911                              Chain, Dest, CC, Cmp);
9912          CC = Cond.getOperand(1).getOperand(0);
9913          Cond = Cmp;
9914          addTest = false;
9915        }
9916      } else { // ISD::AND
9917        // Also, recognize the pattern generated by an FCMP_OEQ. We can emit
9918        // two branches instead of an explicit AND instruction with a
9919        // separate test. However, we only do this if this block doesn't
9920        // have a fall-through edge, because this requires an explicit
9921        // jmp when the condition is false.
9922        if (Cmp == Cond.getOperand(1).getOperand(1) &&
9923            isX86LogicalCmp(Cmp) &&
9924            Op.getNode()->hasOneUse()) {
9925          X86::CondCode CCode =
9926            (X86::CondCode)Cond.getOperand(0).getConstantOperandVal(0);
9927          CCode = X86::GetOppositeBranchCondition(CCode);
9928          CC = DAG.getConstant(CCode, MVT::i8);
9929          SDNode *User = *Op.getNode()->use_begin();
9930          // Look for an unconditional branch following this conditional branch.
9931          // We need this because we need to reverse the successors in order
9932          // to implement FCMP_OEQ.
9933          if (User->getOpcode() == ISD::BR) {
9934            SDValue FalseBB = User->getOperand(1);
9935            SDNode *NewBR =
9936              DAG.UpdateNodeOperands(User, User->getOperand(0), Dest);
9937            assert(NewBR == User);
9938            (void)NewBR;
9939            Dest = FalseBB;
9940
9941            Chain = DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
9942                                Chain, Dest, CC, Cmp);
9943            X86::CondCode CCode =
9944              (X86::CondCode)Cond.getOperand(1).getConstantOperandVal(0);
9945            CCode = X86::GetOppositeBranchCondition(CCode);
9946            CC = DAG.getConstant(CCode, MVT::i8);
9947            Cond = Cmp;
9948            addTest = false;
9949          }
9950        }
9951      }
9952    } else if (Cond.hasOneUse() && isXor1OfSetCC(Cond)) {
9953      // Recognize for xorb (setcc), 1 patterns. The xor inverts the condition.
9954      // It should be transformed during dag combiner except when the condition
9955      // is set by a arithmetics with overflow node.
9956      X86::CondCode CCode =
9957        (X86::CondCode)Cond.getOperand(0).getConstantOperandVal(0);
9958      CCode = X86::GetOppositeBranchCondition(CCode);
9959      CC = DAG.getConstant(CCode, MVT::i8);
9960      Cond = Cond.getOperand(0).getOperand(1);
9961      addTest = false;
9962    } else if (Cond.getOpcode() == ISD::SETCC &&
9963               cast<CondCodeSDNode>(Cond.getOperand(2))->get() == ISD::SETOEQ) {
9964      // For FCMP_OEQ, we can emit
9965      // two branches instead of an explicit AND instruction with a
9966      // separate test. However, we only do this if this block doesn't
9967      // have a fall-through edge, because this requires an explicit
9968      // jmp when the condition is false.
9969      if (Op.getNode()->hasOneUse()) {
9970        SDNode *User = *Op.getNode()->use_begin();
9971        // Look for an unconditional branch following this conditional branch.
9972        // We need this because we need to reverse the successors in order
9973        // to implement FCMP_OEQ.
9974        if (User->getOpcode() == ISD::BR) {
9975          SDValue FalseBB = User->getOperand(1);
9976          SDNode *NewBR =
9977            DAG.UpdateNodeOperands(User, User->getOperand(0), Dest);
9978          assert(NewBR == User);
9979          (void)NewBR;
9980          Dest = FalseBB;
9981
9982          SDValue Cmp = DAG.getNode(X86ISD::CMP, dl, MVT::i32,
9983                                    Cond.getOperand(0), Cond.getOperand(1));
9984          Cmp = ConvertCmpIfNecessary(Cmp, DAG);
9985          CC = DAG.getConstant(X86::COND_NE, MVT::i8);
9986          Chain = DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
9987                              Chain, Dest, CC, Cmp);
9988          CC = DAG.getConstant(X86::COND_P, MVT::i8);
9989          Cond = Cmp;
9990          addTest = false;
9991        }
9992      }
9993    } else if (Cond.getOpcode() == ISD::SETCC &&
9994               cast<CondCodeSDNode>(Cond.getOperand(2))->get() == ISD::SETUNE) {
9995      // For FCMP_UNE, we can emit
9996      // two branches instead of an explicit AND instruction with a
9997      // separate test. However, we only do this if this block doesn't
9998      // have a fall-through edge, because this requires an explicit
9999      // jmp when the condition is false.
10000      if (Op.getNode()->hasOneUse()) {
10001        SDNode *User = *Op.getNode()->use_begin();
10002        // Look for an unconditional branch following this conditional branch.
10003        // We need this because we need to reverse the successors in order
10004        // to implement FCMP_UNE.
10005        if (User->getOpcode() == ISD::BR) {
10006          SDValue FalseBB = User->getOperand(1);
10007          SDNode *NewBR =
10008            DAG.UpdateNodeOperands(User, User->getOperand(0), Dest);
10009          assert(NewBR == User);
10010          (void)NewBR;
10011
10012          SDValue Cmp = DAG.getNode(X86ISD::CMP, dl, MVT::i32,
10013                                    Cond.getOperand(0), Cond.getOperand(1));
10014          Cmp = ConvertCmpIfNecessary(Cmp, DAG);
10015          CC = DAG.getConstant(X86::COND_NE, MVT::i8);
10016          Chain = DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
10017                              Chain, Dest, CC, Cmp);
10018          CC = DAG.getConstant(X86::COND_NP, MVT::i8);
10019          Cond = Cmp;
10020          addTest = false;
10021          Dest = FalseBB;
10022        }
10023      }
10024    }
10025  }
10026
10027  if (addTest) {
10028    // Look pass the truncate if the high bits are known zero.
10029    if (isTruncWithZeroHighBitsInput(Cond, DAG))
10030        Cond = Cond.getOperand(0);
10031
10032    // We know the result of AND is compared against zero. Try to match
10033    // it to BT.
10034    if (Cond.getOpcode() == ISD::AND && Cond.hasOneUse()) {
10035      SDValue NewSetCC = LowerToBT(Cond, ISD::SETNE, dl, DAG);
10036      if (NewSetCC.getNode()) {
10037        CC = NewSetCC.getOperand(0);
10038        Cond = NewSetCC.getOperand(1);
10039        addTest = false;
10040      }
10041    }
10042  }
10043
10044  if (addTest) {
10045    CC = DAG.getConstant(X86::COND_NE, MVT::i8);
10046    Cond = EmitTest(Cond, X86::COND_NE, DAG);
10047  }
10048  Cond = ConvertCmpIfNecessary(Cond, DAG);
10049  return DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
10050                     Chain, Dest, CC, Cond);
10051}
10052
10053// Lower dynamic stack allocation to _alloca call for Cygwin/Mingw targets.
10054// Calls to _alloca is needed to probe the stack when allocating more than 4k
10055// bytes in one go. Touching the stack at 4K increments is necessary to ensure
10056// that the guard pages used by the OS virtual memory manager are allocated in
10057// correct sequence.
10058SDValue
10059X86TargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op,
10060                                           SelectionDAG &DAG) const {
10061  assert((Subtarget->isTargetCygMing() || Subtarget->isTargetWindows() ||
10062          getTargetMachine().Options.EnableSegmentedStacks) &&
10063         "This should be used only on Windows targets or when segmented stacks "
10064         "are being used");
10065  assert(!Subtarget->isTargetEnvMacho() && "Not implemented");
10066  DebugLoc dl = Op.getDebugLoc();
10067
10068  // Get the inputs.
10069  SDValue Chain = Op.getOperand(0);
10070  SDValue Size  = Op.getOperand(1);
10071  // FIXME: Ensure alignment here
10072
10073  bool Is64Bit = Subtarget->is64Bit();
10074  EVT SPTy = Is64Bit ? MVT::i64 : MVT::i32;
10075
10076  if (getTargetMachine().Options.EnableSegmentedStacks) {
10077    MachineFunction &MF = DAG.getMachineFunction();
10078    MachineRegisterInfo &MRI = MF.getRegInfo();
10079
10080    if (Is64Bit) {
10081      // The 64 bit implementation of segmented stacks needs to clobber both r10
10082      // r11. This makes it impossible to use it along with nested parameters.
10083      const Function *F = MF.getFunction();
10084
10085      for (Function::const_arg_iterator I = F->arg_begin(), E = F->arg_end();
10086           I != E; ++I)
10087        if (I->hasNestAttr())
10088          report_fatal_error("Cannot use segmented stacks with functions that "
10089                             "have nested arguments.");
10090    }
10091
10092    const TargetRegisterClass *AddrRegClass =
10093      getRegClassFor(Subtarget->is64Bit() ? MVT::i64:MVT::i32);
10094    unsigned Vreg = MRI.createVirtualRegister(AddrRegClass);
10095    Chain = DAG.getCopyToReg(Chain, dl, Vreg, Size);
10096    SDValue Value = DAG.getNode(X86ISD::SEG_ALLOCA, dl, SPTy, Chain,
10097                                DAG.getRegister(Vreg, SPTy));
10098    SDValue Ops1[2] = { Value, Chain };
10099    return DAG.getMergeValues(Ops1, 2, dl);
10100  } else {
10101    SDValue Flag;
10102    unsigned Reg = (Subtarget->is64Bit() ? X86::RAX : X86::EAX);
10103
10104    Chain = DAG.getCopyToReg(Chain, dl, Reg, Size, Flag);
10105    Flag = Chain.getValue(1);
10106    SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
10107
10108    Chain = DAG.getNode(X86ISD::WIN_ALLOCA, dl, NodeTys, Chain, Flag);
10109    Flag = Chain.getValue(1);
10110
10111    Chain = DAG.getCopyFromReg(Chain, dl, RegInfo->getStackRegister(),
10112                               SPTy).getValue(1);
10113
10114    SDValue Ops1[2] = { Chain.getValue(0), Chain };
10115    return DAG.getMergeValues(Ops1, 2, dl);
10116  }
10117}
10118
10119SDValue X86TargetLowering::LowerVASTART(SDValue Op, SelectionDAG &DAG) const {
10120  MachineFunction &MF = DAG.getMachineFunction();
10121  X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
10122
10123  const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
10124  DebugLoc DL = Op.getDebugLoc();
10125
10126  if (!Subtarget->is64Bit() || Subtarget->isTargetWin64()) {
10127    // vastart just stores the address of the VarArgsFrameIndex slot into the
10128    // memory location argument.
10129    SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(),
10130                                   getPointerTy());
10131    return DAG.getStore(Op.getOperand(0), DL, FR, Op.getOperand(1),
10132                        MachinePointerInfo(SV), false, false, 0);
10133  }
10134
10135  // __va_list_tag:
10136  //   gp_offset         (0 - 6 * 8)
10137  //   fp_offset         (48 - 48 + 8 * 16)
10138  //   overflow_arg_area (point to parameters coming in memory).
10139  //   reg_save_area
10140  SmallVector<SDValue, 8> MemOps;
10141  SDValue FIN = Op.getOperand(1);
10142  // Store gp_offset
10143  SDValue Store = DAG.getStore(Op.getOperand(0), DL,
10144                               DAG.getConstant(FuncInfo->getVarArgsGPOffset(),
10145                                               MVT::i32),
10146                               FIN, MachinePointerInfo(SV), false, false, 0);
10147  MemOps.push_back(Store);
10148
10149  // Store fp_offset
10150  FIN = DAG.getNode(ISD::ADD, DL, getPointerTy(),
10151                    FIN, DAG.getIntPtrConstant(4));
10152  Store = DAG.getStore(Op.getOperand(0), DL,
10153                       DAG.getConstant(FuncInfo->getVarArgsFPOffset(),
10154                                       MVT::i32),
10155                       FIN, MachinePointerInfo(SV, 4), false, false, 0);
10156  MemOps.push_back(Store);
10157
10158  // Store ptr to overflow_arg_area
10159  FIN = DAG.getNode(ISD::ADD, DL, getPointerTy(),
10160                    FIN, DAG.getIntPtrConstant(4));
10161  SDValue OVFIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(),
10162                                    getPointerTy());
10163  Store = DAG.getStore(Op.getOperand(0), DL, OVFIN, FIN,
10164                       MachinePointerInfo(SV, 8),
10165                       false, false, 0);
10166  MemOps.push_back(Store);
10167
10168  // Store ptr to reg_save_area.
10169  FIN = DAG.getNode(ISD::ADD, DL, getPointerTy(),
10170                    FIN, DAG.getIntPtrConstant(8));
10171  SDValue RSFIN = DAG.getFrameIndex(FuncInfo->getRegSaveFrameIndex(),
10172                                    getPointerTy());
10173  Store = DAG.getStore(Op.getOperand(0), DL, RSFIN, FIN,
10174                       MachinePointerInfo(SV, 16), false, false, 0);
10175  MemOps.push_back(Store);
10176  return DAG.getNode(ISD::TokenFactor, DL, MVT::Other,
10177                     &MemOps[0], MemOps.size());
10178}
10179
10180SDValue X86TargetLowering::LowerVAARG(SDValue Op, SelectionDAG &DAG) const {
10181  assert(Subtarget->is64Bit() &&
10182         "LowerVAARG only handles 64-bit va_arg!");
10183  assert((Subtarget->isTargetLinux() ||
10184          Subtarget->isTargetDarwin()) &&
10185          "Unhandled target in LowerVAARG");
10186  assert(Op.getNode()->getNumOperands() == 4);
10187  SDValue Chain = Op.getOperand(0);
10188  SDValue SrcPtr = Op.getOperand(1);
10189  const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
10190  unsigned Align = Op.getConstantOperandVal(3);
10191  DebugLoc dl = Op.getDebugLoc();
10192
10193  EVT ArgVT = Op.getNode()->getValueType(0);
10194  Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext());
10195  uint32_t ArgSize = getDataLayout()->getTypeAllocSize(ArgTy);
10196  uint8_t ArgMode;
10197
10198  // Decide which area this value should be read from.
10199  // TODO: Implement the AMD64 ABI in its entirety. This simple
10200  // selection mechanism works only for the basic types.
10201  if (ArgVT == MVT::f80) {
10202    llvm_unreachable("va_arg for f80 not yet implemented");
10203  } else if (ArgVT.isFloatingPoint() && ArgSize <= 16 /*bytes*/) {
10204    ArgMode = 2;  // Argument passed in XMM register. Use fp_offset.
10205  } else if (ArgVT.isInteger() && ArgSize <= 32 /*bytes*/) {
10206    ArgMode = 1;  // Argument passed in GPR64 register(s). Use gp_offset.
10207  } else {
10208    llvm_unreachable("Unhandled argument type in LowerVAARG");
10209  }
10210
10211  if (ArgMode == 2) {
10212    // Sanity Check: Make sure using fp_offset makes sense.
10213    assert(!getTargetMachine().Options.UseSoftFloat &&
10214           !(DAG.getMachineFunction()
10215                .getFunction()->getAttributes()
10216                .hasAttribute(AttributeSet::FunctionIndex,
10217                              Attribute::NoImplicitFloat)) &&
10218           Subtarget->hasSSE1());
10219  }
10220
10221  // Insert VAARG_64 node into the DAG
10222  // VAARG_64 returns two values: Variable Argument Address, Chain
10223  SmallVector<SDValue, 11> InstOps;
10224  InstOps.push_back(Chain);
10225  InstOps.push_back(SrcPtr);
10226  InstOps.push_back(DAG.getConstant(ArgSize, MVT::i32));
10227  InstOps.push_back(DAG.getConstant(ArgMode, MVT::i8));
10228  InstOps.push_back(DAG.getConstant(Align, MVT::i32));
10229  SDVTList VTs = DAG.getVTList(getPointerTy(), MVT::Other);
10230  SDValue VAARG = DAG.getMemIntrinsicNode(X86ISD::VAARG_64, dl,
10231                                          VTs, &InstOps[0], InstOps.size(),
10232                                          MVT::i64,
10233                                          MachinePointerInfo(SV),
10234                                          /*Align=*/0,
10235                                          /*Volatile=*/false,
10236                                          /*ReadMem=*/true,
10237                                          /*WriteMem=*/true);
10238  Chain = VAARG.getValue(1);
10239
10240  // Load the next argument and return it
10241  return DAG.getLoad(ArgVT, dl,
10242                     Chain,
10243                     VAARG,
10244                     MachinePointerInfo(),
10245                     false, false, false, 0);
10246}
10247
10248static SDValue LowerVACOPY(SDValue Op, const X86Subtarget *Subtarget,
10249                           SelectionDAG &DAG) {
10250  // X86-64 va_list is a struct { i32, i32, i8*, i8* }.
10251  assert(Subtarget->is64Bit() && "This code only handles 64-bit va_copy!");
10252  SDValue Chain = Op.getOperand(0);
10253  SDValue DstPtr = Op.getOperand(1);
10254  SDValue SrcPtr = Op.getOperand(2);
10255  const Value *DstSV = cast<SrcValueSDNode>(Op.getOperand(3))->getValue();
10256  const Value *SrcSV = cast<SrcValueSDNode>(Op.getOperand(4))->getValue();
10257  DebugLoc DL = Op.getDebugLoc();
10258
10259  return DAG.getMemcpy(Chain, DL, DstPtr, SrcPtr,
10260                       DAG.getIntPtrConstant(24), 8, /*isVolatile*/false,
10261                       false,
10262                       MachinePointerInfo(DstSV), MachinePointerInfo(SrcSV));
10263}
10264
10265// getTargetVShiftNode - Handle vector element shifts where the shift amount
10266// may or may not be a constant. Takes immediate version of shift as input.
10267static SDValue getTargetVShiftNode(unsigned Opc, DebugLoc dl, EVT VT,
10268                                   SDValue SrcOp, SDValue ShAmt,
10269                                   SelectionDAG &DAG) {
10270  assert(ShAmt.getValueType() == MVT::i32 && "ShAmt is not i32");
10271
10272  if (isa<ConstantSDNode>(ShAmt)) {
10273    // Constant may be a TargetConstant. Use a regular constant.
10274    uint32_t ShiftAmt = cast<ConstantSDNode>(ShAmt)->getZExtValue();
10275    switch (Opc) {
10276      default: llvm_unreachable("Unknown target vector shift node");
10277      case X86ISD::VSHLI:
10278      case X86ISD::VSRLI:
10279      case X86ISD::VSRAI:
10280        return DAG.getNode(Opc, dl, VT, SrcOp,
10281                           DAG.getConstant(ShiftAmt, MVT::i32));
10282    }
10283  }
10284
10285  // Change opcode to non-immediate version
10286  switch (Opc) {
10287    default: llvm_unreachable("Unknown target vector shift node");
10288    case X86ISD::VSHLI: Opc = X86ISD::VSHL; break;
10289    case X86ISD::VSRLI: Opc = X86ISD::VSRL; break;
10290    case X86ISD::VSRAI: Opc = X86ISD::VSRA; break;
10291  }
10292
10293  // Need to build a vector containing shift amount
10294  // Shift amount is 32-bits, but SSE instructions read 64-bit, so fill with 0
10295  SDValue ShOps[4];
10296  ShOps[0] = ShAmt;
10297  ShOps[1] = DAG.getConstant(0, MVT::i32);
10298  ShOps[2] = ShOps[3] = DAG.getUNDEF(MVT::i32);
10299  ShAmt = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, &ShOps[0], 4);
10300
10301  // The return type has to be a 128-bit type with the same element
10302  // type as the input type.
10303  MVT EltVT = VT.getVectorElementType().getSimpleVT();
10304  EVT ShVT = MVT::getVectorVT(EltVT, 128/EltVT.getSizeInBits());
10305
10306  ShAmt = DAG.getNode(ISD::BITCAST, dl, ShVT, ShAmt);
10307  return DAG.getNode(Opc, dl, VT, SrcOp, ShAmt);
10308}
10309
10310static SDValue LowerINTRINSIC_WO_CHAIN(SDValue Op, SelectionDAG &DAG) {
10311  DebugLoc dl = Op.getDebugLoc();
10312  unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
10313  switch (IntNo) {
10314  default: return SDValue();    // Don't custom lower most intrinsics.
10315  // Comparison intrinsics.
10316  case Intrinsic::x86_sse_comieq_ss:
10317  case Intrinsic::x86_sse_comilt_ss:
10318  case Intrinsic::x86_sse_comile_ss:
10319  case Intrinsic::x86_sse_comigt_ss:
10320  case Intrinsic::x86_sse_comige_ss:
10321  case Intrinsic::x86_sse_comineq_ss:
10322  case Intrinsic::x86_sse_ucomieq_ss:
10323  case Intrinsic::x86_sse_ucomilt_ss:
10324  case Intrinsic::x86_sse_ucomile_ss:
10325  case Intrinsic::x86_sse_ucomigt_ss:
10326  case Intrinsic::x86_sse_ucomige_ss:
10327  case Intrinsic::x86_sse_ucomineq_ss:
10328  case Intrinsic::x86_sse2_comieq_sd:
10329  case Intrinsic::x86_sse2_comilt_sd:
10330  case Intrinsic::x86_sse2_comile_sd:
10331  case Intrinsic::x86_sse2_comigt_sd:
10332  case Intrinsic::x86_sse2_comige_sd:
10333  case Intrinsic::x86_sse2_comineq_sd:
10334  case Intrinsic::x86_sse2_ucomieq_sd:
10335  case Intrinsic::x86_sse2_ucomilt_sd:
10336  case Intrinsic::x86_sse2_ucomile_sd:
10337  case Intrinsic::x86_sse2_ucomigt_sd:
10338  case Intrinsic::x86_sse2_ucomige_sd:
10339  case Intrinsic::x86_sse2_ucomineq_sd: {
10340    unsigned Opc;
10341    ISD::CondCode CC;
10342    switch (IntNo) {
10343    default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
10344    case Intrinsic::x86_sse_comieq_ss:
10345    case Intrinsic::x86_sse2_comieq_sd:
10346      Opc = X86ISD::COMI;
10347      CC = ISD::SETEQ;
10348      break;
10349    case Intrinsic::x86_sse_comilt_ss:
10350    case Intrinsic::x86_sse2_comilt_sd:
10351      Opc = X86ISD::COMI;
10352      CC = ISD::SETLT;
10353      break;
10354    case Intrinsic::x86_sse_comile_ss:
10355    case Intrinsic::x86_sse2_comile_sd:
10356      Opc = X86ISD::COMI;
10357      CC = ISD::SETLE;
10358      break;
10359    case Intrinsic::x86_sse_comigt_ss:
10360    case Intrinsic::x86_sse2_comigt_sd:
10361      Opc = X86ISD::COMI;
10362      CC = ISD::SETGT;
10363      break;
10364    case Intrinsic::x86_sse_comige_ss:
10365    case Intrinsic::x86_sse2_comige_sd:
10366      Opc = X86ISD::COMI;
10367      CC = ISD::SETGE;
10368      break;
10369    case Intrinsic::x86_sse_comineq_ss:
10370    case Intrinsic::x86_sse2_comineq_sd:
10371      Opc = X86ISD::COMI;
10372      CC = ISD::SETNE;
10373      break;
10374    case Intrinsic::x86_sse_ucomieq_ss:
10375    case Intrinsic::x86_sse2_ucomieq_sd:
10376      Opc = X86ISD::UCOMI;
10377      CC = ISD::SETEQ;
10378      break;
10379    case Intrinsic::x86_sse_ucomilt_ss:
10380    case Intrinsic::x86_sse2_ucomilt_sd:
10381      Opc = X86ISD::UCOMI;
10382      CC = ISD::SETLT;
10383      break;
10384    case Intrinsic::x86_sse_ucomile_ss:
10385    case Intrinsic::x86_sse2_ucomile_sd:
10386      Opc = X86ISD::UCOMI;
10387      CC = ISD::SETLE;
10388      break;
10389    case Intrinsic::x86_sse_ucomigt_ss:
10390    case Intrinsic::x86_sse2_ucomigt_sd:
10391      Opc = X86ISD::UCOMI;
10392      CC = ISD::SETGT;
10393      break;
10394    case Intrinsic::x86_sse_ucomige_ss:
10395    case Intrinsic::x86_sse2_ucomige_sd:
10396      Opc = X86ISD::UCOMI;
10397      CC = ISD::SETGE;
10398      break;
10399    case Intrinsic::x86_sse_ucomineq_ss:
10400    case Intrinsic::x86_sse2_ucomineq_sd:
10401      Opc = X86ISD::UCOMI;
10402      CC = ISD::SETNE;
10403      break;
10404    }
10405
10406    SDValue LHS = Op.getOperand(1);
10407    SDValue RHS = Op.getOperand(2);
10408    unsigned X86CC = TranslateX86CC(CC, true, LHS, RHS, DAG);
10409    assert(X86CC != X86::COND_INVALID && "Unexpected illegal condition!");
10410    SDValue Cond = DAG.getNode(Opc, dl, MVT::i32, LHS, RHS);
10411    SDValue SetCC = DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
10412                                DAG.getConstant(X86CC, MVT::i8), Cond);
10413    return DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, SetCC);
10414  }
10415
10416  // Arithmetic intrinsics.
10417  case Intrinsic::x86_sse2_pmulu_dq:
10418  case Intrinsic::x86_avx2_pmulu_dq:
10419    return DAG.getNode(X86ISD::PMULUDQ, dl, Op.getValueType(),
10420                       Op.getOperand(1), Op.getOperand(2));
10421
10422  // SSE2/AVX2 sub with unsigned saturation intrinsics
10423  case Intrinsic::x86_sse2_psubus_b:
10424  case Intrinsic::x86_sse2_psubus_w:
10425  case Intrinsic::x86_avx2_psubus_b:
10426  case Intrinsic::x86_avx2_psubus_w:
10427    return DAG.getNode(X86ISD::SUBUS, dl, Op.getValueType(),
10428                       Op.getOperand(1), Op.getOperand(2));
10429
10430  // SSE3/AVX horizontal add/sub intrinsics
10431  case Intrinsic::x86_sse3_hadd_ps:
10432  case Intrinsic::x86_sse3_hadd_pd:
10433  case Intrinsic::x86_avx_hadd_ps_256:
10434  case Intrinsic::x86_avx_hadd_pd_256:
10435  case Intrinsic::x86_sse3_hsub_ps:
10436  case Intrinsic::x86_sse3_hsub_pd:
10437  case Intrinsic::x86_avx_hsub_ps_256:
10438  case Intrinsic::x86_avx_hsub_pd_256:
10439  case Intrinsic::x86_ssse3_phadd_w_128:
10440  case Intrinsic::x86_ssse3_phadd_d_128:
10441  case Intrinsic::x86_avx2_phadd_w:
10442  case Intrinsic::x86_avx2_phadd_d:
10443  case Intrinsic::x86_ssse3_phsub_w_128:
10444  case Intrinsic::x86_ssse3_phsub_d_128:
10445  case Intrinsic::x86_avx2_phsub_w:
10446  case Intrinsic::x86_avx2_phsub_d: {
10447    unsigned Opcode;
10448    switch (IntNo) {
10449    default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
10450    case Intrinsic::x86_sse3_hadd_ps:
10451    case Intrinsic::x86_sse3_hadd_pd:
10452    case Intrinsic::x86_avx_hadd_ps_256:
10453    case Intrinsic::x86_avx_hadd_pd_256:
10454      Opcode = X86ISD::FHADD;
10455      break;
10456    case Intrinsic::x86_sse3_hsub_ps:
10457    case Intrinsic::x86_sse3_hsub_pd:
10458    case Intrinsic::x86_avx_hsub_ps_256:
10459    case Intrinsic::x86_avx_hsub_pd_256:
10460      Opcode = X86ISD::FHSUB;
10461      break;
10462    case Intrinsic::x86_ssse3_phadd_w_128:
10463    case Intrinsic::x86_ssse3_phadd_d_128:
10464    case Intrinsic::x86_avx2_phadd_w:
10465    case Intrinsic::x86_avx2_phadd_d:
10466      Opcode = X86ISD::HADD;
10467      break;
10468    case Intrinsic::x86_ssse3_phsub_w_128:
10469    case Intrinsic::x86_ssse3_phsub_d_128:
10470    case Intrinsic::x86_avx2_phsub_w:
10471    case Intrinsic::x86_avx2_phsub_d:
10472      Opcode = X86ISD::HSUB;
10473      break;
10474    }
10475    return DAG.getNode(Opcode, dl, Op.getValueType(),
10476                       Op.getOperand(1), Op.getOperand(2));
10477  }
10478
10479  // SSE2/SSE41/AVX2 integer max/min intrinsics.
10480  case Intrinsic::x86_sse2_pmaxu_b:
10481  case Intrinsic::x86_sse41_pmaxuw:
10482  case Intrinsic::x86_sse41_pmaxud:
10483  case Intrinsic::x86_avx2_pmaxu_b:
10484  case Intrinsic::x86_avx2_pmaxu_w:
10485  case Intrinsic::x86_avx2_pmaxu_d:
10486  case Intrinsic::x86_sse2_pminu_b:
10487  case Intrinsic::x86_sse41_pminuw:
10488  case Intrinsic::x86_sse41_pminud:
10489  case Intrinsic::x86_avx2_pminu_b:
10490  case Intrinsic::x86_avx2_pminu_w:
10491  case Intrinsic::x86_avx2_pminu_d:
10492  case Intrinsic::x86_sse41_pmaxsb:
10493  case Intrinsic::x86_sse2_pmaxs_w:
10494  case Intrinsic::x86_sse41_pmaxsd:
10495  case Intrinsic::x86_avx2_pmaxs_b:
10496  case Intrinsic::x86_avx2_pmaxs_w:
10497  case Intrinsic::x86_avx2_pmaxs_d:
10498  case Intrinsic::x86_sse41_pminsb:
10499  case Intrinsic::x86_sse2_pmins_w:
10500  case Intrinsic::x86_sse41_pminsd:
10501  case Intrinsic::x86_avx2_pmins_b:
10502  case Intrinsic::x86_avx2_pmins_w:
10503  case Intrinsic::x86_avx2_pmins_d: {
10504    unsigned Opcode;
10505    switch (IntNo) {
10506    default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
10507    case Intrinsic::x86_sse2_pmaxu_b:
10508    case Intrinsic::x86_sse41_pmaxuw:
10509    case Intrinsic::x86_sse41_pmaxud:
10510    case Intrinsic::x86_avx2_pmaxu_b:
10511    case Intrinsic::x86_avx2_pmaxu_w:
10512    case Intrinsic::x86_avx2_pmaxu_d:
10513      Opcode = X86ISD::UMAX;
10514      break;
10515    case Intrinsic::x86_sse2_pminu_b:
10516    case Intrinsic::x86_sse41_pminuw:
10517    case Intrinsic::x86_sse41_pminud:
10518    case Intrinsic::x86_avx2_pminu_b:
10519    case Intrinsic::x86_avx2_pminu_w:
10520    case Intrinsic::x86_avx2_pminu_d:
10521      Opcode = X86ISD::UMIN;
10522      break;
10523    case Intrinsic::x86_sse41_pmaxsb:
10524    case Intrinsic::x86_sse2_pmaxs_w:
10525    case Intrinsic::x86_sse41_pmaxsd:
10526    case Intrinsic::x86_avx2_pmaxs_b:
10527    case Intrinsic::x86_avx2_pmaxs_w:
10528    case Intrinsic::x86_avx2_pmaxs_d:
10529      Opcode = X86ISD::SMAX;
10530      break;
10531    case Intrinsic::x86_sse41_pminsb:
10532    case Intrinsic::x86_sse2_pmins_w:
10533    case Intrinsic::x86_sse41_pminsd:
10534    case Intrinsic::x86_avx2_pmins_b:
10535    case Intrinsic::x86_avx2_pmins_w:
10536    case Intrinsic::x86_avx2_pmins_d:
10537      Opcode = X86ISD::SMIN;
10538      break;
10539    }
10540    return DAG.getNode(Opcode, dl, Op.getValueType(),
10541                       Op.getOperand(1), Op.getOperand(2));
10542  }
10543
10544  // SSE/SSE2/AVX floating point max/min intrinsics.
10545  case Intrinsic::x86_sse_max_ps:
10546  case Intrinsic::x86_sse2_max_pd:
10547  case Intrinsic::x86_avx_max_ps_256:
10548  case Intrinsic::x86_avx_max_pd_256:
10549  case Intrinsic::x86_sse_min_ps:
10550  case Intrinsic::x86_sse2_min_pd:
10551  case Intrinsic::x86_avx_min_ps_256:
10552  case Intrinsic::x86_avx_min_pd_256: {
10553    unsigned Opcode;
10554    switch (IntNo) {
10555    default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
10556    case Intrinsic::x86_sse_max_ps:
10557    case Intrinsic::x86_sse2_max_pd:
10558    case Intrinsic::x86_avx_max_ps_256:
10559    case Intrinsic::x86_avx_max_pd_256:
10560      Opcode = X86ISD::FMAX;
10561      break;
10562    case Intrinsic::x86_sse_min_ps:
10563    case Intrinsic::x86_sse2_min_pd:
10564    case Intrinsic::x86_avx_min_ps_256:
10565    case Intrinsic::x86_avx_min_pd_256:
10566      Opcode = X86ISD::FMIN;
10567      break;
10568    }
10569    return DAG.getNode(Opcode, dl, Op.getValueType(),
10570                       Op.getOperand(1), Op.getOperand(2));
10571  }
10572
10573  // AVX2 variable shift intrinsics
10574  case Intrinsic::x86_avx2_psllv_d:
10575  case Intrinsic::x86_avx2_psllv_q:
10576  case Intrinsic::x86_avx2_psllv_d_256:
10577  case Intrinsic::x86_avx2_psllv_q_256:
10578  case Intrinsic::x86_avx2_psrlv_d:
10579  case Intrinsic::x86_avx2_psrlv_q:
10580  case Intrinsic::x86_avx2_psrlv_d_256:
10581  case Intrinsic::x86_avx2_psrlv_q_256:
10582  case Intrinsic::x86_avx2_psrav_d:
10583  case Intrinsic::x86_avx2_psrav_d_256: {
10584    unsigned Opcode;
10585    switch (IntNo) {
10586    default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
10587    case Intrinsic::x86_avx2_psllv_d:
10588    case Intrinsic::x86_avx2_psllv_q:
10589    case Intrinsic::x86_avx2_psllv_d_256:
10590    case Intrinsic::x86_avx2_psllv_q_256:
10591      Opcode = ISD::SHL;
10592      break;
10593    case Intrinsic::x86_avx2_psrlv_d:
10594    case Intrinsic::x86_avx2_psrlv_q:
10595    case Intrinsic::x86_avx2_psrlv_d_256:
10596    case Intrinsic::x86_avx2_psrlv_q_256:
10597      Opcode = ISD::SRL;
10598      break;
10599    case Intrinsic::x86_avx2_psrav_d:
10600    case Intrinsic::x86_avx2_psrav_d_256:
10601      Opcode = ISD::SRA;
10602      break;
10603    }
10604    return DAG.getNode(Opcode, dl, Op.getValueType(),
10605                       Op.getOperand(1), Op.getOperand(2));
10606  }
10607
10608  case Intrinsic::x86_ssse3_pshuf_b_128:
10609  case Intrinsic::x86_avx2_pshuf_b:
10610    return DAG.getNode(X86ISD::PSHUFB, dl, Op.getValueType(),
10611                       Op.getOperand(1), Op.getOperand(2));
10612
10613  case Intrinsic::x86_ssse3_psign_b_128:
10614  case Intrinsic::x86_ssse3_psign_w_128:
10615  case Intrinsic::x86_ssse3_psign_d_128:
10616  case Intrinsic::x86_avx2_psign_b:
10617  case Intrinsic::x86_avx2_psign_w:
10618  case Intrinsic::x86_avx2_psign_d:
10619    return DAG.getNode(X86ISD::PSIGN, dl, Op.getValueType(),
10620                       Op.getOperand(1), Op.getOperand(2));
10621
10622  case Intrinsic::x86_sse41_insertps:
10623    return DAG.getNode(X86ISD::INSERTPS, dl, Op.getValueType(),
10624                       Op.getOperand(1), Op.getOperand(2), Op.getOperand(3));
10625
10626  case Intrinsic::x86_avx_vperm2f128_ps_256:
10627  case Intrinsic::x86_avx_vperm2f128_pd_256:
10628  case Intrinsic::x86_avx_vperm2f128_si_256:
10629  case Intrinsic::x86_avx2_vperm2i128:
10630    return DAG.getNode(X86ISD::VPERM2X128, dl, Op.getValueType(),
10631                       Op.getOperand(1), Op.getOperand(2), Op.getOperand(3));
10632
10633  case Intrinsic::x86_avx2_permd:
10634  case Intrinsic::x86_avx2_permps:
10635    // Operands intentionally swapped. Mask is last operand to intrinsic,
10636    // but second operand for node/intruction.
10637    return DAG.getNode(X86ISD::VPERMV, dl, Op.getValueType(),
10638                       Op.getOperand(2), Op.getOperand(1));
10639
10640  case Intrinsic::x86_sse_sqrt_ps:
10641  case Intrinsic::x86_sse2_sqrt_pd:
10642  case Intrinsic::x86_avx_sqrt_ps_256:
10643  case Intrinsic::x86_avx_sqrt_pd_256:
10644    return DAG.getNode(ISD::FSQRT, dl, Op.getValueType(), Op.getOperand(1));
10645
10646  // ptest and testp intrinsics. The intrinsic these come from are designed to
10647  // return an integer value, not just an instruction so lower it to the ptest
10648  // or testp pattern and a setcc for the result.
10649  case Intrinsic::x86_sse41_ptestz:
10650  case Intrinsic::x86_sse41_ptestc:
10651  case Intrinsic::x86_sse41_ptestnzc:
10652  case Intrinsic::x86_avx_ptestz_256:
10653  case Intrinsic::x86_avx_ptestc_256:
10654  case Intrinsic::x86_avx_ptestnzc_256:
10655  case Intrinsic::x86_avx_vtestz_ps:
10656  case Intrinsic::x86_avx_vtestc_ps:
10657  case Intrinsic::x86_avx_vtestnzc_ps:
10658  case Intrinsic::x86_avx_vtestz_pd:
10659  case Intrinsic::x86_avx_vtestc_pd:
10660  case Intrinsic::x86_avx_vtestnzc_pd:
10661  case Intrinsic::x86_avx_vtestz_ps_256:
10662  case Intrinsic::x86_avx_vtestc_ps_256:
10663  case Intrinsic::x86_avx_vtestnzc_ps_256:
10664  case Intrinsic::x86_avx_vtestz_pd_256:
10665  case Intrinsic::x86_avx_vtestc_pd_256:
10666  case Intrinsic::x86_avx_vtestnzc_pd_256: {
10667    bool IsTestPacked = false;
10668    unsigned X86CC;
10669    switch (IntNo) {
10670    default: llvm_unreachable("Bad fallthrough in Intrinsic lowering.");
10671    case Intrinsic::x86_avx_vtestz_ps:
10672    case Intrinsic::x86_avx_vtestz_pd:
10673    case Intrinsic::x86_avx_vtestz_ps_256:
10674    case Intrinsic::x86_avx_vtestz_pd_256:
10675      IsTestPacked = true; // Fallthrough
10676    case Intrinsic::x86_sse41_ptestz:
10677    case Intrinsic::x86_avx_ptestz_256:
10678      // ZF = 1
10679      X86CC = X86::COND_E;
10680      break;
10681    case Intrinsic::x86_avx_vtestc_ps:
10682    case Intrinsic::x86_avx_vtestc_pd:
10683    case Intrinsic::x86_avx_vtestc_ps_256:
10684    case Intrinsic::x86_avx_vtestc_pd_256:
10685      IsTestPacked = true; // Fallthrough
10686    case Intrinsic::x86_sse41_ptestc:
10687    case Intrinsic::x86_avx_ptestc_256:
10688      // CF = 1
10689      X86CC = X86::COND_B;
10690      break;
10691    case Intrinsic::x86_avx_vtestnzc_ps:
10692    case Intrinsic::x86_avx_vtestnzc_pd:
10693    case Intrinsic::x86_avx_vtestnzc_ps_256:
10694    case Intrinsic::x86_avx_vtestnzc_pd_256:
10695      IsTestPacked = true; // Fallthrough
10696    case Intrinsic::x86_sse41_ptestnzc:
10697    case Intrinsic::x86_avx_ptestnzc_256:
10698      // ZF and CF = 0
10699      X86CC = X86::COND_A;
10700      break;
10701    }
10702
10703    SDValue LHS = Op.getOperand(1);
10704    SDValue RHS = Op.getOperand(2);
10705    unsigned TestOpc = IsTestPacked ? X86ISD::TESTP : X86ISD::PTEST;
10706    SDValue Test = DAG.getNode(TestOpc, dl, MVT::i32, LHS, RHS);
10707    SDValue CC = DAG.getConstant(X86CC, MVT::i8);
10708    SDValue SetCC = DAG.getNode(X86ISD::SETCC, dl, MVT::i8, CC, Test);
10709    return DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, SetCC);
10710  }
10711
10712  // SSE/AVX shift intrinsics
10713  case Intrinsic::x86_sse2_psll_w:
10714  case Intrinsic::x86_sse2_psll_d:
10715  case Intrinsic::x86_sse2_psll_q:
10716  case Intrinsic::x86_avx2_psll_w:
10717  case Intrinsic::x86_avx2_psll_d:
10718  case Intrinsic::x86_avx2_psll_q:
10719  case Intrinsic::x86_sse2_psrl_w:
10720  case Intrinsic::x86_sse2_psrl_d:
10721  case Intrinsic::x86_sse2_psrl_q:
10722  case Intrinsic::x86_avx2_psrl_w:
10723  case Intrinsic::x86_avx2_psrl_d:
10724  case Intrinsic::x86_avx2_psrl_q:
10725  case Intrinsic::x86_sse2_psra_w:
10726  case Intrinsic::x86_sse2_psra_d:
10727  case Intrinsic::x86_avx2_psra_w:
10728  case Intrinsic::x86_avx2_psra_d: {
10729    unsigned Opcode;
10730    switch (IntNo) {
10731    default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
10732    case Intrinsic::x86_sse2_psll_w:
10733    case Intrinsic::x86_sse2_psll_d:
10734    case Intrinsic::x86_sse2_psll_q:
10735    case Intrinsic::x86_avx2_psll_w:
10736    case Intrinsic::x86_avx2_psll_d:
10737    case Intrinsic::x86_avx2_psll_q:
10738      Opcode = X86ISD::VSHL;
10739      break;
10740    case Intrinsic::x86_sse2_psrl_w:
10741    case Intrinsic::x86_sse2_psrl_d:
10742    case Intrinsic::x86_sse2_psrl_q:
10743    case Intrinsic::x86_avx2_psrl_w:
10744    case Intrinsic::x86_avx2_psrl_d:
10745    case Intrinsic::x86_avx2_psrl_q:
10746      Opcode = X86ISD::VSRL;
10747      break;
10748    case Intrinsic::x86_sse2_psra_w:
10749    case Intrinsic::x86_sse2_psra_d:
10750    case Intrinsic::x86_avx2_psra_w:
10751    case Intrinsic::x86_avx2_psra_d:
10752      Opcode = X86ISD::VSRA;
10753      break;
10754    }
10755    return DAG.getNode(Opcode, dl, Op.getValueType(),
10756                       Op.getOperand(1), Op.getOperand(2));
10757  }
10758
10759  // SSE/AVX immediate shift intrinsics
10760  case Intrinsic::x86_sse2_pslli_w:
10761  case Intrinsic::x86_sse2_pslli_d:
10762  case Intrinsic::x86_sse2_pslli_q:
10763  case Intrinsic::x86_avx2_pslli_w:
10764  case Intrinsic::x86_avx2_pslli_d:
10765  case Intrinsic::x86_avx2_pslli_q:
10766  case Intrinsic::x86_sse2_psrli_w:
10767  case Intrinsic::x86_sse2_psrli_d:
10768  case Intrinsic::x86_sse2_psrli_q:
10769  case Intrinsic::x86_avx2_psrli_w:
10770  case Intrinsic::x86_avx2_psrli_d:
10771  case Intrinsic::x86_avx2_psrli_q:
10772  case Intrinsic::x86_sse2_psrai_w:
10773  case Intrinsic::x86_sse2_psrai_d:
10774  case Intrinsic::x86_avx2_psrai_w:
10775  case Intrinsic::x86_avx2_psrai_d: {
10776    unsigned Opcode;
10777    switch (IntNo) {
10778    default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
10779    case Intrinsic::x86_sse2_pslli_w:
10780    case Intrinsic::x86_sse2_pslli_d:
10781    case Intrinsic::x86_sse2_pslli_q:
10782    case Intrinsic::x86_avx2_pslli_w:
10783    case Intrinsic::x86_avx2_pslli_d:
10784    case Intrinsic::x86_avx2_pslli_q:
10785      Opcode = X86ISD::VSHLI;
10786      break;
10787    case Intrinsic::x86_sse2_psrli_w:
10788    case Intrinsic::x86_sse2_psrli_d:
10789    case Intrinsic::x86_sse2_psrli_q:
10790    case Intrinsic::x86_avx2_psrli_w:
10791    case Intrinsic::x86_avx2_psrli_d:
10792    case Intrinsic::x86_avx2_psrli_q:
10793      Opcode = X86ISD::VSRLI;
10794      break;
10795    case Intrinsic::x86_sse2_psrai_w:
10796    case Intrinsic::x86_sse2_psrai_d:
10797    case Intrinsic::x86_avx2_psrai_w:
10798    case Intrinsic::x86_avx2_psrai_d:
10799      Opcode = X86ISD::VSRAI;
10800      break;
10801    }
10802    return getTargetVShiftNode(Opcode, dl, Op.getValueType(),
10803                               Op.getOperand(1), Op.getOperand(2), DAG);
10804  }
10805
10806  case Intrinsic::x86_sse42_pcmpistria128:
10807  case Intrinsic::x86_sse42_pcmpestria128:
10808  case Intrinsic::x86_sse42_pcmpistric128:
10809  case Intrinsic::x86_sse42_pcmpestric128:
10810  case Intrinsic::x86_sse42_pcmpistrio128:
10811  case Intrinsic::x86_sse42_pcmpestrio128:
10812  case Intrinsic::x86_sse42_pcmpistris128:
10813  case Intrinsic::x86_sse42_pcmpestris128:
10814  case Intrinsic::x86_sse42_pcmpistriz128:
10815  case Intrinsic::x86_sse42_pcmpestriz128: {
10816    unsigned Opcode;
10817    unsigned X86CC;
10818    switch (IntNo) {
10819    default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
10820    case Intrinsic::x86_sse42_pcmpistria128:
10821      Opcode = X86ISD::PCMPISTRI;
10822      X86CC = X86::COND_A;
10823      break;
10824    case Intrinsic::x86_sse42_pcmpestria128:
10825      Opcode = X86ISD::PCMPESTRI;
10826      X86CC = X86::COND_A;
10827      break;
10828    case Intrinsic::x86_sse42_pcmpistric128:
10829      Opcode = X86ISD::PCMPISTRI;
10830      X86CC = X86::COND_B;
10831      break;
10832    case Intrinsic::x86_sse42_pcmpestric128:
10833      Opcode = X86ISD::PCMPESTRI;
10834      X86CC = X86::COND_B;
10835      break;
10836    case Intrinsic::x86_sse42_pcmpistrio128:
10837      Opcode = X86ISD::PCMPISTRI;
10838      X86CC = X86::COND_O;
10839      break;
10840    case Intrinsic::x86_sse42_pcmpestrio128:
10841      Opcode = X86ISD::PCMPESTRI;
10842      X86CC = X86::COND_O;
10843      break;
10844    case Intrinsic::x86_sse42_pcmpistris128:
10845      Opcode = X86ISD::PCMPISTRI;
10846      X86CC = X86::COND_S;
10847      break;
10848    case Intrinsic::x86_sse42_pcmpestris128:
10849      Opcode = X86ISD::PCMPESTRI;
10850      X86CC = X86::COND_S;
10851      break;
10852    case Intrinsic::x86_sse42_pcmpistriz128:
10853      Opcode = X86ISD::PCMPISTRI;
10854      X86CC = X86::COND_E;
10855      break;
10856    case Intrinsic::x86_sse42_pcmpestriz128:
10857      Opcode = X86ISD::PCMPESTRI;
10858      X86CC = X86::COND_E;
10859      break;
10860    }
10861    SmallVector<SDValue, 5> NewOps;
10862    NewOps.append(Op->op_begin()+1, Op->op_end());
10863    SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::i32);
10864    SDValue PCMP = DAG.getNode(Opcode, dl, VTs, NewOps.data(), NewOps.size());
10865    SDValue SetCC = DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
10866                                DAG.getConstant(X86CC, MVT::i8),
10867                                SDValue(PCMP.getNode(), 1));
10868    return DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, SetCC);
10869  }
10870
10871  case Intrinsic::x86_sse42_pcmpistri128:
10872  case Intrinsic::x86_sse42_pcmpestri128: {
10873    unsigned Opcode;
10874    if (IntNo == Intrinsic::x86_sse42_pcmpistri128)
10875      Opcode = X86ISD::PCMPISTRI;
10876    else
10877      Opcode = X86ISD::PCMPESTRI;
10878
10879    SmallVector<SDValue, 5> NewOps;
10880    NewOps.append(Op->op_begin()+1, Op->op_end());
10881    SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::i32);
10882    return DAG.getNode(Opcode, dl, VTs, NewOps.data(), NewOps.size());
10883  }
10884  case Intrinsic::x86_fma_vfmadd_ps:
10885  case Intrinsic::x86_fma_vfmadd_pd:
10886  case Intrinsic::x86_fma_vfmsub_ps:
10887  case Intrinsic::x86_fma_vfmsub_pd:
10888  case Intrinsic::x86_fma_vfnmadd_ps:
10889  case Intrinsic::x86_fma_vfnmadd_pd:
10890  case Intrinsic::x86_fma_vfnmsub_ps:
10891  case Intrinsic::x86_fma_vfnmsub_pd:
10892  case Intrinsic::x86_fma_vfmaddsub_ps:
10893  case Intrinsic::x86_fma_vfmaddsub_pd:
10894  case Intrinsic::x86_fma_vfmsubadd_ps:
10895  case Intrinsic::x86_fma_vfmsubadd_pd:
10896  case Intrinsic::x86_fma_vfmadd_ps_256:
10897  case Intrinsic::x86_fma_vfmadd_pd_256:
10898  case Intrinsic::x86_fma_vfmsub_ps_256:
10899  case Intrinsic::x86_fma_vfmsub_pd_256:
10900  case Intrinsic::x86_fma_vfnmadd_ps_256:
10901  case Intrinsic::x86_fma_vfnmadd_pd_256:
10902  case Intrinsic::x86_fma_vfnmsub_ps_256:
10903  case Intrinsic::x86_fma_vfnmsub_pd_256:
10904  case Intrinsic::x86_fma_vfmaddsub_ps_256:
10905  case Intrinsic::x86_fma_vfmaddsub_pd_256:
10906  case Intrinsic::x86_fma_vfmsubadd_ps_256:
10907  case Intrinsic::x86_fma_vfmsubadd_pd_256: {
10908    unsigned Opc;
10909    switch (IntNo) {
10910    default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
10911    case Intrinsic::x86_fma_vfmadd_ps:
10912    case Intrinsic::x86_fma_vfmadd_pd:
10913    case Intrinsic::x86_fma_vfmadd_ps_256:
10914    case Intrinsic::x86_fma_vfmadd_pd_256:
10915      Opc = X86ISD::FMADD;
10916      break;
10917    case Intrinsic::x86_fma_vfmsub_ps:
10918    case Intrinsic::x86_fma_vfmsub_pd:
10919    case Intrinsic::x86_fma_vfmsub_ps_256:
10920    case Intrinsic::x86_fma_vfmsub_pd_256:
10921      Opc = X86ISD::FMSUB;
10922      break;
10923    case Intrinsic::x86_fma_vfnmadd_ps:
10924    case Intrinsic::x86_fma_vfnmadd_pd:
10925    case Intrinsic::x86_fma_vfnmadd_ps_256:
10926    case Intrinsic::x86_fma_vfnmadd_pd_256:
10927      Opc = X86ISD::FNMADD;
10928      break;
10929    case Intrinsic::x86_fma_vfnmsub_ps:
10930    case Intrinsic::x86_fma_vfnmsub_pd:
10931    case Intrinsic::x86_fma_vfnmsub_ps_256:
10932    case Intrinsic::x86_fma_vfnmsub_pd_256:
10933      Opc = X86ISD::FNMSUB;
10934      break;
10935    case Intrinsic::x86_fma_vfmaddsub_ps:
10936    case Intrinsic::x86_fma_vfmaddsub_pd:
10937    case Intrinsic::x86_fma_vfmaddsub_ps_256:
10938    case Intrinsic::x86_fma_vfmaddsub_pd_256:
10939      Opc = X86ISD::FMADDSUB;
10940      break;
10941    case Intrinsic::x86_fma_vfmsubadd_ps:
10942    case Intrinsic::x86_fma_vfmsubadd_pd:
10943    case Intrinsic::x86_fma_vfmsubadd_ps_256:
10944    case Intrinsic::x86_fma_vfmsubadd_pd_256:
10945      Opc = X86ISD::FMSUBADD;
10946      break;
10947    }
10948
10949    return DAG.getNode(Opc, dl, Op.getValueType(), Op.getOperand(1),
10950                       Op.getOperand(2), Op.getOperand(3));
10951  }
10952  }
10953}
10954
10955static SDValue LowerINTRINSIC_W_CHAIN(SDValue Op, SelectionDAG &DAG) {
10956  DebugLoc dl = Op.getDebugLoc();
10957  unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
10958  switch (IntNo) {
10959  default: return SDValue();    // Don't custom lower most intrinsics.
10960
10961  // RDRAND/RDSEED intrinsics.
10962  case Intrinsic::x86_rdrand_16:
10963  case Intrinsic::x86_rdrand_32:
10964  case Intrinsic::x86_rdrand_64:
10965  case Intrinsic::x86_rdseed_16:
10966  case Intrinsic::x86_rdseed_32:
10967  case Intrinsic::x86_rdseed_64: {
10968    unsigned Opcode = (IntNo == Intrinsic::x86_rdseed_16 ||
10969                       IntNo == Intrinsic::x86_rdseed_32 ||
10970                       IntNo == Intrinsic::x86_rdseed_64) ? X86ISD::RDSEED :
10971                                                            X86ISD::RDRAND;
10972    // Emit the node with the right value type.
10973    SDVTList VTs = DAG.getVTList(Op->getValueType(0), MVT::Glue, MVT::Other);
10974    SDValue Result = DAG.getNode(Opcode, dl, VTs, Op.getOperand(0));
10975
10976    // If the value returned by RDRAND/RDSEED was valid (CF=1), return 1.
10977    // Otherwise return the value from Rand, which is always 0, casted to i32.
10978    SDValue Ops[] = { DAG.getZExtOrTrunc(Result, dl, Op->getValueType(1)),
10979                      DAG.getConstant(1, Op->getValueType(1)),
10980                      DAG.getConstant(X86::COND_B, MVT::i32),
10981                      SDValue(Result.getNode(), 1) };
10982    SDValue isValid = DAG.getNode(X86ISD::CMOV, dl,
10983                                  DAG.getVTList(Op->getValueType(1), MVT::Glue),
10984                                  Ops, array_lengthof(Ops));
10985
10986    // Return { result, isValid, chain }.
10987    return DAG.getNode(ISD::MERGE_VALUES, dl, Op->getVTList(), Result, isValid,
10988                       SDValue(Result.getNode(), 2));
10989  }
10990
10991  // XTEST intrinsics.
10992  case Intrinsic::x86_xtest: {
10993    SDVTList VTs = DAG.getVTList(Op->getValueType(0), MVT::Other);
10994    SDValue InTrans = DAG.getNode(X86ISD::XTEST, dl, VTs, Op.getOperand(0));
10995    SDValue SetCC = DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
10996                                DAG.getConstant(X86::COND_NE, MVT::i8),
10997                                InTrans);
10998    SDValue Ret = DAG.getNode(ISD::ZERO_EXTEND, dl, Op->getValueType(0), SetCC);
10999    return DAG.getNode(ISD::MERGE_VALUES, dl, Op->getVTList(),
11000                       Ret, SDValue(InTrans.getNode(), 1));
11001  }
11002  }
11003}
11004
11005SDValue X86TargetLowering::LowerRETURNADDR(SDValue Op,
11006                                           SelectionDAG &DAG) const {
11007  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
11008  MFI->setReturnAddressIsTaken(true);
11009
11010  unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
11011  DebugLoc dl = Op.getDebugLoc();
11012  EVT PtrVT = getPointerTy();
11013
11014  if (Depth > 0) {
11015    SDValue FrameAddr = LowerFRAMEADDR(Op, DAG);
11016    SDValue Offset =
11017      DAG.getConstant(RegInfo->getSlotSize(), PtrVT);
11018    return DAG.getLoad(PtrVT, dl, DAG.getEntryNode(),
11019                       DAG.getNode(ISD::ADD, dl, PtrVT,
11020                                   FrameAddr, Offset),
11021                       MachinePointerInfo(), false, false, false, 0);
11022  }
11023
11024  // Just load the return address.
11025  SDValue RetAddrFI = getReturnAddressFrameIndex(DAG);
11026  return DAG.getLoad(PtrVT, dl, DAG.getEntryNode(),
11027                     RetAddrFI, MachinePointerInfo(), false, false, false, 0);
11028}
11029
11030SDValue X86TargetLowering::LowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) const {
11031  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
11032  MFI->setFrameAddressIsTaken(true);
11033
11034  EVT VT = Op.getValueType();
11035  DebugLoc dl = Op.getDebugLoc();  // FIXME probably not meaningful
11036  unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
11037  unsigned FrameReg = RegInfo->getFrameRegister(DAG.getMachineFunction());
11038  assert(((FrameReg == X86::RBP && VT == MVT::i64) ||
11039          (FrameReg == X86::EBP && VT == MVT::i32)) &&
11040         "Invalid Frame Register!");
11041  SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl, FrameReg, VT);
11042  while (Depth--)
11043    FrameAddr = DAG.getLoad(VT, dl, DAG.getEntryNode(), FrameAddr,
11044                            MachinePointerInfo(),
11045                            false, false, false, 0);
11046  return FrameAddr;
11047}
11048
11049SDValue X86TargetLowering::LowerFRAME_TO_ARGS_OFFSET(SDValue Op,
11050                                                     SelectionDAG &DAG) const {
11051  return DAG.getIntPtrConstant(2 * RegInfo->getSlotSize());
11052}
11053
11054SDValue X86TargetLowering::LowerEH_RETURN(SDValue Op, SelectionDAG &DAG) const {
11055  SDValue Chain     = Op.getOperand(0);
11056  SDValue Offset    = Op.getOperand(1);
11057  SDValue Handler   = Op.getOperand(2);
11058  DebugLoc dl       = Op.getDebugLoc();
11059
11060  EVT PtrVT = getPointerTy();
11061  unsigned FrameReg = RegInfo->getFrameRegister(DAG.getMachineFunction());
11062  assert(((FrameReg == X86::RBP && PtrVT == MVT::i64) ||
11063          (FrameReg == X86::EBP && PtrVT == MVT::i32)) &&
11064         "Invalid Frame Register!");
11065  SDValue Frame = DAG.getCopyFromReg(DAG.getEntryNode(), dl, FrameReg, PtrVT);
11066  unsigned StoreAddrReg = (PtrVT == MVT::i64) ? X86::RCX : X86::ECX;
11067
11068  SDValue StoreAddr = DAG.getNode(ISD::ADD, dl, PtrVT, Frame,
11069                                 DAG.getIntPtrConstant(RegInfo->getSlotSize()));
11070  StoreAddr = DAG.getNode(ISD::ADD, dl, PtrVT, StoreAddr, Offset);
11071  Chain = DAG.getStore(Chain, dl, Handler, StoreAddr, MachinePointerInfo(),
11072                       false, false, 0);
11073  Chain = DAG.getCopyToReg(Chain, dl, StoreAddrReg, StoreAddr);
11074
11075  return DAG.getNode(X86ISD::EH_RETURN, dl, MVT::Other, Chain,
11076                     DAG.getRegister(StoreAddrReg, PtrVT));
11077}
11078
11079SDValue X86TargetLowering::lowerEH_SJLJ_SETJMP(SDValue Op,
11080                                               SelectionDAG &DAG) const {
11081  DebugLoc DL = Op.getDebugLoc();
11082  return DAG.getNode(X86ISD::EH_SJLJ_SETJMP, DL,
11083                     DAG.getVTList(MVT::i32, MVT::Other),
11084                     Op.getOperand(0), Op.getOperand(1));
11085}
11086
11087SDValue X86TargetLowering::lowerEH_SJLJ_LONGJMP(SDValue Op,
11088                                                SelectionDAG &DAG) const {
11089  DebugLoc DL = Op.getDebugLoc();
11090  return DAG.getNode(X86ISD::EH_SJLJ_LONGJMP, DL, MVT::Other,
11091                     Op.getOperand(0), Op.getOperand(1));
11092}
11093
11094static SDValue LowerADJUST_TRAMPOLINE(SDValue Op, SelectionDAG &DAG) {
11095  return Op.getOperand(0);
11096}
11097
11098SDValue X86TargetLowering::LowerINIT_TRAMPOLINE(SDValue Op,
11099                                                SelectionDAG &DAG) const {
11100  SDValue Root = Op.getOperand(0);
11101  SDValue Trmp = Op.getOperand(1); // trampoline
11102  SDValue FPtr = Op.getOperand(2); // nested function
11103  SDValue Nest = Op.getOperand(3); // 'nest' parameter value
11104  DebugLoc dl  = Op.getDebugLoc();
11105
11106  const Value *TrmpAddr = cast<SrcValueSDNode>(Op.getOperand(4))->getValue();
11107  const TargetRegisterInfo* TRI = getTargetMachine().getRegisterInfo();
11108
11109  if (Subtarget->is64Bit()) {
11110    SDValue OutChains[6];
11111
11112    // Large code-model.
11113    const unsigned char JMP64r  = 0xFF; // 64-bit jmp through register opcode.
11114    const unsigned char MOV64ri = 0xB8; // X86::MOV64ri opcode.
11115
11116    const unsigned char N86R10 = TRI->getEncodingValue(X86::R10) & 0x7;
11117    const unsigned char N86R11 = TRI->getEncodingValue(X86::R11) & 0x7;
11118
11119    const unsigned char REX_WB = 0x40 | 0x08 | 0x01; // REX prefix
11120
11121    // Load the pointer to the nested function into R11.
11122    unsigned OpCode = ((MOV64ri | N86R11) << 8) | REX_WB; // movabsq r11
11123    SDValue Addr = Trmp;
11124    OutChains[0] = DAG.getStore(Root, dl, DAG.getConstant(OpCode, MVT::i16),
11125                                Addr, MachinePointerInfo(TrmpAddr),
11126                                false, false, 0);
11127
11128    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
11129                       DAG.getConstant(2, MVT::i64));
11130    OutChains[1] = DAG.getStore(Root, dl, FPtr, Addr,
11131                                MachinePointerInfo(TrmpAddr, 2),
11132                                false, false, 2);
11133
11134    // Load the 'nest' parameter value into R10.
11135    // R10 is specified in X86CallingConv.td
11136    OpCode = ((MOV64ri | N86R10) << 8) | REX_WB; // movabsq r10
11137    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
11138                       DAG.getConstant(10, MVT::i64));
11139    OutChains[2] = DAG.getStore(Root, dl, DAG.getConstant(OpCode, MVT::i16),
11140                                Addr, MachinePointerInfo(TrmpAddr, 10),
11141                                false, false, 0);
11142
11143    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
11144                       DAG.getConstant(12, MVT::i64));
11145    OutChains[3] = DAG.getStore(Root, dl, Nest, Addr,
11146                                MachinePointerInfo(TrmpAddr, 12),
11147                                false, false, 2);
11148
11149    // Jump to the nested function.
11150    OpCode = (JMP64r << 8) | REX_WB; // jmpq *...
11151    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
11152                       DAG.getConstant(20, MVT::i64));
11153    OutChains[4] = DAG.getStore(Root, dl, DAG.getConstant(OpCode, MVT::i16),
11154                                Addr, MachinePointerInfo(TrmpAddr, 20),
11155                                false, false, 0);
11156
11157    unsigned char ModRM = N86R11 | (4 << 3) | (3 << 6); // ...r11
11158    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
11159                       DAG.getConstant(22, MVT::i64));
11160    OutChains[5] = DAG.getStore(Root, dl, DAG.getConstant(ModRM, MVT::i8), Addr,
11161                                MachinePointerInfo(TrmpAddr, 22),
11162                                false, false, 0);
11163
11164    return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains, 6);
11165  } else {
11166    const Function *Func =
11167      cast<Function>(cast<SrcValueSDNode>(Op.getOperand(5))->getValue());
11168    CallingConv::ID CC = Func->getCallingConv();
11169    unsigned NestReg;
11170
11171    switch (CC) {
11172    default:
11173      llvm_unreachable("Unsupported calling convention");
11174    case CallingConv::C:
11175    case CallingConv::X86_StdCall: {
11176      // Pass 'nest' parameter in ECX.
11177      // Must be kept in sync with X86CallingConv.td
11178      NestReg = X86::ECX;
11179
11180      // Check that ECX wasn't needed by an 'inreg' parameter.
11181      FunctionType *FTy = Func->getFunctionType();
11182      const AttributeSet &Attrs = Func->getAttributes();
11183
11184      if (!Attrs.isEmpty() && !Func->isVarArg()) {
11185        unsigned InRegCount = 0;
11186        unsigned Idx = 1;
11187
11188        for (FunctionType::param_iterator I = FTy->param_begin(),
11189             E = FTy->param_end(); I != E; ++I, ++Idx)
11190          if (Attrs.hasAttribute(Idx, Attribute::InReg))
11191            // FIXME: should only count parameters that are lowered to integers.
11192            InRegCount += (TD->getTypeSizeInBits(*I) + 31) / 32;
11193
11194        if (InRegCount > 2) {
11195          report_fatal_error("Nest register in use - reduce number of inreg"
11196                             " parameters!");
11197        }
11198      }
11199      break;
11200    }
11201    case CallingConv::X86_FastCall:
11202    case CallingConv::X86_ThisCall:
11203    case CallingConv::Fast:
11204      // Pass 'nest' parameter in EAX.
11205      // Must be kept in sync with X86CallingConv.td
11206      NestReg = X86::EAX;
11207      break;
11208    }
11209
11210    SDValue OutChains[4];
11211    SDValue Addr, Disp;
11212
11213    Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
11214                       DAG.getConstant(10, MVT::i32));
11215    Disp = DAG.getNode(ISD::SUB, dl, MVT::i32, FPtr, Addr);
11216
11217    // This is storing the opcode for MOV32ri.
11218    const unsigned char MOV32ri = 0xB8; // X86::MOV32ri's opcode byte.
11219    const unsigned char N86Reg = TRI->getEncodingValue(NestReg) & 0x7;
11220    OutChains[0] = DAG.getStore(Root, dl,
11221                                DAG.getConstant(MOV32ri|N86Reg, MVT::i8),
11222                                Trmp, MachinePointerInfo(TrmpAddr),
11223                                false, false, 0);
11224
11225    Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
11226                       DAG.getConstant(1, MVT::i32));
11227    OutChains[1] = DAG.getStore(Root, dl, Nest, Addr,
11228                                MachinePointerInfo(TrmpAddr, 1),
11229                                false, false, 1);
11230
11231    const unsigned char JMP = 0xE9; // jmp <32bit dst> opcode.
11232    Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
11233                       DAG.getConstant(5, MVT::i32));
11234    OutChains[2] = DAG.getStore(Root, dl, DAG.getConstant(JMP, MVT::i8), Addr,
11235                                MachinePointerInfo(TrmpAddr, 5),
11236                                false, false, 1);
11237
11238    Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
11239                       DAG.getConstant(6, MVT::i32));
11240    OutChains[3] = DAG.getStore(Root, dl, Disp, Addr,
11241                                MachinePointerInfo(TrmpAddr, 6),
11242                                false, false, 1);
11243
11244    return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains, 4);
11245  }
11246}
11247
11248SDValue X86TargetLowering::LowerFLT_ROUNDS_(SDValue Op,
11249                                            SelectionDAG &DAG) const {
11250  /*
11251   The rounding mode is in bits 11:10 of FPSR, and has the following
11252   settings:
11253     00 Round to nearest
11254     01 Round to -inf
11255     10 Round to +inf
11256     11 Round to 0
11257
11258  FLT_ROUNDS, on the other hand, expects the following:
11259    -1 Undefined
11260     0 Round to 0
11261     1 Round to nearest
11262     2 Round to +inf
11263     3 Round to -inf
11264
11265  To perform the conversion, we do:
11266    (((((FPSR & 0x800) >> 11) | ((FPSR & 0x400) >> 9)) + 1) & 3)
11267  */
11268
11269  MachineFunction &MF = DAG.getMachineFunction();
11270  const TargetMachine &TM = MF.getTarget();
11271  const TargetFrameLowering &TFI = *TM.getFrameLowering();
11272  unsigned StackAlignment = TFI.getStackAlignment();
11273  EVT VT = Op.getValueType();
11274  DebugLoc DL = Op.getDebugLoc();
11275
11276  // Save FP Control Word to stack slot
11277  int SSFI = MF.getFrameInfo()->CreateStackObject(2, StackAlignment, false);
11278  SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
11279
11280  MachineMemOperand *MMO =
11281   MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
11282                           MachineMemOperand::MOStore, 2, 2);
11283
11284  SDValue Ops[] = { DAG.getEntryNode(), StackSlot };
11285  SDValue Chain = DAG.getMemIntrinsicNode(X86ISD::FNSTCW16m, DL,
11286                                          DAG.getVTList(MVT::Other),
11287                                          Ops, array_lengthof(Ops), MVT::i16,
11288                                          MMO);
11289
11290  // Load FP Control Word from stack slot
11291  SDValue CWD = DAG.getLoad(MVT::i16, DL, Chain, StackSlot,
11292                            MachinePointerInfo(), false, false, false, 0);
11293
11294  // Transform as necessary
11295  SDValue CWD1 =
11296    DAG.getNode(ISD::SRL, DL, MVT::i16,
11297                DAG.getNode(ISD::AND, DL, MVT::i16,
11298                            CWD, DAG.getConstant(0x800, MVT::i16)),
11299                DAG.getConstant(11, MVT::i8));
11300  SDValue CWD2 =
11301    DAG.getNode(ISD::SRL, DL, MVT::i16,
11302                DAG.getNode(ISD::AND, DL, MVT::i16,
11303                            CWD, DAG.getConstant(0x400, MVT::i16)),
11304                DAG.getConstant(9, MVT::i8));
11305
11306  SDValue RetVal =
11307    DAG.getNode(ISD::AND, DL, MVT::i16,
11308                DAG.getNode(ISD::ADD, DL, MVT::i16,
11309                            DAG.getNode(ISD::OR, DL, MVT::i16, CWD1, CWD2),
11310                            DAG.getConstant(1, MVT::i16)),
11311                DAG.getConstant(3, MVT::i16));
11312
11313  return DAG.getNode((VT.getSizeInBits() < 16 ?
11314                      ISD::TRUNCATE : ISD::ZERO_EXTEND), DL, VT, RetVal);
11315}
11316
11317static SDValue LowerCTLZ(SDValue Op, SelectionDAG &DAG) {
11318  EVT VT = Op.getValueType();
11319  EVT OpVT = VT;
11320  unsigned NumBits = VT.getSizeInBits();
11321  DebugLoc dl = Op.getDebugLoc();
11322
11323  Op = Op.getOperand(0);
11324  if (VT == MVT::i8) {
11325    // Zero extend to i32 since there is not an i8 bsr.
11326    OpVT = MVT::i32;
11327    Op = DAG.getNode(ISD::ZERO_EXTEND, dl, OpVT, Op);
11328  }
11329
11330  // Issue a bsr (scan bits in reverse) which also sets EFLAGS.
11331  SDVTList VTs = DAG.getVTList(OpVT, MVT::i32);
11332  Op = DAG.getNode(X86ISD::BSR, dl, VTs, Op);
11333
11334  // If src is zero (i.e. bsr sets ZF), returns NumBits.
11335  SDValue Ops[] = {
11336    Op,
11337    DAG.getConstant(NumBits+NumBits-1, OpVT),
11338    DAG.getConstant(X86::COND_E, MVT::i8),
11339    Op.getValue(1)
11340  };
11341  Op = DAG.getNode(X86ISD::CMOV, dl, OpVT, Ops, array_lengthof(Ops));
11342
11343  // Finally xor with NumBits-1.
11344  Op = DAG.getNode(ISD::XOR, dl, OpVT, Op, DAG.getConstant(NumBits-1, OpVT));
11345
11346  if (VT == MVT::i8)
11347    Op = DAG.getNode(ISD::TRUNCATE, dl, MVT::i8, Op);
11348  return Op;
11349}
11350
11351static SDValue LowerCTLZ_ZERO_UNDEF(SDValue Op, SelectionDAG &DAG) {
11352  EVT VT = Op.getValueType();
11353  EVT OpVT = VT;
11354  unsigned NumBits = VT.getSizeInBits();
11355  DebugLoc dl = Op.getDebugLoc();
11356
11357  Op = Op.getOperand(0);
11358  if (VT == MVT::i8) {
11359    // Zero extend to i32 since there is not an i8 bsr.
11360    OpVT = MVT::i32;
11361    Op = DAG.getNode(ISD::ZERO_EXTEND, dl, OpVT, Op);
11362  }
11363
11364  // Issue a bsr (scan bits in reverse).
11365  SDVTList VTs = DAG.getVTList(OpVT, MVT::i32);
11366  Op = DAG.getNode(X86ISD::BSR, dl, VTs, Op);
11367
11368  // And xor with NumBits-1.
11369  Op = DAG.getNode(ISD::XOR, dl, OpVT, Op, DAG.getConstant(NumBits-1, OpVT));
11370
11371  if (VT == MVT::i8)
11372    Op = DAG.getNode(ISD::TRUNCATE, dl, MVT::i8, Op);
11373  return Op;
11374}
11375
11376static SDValue LowerCTTZ(SDValue Op, SelectionDAG &DAG) {
11377  EVT VT = Op.getValueType();
11378  unsigned NumBits = VT.getSizeInBits();
11379  DebugLoc dl = Op.getDebugLoc();
11380  Op = Op.getOperand(0);
11381
11382  // Issue a bsf (scan bits forward) which also sets EFLAGS.
11383  SDVTList VTs = DAG.getVTList(VT, MVT::i32);
11384  Op = DAG.getNode(X86ISD::BSF, dl, VTs, Op);
11385
11386  // If src is zero (i.e. bsf sets ZF), returns NumBits.
11387  SDValue Ops[] = {
11388    Op,
11389    DAG.getConstant(NumBits, VT),
11390    DAG.getConstant(X86::COND_E, MVT::i8),
11391    Op.getValue(1)
11392  };
11393  return DAG.getNode(X86ISD::CMOV, dl, VT, Ops, array_lengthof(Ops));
11394}
11395
11396// Lower256IntArith - Break a 256-bit integer operation into two new 128-bit
11397// ones, and then concatenate the result back.
11398static SDValue Lower256IntArith(SDValue Op, SelectionDAG &DAG) {
11399  EVT VT = Op.getValueType();
11400
11401  assert(VT.is256BitVector() && VT.isInteger() &&
11402         "Unsupported value type for operation");
11403
11404  unsigned NumElems = VT.getVectorNumElements();
11405  DebugLoc dl = Op.getDebugLoc();
11406
11407  // Extract the LHS vectors
11408  SDValue LHS = Op.getOperand(0);
11409  SDValue LHS1 = Extract128BitVector(LHS, 0, DAG, dl);
11410  SDValue LHS2 = Extract128BitVector(LHS, NumElems/2, DAG, dl);
11411
11412  // Extract the RHS vectors
11413  SDValue RHS = Op.getOperand(1);
11414  SDValue RHS1 = Extract128BitVector(RHS, 0, DAG, dl);
11415  SDValue RHS2 = Extract128BitVector(RHS, NumElems/2, DAG, dl);
11416
11417  MVT EltVT = VT.getVectorElementType().getSimpleVT();
11418  EVT NewVT = MVT::getVectorVT(EltVT, NumElems/2);
11419
11420  return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT,
11421                     DAG.getNode(Op.getOpcode(), dl, NewVT, LHS1, RHS1),
11422                     DAG.getNode(Op.getOpcode(), dl, NewVT, LHS2, RHS2));
11423}
11424
11425static SDValue LowerADD(SDValue Op, SelectionDAG &DAG) {
11426  assert(Op.getValueType().is256BitVector() &&
11427         Op.getValueType().isInteger() &&
11428         "Only handle AVX 256-bit vector integer operation");
11429  return Lower256IntArith(Op, DAG);
11430}
11431
11432static SDValue LowerSUB(SDValue Op, SelectionDAG &DAG) {
11433  assert(Op.getValueType().is256BitVector() &&
11434         Op.getValueType().isInteger() &&
11435         "Only handle AVX 256-bit vector integer operation");
11436  return Lower256IntArith(Op, DAG);
11437}
11438
11439static SDValue LowerMUL(SDValue Op, const X86Subtarget *Subtarget,
11440                        SelectionDAG &DAG) {
11441  DebugLoc dl = Op.getDebugLoc();
11442  EVT VT = Op.getValueType();
11443
11444  // Decompose 256-bit ops into smaller 128-bit ops.
11445  if (VT.is256BitVector() && !Subtarget->hasInt256())
11446    return Lower256IntArith(Op, DAG);
11447
11448  SDValue A = Op.getOperand(0);
11449  SDValue B = Op.getOperand(1);
11450
11451  // Lower v4i32 mul as 2x shuffle, 2x pmuludq, 2x shuffle.
11452  if (VT == MVT::v4i32) {
11453    assert(Subtarget->hasSSE2() && !Subtarget->hasSSE41() &&
11454           "Should not custom lower when pmuldq is available!");
11455
11456    // Extract the odd parts.
11457    const int UnpackMask[] = { 1, -1, 3, -1 };
11458    SDValue Aodds = DAG.getVectorShuffle(VT, dl, A, A, UnpackMask);
11459    SDValue Bodds = DAG.getVectorShuffle(VT, dl, B, B, UnpackMask);
11460
11461    // Multiply the even parts.
11462    SDValue Evens = DAG.getNode(X86ISD::PMULUDQ, dl, MVT::v2i64, A, B);
11463    // Now multiply odd parts.
11464    SDValue Odds = DAG.getNode(X86ISD::PMULUDQ, dl, MVT::v2i64, Aodds, Bodds);
11465
11466    Evens = DAG.getNode(ISD::BITCAST, dl, VT, Evens);
11467    Odds = DAG.getNode(ISD::BITCAST, dl, VT, Odds);
11468
11469    // Merge the two vectors back together with a shuffle. This expands into 2
11470    // shuffles.
11471    const int ShufMask[] = { 0, 4, 2, 6 };
11472    return DAG.getVectorShuffle(VT, dl, Evens, Odds, ShufMask);
11473  }
11474
11475  assert((VT == MVT::v2i64 || VT == MVT::v4i64) &&
11476         "Only know how to lower V2I64/V4I64 multiply");
11477
11478  //  Ahi = psrlqi(a, 32);
11479  //  Bhi = psrlqi(b, 32);
11480  //
11481  //  AloBlo = pmuludq(a, b);
11482  //  AloBhi = pmuludq(a, Bhi);
11483  //  AhiBlo = pmuludq(Ahi, b);
11484
11485  //  AloBhi = psllqi(AloBhi, 32);
11486  //  AhiBlo = psllqi(AhiBlo, 32);
11487  //  return AloBlo + AloBhi + AhiBlo;
11488
11489  SDValue ShAmt = DAG.getConstant(32, MVT::i32);
11490
11491  SDValue Ahi = DAG.getNode(X86ISD::VSRLI, dl, VT, A, ShAmt);
11492  SDValue Bhi = DAG.getNode(X86ISD::VSRLI, dl, VT, B, ShAmt);
11493
11494  // Bit cast to 32-bit vectors for MULUDQ
11495  EVT MulVT = (VT == MVT::v2i64) ? MVT::v4i32 : MVT::v8i32;
11496  A = DAG.getNode(ISD::BITCAST, dl, MulVT, A);
11497  B = DAG.getNode(ISD::BITCAST, dl, MulVT, B);
11498  Ahi = DAG.getNode(ISD::BITCAST, dl, MulVT, Ahi);
11499  Bhi = DAG.getNode(ISD::BITCAST, dl, MulVT, Bhi);
11500
11501  SDValue AloBlo = DAG.getNode(X86ISD::PMULUDQ, dl, VT, A, B);
11502  SDValue AloBhi = DAG.getNode(X86ISD::PMULUDQ, dl, VT, A, Bhi);
11503  SDValue AhiBlo = DAG.getNode(X86ISD::PMULUDQ, dl, VT, Ahi, B);
11504
11505  AloBhi = DAG.getNode(X86ISD::VSHLI, dl, VT, AloBhi, ShAmt);
11506  AhiBlo = DAG.getNode(X86ISD::VSHLI, dl, VT, AhiBlo, ShAmt);
11507
11508  SDValue Res = DAG.getNode(ISD::ADD, dl, VT, AloBlo, AloBhi);
11509  return DAG.getNode(ISD::ADD, dl, VT, Res, AhiBlo);
11510}
11511
11512SDValue X86TargetLowering::LowerSDIV(SDValue Op, SelectionDAG &DAG) const {
11513  EVT VT = Op.getValueType();
11514  EVT EltTy = VT.getVectorElementType();
11515  unsigned NumElts = VT.getVectorNumElements();
11516  SDValue N0 = Op.getOperand(0);
11517  DebugLoc dl = Op.getDebugLoc();
11518
11519  // Lower sdiv X, pow2-const.
11520  BuildVectorSDNode *C = dyn_cast<BuildVectorSDNode>(Op.getOperand(1));
11521  if (!C)
11522    return SDValue();
11523
11524  APInt SplatValue, SplatUndef;
11525  unsigned MinSplatBits;
11526  bool HasAnyUndefs;
11527  if (!C->isConstantSplat(SplatValue, SplatUndef, MinSplatBits, HasAnyUndefs))
11528    return SDValue();
11529
11530  if ((SplatValue != 0) &&
11531      (SplatValue.isPowerOf2() || (-SplatValue).isPowerOf2())) {
11532    unsigned lg2 = SplatValue.countTrailingZeros();
11533    // Splat the sign bit.
11534    SDValue Sz = DAG.getConstant(EltTy.getSizeInBits()-1, MVT::i32);
11535    SDValue SGN = getTargetVShiftNode(X86ISD::VSRAI, dl, VT, N0, Sz, DAG);
11536    // Add (N0 < 0) ? abs2 - 1 : 0;
11537    SDValue Amt = DAG.getConstant(EltTy.getSizeInBits() - lg2, MVT::i32);
11538    SDValue SRL = getTargetVShiftNode(X86ISD::VSRLI, dl, VT, SGN, Amt, DAG);
11539    SDValue ADD = DAG.getNode(ISD::ADD, dl, VT, N0, SRL);
11540    SDValue Lg2Amt = DAG.getConstant(lg2, MVT::i32);
11541    SDValue SRA = getTargetVShiftNode(X86ISD::VSRAI, dl, VT, ADD, Lg2Amt, DAG);
11542
11543    // If we're dividing by a positive value, we're done.  Otherwise, we must
11544    // negate the result.
11545    if (SplatValue.isNonNegative())
11546      return SRA;
11547
11548    SmallVector<SDValue, 16> V(NumElts, DAG.getConstant(0, EltTy));
11549    SDValue Zero = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &V[0], NumElts);
11550    return DAG.getNode(ISD::SUB, dl, VT, Zero, SRA);
11551  }
11552  return SDValue();
11553}
11554
11555static SDValue LowerScalarImmediateShift(SDValue Op, SelectionDAG &DAG,
11556                                         const X86Subtarget *Subtarget) {
11557  EVT VT = Op.getValueType();
11558  DebugLoc dl = Op.getDebugLoc();
11559  SDValue R = Op.getOperand(0);
11560  SDValue Amt = Op.getOperand(1);
11561
11562  // Optimize shl/srl/sra with constant shift amount.
11563  if (isSplatVector(Amt.getNode())) {
11564    SDValue SclrAmt = Amt->getOperand(0);
11565    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(SclrAmt)) {
11566      uint64_t ShiftAmt = C->getZExtValue();
11567
11568      if (VT == MVT::v2i64 || VT == MVT::v4i32 || VT == MVT::v8i16 ||
11569          (Subtarget->hasInt256() &&
11570           (VT == MVT::v4i64 || VT == MVT::v8i32 || VT == MVT::v16i16))) {
11571        if (Op.getOpcode() == ISD::SHL)
11572          return DAG.getNode(X86ISD::VSHLI, dl, VT, R,
11573                             DAG.getConstant(ShiftAmt, MVT::i32));
11574        if (Op.getOpcode() == ISD::SRL)
11575          return DAG.getNode(X86ISD::VSRLI, dl, VT, R,
11576                             DAG.getConstant(ShiftAmt, MVT::i32));
11577        if (Op.getOpcode() == ISD::SRA && VT != MVT::v2i64 && VT != MVT::v4i64)
11578          return DAG.getNode(X86ISD::VSRAI, dl, VT, R,
11579                             DAG.getConstant(ShiftAmt, MVT::i32));
11580      }
11581
11582      if (VT == MVT::v16i8) {
11583        if (Op.getOpcode() == ISD::SHL) {
11584          // Make a large shift.
11585          SDValue SHL = DAG.getNode(X86ISD::VSHLI, dl, MVT::v8i16, R,
11586                                    DAG.getConstant(ShiftAmt, MVT::i32));
11587          SHL = DAG.getNode(ISD::BITCAST, dl, VT, SHL);
11588          // Zero out the rightmost bits.
11589          SmallVector<SDValue, 16> V(16,
11590                                     DAG.getConstant(uint8_t(-1U << ShiftAmt),
11591                                                     MVT::i8));
11592          return DAG.getNode(ISD::AND, dl, VT, SHL,
11593                             DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &V[0], 16));
11594        }
11595        if (Op.getOpcode() == ISD::SRL) {
11596          // Make a large shift.
11597          SDValue SRL = DAG.getNode(X86ISD::VSRLI, dl, MVT::v8i16, R,
11598                                    DAG.getConstant(ShiftAmt, MVT::i32));
11599          SRL = DAG.getNode(ISD::BITCAST, dl, VT, SRL);
11600          // Zero out the leftmost bits.
11601          SmallVector<SDValue, 16> V(16,
11602                                     DAG.getConstant(uint8_t(-1U) >> ShiftAmt,
11603                                                     MVT::i8));
11604          return DAG.getNode(ISD::AND, dl, VT, SRL,
11605                             DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &V[0], 16));
11606        }
11607        if (Op.getOpcode() == ISD::SRA) {
11608          if (ShiftAmt == 7) {
11609            // R s>> 7  ===  R s< 0
11610            SDValue Zeros = getZeroVector(VT, Subtarget, DAG, dl);
11611            return DAG.getNode(X86ISD::PCMPGT, dl, VT, Zeros, R);
11612          }
11613
11614          // R s>> a === ((R u>> a) ^ m) - m
11615          SDValue Res = DAG.getNode(ISD::SRL, dl, VT, R, Amt);
11616          SmallVector<SDValue, 16> V(16, DAG.getConstant(128 >> ShiftAmt,
11617                                                         MVT::i8));
11618          SDValue Mask = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &V[0], 16);
11619          Res = DAG.getNode(ISD::XOR, dl, VT, Res, Mask);
11620          Res = DAG.getNode(ISD::SUB, dl, VT, Res, Mask);
11621          return Res;
11622        }
11623        llvm_unreachable("Unknown shift opcode.");
11624      }
11625
11626      if (Subtarget->hasInt256() && VT == MVT::v32i8) {
11627        if (Op.getOpcode() == ISD::SHL) {
11628          // Make a large shift.
11629          SDValue SHL = DAG.getNode(X86ISD::VSHLI, dl, MVT::v16i16, R,
11630                                    DAG.getConstant(ShiftAmt, MVT::i32));
11631          SHL = DAG.getNode(ISD::BITCAST, dl, VT, SHL);
11632          // Zero out the rightmost bits.
11633          SmallVector<SDValue, 32> V(32,
11634                                     DAG.getConstant(uint8_t(-1U << ShiftAmt),
11635                                                     MVT::i8));
11636          return DAG.getNode(ISD::AND, dl, VT, SHL,
11637                             DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &V[0], 32));
11638        }
11639        if (Op.getOpcode() == ISD::SRL) {
11640          // Make a large shift.
11641          SDValue SRL = DAG.getNode(X86ISD::VSRLI, dl, MVT::v16i16, R,
11642                                    DAG.getConstant(ShiftAmt, MVT::i32));
11643          SRL = DAG.getNode(ISD::BITCAST, dl, VT, SRL);
11644          // Zero out the leftmost bits.
11645          SmallVector<SDValue, 32> V(32,
11646                                     DAG.getConstant(uint8_t(-1U) >> ShiftAmt,
11647                                                     MVT::i8));
11648          return DAG.getNode(ISD::AND, dl, VT, SRL,
11649                             DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &V[0], 32));
11650        }
11651        if (Op.getOpcode() == ISD::SRA) {
11652          if (ShiftAmt == 7) {
11653            // R s>> 7  ===  R s< 0
11654            SDValue Zeros = getZeroVector(VT, Subtarget, DAG, dl);
11655            return DAG.getNode(X86ISD::PCMPGT, dl, VT, Zeros, R);
11656          }
11657
11658          // R s>> a === ((R u>> a) ^ m) - m
11659          SDValue Res = DAG.getNode(ISD::SRL, dl, VT, R, Amt);
11660          SmallVector<SDValue, 32> V(32, DAG.getConstant(128 >> ShiftAmt,
11661                                                         MVT::i8));
11662          SDValue Mask = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &V[0], 32);
11663          Res = DAG.getNode(ISD::XOR, dl, VT, Res, Mask);
11664          Res = DAG.getNode(ISD::SUB, dl, VT, Res, Mask);
11665          return Res;
11666        }
11667        llvm_unreachable("Unknown shift opcode.");
11668      }
11669    }
11670  }
11671
11672  // Special case in 32-bit mode, where i64 is expanded into high and low parts.
11673  if (!Subtarget->is64Bit() &&
11674      (VT == MVT::v2i64 || (Subtarget->hasInt256() && VT == MVT::v4i64)) &&
11675      Amt.getOpcode() == ISD::BITCAST &&
11676      Amt.getOperand(0).getOpcode() == ISD::BUILD_VECTOR) {
11677    Amt = Amt.getOperand(0);
11678    unsigned Ratio = Amt.getValueType().getVectorNumElements() /
11679                     VT.getVectorNumElements();
11680    unsigned RatioInLog2 = Log2_32_Ceil(Ratio);
11681    uint64_t ShiftAmt = 0;
11682    for (unsigned i = 0; i != Ratio; ++i) {
11683      ConstantSDNode *C = dyn_cast<ConstantSDNode>(Amt.getOperand(i));
11684      if (C == 0)
11685        return SDValue();
11686      // 6 == Log2(64)
11687      ShiftAmt |= C->getZExtValue() << (i * (1 << (6 - RatioInLog2)));
11688    }
11689    // Check remaining shift amounts.
11690    for (unsigned i = Ratio; i != Amt.getNumOperands(); i += Ratio) {
11691      uint64_t ShAmt = 0;
11692      for (unsigned j = 0; j != Ratio; ++j) {
11693        ConstantSDNode *C =
11694          dyn_cast<ConstantSDNode>(Amt.getOperand(i + j));
11695        if (C == 0)
11696          return SDValue();
11697        // 6 == Log2(64)
11698        ShAmt |= C->getZExtValue() << (j * (1 << (6 - RatioInLog2)));
11699      }
11700      if (ShAmt != ShiftAmt)
11701        return SDValue();
11702    }
11703    switch (Op.getOpcode()) {
11704    default:
11705      llvm_unreachable("Unknown shift opcode!");
11706    case ISD::SHL:
11707      return DAG.getNode(X86ISD::VSHLI, dl, VT, R,
11708                         DAG.getConstant(ShiftAmt, MVT::i32));
11709    case ISD::SRL:
11710      return DAG.getNode(X86ISD::VSRLI, dl, VT, R,
11711                         DAG.getConstant(ShiftAmt, MVT::i32));
11712    case ISD::SRA:
11713      return DAG.getNode(X86ISD::VSRAI, dl, VT, R,
11714                         DAG.getConstant(ShiftAmt, MVT::i32));
11715    }
11716  }
11717
11718  return SDValue();
11719}
11720
11721static SDValue LowerScalarVariableShift(SDValue Op, SelectionDAG &DAG,
11722                                        const X86Subtarget* Subtarget) {
11723  EVT VT = Op.getValueType();
11724  DebugLoc dl = Op.getDebugLoc();
11725  SDValue R = Op.getOperand(0);
11726  SDValue Amt = Op.getOperand(1);
11727
11728  if ((VT == MVT::v2i64 && Op.getOpcode() != ISD::SRA) ||
11729      VT == MVT::v4i32 || VT == MVT::v8i16 ||
11730      (Subtarget->hasInt256() &&
11731       ((VT == MVT::v4i64 && Op.getOpcode() != ISD::SRA) ||
11732        VT == MVT::v8i32 || VT == MVT::v16i16))) {
11733    SDValue BaseShAmt;
11734    EVT EltVT = VT.getVectorElementType();
11735
11736    if (Amt.getOpcode() == ISD::BUILD_VECTOR) {
11737      unsigned NumElts = VT.getVectorNumElements();
11738      unsigned i, j;
11739      for (i = 0; i != NumElts; ++i) {
11740        if (Amt.getOperand(i).getOpcode() == ISD::UNDEF)
11741          continue;
11742        break;
11743      }
11744      for (j = i; j != NumElts; ++j) {
11745        SDValue Arg = Amt.getOperand(j);
11746        if (Arg.getOpcode() == ISD::UNDEF) continue;
11747        if (Arg != Amt.getOperand(i))
11748          break;
11749      }
11750      if (i != NumElts && j == NumElts)
11751        BaseShAmt = Amt.getOperand(i);
11752    } else {
11753      if (Amt.getOpcode() == ISD::EXTRACT_SUBVECTOR)
11754        Amt = Amt.getOperand(0);
11755      if (Amt.getOpcode() == ISD::VECTOR_SHUFFLE &&
11756               cast<ShuffleVectorSDNode>(Amt)->isSplat()) {
11757        SDValue InVec = Amt.getOperand(0);
11758        if (InVec.getOpcode() == ISD::BUILD_VECTOR) {
11759          unsigned NumElts = InVec.getValueType().getVectorNumElements();
11760          unsigned i = 0;
11761          for (; i != NumElts; ++i) {
11762            SDValue Arg = InVec.getOperand(i);
11763            if (Arg.getOpcode() == ISD::UNDEF) continue;
11764            BaseShAmt = Arg;
11765            break;
11766          }
11767        } else if (InVec.getOpcode() == ISD::INSERT_VECTOR_ELT) {
11768           if (ConstantSDNode *C =
11769               dyn_cast<ConstantSDNode>(InVec.getOperand(2))) {
11770             unsigned SplatIdx =
11771               cast<ShuffleVectorSDNode>(Amt)->getSplatIndex();
11772             if (C->getZExtValue() == SplatIdx)
11773               BaseShAmt = InVec.getOperand(1);
11774           }
11775        }
11776        if (BaseShAmt.getNode() == 0)
11777          BaseShAmt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT, Amt,
11778                                  DAG.getIntPtrConstant(0));
11779      }
11780    }
11781
11782    if (BaseShAmt.getNode()) {
11783      if (EltVT.bitsGT(MVT::i32))
11784        BaseShAmt = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, BaseShAmt);
11785      else if (EltVT.bitsLT(MVT::i32))
11786        BaseShAmt = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, BaseShAmt);
11787
11788      switch (Op.getOpcode()) {
11789      default:
11790        llvm_unreachable("Unknown shift opcode!");
11791      case ISD::SHL:
11792        switch (VT.getSimpleVT().SimpleTy) {
11793        default: return SDValue();
11794        case MVT::v2i64:
11795        case MVT::v4i32:
11796        case MVT::v8i16:
11797        case MVT::v4i64:
11798        case MVT::v8i32:
11799        case MVT::v16i16:
11800          return getTargetVShiftNode(X86ISD::VSHLI, dl, VT, R, BaseShAmt, DAG);
11801        }
11802      case ISD::SRA:
11803        switch (VT.getSimpleVT().SimpleTy) {
11804        default: return SDValue();
11805        case MVT::v4i32:
11806        case MVT::v8i16:
11807        case MVT::v8i32:
11808        case MVT::v16i16:
11809          return getTargetVShiftNode(X86ISD::VSRAI, dl, VT, R, BaseShAmt, DAG);
11810        }
11811      case ISD::SRL:
11812        switch (VT.getSimpleVT().SimpleTy) {
11813        default: return SDValue();
11814        case MVT::v2i64:
11815        case MVT::v4i32:
11816        case MVT::v8i16:
11817        case MVT::v4i64:
11818        case MVT::v8i32:
11819        case MVT::v16i16:
11820          return getTargetVShiftNode(X86ISD::VSRLI, dl, VT, R, BaseShAmt, DAG);
11821        }
11822      }
11823    }
11824  }
11825
11826  // Special case in 32-bit mode, where i64 is expanded into high and low parts.
11827  if (!Subtarget->is64Bit() &&
11828      (VT == MVT::v2i64 || (Subtarget->hasInt256() && VT == MVT::v4i64)) &&
11829      Amt.getOpcode() == ISD::BITCAST &&
11830      Amt.getOperand(0).getOpcode() == ISD::BUILD_VECTOR) {
11831    Amt = Amt.getOperand(0);
11832    unsigned Ratio = Amt.getValueType().getVectorNumElements() /
11833                     VT.getVectorNumElements();
11834    std::vector<SDValue> Vals(Ratio);
11835    for (unsigned i = 0; i != Ratio; ++i)
11836      Vals[i] = Amt.getOperand(i);
11837    for (unsigned i = Ratio; i != Amt.getNumOperands(); i += Ratio) {
11838      for (unsigned j = 0; j != Ratio; ++j)
11839        if (Vals[j] != Amt.getOperand(i + j))
11840          return SDValue();
11841    }
11842    switch (Op.getOpcode()) {
11843    default:
11844      llvm_unreachable("Unknown shift opcode!");
11845    case ISD::SHL:
11846      return DAG.getNode(X86ISD::VSHL, dl, VT, R, Op.getOperand(1));
11847    case ISD::SRL:
11848      return DAG.getNode(X86ISD::VSRL, dl, VT, R, Op.getOperand(1));
11849    case ISD::SRA:
11850      return DAG.getNode(X86ISD::VSRA, dl, VT, R, Op.getOperand(1));
11851    }
11852  }
11853
11854  return SDValue();
11855}
11856
11857SDValue X86TargetLowering::LowerShift(SDValue Op, SelectionDAG &DAG) const {
11858
11859  EVT VT = Op.getValueType();
11860  DebugLoc dl = Op.getDebugLoc();
11861  SDValue R = Op.getOperand(0);
11862  SDValue Amt = Op.getOperand(1);
11863  SDValue V;
11864
11865  if (!Subtarget->hasSSE2())
11866    return SDValue();
11867
11868  V = LowerScalarImmediateShift(Op, DAG, Subtarget);
11869  if (V.getNode())
11870    return V;
11871
11872  V = LowerScalarVariableShift(Op, DAG, Subtarget);
11873  if (V.getNode())
11874      return V;
11875
11876  // AVX2 has VPSLLV/VPSRAV/VPSRLV.
11877  if (Subtarget->hasInt256()) {
11878    if (Op.getOpcode() == ISD::SRL &&
11879        (VT == MVT::v2i64 || VT == MVT::v4i32 ||
11880         VT == MVT::v4i64 || VT == MVT::v8i32))
11881      return Op;
11882    if (Op.getOpcode() == ISD::SHL &&
11883        (VT == MVT::v2i64 || VT == MVT::v4i32 ||
11884         VT == MVT::v4i64 || VT == MVT::v8i32))
11885      return Op;
11886    if (Op.getOpcode() == ISD::SRA && (VT == MVT::v4i32 || VT == MVT::v8i32))
11887      return Op;
11888  }
11889
11890  // Lower SHL with variable shift amount.
11891  if (VT == MVT::v4i32 && Op->getOpcode() == ISD::SHL) {
11892    Op = DAG.getNode(ISD::SHL, dl, VT, Amt, DAG.getConstant(23, VT));
11893
11894    Op = DAG.getNode(ISD::ADD, dl, VT, Op, DAG.getConstant(0x3f800000U, VT));
11895    Op = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, Op);
11896    Op = DAG.getNode(ISD::FP_TO_SINT, dl, VT, Op);
11897    return DAG.getNode(ISD::MUL, dl, VT, Op, R);
11898  }
11899  if (VT == MVT::v16i8 && Op->getOpcode() == ISD::SHL) {
11900    assert(Subtarget->hasSSE2() && "Need SSE2 for pslli/pcmpeq.");
11901
11902    // a = a << 5;
11903    Op = DAG.getNode(ISD::SHL, dl, VT, Amt, DAG.getConstant(5, VT));
11904    Op = DAG.getNode(ISD::BITCAST, dl, VT, Op);
11905
11906    // Turn 'a' into a mask suitable for VSELECT
11907    SDValue VSelM = DAG.getConstant(0x80, VT);
11908    SDValue OpVSel = DAG.getNode(ISD::AND, dl, VT, VSelM, Op);
11909    OpVSel = DAG.getNode(X86ISD::PCMPEQ, dl, VT, OpVSel, VSelM);
11910
11911    SDValue CM1 = DAG.getConstant(0x0f, VT);
11912    SDValue CM2 = DAG.getConstant(0x3f, VT);
11913
11914    // r = VSELECT(r, psllw(r & (char16)15, 4), a);
11915    SDValue M = DAG.getNode(ISD::AND, dl, VT, R, CM1);
11916    M = getTargetVShiftNode(X86ISD::VSHLI, dl, MVT::v8i16, M,
11917                            DAG.getConstant(4, MVT::i32), DAG);
11918    M = DAG.getNode(ISD::BITCAST, dl, VT, M);
11919    R = DAG.getNode(ISD::VSELECT, dl, VT, OpVSel, M, R);
11920
11921    // a += a
11922    Op = DAG.getNode(ISD::ADD, dl, VT, Op, Op);
11923    OpVSel = DAG.getNode(ISD::AND, dl, VT, VSelM, Op);
11924    OpVSel = DAG.getNode(X86ISD::PCMPEQ, dl, VT, OpVSel, VSelM);
11925
11926    // r = VSELECT(r, psllw(r & (char16)63, 2), a);
11927    M = DAG.getNode(ISD::AND, dl, VT, R, CM2);
11928    M = getTargetVShiftNode(X86ISD::VSHLI, dl, MVT::v8i16, M,
11929                            DAG.getConstant(2, MVT::i32), DAG);
11930    M = DAG.getNode(ISD::BITCAST, dl, VT, M);
11931    R = DAG.getNode(ISD::VSELECT, dl, VT, OpVSel, M, R);
11932
11933    // a += a
11934    Op = DAG.getNode(ISD::ADD, dl, VT, Op, Op);
11935    OpVSel = DAG.getNode(ISD::AND, dl, VT, VSelM, Op);
11936    OpVSel = DAG.getNode(X86ISD::PCMPEQ, dl, VT, OpVSel, VSelM);
11937
11938    // return VSELECT(r, r+r, a);
11939    R = DAG.getNode(ISD::VSELECT, dl, VT, OpVSel,
11940                    DAG.getNode(ISD::ADD, dl, VT, R, R), R);
11941    return R;
11942  }
11943
11944  // Decompose 256-bit shifts into smaller 128-bit shifts.
11945  if (VT.is256BitVector()) {
11946    unsigned NumElems = VT.getVectorNumElements();
11947    MVT EltVT = VT.getVectorElementType().getSimpleVT();
11948    EVT NewVT = MVT::getVectorVT(EltVT, NumElems/2);
11949
11950    // Extract the two vectors
11951    SDValue V1 = Extract128BitVector(R, 0, DAG, dl);
11952    SDValue V2 = Extract128BitVector(R, NumElems/2, DAG, dl);
11953
11954    // Recreate the shift amount vectors
11955    SDValue Amt1, Amt2;
11956    if (Amt.getOpcode() == ISD::BUILD_VECTOR) {
11957      // Constant shift amount
11958      SmallVector<SDValue, 4> Amt1Csts;
11959      SmallVector<SDValue, 4> Amt2Csts;
11960      for (unsigned i = 0; i != NumElems/2; ++i)
11961        Amt1Csts.push_back(Amt->getOperand(i));
11962      for (unsigned i = NumElems/2; i != NumElems; ++i)
11963        Amt2Csts.push_back(Amt->getOperand(i));
11964
11965      Amt1 = DAG.getNode(ISD::BUILD_VECTOR, dl, NewVT,
11966                                 &Amt1Csts[0], NumElems/2);
11967      Amt2 = DAG.getNode(ISD::BUILD_VECTOR, dl, NewVT,
11968                                 &Amt2Csts[0], NumElems/2);
11969    } else {
11970      // Variable shift amount
11971      Amt1 = Extract128BitVector(Amt, 0, DAG, dl);
11972      Amt2 = Extract128BitVector(Amt, NumElems/2, DAG, dl);
11973    }
11974
11975    // Issue new vector shifts for the smaller types
11976    V1 = DAG.getNode(Op.getOpcode(), dl, NewVT, V1, Amt1);
11977    V2 = DAG.getNode(Op.getOpcode(), dl, NewVT, V2, Amt2);
11978
11979    // Concatenate the result back
11980    return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT, V1, V2);
11981  }
11982
11983  return SDValue();
11984}
11985
11986static SDValue LowerXALUO(SDValue Op, SelectionDAG &DAG) {
11987  // Lower the "add/sub/mul with overflow" instruction into a regular ins plus
11988  // a "setcc" instruction that checks the overflow flag. The "brcond" lowering
11989  // looks for this combo and may remove the "setcc" instruction if the "setcc"
11990  // has only one use.
11991  SDNode *N = Op.getNode();
11992  SDValue LHS = N->getOperand(0);
11993  SDValue RHS = N->getOperand(1);
11994  unsigned BaseOp = 0;
11995  unsigned Cond = 0;
11996  DebugLoc DL = Op.getDebugLoc();
11997  switch (Op.getOpcode()) {
11998  default: llvm_unreachable("Unknown ovf instruction!");
11999  case ISD::SADDO:
12000    // A subtract of one will be selected as a INC. Note that INC doesn't
12001    // set CF, so we can't do this for UADDO.
12002    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(RHS))
12003      if (C->isOne()) {
12004        BaseOp = X86ISD::INC;
12005        Cond = X86::COND_O;
12006        break;
12007      }
12008    BaseOp = X86ISD::ADD;
12009    Cond = X86::COND_O;
12010    break;
12011  case ISD::UADDO:
12012    BaseOp = X86ISD::ADD;
12013    Cond = X86::COND_B;
12014    break;
12015  case ISD::SSUBO:
12016    // A subtract of one will be selected as a DEC. Note that DEC doesn't
12017    // set CF, so we can't do this for USUBO.
12018    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(RHS))
12019      if (C->isOne()) {
12020        BaseOp = X86ISD::DEC;
12021        Cond = X86::COND_O;
12022        break;
12023      }
12024    BaseOp = X86ISD::SUB;
12025    Cond = X86::COND_O;
12026    break;
12027  case ISD::USUBO:
12028    BaseOp = X86ISD::SUB;
12029    Cond = X86::COND_B;
12030    break;
12031  case ISD::SMULO:
12032    BaseOp = X86ISD::SMUL;
12033    Cond = X86::COND_O;
12034    break;
12035  case ISD::UMULO: { // i64, i8 = umulo lhs, rhs --> i64, i64, i32 umul lhs,rhs
12036    SDVTList VTs = DAG.getVTList(N->getValueType(0), N->getValueType(0),
12037                                 MVT::i32);
12038    SDValue Sum = DAG.getNode(X86ISD::UMUL, DL, VTs, LHS, RHS);
12039
12040    SDValue SetCC =
12041      DAG.getNode(X86ISD::SETCC, DL, MVT::i8,
12042                  DAG.getConstant(X86::COND_O, MVT::i32),
12043                  SDValue(Sum.getNode(), 2));
12044
12045    return DAG.getNode(ISD::MERGE_VALUES, DL, N->getVTList(), Sum, SetCC);
12046  }
12047  }
12048
12049  // Also sets EFLAGS.
12050  SDVTList VTs = DAG.getVTList(N->getValueType(0), MVT::i32);
12051  SDValue Sum = DAG.getNode(BaseOp, DL, VTs, LHS, RHS);
12052
12053  SDValue SetCC =
12054    DAG.getNode(X86ISD::SETCC, DL, N->getValueType(1),
12055                DAG.getConstant(Cond, MVT::i32),
12056                SDValue(Sum.getNode(), 1));
12057
12058  return DAG.getNode(ISD::MERGE_VALUES, DL, N->getVTList(), Sum, SetCC);
12059}
12060
12061SDValue X86TargetLowering::LowerSIGN_EXTEND_INREG(SDValue Op,
12062                                                  SelectionDAG &DAG) const {
12063  DebugLoc dl = Op.getDebugLoc();
12064  EVT ExtraVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
12065  EVT VT = Op.getValueType();
12066
12067  if (!Subtarget->hasSSE2() || !VT.isVector())
12068    return SDValue();
12069
12070  unsigned BitsDiff = VT.getScalarType().getSizeInBits() -
12071                      ExtraVT.getScalarType().getSizeInBits();
12072  SDValue ShAmt = DAG.getConstant(BitsDiff, MVT::i32);
12073
12074  switch (VT.getSimpleVT().SimpleTy) {
12075    default: return SDValue();
12076    case MVT::v8i32:
12077    case MVT::v16i16:
12078      if (!Subtarget->hasFp256())
12079        return SDValue();
12080      if (!Subtarget->hasInt256()) {
12081        // needs to be split
12082        unsigned NumElems = VT.getVectorNumElements();
12083
12084        // Extract the LHS vectors
12085        SDValue LHS = Op.getOperand(0);
12086        SDValue LHS1 = Extract128BitVector(LHS, 0, DAG, dl);
12087        SDValue LHS2 = Extract128BitVector(LHS, NumElems/2, DAG, dl);
12088
12089        MVT EltVT = VT.getVectorElementType().getSimpleVT();
12090        EVT NewVT = MVT::getVectorVT(EltVT, NumElems/2);
12091
12092        EVT ExtraEltVT = ExtraVT.getVectorElementType();
12093        unsigned ExtraNumElems = ExtraVT.getVectorNumElements();
12094        ExtraVT = EVT::getVectorVT(*DAG.getContext(), ExtraEltVT,
12095                                   ExtraNumElems/2);
12096        SDValue Extra = DAG.getValueType(ExtraVT);
12097
12098        LHS1 = DAG.getNode(Op.getOpcode(), dl, NewVT, LHS1, Extra);
12099        LHS2 = DAG.getNode(Op.getOpcode(), dl, NewVT, LHS2, Extra);
12100
12101        return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT, LHS1, LHS2);
12102      }
12103      // fall through
12104    case MVT::v4i32:
12105    case MVT::v8i16: {
12106      // (sext (vzext x)) -> (vsext x)
12107      SDValue Op0 = Op.getOperand(0);
12108      SDValue Op00 = Op0.getOperand(0);
12109      SDValue Tmp1;
12110      // Hopefully, this VECTOR_SHUFFLE is just a VZEXT.
12111      if (Op0.getOpcode() == ISD::BITCAST &&
12112          Op00.getOpcode() == ISD::VECTOR_SHUFFLE)
12113        Tmp1 = LowerVectorIntExtend(Op00, DAG);
12114      if (Tmp1.getNode()) {
12115        SDValue Tmp1Op0 = Tmp1.getOperand(0);
12116        assert(Tmp1Op0.getOpcode() == X86ISD::VZEXT &&
12117               "This optimization is invalid without a VZEXT.");
12118        return DAG.getNode(X86ISD::VSEXT, dl, VT, Tmp1Op0.getOperand(0));
12119      }
12120
12121      // If the above didn't work, then just use Shift-Left + Shift-Right.
12122      Tmp1 = getTargetVShiftNode(X86ISD::VSHLI, dl, VT, Op0, ShAmt, DAG);
12123      return getTargetVShiftNode(X86ISD::VSRAI, dl, VT, Tmp1, ShAmt, DAG);
12124    }
12125  }
12126}
12127
12128static SDValue LowerATOMIC_FENCE(SDValue Op, const X86Subtarget *Subtarget,
12129                                 SelectionDAG &DAG) {
12130  DebugLoc dl = Op.getDebugLoc();
12131  AtomicOrdering FenceOrdering = static_cast<AtomicOrdering>(
12132    cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue());
12133  SynchronizationScope FenceScope = static_cast<SynchronizationScope>(
12134    cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue());
12135
12136  // The only fence that needs an instruction is a sequentially-consistent
12137  // cross-thread fence.
12138  if (FenceOrdering == SequentiallyConsistent && FenceScope == CrossThread) {
12139    // Use mfence if we have SSE2 or we're on x86-64 (even if we asked for
12140    // no-sse2). There isn't any reason to disable it if the target processor
12141    // supports it.
12142    if (Subtarget->hasSSE2() || Subtarget->is64Bit())
12143      return DAG.getNode(X86ISD::MFENCE, dl, MVT::Other, Op.getOperand(0));
12144
12145    SDValue Chain = Op.getOperand(0);
12146    SDValue Zero = DAG.getConstant(0, MVT::i32);
12147    SDValue Ops[] = {
12148      DAG.getRegister(X86::ESP, MVT::i32), // Base
12149      DAG.getTargetConstant(1, MVT::i8),   // Scale
12150      DAG.getRegister(0, MVT::i32),        // Index
12151      DAG.getTargetConstant(0, MVT::i32),  // Disp
12152      DAG.getRegister(0, MVT::i32),        // Segment.
12153      Zero,
12154      Chain
12155    };
12156    SDNode *Res = DAG.getMachineNode(X86::OR32mrLocked, dl, MVT::Other, Ops);
12157    return SDValue(Res, 0);
12158  }
12159
12160  // MEMBARRIER is a compiler barrier; it codegens to a no-op.
12161  return DAG.getNode(X86ISD::MEMBARRIER, dl, MVT::Other, Op.getOperand(0));
12162}
12163
12164static SDValue LowerCMP_SWAP(SDValue Op, const X86Subtarget *Subtarget,
12165                             SelectionDAG &DAG) {
12166  EVT T = Op.getValueType();
12167  DebugLoc DL = Op.getDebugLoc();
12168  unsigned Reg = 0;
12169  unsigned size = 0;
12170  switch(T.getSimpleVT().SimpleTy) {
12171  default: llvm_unreachable("Invalid value type!");
12172  case MVT::i8:  Reg = X86::AL;  size = 1; break;
12173  case MVT::i16: Reg = X86::AX;  size = 2; break;
12174  case MVT::i32: Reg = X86::EAX; size = 4; break;
12175  case MVT::i64:
12176    assert(Subtarget->is64Bit() && "Node not type legal!");
12177    Reg = X86::RAX; size = 8;
12178    break;
12179  }
12180  SDValue cpIn = DAG.getCopyToReg(Op.getOperand(0), DL, Reg,
12181                                    Op.getOperand(2), SDValue());
12182  SDValue Ops[] = { cpIn.getValue(0),
12183                    Op.getOperand(1),
12184                    Op.getOperand(3),
12185                    DAG.getTargetConstant(size, MVT::i8),
12186                    cpIn.getValue(1) };
12187  SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Glue);
12188  MachineMemOperand *MMO = cast<AtomicSDNode>(Op)->getMemOperand();
12189  SDValue Result = DAG.getMemIntrinsicNode(X86ISD::LCMPXCHG_DAG, DL, Tys,
12190                                           Ops, array_lengthof(Ops), T, MMO);
12191  SDValue cpOut =
12192    DAG.getCopyFromReg(Result.getValue(0), DL, Reg, T, Result.getValue(1));
12193  return cpOut;
12194}
12195
12196static SDValue LowerREADCYCLECOUNTER(SDValue Op, const X86Subtarget *Subtarget,
12197                                     SelectionDAG &DAG) {
12198  assert(Subtarget->is64Bit() && "Result not type legalized?");
12199  SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Glue);
12200  SDValue TheChain = Op.getOperand(0);
12201  DebugLoc dl = Op.getDebugLoc();
12202  SDValue rd = DAG.getNode(X86ISD::RDTSC_DAG, dl, Tys, &TheChain, 1);
12203  SDValue rax = DAG.getCopyFromReg(rd, dl, X86::RAX, MVT::i64, rd.getValue(1));
12204  SDValue rdx = DAG.getCopyFromReg(rax.getValue(1), dl, X86::RDX, MVT::i64,
12205                                   rax.getValue(2));
12206  SDValue Tmp = DAG.getNode(ISD::SHL, dl, MVT::i64, rdx,
12207                            DAG.getConstant(32, MVT::i8));
12208  SDValue Ops[] = {
12209    DAG.getNode(ISD::OR, dl, MVT::i64, rax, Tmp),
12210    rdx.getValue(1)
12211  };
12212  return DAG.getMergeValues(Ops, array_lengthof(Ops), dl);
12213}
12214
12215SDValue X86TargetLowering::LowerBITCAST(SDValue Op, SelectionDAG &DAG) const {
12216  EVT SrcVT = Op.getOperand(0).getValueType();
12217  EVT DstVT = Op.getValueType();
12218  assert(Subtarget->is64Bit() && !Subtarget->hasSSE2() &&
12219         Subtarget->hasMMX() && "Unexpected custom BITCAST");
12220  assert((DstVT == MVT::i64 ||
12221          (DstVT.isVector() && DstVT.getSizeInBits()==64)) &&
12222         "Unexpected custom BITCAST");
12223  // i64 <=> MMX conversions are Legal.
12224  if (SrcVT==MVT::i64 && DstVT.isVector())
12225    return Op;
12226  if (DstVT==MVT::i64 && SrcVT.isVector())
12227    return Op;
12228  // MMX <=> MMX conversions are Legal.
12229  if (SrcVT.isVector() && DstVT.isVector())
12230    return Op;
12231  // All other conversions need to be expanded.
12232  return SDValue();
12233}
12234
12235static SDValue LowerLOAD_SUB(SDValue Op, SelectionDAG &DAG) {
12236  SDNode *Node = Op.getNode();
12237  DebugLoc dl = Node->getDebugLoc();
12238  EVT T = Node->getValueType(0);
12239  SDValue negOp = DAG.getNode(ISD::SUB, dl, T,
12240                              DAG.getConstant(0, T), Node->getOperand(2));
12241  return DAG.getAtomic(ISD::ATOMIC_LOAD_ADD, dl,
12242                       cast<AtomicSDNode>(Node)->getMemoryVT(),
12243                       Node->getOperand(0),
12244                       Node->getOperand(1), negOp,
12245                       cast<AtomicSDNode>(Node)->getSrcValue(),
12246                       cast<AtomicSDNode>(Node)->getAlignment(),
12247                       cast<AtomicSDNode>(Node)->getOrdering(),
12248                       cast<AtomicSDNode>(Node)->getSynchScope());
12249}
12250
12251static SDValue LowerATOMIC_STORE(SDValue Op, SelectionDAG &DAG) {
12252  SDNode *Node = Op.getNode();
12253  DebugLoc dl = Node->getDebugLoc();
12254  EVT VT = cast<AtomicSDNode>(Node)->getMemoryVT();
12255
12256  // Convert seq_cst store -> xchg
12257  // Convert wide store -> swap (-> cmpxchg8b/cmpxchg16b)
12258  // FIXME: On 32-bit, store -> fist or movq would be more efficient
12259  //        (The only way to get a 16-byte store is cmpxchg16b)
12260  // FIXME: 16-byte ATOMIC_SWAP isn't actually hooked up at the moment.
12261  if (cast<AtomicSDNode>(Node)->getOrdering() == SequentiallyConsistent ||
12262      !DAG.getTargetLoweringInfo().isTypeLegal(VT)) {
12263    SDValue Swap = DAG.getAtomic(ISD::ATOMIC_SWAP, dl,
12264                                 cast<AtomicSDNode>(Node)->getMemoryVT(),
12265                                 Node->getOperand(0),
12266                                 Node->getOperand(1), Node->getOperand(2),
12267                                 cast<AtomicSDNode>(Node)->getMemOperand(),
12268                                 cast<AtomicSDNode>(Node)->getOrdering(),
12269                                 cast<AtomicSDNode>(Node)->getSynchScope());
12270    return Swap.getValue(1);
12271  }
12272  // Other atomic stores have a simple pattern.
12273  return Op;
12274}
12275
12276static SDValue LowerADDC_ADDE_SUBC_SUBE(SDValue Op, SelectionDAG &DAG) {
12277  EVT VT = Op.getNode()->getValueType(0);
12278
12279  // Let legalize expand this if it isn't a legal type yet.
12280  if (!DAG.getTargetLoweringInfo().isTypeLegal(VT))
12281    return SDValue();
12282
12283  SDVTList VTs = DAG.getVTList(VT, MVT::i32);
12284
12285  unsigned Opc;
12286  bool ExtraOp = false;
12287  switch (Op.getOpcode()) {
12288  default: llvm_unreachable("Invalid code");
12289  case ISD::ADDC: Opc = X86ISD::ADD; break;
12290  case ISD::ADDE: Opc = X86ISD::ADC; ExtraOp = true; break;
12291  case ISD::SUBC: Opc = X86ISD::SUB; break;
12292  case ISD::SUBE: Opc = X86ISD::SBB; ExtraOp = true; break;
12293  }
12294
12295  if (!ExtraOp)
12296    return DAG.getNode(Opc, Op->getDebugLoc(), VTs, Op.getOperand(0),
12297                       Op.getOperand(1));
12298  return DAG.getNode(Opc, Op->getDebugLoc(), VTs, Op.getOperand(0),
12299                     Op.getOperand(1), Op.getOperand(2));
12300}
12301
12302SDValue X86TargetLowering::LowerFSINCOS(SDValue Op, SelectionDAG &DAG) const {
12303  assert(Subtarget->isTargetDarwin() && Subtarget->is64Bit());
12304
12305  // For MacOSX, we want to call an alternative entry point: __sincos_stret,
12306  // which returns the values as { float, float } (in XMM0) or
12307  // { double, double } (which is returned in XMM0, XMM1).
12308  DebugLoc dl = Op.getDebugLoc();
12309  SDValue Arg = Op.getOperand(0);
12310  EVT ArgVT = Arg.getValueType();
12311  Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext());
12312
12313  ArgListTy Args;
12314  ArgListEntry Entry;
12315
12316  Entry.Node = Arg;
12317  Entry.Ty = ArgTy;
12318  Entry.isSExt = false;
12319  Entry.isZExt = false;
12320  Args.push_back(Entry);
12321
12322  bool isF64 = ArgVT == MVT::f64;
12323  // Only optimize x86_64 for now. i386 is a bit messy. For f32,
12324  // the small struct {f32, f32} is returned in (eax, edx). For f64,
12325  // the results are returned via SRet in memory.
12326  const char *LibcallName =  isF64 ? "__sincos_stret" : "__sincosf_stret";
12327  SDValue Callee = DAG.getExternalSymbol(LibcallName, getPointerTy());
12328
12329  Type *RetTy = isF64
12330    ? (Type*)StructType::get(ArgTy, ArgTy, NULL)
12331    : (Type*)VectorType::get(ArgTy, 4);
12332  TargetLowering::
12333    CallLoweringInfo CLI(DAG.getEntryNode(), RetTy,
12334                         false, false, false, false, 0,
12335                         CallingConv::C, /*isTaillCall=*/false,
12336                         /*doesNotRet=*/false, /*isReturnValueUsed*/true,
12337                         Callee, Args, DAG, dl);
12338  std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI);
12339
12340  if (isF64)
12341    // Returned in xmm0 and xmm1.
12342    return CallResult.first;
12343
12344  // Returned in bits 0:31 and 32:64 xmm0.
12345  SDValue SinVal = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, ArgVT,
12346                               CallResult.first, DAG.getIntPtrConstant(0));
12347  SDValue CosVal = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, ArgVT,
12348                               CallResult.first, DAG.getIntPtrConstant(1));
12349  SDVTList Tys = DAG.getVTList(ArgVT, ArgVT);
12350  return DAG.getNode(ISD::MERGE_VALUES, dl, Tys, SinVal, CosVal);
12351}
12352
12353/// LowerOperation - Provide custom lowering hooks for some operations.
12354///
12355SDValue X86TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
12356  switch (Op.getOpcode()) {
12357  default: llvm_unreachable("Should not custom lower this!");
12358  case ISD::SIGN_EXTEND_INREG:  return LowerSIGN_EXTEND_INREG(Op,DAG);
12359  case ISD::ATOMIC_FENCE:       return LowerATOMIC_FENCE(Op, Subtarget, DAG);
12360  case ISD::ATOMIC_CMP_SWAP:    return LowerCMP_SWAP(Op, Subtarget, DAG);
12361  case ISD::ATOMIC_LOAD_SUB:    return LowerLOAD_SUB(Op,DAG);
12362  case ISD::ATOMIC_STORE:       return LowerATOMIC_STORE(Op,DAG);
12363  case ISD::BUILD_VECTOR:       return LowerBUILD_VECTOR(Op, DAG);
12364  case ISD::CONCAT_VECTORS:     return LowerCONCAT_VECTORS(Op, DAG);
12365  case ISD::VECTOR_SHUFFLE:     return LowerVECTOR_SHUFFLE(Op, DAG);
12366  case ISD::EXTRACT_VECTOR_ELT: return LowerEXTRACT_VECTOR_ELT(Op, DAG);
12367  case ISD::INSERT_VECTOR_ELT:  return LowerINSERT_VECTOR_ELT(Op, DAG);
12368  case ISD::EXTRACT_SUBVECTOR:  return LowerEXTRACT_SUBVECTOR(Op,Subtarget,DAG);
12369  case ISD::INSERT_SUBVECTOR:   return LowerINSERT_SUBVECTOR(Op, Subtarget,DAG);
12370  case ISD::SCALAR_TO_VECTOR:   return LowerSCALAR_TO_VECTOR(Op, DAG);
12371  case ISD::ConstantPool:       return LowerConstantPool(Op, DAG);
12372  case ISD::GlobalAddress:      return LowerGlobalAddress(Op, DAG);
12373  case ISD::GlobalTLSAddress:   return LowerGlobalTLSAddress(Op, DAG);
12374  case ISD::ExternalSymbol:     return LowerExternalSymbol(Op, DAG);
12375  case ISD::BlockAddress:       return LowerBlockAddress(Op, DAG);
12376  case ISD::SHL_PARTS:
12377  case ISD::SRA_PARTS:
12378  case ISD::SRL_PARTS:          return LowerShiftParts(Op, DAG);
12379  case ISD::SINT_TO_FP:         return LowerSINT_TO_FP(Op, DAG);
12380  case ISD::UINT_TO_FP:         return LowerUINT_TO_FP(Op, DAG);
12381  case ISD::TRUNCATE:           return LowerTRUNCATE(Op, DAG);
12382  case ISD::ZERO_EXTEND:        return LowerZERO_EXTEND(Op, DAG);
12383  case ISD::SIGN_EXTEND:        return LowerSIGN_EXTEND(Op, DAG);
12384  case ISD::ANY_EXTEND:         return LowerANY_EXTEND(Op, DAG);
12385  case ISD::FP_TO_SINT:         return LowerFP_TO_SINT(Op, DAG);
12386  case ISD::FP_TO_UINT:         return LowerFP_TO_UINT(Op, DAG);
12387  case ISD::FP_EXTEND:          return LowerFP_EXTEND(Op, DAG);
12388  case ISD::FABS:               return LowerFABS(Op, DAG);
12389  case ISD::FNEG:               return LowerFNEG(Op, DAG);
12390  case ISD::FCOPYSIGN:          return LowerFCOPYSIGN(Op, DAG);
12391  case ISD::FGETSIGN:           return LowerFGETSIGN(Op, DAG);
12392  case ISD::SETCC:              return LowerSETCC(Op, DAG);
12393  case ISD::SELECT:             return LowerSELECT(Op, DAG);
12394  case ISD::BRCOND:             return LowerBRCOND(Op, DAG);
12395  case ISD::JumpTable:          return LowerJumpTable(Op, DAG);
12396  case ISD::VASTART:            return LowerVASTART(Op, DAG);
12397  case ISD::VAARG:              return LowerVAARG(Op, DAG);
12398  case ISD::VACOPY:             return LowerVACOPY(Op, Subtarget, DAG);
12399  case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG);
12400  case ISD::INTRINSIC_W_CHAIN:  return LowerINTRINSIC_W_CHAIN(Op, DAG);
12401  case ISD::RETURNADDR:         return LowerRETURNADDR(Op, DAG);
12402  case ISD::FRAMEADDR:          return LowerFRAMEADDR(Op, DAG);
12403  case ISD::FRAME_TO_ARGS_OFFSET:
12404                                return LowerFRAME_TO_ARGS_OFFSET(Op, DAG);
12405  case ISD::DYNAMIC_STACKALLOC: return LowerDYNAMIC_STACKALLOC(Op, DAG);
12406  case ISD::EH_RETURN:          return LowerEH_RETURN(Op, DAG);
12407  case ISD::EH_SJLJ_SETJMP:     return lowerEH_SJLJ_SETJMP(Op, DAG);
12408  case ISD::EH_SJLJ_LONGJMP:    return lowerEH_SJLJ_LONGJMP(Op, DAG);
12409  case ISD::INIT_TRAMPOLINE:    return LowerINIT_TRAMPOLINE(Op, DAG);
12410  case ISD::ADJUST_TRAMPOLINE:  return LowerADJUST_TRAMPOLINE(Op, DAG);
12411  case ISD::FLT_ROUNDS_:        return LowerFLT_ROUNDS_(Op, DAG);
12412  case ISD::CTLZ:               return LowerCTLZ(Op, DAG);
12413  case ISD::CTLZ_ZERO_UNDEF:    return LowerCTLZ_ZERO_UNDEF(Op, DAG);
12414  case ISD::CTTZ:               return LowerCTTZ(Op, DAG);
12415  case ISD::MUL:                return LowerMUL(Op, Subtarget, DAG);
12416  case ISD::SRA:
12417  case ISD::SRL:
12418  case ISD::SHL:                return LowerShift(Op, DAG);
12419  case ISD::SADDO:
12420  case ISD::UADDO:
12421  case ISD::SSUBO:
12422  case ISD::USUBO:
12423  case ISD::SMULO:
12424  case ISD::UMULO:              return LowerXALUO(Op, DAG);
12425  case ISD::READCYCLECOUNTER:   return LowerREADCYCLECOUNTER(Op, Subtarget,DAG);
12426  case ISD::BITCAST:            return LowerBITCAST(Op, DAG);
12427  case ISD::ADDC:
12428  case ISD::ADDE:
12429  case ISD::SUBC:
12430  case ISD::SUBE:               return LowerADDC_ADDE_SUBC_SUBE(Op, DAG);
12431  case ISD::ADD:                return LowerADD(Op, DAG);
12432  case ISD::SUB:                return LowerSUB(Op, DAG);
12433  case ISD::SDIV:               return LowerSDIV(Op, DAG);
12434  case ISD::FSINCOS:            return LowerFSINCOS(Op, DAG);
12435  }
12436}
12437
12438static void ReplaceATOMIC_LOAD(SDNode *Node,
12439                                  SmallVectorImpl<SDValue> &Results,
12440                                  SelectionDAG &DAG) {
12441  DebugLoc dl = Node->getDebugLoc();
12442  EVT VT = cast<AtomicSDNode>(Node)->getMemoryVT();
12443
12444  // Convert wide load -> cmpxchg8b/cmpxchg16b
12445  // FIXME: On 32-bit, load -> fild or movq would be more efficient
12446  //        (The only way to get a 16-byte load is cmpxchg16b)
12447  // FIXME: 16-byte ATOMIC_CMP_SWAP isn't actually hooked up at the moment.
12448  SDValue Zero = DAG.getConstant(0, VT);
12449  SDValue Swap = DAG.getAtomic(ISD::ATOMIC_CMP_SWAP, dl, VT,
12450                               Node->getOperand(0),
12451                               Node->getOperand(1), Zero, Zero,
12452                               cast<AtomicSDNode>(Node)->getMemOperand(),
12453                               cast<AtomicSDNode>(Node)->getOrdering(),
12454                               cast<AtomicSDNode>(Node)->getSynchScope());
12455  Results.push_back(Swap.getValue(0));
12456  Results.push_back(Swap.getValue(1));
12457}
12458
12459static void
12460ReplaceATOMIC_BINARY_64(SDNode *Node, SmallVectorImpl<SDValue>&Results,
12461                        SelectionDAG &DAG, unsigned NewOp) {
12462  DebugLoc dl = Node->getDebugLoc();
12463  assert (Node->getValueType(0) == MVT::i64 &&
12464          "Only know how to expand i64 atomics");
12465
12466  SDValue Chain = Node->getOperand(0);
12467  SDValue In1 = Node->getOperand(1);
12468  SDValue In2L = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
12469                             Node->getOperand(2), DAG.getIntPtrConstant(0));
12470  SDValue In2H = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
12471                             Node->getOperand(2), DAG.getIntPtrConstant(1));
12472  SDValue Ops[] = { Chain, In1, In2L, In2H };
12473  SDVTList Tys = DAG.getVTList(MVT::i32, MVT::i32, MVT::Other);
12474  SDValue Result =
12475    DAG.getMemIntrinsicNode(NewOp, dl, Tys, Ops, array_lengthof(Ops), MVT::i64,
12476                            cast<MemSDNode>(Node)->getMemOperand());
12477  SDValue OpsF[] = { Result.getValue(0), Result.getValue(1)};
12478  Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, OpsF, 2));
12479  Results.push_back(Result.getValue(2));
12480}
12481
12482/// ReplaceNodeResults - Replace a node with an illegal result type
12483/// with a new node built out of custom code.
12484void X86TargetLowering::ReplaceNodeResults(SDNode *N,
12485                                           SmallVectorImpl<SDValue>&Results,
12486                                           SelectionDAG &DAG) const {
12487  DebugLoc dl = N->getDebugLoc();
12488  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
12489  switch (N->getOpcode()) {
12490  default:
12491    llvm_unreachable("Do not know how to custom type legalize this operation!");
12492  case ISD::SIGN_EXTEND_INREG:
12493  case ISD::ADDC:
12494  case ISD::ADDE:
12495  case ISD::SUBC:
12496  case ISD::SUBE:
12497    // We don't want to expand or promote these.
12498    return;
12499  case ISD::FP_TO_SINT:
12500  case ISD::FP_TO_UINT: {
12501    bool IsSigned = N->getOpcode() == ISD::FP_TO_SINT;
12502
12503    if (!IsSigned && !isIntegerTypeFTOL(SDValue(N, 0).getValueType()))
12504      return;
12505
12506    std::pair<SDValue,SDValue> Vals =
12507        FP_TO_INTHelper(SDValue(N, 0), DAG, IsSigned, /*IsReplace=*/ true);
12508    SDValue FIST = Vals.first, StackSlot = Vals.second;
12509    if (FIST.getNode() != 0) {
12510      EVT VT = N->getValueType(0);
12511      // Return a load from the stack slot.
12512      if (StackSlot.getNode() != 0)
12513        Results.push_back(DAG.getLoad(VT, dl, FIST, StackSlot,
12514                                      MachinePointerInfo(),
12515                                      false, false, false, 0));
12516      else
12517        Results.push_back(FIST);
12518    }
12519    return;
12520  }
12521  case ISD::UINT_TO_FP: {
12522    assert(Subtarget->hasSSE2() && "Requires at least SSE2!");
12523    if (N->getOperand(0).getValueType() != MVT::v2i32 ||
12524        N->getValueType(0) != MVT::v2f32)
12525      return;
12526    SDValue ZExtIn = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::v2i64,
12527                                 N->getOperand(0));
12528    SDValue Bias = DAG.getConstantFP(BitsToDouble(0x4330000000000000ULL),
12529                                     MVT::f64);
12530    SDValue VBias = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v2f64, Bias, Bias);
12531    SDValue Or = DAG.getNode(ISD::OR, dl, MVT::v2i64, ZExtIn,
12532                             DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, VBias));
12533    Or = DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, Or);
12534    SDValue Sub = DAG.getNode(ISD::FSUB, dl, MVT::v2f64, Or, VBias);
12535    Results.push_back(DAG.getNode(X86ISD::VFPROUND, dl, MVT::v4f32, Sub));
12536    return;
12537  }
12538  case ISD::FP_ROUND: {
12539    if (!TLI.isTypeLegal(N->getOperand(0).getValueType()))
12540        return;
12541    SDValue V = DAG.getNode(X86ISD::VFPROUND, dl, MVT::v4f32, N->getOperand(0));
12542    Results.push_back(V);
12543    return;
12544  }
12545  case ISD::READCYCLECOUNTER: {
12546    SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Glue);
12547    SDValue TheChain = N->getOperand(0);
12548    SDValue rd = DAG.getNode(X86ISD::RDTSC_DAG, dl, Tys, &TheChain, 1);
12549    SDValue eax = DAG.getCopyFromReg(rd, dl, X86::EAX, MVT::i32,
12550                                     rd.getValue(1));
12551    SDValue edx = DAG.getCopyFromReg(eax.getValue(1), dl, X86::EDX, MVT::i32,
12552                                     eax.getValue(2));
12553    // Use a buildpair to merge the two 32-bit values into a 64-bit one.
12554    SDValue Ops[] = { eax, edx };
12555    Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Ops,
12556                                  array_lengthof(Ops)));
12557    Results.push_back(edx.getValue(1));
12558    return;
12559  }
12560  case ISD::ATOMIC_CMP_SWAP: {
12561    EVT T = N->getValueType(0);
12562    assert((T == MVT::i64 || T == MVT::i128) && "can only expand cmpxchg pair");
12563    bool Regs64bit = T == MVT::i128;
12564    EVT HalfT = Regs64bit ? MVT::i64 : MVT::i32;
12565    SDValue cpInL, cpInH;
12566    cpInL = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, HalfT, N->getOperand(2),
12567                        DAG.getConstant(0, HalfT));
12568    cpInH = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, HalfT, N->getOperand(2),
12569                        DAG.getConstant(1, HalfT));
12570    cpInL = DAG.getCopyToReg(N->getOperand(0), dl,
12571                             Regs64bit ? X86::RAX : X86::EAX,
12572                             cpInL, SDValue());
12573    cpInH = DAG.getCopyToReg(cpInL.getValue(0), dl,
12574                             Regs64bit ? X86::RDX : X86::EDX,
12575                             cpInH, cpInL.getValue(1));
12576    SDValue swapInL, swapInH;
12577    swapInL = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, HalfT, N->getOperand(3),
12578                          DAG.getConstant(0, HalfT));
12579    swapInH = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, HalfT, N->getOperand(3),
12580                          DAG.getConstant(1, HalfT));
12581    swapInL = DAG.getCopyToReg(cpInH.getValue(0), dl,
12582                               Regs64bit ? X86::RBX : X86::EBX,
12583                               swapInL, cpInH.getValue(1));
12584    swapInH = DAG.getCopyToReg(swapInL.getValue(0), dl,
12585                               Regs64bit ? X86::RCX : X86::ECX,
12586                               swapInH, swapInL.getValue(1));
12587    SDValue Ops[] = { swapInH.getValue(0),
12588                      N->getOperand(1),
12589                      swapInH.getValue(1) };
12590    SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Glue);
12591    MachineMemOperand *MMO = cast<AtomicSDNode>(N)->getMemOperand();
12592    unsigned Opcode = Regs64bit ? X86ISD::LCMPXCHG16_DAG :
12593                                  X86ISD::LCMPXCHG8_DAG;
12594    SDValue Result = DAG.getMemIntrinsicNode(Opcode, dl, Tys,
12595                                             Ops, array_lengthof(Ops), T, MMO);
12596    SDValue cpOutL = DAG.getCopyFromReg(Result.getValue(0), dl,
12597                                        Regs64bit ? X86::RAX : X86::EAX,
12598                                        HalfT, Result.getValue(1));
12599    SDValue cpOutH = DAG.getCopyFromReg(cpOutL.getValue(1), dl,
12600                                        Regs64bit ? X86::RDX : X86::EDX,
12601                                        HalfT, cpOutL.getValue(2));
12602    SDValue OpsF[] = { cpOutL.getValue(0), cpOutH.getValue(0)};
12603    Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, T, OpsF, 2));
12604    Results.push_back(cpOutH.getValue(1));
12605    return;
12606  }
12607  case ISD::ATOMIC_LOAD_ADD:
12608  case ISD::ATOMIC_LOAD_AND:
12609  case ISD::ATOMIC_LOAD_NAND:
12610  case ISD::ATOMIC_LOAD_OR:
12611  case ISD::ATOMIC_LOAD_SUB:
12612  case ISD::ATOMIC_LOAD_XOR:
12613  case ISD::ATOMIC_LOAD_MAX:
12614  case ISD::ATOMIC_LOAD_MIN:
12615  case ISD::ATOMIC_LOAD_UMAX:
12616  case ISD::ATOMIC_LOAD_UMIN:
12617  case ISD::ATOMIC_SWAP: {
12618    unsigned Opc;
12619    switch (N->getOpcode()) {
12620    default: llvm_unreachable("Unexpected opcode");
12621    case ISD::ATOMIC_LOAD_ADD:
12622      Opc = X86ISD::ATOMADD64_DAG;
12623      break;
12624    case ISD::ATOMIC_LOAD_AND:
12625      Opc = X86ISD::ATOMAND64_DAG;
12626      break;
12627    case ISD::ATOMIC_LOAD_NAND:
12628      Opc = X86ISD::ATOMNAND64_DAG;
12629      break;
12630    case ISD::ATOMIC_LOAD_OR:
12631      Opc = X86ISD::ATOMOR64_DAG;
12632      break;
12633    case ISD::ATOMIC_LOAD_SUB:
12634      Opc = X86ISD::ATOMSUB64_DAG;
12635      break;
12636    case ISD::ATOMIC_LOAD_XOR:
12637      Opc = X86ISD::ATOMXOR64_DAG;
12638      break;
12639    case ISD::ATOMIC_LOAD_MAX:
12640      Opc = X86ISD::ATOMMAX64_DAG;
12641      break;
12642    case ISD::ATOMIC_LOAD_MIN:
12643      Opc = X86ISD::ATOMMIN64_DAG;
12644      break;
12645    case ISD::ATOMIC_LOAD_UMAX:
12646      Opc = X86ISD::ATOMUMAX64_DAG;
12647      break;
12648    case ISD::ATOMIC_LOAD_UMIN:
12649      Opc = X86ISD::ATOMUMIN64_DAG;
12650      break;
12651    case ISD::ATOMIC_SWAP:
12652      Opc = X86ISD::ATOMSWAP64_DAG;
12653      break;
12654    }
12655    ReplaceATOMIC_BINARY_64(N, Results, DAG, Opc);
12656    return;
12657  }
12658  case ISD::ATOMIC_LOAD:
12659    ReplaceATOMIC_LOAD(N, Results, DAG);
12660  }
12661}
12662
12663const char *X86TargetLowering::getTargetNodeName(unsigned Opcode) const {
12664  switch (Opcode) {
12665  default: return NULL;
12666  case X86ISD::BSF:                return "X86ISD::BSF";
12667  case X86ISD::BSR:                return "X86ISD::BSR";
12668  case X86ISD::SHLD:               return "X86ISD::SHLD";
12669  case X86ISD::SHRD:               return "X86ISD::SHRD";
12670  case X86ISD::FAND:               return "X86ISD::FAND";
12671  case X86ISD::FOR:                return "X86ISD::FOR";
12672  case X86ISD::FXOR:               return "X86ISD::FXOR";
12673  case X86ISD::FSRL:               return "X86ISD::FSRL";
12674  case X86ISD::FILD:               return "X86ISD::FILD";
12675  case X86ISD::FILD_FLAG:          return "X86ISD::FILD_FLAG";
12676  case X86ISD::FP_TO_INT16_IN_MEM: return "X86ISD::FP_TO_INT16_IN_MEM";
12677  case X86ISD::FP_TO_INT32_IN_MEM: return "X86ISD::FP_TO_INT32_IN_MEM";
12678  case X86ISD::FP_TO_INT64_IN_MEM: return "X86ISD::FP_TO_INT64_IN_MEM";
12679  case X86ISD::FLD:                return "X86ISD::FLD";
12680  case X86ISD::FST:                return "X86ISD::FST";
12681  case X86ISD::CALL:               return "X86ISD::CALL";
12682  case X86ISD::RDTSC_DAG:          return "X86ISD::RDTSC_DAG";
12683  case X86ISD::BT:                 return "X86ISD::BT";
12684  case X86ISD::CMP:                return "X86ISD::CMP";
12685  case X86ISD::COMI:               return "X86ISD::COMI";
12686  case X86ISD::UCOMI:              return "X86ISD::UCOMI";
12687  case X86ISD::SETCC:              return "X86ISD::SETCC";
12688  case X86ISD::SETCC_CARRY:        return "X86ISD::SETCC_CARRY";
12689  case X86ISD::FSETCCsd:           return "X86ISD::FSETCCsd";
12690  case X86ISD::FSETCCss:           return "X86ISD::FSETCCss";
12691  case X86ISD::CMOV:               return "X86ISD::CMOV";
12692  case X86ISD::BRCOND:             return "X86ISD::BRCOND";
12693  case X86ISD::RET_FLAG:           return "X86ISD::RET_FLAG";
12694  case X86ISD::REP_STOS:           return "X86ISD::REP_STOS";
12695  case X86ISD::REP_MOVS:           return "X86ISD::REP_MOVS";
12696  case X86ISD::GlobalBaseReg:      return "X86ISD::GlobalBaseReg";
12697  case X86ISD::Wrapper:            return "X86ISD::Wrapper";
12698  case X86ISD::WrapperRIP:         return "X86ISD::WrapperRIP";
12699  case X86ISD::PEXTRB:             return "X86ISD::PEXTRB";
12700  case X86ISD::PEXTRW:             return "X86ISD::PEXTRW";
12701  case X86ISD::INSERTPS:           return "X86ISD::INSERTPS";
12702  case X86ISD::PINSRB:             return "X86ISD::PINSRB";
12703  case X86ISD::PINSRW:             return "X86ISD::PINSRW";
12704  case X86ISD::PSHUFB:             return "X86ISD::PSHUFB";
12705  case X86ISD::ANDNP:              return "X86ISD::ANDNP";
12706  case X86ISD::PSIGN:              return "X86ISD::PSIGN";
12707  case X86ISD::BLENDV:             return "X86ISD::BLENDV";
12708  case X86ISD::BLENDI:             return "X86ISD::BLENDI";
12709  case X86ISD::SUBUS:              return "X86ISD::SUBUS";
12710  case X86ISD::HADD:               return "X86ISD::HADD";
12711  case X86ISD::HSUB:               return "X86ISD::HSUB";
12712  case X86ISD::FHADD:              return "X86ISD::FHADD";
12713  case X86ISD::FHSUB:              return "X86ISD::FHSUB";
12714  case X86ISD::UMAX:               return "X86ISD::UMAX";
12715  case X86ISD::UMIN:               return "X86ISD::UMIN";
12716  case X86ISD::SMAX:               return "X86ISD::SMAX";
12717  case X86ISD::SMIN:               return "X86ISD::SMIN";
12718  case X86ISD::FMAX:               return "X86ISD::FMAX";
12719  case X86ISD::FMIN:               return "X86ISD::FMIN";
12720  case X86ISD::FMAXC:              return "X86ISD::FMAXC";
12721  case X86ISD::FMINC:              return "X86ISD::FMINC";
12722  case X86ISD::FRSQRT:             return "X86ISD::FRSQRT";
12723  case X86ISD::FRCP:               return "X86ISD::FRCP";
12724  case X86ISD::TLSADDR:            return "X86ISD::TLSADDR";
12725  case X86ISD::TLSBASEADDR:        return "X86ISD::TLSBASEADDR";
12726  case X86ISD::TLSCALL:            return "X86ISD::TLSCALL";
12727  case X86ISD::EH_SJLJ_SETJMP:     return "X86ISD::EH_SJLJ_SETJMP";
12728  case X86ISD::EH_SJLJ_LONGJMP:    return "X86ISD::EH_SJLJ_LONGJMP";
12729  case X86ISD::EH_RETURN:          return "X86ISD::EH_RETURN";
12730  case X86ISD::TC_RETURN:          return "X86ISD::TC_RETURN";
12731  case X86ISD::FNSTCW16m:          return "X86ISD::FNSTCW16m";
12732  case X86ISD::FNSTSW16r:          return "X86ISD::FNSTSW16r";
12733  case X86ISD::LCMPXCHG_DAG:       return "X86ISD::LCMPXCHG_DAG";
12734  case X86ISD::LCMPXCHG8_DAG:      return "X86ISD::LCMPXCHG8_DAG";
12735  case X86ISD::ATOMADD64_DAG:      return "X86ISD::ATOMADD64_DAG";
12736  case X86ISD::ATOMSUB64_DAG:      return "X86ISD::ATOMSUB64_DAG";
12737  case X86ISD::ATOMOR64_DAG:       return "X86ISD::ATOMOR64_DAG";
12738  case X86ISD::ATOMXOR64_DAG:      return "X86ISD::ATOMXOR64_DAG";
12739  case X86ISD::ATOMAND64_DAG:      return "X86ISD::ATOMAND64_DAG";
12740  case X86ISD::ATOMNAND64_DAG:     return "X86ISD::ATOMNAND64_DAG";
12741  case X86ISD::VZEXT_MOVL:         return "X86ISD::VZEXT_MOVL";
12742  case X86ISD::VSEXT_MOVL:         return "X86ISD::VSEXT_MOVL";
12743  case X86ISD::VZEXT_LOAD:         return "X86ISD::VZEXT_LOAD";
12744  case X86ISD::VZEXT:              return "X86ISD::VZEXT";
12745  case X86ISD::VSEXT:              return "X86ISD::VSEXT";
12746  case X86ISD::VFPEXT:             return "X86ISD::VFPEXT";
12747  case X86ISD::VFPROUND:           return "X86ISD::VFPROUND";
12748  case X86ISD::VSHLDQ:             return "X86ISD::VSHLDQ";
12749  case X86ISD::VSRLDQ:             return "X86ISD::VSRLDQ";
12750  case X86ISD::VSHL:               return "X86ISD::VSHL";
12751  case X86ISD::VSRL:               return "X86ISD::VSRL";
12752  case X86ISD::VSRA:               return "X86ISD::VSRA";
12753  case X86ISD::VSHLI:              return "X86ISD::VSHLI";
12754  case X86ISD::VSRLI:              return "X86ISD::VSRLI";
12755  case X86ISD::VSRAI:              return "X86ISD::VSRAI";
12756  case X86ISD::CMPP:               return "X86ISD::CMPP";
12757  case X86ISD::PCMPEQ:             return "X86ISD::PCMPEQ";
12758  case X86ISD::PCMPGT:             return "X86ISD::PCMPGT";
12759  case X86ISD::ADD:                return "X86ISD::ADD";
12760  case X86ISD::SUB:                return "X86ISD::SUB";
12761  case X86ISD::ADC:                return "X86ISD::ADC";
12762  case X86ISD::SBB:                return "X86ISD::SBB";
12763  case X86ISD::SMUL:               return "X86ISD::SMUL";
12764  case X86ISD::UMUL:               return "X86ISD::UMUL";
12765  case X86ISD::INC:                return "X86ISD::INC";
12766  case X86ISD::DEC:                return "X86ISD::DEC";
12767  case X86ISD::OR:                 return "X86ISD::OR";
12768  case X86ISD::XOR:                return "X86ISD::XOR";
12769  case X86ISD::AND:                return "X86ISD::AND";
12770  case X86ISD::BLSI:               return "X86ISD::BLSI";
12771  case X86ISD::BLSMSK:             return "X86ISD::BLSMSK";
12772  case X86ISD::BLSR:               return "X86ISD::BLSR";
12773  case X86ISD::MUL_IMM:            return "X86ISD::MUL_IMM";
12774  case X86ISD::PTEST:              return "X86ISD::PTEST";
12775  case X86ISD::TESTP:              return "X86ISD::TESTP";
12776  case X86ISD::PALIGNR:            return "X86ISD::PALIGNR";
12777  case X86ISD::PSHUFD:             return "X86ISD::PSHUFD";
12778  case X86ISD::PSHUFHW:            return "X86ISD::PSHUFHW";
12779  case X86ISD::PSHUFLW:            return "X86ISD::PSHUFLW";
12780  case X86ISD::SHUFP:              return "X86ISD::SHUFP";
12781  case X86ISD::MOVLHPS:            return "X86ISD::MOVLHPS";
12782  case X86ISD::MOVLHPD:            return "X86ISD::MOVLHPD";
12783  case X86ISD::MOVHLPS:            return "X86ISD::MOVHLPS";
12784  case X86ISD::MOVLPS:             return "X86ISD::MOVLPS";
12785  case X86ISD::MOVLPD:             return "X86ISD::MOVLPD";
12786  case X86ISD::MOVDDUP:            return "X86ISD::MOVDDUP";
12787  case X86ISD::MOVSHDUP:           return "X86ISD::MOVSHDUP";
12788  case X86ISD::MOVSLDUP:           return "X86ISD::MOVSLDUP";
12789  case X86ISD::MOVSD:              return "X86ISD::MOVSD";
12790  case X86ISD::MOVSS:              return "X86ISD::MOVSS";
12791  case X86ISD::UNPCKL:             return "X86ISD::UNPCKL";
12792  case X86ISD::UNPCKH:             return "X86ISD::UNPCKH";
12793  case X86ISD::VBROADCAST:         return "X86ISD::VBROADCAST";
12794  case X86ISD::VPERMILP:           return "X86ISD::VPERMILP";
12795  case X86ISD::VPERM2X128:         return "X86ISD::VPERM2X128";
12796  case X86ISD::VPERMV:             return "X86ISD::VPERMV";
12797  case X86ISD::VPERMI:             return "X86ISD::VPERMI";
12798  case X86ISD::PMULUDQ:            return "X86ISD::PMULUDQ";
12799  case X86ISD::VASTART_SAVE_XMM_REGS: return "X86ISD::VASTART_SAVE_XMM_REGS";
12800  case X86ISD::VAARG_64:           return "X86ISD::VAARG_64";
12801  case X86ISD::WIN_ALLOCA:         return "X86ISD::WIN_ALLOCA";
12802  case X86ISD::MEMBARRIER:         return "X86ISD::MEMBARRIER";
12803  case X86ISD::SEG_ALLOCA:         return "X86ISD::SEG_ALLOCA";
12804  case X86ISD::WIN_FTOL:           return "X86ISD::WIN_FTOL";
12805  case X86ISD::SAHF:               return "X86ISD::SAHF";
12806  case X86ISD::RDRAND:             return "X86ISD::RDRAND";
12807  case X86ISD::RDSEED:             return "X86ISD::RDSEED";
12808  case X86ISD::FMADD:              return "X86ISD::FMADD";
12809  case X86ISD::FMSUB:              return "X86ISD::FMSUB";
12810  case X86ISD::FNMADD:             return "X86ISD::FNMADD";
12811  case X86ISD::FNMSUB:             return "X86ISD::FNMSUB";
12812  case X86ISD::FMADDSUB:           return "X86ISD::FMADDSUB";
12813  case X86ISD::FMSUBADD:           return "X86ISD::FMSUBADD";
12814  case X86ISD::PCMPESTRI:          return "X86ISD::PCMPESTRI";
12815  case X86ISD::PCMPISTRI:          return "X86ISD::PCMPISTRI";
12816  case X86ISD::XTEST:              return "X86ISD::XTEST";
12817  }
12818}
12819
12820// isLegalAddressingMode - Return true if the addressing mode represented
12821// by AM is legal for this target, for a load/store of the specified type.
12822bool X86TargetLowering::isLegalAddressingMode(const AddrMode &AM,
12823                                              Type *Ty) const {
12824  // X86 supports extremely general addressing modes.
12825  CodeModel::Model M = getTargetMachine().getCodeModel();
12826  Reloc::Model R = getTargetMachine().getRelocationModel();
12827
12828  // X86 allows a sign-extended 32-bit immediate field as a displacement.
12829  if (!X86::isOffsetSuitableForCodeModel(AM.BaseOffs, M, AM.BaseGV != NULL))
12830    return false;
12831
12832  if (AM.BaseGV) {
12833    unsigned GVFlags =
12834      Subtarget->ClassifyGlobalReference(AM.BaseGV, getTargetMachine());
12835
12836    // If a reference to this global requires an extra load, we can't fold it.
12837    if (isGlobalStubReference(GVFlags))
12838      return false;
12839
12840    // If BaseGV requires a register for the PIC base, we cannot also have a
12841    // BaseReg specified.
12842    if (AM.HasBaseReg && isGlobalRelativeToPICBase(GVFlags))
12843      return false;
12844
12845    // If lower 4G is not available, then we must use rip-relative addressing.
12846    if ((M != CodeModel::Small || R != Reloc::Static) &&
12847        Subtarget->is64Bit() && (AM.BaseOffs || AM.Scale > 1))
12848      return false;
12849  }
12850
12851  switch (AM.Scale) {
12852  case 0:
12853  case 1:
12854  case 2:
12855  case 4:
12856  case 8:
12857    // These scales always work.
12858    break;
12859  case 3:
12860  case 5:
12861  case 9:
12862    // These scales are formed with basereg+scalereg.  Only accept if there is
12863    // no basereg yet.
12864    if (AM.HasBaseReg)
12865      return false;
12866    break;
12867  default:  // Other stuff never works.
12868    return false;
12869  }
12870
12871  return true;
12872}
12873
12874bool X86TargetLowering::isTruncateFree(Type *Ty1, Type *Ty2) const {
12875  if (!Ty1->isIntegerTy() || !Ty2->isIntegerTy())
12876    return false;
12877  unsigned NumBits1 = Ty1->getPrimitiveSizeInBits();
12878  unsigned NumBits2 = Ty2->getPrimitiveSizeInBits();
12879  return NumBits1 > NumBits2;
12880}
12881
12882bool X86TargetLowering::isLegalICmpImmediate(int64_t Imm) const {
12883  return isInt<32>(Imm);
12884}
12885
12886bool X86TargetLowering::isLegalAddImmediate(int64_t Imm) const {
12887  // Can also use sub to handle negated immediates.
12888  return isInt<32>(Imm);
12889}
12890
12891bool X86TargetLowering::isTruncateFree(EVT VT1, EVT VT2) const {
12892  if (!VT1.isInteger() || !VT2.isInteger())
12893    return false;
12894  unsigned NumBits1 = VT1.getSizeInBits();
12895  unsigned NumBits2 = VT2.getSizeInBits();
12896  return NumBits1 > NumBits2;
12897}
12898
12899bool X86TargetLowering::isZExtFree(Type *Ty1, Type *Ty2) const {
12900  // x86-64 implicitly zero-extends 32-bit results in 64-bit registers.
12901  return Ty1->isIntegerTy(32) && Ty2->isIntegerTy(64) && Subtarget->is64Bit();
12902}
12903
12904bool X86TargetLowering::isZExtFree(EVT VT1, EVT VT2) const {
12905  // x86-64 implicitly zero-extends 32-bit results in 64-bit registers.
12906  return VT1 == MVT::i32 && VT2 == MVT::i64 && Subtarget->is64Bit();
12907}
12908
12909bool X86TargetLowering::isZExtFree(SDValue Val, EVT VT2) const {
12910  EVT VT1 = Val.getValueType();
12911  if (isZExtFree(VT1, VT2))
12912    return true;
12913
12914  if (Val.getOpcode() != ISD::LOAD)
12915    return false;
12916
12917  if (!VT1.isSimple() || !VT1.isInteger() ||
12918      !VT2.isSimple() || !VT2.isInteger())
12919    return false;
12920
12921  switch (VT1.getSimpleVT().SimpleTy) {
12922  default: break;
12923  case MVT::i8:
12924  case MVT::i16:
12925  case MVT::i32:
12926    // X86 has 8, 16, and 32-bit zero-extending loads.
12927    return true;
12928  }
12929
12930  return false;
12931}
12932
12933bool X86TargetLowering::isNarrowingProfitable(EVT VT1, EVT VT2) const {
12934  // i16 instructions are longer (0x66 prefix) and potentially slower.
12935  return !(VT1 == MVT::i32 && VT2 == MVT::i16);
12936}
12937
12938/// isShuffleMaskLegal - Targets can use this to indicate that they only
12939/// support *some* VECTOR_SHUFFLE operations, those with specific masks.
12940/// By default, if a target supports the VECTOR_SHUFFLE node, all mask values
12941/// are assumed to be legal.
12942bool
12943X86TargetLowering::isShuffleMaskLegal(const SmallVectorImpl<int> &M,
12944                                      EVT VT) const {
12945  // Very little shuffling can be done for 64-bit vectors right now.
12946  if (VT.getSizeInBits() == 64)
12947    return false;
12948
12949  // FIXME: pshufb, blends, shifts.
12950  return (VT.getVectorNumElements() == 2 ||
12951          ShuffleVectorSDNode::isSplatMask(&M[0], VT) ||
12952          isMOVLMask(M, VT) ||
12953          isSHUFPMask(M, VT, Subtarget->hasFp256()) ||
12954          isPSHUFDMask(M, VT) ||
12955          isPSHUFHWMask(M, VT, Subtarget->hasInt256()) ||
12956          isPSHUFLWMask(M, VT, Subtarget->hasInt256()) ||
12957          isPALIGNRMask(M, VT, Subtarget) ||
12958          isUNPCKLMask(M, VT, Subtarget->hasInt256()) ||
12959          isUNPCKHMask(M, VT, Subtarget->hasInt256()) ||
12960          isUNPCKL_v_undef_Mask(M, VT, Subtarget->hasInt256()) ||
12961          isUNPCKH_v_undef_Mask(M, VT, Subtarget->hasInt256()));
12962}
12963
12964bool
12965X86TargetLowering::isVectorClearMaskLegal(const SmallVectorImpl<int> &Mask,
12966                                          EVT VT) const {
12967  unsigned NumElts = VT.getVectorNumElements();
12968  // FIXME: This collection of masks seems suspect.
12969  if (NumElts == 2)
12970    return true;
12971  if (NumElts == 4 && VT.is128BitVector()) {
12972    return (isMOVLMask(Mask, VT)  ||
12973            isCommutedMOVLMask(Mask, VT, true) ||
12974            isSHUFPMask(Mask, VT, Subtarget->hasFp256()) ||
12975            isSHUFPMask(Mask, VT, Subtarget->hasFp256(), /* Commuted */ true));
12976  }
12977  return false;
12978}
12979
12980//===----------------------------------------------------------------------===//
12981//                           X86 Scheduler Hooks
12982//===----------------------------------------------------------------------===//
12983
12984/// Utility function to emit xbegin specifying the start of an RTM region.
12985static MachineBasicBlock *EmitXBegin(MachineInstr *MI, MachineBasicBlock *MBB,
12986                                     const TargetInstrInfo *TII) {
12987  DebugLoc DL = MI->getDebugLoc();
12988
12989  const BasicBlock *BB = MBB->getBasicBlock();
12990  MachineFunction::iterator I = MBB;
12991  ++I;
12992
12993  // For the v = xbegin(), we generate
12994  //
12995  // thisMBB:
12996  //  xbegin sinkMBB
12997  //
12998  // mainMBB:
12999  //  eax = -1
13000  //
13001  // sinkMBB:
13002  //  v = eax
13003
13004  MachineBasicBlock *thisMBB = MBB;
13005  MachineFunction *MF = MBB->getParent();
13006  MachineBasicBlock *mainMBB = MF->CreateMachineBasicBlock(BB);
13007  MachineBasicBlock *sinkMBB = MF->CreateMachineBasicBlock(BB);
13008  MF->insert(I, mainMBB);
13009  MF->insert(I, sinkMBB);
13010
13011  // Transfer the remainder of BB and its successor edges to sinkMBB.
13012  sinkMBB->splice(sinkMBB->begin(), MBB,
13013                  llvm::next(MachineBasicBlock::iterator(MI)), MBB->end());
13014  sinkMBB->transferSuccessorsAndUpdatePHIs(MBB);
13015
13016  // thisMBB:
13017  //  xbegin sinkMBB
13018  //  # fallthrough to mainMBB
13019  //  # abortion to sinkMBB
13020  BuildMI(thisMBB, DL, TII->get(X86::XBEGIN_4)).addMBB(sinkMBB);
13021  thisMBB->addSuccessor(mainMBB);
13022  thisMBB->addSuccessor(sinkMBB);
13023
13024  // mainMBB:
13025  //  EAX = -1
13026  BuildMI(mainMBB, DL, TII->get(X86::MOV32ri), X86::EAX).addImm(-1);
13027  mainMBB->addSuccessor(sinkMBB);
13028
13029  // sinkMBB:
13030  // EAX is live into the sinkMBB
13031  sinkMBB->addLiveIn(X86::EAX);
13032  BuildMI(*sinkMBB, sinkMBB->begin(), DL,
13033          TII->get(TargetOpcode::COPY), MI->getOperand(0).getReg())
13034    .addReg(X86::EAX);
13035
13036  MI->eraseFromParent();
13037  return sinkMBB;
13038}
13039
13040// Get CMPXCHG opcode for the specified data type.
13041static unsigned getCmpXChgOpcode(EVT VT) {
13042  switch (VT.getSimpleVT().SimpleTy) {
13043  case MVT::i8:  return X86::LCMPXCHG8;
13044  case MVT::i16: return X86::LCMPXCHG16;
13045  case MVT::i32: return X86::LCMPXCHG32;
13046  case MVT::i64: return X86::LCMPXCHG64;
13047  default:
13048    break;
13049  }
13050  llvm_unreachable("Invalid operand size!");
13051}
13052
13053// Get LOAD opcode for the specified data type.
13054static unsigned getLoadOpcode(EVT VT) {
13055  switch (VT.getSimpleVT().SimpleTy) {
13056  case MVT::i8:  return X86::MOV8rm;
13057  case MVT::i16: return X86::MOV16rm;
13058  case MVT::i32: return X86::MOV32rm;
13059  case MVT::i64: return X86::MOV64rm;
13060  default:
13061    break;
13062  }
13063  llvm_unreachable("Invalid operand size!");
13064}
13065
13066// Get opcode of the non-atomic one from the specified atomic instruction.
13067static unsigned getNonAtomicOpcode(unsigned Opc) {
13068  switch (Opc) {
13069  case X86::ATOMAND8:  return X86::AND8rr;
13070  case X86::ATOMAND16: return X86::AND16rr;
13071  case X86::ATOMAND32: return X86::AND32rr;
13072  case X86::ATOMAND64: return X86::AND64rr;
13073  case X86::ATOMOR8:   return X86::OR8rr;
13074  case X86::ATOMOR16:  return X86::OR16rr;
13075  case X86::ATOMOR32:  return X86::OR32rr;
13076  case X86::ATOMOR64:  return X86::OR64rr;
13077  case X86::ATOMXOR8:  return X86::XOR8rr;
13078  case X86::ATOMXOR16: return X86::XOR16rr;
13079  case X86::ATOMXOR32: return X86::XOR32rr;
13080  case X86::ATOMXOR64: return X86::XOR64rr;
13081  }
13082  llvm_unreachable("Unhandled atomic-load-op opcode!");
13083}
13084
13085// Get opcode of the non-atomic one from the specified atomic instruction with
13086// extra opcode.
13087static unsigned getNonAtomicOpcodeWithExtraOpc(unsigned Opc,
13088                                               unsigned &ExtraOpc) {
13089  switch (Opc) {
13090  case X86::ATOMNAND8:  ExtraOpc = X86::NOT8r;   return X86::AND8rr;
13091  case X86::ATOMNAND16: ExtraOpc = X86::NOT16r;  return X86::AND16rr;
13092  case X86::ATOMNAND32: ExtraOpc = X86::NOT32r;  return X86::AND32rr;
13093  case X86::ATOMNAND64: ExtraOpc = X86::NOT64r;  return X86::AND64rr;
13094  case X86::ATOMMAX8:   ExtraOpc = X86::CMP8rr;  return X86::CMOVL32rr;
13095  case X86::ATOMMAX16:  ExtraOpc = X86::CMP16rr; return X86::CMOVL16rr;
13096  case X86::ATOMMAX32:  ExtraOpc = X86::CMP32rr; return X86::CMOVL32rr;
13097  case X86::ATOMMAX64:  ExtraOpc = X86::CMP64rr; return X86::CMOVL64rr;
13098  case X86::ATOMMIN8:   ExtraOpc = X86::CMP8rr;  return X86::CMOVG32rr;
13099  case X86::ATOMMIN16:  ExtraOpc = X86::CMP16rr; return X86::CMOVG16rr;
13100  case X86::ATOMMIN32:  ExtraOpc = X86::CMP32rr; return X86::CMOVG32rr;
13101  case X86::ATOMMIN64:  ExtraOpc = X86::CMP64rr; return X86::CMOVG64rr;
13102  case X86::ATOMUMAX8:  ExtraOpc = X86::CMP8rr;  return X86::CMOVB32rr;
13103  case X86::ATOMUMAX16: ExtraOpc = X86::CMP16rr; return X86::CMOVB16rr;
13104  case X86::ATOMUMAX32: ExtraOpc = X86::CMP32rr; return X86::CMOVB32rr;
13105  case X86::ATOMUMAX64: ExtraOpc = X86::CMP64rr; return X86::CMOVB64rr;
13106  case X86::ATOMUMIN8:  ExtraOpc = X86::CMP8rr;  return X86::CMOVA32rr;
13107  case X86::ATOMUMIN16: ExtraOpc = X86::CMP16rr; return X86::CMOVA16rr;
13108  case X86::ATOMUMIN32: ExtraOpc = X86::CMP32rr; return X86::CMOVA32rr;
13109  case X86::ATOMUMIN64: ExtraOpc = X86::CMP64rr; return X86::CMOVA64rr;
13110  }
13111  llvm_unreachable("Unhandled atomic-load-op opcode!");
13112}
13113
13114// Get opcode of the non-atomic one from the specified atomic instruction for
13115// 64-bit data type on 32-bit target.
13116static unsigned getNonAtomic6432Opcode(unsigned Opc, unsigned &HiOpc) {
13117  switch (Opc) {
13118  case X86::ATOMAND6432:  HiOpc = X86::AND32rr; return X86::AND32rr;
13119  case X86::ATOMOR6432:   HiOpc = X86::OR32rr;  return X86::OR32rr;
13120  case X86::ATOMXOR6432:  HiOpc = X86::XOR32rr; return X86::XOR32rr;
13121  case X86::ATOMADD6432:  HiOpc = X86::ADC32rr; return X86::ADD32rr;
13122  case X86::ATOMSUB6432:  HiOpc = X86::SBB32rr; return X86::SUB32rr;
13123  case X86::ATOMSWAP6432: HiOpc = X86::MOV32rr; return X86::MOV32rr;
13124  case X86::ATOMMAX6432:  HiOpc = X86::SETLr;   return X86::SETLr;
13125  case X86::ATOMMIN6432:  HiOpc = X86::SETGr;   return X86::SETGr;
13126  case X86::ATOMUMAX6432: HiOpc = X86::SETBr;   return X86::SETBr;
13127  case X86::ATOMUMIN6432: HiOpc = X86::SETAr;   return X86::SETAr;
13128  }
13129  llvm_unreachable("Unhandled atomic-load-op opcode!");
13130}
13131
13132// Get opcode of the non-atomic one from the specified atomic instruction for
13133// 64-bit data type on 32-bit target with extra opcode.
13134static unsigned getNonAtomic6432OpcodeWithExtraOpc(unsigned Opc,
13135                                                   unsigned &HiOpc,
13136                                                   unsigned &ExtraOpc) {
13137  switch (Opc) {
13138  case X86::ATOMNAND6432:
13139    ExtraOpc = X86::NOT32r;
13140    HiOpc = X86::AND32rr;
13141    return X86::AND32rr;
13142  }
13143  llvm_unreachable("Unhandled atomic-load-op opcode!");
13144}
13145
13146// Get pseudo CMOV opcode from the specified data type.
13147static unsigned getPseudoCMOVOpc(EVT VT) {
13148  switch (VT.getSimpleVT().SimpleTy) {
13149  case MVT::i8:  return X86::CMOV_GR8;
13150  case MVT::i16: return X86::CMOV_GR16;
13151  case MVT::i32: return X86::CMOV_GR32;
13152  default:
13153    break;
13154  }
13155  llvm_unreachable("Unknown CMOV opcode!");
13156}
13157
13158// EmitAtomicLoadArith - emit the code sequence for pseudo atomic instructions.
13159// They will be translated into a spin-loop or compare-exchange loop from
13160//
13161//    ...
13162//    dst = atomic-fetch-op MI.addr, MI.val
13163//    ...
13164//
13165// to
13166//
13167//    ...
13168//    t1 = LOAD MI.addr
13169// loop:
13170//    t4 = phi(t1, t3 / loop)
13171//    t2 = OP MI.val, t4
13172//    EAX = t4
13173//    LCMPXCHG [MI.addr], t2, [EAX is implicitly used & defined]
13174//    t3 = EAX
13175//    JNE loop
13176// sink:
13177//    dst = t3
13178//    ...
13179MachineBasicBlock *
13180X86TargetLowering::EmitAtomicLoadArith(MachineInstr *MI,
13181                                       MachineBasicBlock *MBB) const {
13182  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
13183  DebugLoc DL = MI->getDebugLoc();
13184
13185  MachineFunction *MF = MBB->getParent();
13186  MachineRegisterInfo &MRI = MF->getRegInfo();
13187
13188  const BasicBlock *BB = MBB->getBasicBlock();
13189  MachineFunction::iterator I = MBB;
13190  ++I;
13191
13192  assert(MI->getNumOperands() <= X86::AddrNumOperands + 4 &&
13193         "Unexpected number of operands");
13194
13195  assert(MI->hasOneMemOperand() &&
13196         "Expected atomic-load-op to have one memoperand");
13197
13198  // Memory Reference
13199  MachineInstr::mmo_iterator MMOBegin = MI->memoperands_begin();
13200  MachineInstr::mmo_iterator MMOEnd = MI->memoperands_end();
13201
13202  unsigned DstReg, SrcReg;
13203  unsigned MemOpndSlot;
13204
13205  unsigned CurOp = 0;
13206
13207  DstReg = MI->getOperand(CurOp++).getReg();
13208  MemOpndSlot = CurOp;
13209  CurOp += X86::AddrNumOperands;
13210  SrcReg = MI->getOperand(CurOp++).getReg();
13211
13212  const TargetRegisterClass *RC = MRI.getRegClass(DstReg);
13213  MVT::SimpleValueType VT = *RC->vt_begin();
13214  unsigned t1 = MRI.createVirtualRegister(RC);
13215  unsigned t2 = MRI.createVirtualRegister(RC);
13216  unsigned t3 = MRI.createVirtualRegister(RC);
13217  unsigned t4 = MRI.createVirtualRegister(RC);
13218  unsigned PhyReg = getX86SubSuperRegister(X86::EAX, VT);
13219
13220  unsigned LCMPXCHGOpc = getCmpXChgOpcode(VT);
13221  unsigned LOADOpc = getLoadOpcode(VT);
13222
13223  // For the atomic load-arith operator, we generate
13224  //
13225  //  thisMBB:
13226  //    t1 = LOAD [MI.addr]
13227  //  mainMBB:
13228  //    t4 = phi(t1 / thisMBB, t3 / mainMBB)
13229  //    t1 = OP MI.val, EAX
13230  //    EAX = t4
13231  //    LCMPXCHG [MI.addr], t1, [EAX is implicitly used & defined]
13232  //    t3 = EAX
13233  //    JNE mainMBB
13234  //  sinkMBB:
13235  //    dst = t3
13236
13237  MachineBasicBlock *thisMBB = MBB;
13238  MachineBasicBlock *mainMBB = MF->CreateMachineBasicBlock(BB);
13239  MachineBasicBlock *sinkMBB = MF->CreateMachineBasicBlock(BB);
13240  MF->insert(I, mainMBB);
13241  MF->insert(I, sinkMBB);
13242
13243  MachineInstrBuilder MIB;
13244
13245  // Transfer the remainder of BB and its successor edges to sinkMBB.
13246  sinkMBB->splice(sinkMBB->begin(), MBB,
13247                  llvm::next(MachineBasicBlock::iterator(MI)), MBB->end());
13248  sinkMBB->transferSuccessorsAndUpdatePHIs(MBB);
13249
13250  // thisMBB:
13251  MIB = BuildMI(thisMBB, DL, TII->get(LOADOpc), t1);
13252  for (unsigned i = 0; i < X86::AddrNumOperands; ++i) {
13253    MachineOperand NewMO = MI->getOperand(MemOpndSlot + i);
13254    if (NewMO.isReg())
13255      NewMO.setIsKill(false);
13256    MIB.addOperand(NewMO);
13257  }
13258  for (MachineInstr::mmo_iterator MMOI = MMOBegin; MMOI != MMOEnd; ++MMOI) {
13259    unsigned flags = (*MMOI)->getFlags();
13260    flags = (flags & ~MachineMemOperand::MOStore) | MachineMemOperand::MOLoad;
13261    MachineMemOperand *MMO =
13262      MF->getMachineMemOperand((*MMOI)->getPointerInfo(), flags,
13263                               (*MMOI)->getSize(),
13264                               (*MMOI)->getBaseAlignment(),
13265                               (*MMOI)->getTBAAInfo(),
13266                               (*MMOI)->getRanges());
13267    MIB.addMemOperand(MMO);
13268  }
13269
13270  thisMBB->addSuccessor(mainMBB);
13271
13272  // mainMBB:
13273  MachineBasicBlock *origMainMBB = mainMBB;
13274
13275  // Add a PHI.
13276  MachineInstr *Phi = BuildMI(mainMBB, DL, TII->get(X86::PHI), t4)
13277                        .addReg(t1).addMBB(thisMBB).addReg(t3).addMBB(mainMBB);
13278
13279  unsigned Opc = MI->getOpcode();
13280  switch (Opc) {
13281  default:
13282    llvm_unreachable("Unhandled atomic-load-op opcode!");
13283  case X86::ATOMAND8:
13284  case X86::ATOMAND16:
13285  case X86::ATOMAND32:
13286  case X86::ATOMAND64:
13287  case X86::ATOMOR8:
13288  case X86::ATOMOR16:
13289  case X86::ATOMOR32:
13290  case X86::ATOMOR64:
13291  case X86::ATOMXOR8:
13292  case X86::ATOMXOR16:
13293  case X86::ATOMXOR32:
13294  case X86::ATOMXOR64: {
13295    unsigned ARITHOpc = getNonAtomicOpcode(Opc);
13296    BuildMI(mainMBB, DL, TII->get(ARITHOpc), t2).addReg(SrcReg)
13297      .addReg(t4);
13298    break;
13299  }
13300  case X86::ATOMNAND8:
13301  case X86::ATOMNAND16:
13302  case X86::ATOMNAND32:
13303  case X86::ATOMNAND64: {
13304    unsigned Tmp = MRI.createVirtualRegister(RC);
13305    unsigned NOTOpc;
13306    unsigned ANDOpc = getNonAtomicOpcodeWithExtraOpc(Opc, NOTOpc);
13307    BuildMI(mainMBB, DL, TII->get(ANDOpc), Tmp).addReg(SrcReg)
13308      .addReg(t4);
13309    BuildMI(mainMBB, DL, TII->get(NOTOpc), t2).addReg(Tmp);
13310    break;
13311  }
13312  case X86::ATOMMAX8:
13313  case X86::ATOMMAX16:
13314  case X86::ATOMMAX32:
13315  case X86::ATOMMAX64:
13316  case X86::ATOMMIN8:
13317  case X86::ATOMMIN16:
13318  case X86::ATOMMIN32:
13319  case X86::ATOMMIN64:
13320  case X86::ATOMUMAX8:
13321  case X86::ATOMUMAX16:
13322  case X86::ATOMUMAX32:
13323  case X86::ATOMUMAX64:
13324  case X86::ATOMUMIN8:
13325  case X86::ATOMUMIN16:
13326  case X86::ATOMUMIN32:
13327  case X86::ATOMUMIN64: {
13328    unsigned CMPOpc;
13329    unsigned CMOVOpc = getNonAtomicOpcodeWithExtraOpc(Opc, CMPOpc);
13330
13331    BuildMI(mainMBB, DL, TII->get(CMPOpc))
13332      .addReg(SrcReg)
13333      .addReg(t4);
13334
13335    if (Subtarget->hasCMov()) {
13336      if (VT != MVT::i8) {
13337        // Native support
13338        BuildMI(mainMBB, DL, TII->get(CMOVOpc), t2)
13339          .addReg(SrcReg)
13340          .addReg(t4);
13341      } else {
13342        // Promote i8 to i32 to use CMOV32
13343        const TargetRegisterInfo* TRI = getTargetMachine().getRegisterInfo();
13344        const TargetRegisterClass *RC32 =
13345          TRI->getSubClassWithSubReg(getRegClassFor(MVT::i32), X86::sub_8bit);
13346        unsigned SrcReg32 = MRI.createVirtualRegister(RC32);
13347        unsigned AccReg32 = MRI.createVirtualRegister(RC32);
13348        unsigned Tmp = MRI.createVirtualRegister(RC32);
13349
13350        unsigned Undef = MRI.createVirtualRegister(RC32);
13351        BuildMI(mainMBB, DL, TII->get(TargetOpcode::IMPLICIT_DEF), Undef);
13352
13353        BuildMI(mainMBB, DL, TII->get(TargetOpcode::INSERT_SUBREG), SrcReg32)
13354          .addReg(Undef)
13355          .addReg(SrcReg)
13356          .addImm(X86::sub_8bit);
13357        BuildMI(mainMBB, DL, TII->get(TargetOpcode::INSERT_SUBREG), AccReg32)
13358          .addReg(Undef)
13359          .addReg(t4)
13360          .addImm(X86::sub_8bit);
13361
13362        BuildMI(mainMBB, DL, TII->get(CMOVOpc), Tmp)
13363          .addReg(SrcReg32)
13364          .addReg(AccReg32);
13365
13366        BuildMI(mainMBB, DL, TII->get(TargetOpcode::COPY), t2)
13367          .addReg(Tmp, 0, X86::sub_8bit);
13368      }
13369    } else {
13370      // Use pseudo select and lower them.
13371      assert((VT == MVT::i8 || VT == MVT::i16 || VT == MVT::i32) &&
13372             "Invalid atomic-load-op transformation!");
13373      unsigned SelOpc = getPseudoCMOVOpc(VT);
13374      X86::CondCode CC = X86::getCondFromCMovOpc(CMOVOpc);
13375      assert(CC != X86::COND_INVALID && "Invalid atomic-load-op transformation!");
13376      MIB = BuildMI(mainMBB, DL, TII->get(SelOpc), t2)
13377              .addReg(SrcReg).addReg(t4)
13378              .addImm(CC);
13379      mainMBB = EmitLoweredSelect(MIB, mainMBB);
13380      // Replace the original PHI node as mainMBB is changed after CMOV
13381      // lowering.
13382      BuildMI(*origMainMBB, Phi, DL, TII->get(X86::PHI), t4)
13383        .addReg(t1).addMBB(thisMBB).addReg(t3).addMBB(mainMBB);
13384      Phi->eraseFromParent();
13385    }
13386    break;
13387  }
13388  }
13389
13390  // Copy PhyReg back from virtual register.
13391  BuildMI(mainMBB, DL, TII->get(TargetOpcode::COPY), PhyReg)
13392    .addReg(t4);
13393
13394  MIB = BuildMI(mainMBB, DL, TII->get(LCMPXCHGOpc));
13395  for (unsigned i = 0; i < X86::AddrNumOperands; ++i) {
13396    MachineOperand NewMO = MI->getOperand(MemOpndSlot + i);
13397    if (NewMO.isReg())
13398      NewMO.setIsKill(false);
13399    MIB.addOperand(NewMO);
13400  }
13401  MIB.addReg(t2);
13402  MIB.setMemRefs(MMOBegin, MMOEnd);
13403
13404  // Copy PhyReg back to virtual register.
13405  BuildMI(mainMBB, DL, TII->get(TargetOpcode::COPY), t3)
13406    .addReg(PhyReg);
13407
13408  BuildMI(mainMBB, DL, TII->get(X86::JNE_4)).addMBB(origMainMBB);
13409
13410  mainMBB->addSuccessor(origMainMBB);
13411  mainMBB->addSuccessor(sinkMBB);
13412
13413  // sinkMBB:
13414  BuildMI(*sinkMBB, sinkMBB->begin(), DL,
13415          TII->get(TargetOpcode::COPY), DstReg)
13416    .addReg(t3);
13417
13418  MI->eraseFromParent();
13419  return sinkMBB;
13420}
13421
13422// EmitAtomicLoadArith6432 - emit the code sequence for pseudo atomic
13423// instructions. They will be translated into a spin-loop or compare-exchange
13424// loop from
13425//
13426//    ...
13427//    dst = atomic-fetch-op MI.addr, MI.val
13428//    ...
13429//
13430// to
13431//
13432//    ...
13433//    t1L = LOAD [MI.addr + 0]
13434//    t1H = LOAD [MI.addr + 4]
13435// loop:
13436//    t4L = phi(t1L, t3L / loop)
13437//    t4H = phi(t1H, t3H / loop)
13438//    t2L = OP MI.val.lo, t4L
13439//    t2H = OP MI.val.hi, t4H
13440//    EAX = t4L
13441//    EDX = t4H
13442//    EBX = t2L
13443//    ECX = t2H
13444//    LCMPXCHG8B [MI.addr], [ECX:EBX & EDX:EAX are implicitly used and EDX:EAX is implicitly defined]
13445//    t3L = EAX
13446//    t3H = EDX
13447//    JNE loop
13448// sink:
13449//    dstL = t3L
13450//    dstH = t3H
13451//    ...
13452MachineBasicBlock *
13453X86TargetLowering::EmitAtomicLoadArith6432(MachineInstr *MI,
13454                                           MachineBasicBlock *MBB) const {
13455  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
13456  DebugLoc DL = MI->getDebugLoc();
13457
13458  MachineFunction *MF = MBB->getParent();
13459  MachineRegisterInfo &MRI = MF->getRegInfo();
13460
13461  const BasicBlock *BB = MBB->getBasicBlock();
13462  MachineFunction::iterator I = MBB;
13463  ++I;
13464
13465  assert(MI->getNumOperands() <= X86::AddrNumOperands + 7 &&
13466         "Unexpected number of operands");
13467
13468  assert(MI->hasOneMemOperand() &&
13469         "Expected atomic-load-op32 to have one memoperand");
13470
13471  // Memory Reference
13472  MachineInstr::mmo_iterator MMOBegin = MI->memoperands_begin();
13473  MachineInstr::mmo_iterator MMOEnd = MI->memoperands_end();
13474
13475  unsigned DstLoReg, DstHiReg;
13476  unsigned SrcLoReg, SrcHiReg;
13477  unsigned MemOpndSlot;
13478
13479  unsigned CurOp = 0;
13480
13481  DstLoReg = MI->getOperand(CurOp++).getReg();
13482  DstHiReg = MI->getOperand(CurOp++).getReg();
13483  MemOpndSlot = CurOp;
13484  CurOp += X86::AddrNumOperands;
13485  SrcLoReg = MI->getOperand(CurOp++).getReg();
13486  SrcHiReg = MI->getOperand(CurOp++).getReg();
13487
13488  const TargetRegisterClass *RC = &X86::GR32RegClass;
13489  const TargetRegisterClass *RC8 = &X86::GR8RegClass;
13490
13491  unsigned t1L = MRI.createVirtualRegister(RC);
13492  unsigned t1H = MRI.createVirtualRegister(RC);
13493  unsigned t2L = MRI.createVirtualRegister(RC);
13494  unsigned t2H = MRI.createVirtualRegister(RC);
13495  unsigned t3L = MRI.createVirtualRegister(RC);
13496  unsigned t3H = MRI.createVirtualRegister(RC);
13497  unsigned t4L = MRI.createVirtualRegister(RC);
13498  unsigned t4H = MRI.createVirtualRegister(RC);
13499
13500  unsigned LCMPXCHGOpc = X86::LCMPXCHG8B;
13501  unsigned LOADOpc = X86::MOV32rm;
13502
13503  // For the atomic load-arith operator, we generate
13504  //
13505  //  thisMBB:
13506  //    t1L = LOAD [MI.addr + 0]
13507  //    t1H = LOAD [MI.addr + 4]
13508  //  mainMBB:
13509  //    t4L = phi(t1L / thisMBB, t3L / mainMBB)
13510  //    t4H = phi(t1H / thisMBB, t3H / mainMBB)
13511  //    t2L = OP MI.val.lo, t4L
13512  //    t2H = OP MI.val.hi, t4H
13513  //    EBX = t2L
13514  //    ECX = t2H
13515  //    LCMPXCHG8B [MI.addr], [ECX:EBX & EDX:EAX are implicitly used and EDX:EAX is implicitly defined]
13516  //    t3L = EAX
13517  //    t3H = EDX
13518  //    JNE loop
13519  //  sinkMBB:
13520  //    dstL = t3L
13521  //    dstH = t3H
13522
13523  MachineBasicBlock *thisMBB = MBB;
13524  MachineBasicBlock *mainMBB = MF->CreateMachineBasicBlock(BB);
13525  MachineBasicBlock *sinkMBB = MF->CreateMachineBasicBlock(BB);
13526  MF->insert(I, mainMBB);
13527  MF->insert(I, sinkMBB);
13528
13529  MachineInstrBuilder MIB;
13530
13531  // Transfer the remainder of BB and its successor edges to sinkMBB.
13532  sinkMBB->splice(sinkMBB->begin(), MBB,
13533                  llvm::next(MachineBasicBlock::iterator(MI)), MBB->end());
13534  sinkMBB->transferSuccessorsAndUpdatePHIs(MBB);
13535
13536  // thisMBB:
13537  // Lo
13538  MIB = BuildMI(thisMBB, DL, TII->get(LOADOpc), t1L);
13539  for (unsigned i = 0; i < X86::AddrNumOperands; ++i) {
13540    MachineOperand NewMO = MI->getOperand(MemOpndSlot + i);
13541    if (NewMO.isReg())
13542      NewMO.setIsKill(false);
13543    MIB.addOperand(NewMO);
13544  }
13545  for (MachineInstr::mmo_iterator MMOI = MMOBegin; MMOI != MMOEnd; ++MMOI) {
13546    unsigned flags = (*MMOI)->getFlags();
13547    flags = (flags & ~MachineMemOperand::MOStore) | MachineMemOperand::MOLoad;
13548    MachineMemOperand *MMO =
13549      MF->getMachineMemOperand((*MMOI)->getPointerInfo(), flags,
13550                               (*MMOI)->getSize(),
13551                               (*MMOI)->getBaseAlignment(),
13552                               (*MMOI)->getTBAAInfo(),
13553                               (*MMOI)->getRanges());
13554    MIB.addMemOperand(MMO);
13555  };
13556  MachineInstr *LowMI = MIB;
13557
13558  // Hi
13559  MIB = BuildMI(thisMBB, DL, TII->get(LOADOpc), t1H);
13560  for (unsigned i = 0; i < X86::AddrNumOperands; ++i) {
13561    if (i == X86::AddrDisp) {
13562      MIB.addDisp(MI->getOperand(MemOpndSlot + i), 4); // 4 == sizeof(i32)
13563    } else {
13564      MachineOperand NewMO = MI->getOperand(MemOpndSlot + i);
13565      if (NewMO.isReg())
13566        NewMO.setIsKill(false);
13567      MIB.addOperand(NewMO);
13568    }
13569  }
13570  MIB.setMemRefs(LowMI->memoperands_begin(), LowMI->memoperands_end());
13571
13572  thisMBB->addSuccessor(mainMBB);
13573
13574  // mainMBB:
13575  MachineBasicBlock *origMainMBB = mainMBB;
13576
13577  // Add PHIs.
13578  MachineInstr *PhiL = BuildMI(mainMBB, DL, TII->get(X86::PHI), t4L)
13579                        .addReg(t1L).addMBB(thisMBB).addReg(t3L).addMBB(mainMBB);
13580  MachineInstr *PhiH = BuildMI(mainMBB, DL, TII->get(X86::PHI), t4H)
13581                        .addReg(t1H).addMBB(thisMBB).addReg(t3H).addMBB(mainMBB);
13582
13583  unsigned Opc = MI->getOpcode();
13584  switch (Opc) {
13585  default:
13586    llvm_unreachable("Unhandled atomic-load-op6432 opcode!");
13587  case X86::ATOMAND6432:
13588  case X86::ATOMOR6432:
13589  case X86::ATOMXOR6432:
13590  case X86::ATOMADD6432:
13591  case X86::ATOMSUB6432: {
13592    unsigned HiOpc;
13593    unsigned LoOpc = getNonAtomic6432Opcode(Opc, HiOpc);
13594    BuildMI(mainMBB, DL, TII->get(LoOpc), t2L).addReg(t4L)
13595      .addReg(SrcLoReg);
13596    BuildMI(mainMBB, DL, TII->get(HiOpc), t2H).addReg(t4H)
13597      .addReg(SrcHiReg);
13598    break;
13599  }
13600  case X86::ATOMNAND6432: {
13601    unsigned HiOpc, NOTOpc;
13602    unsigned LoOpc = getNonAtomic6432OpcodeWithExtraOpc(Opc, HiOpc, NOTOpc);
13603    unsigned TmpL = MRI.createVirtualRegister(RC);
13604    unsigned TmpH = MRI.createVirtualRegister(RC);
13605    BuildMI(mainMBB, DL, TII->get(LoOpc), TmpL).addReg(SrcLoReg)
13606      .addReg(t4L);
13607    BuildMI(mainMBB, DL, TII->get(HiOpc), TmpH).addReg(SrcHiReg)
13608      .addReg(t4H);
13609    BuildMI(mainMBB, DL, TII->get(NOTOpc), t2L).addReg(TmpL);
13610    BuildMI(mainMBB, DL, TII->get(NOTOpc), t2H).addReg(TmpH);
13611    break;
13612  }
13613  case X86::ATOMMAX6432:
13614  case X86::ATOMMIN6432:
13615  case X86::ATOMUMAX6432:
13616  case X86::ATOMUMIN6432: {
13617    unsigned HiOpc;
13618    unsigned LoOpc = getNonAtomic6432Opcode(Opc, HiOpc);
13619    unsigned cL = MRI.createVirtualRegister(RC8);
13620    unsigned cH = MRI.createVirtualRegister(RC8);
13621    unsigned cL32 = MRI.createVirtualRegister(RC);
13622    unsigned cH32 = MRI.createVirtualRegister(RC);
13623    unsigned cc = MRI.createVirtualRegister(RC);
13624    // cl := cmp src_lo, lo
13625    BuildMI(mainMBB, DL, TII->get(X86::CMP32rr))
13626      .addReg(SrcLoReg).addReg(t4L);
13627    BuildMI(mainMBB, DL, TII->get(LoOpc), cL);
13628    BuildMI(mainMBB, DL, TII->get(X86::MOVZX32rr8), cL32).addReg(cL);
13629    // ch := cmp src_hi, hi
13630    BuildMI(mainMBB, DL, TII->get(X86::CMP32rr))
13631      .addReg(SrcHiReg).addReg(t4H);
13632    BuildMI(mainMBB, DL, TII->get(HiOpc), cH);
13633    BuildMI(mainMBB, DL, TII->get(X86::MOVZX32rr8), cH32).addReg(cH);
13634    // cc := if (src_hi == hi) ? cl : ch;
13635    if (Subtarget->hasCMov()) {
13636      BuildMI(mainMBB, DL, TII->get(X86::CMOVE32rr), cc)
13637        .addReg(cH32).addReg(cL32);
13638    } else {
13639      MIB = BuildMI(mainMBB, DL, TII->get(X86::CMOV_GR32), cc)
13640              .addReg(cH32).addReg(cL32)
13641              .addImm(X86::COND_E);
13642      mainMBB = EmitLoweredSelect(MIB, mainMBB);
13643    }
13644    BuildMI(mainMBB, DL, TII->get(X86::TEST32rr)).addReg(cc).addReg(cc);
13645    if (Subtarget->hasCMov()) {
13646      BuildMI(mainMBB, DL, TII->get(X86::CMOVNE32rr), t2L)
13647        .addReg(SrcLoReg).addReg(t4L);
13648      BuildMI(mainMBB, DL, TII->get(X86::CMOVNE32rr), t2H)
13649        .addReg(SrcHiReg).addReg(t4H);
13650    } else {
13651      MIB = BuildMI(mainMBB, DL, TII->get(X86::CMOV_GR32), t2L)
13652              .addReg(SrcLoReg).addReg(t4L)
13653              .addImm(X86::COND_NE);
13654      mainMBB = EmitLoweredSelect(MIB, mainMBB);
13655      // As the lowered CMOV won't clobber EFLAGS, we could reuse it for the
13656      // 2nd CMOV lowering.
13657      mainMBB->addLiveIn(X86::EFLAGS);
13658      MIB = BuildMI(mainMBB, DL, TII->get(X86::CMOV_GR32), t2H)
13659              .addReg(SrcHiReg).addReg(t4H)
13660              .addImm(X86::COND_NE);
13661      mainMBB = EmitLoweredSelect(MIB, mainMBB);
13662      // Replace the original PHI node as mainMBB is changed after CMOV
13663      // lowering.
13664      BuildMI(*origMainMBB, PhiL, DL, TII->get(X86::PHI), t4L)
13665        .addReg(t1L).addMBB(thisMBB).addReg(t3L).addMBB(mainMBB);
13666      BuildMI(*origMainMBB, PhiH, DL, TII->get(X86::PHI), t4H)
13667        .addReg(t1H).addMBB(thisMBB).addReg(t3H).addMBB(mainMBB);
13668      PhiL->eraseFromParent();
13669      PhiH->eraseFromParent();
13670    }
13671    break;
13672  }
13673  case X86::ATOMSWAP6432: {
13674    unsigned HiOpc;
13675    unsigned LoOpc = getNonAtomic6432Opcode(Opc, HiOpc);
13676    BuildMI(mainMBB, DL, TII->get(LoOpc), t2L).addReg(SrcLoReg);
13677    BuildMI(mainMBB, DL, TII->get(HiOpc), t2H).addReg(SrcHiReg);
13678    break;
13679  }
13680  }
13681
13682  // Copy EDX:EAX back from HiReg:LoReg
13683  BuildMI(mainMBB, DL, TII->get(TargetOpcode::COPY), X86::EAX).addReg(t4L);
13684  BuildMI(mainMBB, DL, TII->get(TargetOpcode::COPY), X86::EDX).addReg(t4H);
13685  // Copy ECX:EBX from t1H:t1L
13686  BuildMI(mainMBB, DL, TII->get(TargetOpcode::COPY), X86::EBX).addReg(t2L);
13687  BuildMI(mainMBB, DL, TII->get(TargetOpcode::COPY), X86::ECX).addReg(t2H);
13688
13689  MIB = BuildMI(mainMBB, DL, TII->get(LCMPXCHGOpc));
13690  for (unsigned i = 0; i < X86::AddrNumOperands; ++i) {
13691    MachineOperand NewMO = MI->getOperand(MemOpndSlot + i);
13692    if (NewMO.isReg())
13693      NewMO.setIsKill(false);
13694    MIB.addOperand(NewMO);
13695  }
13696  MIB.setMemRefs(MMOBegin, MMOEnd);
13697
13698  // Copy EDX:EAX back to t3H:t3L
13699  BuildMI(mainMBB, DL, TII->get(TargetOpcode::COPY), t3L).addReg(X86::EAX);
13700  BuildMI(mainMBB, DL, TII->get(TargetOpcode::COPY), t3H).addReg(X86::EDX);
13701
13702  BuildMI(mainMBB, DL, TII->get(X86::JNE_4)).addMBB(origMainMBB);
13703
13704  mainMBB->addSuccessor(origMainMBB);
13705  mainMBB->addSuccessor(sinkMBB);
13706
13707  // sinkMBB:
13708  BuildMI(*sinkMBB, sinkMBB->begin(), DL,
13709          TII->get(TargetOpcode::COPY), DstLoReg)
13710    .addReg(t3L);
13711  BuildMI(*sinkMBB, sinkMBB->begin(), DL,
13712          TII->get(TargetOpcode::COPY), DstHiReg)
13713    .addReg(t3H);
13714
13715  MI->eraseFromParent();
13716  return sinkMBB;
13717}
13718
13719// FIXME: When we get size specific XMM0 registers, i.e. XMM0_V16I8
13720// or XMM0_V32I8 in AVX all of this code can be replaced with that
13721// in the .td file.
13722static MachineBasicBlock *EmitPCMPSTRM(MachineInstr *MI, MachineBasicBlock *BB,
13723                                       const TargetInstrInfo *TII) {
13724  unsigned Opc;
13725  switch (MI->getOpcode()) {
13726  default: llvm_unreachable("illegal opcode!");
13727  case X86::PCMPISTRM128REG:  Opc = X86::PCMPISTRM128rr;  break;
13728  case X86::VPCMPISTRM128REG: Opc = X86::VPCMPISTRM128rr; break;
13729  case X86::PCMPISTRM128MEM:  Opc = X86::PCMPISTRM128rm;  break;
13730  case X86::VPCMPISTRM128MEM: Opc = X86::VPCMPISTRM128rm; break;
13731  case X86::PCMPESTRM128REG:  Opc = X86::PCMPESTRM128rr;  break;
13732  case X86::VPCMPESTRM128REG: Opc = X86::VPCMPESTRM128rr; break;
13733  case X86::PCMPESTRM128MEM:  Opc = X86::PCMPESTRM128rm;  break;
13734  case X86::VPCMPESTRM128MEM: Opc = X86::VPCMPESTRM128rm; break;
13735  }
13736
13737  DebugLoc dl = MI->getDebugLoc();
13738  MachineInstrBuilder MIB = BuildMI(*BB, MI, dl, TII->get(Opc));
13739
13740  unsigned NumArgs = MI->getNumOperands();
13741  for (unsigned i = 1; i < NumArgs; ++i) {
13742    MachineOperand &Op = MI->getOperand(i);
13743    if (!(Op.isReg() && Op.isImplicit()))
13744      MIB.addOperand(Op);
13745  }
13746  if (MI->hasOneMemOperand())
13747    MIB->setMemRefs(MI->memoperands_begin(), MI->memoperands_end());
13748
13749  BuildMI(*BB, MI, dl,
13750    TII->get(TargetOpcode::COPY), MI->getOperand(0).getReg())
13751    .addReg(X86::XMM0);
13752
13753  MI->eraseFromParent();
13754  return BB;
13755}
13756
13757// FIXME: Custom handling because TableGen doesn't support multiple implicit
13758// defs in an instruction pattern
13759static MachineBasicBlock *EmitPCMPSTRI(MachineInstr *MI, MachineBasicBlock *BB,
13760                                       const TargetInstrInfo *TII) {
13761  unsigned Opc;
13762  switch (MI->getOpcode()) {
13763  default: llvm_unreachable("illegal opcode!");
13764  case X86::PCMPISTRIREG:  Opc = X86::PCMPISTRIrr;  break;
13765  case X86::VPCMPISTRIREG: Opc = X86::VPCMPISTRIrr; break;
13766  case X86::PCMPISTRIMEM:  Opc = X86::PCMPISTRIrm;  break;
13767  case X86::VPCMPISTRIMEM: Opc = X86::VPCMPISTRIrm; break;
13768  case X86::PCMPESTRIREG:  Opc = X86::PCMPESTRIrr;  break;
13769  case X86::VPCMPESTRIREG: Opc = X86::VPCMPESTRIrr; break;
13770  case X86::PCMPESTRIMEM:  Opc = X86::PCMPESTRIrm;  break;
13771  case X86::VPCMPESTRIMEM: Opc = X86::VPCMPESTRIrm; break;
13772  }
13773
13774  DebugLoc dl = MI->getDebugLoc();
13775  MachineInstrBuilder MIB = BuildMI(*BB, MI, dl, TII->get(Opc));
13776
13777  unsigned NumArgs = MI->getNumOperands(); // remove the results
13778  for (unsigned i = 1; i < NumArgs; ++i) {
13779    MachineOperand &Op = MI->getOperand(i);
13780    if (!(Op.isReg() && Op.isImplicit()))
13781      MIB.addOperand(Op);
13782  }
13783  if (MI->hasOneMemOperand())
13784    MIB->setMemRefs(MI->memoperands_begin(), MI->memoperands_end());
13785
13786  BuildMI(*BB, MI, dl,
13787    TII->get(TargetOpcode::COPY), MI->getOperand(0).getReg())
13788    .addReg(X86::ECX);
13789
13790  MI->eraseFromParent();
13791  return BB;
13792}
13793
13794static MachineBasicBlock * EmitMonitor(MachineInstr *MI, MachineBasicBlock *BB,
13795                                       const TargetInstrInfo *TII,
13796                                       const X86Subtarget* Subtarget) {
13797  DebugLoc dl = MI->getDebugLoc();
13798
13799  // Address into RAX/EAX, other two args into ECX, EDX.
13800  unsigned MemOpc = Subtarget->is64Bit() ? X86::LEA64r : X86::LEA32r;
13801  unsigned MemReg = Subtarget->is64Bit() ? X86::RAX : X86::EAX;
13802  MachineInstrBuilder MIB = BuildMI(*BB, MI, dl, TII->get(MemOpc), MemReg);
13803  for (int i = 0; i < X86::AddrNumOperands; ++i)
13804    MIB.addOperand(MI->getOperand(i));
13805
13806  unsigned ValOps = X86::AddrNumOperands;
13807  BuildMI(*BB, MI, dl, TII->get(TargetOpcode::COPY), X86::ECX)
13808    .addReg(MI->getOperand(ValOps).getReg());
13809  BuildMI(*BB, MI, dl, TII->get(TargetOpcode::COPY), X86::EDX)
13810    .addReg(MI->getOperand(ValOps+1).getReg());
13811
13812  // The instruction doesn't actually take any operands though.
13813  BuildMI(*BB, MI, dl, TII->get(X86::MONITORrrr));
13814
13815  MI->eraseFromParent(); // The pseudo is gone now.
13816  return BB;
13817}
13818
13819MachineBasicBlock *
13820X86TargetLowering::EmitVAARG64WithCustomInserter(
13821                   MachineInstr *MI,
13822                   MachineBasicBlock *MBB) const {
13823  // Emit va_arg instruction on X86-64.
13824
13825  // Operands to this pseudo-instruction:
13826  // 0  ) Output        : destination address (reg)
13827  // 1-5) Input         : va_list address (addr, i64mem)
13828  // 6  ) ArgSize       : Size (in bytes) of vararg type
13829  // 7  ) ArgMode       : 0=overflow only, 1=use gp_offset, 2=use fp_offset
13830  // 8  ) Align         : Alignment of type
13831  // 9  ) EFLAGS (implicit-def)
13832
13833  assert(MI->getNumOperands() == 10 && "VAARG_64 should have 10 operands!");
13834  assert(X86::AddrNumOperands == 5 && "VAARG_64 assumes 5 address operands");
13835
13836  unsigned DestReg = MI->getOperand(0).getReg();
13837  MachineOperand &Base = MI->getOperand(1);
13838  MachineOperand &Scale = MI->getOperand(2);
13839  MachineOperand &Index = MI->getOperand(3);
13840  MachineOperand &Disp = MI->getOperand(4);
13841  MachineOperand &Segment = MI->getOperand(5);
13842  unsigned ArgSize = MI->getOperand(6).getImm();
13843  unsigned ArgMode = MI->getOperand(7).getImm();
13844  unsigned Align = MI->getOperand(8).getImm();
13845
13846  // Memory Reference
13847  assert(MI->hasOneMemOperand() && "Expected VAARG_64 to have one memoperand");
13848  MachineInstr::mmo_iterator MMOBegin = MI->memoperands_begin();
13849  MachineInstr::mmo_iterator MMOEnd = MI->memoperands_end();
13850
13851  // Machine Information
13852  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
13853  MachineRegisterInfo &MRI = MBB->getParent()->getRegInfo();
13854  const TargetRegisterClass *AddrRegClass = getRegClassFor(MVT::i64);
13855  const TargetRegisterClass *OffsetRegClass = getRegClassFor(MVT::i32);
13856  DebugLoc DL = MI->getDebugLoc();
13857
13858  // struct va_list {
13859  //   i32   gp_offset
13860  //   i32   fp_offset
13861  //   i64   overflow_area (address)
13862  //   i64   reg_save_area (address)
13863  // }
13864  // sizeof(va_list) = 24
13865  // alignment(va_list) = 8
13866
13867  unsigned TotalNumIntRegs = 6;
13868  unsigned TotalNumXMMRegs = 8;
13869  bool UseGPOffset = (ArgMode == 1);
13870  bool UseFPOffset = (ArgMode == 2);
13871  unsigned MaxOffset = TotalNumIntRegs * 8 +
13872                       (UseFPOffset ? TotalNumXMMRegs * 16 : 0);
13873
13874  /* Align ArgSize to a multiple of 8 */
13875  unsigned ArgSizeA8 = (ArgSize + 7) & ~7;
13876  bool NeedsAlign = (Align > 8);
13877
13878  MachineBasicBlock *thisMBB = MBB;
13879  MachineBasicBlock *overflowMBB;
13880  MachineBasicBlock *offsetMBB;
13881  MachineBasicBlock *endMBB;
13882
13883  unsigned OffsetDestReg = 0;    // Argument address computed by offsetMBB
13884  unsigned OverflowDestReg = 0;  // Argument address computed by overflowMBB
13885  unsigned OffsetReg = 0;
13886
13887  if (!UseGPOffset && !UseFPOffset) {
13888    // If we only pull from the overflow region, we don't create a branch.
13889    // We don't need to alter control flow.
13890    OffsetDestReg = 0; // unused
13891    OverflowDestReg = DestReg;
13892
13893    offsetMBB = NULL;
13894    overflowMBB = thisMBB;
13895    endMBB = thisMBB;
13896  } else {
13897    // First emit code to check if gp_offset (or fp_offset) is below the bound.
13898    // If so, pull the argument from reg_save_area. (branch to offsetMBB)
13899    // If not, pull from overflow_area. (branch to overflowMBB)
13900    //
13901    //       thisMBB
13902    //         |     .
13903    //         |        .
13904    //     offsetMBB   overflowMBB
13905    //         |        .
13906    //         |     .
13907    //        endMBB
13908
13909    // Registers for the PHI in endMBB
13910    OffsetDestReg = MRI.createVirtualRegister(AddrRegClass);
13911    OverflowDestReg = MRI.createVirtualRegister(AddrRegClass);
13912
13913    const BasicBlock *LLVM_BB = MBB->getBasicBlock();
13914    MachineFunction *MF = MBB->getParent();
13915    overflowMBB = MF->CreateMachineBasicBlock(LLVM_BB);
13916    offsetMBB = MF->CreateMachineBasicBlock(LLVM_BB);
13917    endMBB = MF->CreateMachineBasicBlock(LLVM_BB);
13918
13919    MachineFunction::iterator MBBIter = MBB;
13920    ++MBBIter;
13921
13922    // Insert the new basic blocks
13923    MF->insert(MBBIter, offsetMBB);
13924    MF->insert(MBBIter, overflowMBB);
13925    MF->insert(MBBIter, endMBB);
13926
13927    // Transfer the remainder of MBB and its successor edges to endMBB.
13928    endMBB->splice(endMBB->begin(), thisMBB,
13929                    llvm::next(MachineBasicBlock::iterator(MI)),
13930                    thisMBB->end());
13931    endMBB->transferSuccessorsAndUpdatePHIs(thisMBB);
13932
13933    // Make offsetMBB and overflowMBB successors of thisMBB
13934    thisMBB->addSuccessor(offsetMBB);
13935    thisMBB->addSuccessor(overflowMBB);
13936
13937    // endMBB is a successor of both offsetMBB and overflowMBB
13938    offsetMBB->addSuccessor(endMBB);
13939    overflowMBB->addSuccessor(endMBB);
13940
13941    // Load the offset value into a register
13942    OffsetReg = MRI.createVirtualRegister(OffsetRegClass);
13943    BuildMI(thisMBB, DL, TII->get(X86::MOV32rm), OffsetReg)
13944      .addOperand(Base)
13945      .addOperand(Scale)
13946      .addOperand(Index)
13947      .addDisp(Disp, UseFPOffset ? 4 : 0)
13948      .addOperand(Segment)
13949      .setMemRefs(MMOBegin, MMOEnd);
13950
13951    // Check if there is enough room left to pull this argument.
13952    BuildMI(thisMBB, DL, TII->get(X86::CMP32ri))
13953      .addReg(OffsetReg)
13954      .addImm(MaxOffset + 8 - ArgSizeA8);
13955
13956    // Branch to "overflowMBB" if offset >= max
13957    // Fall through to "offsetMBB" otherwise
13958    BuildMI(thisMBB, DL, TII->get(X86::GetCondBranchFromCond(X86::COND_AE)))
13959      .addMBB(overflowMBB);
13960  }
13961
13962  // In offsetMBB, emit code to use the reg_save_area.
13963  if (offsetMBB) {
13964    assert(OffsetReg != 0);
13965
13966    // Read the reg_save_area address.
13967    unsigned RegSaveReg = MRI.createVirtualRegister(AddrRegClass);
13968    BuildMI(offsetMBB, DL, TII->get(X86::MOV64rm), RegSaveReg)
13969      .addOperand(Base)
13970      .addOperand(Scale)
13971      .addOperand(Index)
13972      .addDisp(Disp, 16)
13973      .addOperand(Segment)
13974      .setMemRefs(MMOBegin, MMOEnd);
13975
13976    // Zero-extend the offset
13977    unsigned OffsetReg64 = MRI.createVirtualRegister(AddrRegClass);
13978      BuildMI(offsetMBB, DL, TII->get(X86::SUBREG_TO_REG), OffsetReg64)
13979        .addImm(0)
13980        .addReg(OffsetReg)
13981        .addImm(X86::sub_32bit);
13982
13983    // Add the offset to the reg_save_area to get the final address.
13984    BuildMI(offsetMBB, DL, TII->get(X86::ADD64rr), OffsetDestReg)
13985      .addReg(OffsetReg64)
13986      .addReg(RegSaveReg);
13987
13988    // Compute the offset for the next argument
13989    unsigned NextOffsetReg = MRI.createVirtualRegister(OffsetRegClass);
13990    BuildMI(offsetMBB, DL, TII->get(X86::ADD32ri), NextOffsetReg)
13991      .addReg(OffsetReg)
13992      .addImm(UseFPOffset ? 16 : 8);
13993
13994    // Store it back into the va_list.
13995    BuildMI(offsetMBB, DL, TII->get(X86::MOV32mr))
13996      .addOperand(Base)
13997      .addOperand(Scale)
13998      .addOperand(Index)
13999      .addDisp(Disp, UseFPOffset ? 4 : 0)
14000      .addOperand(Segment)
14001      .addReg(NextOffsetReg)
14002      .setMemRefs(MMOBegin, MMOEnd);
14003
14004    // Jump to endMBB
14005    BuildMI(offsetMBB, DL, TII->get(X86::JMP_4))
14006      .addMBB(endMBB);
14007  }
14008
14009  //
14010  // Emit code to use overflow area
14011  //
14012
14013  // Load the overflow_area address into a register.
14014  unsigned OverflowAddrReg = MRI.createVirtualRegister(AddrRegClass);
14015  BuildMI(overflowMBB, DL, TII->get(X86::MOV64rm), OverflowAddrReg)
14016    .addOperand(Base)
14017    .addOperand(Scale)
14018    .addOperand(Index)
14019    .addDisp(Disp, 8)
14020    .addOperand(Segment)
14021    .setMemRefs(MMOBegin, MMOEnd);
14022
14023  // If we need to align it, do so. Otherwise, just copy the address
14024  // to OverflowDestReg.
14025  if (NeedsAlign) {
14026    // Align the overflow address
14027    assert((Align & (Align-1)) == 0 && "Alignment must be a power of 2");
14028    unsigned TmpReg = MRI.createVirtualRegister(AddrRegClass);
14029
14030    // aligned_addr = (addr + (align-1)) & ~(align-1)
14031    BuildMI(overflowMBB, DL, TII->get(X86::ADD64ri32), TmpReg)
14032      .addReg(OverflowAddrReg)
14033      .addImm(Align-1);
14034
14035    BuildMI(overflowMBB, DL, TII->get(X86::AND64ri32), OverflowDestReg)
14036      .addReg(TmpReg)
14037      .addImm(~(uint64_t)(Align-1));
14038  } else {
14039    BuildMI(overflowMBB, DL, TII->get(TargetOpcode::COPY), OverflowDestReg)
14040      .addReg(OverflowAddrReg);
14041  }
14042
14043  // Compute the next overflow address after this argument.
14044  // (the overflow address should be kept 8-byte aligned)
14045  unsigned NextAddrReg = MRI.createVirtualRegister(AddrRegClass);
14046  BuildMI(overflowMBB, DL, TII->get(X86::ADD64ri32), NextAddrReg)
14047    .addReg(OverflowDestReg)
14048    .addImm(ArgSizeA8);
14049
14050  // Store the new overflow address.
14051  BuildMI(overflowMBB, DL, TII->get(X86::MOV64mr))
14052    .addOperand(Base)
14053    .addOperand(Scale)
14054    .addOperand(Index)
14055    .addDisp(Disp, 8)
14056    .addOperand(Segment)
14057    .addReg(NextAddrReg)
14058    .setMemRefs(MMOBegin, MMOEnd);
14059
14060  // If we branched, emit the PHI to the front of endMBB.
14061  if (offsetMBB) {
14062    BuildMI(*endMBB, endMBB->begin(), DL,
14063            TII->get(X86::PHI), DestReg)
14064      .addReg(OffsetDestReg).addMBB(offsetMBB)
14065      .addReg(OverflowDestReg).addMBB(overflowMBB);
14066  }
14067
14068  // Erase the pseudo instruction
14069  MI->eraseFromParent();
14070
14071  return endMBB;
14072}
14073
14074MachineBasicBlock *
14075X86TargetLowering::EmitVAStartSaveXMMRegsWithCustomInserter(
14076                                                 MachineInstr *MI,
14077                                                 MachineBasicBlock *MBB) const {
14078  // Emit code to save XMM registers to the stack. The ABI says that the
14079  // number of registers to save is given in %al, so it's theoretically
14080  // possible to do an indirect jump trick to avoid saving all of them,
14081  // however this code takes a simpler approach and just executes all
14082  // of the stores if %al is non-zero. It's less code, and it's probably
14083  // easier on the hardware branch predictor, and stores aren't all that
14084  // expensive anyway.
14085
14086  // Create the new basic blocks. One block contains all the XMM stores,
14087  // and one block is the final destination regardless of whether any
14088  // stores were performed.
14089  const BasicBlock *LLVM_BB = MBB->getBasicBlock();
14090  MachineFunction *F = MBB->getParent();
14091  MachineFunction::iterator MBBIter = MBB;
14092  ++MBBIter;
14093  MachineBasicBlock *XMMSaveMBB = F->CreateMachineBasicBlock(LLVM_BB);
14094  MachineBasicBlock *EndMBB = F->CreateMachineBasicBlock(LLVM_BB);
14095  F->insert(MBBIter, XMMSaveMBB);
14096  F->insert(MBBIter, EndMBB);
14097
14098  // Transfer the remainder of MBB and its successor edges to EndMBB.
14099  EndMBB->splice(EndMBB->begin(), MBB,
14100                 llvm::next(MachineBasicBlock::iterator(MI)),
14101                 MBB->end());
14102  EndMBB->transferSuccessorsAndUpdatePHIs(MBB);
14103
14104  // The original block will now fall through to the XMM save block.
14105  MBB->addSuccessor(XMMSaveMBB);
14106  // The XMMSaveMBB will fall through to the end block.
14107  XMMSaveMBB->addSuccessor(EndMBB);
14108
14109  // Now add the instructions.
14110  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
14111  DebugLoc DL = MI->getDebugLoc();
14112
14113  unsigned CountReg = MI->getOperand(0).getReg();
14114  int64_t RegSaveFrameIndex = MI->getOperand(1).getImm();
14115  int64_t VarArgsFPOffset = MI->getOperand(2).getImm();
14116
14117  if (!Subtarget->isTargetWin64()) {
14118    // If %al is 0, branch around the XMM save block.
14119    BuildMI(MBB, DL, TII->get(X86::TEST8rr)).addReg(CountReg).addReg(CountReg);
14120    BuildMI(MBB, DL, TII->get(X86::JE_4)).addMBB(EndMBB);
14121    MBB->addSuccessor(EndMBB);
14122  }
14123
14124  unsigned MOVOpc = Subtarget->hasFp256() ? X86::VMOVAPSmr : X86::MOVAPSmr;
14125  // In the XMM save block, save all the XMM argument registers.
14126  for (int i = 3, e = MI->getNumOperands(); i != e; ++i) {
14127    int64_t Offset = (i - 3) * 16 + VarArgsFPOffset;
14128    MachineMemOperand *MMO =
14129      F->getMachineMemOperand(
14130          MachinePointerInfo::getFixedStack(RegSaveFrameIndex, Offset),
14131        MachineMemOperand::MOStore,
14132        /*Size=*/16, /*Align=*/16);
14133    BuildMI(XMMSaveMBB, DL, TII->get(MOVOpc))
14134      .addFrameIndex(RegSaveFrameIndex)
14135      .addImm(/*Scale=*/1)
14136      .addReg(/*IndexReg=*/0)
14137      .addImm(/*Disp=*/Offset)
14138      .addReg(/*Segment=*/0)
14139      .addReg(MI->getOperand(i).getReg())
14140      .addMemOperand(MMO);
14141  }
14142
14143  MI->eraseFromParent();   // The pseudo instruction is gone now.
14144
14145  return EndMBB;
14146}
14147
14148// The EFLAGS operand of SelectItr might be missing a kill marker
14149// because there were multiple uses of EFLAGS, and ISel didn't know
14150// which to mark. Figure out whether SelectItr should have had a
14151// kill marker, and set it if it should. Returns the correct kill
14152// marker value.
14153static bool checkAndUpdateEFLAGSKill(MachineBasicBlock::iterator SelectItr,
14154                                     MachineBasicBlock* BB,
14155                                     const TargetRegisterInfo* TRI) {
14156  // Scan forward through BB for a use/def of EFLAGS.
14157  MachineBasicBlock::iterator miI(llvm::next(SelectItr));
14158  for (MachineBasicBlock::iterator miE = BB->end(); miI != miE; ++miI) {
14159    const MachineInstr& mi = *miI;
14160    if (mi.readsRegister(X86::EFLAGS))
14161      return false;
14162    if (mi.definesRegister(X86::EFLAGS))
14163      break; // Should have kill-flag - update below.
14164  }
14165
14166  // If we hit the end of the block, check whether EFLAGS is live into a
14167  // successor.
14168  if (miI == BB->end()) {
14169    for (MachineBasicBlock::succ_iterator sItr = BB->succ_begin(),
14170                                          sEnd = BB->succ_end();
14171         sItr != sEnd; ++sItr) {
14172      MachineBasicBlock* succ = *sItr;
14173      if (succ->isLiveIn(X86::EFLAGS))
14174        return false;
14175    }
14176  }
14177
14178  // We found a def, or hit the end of the basic block and EFLAGS wasn't live
14179  // out. SelectMI should have a kill flag on EFLAGS.
14180  SelectItr->addRegisterKilled(X86::EFLAGS, TRI);
14181  return true;
14182}
14183
14184MachineBasicBlock *
14185X86TargetLowering::EmitLoweredSelect(MachineInstr *MI,
14186                                     MachineBasicBlock *BB) const {
14187  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
14188  DebugLoc DL = MI->getDebugLoc();
14189
14190  // To "insert" a SELECT_CC instruction, we actually have to insert the
14191  // diamond control-flow pattern.  The incoming instruction knows the
14192  // destination vreg to set, the condition code register to branch on, the
14193  // true/false values to select between, and a branch opcode to use.
14194  const BasicBlock *LLVM_BB = BB->getBasicBlock();
14195  MachineFunction::iterator It = BB;
14196  ++It;
14197
14198  //  thisMBB:
14199  //  ...
14200  //   TrueVal = ...
14201  //   cmpTY ccX, r1, r2
14202  //   bCC copy1MBB
14203  //   fallthrough --> copy0MBB
14204  MachineBasicBlock *thisMBB = BB;
14205  MachineFunction *F = BB->getParent();
14206  MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB);
14207  MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB);
14208  F->insert(It, copy0MBB);
14209  F->insert(It, sinkMBB);
14210
14211  // If the EFLAGS register isn't dead in the terminator, then claim that it's
14212  // live into the sink and copy blocks.
14213  const TargetRegisterInfo* TRI = getTargetMachine().getRegisterInfo();
14214  if (!MI->killsRegister(X86::EFLAGS) &&
14215      !checkAndUpdateEFLAGSKill(MI, BB, TRI)) {
14216    copy0MBB->addLiveIn(X86::EFLAGS);
14217    sinkMBB->addLiveIn(X86::EFLAGS);
14218  }
14219
14220  // Transfer the remainder of BB and its successor edges to sinkMBB.
14221  sinkMBB->splice(sinkMBB->begin(), BB,
14222                  llvm::next(MachineBasicBlock::iterator(MI)),
14223                  BB->end());
14224  sinkMBB->transferSuccessorsAndUpdatePHIs(BB);
14225
14226  // Add the true and fallthrough blocks as its successors.
14227  BB->addSuccessor(copy0MBB);
14228  BB->addSuccessor(sinkMBB);
14229
14230  // Create the conditional branch instruction.
14231  unsigned Opc =
14232    X86::GetCondBranchFromCond((X86::CondCode)MI->getOperand(3).getImm());
14233  BuildMI(BB, DL, TII->get(Opc)).addMBB(sinkMBB);
14234
14235  //  copy0MBB:
14236  //   %FalseValue = ...
14237  //   # fallthrough to sinkMBB
14238  copy0MBB->addSuccessor(sinkMBB);
14239
14240  //  sinkMBB:
14241  //   %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
14242  //  ...
14243  BuildMI(*sinkMBB, sinkMBB->begin(), DL,
14244          TII->get(X86::PHI), MI->getOperand(0).getReg())
14245    .addReg(MI->getOperand(1).getReg()).addMBB(copy0MBB)
14246    .addReg(MI->getOperand(2).getReg()).addMBB(thisMBB);
14247
14248  MI->eraseFromParent();   // The pseudo instruction is gone now.
14249  return sinkMBB;
14250}
14251
14252MachineBasicBlock *
14253X86TargetLowering::EmitLoweredSegAlloca(MachineInstr *MI, MachineBasicBlock *BB,
14254                                        bool Is64Bit) const {
14255  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
14256  DebugLoc DL = MI->getDebugLoc();
14257  MachineFunction *MF = BB->getParent();
14258  const BasicBlock *LLVM_BB = BB->getBasicBlock();
14259
14260  assert(getTargetMachine().Options.EnableSegmentedStacks);
14261
14262  unsigned TlsReg = Is64Bit ? X86::FS : X86::GS;
14263  unsigned TlsOffset = Is64Bit ? 0x70 : 0x30;
14264
14265  // BB:
14266  //  ... [Till the alloca]
14267  // If stacklet is not large enough, jump to mallocMBB
14268  //
14269  // bumpMBB:
14270  //  Allocate by subtracting from RSP
14271  //  Jump to continueMBB
14272  //
14273  // mallocMBB:
14274  //  Allocate by call to runtime
14275  //
14276  // continueMBB:
14277  //  ...
14278  //  [rest of original BB]
14279  //
14280
14281  MachineBasicBlock *mallocMBB = MF->CreateMachineBasicBlock(LLVM_BB);
14282  MachineBasicBlock *bumpMBB = MF->CreateMachineBasicBlock(LLVM_BB);
14283  MachineBasicBlock *continueMBB = MF->CreateMachineBasicBlock(LLVM_BB);
14284
14285  MachineRegisterInfo &MRI = MF->getRegInfo();
14286  const TargetRegisterClass *AddrRegClass =
14287    getRegClassFor(Is64Bit ? MVT::i64:MVT::i32);
14288
14289  unsigned mallocPtrVReg = MRI.createVirtualRegister(AddrRegClass),
14290    bumpSPPtrVReg = MRI.createVirtualRegister(AddrRegClass),
14291    tmpSPVReg = MRI.createVirtualRegister(AddrRegClass),
14292    SPLimitVReg = MRI.createVirtualRegister(AddrRegClass),
14293    sizeVReg = MI->getOperand(1).getReg(),
14294    physSPReg = Is64Bit ? X86::RSP : X86::ESP;
14295
14296  MachineFunction::iterator MBBIter = BB;
14297  ++MBBIter;
14298
14299  MF->insert(MBBIter, bumpMBB);
14300  MF->insert(MBBIter, mallocMBB);
14301  MF->insert(MBBIter, continueMBB);
14302
14303  continueMBB->splice(continueMBB->begin(), BB, llvm::next
14304                      (MachineBasicBlock::iterator(MI)), BB->end());
14305  continueMBB->transferSuccessorsAndUpdatePHIs(BB);
14306
14307  // Add code to the main basic block to check if the stack limit has been hit,
14308  // and if so, jump to mallocMBB otherwise to bumpMBB.
14309  BuildMI(BB, DL, TII->get(TargetOpcode::COPY), tmpSPVReg).addReg(physSPReg);
14310  BuildMI(BB, DL, TII->get(Is64Bit ? X86::SUB64rr:X86::SUB32rr), SPLimitVReg)
14311    .addReg(tmpSPVReg).addReg(sizeVReg);
14312  BuildMI(BB, DL, TII->get(Is64Bit ? X86::CMP64mr:X86::CMP32mr))
14313    .addReg(0).addImm(1).addReg(0).addImm(TlsOffset).addReg(TlsReg)
14314    .addReg(SPLimitVReg);
14315  BuildMI(BB, DL, TII->get(X86::JG_4)).addMBB(mallocMBB);
14316
14317  // bumpMBB simply decreases the stack pointer, since we know the current
14318  // stacklet has enough space.
14319  BuildMI(bumpMBB, DL, TII->get(TargetOpcode::COPY), physSPReg)
14320    .addReg(SPLimitVReg);
14321  BuildMI(bumpMBB, DL, TII->get(TargetOpcode::COPY), bumpSPPtrVReg)
14322    .addReg(SPLimitVReg);
14323  BuildMI(bumpMBB, DL, TII->get(X86::JMP_4)).addMBB(continueMBB);
14324
14325  // Calls into a routine in libgcc to allocate more space from the heap.
14326  const uint32_t *RegMask =
14327    getTargetMachine().getRegisterInfo()->getCallPreservedMask(CallingConv::C);
14328  if (Is64Bit) {
14329    BuildMI(mallocMBB, DL, TII->get(X86::MOV64rr), X86::RDI)
14330      .addReg(sizeVReg);
14331    BuildMI(mallocMBB, DL, TII->get(X86::CALL64pcrel32))
14332      .addExternalSymbol("__morestack_allocate_stack_space")
14333      .addRegMask(RegMask)
14334      .addReg(X86::RDI, RegState::Implicit)
14335      .addReg(X86::RAX, RegState::ImplicitDefine);
14336  } else {
14337    BuildMI(mallocMBB, DL, TII->get(X86::SUB32ri), physSPReg).addReg(physSPReg)
14338      .addImm(12);
14339    BuildMI(mallocMBB, DL, TII->get(X86::PUSH32r)).addReg(sizeVReg);
14340    BuildMI(mallocMBB, DL, TII->get(X86::CALLpcrel32))
14341      .addExternalSymbol("__morestack_allocate_stack_space")
14342      .addRegMask(RegMask)
14343      .addReg(X86::EAX, RegState::ImplicitDefine);
14344  }
14345
14346  if (!Is64Bit)
14347    BuildMI(mallocMBB, DL, TII->get(X86::ADD32ri), physSPReg).addReg(physSPReg)
14348      .addImm(16);
14349
14350  BuildMI(mallocMBB, DL, TII->get(TargetOpcode::COPY), mallocPtrVReg)
14351    .addReg(Is64Bit ? X86::RAX : X86::EAX);
14352  BuildMI(mallocMBB, DL, TII->get(X86::JMP_4)).addMBB(continueMBB);
14353
14354  // Set up the CFG correctly.
14355  BB->addSuccessor(bumpMBB);
14356  BB->addSuccessor(mallocMBB);
14357  mallocMBB->addSuccessor(continueMBB);
14358  bumpMBB->addSuccessor(continueMBB);
14359
14360  // Take care of the PHI nodes.
14361  BuildMI(*continueMBB, continueMBB->begin(), DL, TII->get(X86::PHI),
14362          MI->getOperand(0).getReg())
14363    .addReg(mallocPtrVReg).addMBB(mallocMBB)
14364    .addReg(bumpSPPtrVReg).addMBB(bumpMBB);
14365
14366  // Delete the original pseudo instruction.
14367  MI->eraseFromParent();
14368
14369  // And we're done.
14370  return continueMBB;
14371}
14372
14373MachineBasicBlock *
14374X86TargetLowering::EmitLoweredWinAlloca(MachineInstr *MI,
14375                                          MachineBasicBlock *BB) const {
14376  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
14377  DebugLoc DL = MI->getDebugLoc();
14378
14379  assert(!Subtarget->isTargetEnvMacho());
14380
14381  // The lowering is pretty easy: we're just emitting the call to _alloca.  The
14382  // non-trivial part is impdef of ESP.
14383
14384  if (Subtarget->isTargetWin64()) {
14385    if (Subtarget->isTargetCygMing()) {
14386      // ___chkstk(Mingw64):
14387      // Clobbers R10, R11, RAX and EFLAGS.
14388      // Updates RSP.
14389      BuildMI(*BB, MI, DL, TII->get(X86::W64ALLOCA))
14390        .addExternalSymbol("___chkstk")
14391        .addReg(X86::RAX, RegState::Implicit)
14392        .addReg(X86::RSP, RegState::Implicit)
14393        .addReg(X86::RAX, RegState::Define | RegState::Implicit)
14394        .addReg(X86::RSP, RegState::Define | RegState::Implicit)
14395        .addReg(X86::EFLAGS, RegState::Define | RegState::Implicit);
14396    } else {
14397      // __chkstk(MSVCRT): does not update stack pointer.
14398      // Clobbers R10, R11 and EFLAGS.
14399      // FIXME: RAX(allocated size) might be reused and not killed.
14400      BuildMI(*BB, MI, DL, TII->get(X86::W64ALLOCA))
14401        .addExternalSymbol("__chkstk")
14402        .addReg(X86::RAX, RegState::Implicit)
14403        .addReg(X86::EFLAGS, RegState::Define | RegState::Implicit);
14404      // RAX has the offset to subtracted from RSP.
14405      BuildMI(*BB, MI, DL, TII->get(X86::SUB64rr), X86::RSP)
14406        .addReg(X86::RSP)
14407        .addReg(X86::RAX);
14408    }
14409  } else {
14410    const char *StackProbeSymbol =
14411      Subtarget->isTargetWindows() ? "_chkstk" : "_alloca";
14412
14413    BuildMI(*BB, MI, DL, TII->get(X86::CALLpcrel32))
14414      .addExternalSymbol(StackProbeSymbol)
14415      .addReg(X86::EAX, RegState::Implicit)
14416      .addReg(X86::ESP, RegState::Implicit)
14417      .addReg(X86::EAX, RegState::Define | RegState::Implicit)
14418      .addReg(X86::ESP, RegState::Define | RegState::Implicit)
14419      .addReg(X86::EFLAGS, RegState::Define | RegState::Implicit);
14420  }
14421
14422  MI->eraseFromParent();   // The pseudo instruction is gone now.
14423  return BB;
14424}
14425
14426MachineBasicBlock *
14427X86TargetLowering::EmitLoweredTLSCall(MachineInstr *MI,
14428                                      MachineBasicBlock *BB) const {
14429  // This is pretty easy.  We're taking the value that we received from
14430  // our load from the relocation, sticking it in either RDI (x86-64)
14431  // or EAX and doing an indirect call.  The return value will then
14432  // be in the normal return register.
14433  const X86InstrInfo *TII
14434    = static_cast<const X86InstrInfo*>(getTargetMachine().getInstrInfo());
14435  DebugLoc DL = MI->getDebugLoc();
14436  MachineFunction *F = BB->getParent();
14437
14438  assert(Subtarget->isTargetDarwin() && "Darwin only instr emitted?");
14439  assert(MI->getOperand(3).isGlobal() && "This should be a global");
14440
14441  // Get a register mask for the lowered call.
14442  // FIXME: The 32-bit calls have non-standard calling conventions. Use a
14443  // proper register mask.
14444  const uint32_t *RegMask =
14445    getTargetMachine().getRegisterInfo()->getCallPreservedMask(CallingConv::C);
14446  if (Subtarget->is64Bit()) {
14447    MachineInstrBuilder MIB = BuildMI(*BB, MI, DL,
14448                                      TII->get(X86::MOV64rm), X86::RDI)
14449    .addReg(X86::RIP)
14450    .addImm(0).addReg(0)
14451    .addGlobalAddress(MI->getOperand(3).getGlobal(), 0,
14452                      MI->getOperand(3).getTargetFlags())
14453    .addReg(0);
14454    MIB = BuildMI(*BB, MI, DL, TII->get(X86::CALL64m));
14455    addDirectMem(MIB, X86::RDI);
14456    MIB.addReg(X86::RAX, RegState::ImplicitDefine).addRegMask(RegMask);
14457  } else if (getTargetMachine().getRelocationModel() != Reloc::PIC_) {
14458    MachineInstrBuilder MIB = BuildMI(*BB, MI, DL,
14459                                      TII->get(X86::MOV32rm), X86::EAX)
14460    .addReg(0)
14461    .addImm(0).addReg(0)
14462    .addGlobalAddress(MI->getOperand(3).getGlobal(), 0,
14463                      MI->getOperand(3).getTargetFlags())
14464    .addReg(0);
14465    MIB = BuildMI(*BB, MI, DL, TII->get(X86::CALL32m));
14466    addDirectMem(MIB, X86::EAX);
14467    MIB.addReg(X86::EAX, RegState::ImplicitDefine).addRegMask(RegMask);
14468  } else {
14469    MachineInstrBuilder MIB = BuildMI(*BB, MI, DL,
14470                                      TII->get(X86::MOV32rm), X86::EAX)
14471    .addReg(TII->getGlobalBaseReg(F))
14472    .addImm(0).addReg(0)
14473    .addGlobalAddress(MI->getOperand(3).getGlobal(), 0,
14474                      MI->getOperand(3).getTargetFlags())
14475    .addReg(0);
14476    MIB = BuildMI(*BB, MI, DL, TII->get(X86::CALL32m));
14477    addDirectMem(MIB, X86::EAX);
14478    MIB.addReg(X86::EAX, RegState::ImplicitDefine).addRegMask(RegMask);
14479  }
14480
14481  MI->eraseFromParent(); // The pseudo instruction is gone now.
14482  return BB;
14483}
14484
14485MachineBasicBlock *
14486X86TargetLowering::emitEHSjLjSetJmp(MachineInstr *MI,
14487                                    MachineBasicBlock *MBB) const {
14488  DebugLoc DL = MI->getDebugLoc();
14489  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
14490
14491  MachineFunction *MF = MBB->getParent();
14492  MachineRegisterInfo &MRI = MF->getRegInfo();
14493
14494  const BasicBlock *BB = MBB->getBasicBlock();
14495  MachineFunction::iterator I = MBB;
14496  ++I;
14497
14498  // Memory Reference
14499  MachineInstr::mmo_iterator MMOBegin = MI->memoperands_begin();
14500  MachineInstr::mmo_iterator MMOEnd = MI->memoperands_end();
14501
14502  unsigned DstReg;
14503  unsigned MemOpndSlot = 0;
14504
14505  unsigned CurOp = 0;
14506
14507  DstReg = MI->getOperand(CurOp++).getReg();
14508  const TargetRegisterClass *RC = MRI.getRegClass(DstReg);
14509  assert(RC->hasType(MVT::i32) && "Invalid destination!");
14510  unsigned mainDstReg = MRI.createVirtualRegister(RC);
14511  unsigned restoreDstReg = MRI.createVirtualRegister(RC);
14512
14513  MemOpndSlot = CurOp;
14514
14515  MVT PVT = getPointerTy();
14516  assert((PVT == MVT::i64 || PVT == MVT::i32) &&
14517         "Invalid Pointer Size!");
14518
14519  // For v = setjmp(buf), we generate
14520  //
14521  // thisMBB:
14522  //  buf[LabelOffset] = restoreMBB
14523  //  SjLjSetup restoreMBB
14524  //
14525  // mainMBB:
14526  //  v_main = 0
14527  //
14528  // sinkMBB:
14529  //  v = phi(main, restore)
14530  //
14531  // restoreMBB:
14532  //  v_restore = 1
14533
14534  MachineBasicBlock *thisMBB = MBB;
14535  MachineBasicBlock *mainMBB = MF->CreateMachineBasicBlock(BB);
14536  MachineBasicBlock *sinkMBB = MF->CreateMachineBasicBlock(BB);
14537  MachineBasicBlock *restoreMBB = MF->CreateMachineBasicBlock(BB);
14538  MF->insert(I, mainMBB);
14539  MF->insert(I, sinkMBB);
14540  MF->push_back(restoreMBB);
14541
14542  MachineInstrBuilder MIB;
14543
14544  // Transfer the remainder of BB and its successor edges to sinkMBB.
14545  sinkMBB->splice(sinkMBB->begin(), MBB,
14546                  llvm::next(MachineBasicBlock::iterator(MI)), MBB->end());
14547  sinkMBB->transferSuccessorsAndUpdatePHIs(MBB);
14548
14549  // thisMBB:
14550  unsigned PtrStoreOpc = 0;
14551  unsigned LabelReg = 0;
14552  const int64_t LabelOffset = 1 * PVT.getStoreSize();
14553  Reloc::Model RM = getTargetMachine().getRelocationModel();
14554  bool UseImmLabel = (getTargetMachine().getCodeModel() == CodeModel::Small) &&
14555                     (RM == Reloc::Static || RM == Reloc::DynamicNoPIC);
14556
14557  // Prepare IP either in reg or imm.
14558  if (!UseImmLabel) {
14559    PtrStoreOpc = (PVT == MVT::i64) ? X86::MOV64mr : X86::MOV32mr;
14560    const TargetRegisterClass *PtrRC = getRegClassFor(PVT);
14561    LabelReg = MRI.createVirtualRegister(PtrRC);
14562    if (Subtarget->is64Bit()) {
14563      MIB = BuildMI(*thisMBB, MI, DL, TII->get(X86::LEA64r), LabelReg)
14564              .addReg(X86::RIP)
14565              .addImm(0)
14566              .addReg(0)
14567              .addMBB(restoreMBB)
14568              .addReg(0);
14569    } else {
14570      const X86InstrInfo *XII = static_cast<const X86InstrInfo*>(TII);
14571      MIB = BuildMI(*thisMBB, MI, DL, TII->get(X86::LEA32r), LabelReg)
14572              .addReg(XII->getGlobalBaseReg(MF))
14573              .addImm(0)
14574              .addReg(0)
14575              .addMBB(restoreMBB, Subtarget->ClassifyBlockAddressReference())
14576              .addReg(0);
14577    }
14578  } else
14579    PtrStoreOpc = (PVT == MVT::i64) ? X86::MOV64mi32 : X86::MOV32mi;
14580  // Store IP
14581  MIB = BuildMI(*thisMBB, MI, DL, TII->get(PtrStoreOpc));
14582  for (unsigned i = 0; i < X86::AddrNumOperands; ++i) {
14583    if (i == X86::AddrDisp)
14584      MIB.addDisp(MI->getOperand(MemOpndSlot + i), LabelOffset);
14585    else
14586      MIB.addOperand(MI->getOperand(MemOpndSlot + i));
14587  }
14588  if (!UseImmLabel)
14589    MIB.addReg(LabelReg);
14590  else
14591    MIB.addMBB(restoreMBB);
14592  MIB.setMemRefs(MMOBegin, MMOEnd);
14593  // Setup
14594  MIB = BuildMI(*thisMBB, MI, DL, TII->get(X86::EH_SjLj_Setup))
14595          .addMBB(restoreMBB);
14596  MIB.addRegMask(RegInfo->getNoPreservedMask());
14597  thisMBB->addSuccessor(mainMBB);
14598  thisMBB->addSuccessor(restoreMBB);
14599
14600  // mainMBB:
14601  //  EAX = 0
14602  BuildMI(mainMBB, DL, TII->get(X86::MOV32r0), mainDstReg);
14603  mainMBB->addSuccessor(sinkMBB);
14604
14605  // sinkMBB:
14606  BuildMI(*sinkMBB, sinkMBB->begin(), DL,
14607          TII->get(X86::PHI), DstReg)
14608    .addReg(mainDstReg).addMBB(mainMBB)
14609    .addReg(restoreDstReg).addMBB(restoreMBB);
14610
14611  // restoreMBB:
14612  BuildMI(restoreMBB, DL, TII->get(X86::MOV32ri), restoreDstReg).addImm(1);
14613  BuildMI(restoreMBB, DL, TII->get(X86::JMP_4)).addMBB(sinkMBB);
14614  restoreMBB->addSuccessor(sinkMBB);
14615
14616  MI->eraseFromParent();
14617  return sinkMBB;
14618}
14619
14620MachineBasicBlock *
14621X86TargetLowering::emitEHSjLjLongJmp(MachineInstr *MI,
14622                                     MachineBasicBlock *MBB) const {
14623  DebugLoc DL = MI->getDebugLoc();
14624  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
14625
14626  MachineFunction *MF = MBB->getParent();
14627  MachineRegisterInfo &MRI = MF->getRegInfo();
14628
14629  // Memory Reference
14630  MachineInstr::mmo_iterator MMOBegin = MI->memoperands_begin();
14631  MachineInstr::mmo_iterator MMOEnd = MI->memoperands_end();
14632
14633  MVT PVT = getPointerTy();
14634  assert((PVT == MVT::i64 || PVT == MVT::i32) &&
14635         "Invalid Pointer Size!");
14636
14637  const TargetRegisterClass *RC =
14638    (PVT == MVT::i64) ? &X86::GR64RegClass : &X86::GR32RegClass;
14639  unsigned Tmp = MRI.createVirtualRegister(RC);
14640  // Since FP is only updated here but NOT referenced, it's treated as GPR.
14641  unsigned FP = (PVT == MVT::i64) ? X86::RBP : X86::EBP;
14642  unsigned SP = RegInfo->getStackRegister();
14643
14644  MachineInstrBuilder MIB;
14645
14646  const int64_t LabelOffset = 1 * PVT.getStoreSize();
14647  const int64_t SPOffset = 2 * PVT.getStoreSize();
14648
14649  unsigned PtrLoadOpc = (PVT == MVT::i64) ? X86::MOV64rm : X86::MOV32rm;
14650  unsigned IJmpOpc = (PVT == MVT::i64) ? X86::JMP64r : X86::JMP32r;
14651
14652  // Reload FP
14653  MIB = BuildMI(*MBB, MI, DL, TII->get(PtrLoadOpc), FP);
14654  for (unsigned i = 0; i < X86::AddrNumOperands; ++i)
14655    MIB.addOperand(MI->getOperand(i));
14656  MIB.setMemRefs(MMOBegin, MMOEnd);
14657  // Reload IP
14658  MIB = BuildMI(*MBB, MI, DL, TII->get(PtrLoadOpc), Tmp);
14659  for (unsigned i = 0; i < X86::AddrNumOperands; ++i) {
14660    if (i == X86::AddrDisp)
14661      MIB.addDisp(MI->getOperand(i), LabelOffset);
14662    else
14663      MIB.addOperand(MI->getOperand(i));
14664  }
14665  MIB.setMemRefs(MMOBegin, MMOEnd);
14666  // Reload SP
14667  MIB = BuildMI(*MBB, MI, DL, TII->get(PtrLoadOpc), SP);
14668  for (unsigned i = 0; i < X86::AddrNumOperands; ++i) {
14669    if (i == X86::AddrDisp)
14670      MIB.addDisp(MI->getOperand(i), SPOffset);
14671    else
14672      MIB.addOperand(MI->getOperand(i));
14673  }
14674  MIB.setMemRefs(MMOBegin, MMOEnd);
14675  // Jump
14676  BuildMI(*MBB, MI, DL, TII->get(IJmpOpc)).addReg(Tmp);
14677
14678  MI->eraseFromParent();
14679  return MBB;
14680}
14681
14682MachineBasicBlock *
14683X86TargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
14684                                               MachineBasicBlock *BB) const {
14685  switch (MI->getOpcode()) {
14686  default: llvm_unreachable("Unexpected instr type to insert");
14687  case X86::TAILJMPd64:
14688  case X86::TAILJMPr64:
14689  case X86::TAILJMPm64:
14690    llvm_unreachable("TAILJMP64 would not be touched here.");
14691  case X86::TCRETURNdi64:
14692  case X86::TCRETURNri64:
14693  case X86::TCRETURNmi64:
14694    return BB;
14695  case X86::WIN_ALLOCA:
14696    return EmitLoweredWinAlloca(MI, BB);
14697  case X86::SEG_ALLOCA_32:
14698    return EmitLoweredSegAlloca(MI, BB, false);
14699  case X86::SEG_ALLOCA_64:
14700    return EmitLoweredSegAlloca(MI, BB, true);
14701  case X86::TLSCall_32:
14702  case X86::TLSCall_64:
14703    return EmitLoweredTLSCall(MI, BB);
14704  case X86::CMOV_GR8:
14705  case X86::CMOV_FR32:
14706  case X86::CMOV_FR64:
14707  case X86::CMOV_V4F32:
14708  case X86::CMOV_V2F64:
14709  case X86::CMOV_V2I64:
14710  case X86::CMOV_V8F32:
14711  case X86::CMOV_V4F64:
14712  case X86::CMOV_V4I64:
14713  case X86::CMOV_GR16:
14714  case X86::CMOV_GR32:
14715  case X86::CMOV_RFP32:
14716  case X86::CMOV_RFP64:
14717  case X86::CMOV_RFP80:
14718    return EmitLoweredSelect(MI, BB);
14719
14720  case X86::FP32_TO_INT16_IN_MEM:
14721  case X86::FP32_TO_INT32_IN_MEM:
14722  case X86::FP32_TO_INT64_IN_MEM:
14723  case X86::FP64_TO_INT16_IN_MEM:
14724  case X86::FP64_TO_INT32_IN_MEM:
14725  case X86::FP64_TO_INT64_IN_MEM:
14726  case X86::FP80_TO_INT16_IN_MEM:
14727  case X86::FP80_TO_INT32_IN_MEM:
14728  case X86::FP80_TO_INT64_IN_MEM: {
14729    const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
14730    DebugLoc DL = MI->getDebugLoc();
14731
14732    // Change the floating point control register to use "round towards zero"
14733    // mode when truncating to an integer value.
14734    MachineFunction *F = BB->getParent();
14735    int CWFrameIdx = F->getFrameInfo()->CreateStackObject(2, 2, false);
14736    addFrameReference(BuildMI(*BB, MI, DL,
14737                              TII->get(X86::FNSTCW16m)), CWFrameIdx);
14738
14739    // Load the old value of the high byte of the control word...
14740    unsigned OldCW =
14741      F->getRegInfo().createVirtualRegister(&X86::GR16RegClass);
14742    addFrameReference(BuildMI(*BB, MI, DL, TII->get(X86::MOV16rm), OldCW),
14743                      CWFrameIdx);
14744
14745    // Set the high part to be round to zero...
14746    addFrameReference(BuildMI(*BB, MI, DL, TII->get(X86::MOV16mi)), CWFrameIdx)
14747      .addImm(0xC7F);
14748
14749    // Reload the modified control word now...
14750    addFrameReference(BuildMI(*BB, MI, DL,
14751                              TII->get(X86::FLDCW16m)), CWFrameIdx);
14752
14753    // Restore the memory image of control word to original value
14754    addFrameReference(BuildMI(*BB, MI, DL, TII->get(X86::MOV16mr)), CWFrameIdx)
14755      .addReg(OldCW);
14756
14757    // Get the X86 opcode to use.
14758    unsigned Opc;
14759    switch (MI->getOpcode()) {
14760    default: llvm_unreachable("illegal opcode!");
14761    case X86::FP32_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m32; break;
14762    case X86::FP32_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m32; break;
14763    case X86::FP32_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m32; break;
14764    case X86::FP64_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m64; break;
14765    case X86::FP64_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m64; break;
14766    case X86::FP64_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m64; break;
14767    case X86::FP80_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m80; break;
14768    case X86::FP80_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m80; break;
14769    case X86::FP80_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m80; break;
14770    }
14771
14772    X86AddressMode AM;
14773    MachineOperand &Op = MI->getOperand(0);
14774    if (Op.isReg()) {
14775      AM.BaseType = X86AddressMode::RegBase;
14776      AM.Base.Reg = Op.getReg();
14777    } else {
14778      AM.BaseType = X86AddressMode::FrameIndexBase;
14779      AM.Base.FrameIndex = Op.getIndex();
14780    }
14781    Op = MI->getOperand(1);
14782    if (Op.isImm())
14783      AM.Scale = Op.getImm();
14784    Op = MI->getOperand(2);
14785    if (Op.isImm())
14786      AM.IndexReg = Op.getImm();
14787    Op = MI->getOperand(3);
14788    if (Op.isGlobal()) {
14789      AM.GV = Op.getGlobal();
14790    } else {
14791      AM.Disp = Op.getImm();
14792    }
14793    addFullAddress(BuildMI(*BB, MI, DL, TII->get(Opc)), AM)
14794                      .addReg(MI->getOperand(X86::AddrNumOperands).getReg());
14795
14796    // Reload the original control word now.
14797    addFrameReference(BuildMI(*BB, MI, DL,
14798                              TII->get(X86::FLDCW16m)), CWFrameIdx);
14799
14800    MI->eraseFromParent();   // The pseudo instruction is gone now.
14801    return BB;
14802  }
14803    // String/text processing lowering.
14804  case X86::PCMPISTRM128REG:
14805  case X86::VPCMPISTRM128REG:
14806  case X86::PCMPISTRM128MEM:
14807  case X86::VPCMPISTRM128MEM:
14808  case X86::PCMPESTRM128REG:
14809  case X86::VPCMPESTRM128REG:
14810  case X86::PCMPESTRM128MEM:
14811  case X86::VPCMPESTRM128MEM:
14812    assert(Subtarget->hasSSE42() &&
14813           "Target must have SSE4.2 or AVX features enabled");
14814    return EmitPCMPSTRM(MI, BB, getTargetMachine().getInstrInfo());
14815
14816  // String/text processing lowering.
14817  case X86::PCMPISTRIREG:
14818  case X86::VPCMPISTRIREG:
14819  case X86::PCMPISTRIMEM:
14820  case X86::VPCMPISTRIMEM:
14821  case X86::PCMPESTRIREG:
14822  case X86::VPCMPESTRIREG:
14823  case X86::PCMPESTRIMEM:
14824  case X86::VPCMPESTRIMEM:
14825    assert(Subtarget->hasSSE42() &&
14826           "Target must have SSE4.2 or AVX features enabled");
14827    return EmitPCMPSTRI(MI, BB, getTargetMachine().getInstrInfo());
14828
14829  // Thread synchronization.
14830  case X86::MONITOR:
14831    return EmitMonitor(MI, BB, getTargetMachine().getInstrInfo(), Subtarget);
14832
14833  // xbegin
14834  case X86::XBEGIN:
14835    return EmitXBegin(MI, BB, getTargetMachine().getInstrInfo());
14836
14837  // Atomic Lowering.
14838  case X86::ATOMAND8:
14839  case X86::ATOMAND16:
14840  case X86::ATOMAND32:
14841  case X86::ATOMAND64:
14842    // Fall through
14843  case X86::ATOMOR8:
14844  case X86::ATOMOR16:
14845  case X86::ATOMOR32:
14846  case X86::ATOMOR64:
14847    // Fall through
14848  case X86::ATOMXOR16:
14849  case X86::ATOMXOR8:
14850  case X86::ATOMXOR32:
14851  case X86::ATOMXOR64:
14852    // Fall through
14853  case X86::ATOMNAND8:
14854  case X86::ATOMNAND16:
14855  case X86::ATOMNAND32:
14856  case X86::ATOMNAND64:
14857    // Fall through
14858  case X86::ATOMMAX8:
14859  case X86::ATOMMAX16:
14860  case X86::ATOMMAX32:
14861  case X86::ATOMMAX64:
14862    // Fall through
14863  case X86::ATOMMIN8:
14864  case X86::ATOMMIN16:
14865  case X86::ATOMMIN32:
14866  case X86::ATOMMIN64:
14867    // Fall through
14868  case X86::ATOMUMAX8:
14869  case X86::ATOMUMAX16:
14870  case X86::ATOMUMAX32:
14871  case X86::ATOMUMAX64:
14872    // Fall through
14873  case X86::ATOMUMIN8:
14874  case X86::ATOMUMIN16:
14875  case X86::ATOMUMIN32:
14876  case X86::ATOMUMIN64:
14877    return EmitAtomicLoadArith(MI, BB);
14878
14879  // This group does 64-bit operations on a 32-bit host.
14880  case X86::ATOMAND6432:
14881  case X86::ATOMOR6432:
14882  case X86::ATOMXOR6432:
14883  case X86::ATOMNAND6432:
14884  case X86::ATOMADD6432:
14885  case X86::ATOMSUB6432:
14886  case X86::ATOMMAX6432:
14887  case X86::ATOMMIN6432:
14888  case X86::ATOMUMAX6432:
14889  case X86::ATOMUMIN6432:
14890  case X86::ATOMSWAP6432:
14891    return EmitAtomicLoadArith6432(MI, BB);
14892
14893  case X86::VASTART_SAVE_XMM_REGS:
14894    return EmitVAStartSaveXMMRegsWithCustomInserter(MI, BB);
14895
14896  case X86::VAARG_64:
14897    return EmitVAARG64WithCustomInserter(MI, BB);
14898
14899  case X86::EH_SjLj_SetJmp32:
14900  case X86::EH_SjLj_SetJmp64:
14901    return emitEHSjLjSetJmp(MI, BB);
14902
14903  case X86::EH_SjLj_LongJmp32:
14904  case X86::EH_SjLj_LongJmp64:
14905    return emitEHSjLjLongJmp(MI, BB);
14906  }
14907}
14908
14909//===----------------------------------------------------------------------===//
14910//                           X86 Optimization Hooks
14911//===----------------------------------------------------------------------===//
14912
14913void X86TargetLowering::computeMaskedBitsForTargetNode(const SDValue Op,
14914                                                       APInt &KnownZero,
14915                                                       APInt &KnownOne,
14916                                                       const SelectionDAG &DAG,
14917                                                       unsigned Depth) const {
14918  unsigned BitWidth = KnownZero.getBitWidth();
14919  unsigned Opc = Op.getOpcode();
14920  assert((Opc >= ISD::BUILTIN_OP_END ||
14921          Opc == ISD::INTRINSIC_WO_CHAIN ||
14922          Opc == ISD::INTRINSIC_W_CHAIN ||
14923          Opc == ISD::INTRINSIC_VOID) &&
14924         "Should use MaskedValueIsZero if you don't know whether Op"
14925         " is a target node!");
14926
14927  KnownZero = KnownOne = APInt(BitWidth, 0);   // Don't know anything.
14928  switch (Opc) {
14929  default: break;
14930  case X86ISD::ADD:
14931  case X86ISD::SUB:
14932  case X86ISD::ADC:
14933  case X86ISD::SBB:
14934  case X86ISD::SMUL:
14935  case X86ISD::UMUL:
14936  case X86ISD::INC:
14937  case X86ISD::DEC:
14938  case X86ISD::OR:
14939  case X86ISD::XOR:
14940  case X86ISD::AND:
14941    // These nodes' second result is a boolean.
14942    if (Op.getResNo() == 0)
14943      break;
14944    // Fallthrough
14945  case X86ISD::SETCC:
14946    KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - 1);
14947    break;
14948  case ISD::INTRINSIC_WO_CHAIN: {
14949    unsigned IntId = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
14950    unsigned NumLoBits = 0;
14951    switch (IntId) {
14952    default: break;
14953    case Intrinsic::x86_sse_movmsk_ps:
14954    case Intrinsic::x86_avx_movmsk_ps_256:
14955    case Intrinsic::x86_sse2_movmsk_pd:
14956    case Intrinsic::x86_avx_movmsk_pd_256:
14957    case Intrinsic::x86_mmx_pmovmskb:
14958    case Intrinsic::x86_sse2_pmovmskb_128:
14959    case Intrinsic::x86_avx2_pmovmskb: {
14960      // High bits of movmskp{s|d}, pmovmskb are known zero.
14961      switch (IntId) {
14962        default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
14963        case Intrinsic::x86_sse_movmsk_ps:      NumLoBits = 4; break;
14964        case Intrinsic::x86_avx_movmsk_ps_256:  NumLoBits = 8; break;
14965        case Intrinsic::x86_sse2_movmsk_pd:     NumLoBits = 2; break;
14966        case Intrinsic::x86_avx_movmsk_pd_256:  NumLoBits = 4; break;
14967        case Intrinsic::x86_mmx_pmovmskb:       NumLoBits = 8; break;
14968        case Intrinsic::x86_sse2_pmovmskb_128:  NumLoBits = 16; break;
14969        case Intrinsic::x86_avx2_pmovmskb:      NumLoBits = 32; break;
14970      }
14971      KnownZero = APInt::getHighBitsSet(BitWidth, BitWidth - NumLoBits);
14972      break;
14973    }
14974    }
14975    break;
14976  }
14977  }
14978}
14979
14980unsigned X86TargetLowering::ComputeNumSignBitsForTargetNode(SDValue Op,
14981                                                         unsigned Depth) const {
14982  // SETCC_CARRY sets the dest to ~0 for true or 0 for false.
14983  if (Op.getOpcode() == X86ISD::SETCC_CARRY)
14984    return Op.getValueType().getScalarType().getSizeInBits();
14985
14986  // Fallback case.
14987  return 1;
14988}
14989
14990/// isGAPlusOffset - Returns true (and the GlobalValue and the offset) if the
14991/// node is a GlobalAddress + offset.
14992bool X86TargetLowering::isGAPlusOffset(SDNode *N,
14993                                       const GlobalValue* &GA,
14994                                       int64_t &Offset) const {
14995  if (N->getOpcode() == X86ISD::Wrapper) {
14996    if (isa<GlobalAddressSDNode>(N->getOperand(0))) {
14997      GA = cast<GlobalAddressSDNode>(N->getOperand(0))->getGlobal();
14998      Offset = cast<GlobalAddressSDNode>(N->getOperand(0))->getOffset();
14999      return true;
15000    }
15001  }
15002  return TargetLowering::isGAPlusOffset(N, GA, Offset);
15003}
15004
15005/// isShuffleHigh128VectorInsertLow - Checks whether the shuffle node is the
15006/// same as extracting the high 128-bit part of 256-bit vector and then
15007/// inserting the result into the low part of a new 256-bit vector
15008static bool isShuffleHigh128VectorInsertLow(ShuffleVectorSDNode *SVOp) {
15009  EVT VT = SVOp->getValueType(0);
15010  unsigned NumElems = VT.getVectorNumElements();
15011
15012  // vector_shuffle <4, 5, 6, 7, u, u, u, u> or <2, 3, u, u>
15013  for (unsigned i = 0, j = NumElems/2; i != NumElems/2; ++i, ++j)
15014    if (!isUndefOrEqual(SVOp->getMaskElt(i), j) ||
15015        SVOp->getMaskElt(j) >= 0)
15016      return false;
15017
15018  return true;
15019}
15020
15021/// isShuffleLow128VectorInsertHigh - Checks whether the shuffle node is the
15022/// same as extracting the low 128-bit part of 256-bit vector and then
15023/// inserting the result into the high part of a new 256-bit vector
15024static bool isShuffleLow128VectorInsertHigh(ShuffleVectorSDNode *SVOp) {
15025  EVT VT = SVOp->getValueType(0);
15026  unsigned NumElems = VT.getVectorNumElements();
15027
15028  // vector_shuffle <u, u, u, u, 0, 1, 2, 3> or <u, u, 0, 1>
15029  for (unsigned i = NumElems/2, j = 0; i != NumElems; ++i, ++j)
15030    if (!isUndefOrEqual(SVOp->getMaskElt(i), j) ||
15031        SVOp->getMaskElt(j) >= 0)
15032      return false;
15033
15034  return true;
15035}
15036
15037/// PerformShuffleCombine256 - Performs shuffle combines for 256-bit vectors.
15038static SDValue PerformShuffleCombine256(SDNode *N, SelectionDAG &DAG,
15039                                        TargetLowering::DAGCombinerInfo &DCI,
15040                                        const X86Subtarget* Subtarget) {
15041  DebugLoc dl = N->getDebugLoc();
15042  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
15043  SDValue V1 = SVOp->getOperand(0);
15044  SDValue V2 = SVOp->getOperand(1);
15045  EVT VT = SVOp->getValueType(0);
15046  unsigned NumElems = VT.getVectorNumElements();
15047
15048  if (V1.getOpcode() == ISD::CONCAT_VECTORS &&
15049      V2.getOpcode() == ISD::CONCAT_VECTORS) {
15050    //
15051    //                   0,0,0,...
15052    //                      |
15053    //    V      UNDEF    BUILD_VECTOR    UNDEF
15054    //     \      /           \           /
15055    //  CONCAT_VECTOR         CONCAT_VECTOR
15056    //         \                  /
15057    //          \                /
15058    //          RESULT: V + zero extended
15059    //
15060    if (V2.getOperand(0).getOpcode() != ISD::BUILD_VECTOR ||
15061        V2.getOperand(1).getOpcode() != ISD::UNDEF ||
15062        V1.getOperand(1).getOpcode() != ISD::UNDEF)
15063      return SDValue();
15064
15065    if (!ISD::isBuildVectorAllZeros(V2.getOperand(0).getNode()))
15066      return SDValue();
15067
15068    // To match the shuffle mask, the first half of the mask should
15069    // be exactly the first vector, and all the rest a splat with the
15070    // first element of the second one.
15071    for (unsigned i = 0; i != NumElems/2; ++i)
15072      if (!isUndefOrEqual(SVOp->getMaskElt(i), i) ||
15073          !isUndefOrEqual(SVOp->getMaskElt(i+NumElems/2), NumElems))
15074        return SDValue();
15075
15076    // If V1 is coming from a vector load then just fold to a VZEXT_LOAD.
15077    if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(V1.getOperand(0))) {
15078      if (Ld->hasNUsesOfValue(1, 0)) {
15079        SDVTList Tys = DAG.getVTList(MVT::v4i64, MVT::Other);
15080        SDValue Ops[] = { Ld->getChain(), Ld->getBasePtr() };
15081        SDValue ResNode =
15082          DAG.getMemIntrinsicNode(X86ISD::VZEXT_LOAD, dl, Tys, Ops,
15083                                  array_lengthof(Ops),
15084                                  Ld->getMemoryVT(),
15085                                  Ld->getPointerInfo(),
15086                                  Ld->getAlignment(),
15087                                  false/*isVolatile*/, true/*ReadMem*/,
15088                                  false/*WriteMem*/);
15089
15090        // Make sure the newly-created LOAD is in the same position as Ld in
15091        // terms of dependency. We create a TokenFactor for Ld and ResNode,
15092        // and update uses of Ld's output chain to use the TokenFactor.
15093        if (Ld->hasAnyUseOfValue(1)) {
15094          SDValue NewChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
15095                             SDValue(Ld, 1), SDValue(ResNode.getNode(), 1));
15096          DAG.ReplaceAllUsesOfValueWith(SDValue(Ld, 1), NewChain);
15097          DAG.UpdateNodeOperands(NewChain.getNode(), SDValue(Ld, 1),
15098                                 SDValue(ResNode.getNode(), 1));
15099        }
15100
15101        return DAG.getNode(ISD::BITCAST, dl, VT, ResNode);
15102      }
15103    }
15104
15105    // Emit a zeroed vector and insert the desired subvector on its
15106    // first half.
15107    SDValue Zeros = getZeroVector(VT, Subtarget, DAG, dl);
15108    SDValue InsV = Insert128BitVector(Zeros, V1.getOperand(0), 0, DAG, dl);
15109    return DCI.CombineTo(N, InsV);
15110  }
15111
15112  //===--------------------------------------------------------------------===//
15113  // Combine some shuffles into subvector extracts and inserts:
15114  //
15115
15116  // vector_shuffle <4, 5, 6, 7, u, u, u, u> or <2, 3, u, u>
15117  if (isShuffleHigh128VectorInsertLow(SVOp)) {
15118    SDValue V = Extract128BitVector(V1, NumElems/2, DAG, dl);
15119    SDValue InsV = Insert128BitVector(DAG.getUNDEF(VT), V, 0, DAG, dl);
15120    return DCI.CombineTo(N, InsV);
15121  }
15122
15123  // vector_shuffle <u, u, u, u, 0, 1, 2, 3> or <u, u, 0, 1>
15124  if (isShuffleLow128VectorInsertHigh(SVOp)) {
15125    SDValue V = Extract128BitVector(V1, 0, DAG, dl);
15126    SDValue InsV = Insert128BitVector(DAG.getUNDEF(VT), V, NumElems/2, DAG, dl);
15127    return DCI.CombineTo(N, InsV);
15128  }
15129
15130  return SDValue();
15131}
15132
15133/// PerformShuffleCombine - Performs several different shuffle combines.
15134static SDValue PerformShuffleCombine(SDNode *N, SelectionDAG &DAG,
15135                                     TargetLowering::DAGCombinerInfo &DCI,
15136                                     const X86Subtarget *Subtarget) {
15137  DebugLoc dl = N->getDebugLoc();
15138  EVT VT = N->getValueType(0);
15139
15140  // Don't create instructions with illegal types after legalize types has run.
15141  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
15142  if (!DCI.isBeforeLegalize() && !TLI.isTypeLegal(VT.getVectorElementType()))
15143    return SDValue();
15144
15145  // Combine 256-bit vector shuffles. This is only profitable when in AVX mode
15146  if (Subtarget->hasFp256() && VT.is256BitVector() &&
15147      N->getOpcode() == ISD::VECTOR_SHUFFLE)
15148    return PerformShuffleCombine256(N, DAG, DCI, Subtarget);
15149
15150  // Only handle 128 wide vector from here on.
15151  if (!VT.is128BitVector())
15152    return SDValue();
15153
15154  // Combine a vector_shuffle that is equal to build_vector load1, load2, load3,
15155  // load4, <0, 1, 2, 3> into a 128-bit load if the load addresses are
15156  // consecutive, non-overlapping, and in the right order.
15157  SmallVector<SDValue, 16> Elts;
15158  for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i)
15159    Elts.push_back(getShuffleScalarElt(N, i, DAG, 0));
15160
15161  return EltsFromConsecutiveLoads(VT, Elts, dl, DAG);
15162}
15163
15164/// PerformTruncateCombine - Converts truncate operation to
15165/// a sequence of vector shuffle operations.
15166/// It is possible when we truncate 256-bit vector to 128-bit vector
15167static SDValue PerformTruncateCombine(SDNode *N, SelectionDAG &DAG,
15168                                      TargetLowering::DAGCombinerInfo &DCI,
15169                                      const X86Subtarget *Subtarget)  {
15170  return SDValue();
15171}
15172
15173/// XFormVExtractWithShuffleIntoLoad - Check if a vector extract from a target
15174/// specific shuffle of a load can be folded into a single element load.
15175/// Similar handling for VECTOR_SHUFFLE is performed by DAGCombiner, but
15176/// shuffles have been customed lowered so we need to handle those here.
15177static SDValue XFormVExtractWithShuffleIntoLoad(SDNode *N, SelectionDAG &DAG,
15178                                         TargetLowering::DAGCombinerInfo &DCI) {
15179  if (DCI.isBeforeLegalizeOps())
15180    return SDValue();
15181
15182  SDValue InVec = N->getOperand(0);
15183  SDValue EltNo = N->getOperand(1);
15184
15185  if (!isa<ConstantSDNode>(EltNo))
15186    return SDValue();
15187
15188  EVT VT = InVec.getValueType();
15189
15190  bool HasShuffleIntoBitcast = false;
15191  if (InVec.getOpcode() == ISD::BITCAST) {
15192    // Don't duplicate a load with other uses.
15193    if (!InVec.hasOneUse())
15194      return SDValue();
15195    EVT BCVT = InVec.getOperand(0).getValueType();
15196    if (BCVT.getVectorNumElements() != VT.getVectorNumElements())
15197      return SDValue();
15198    InVec = InVec.getOperand(0);
15199    HasShuffleIntoBitcast = true;
15200  }
15201
15202  if (!isTargetShuffle(InVec.getOpcode()))
15203    return SDValue();
15204
15205  // Don't duplicate a load with other uses.
15206  if (!InVec.hasOneUse())
15207    return SDValue();
15208
15209  SmallVector<int, 16> ShuffleMask;
15210  bool UnaryShuffle;
15211  if (!getTargetShuffleMask(InVec.getNode(), VT.getSimpleVT(), ShuffleMask,
15212                            UnaryShuffle))
15213    return SDValue();
15214
15215  // Select the input vector, guarding against out of range extract vector.
15216  unsigned NumElems = VT.getVectorNumElements();
15217  int Elt = cast<ConstantSDNode>(EltNo)->getZExtValue();
15218  int Idx = (Elt > (int)NumElems) ? -1 : ShuffleMask[Elt];
15219  SDValue LdNode = (Idx < (int)NumElems) ? InVec.getOperand(0)
15220                                         : InVec.getOperand(1);
15221
15222  // If inputs to shuffle are the same for both ops, then allow 2 uses
15223  unsigned AllowedUses = InVec.getOperand(0) == InVec.getOperand(1) ? 2 : 1;
15224
15225  if (LdNode.getOpcode() == ISD::BITCAST) {
15226    // Don't duplicate a load with other uses.
15227    if (!LdNode.getNode()->hasNUsesOfValue(AllowedUses, 0))
15228      return SDValue();
15229
15230    AllowedUses = 1; // only allow 1 load use if we have a bitcast
15231    LdNode = LdNode.getOperand(0);
15232  }
15233
15234  if (!ISD::isNormalLoad(LdNode.getNode()))
15235    return SDValue();
15236
15237  LoadSDNode *LN0 = cast<LoadSDNode>(LdNode);
15238
15239  if (!LN0 ||!LN0->hasNUsesOfValue(AllowedUses, 0) || LN0->isVolatile())
15240    return SDValue();
15241
15242  if (HasShuffleIntoBitcast) {
15243    // If there's a bitcast before the shuffle, check if the load type and
15244    // alignment is valid.
15245    unsigned Align = LN0->getAlignment();
15246    const TargetLowering &TLI = DAG.getTargetLoweringInfo();
15247    unsigned NewAlign = TLI.getDataLayout()->
15248      getABITypeAlignment(VT.getTypeForEVT(*DAG.getContext()));
15249
15250    if (NewAlign > Align || !TLI.isOperationLegalOrCustom(ISD::LOAD, VT))
15251      return SDValue();
15252  }
15253
15254  // All checks match so transform back to vector_shuffle so that DAG combiner
15255  // can finish the job
15256  DebugLoc dl = N->getDebugLoc();
15257
15258  // Create shuffle node taking into account the case that its a unary shuffle
15259  SDValue Shuffle = (UnaryShuffle) ? DAG.getUNDEF(VT) : InVec.getOperand(1);
15260  Shuffle = DAG.getVectorShuffle(InVec.getValueType(), dl,
15261                                 InVec.getOperand(0), Shuffle,
15262                                 &ShuffleMask[0]);
15263  Shuffle = DAG.getNode(ISD::BITCAST, dl, VT, Shuffle);
15264  return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, N->getValueType(0), Shuffle,
15265                     EltNo);
15266}
15267
15268/// PerformEXTRACT_VECTOR_ELTCombine - Detect vector gather/scatter index
15269/// generation and convert it from being a bunch of shuffles and extracts
15270/// to a simple store and scalar loads to extract the elements.
15271static SDValue PerformEXTRACT_VECTOR_ELTCombine(SDNode *N, SelectionDAG &DAG,
15272                                         TargetLowering::DAGCombinerInfo &DCI) {
15273  SDValue NewOp = XFormVExtractWithShuffleIntoLoad(N, DAG, DCI);
15274  if (NewOp.getNode())
15275    return NewOp;
15276
15277  SDValue InputVector = N->getOperand(0);
15278  // Detect whether we are trying to convert from mmx to i32 and the bitcast
15279  // from mmx to v2i32 has a single usage.
15280  if (InputVector.getNode()->getOpcode() == llvm::ISD::BITCAST &&
15281      InputVector.getNode()->getOperand(0).getValueType() == MVT::x86mmx &&
15282      InputVector.hasOneUse() && N->getValueType(0) == MVT::i32)
15283    return DAG.getNode(X86ISD::MMX_MOVD2W, InputVector.getDebugLoc(),
15284                       N->getValueType(0),
15285                       InputVector.getNode()->getOperand(0));
15286
15287  // Only operate on vectors of 4 elements, where the alternative shuffling
15288  // gets to be more expensive.
15289  if (InputVector.getValueType() != MVT::v4i32)
15290    return SDValue();
15291
15292  // Check whether every use of InputVector is an EXTRACT_VECTOR_ELT with a
15293  // single use which is a sign-extend or zero-extend, and all elements are
15294  // used.
15295  SmallVector<SDNode *, 4> Uses;
15296  unsigned ExtractedElements = 0;
15297  for (SDNode::use_iterator UI = InputVector.getNode()->use_begin(),
15298       UE = InputVector.getNode()->use_end(); UI != UE; ++UI) {
15299    if (UI.getUse().getResNo() != InputVector.getResNo())
15300      return SDValue();
15301
15302    SDNode *Extract = *UI;
15303    if (Extract->getOpcode() != ISD::EXTRACT_VECTOR_ELT)
15304      return SDValue();
15305
15306    if (Extract->getValueType(0) != MVT::i32)
15307      return SDValue();
15308    if (!Extract->hasOneUse())
15309      return SDValue();
15310    if (Extract->use_begin()->getOpcode() != ISD::SIGN_EXTEND &&
15311        Extract->use_begin()->getOpcode() != ISD::ZERO_EXTEND)
15312      return SDValue();
15313    if (!isa<ConstantSDNode>(Extract->getOperand(1)))
15314      return SDValue();
15315
15316    // Record which element was extracted.
15317    ExtractedElements |=
15318      1 << cast<ConstantSDNode>(Extract->getOperand(1))->getZExtValue();
15319
15320    Uses.push_back(Extract);
15321  }
15322
15323  // If not all the elements were used, this may not be worthwhile.
15324  if (ExtractedElements != 15)
15325    return SDValue();
15326
15327  // Ok, we've now decided to do the transformation.
15328  DebugLoc dl = InputVector.getDebugLoc();
15329
15330  // Store the value to a temporary stack slot.
15331  SDValue StackPtr = DAG.CreateStackTemporary(InputVector.getValueType());
15332  SDValue Ch = DAG.getStore(DAG.getEntryNode(), dl, InputVector, StackPtr,
15333                            MachinePointerInfo(), false, false, 0);
15334
15335  // Replace each use (extract) with a load of the appropriate element.
15336  for (SmallVectorImpl<SDNode *>::iterator UI = Uses.begin(),
15337       UE = Uses.end(); UI != UE; ++UI) {
15338    SDNode *Extract = *UI;
15339
15340    // cOMpute the element's address.
15341    SDValue Idx = Extract->getOperand(1);
15342    unsigned EltSize =
15343        InputVector.getValueType().getVectorElementType().getSizeInBits()/8;
15344    uint64_t Offset = EltSize * cast<ConstantSDNode>(Idx)->getZExtValue();
15345    const TargetLowering &TLI = DAG.getTargetLoweringInfo();
15346    SDValue OffsetVal = DAG.getConstant(Offset, TLI.getPointerTy());
15347
15348    SDValue ScalarAddr = DAG.getNode(ISD::ADD, dl, TLI.getPointerTy(),
15349                                     StackPtr, OffsetVal);
15350
15351    // Load the scalar.
15352    SDValue LoadScalar = DAG.getLoad(Extract->getValueType(0), dl, Ch,
15353                                     ScalarAddr, MachinePointerInfo(),
15354                                     false, false, false, 0);
15355
15356    // Replace the exact with the load.
15357    DAG.ReplaceAllUsesOfValueWith(SDValue(Extract, 0), LoadScalar);
15358  }
15359
15360  // The replacement was made in place; don't return anything.
15361  return SDValue();
15362}
15363
15364/// \brief Matches a VSELECT onto min/max or return 0 if the node doesn't match.
15365static unsigned matchIntegerMINMAX(SDValue Cond, EVT VT, SDValue LHS,
15366                                   SDValue RHS, SelectionDAG &DAG,
15367                                   const X86Subtarget *Subtarget) {
15368  if (!VT.isVector())
15369    return 0;
15370
15371  switch (VT.getSimpleVT().SimpleTy) {
15372  default: return 0;
15373  case MVT::v32i8:
15374  case MVT::v16i16:
15375  case MVT::v8i32:
15376    if (!Subtarget->hasAVX2())
15377      return 0;
15378  case MVT::v16i8:
15379  case MVT::v8i16:
15380  case MVT::v4i32:
15381    if (!Subtarget->hasSSE2())
15382      return 0;
15383  }
15384
15385  // SSE2 has only a small subset of the operations.
15386  bool hasUnsigned = Subtarget->hasSSE41() ||
15387                     (Subtarget->hasSSE2() && VT == MVT::v16i8);
15388  bool hasSigned = Subtarget->hasSSE41() ||
15389                   (Subtarget->hasSSE2() && VT == MVT::v8i16);
15390
15391  ISD::CondCode CC = cast<CondCodeSDNode>(Cond.getOperand(2))->get();
15392
15393  // Check for x CC y ? x : y.
15394  if (DAG.isEqualTo(LHS, Cond.getOperand(0)) &&
15395      DAG.isEqualTo(RHS, Cond.getOperand(1))) {
15396    switch (CC) {
15397    default: break;
15398    case ISD::SETULT:
15399    case ISD::SETULE:
15400      return hasUnsigned ? X86ISD::UMIN : 0;
15401    case ISD::SETUGT:
15402    case ISD::SETUGE:
15403      return hasUnsigned ? X86ISD::UMAX : 0;
15404    case ISD::SETLT:
15405    case ISD::SETLE:
15406      return hasSigned ? X86ISD::SMIN : 0;
15407    case ISD::SETGT:
15408    case ISD::SETGE:
15409      return hasSigned ? X86ISD::SMAX : 0;
15410    }
15411  // Check for x CC y ? y : x -- a min/max with reversed arms.
15412  } else if (DAG.isEqualTo(LHS, Cond.getOperand(1)) &&
15413             DAG.isEqualTo(RHS, Cond.getOperand(0))) {
15414    switch (CC) {
15415    default: break;
15416    case ISD::SETULT:
15417    case ISD::SETULE:
15418      return hasUnsigned ? X86ISD::UMAX : 0;
15419    case ISD::SETUGT:
15420    case ISD::SETUGE:
15421      return hasUnsigned ? X86ISD::UMIN : 0;
15422    case ISD::SETLT:
15423    case ISD::SETLE:
15424      return hasSigned ? X86ISD::SMAX : 0;
15425    case ISD::SETGT:
15426    case ISD::SETGE:
15427      return hasSigned ? X86ISD::SMIN : 0;
15428    }
15429  }
15430
15431  return 0;
15432}
15433
15434/// PerformSELECTCombine - Do target-specific dag combines on SELECT and VSELECT
15435/// nodes.
15436static SDValue PerformSELECTCombine(SDNode *N, SelectionDAG &DAG,
15437                                    TargetLowering::DAGCombinerInfo &DCI,
15438                                    const X86Subtarget *Subtarget) {
15439  DebugLoc DL = N->getDebugLoc();
15440  SDValue Cond = N->getOperand(0);
15441  // Get the LHS/RHS of the select.
15442  SDValue LHS = N->getOperand(1);
15443  SDValue RHS = N->getOperand(2);
15444  EVT VT = LHS.getValueType();
15445
15446  // If we have SSE[12] support, try to form min/max nodes. SSE min/max
15447  // instructions match the semantics of the common C idiom x<y?x:y but not
15448  // x<=y?x:y, because of how they handle negative zero (which can be
15449  // ignored in unsafe-math mode).
15450  if (Cond.getOpcode() == ISD::SETCC && VT.isFloatingPoint() &&
15451      VT != MVT::f80 && DAG.getTargetLoweringInfo().isTypeLegal(VT) &&
15452      (Subtarget->hasSSE2() ||
15453       (Subtarget->hasSSE1() && VT.getScalarType() == MVT::f32))) {
15454    ISD::CondCode CC = cast<CondCodeSDNode>(Cond.getOperand(2))->get();
15455
15456    unsigned Opcode = 0;
15457    // Check for x CC y ? x : y.
15458    if (DAG.isEqualTo(LHS, Cond.getOperand(0)) &&
15459        DAG.isEqualTo(RHS, Cond.getOperand(1))) {
15460      switch (CC) {
15461      default: break;
15462      case ISD::SETULT:
15463        // Converting this to a min would handle NaNs incorrectly, and swapping
15464        // the operands would cause it to handle comparisons between positive
15465        // and negative zero incorrectly.
15466        if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS)) {
15467          if (!DAG.getTarget().Options.UnsafeFPMath &&
15468              !(DAG.isKnownNeverZero(LHS) || DAG.isKnownNeverZero(RHS)))
15469            break;
15470          std::swap(LHS, RHS);
15471        }
15472        Opcode = X86ISD::FMIN;
15473        break;
15474      case ISD::SETOLE:
15475        // Converting this to a min would handle comparisons between positive
15476        // and negative zero incorrectly.
15477        if (!DAG.getTarget().Options.UnsafeFPMath &&
15478            !DAG.isKnownNeverZero(LHS) && !DAG.isKnownNeverZero(RHS))
15479          break;
15480        Opcode = X86ISD::FMIN;
15481        break;
15482      case ISD::SETULE:
15483        // Converting this to a min would handle both negative zeros and NaNs
15484        // incorrectly, but we can swap the operands to fix both.
15485        std::swap(LHS, RHS);
15486      case ISD::SETOLT:
15487      case ISD::SETLT:
15488      case ISD::SETLE:
15489        Opcode = X86ISD::FMIN;
15490        break;
15491
15492      case ISD::SETOGE:
15493        // Converting this to a max would handle comparisons between positive
15494        // and negative zero incorrectly.
15495        if (!DAG.getTarget().Options.UnsafeFPMath &&
15496            !DAG.isKnownNeverZero(LHS) && !DAG.isKnownNeverZero(RHS))
15497          break;
15498        Opcode = X86ISD::FMAX;
15499        break;
15500      case ISD::SETUGT:
15501        // Converting this to a max would handle NaNs incorrectly, and swapping
15502        // the operands would cause it to handle comparisons between positive
15503        // and negative zero incorrectly.
15504        if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS)) {
15505          if (!DAG.getTarget().Options.UnsafeFPMath &&
15506              !(DAG.isKnownNeverZero(LHS) || DAG.isKnownNeverZero(RHS)))
15507            break;
15508          std::swap(LHS, RHS);
15509        }
15510        Opcode = X86ISD::FMAX;
15511        break;
15512      case ISD::SETUGE:
15513        // Converting this to a max would handle both negative zeros and NaNs
15514        // incorrectly, but we can swap the operands to fix both.
15515        std::swap(LHS, RHS);
15516      case ISD::SETOGT:
15517      case ISD::SETGT:
15518      case ISD::SETGE:
15519        Opcode = X86ISD::FMAX;
15520        break;
15521      }
15522    // Check for x CC y ? y : x -- a min/max with reversed arms.
15523    } else if (DAG.isEqualTo(LHS, Cond.getOperand(1)) &&
15524               DAG.isEqualTo(RHS, Cond.getOperand(0))) {
15525      switch (CC) {
15526      default: break;
15527      case ISD::SETOGE:
15528        // Converting this to a min would handle comparisons between positive
15529        // and negative zero incorrectly, and swapping the operands would
15530        // cause it to handle NaNs incorrectly.
15531        if (!DAG.getTarget().Options.UnsafeFPMath &&
15532            !(DAG.isKnownNeverZero(LHS) || DAG.isKnownNeverZero(RHS))) {
15533          if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS))
15534            break;
15535          std::swap(LHS, RHS);
15536        }
15537        Opcode = X86ISD::FMIN;
15538        break;
15539      case ISD::SETUGT:
15540        // Converting this to a min would handle NaNs incorrectly.
15541        if (!DAG.getTarget().Options.UnsafeFPMath &&
15542            (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS)))
15543          break;
15544        Opcode = X86ISD::FMIN;
15545        break;
15546      case ISD::SETUGE:
15547        // Converting this to a min would handle both negative zeros and NaNs
15548        // incorrectly, but we can swap the operands to fix both.
15549        std::swap(LHS, RHS);
15550      case ISD::SETOGT:
15551      case ISD::SETGT:
15552      case ISD::SETGE:
15553        Opcode = X86ISD::FMIN;
15554        break;
15555
15556      case ISD::SETULT:
15557        // Converting this to a max would handle NaNs incorrectly.
15558        if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS))
15559          break;
15560        Opcode = X86ISD::FMAX;
15561        break;
15562      case ISD::SETOLE:
15563        // Converting this to a max would handle comparisons between positive
15564        // and negative zero incorrectly, and swapping the operands would
15565        // cause it to handle NaNs incorrectly.
15566        if (!DAG.getTarget().Options.UnsafeFPMath &&
15567            !DAG.isKnownNeverZero(LHS) && !DAG.isKnownNeverZero(RHS)) {
15568          if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS))
15569            break;
15570          std::swap(LHS, RHS);
15571        }
15572        Opcode = X86ISD::FMAX;
15573        break;
15574      case ISD::SETULE:
15575        // Converting this to a max would handle both negative zeros and NaNs
15576        // incorrectly, but we can swap the operands to fix both.
15577        std::swap(LHS, RHS);
15578      case ISD::SETOLT:
15579      case ISD::SETLT:
15580      case ISD::SETLE:
15581        Opcode = X86ISD::FMAX;
15582        break;
15583      }
15584    }
15585
15586    if (Opcode)
15587      return DAG.getNode(Opcode, DL, N->getValueType(0), LHS, RHS);
15588  }
15589
15590  // If this is a select between two integer constants, try to do some
15591  // optimizations.
15592  if (ConstantSDNode *TrueC = dyn_cast<ConstantSDNode>(LHS)) {
15593    if (ConstantSDNode *FalseC = dyn_cast<ConstantSDNode>(RHS))
15594      // Don't do this for crazy integer types.
15595      if (DAG.getTargetLoweringInfo().isTypeLegal(LHS.getValueType())) {
15596        // If this is efficiently invertible, canonicalize the LHSC/RHSC values
15597        // so that TrueC (the true value) is larger than FalseC.
15598        bool NeedsCondInvert = false;
15599
15600        if (TrueC->getAPIntValue().ult(FalseC->getAPIntValue()) &&
15601            // Efficiently invertible.
15602            (Cond.getOpcode() == ISD::SETCC ||  // setcc -> invertible.
15603             (Cond.getOpcode() == ISD::XOR &&   // xor(X, C) -> invertible.
15604              isa<ConstantSDNode>(Cond.getOperand(1))))) {
15605          NeedsCondInvert = true;
15606          std::swap(TrueC, FalseC);
15607        }
15608
15609        // Optimize C ? 8 : 0 -> zext(C) << 3.  Likewise for any pow2/0.
15610        if (FalseC->getAPIntValue() == 0 &&
15611            TrueC->getAPIntValue().isPowerOf2()) {
15612          if (NeedsCondInvert) // Invert the condition if needed.
15613            Cond = DAG.getNode(ISD::XOR, DL, Cond.getValueType(), Cond,
15614                               DAG.getConstant(1, Cond.getValueType()));
15615
15616          // Zero extend the condition if needed.
15617          Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, LHS.getValueType(), Cond);
15618
15619          unsigned ShAmt = TrueC->getAPIntValue().logBase2();
15620          return DAG.getNode(ISD::SHL, DL, LHS.getValueType(), Cond,
15621                             DAG.getConstant(ShAmt, MVT::i8));
15622        }
15623
15624        // Optimize Cond ? cst+1 : cst -> zext(setcc(C)+cst.
15625        if (FalseC->getAPIntValue()+1 == TrueC->getAPIntValue()) {
15626          if (NeedsCondInvert) // Invert the condition if needed.
15627            Cond = DAG.getNode(ISD::XOR, DL, Cond.getValueType(), Cond,
15628                               DAG.getConstant(1, Cond.getValueType()));
15629
15630          // Zero extend the condition if needed.
15631          Cond = DAG.getNode(ISD::ZERO_EXTEND, DL,
15632                             FalseC->getValueType(0), Cond);
15633          return DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
15634                             SDValue(FalseC, 0));
15635        }
15636
15637        // Optimize cases that will turn into an LEA instruction.  This requires
15638        // an i32 or i64 and an efficient multiplier (1, 2, 3, 4, 5, 8, 9).
15639        if (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i64) {
15640          uint64_t Diff = TrueC->getZExtValue()-FalseC->getZExtValue();
15641          if (N->getValueType(0) == MVT::i32) Diff = (unsigned)Diff;
15642
15643          bool isFastMultiplier = false;
15644          if (Diff < 10) {
15645            switch ((unsigned char)Diff) {
15646              default: break;
15647              case 1:  // result = add base, cond
15648              case 2:  // result = lea base(    , cond*2)
15649              case 3:  // result = lea base(cond, cond*2)
15650              case 4:  // result = lea base(    , cond*4)
15651              case 5:  // result = lea base(cond, cond*4)
15652              case 8:  // result = lea base(    , cond*8)
15653              case 9:  // result = lea base(cond, cond*8)
15654                isFastMultiplier = true;
15655                break;
15656            }
15657          }
15658
15659          if (isFastMultiplier) {
15660            APInt Diff = TrueC->getAPIntValue()-FalseC->getAPIntValue();
15661            if (NeedsCondInvert) // Invert the condition if needed.
15662              Cond = DAG.getNode(ISD::XOR, DL, Cond.getValueType(), Cond,
15663                                 DAG.getConstant(1, Cond.getValueType()));
15664
15665            // Zero extend the condition if needed.
15666            Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, FalseC->getValueType(0),
15667                               Cond);
15668            // Scale the condition by the difference.
15669            if (Diff != 1)
15670              Cond = DAG.getNode(ISD::MUL, DL, Cond.getValueType(), Cond,
15671                                 DAG.getConstant(Diff, Cond.getValueType()));
15672
15673            // Add the base if non-zero.
15674            if (FalseC->getAPIntValue() != 0)
15675              Cond = DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
15676                                 SDValue(FalseC, 0));
15677            return Cond;
15678          }
15679        }
15680      }
15681  }
15682
15683  // Canonicalize max and min:
15684  // (x > y) ? x : y -> (x >= y) ? x : y
15685  // (x < y) ? x : y -> (x <= y) ? x : y
15686  // This allows use of COND_S / COND_NS (see TranslateX86CC) which eliminates
15687  // the need for an extra compare
15688  // against zero. e.g.
15689  // (x - y) > 0 : (x - y) ? 0 -> (x - y) >= 0 : (x - y) ? 0
15690  // subl   %esi, %edi
15691  // testl  %edi, %edi
15692  // movl   $0, %eax
15693  // cmovgl %edi, %eax
15694  // =>
15695  // xorl   %eax, %eax
15696  // subl   %esi, $edi
15697  // cmovsl %eax, %edi
15698  if (N->getOpcode() == ISD::SELECT && Cond.getOpcode() == ISD::SETCC &&
15699      DAG.isEqualTo(LHS, Cond.getOperand(0)) &&
15700      DAG.isEqualTo(RHS, Cond.getOperand(1))) {
15701    ISD::CondCode CC = cast<CondCodeSDNode>(Cond.getOperand(2))->get();
15702    switch (CC) {
15703    default: break;
15704    case ISD::SETLT:
15705    case ISD::SETGT: {
15706      ISD::CondCode NewCC = (CC == ISD::SETLT) ? ISD::SETLE : ISD::SETGE;
15707      Cond = DAG.getSetCC(Cond.getDebugLoc(), Cond.getValueType(),
15708                          Cond.getOperand(0), Cond.getOperand(1), NewCC);
15709      return DAG.getNode(ISD::SELECT, DL, VT, Cond, LHS, RHS);
15710    }
15711    }
15712  }
15713
15714  // Match VSELECTs into subs with unsigned saturation.
15715  if (!DCI.isBeforeLegalize() &&
15716      N->getOpcode() == ISD::VSELECT && Cond.getOpcode() == ISD::SETCC &&
15717      // psubus is available in SSE2 and AVX2 for i8 and i16 vectors.
15718      ((Subtarget->hasSSE2() && (VT == MVT::v16i8 || VT == MVT::v8i16)) ||
15719       (Subtarget->hasAVX2() && (VT == MVT::v32i8 || VT == MVT::v16i16)))) {
15720    ISD::CondCode CC = cast<CondCodeSDNode>(Cond.getOperand(2))->get();
15721
15722    // Check if one of the arms of the VSELECT is a zero vector. If it's on the
15723    // left side invert the predicate to simplify logic below.
15724    SDValue Other;
15725    if (ISD::isBuildVectorAllZeros(LHS.getNode())) {
15726      Other = RHS;
15727      CC = ISD::getSetCCInverse(CC, true);
15728    } else if (ISD::isBuildVectorAllZeros(RHS.getNode())) {
15729      Other = LHS;
15730    }
15731
15732    if (Other.getNode() && Other->getNumOperands() == 2 &&
15733        DAG.isEqualTo(Other->getOperand(0), Cond.getOperand(0))) {
15734      SDValue OpLHS = Other->getOperand(0), OpRHS = Other->getOperand(1);
15735      SDValue CondRHS = Cond->getOperand(1);
15736
15737      // Look for a general sub with unsigned saturation first.
15738      // x >= y ? x-y : 0 --> subus x, y
15739      // x >  y ? x-y : 0 --> subus x, y
15740      if ((CC == ISD::SETUGE || CC == ISD::SETUGT) &&
15741          Other->getOpcode() == ISD::SUB && DAG.isEqualTo(OpRHS, CondRHS))
15742        return DAG.getNode(X86ISD::SUBUS, DL, VT, OpLHS, OpRHS);
15743
15744      // If the RHS is a constant we have to reverse the const canonicalization.
15745      // x > C-1 ? x+-C : 0 --> subus x, C
15746      if (CC == ISD::SETUGT && Other->getOpcode() == ISD::ADD &&
15747          isSplatVector(CondRHS.getNode()) && isSplatVector(OpRHS.getNode())) {
15748        APInt A = cast<ConstantSDNode>(OpRHS.getOperand(0))->getAPIntValue();
15749        if (CondRHS.getConstantOperandVal(0) == -A-1)
15750          return DAG.getNode(X86ISD::SUBUS, DL, VT, OpLHS,
15751                             DAG.getConstant(-A, VT));
15752      }
15753
15754      // Another special case: If C was a sign bit, the sub has been
15755      // canonicalized into a xor.
15756      // FIXME: Would it be better to use ComputeMaskedBits to determine whether
15757      //        it's safe to decanonicalize the xor?
15758      // x s< 0 ? x^C : 0 --> subus x, C
15759      if (CC == ISD::SETLT && Other->getOpcode() == ISD::XOR &&
15760          ISD::isBuildVectorAllZeros(CondRHS.getNode()) &&
15761          isSplatVector(OpRHS.getNode())) {
15762        APInt A = cast<ConstantSDNode>(OpRHS.getOperand(0))->getAPIntValue();
15763        if (A.isSignBit())
15764          return DAG.getNode(X86ISD::SUBUS, DL, VT, OpLHS, OpRHS);
15765      }
15766    }
15767  }
15768
15769  // Try to match a min/max vector operation.
15770  if (!DCI.isBeforeLegalize() &&
15771      N->getOpcode() == ISD::VSELECT && Cond.getOpcode() == ISD::SETCC)
15772    if (unsigned Op = matchIntegerMINMAX(Cond, VT, LHS, RHS, DAG, Subtarget))
15773      return DAG.getNode(Op, DL, N->getValueType(0), LHS, RHS);
15774
15775  // Simplify vector selection if the selector will be produced by CMPP*/PCMP*.
15776  if (!DCI.isBeforeLegalize() && N->getOpcode() == ISD::VSELECT &&
15777      Cond.getOpcode() == ISD::SETCC) {
15778
15779    assert(Cond.getValueType().isVector() &&
15780           "vector select expects a vector selector!");
15781
15782    EVT IntVT = Cond.getValueType();
15783    bool TValIsAllOnes = ISD::isBuildVectorAllOnes(LHS.getNode());
15784    bool FValIsAllZeros = ISD::isBuildVectorAllZeros(RHS.getNode());
15785
15786    if (!TValIsAllOnes && !FValIsAllZeros) {
15787      // Try invert the condition if true value is not all 1s and false value
15788      // is not all 0s.
15789      bool TValIsAllZeros = ISD::isBuildVectorAllZeros(LHS.getNode());
15790      bool FValIsAllOnes = ISD::isBuildVectorAllOnes(RHS.getNode());
15791
15792      if (TValIsAllZeros || FValIsAllOnes) {
15793        SDValue CC = Cond.getOperand(2);
15794        ISD::CondCode NewCC =
15795          ISD::getSetCCInverse(cast<CondCodeSDNode>(CC)->get(),
15796                               Cond.getOperand(0).getValueType().isInteger());
15797        Cond = DAG.getSetCC(DL, IntVT, Cond.getOperand(0), Cond.getOperand(1), NewCC);
15798        std::swap(LHS, RHS);
15799        TValIsAllOnes = FValIsAllOnes;
15800        FValIsAllZeros = TValIsAllZeros;
15801      }
15802    }
15803
15804    if (TValIsAllOnes || FValIsAllZeros) {
15805      SDValue Ret;
15806
15807      if (TValIsAllOnes && FValIsAllZeros)
15808        Ret = Cond;
15809      else if (TValIsAllOnes)
15810        Ret = DAG.getNode(ISD::OR, DL, IntVT, Cond,
15811                          DAG.getNode(ISD::BITCAST, DL, IntVT, RHS));
15812      else if (FValIsAllZeros)
15813        Ret = DAG.getNode(ISD::AND, DL, IntVT, Cond,
15814                          DAG.getNode(ISD::BITCAST, DL, IntVT, LHS));
15815
15816      return DAG.getNode(ISD::BITCAST, DL, VT, Ret);
15817    }
15818  }
15819
15820  // If we know that this node is legal then we know that it is going to be
15821  // matched by one of the SSE/AVX BLEND instructions. These instructions only
15822  // depend on the highest bit in each word. Try to use SimplifyDemandedBits
15823  // to simplify previous instructions.
15824  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
15825  if (N->getOpcode() == ISD::VSELECT && DCI.isBeforeLegalizeOps() &&
15826      !DCI.isBeforeLegalize() && TLI.isOperationLegal(ISD::VSELECT, VT)) {
15827    unsigned BitWidth = Cond.getValueType().getScalarType().getSizeInBits();
15828
15829    // Don't optimize vector selects that map to mask-registers.
15830    if (BitWidth == 1)
15831      return SDValue();
15832
15833    assert(BitWidth >= 8 && BitWidth <= 64 && "Invalid mask size");
15834    APInt DemandedMask = APInt::getHighBitsSet(BitWidth, 1);
15835
15836    APInt KnownZero, KnownOne;
15837    TargetLowering::TargetLoweringOpt TLO(DAG, DCI.isBeforeLegalize(),
15838                                          DCI.isBeforeLegalizeOps());
15839    if (TLO.ShrinkDemandedConstant(Cond, DemandedMask) ||
15840        TLI.SimplifyDemandedBits(Cond, DemandedMask, KnownZero, KnownOne, TLO))
15841      DCI.CommitTargetLoweringOpt(TLO);
15842  }
15843
15844  return SDValue();
15845}
15846
15847// Check whether a boolean test is testing a boolean value generated by
15848// X86ISD::SETCC. If so, return the operand of that SETCC and proper condition
15849// code.
15850//
15851// Simplify the following patterns:
15852// (Op (CMP (SETCC Cond EFLAGS) 1) EQ) or
15853// (Op (CMP (SETCC Cond EFLAGS) 0) NEQ)
15854// to (Op EFLAGS Cond)
15855//
15856// (Op (CMP (SETCC Cond EFLAGS) 0) EQ) or
15857// (Op (CMP (SETCC Cond EFLAGS) 1) NEQ)
15858// to (Op EFLAGS !Cond)
15859//
15860// where Op could be BRCOND or CMOV.
15861//
15862static SDValue checkBoolTestSetCCCombine(SDValue Cmp, X86::CondCode &CC) {
15863  // Quit if not CMP and SUB with its value result used.
15864  if (Cmp.getOpcode() != X86ISD::CMP &&
15865      (Cmp.getOpcode() != X86ISD::SUB || Cmp.getNode()->hasAnyUseOfValue(0)))
15866      return SDValue();
15867
15868  // Quit if not used as a boolean value.
15869  if (CC != X86::COND_E && CC != X86::COND_NE)
15870    return SDValue();
15871
15872  // Check CMP operands. One of them should be 0 or 1 and the other should be
15873  // an SetCC or extended from it.
15874  SDValue Op1 = Cmp.getOperand(0);
15875  SDValue Op2 = Cmp.getOperand(1);
15876
15877  SDValue SetCC;
15878  const ConstantSDNode* C = 0;
15879  bool needOppositeCond = (CC == X86::COND_E);
15880  bool checkAgainstTrue = false; // Is it a comparison against 1?
15881
15882  if ((C = dyn_cast<ConstantSDNode>(Op1)))
15883    SetCC = Op2;
15884  else if ((C = dyn_cast<ConstantSDNode>(Op2)))
15885    SetCC = Op1;
15886  else // Quit if all operands are not constants.
15887    return SDValue();
15888
15889  if (C->getZExtValue() == 1) {
15890    needOppositeCond = !needOppositeCond;
15891    checkAgainstTrue = true;
15892  } else if (C->getZExtValue() != 0)
15893    // Quit if the constant is neither 0 or 1.
15894    return SDValue();
15895
15896  bool truncatedToBoolWithAnd = false;
15897  // Skip (zext $x), (trunc $x), or (and $x, 1) node.
15898  while (SetCC.getOpcode() == ISD::ZERO_EXTEND ||
15899         SetCC.getOpcode() == ISD::TRUNCATE ||
15900         SetCC.getOpcode() == ISD::AND) {
15901    if (SetCC.getOpcode() == ISD::AND) {
15902      int OpIdx = -1;
15903      ConstantSDNode *CS;
15904      if ((CS = dyn_cast<ConstantSDNode>(SetCC.getOperand(0))) &&
15905          CS->getZExtValue() == 1)
15906        OpIdx = 1;
15907      if ((CS = dyn_cast<ConstantSDNode>(SetCC.getOperand(1))) &&
15908          CS->getZExtValue() == 1)
15909        OpIdx = 0;
15910      if (OpIdx == -1)
15911        break;
15912      SetCC = SetCC.getOperand(OpIdx);
15913      truncatedToBoolWithAnd = true;
15914    } else
15915      SetCC = SetCC.getOperand(0);
15916  }
15917
15918  switch (SetCC.getOpcode()) {
15919  case X86ISD::SETCC_CARRY:
15920    // Since SETCC_CARRY gives output based on R = CF ? ~0 : 0, it's unsafe to
15921    // simplify it if the result of SETCC_CARRY is not canonicalized to 0 or 1,
15922    // i.e. it's a comparison against true but the result of SETCC_CARRY is not
15923    // truncated to i1 using 'and'.
15924    if (checkAgainstTrue && !truncatedToBoolWithAnd)
15925      break;
15926    assert(X86::CondCode(SetCC.getConstantOperandVal(0)) == X86::COND_B &&
15927           "Invalid use of SETCC_CARRY!");
15928    // FALL THROUGH
15929  case X86ISD::SETCC:
15930    // Set the condition code or opposite one if necessary.
15931    CC = X86::CondCode(SetCC.getConstantOperandVal(0));
15932    if (needOppositeCond)
15933      CC = X86::GetOppositeBranchCondition(CC);
15934    return SetCC.getOperand(1);
15935  case X86ISD::CMOV: {
15936    // Check whether false/true value has canonical one, i.e. 0 or 1.
15937    ConstantSDNode *FVal = dyn_cast<ConstantSDNode>(SetCC.getOperand(0));
15938    ConstantSDNode *TVal = dyn_cast<ConstantSDNode>(SetCC.getOperand(1));
15939    // Quit if true value is not a constant.
15940    if (!TVal)
15941      return SDValue();
15942    // Quit if false value is not a constant.
15943    if (!FVal) {
15944      SDValue Op = SetCC.getOperand(0);
15945      // Skip 'zext' or 'trunc' node.
15946      if (Op.getOpcode() == ISD::ZERO_EXTEND ||
15947          Op.getOpcode() == ISD::TRUNCATE)
15948        Op = Op.getOperand(0);
15949      // A special case for rdrand/rdseed, where 0 is set if false cond is
15950      // found.
15951      if ((Op.getOpcode() != X86ISD::RDRAND &&
15952           Op.getOpcode() != X86ISD::RDSEED) || Op.getResNo() != 0)
15953        return SDValue();
15954    }
15955    // Quit if false value is not the constant 0 or 1.
15956    bool FValIsFalse = true;
15957    if (FVal && FVal->getZExtValue() != 0) {
15958      if (FVal->getZExtValue() != 1)
15959        return SDValue();
15960      // If FVal is 1, opposite cond is needed.
15961      needOppositeCond = !needOppositeCond;
15962      FValIsFalse = false;
15963    }
15964    // Quit if TVal is not the constant opposite of FVal.
15965    if (FValIsFalse && TVal->getZExtValue() != 1)
15966      return SDValue();
15967    if (!FValIsFalse && TVal->getZExtValue() != 0)
15968      return SDValue();
15969    CC = X86::CondCode(SetCC.getConstantOperandVal(2));
15970    if (needOppositeCond)
15971      CC = X86::GetOppositeBranchCondition(CC);
15972    return SetCC.getOperand(3);
15973  }
15974  }
15975
15976  return SDValue();
15977}
15978
15979/// Optimize X86ISD::CMOV [LHS, RHS, CONDCODE (e.g. X86::COND_NE), CONDVAL]
15980static SDValue PerformCMOVCombine(SDNode *N, SelectionDAG &DAG,
15981                                  TargetLowering::DAGCombinerInfo &DCI,
15982                                  const X86Subtarget *Subtarget) {
15983  DebugLoc DL = N->getDebugLoc();
15984
15985  // If the flag operand isn't dead, don't touch this CMOV.
15986  if (N->getNumValues() == 2 && !SDValue(N, 1).use_empty())
15987    return SDValue();
15988
15989  SDValue FalseOp = N->getOperand(0);
15990  SDValue TrueOp = N->getOperand(1);
15991  X86::CondCode CC = (X86::CondCode)N->getConstantOperandVal(2);
15992  SDValue Cond = N->getOperand(3);
15993
15994  if (CC == X86::COND_E || CC == X86::COND_NE) {
15995    switch (Cond.getOpcode()) {
15996    default: break;
15997    case X86ISD::BSR:
15998    case X86ISD::BSF:
15999      // If operand of BSR / BSF are proven never zero, then ZF cannot be set.
16000      if (DAG.isKnownNeverZero(Cond.getOperand(0)))
16001        return (CC == X86::COND_E) ? FalseOp : TrueOp;
16002    }
16003  }
16004
16005  SDValue Flags;
16006
16007  Flags = checkBoolTestSetCCCombine(Cond, CC);
16008  if (Flags.getNode() &&
16009      // Extra check as FCMOV only supports a subset of X86 cond.
16010      (FalseOp.getValueType() != MVT::f80 || hasFPCMov(CC))) {
16011    SDValue Ops[] = { FalseOp, TrueOp,
16012                      DAG.getConstant(CC, MVT::i8), Flags };
16013    return DAG.getNode(X86ISD::CMOV, DL, N->getVTList(),
16014                       Ops, array_lengthof(Ops));
16015  }
16016
16017  // If this is a select between two integer constants, try to do some
16018  // optimizations.  Note that the operands are ordered the opposite of SELECT
16019  // operands.
16020  if (ConstantSDNode *TrueC = dyn_cast<ConstantSDNode>(TrueOp)) {
16021    if (ConstantSDNode *FalseC = dyn_cast<ConstantSDNode>(FalseOp)) {
16022      // Canonicalize the TrueC/FalseC values so that TrueC (the true value) is
16023      // larger than FalseC (the false value).
16024      if (TrueC->getAPIntValue().ult(FalseC->getAPIntValue())) {
16025        CC = X86::GetOppositeBranchCondition(CC);
16026        std::swap(TrueC, FalseC);
16027        std::swap(TrueOp, FalseOp);
16028      }
16029
16030      // Optimize C ? 8 : 0 -> zext(setcc(C)) << 3.  Likewise for any pow2/0.
16031      // This is efficient for any integer data type (including i8/i16) and
16032      // shift amount.
16033      if (FalseC->getAPIntValue() == 0 && TrueC->getAPIntValue().isPowerOf2()) {
16034        Cond = DAG.getNode(X86ISD::SETCC, DL, MVT::i8,
16035                           DAG.getConstant(CC, MVT::i8), Cond);
16036
16037        // Zero extend the condition if needed.
16038        Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, TrueC->getValueType(0), Cond);
16039
16040        unsigned ShAmt = TrueC->getAPIntValue().logBase2();
16041        Cond = DAG.getNode(ISD::SHL, DL, Cond.getValueType(), Cond,
16042                           DAG.getConstant(ShAmt, MVT::i8));
16043        if (N->getNumValues() == 2)  // Dead flag value?
16044          return DCI.CombineTo(N, Cond, SDValue());
16045        return Cond;
16046      }
16047
16048      // Optimize Cond ? cst+1 : cst -> zext(setcc(C)+cst.  This is efficient
16049      // for any integer data type, including i8/i16.
16050      if (FalseC->getAPIntValue()+1 == TrueC->getAPIntValue()) {
16051        Cond = DAG.getNode(X86ISD::SETCC, DL, MVT::i8,
16052                           DAG.getConstant(CC, MVT::i8), Cond);
16053
16054        // Zero extend the condition if needed.
16055        Cond = DAG.getNode(ISD::ZERO_EXTEND, DL,
16056                           FalseC->getValueType(0), Cond);
16057        Cond = DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
16058                           SDValue(FalseC, 0));
16059
16060        if (N->getNumValues() == 2)  // Dead flag value?
16061          return DCI.CombineTo(N, Cond, SDValue());
16062        return Cond;
16063      }
16064
16065      // Optimize cases that will turn into an LEA instruction.  This requires
16066      // an i32 or i64 and an efficient multiplier (1, 2, 3, 4, 5, 8, 9).
16067      if (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i64) {
16068        uint64_t Diff = TrueC->getZExtValue()-FalseC->getZExtValue();
16069        if (N->getValueType(0) == MVT::i32) Diff = (unsigned)Diff;
16070
16071        bool isFastMultiplier = false;
16072        if (Diff < 10) {
16073          switch ((unsigned char)Diff) {
16074          default: break;
16075          case 1:  // result = add base, cond
16076          case 2:  // result = lea base(    , cond*2)
16077          case 3:  // result = lea base(cond, cond*2)
16078          case 4:  // result = lea base(    , cond*4)
16079          case 5:  // result = lea base(cond, cond*4)
16080          case 8:  // result = lea base(    , cond*8)
16081          case 9:  // result = lea base(cond, cond*8)
16082            isFastMultiplier = true;
16083            break;
16084          }
16085        }
16086
16087        if (isFastMultiplier) {
16088          APInt Diff = TrueC->getAPIntValue()-FalseC->getAPIntValue();
16089          Cond = DAG.getNode(X86ISD::SETCC, DL, MVT::i8,
16090                             DAG.getConstant(CC, MVT::i8), Cond);
16091          // Zero extend the condition if needed.
16092          Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, FalseC->getValueType(0),
16093                             Cond);
16094          // Scale the condition by the difference.
16095          if (Diff != 1)
16096            Cond = DAG.getNode(ISD::MUL, DL, Cond.getValueType(), Cond,
16097                               DAG.getConstant(Diff, Cond.getValueType()));
16098
16099          // Add the base if non-zero.
16100          if (FalseC->getAPIntValue() != 0)
16101            Cond = DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
16102                               SDValue(FalseC, 0));
16103          if (N->getNumValues() == 2)  // Dead flag value?
16104            return DCI.CombineTo(N, Cond, SDValue());
16105          return Cond;
16106        }
16107      }
16108    }
16109  }
16110
16111  // Handle these cases:
16112  //   (select (x != c), e, c) -> select (x != c), e, x),
16113  //   (select (x == c), c, e) -> select (x == c), x, e)
16114  // where the c is an integer constant, and the "select" is the combination
16115  // of CMOV and CMP.
16116  //
16117  // The rationale for this change is that the conditional-move from a constant
16118  // needs two instructions, however, conditional-move from a register needs
16119  // only one instruction.
16120  //
16121  // CAVEAT: By replacing a constant with a symbolic value, it may obscure
16122  //  some instruction-combining opportunities. This opt needs to be
16123  //  postponed as late as possible.
16124  //
16125  if (!DCI.isBeforeLegalize() && !DCI.isBeforeLegalizeOps()) {
16126    // the DCI.xxxx conditions are provided to postpone the optimization as
16127    // late as possible.
16128
16129    ConstantSDNode *CmpAgainst = 0;
16130    if ((Cond.getOpcode() == X86ISD::CMP || Cond.getOpcode() == X86ISD::SUB) &&
16131        (CmpAgainst = dyn_cast<ConstantSDNode>(Cond.getOperand(1))) &&
16132        !isa<ConstantSDNode>(Cond.getOperand(0))) {
16133
16134      if (CC == X86::COND_NE &&
16135          CmpAgainst == dyn_cast<ConstantSDNode>(FalseOp)) {
16136        CC = X86::GetOppositeBranchCondition(CC);
16137        std::swap(TrueOp, FalseOp);
16138      }
16139
16140      if (CC == X86::COND_E &&
16141          CmpAgainst == dyn_cast<ConstantSDNode>(TrueOp)) {
16142        SDValue Ops[] = { FalseOp, Cond.getOperand(0),
16143                          DAG.getConstant(CC, MVT::i8), Cond };
16144        return DAG.getNode(X86ISD::CMOV, DL, N->getVTList (), Ops,
16145                           array_lengthof(Ops));
16146      }
16147    }
16148  }
16149
16150  return SDValue();
16151}
16152
16153/// PerformMulCombine - Optimize a single multiply with constant into two
16154/// in order to implement it with two cheaper instructions, e.g.
16155/// LEA + SHL, LEA + LEA.
16156static SDValue PerformMulCombine(SDNode *N, SelectionDAG &DAG,
16157                                 TargetLowering::DAGCombinerInfo &DCI) {
16158  if (DCI.isBeforeLegalize() || DCI.isCalledByLegalizer())
16159    return SDValue();
16160
16161  EVT VT = N->getValueType(0);
16162  if (VT != MVT::i64)
16163    return SDValue();
16164
16165  ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1));
16166  if (!C)
16167    return SDValue();
16168  uint64_t MulAmt = C->getZExtValue();
16169  if (isPowerOf2_64(MulAmt) || MulAmt == 3 || MulAmt == 5 || MulAmt == 9)
16170    return SDValue();
16171
16172  uint64_t MulAmt1 = 0;
16173  uint64_t MulAmt2 = 0;
16174  if ((MulAmt % 9) == 0) {
16175    MulAmt1 = 9;
16176    MulAmt2 = MulAmt / 9;
16177  } else if ((MulAmt % 5) == 0) {
16178    MulAmt1 = 5;
16179    MulAmt2 = MulAmt / 5;
16180  } else if ((MulAmt % 3) == 0) {
16181    MulAmt1 = 3;
16182    MulAmt2 = MulAmt / 3;
16183  }
16184  if (MulAmt2 &&
16185      (isPowerOf2_64(MulAmt2) || MulAmt2 == 3 || MulAmt2 == 5 || MulAmt2 == 9)){
16186    DebugLoc DL = N->getDebugLoc();
16187
16188    if (isPowerOf2_64(MulAmt2) &&
16189        !(N->hasOneUse() && N->use_begin()->getOpcode() == ISD::ADD))
16190      // If second multiplifer is pow2, issue it first. We want the multiply by
16191      // 3, 5, or 9 to be folded into the addressing mode unless the lone use
16192      // is an add.
16193      std::swap(MulAmt1, MulAmt2);
16194
16195    SDValue NewMul;
16196    if (isPowerOf2_64(MulAmt1))
16197      NewMul = DAG.getNode(ISD::SHL, DL, VT, N->getOperand(0),
16198                           DAG.getConstant(Log2_64(MulAmt1), MVT::i8));
16199    else
16200      NewMul = DAG.getNode(X86ISD::MUL_IMM, DL, VT, N->getOperand(0),
16201                           DAG.getConstant(MulAmt1, VT));
16202
16203    if (isPowerOf2_64(MulAmt2))
16204      NewMul = DAG.getNode(ISD::SHL, DL, VT, NewMul,
16205                           DAG.getConstant(Log2_64(MulAmt2), MVT::i8));
16206    else
16207      NewMul = DAG.getNode(X86ISD::MUL_IMM, DL, VT, NewMul,
16208                           DAG.getConstant(MulAmt2, VT));
16209
16210    // Do not add new nodes to DAG combiner worklist.
16211    DCI.CombineTo(N, NewMul, false);
16212  }
16213  return SDValue();
16214}
16215
16216static SDValue PerformSHLCombine(SDNode *N, SelectionDAG &DAG) {
16217  SDValue N0 = N->getOperand(0);
16218  SDValue N1 = N->getOperand(1);
16219  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
16220  EVT VT = N0.getValueType();
16221
16222  // fold (shl (and (setcc_c), c1), c2) -> (and setcc_c, (c1 << c2))
16223  // since the result of setcc_c is all zero's or all ones.
16224  if (VT.isInteger() && !VT.isVector() &&
16225      N1C && N0.getOpcode() == ISD::AND &&
16226      N0.getOperand(1).getOpcode() == ISD::Constant) {
16227    SDValue N00 = N0.getOperand(0);
16228    if (N00.getOpcode() == X86ISD::SETCC_CARRY ||
16229        ((N00.getOpcode() == ISD::ANY_EXTEND ||
16230          N00.getOpcode() == ISD::ZERO_EXTEND) &&
16231         N00.getOperand(0).getOpcode() == X86ISD::SETCC_CARRY)) {
16232      APInt Mask = cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue();
16233      APInt ShAmt = N1C->getAPIntValue();
16234      Mask = Mask.shl(ShAmt);
16235      if (Mask != 0)
16236        return DAG.getNode(ISD::AND, N->getDebugLoc(), VT,
16237                           N00, DAG.getConstant(Mask, VT));
16238    }
16239  }
16240
16241  // Hardware support for vector shifts is sparse which makes us scalarize the
16242  // vector operations in many cases. Also, on sandybridge ADD is faster than
16243  // shl.
16244  // (shl V, 1) -> add V,V
16245  if (isSplatVector(N1.getNode())) {
16246    assert(N0.getValueType().isVector() && "Invalid vector shift type");
16247    ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1->getOperand(0));
16248    // We shift all of the values by one. In many cases we do not have
16249    // hardware support for this operation. This is better expressed as an ADD
16250    // of two values.
16251    if (N1C && (1 == N1C->getZExtValue())) {
16252      return DAG.getNode(ISD::ADD, N->getDebugLoc(), VT, N0, N0);
16253    }
16254  }
16255
16256  return SDValue();
16257}
16258
16259/// PerformShiftCombine - Combine shifts.
16260static SDValue PerformShiftCombine(SDNode* N, SelectionDAG &DAG,
16261                                   TargetLowering::DAGCombinerInfo &DCI,
16262                                   const X86Subtarget *Subtarget) {
16263  if (N->getOpcode() == ISD::SHL) {
16264    SDValue V = PerformSHLCombine(N, DAG);
16265    if (V.getNode()) return V;
16266  }
16267
16268  return SDValue();
16269}
16270
16271// CMPEQCombine - Recognize the distinctive  (AND (setcc ...) (setcc ..))
16272// where both setccs reference the same FP CMP, and rewrite for CMPEQSS
16273// and friends.  Likewise for OR -> CMPNEQSS.
16274static SDValue CMPEQCombine(SDNode *N, SelectionDAG &DAG,
16275                            TargetLowering::DAGCombinerInfo &DCI,
16276                            const X86Subtarget *Subtarget) {
16277  unsigned opcode;
16278
16279  // SSE1 supports CMP{eq|ne}SS, and SSE2 added CMP{eq|ne}SD, but
16280  // we're requiring SSE2 for both.
16281  if (Subtarget->hasSSE2() && isAndOrOfSetCCs(SDValue(N, 0U), opcode)) {
16282    SDValue N0 = N->getOperand(0);
16283    SDValue N1 = N->getOperand(1);
16284    SDValue CMP0 = N0->getOperand(1);
16285    SDValue CMP1 = N1->getOperand(1);
16286    DebugLoc DL = N->getDebugLoc();
16287
16288    // The SETCCs should both refer to the same CMP.
16289    if (CMP0.getOpcode() != X86ISD::CMP || CMP0 != CMP1)
16290      return SDValue();
16291
16292    SDValue CMP00 = CMP0->getOperand(0);
16293    SDValue CMP01 = CMP0->getOperand(1);
16294    EVT     VT    = CMP00.getValueType();
16295
16296    if (VT == MVT::f32 || VT == MVT::f64) {
16297      bool ExpectingFlags = false;
16298      // Check for any users that want flags:
16299      for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end();
16300           !ExpectingFlags && UI != UE; ++UI)
16301        switch (UI->getOpcode()) {
16302        default:
16303        case ISD::BR_CC:
16304        case ISD::BRCOND:
16305        case ISD::SELECT:
16306          ExpectingFlags = true;
16307          break;
16308        case ISD::CopyToReg:
16309        case ISD::SIGN_EXTEND:
16310        case ISD::ZERO_EXTEND:
16311        case ISD::ANY_EXTEND:
16312          break;
16313        }
16314
16315      if (!ExpectingFlags) {
16316        enum X86::CondCode cc0 = (enum X86::CondCode)N0.getConstantOperandVal(0);
16317        enum X86::CondCode cc1 = (enum X86::CondCode)N1.getConstantOperandVal(0);
16318
16319        if (cc1 == X86::COND_E || cc1 == X86::COND_NE) {
16320          X86::CondCode tmp = cc0;
16321          cc0 = cc1;
16322          cc1 = tmp;
16323        }
16324
16325        if ((cc0 == X86::COND_E  && cc1 == X86::COND_NP) ||
16326            (cc0 == X86::COND_NE && cc1 == X86::COND_P)) {
16327          bool is64BitFP = (CMP00.getValueType() == MVT::f64);
16328          X86ISD::NodeType NTOperator = is64BitFP ?
16329            X86ISD::FSETCCsd : X86ISD::FSETCCss;
16330          // FIXME: need symbolic constants for these magic numbers.
16331          // See X86ATTInstPrinter.cpp:printSSECC().
16332          unsigned x86cc = (cc0 == X86::COND_E) ? 0 : 4;
16333          SDValue OnesOrZeroesF = DAG.getNode(NTOperator, DL, MVT::f32, CMP00, CMP01,
16334                                              DAG.getConstant(x86cc, MVT::i8));
16335          SDValue OnesOrZeroesI = DAG.getNode(ISD::BITCAST, DL, MVT::i32,
16336                                              OnesOrZeroesF);
16337          SDValue ANDed = DAG.getNode(ISD::AND, DL, MVT::i32, OnesOrZeroesI,
16338                                      DAG.getConstant(1, MVT::i32));
16339          SDValue OneBitOfTruth = DAG.getNode(ISD::TRUNCATE, DL, MVT::i8, ANDed);
16340          return OneBitOfTruth;
16341        }
16342      }
16343    }
16344  }
16345  return SDValue();
16346}
16347
16348/// CanFoldXORWithAllOnes - Test whether the XOR operand is a AllOnes vector
16349/// so it can be folded inside ANDNP.
16350static bool CanFoldXORWithAllOnes(const SDNode *N) {
16351  EVT VT = N->getValueType(0);
16352
16353  // Match direct AllOnes for 128 and 256-bit vectors
16354  if (ISD::isBuildVectorAllOnes(N))
16355    return true;
16356
16357  // Look through a bit convert.
16358  if (N->getOpcode() == ISD::BITCAST)
16359    N = N->getOperand(0).getNode();
16360
16361  // Sometimes the operand may come from a insert_subvector building a 256-bit
16362  // allones vector
16363  if (VT.is256BitVector() &&
16364      N->getOpcode() == ISD::INSERT_SUBVECTOR) {
16365    SDValue V1 = N->getOperand(0);
16366    SDValue V2 = N->getOperand(1);
16367
16368    if (V1.getOpcode() == ISD::INSERT_SUBVECTOR &&
16369        V1.getOperand(0).getOpcode() == ISD::UNDEF &&
16370        ISD::isBuildVectorAllOnes(V1.getOperand(1).getNode()) &&
16371        ISD::isBuildVectorAllOnes(V2.getNode()))
16372      return true;
16373  }
16374
16375  return false;
16376}
16377
16378// On AVX/AVX2 the type v8i1 is legalized to v8i16, which is an XMM sized
16379// register. In most cases we actually compare or select YMM-sized registers
16380// and mixing the two types creates horrible code. This method optimizes
16381// some of the transition sequences.
16382static SDValue WidenMaskArithmetic(SDNode *N, SelectionDAG &DAG,
16383                                 TargetLowering::DAGCombinerInfo &DCI,
16384                                 const X86Subtarget *Subtarget) {
16385  EVT VT = N->getValueType(0);
16386  if (!VT.is256BitVector())
16387    return SDValue();
16388
16389  assert((N->getOpcode() == ISD::ANY_EXTEND ||
16390          N->getOpcode() == ISD::ZERO_EXTEND ||
16391          N->getOpcode() == ISD::SIGN_EXTEND) && "Invalid Node");
16392
16393  SDValue Narrow = N->getOperand(0);
16394  EVT NarrowVT = Narrow->getValueType(0);
16395  if (!NarrowVT.is128BitVector())
16396    return SDValue();
16397
16398  if (Narrow->getOpcode() != ISD::XOR &&
16399      Narrow->getOpcode() != ISD::AND &&
16400      Narrow->getOpcode() != ISD::OR)
16401    return SDValue();
16402
16403  SDValue N0  = Narrow->getOperand(0);
16404  SDValue N1  = Narrow->getOperand(1);
16405  DebugLoc DL = Narrow->getDebugLoc();
16406
16407  // The Left side has to be a trunc.
16408  if (N0.getOpcode() != ISD::TRUNCATE)
16409    return SDValue();
16410
16411  // The type of the truncated inputs.
16412  EVT WideVT = N0->getOperand(0)->getValueType(0);
16413  if (WideVT != VT)
16414    return SDValue();
16415
16416  // The right side has to be a 'trunc' or a constant vector.
16417  bool RHSTrunc = N1.getOpcode() == ISD::TRUNCATE;
16418  bool RHSConst = (isSplatVector(N1.getNode()) &&
16419                   isa<ConstantSDNode>(N1->getOperand(0)));
16420  if (!RHSTrunc && !RHSConst)
16421    return SDValue();
16422
16423  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
16424
16425  if (!TLI.isOperationLegalOrPromote(Narrow->getOpcode(), WideVT))
16426    return SDValue();
16427
16428  // Set N0 and N1 to hold the inputs to the new wide operation.
16429  N0 = N0->getOperand(0);
16430  if (RHSConst) {
16431    N1 = DAG.getNode(ISD::ZERO_EXTEND, DL, WideVT.getScalarType(),
16432                     N1->getOperand(0));
16433    SmallVector<SDValue, 8> C(WideVT.getVectorNumElements(), N1);
16434    N1 = DAG.getNode(ISD::BUILD_VECTOR, DL, WideVT, &C[0], C.size());
16435  } else if (RHSTrunc) {
16436    N1 = N1->getOperand(0);
16437  }
16438
16439  // Generate the wide operation.
16440  SDValue Op = DAG.getNode(Narrow->getOpcode(), DL, WideVT, N0, N1);
16441  unsigned Opcode = N->getOpcode();
16442  switch (Opcode) {
16443  case ISD::ANY_EXTEND:
16444    return Op;
16445  case ISD::ZERO_EXTEND: {
16446    unsigned InBits = NarrowVT.getScalarType().getSizeInBits();
16447    APInt Mask = APInt::getAllOnesValue(InBits);
16448    Mask = Mask.zext(VT.getScalarType().getSizeInBits());
16449    return DAG.getNode(ISD::AND, DL, VT,
16450                       Op, DAG.getConstant(Mask, VT));
16451  }
16452  case ISD::SIGN_EXTEND:
16453    return DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, VT,
16454                       Op, DAG.getValueType(NarrowVT));
16455  default:
16456    llvm_unreachable("Unexpected opcode");
16457  }
16458}
16459
16460static SDValue PerformAndCombine(SDNode *N, SelectionDAG &DAG,
16461                                 TargetLowering::DAGCombinerInfo &DCI,
16462                                 const X86Subtarget *Subtarget) {
16463  EVT VT = N->getValueType(0);
16464  if (DCI.isBeforeLegalizeOps())
16465    return SDValue();
16466
16467  SDValue R = CMPEQCombine(N, DAG, DCI, Subtarget);
16468  if (R.getNode())
16469    return R;
16470
16471  // Create BLSI, and BLSR instructions
16472  // BLSI is X & (-X)
16473  // BLSR is X & (X-1)
16474  if (Subtarget->hasBMI() && (VT == MVT::i32 || VT == MVT::i64)) {
16475    SDValue N0 = N->getOperand(0);
16476    SDValue N1 = N->getOperand(1);
16477    DebugLoc DL = N->getDebugLoc();
16478
16479    // Check LHS for neg
16480    if (N0.getOpcode() == ISD::SUB && N0.getOperand(1) == N1 &&
16481        isZero(N0.getOperand(0)))
16482      return DAG.getNode(X86ISD::BLSI, DL, VT, N1);
16483
16484    // Check RHS for neg
16485    if (N1.getOpcode() == ISD::SUB && N1.getOperand(1) == N0 &&
16486        isZero(N1.getOperand(0)))
16487      return DAG.getNode(X86ISD::BLSI, DL, VT, N0);
16488
16489    // Check LHS for X-1
16490    if (N0.getOpcode() == ISD::ADD && N0.getOperand(0) == N1 &&
16491        isAllOnes(N0.getOperand(1)))
16492      return DAG.getNode(X86ISD::BLSR, DL, VT, N1);
16493
16494    // Check RHS for X-1
16495    if (N1.getOpcode() == ISD::ADD && N1.getOperand(0) == N0 &&
16496        isAllOnes(N1.getOperand(1)))
16497      return DAG.getNode(X86ISD::BLSR, DL, VT, N0);
16498
16499    return SDValue();
16500  }
16501
16502  // Want to form ANDNP nodes:
16503  // 1) In the hopes of then easily combining them with OR and AND nodes
16504  //    to form PBLEND/PSIGN.
16505  // 2) To match ANDN packed intrinsics
16506  if (VT != MVT::v2i64 && VT != MVT::v4i64)
16507    return SDValue();
16508
16509  SDValue N0 = N->getOperand(0);
16510  SDValue N1 = N->getOperand(1);
16511  DebugLoc DL = N->getDebugLoc();
16512
16513  // Check LHS for vnot
16514  if (N0.getOpcode() == ISD::XOR &&
16515      //ISD::isBuildVectorAllOnes(N0.getOperand(1).getNode()))
16516      CanFoldXORWithAllOnes(N0.getOperand(1).getNode()))
16517    return DAG.getNode(X86ISD::ANDNP, DL, VT, N0.getOperand(0), N1);
16518
16519  // Check RHS for vnot
16520  if (N1.getOpcode() == ISD::XOR &&
16521      //ISD::isBuildVectorAllOnes(N1.getOperand(1).getNode()))
16522      CanFoldXORWithAllOnes(N1.getOperand(1).getNode()))
16523    return DAG.getNode(X86ISD::ANDNP, DL, VT, N1.getOperand(0), N0);
16524
16525  return SDValue();
16526}
16527
16528static SDValue PerformOrCombine(SDNode *N, SelectionDAG &DAG,
16529                                TargetLowering::DAGCombinerInfo &DCI,
16530                                const X86Subtarget *Subtarget) {
16531  EVT VT = N->getValueType(0);
16532  if (DCI.isBeforeLegalizeOps())
16533    return SDValue();
16534
16535  SDValue R = CMPEQCombine(N, DAG, DCI, Subtarget);
16536  if (R.getNode())
16537    return R;
16538
16539  SDValue N0 = N->getOperand(0);
16540  SDValue N1 = N->getOperand(1);
16541
16542  // look for psign/blend
16543  if (VT == MVT::v2i64 || VT == MVT::v4i64) {
16544    if (!Subtarget->hasSSSE3() ||
16545        (VT == MVT::v4i64 && !Subtarget->hasInt256()))
16546      return SDValue();
16547
16548    // Canonicalize pandn to RHS
16549    if (N0.getOpcode() == X86ISD::ANDNP)
16550      std::swap(N0, N1);
16551    // or (and (m, y), (pandn m, x))
16552    if (N0.getOpcode() == ISD::AND && N1.getOpcode() == X86ISD::ANDNP) {
16553      SDValue Mask = N1.getOperand(0);
16554      SDValue X    = N1.getOperand(1);
16555      SDValue Y;
16556      if (N0.getOperand(0) == Mask)
16557        Y = N0.getOperand(1);
16558      if (N0.getOperand(1) == Mask)
16559        Y = N0.getOperand(0);
16560
16561      // Check to see if the mask appeared in both the AND and ANDNP and
16562      if (!Y.getNode())
16563        return SDValue();
16564
16565      // Validate that X, Y, and Mask are BIT_CONVERTS, and see through them.
16566      // Look through mask bitcast.
16567      if (Mask.getOpcode() == ISD::BITCAST)
16568        Mask = Mask.getOperand(0);
16569      if (X.getOpcode() == ISD::BITCAST)
16570        X = X.getOperand(0);
16571      if (Y.getOpcode() == ISD::BITCAST)
16572        Y = Y.getOperand(0);
16573
16574      EVT MaskVT = Mask.getValueType();
16575
16576      // Validate that the Mask operand is a vector sra node.
16577      // FIXME: what to do for bytes, since there is a psignb/pblendvb, but
16578      // there is no psrai.b
16579      unsigned EltBits = MaskVT.getVectorElementType().getSizeInBits();
16580      unsigned SraAmt = ~0;
16581      if (Mask.getOpcode() == ISD::SRA) {
16582        SDValue Amt = Mask.getOperand(1);
16583        if (isSplatVector(Amt.getNode())) {
16584          SDValue SclrAmt = Amt->getOperand(0);
16585          if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(SclrAmt))
16586            SraAmt = C->getZExtValue();
16587        }
16588      } else if (Mask.getOpcode() == X86ISD::VSRAI) {
16589        SDValue SraC = Mask.getOperand(1);
16590        SraAmt  = cast<ConstantSDNode>(SraC)->getZExtValue();
16591      }
16592      if ((SraAmt + 1) != EltBits)
16593        return SDValue();
16594
16595      DebugLoc DL = N->getDebugLoc();
16596
16597      // Now we know we at least have a plendvb with the mask val.  See if
16598      // we can form a psignb/w/d.
16599      // psign = x.type == y.type == mask.type && y = sub(0, x);
16600      if (Y.getOpcode() == ISD::SUB && Y.getOperand(1) == X &&
16601          ISD::isBuildVectorAllZeros(Y.getOperand(0).getNode()) &&
16602          X.getValueType() == MaskVT && Y.getValueType() == MaskVT) {
16603        assert((EltBits == 8 || EltBits == 16 || EltBits == 32) &&
16604               "Unsupported VT for PSIGN");
16605        Mask = DAG.getNode(X86ISD::PSIGN, DL, MaskVT, X, Mask.getOperand(0));
16606        return DAG.getNode(ISD::BITCAST, DL, VT, Mask);
16607      }
16608      // PBLENDVB only available on SSE 4.1
16609      if (!Subtarget->hasSSE41())
16610        return SDValue();
16611
16612      EVT BlendVT = (VT == MVT::v4i64) ? MVT::v32i8 : MVT::v16i8;
16613
16614      X = DAG.getNode(ISD::BITCAST, DL, BlendVT, X);
16615      Y = DAG.getNode(ISD::BITCAST, DL, BlendVT, Y);
16616      Mask = DAG.getNode(ISD::BITCAST, DL, BlendVT, Mask);
16617      Mask = DAG.getNode(ISD::VSELECT, DL, BlendVT, Mask, Y, X);
16618      return DAG.getNode(ISD::BITCAST, DL, VT, Mask);
16619    }
16620  }
16621
16622  if (VT != MVT::i16 && VT != MVT::i32 && VT != MVT::i64)
16623    return SDValue();
16624
16625  // fold (or (x << c) | (y >> (64 - c))) ==> (shld64 x, y, c)
16626  if (N0.getOpcode() == ISD::SRL && N1.getOpcode() == ISD::SHL)
16627    std::swap(N0, N1);
16628  if (N0.getOpcode() != ISD::SHL || N1.getOpcode() != ISD::SRL)
16629    return SDValue();
16630  if (!N0.hasOneUse() || !N1.hasOneUse())
16631    return SDValue();
16632
16633  SDValue ShAmt0 = N0.getOperand(1);
16634  if (ShAmt0.getValueType() != MVT::i8)
16635    return SDValue();
16636  SDValue ShAmt1 = N1.getOperand(1);
16637  if (ShAmt1.getValueType() != MVT::i8)
16638    return SDValue();
16639  if (ShAmt0.getOpcode() == ISD::TRUNCATE)
16640    ShAmt0 = ShAmt0.getOperand(0);
16641  if (ShAmt1.getOpcode() == ISD::TRUNCATE)
16642    ShAmt1 = ShAmt1.getOperand(0);
16643
16644  DebugLoc DL = N->getDebugLoc();
16645  unsigned Opc = X86ISD::SHLD;
16646  SDValue Op0 = N0.getOperand(0);
16647  SDValue Op1 = N1.getOperand(0);
16648  if (ShAmt0.getOpcode() == ISD::SUB) {
16649    Opc = X86ISD::SHRD;
16650    std::swap(Op0, Op1);
16651    std::swap(ShAmt0, ShAmt1);
16652  }
16653
16654  unsigned Bits = VT.getSizeInBits();
16655  if (ShAmt1.getOpcode() == ISD::SUB) {
16656    SDValue Sum = ShAmt1.getOperand(0);
16657    if (ConstantSDNode *SumC = dyn_cast<ConstantSDNode>(Sum)) {
16658      SDValue ShAmt1Op1 = ShAmt1.getOperand(1);
16659      if (ShAmt1Op1.getNode()->getOpcode() == ISD::TRUNCATE)
16660        ShAmt1Op1 = ShAmt1Op1.getOperand(0);
16661      if (SumC->getSExtValue() == Bits && ShAmt1Op1 == ShAmt0)
16662        return DAG.getNode(Opc, DL, VT,
16663                           Op0, Op1,
16664                           DAG.getNode(ISD::TRUNCATE, DL,
16665                                       MVT::i8, ShAmt0));
16666    }
16667  } else if (ConstantSDNode *ShAmt1C = dyn_cast<ConstantSDNode>(ShAmt1)) {
16668    ConstantSDNode *ShAmt0C = dyn_cast<ConstantSDNode>(ShAmt0);
16669    if (ShAmt0C &&
16670        ShAmt0C->getSExtValue() + ShAmt1C->getSExtValue() == Bits)
16671      return DAG.getNode(Opc, DL, VT,
16672                         N0.getOperand(0), N1.getOperand(0),
16673                         DAG.getNode(ISD::TRUNCATE, DL,
16674                                       MVT::i8, ShAmt0));
16675  }
16676
16677  return SDValue();
16678}
16679
16680// Generate NEG and CMOV for integer abs.
16681static SDValue performIntegerAbsCombine(SDNode *N, SelectionDAG &DAG) {
16682  EVT VT = N->getValueType(0);
16683
16684  // Since X86 does not have CMOV for 8-bit integer, we don't convert
16685  // 8-bit integer abs to NEG and CMOV.
16686  if (VT.isInteger() && VT.getSizeInBits() == 8)
16687    return SDValue();
16688
16689  SDValue N0 = N->getOperand(0);
16690  SDValue N1 = N->getOperand(1);
16691  DebugLoc DL = N->getDebugLoc();
16692
16693  // Check pattern of XOR(ADD(X,Y), Y) where Y is SRA(X, size(X)-1)
16694  // and change it to SUB and CMOV.
16695  if (VT.isInteger() && N->getOpcode() == ISD::XOR &&
16696      N0.getOpcode() == ISD::ADD &&
16697      N0.getOperand(1) == N1 &&
16698      N1.getOpcode() == ISD::SRA &&
16699      N1.getOperand(0) == N0.getOperand(0))
16700    if (ConstantSDNode *Y1C = dyn_cast<ConstantSDNode>(N1.getOperand(1)))
16701      if (Y1C->getAPIntValue() == VT.getSizeInBits()-1) {
16702        // Generate SUB & CMOV.
16703        SDValue Neg = DAG.getNode(X86ISD::SUB, DL, DAG.getVTList(VT, MVT::i32),
16704                                  DAG.getConstant(0, VT), N0.getOperand(0));
16705
16706        SDValue Ops[] = { N0.getOperand(0), Neg,
16707                          DAG.getConstant(X86::COND_GE, MVT::i8),
16708                          SDValue(Neg.getNode(), 1) };
16709        return DAG.getNode(X86ISD::CMOV, DL, DAG.getVTList(VT, MVT::Glue),
16710                           Ops, array_lengthof(Ops));
16711      }
16712  return SDValue();
16713}
16714
16715// PerformXorCombine - Attempts to turn XOR nodes into BLSMSK nodes
16716static SDValue PerformXorCombine(SDNode *N, SelectionDAG &DAG,
16717                                 TargetLowering::DAGCombinerInfo &DCI,
16718                                 const X86Subtarget *Subtarget) {
16719  EVT VT = N->getValueType(0);
16720  if (DCI.isBeforeLegalizeOps())
16721    return SDValue();
16722
16723  if (Subtarget->hasCMov()) {
16724    SDValue RV = performIntegerAbsCombine(N, DAG);
16725    if (RV.getNode())
16726      return RV;
16727  }
16728
16729  // Try forming BMI if it is available.
16730  if (!Subtarget->hasBMI())
16731    return SDValue();
16732
16733  if (VT != MVT::i32 && VT != MVT::i64)
16734    return SDValue();
16735
16736  assert(Subtarget->hasBMI() && "Creating BLSMSK requires BMI instructions");
16737
16738  // Create BLSMSK instructions by finding X ^ (X-1)
16739  SDValue N0 = N->getOperand(0);
16740  SDValue N1 = N->getOperand(1);
16741  DebugLoc DL = N->getDebugLoc();
16742
16743  if (N0.getOpcode() == ISD::ADD && N0.getOperand(0) == N1 &&
16744      isAllOnes(N0.getOperand(1)))
16745    return DAG.getNode(X86ISD::BLSMSK, DL, VT, N1);
16746
16747  if (N1.getOpcode() == ISD::ADD && N1.getOperand(0) == N0 &&
16748      isAllOnes(N1.getOperand(1)))
16749    return DAG.getNode(X86ISD::BLSMSK, DL, VT, N0);
16750
16751  return SDValue();
16752}
16753
16754/// PerformLOADCombine - Do target-specific dag combines on LOAD nodes.
16755static SDValue PerformLOADCombine(SDNode *N, SelectionDAG &DAG,
16756                                  TargetLowering::DAGCombinerInfo &DCI,
16757                                  const X86Subtarget *Subtarget) {
16758  LoadSDNode *Ld = cast<LoadSDNode>(N);
16759  EVT RegVT = Ld->getValueType(0);
16760  EVT MemVT = Ld->getMemoryVT();
16761  DebugLoc dl = Ld->getDebugLoc();
16762  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
16763  unsigned RegSz = RegVT.getSizeInBits();
16764
16765  // On Sandybridge unaligned 256bit loads are inefficient.
16766  ISD::LoadExtType Ext = Ld->getExtensionType();
16767  unsigned Alignment = Ld->getAlignment();
16768  bool IsAligned = Alignment == 0 || Alignment >= MemVT.getSizeInBits()/8;
16769  if (RegVT.is256BitVector() && !Subtarget->hasInt256() &&
16770      !DCI.isBeforeLegalizeOps() && !IsAligned && Ext == ISD::NON_EXTLOAD) {
16771    unsigned NumElems = RegVT.getVectorNumElements();
16772    if (NumElems < 2)
16773      return SDValue();
16774
16775    SDValue Ptr = Ld->getBasePtr();
16776    SDValue Increment = DAG.getConstant(16, TLI.getPointerTy());
16777
16778    EVT HalfVT = EVT::getVectorVT(*DAG.getContext(), MemVT.getScalarType(),
16779                                  NumElems/2);
16780    SDValue Load1 = DAG.getLoad(HalfVT, dl, Ld->getChain(), Ptr,
16781                                Ld->getPointerInfo(), Ld->isVolatile(),
16782                                Ld->isNonTemporal(), Ld->isInvariant(),
16783                                Alignment);
16784    Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, Increment);
16785    SDValue Load2 = DAG.getLoad(HalfVT, dl, Ld->getChain(), Ptr,
16786                                Ld->getPointerInfo(), Ld->isVolatile(),
16787                                Ld->isNonTemporal(), Ld->isInvariant(),
16788                                std::min(16U, Alignment));
16789    SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
16790                             Load1.getValue(1),
16791                             Load2.getValue(1));
16792
16793    SDValue NewVec = DAG.getUNDEF(RegVT);
16794    NewVec = Insert128BitVector(NewVec, Load1, 0, DAG, dl);
16795    NewVec = Insert128BitVector(NewVec, Load2, NumElems/2, DAG, dl);
16796    return DCI.CombineTo(N, NewVec, TF, true);
16797  }
16798
16799  // If this is a vector EXT Load then attempt to optimize it using a
16800  // shuffle. If SSSE3 is not available we may emit an illegal shuffle but the
16801  // expansion is still better than scalar code.
16802  // We generate X86ISD::VSEXT for SEXTLOADs if it's available, otherwise we'll
16803  // emit a shuffle and a arithmetic shift.
16804  // TODO: It is possible to support ZExt by zeroing the undef values
16805  // during the shuffle phase or after the shuffle.
16806  if (RegVT.isVector() && RegVT.isInteger() && Subtarget->hasSSE2() &&
16807      (Ext == ISD::EXTLOAD || Ext == ISD::SEXTLOAD)) {
16808    assert(MemVT != RegVT && "Cannot extend to the same type");
16809    assert(MemVT.isVector() && "Must load a vector from memory");
16810
16811    unsigned NumElems = RegVT.getVectorNumElements();
16812    unsigned MemSz = MemVT.getSizeInBits();
16813    assert(RegSz > MemSz && "Register size must be greater than the mem size");
16814
16815    if (Ext == ISD::SEXTLOAD && RegSz == 256 && !Subtarget->hasInt256())
16816      return SDValue();
16817
16818    // All sizes must be a power of two.
16819    if (!isPowerOf2_32(RegSz * MemSz * NumElems))
16820      return SDValue();
16821
16822    // Attempt to load the original value using scalar loads.
16823    // Find the largest scalar type that divides the total loaded size.
16824    MVT SclrLoadTy = MVT::i8;
16825    for (unsigned tp = MVT::FIRST_INTEGER_VALUETYPE;
16826         tp < MVT::LAST_INTEGER_VALUETYPE; ++tp) {
16827      MVT Tp = (MVT::SimpleValueType)tp;
16828      if (TLI.isTypeLegal(Tp) && ((MemSz % Tp.getSizeInBits()) == 0)) {
16829        SclrLoadTy = Tp;
16830      }
16831    }
16832
16833    // On 32bit systems, we can't save 64bit integers. Try bitcasting to F64.
16834    if (TLI.isTypeLegal(MVT::f64) && SclrLoadTy.getSizeInBits() < 64 &&
16835        (64 <= MemSz))
16836      SclrLoadTy = MVT::f64;
16837
16838    // Calculate the number of scalar loads that we need to perform
16839    // in order to load our vector from memory.
16840    unsigned NumLoads = MemSz / SclrLoadTy.getSizeInBits();
16841    if (Ext == ISD::SEXTLOAD && NumLoads > 1)
16842      return SDValue();
16843
16844    unsigned loadRegZize = RegSz;
16845    if (Ext == ISD::SEXTLOAD && RegSz == 256)
16846      loadRegZize /= 2;
16847
16848    // Represent our vector as a sequence of elements which are the
16849    // largest scalar that we can load.
16850    EVT LoadUnitVecVT = EVT::getVectorVT(*DAG.getContext(), SclrLoadTy,
16851      loadRegZize/SclrLoadTy.getSizeInBits());
16852
16853    // Represent the data using the same element type that is stored in
16854    // memory. In practice, we ''widen'' MemVT.
16855    EVT WideVecVT =
16856          EVT::getVectorVT(*DAG.getContext(), MemVT.getScalarType(),
16857                       loadRegZize/MemVT.getScalarType().getSizeInBits());
16858
16859    assert(WideVecVT.getSizeInBits() == LoadUnitVecVT.getSizeInBits() &&
16860      "Invalid vector type");
16861
16862    // We can't shuffle using an illegal type.
16863    if (!TLI.isTypeLegal(WideVecVT))
16864      return SDValue();
16865
16866    SmallVector<SDValue, 8> Chains;
16867    SDValue Ptr = Ld->getBasePtr();
16868    SDValue Increment = DAG.getConstant(SclrLoadTy.getSizeInBits()/8,
16869                                        TLI.getPointerTy());
16870    SDValue Res = DAG.getUNDEF(LoadUnitVecVT);
16871
16872    for (unsigned i = 0; i < NumLoads; ++i) {
16873      // Perform a single load.
16874      SDValue ScalarLoad = DAG.getLoad(SclrLoadTy, dl, Ld->getChain(),
16875                                       Ptr, Ld->getPointerInfo(),
16876                                       Ld->isVolatile(), Ld->isNonTemporal(),
16877                                       Ld->isInvariant(), Ld->getAlignment());
16878      Chains.push_back(ScalarLoad.getValue(1));
16879      // Create the first element type using SCALAR_TO_VECTOR in order to avoid
16880      // another round of DAGCombining.
16881      if (i == 0)
16882        Res = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, LoadUnitVecVT, ScalarLoad);
16883      else
16884        Res = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, LoadUnitVecVT, Res,
16885                          ScalarLoad, DAG.getIntPtrConstant(i));
16886
16887      Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, Increment);
16888    }
16889
16890    SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, &Chains[0],
16891                               Chains.size());
16892
16893    // Bitcast the loaded value to a vector of the original element type, in
16894    // the size of the target vector type.
16895    SDValue SlicedVec = DAG.getNode(ISD::BITCAST, dl, WideVecVT, Res);
16896    unsigned SizeRatio = RegSz/MemSz;
16897
16898    if (Ext == ISD::SEXTLOAD) {
16899      // If we have SSE4.1 we can directly emit a VSEXT node.
16900      if (Subtarget->hasSSE41()) {
16901        SDValue Sext = DAG.getNode(X86ISD::VSEXT, dl, RegVT, SlicedVec);
16902        return DCI.CombineTo(N, Sext, TF, true);
16903      }
16904
16905      // Otherwise we'll shuffle the small elements in the high bits of the
16906      // larger type and perform an arithmetic shift. If the shift is not legal
16907      // it's better to scalarize.
16908      if (!TLI.isOperationLegalOrCustom(ISD::SRA, RegVT))
16909        return SDValue();
16910
16911      // Redistribute the loaded elements into the different locations.
16912      SmallVector<int, 8> ShuffleVec(NumElems * SizeRatio, -1);
16913      for (unsigned i = 0; i != NumElems; ++i)
16914        ShuffleVec[i*SizeRatio + SizeRatio-1] = i;
16915
16916      SDValue Shuff = DAG.getVectorShuffle(WideVecVT, dl, SlicedVec,
16917                                           DAG.getUNDEF(WideVecVT),
16918                                           &ShuffleVec[0]);
16919
16920      Shuff = DAG.getNode(ISD::BITCAST, dl, RegVT, Shuff);
16921
16922      // Build the arithmetic shift.
16923      unsigned Amt = RegVT.getVectorElementType().getSizeInBits() -
16924                     MemVT.getVectorElementType().getSizeInBits();
16925      Shuff = DAG.getNode(ISD::SRA, dl, RegVT, Shuff,
16926                          DAG.getConstant(Amt, RegVT));
16927
16928      return DCI.CombineTo(N, Shuff, TF, true);
16929    }
16930
16931    // Redistribute the loaded elements into the different locations.
16932    SmallVector<int, 8> ShuffleVec(NumElems * SizeRatio, -1);
16933    for (unsigned i = 0; i != NumElems; ++i)
16934      ShuffleVec[i*SizeRatio] = i;
16935
16936    SDValue Shuff = DAG.getVectorShuffle(WideVecVT, dl, SlicedVec,
16937                                         DAG.getUNDEF(WideVecVT),
16938                                         &ShuffleVec[0]);
16939
16940    // Bitcast to the requested type.
16941    Shuff = DAG.getNode(ISD::BITCAST, dl, RegVT, Shuff);
16942    // Replace the original load with the new sequence
16943    // and return the new chain.
16944    return DCI.CombineTo(N, Shuff, TF, true);
16945  }
16946
16947  return SDValue();
16948}
16949
16950/// PerformSTORECombine - Do target-specific dag combines on STORE nodes.
16951static SDValue PerformSTORECombine(SDNode *N, SelectionDAG &DAG,
16952                                   const X86Subtarget *Subtarget) {
16953  StoreSDNode *St = cast<StoreSDNode>(N);
16954  EVT VT = St->getValue().getValueType();
16955  EVT StVT = St->getMemoryVT();
16956  DebugLoc dl = St->getDebugLoc();
16957  SDValue StoredVal = St->getOperand(1);
16958  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
16959
16960  // If we are saving a concatenation of two XMM registers, perform two stores.
16961  // On Sandy Bridge, 256-bit memory operations are executed by two
16962  // 128-bit ports. However, on Haswell it is better to issue a single 256-bit
16963  // memory  operation.
16964  unsigned Alignment = St->getAlignment();
16965  bool IsAligned = Alignment == 0 || Alignment >= VT.getSizeInBits()/8;
16966  if (VT.is256BitVector() && !Subtarget->hasInt256() &&
16967      StVT == VT && !IsAligned) {
16968    unsigned NumElems = VT.getVectorNumElements();
16969    if (NumElems < 2)
16970      return SDValue();
16971
16972    SDValue Value0 = Extract128BitVector(StoredVal, 0, DAG, dl);
16973    SDValue Value1 = Extract128BitVector(StoredVal, NumElems/2, DAG, dl);
16974
16975    SDValue Stride = DAG.getConstant(16, TLI.getPointerTy());
16976    SDValue Ptr0 = St->getBasePtr();
16977    SDValue Ptr1 = DAG.getNode(ISD::ADD, dl, Ptr0.getValueType(), Ptr0, Stride);
16978
16979    SDValue Ch0 = DAG.getStore(St->getChain(), dl, Value0, Ptr0,
16980                                St->getPointerInfo(), St->isVolatile(),
16981                                St->isNonTemporal(), Alignment);
16982    SDValue Ch1 = DAG.getStore(St->getChain(), dl, Value1, Ptr1,
16983                                St->getPointerInfo(), St->isVolatile(),
16984                                St->isNonTemporal(),
16985                                std::min(16U, Alignment));
16986    return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Ch0, Ch1);
16987  }
16988
16989  // Optimize trunc store (of multiple scalars) to shuffle and store.
16990  // First, pack all of the elements in one place. Next, store to memory
16991  // in fewer chunks.
16992  if (St->isTruncatingStore() && VT.isVector()) {
16993    const TargetLowering &TLI = DAG.getTargetLoweringInfo();
16994    unsigned NumElems = VT.getVectorNumElements();
16995    assert(StVT != VT && "Cannot truncate to the same type");
16996    unsigned FromSz = VT.getVectorElementType().getSizeInBits();
16997    unsigned ToSz = StVT.getVectorElementType().getSizeInBits();
16998
16999    // From, To sizes and ElemCount must be pow of two
17000    if (!isPowerOf2_32(NumElems * FromSz * ToSz)) return SDValue();
17001    // We are going to use the original vector elt for storing.
17002    // Accumulated smaller vector elements must be a multiple of the store size.
17003    if (0 != (NumElems * FromSz) % ToSz) return SDValue();
17004
17005    unsigned SizeRatio  = FromSz / ToSz;
17006
17007    assert(SizeRatio * NumElems * ToSz == VT.getSizeInBits());
17008
17009    // Create a type on which we perform the shuffle
17010    EVT WideVecVT = EVT::getVectorVT(*DAG.getContext(),
17011            StVT.getScalarType(), NumElems*SizeRatio);
17012
17013    assert(WideVecVT.getSizeInBits() == VT.getSizeInBits());
17014
17015    SDValue WideVec = DAG.getNode(ISD::BITCAST, dl, WideVecVT, St->getValue());
17016    SmallVector<int, 8> ShuffleVec(NumElems * SizeRatio, -1);
17017    for (unsigned i = 0; i != NumElems; ++i)
17018      ShuffleVec[i] = i * SizeRatio;
17019
17020    // Can't shuffle using an illegal type.
17021    if (!TLI.isTypeLegal(WideVecVT))
17022      return SDValue();
17023
17024    SDValue Shuff = DAG.getVectorShuffle(WideVecVT, dl, WideVec,
17025                                         DAG.getUNDEF(WideVecVT),
17026                                         &ShuffleVec[0]);
17027    // At this point all of the data is stored at the bottom of the
17028    // register. We now need to save it to mem.
17029
17030    // Find the largest store unit
17031    MVT StoreType = MVT::i8;
17032    for (unsigned tp = MVT::FIRST_INTEGER_VALUETYPE;
17033         tp < MVT::LAST_INTEGER_VALUETYPE; ++tp) {
17034      MVT Tp = (MVT::SimpleValueType)tp;
17035      if (TLI.isTypeLegal(Tp) && Tp.getSizeInBits() <= NumElems * ToSz)
17036        StoreType = Tp;
17037    }
17038
17039    // On 32bit systems, we can't save 64bit integers. Try bitcasting to F64.
17040    if (TLI.isTypeLegal(MVT::f64) && StoreType.getSizeInBits() < 64 &&
17041        (64 <= NumElems * ToSz))
17042      StoreType = MVT::f64;
17043
17044    // Bitcast the original vector into a vector of store-size units
17045    EVT StoreVecVT = EVT::getVectorVT(*DAG.getContext(),
17046            StoreType, VT.getSizeInBits()/StoreType.getSizeInBits());
17047    assert(StoreVecVT.getSizeInBits() == VT.getSizeInBits());
17048    SDValue ShuffWide = DAG.getNode(ISD::BITCAST, dl, StoreVecVT, Shuff);
17049    SmallVector<SDValue, 8> Chains;
17050    SDValue Increment = DAG.getConstant(StoreType.getSizeInBits()/8,
17051                                        TLI.getPointerTy());
17052    SDValue Ptr = St->getBasePtr();
17053
17054    // Perform one or more big stores into memory.
17055    for (unsigned i=0, e=(ToSz*NumElems)/StoreType.getSizeInBits(); i!=e; ++i) {
17056      SDValue SubVec = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl,
17057                                   StoreType, ShuffWide,
17058                                   DAG.getIntPtrConstant(i));
17059      SDValue Ch = DAG.getStore(St->getChain(), dl, SubVec, Ptr,
17060                                St->getPointerInfo(), St->isVolatile(),
17061                                St->isNonTemporal(), St->getAlignment());
17062      Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, Increment);
17063      Chains.push_back(Ch);
17064    }
17065
17066    return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, &Chains[0],
17067                               Chains.size());
17068  }
17069
17070  // Turn load->store of MMX types into GPR load/stores.  This avoids clobbering
17071  // the FP state in cases where an emms may be missing.
17072  // A preferable solution to the general problem is to figure out the right
17073  // places to insert EMMS.  This qualifies as a quick hack.
17074
17075  // Similarly, turn load->store of i64 into double load/stores in 32-bit mode.
17076  if (VT.getSizeInBits() != 64)
17077    return SDValue();
17078
17079  const Function *F = DAG.getMachineFunction().getFunction();
17080  bool NoImplicitFloatOps = F->getAttributes().
17081    hasAttribute(AttributeSet::FunctionIndex, Attribute::NoImplicitFloat);
17082  bool F64IsLegal = !DAG.getTarget().Options.UseSoftFloat && !NoImplicitFloatOps
17083                     && Subtarget->hasSSE2();
17084  if ((VT.isVector() ||
17085       (VT == MVT::i64 && F64IsLegal && !Subtarget->is64Bit())) &&
17086      isa<LoadSDNode>(St->getValue()) &&
17087      !cast<LoadSDNode>(St->getValue())->isVolatile() &&
17088      St->getChain().hasOneUse() && !St->isVolatile()) {
17089    SDNode* LdVal = St->getValue().getNode();
17090    LoadSDNode *Ld = 0;
17091    int TokenFactorIndex = -1;
17092    SmallVector<SDValue, 8> Ops;
17093    SDNode* ChainVal = St->getChain().getNode();
17094    // Must be a store of a load.  We currently handle two cases:  the load
17095    // is a direct child, and it's under an intervening TokenFactor.  It is
17096    // possible to dig deeper under nested TokenFactors.
17097    if (ChainVal == LdVal)
17098      Ld = cast<LoadSDNode>(St->getChain());
17099    else if (St->getValue().hasOneUse() &&
17100             ChainVal->getOpcode() == ISD::TokenFactor) {
17101      for (unsigned i = 0, e = ChainVal->getNumOperands(); i != e; ++i) {
17102        if (ChainVal->getOperand(i).getNode() == LdVal) {
17103          TokenFactorIndex = i;
17104          Ld = cast<LoadSDNode>(St->getValue());
17105        } else
17106          Ops.push_back(ChainVal->getOperand(i));
17107      }
17108    }
17109
17110    if (!Ld || !ISD::isNormalLoad(Ld))
17111      return SDValue();
17112
17113    // If this is not the MMX case, i.e. we are just turning i64 load/store
17114    // into f64 load/store, avoid the transformation if there are multiple
17115    // uses of the loaded value.
17116    if (!VT.isVector() && !Ld->hasNUsesOfValue(1, 0))
17117      return SDValue();
17118
17119    DebugLoc LdDL = Ld->getDebugLoc();
17120    DebugLoc StDL = N->getDebugLoc();
17121    // If we are a 64-bit capable x86, lower to a single movq load/store pair.
17122    // Otherwise, if it's legal to use f64 SSE instructions, use f64 load/store
17123    // pair instead.
17124    if (Subtarget->is64Bit() || F64IsLegal) {
17125      EVT LdVT = Subtarget->is64Bit() ? MVT::i64 : MVT::f64;
17126      SDValue NewLd = DAG.getLoad(LdVT, LdDL, Ld->getChain(), Ld->getBasePtr(),
17127                                  Ld->getPointerInfo(), Ld->isVolatile(),
17128                                  Ld->isNonTemporal(), Ld->isInvariant(),
17129                                  Ld->getAlignment());
17130      SDValue NewChain = NewLd.getValue(1);
17131      if (TokenFactorIndex != -1) {
17132        Ops.push_back(NewChain);
17133        NewChain = DAG.getNode(ISD::TokenFactor, LdDL, MVT::Other, &Ops[0],
17134                               Ops.size());
17135      }
17136      return DAG.getStore(NewChain, StDL, NewLd, St->getBasePtr(),
17137                          St->getPointerInfo(),
17138                          St->isVolatile(), St->isNonTemporal(),
17139                          St->getAlignment());
17140    }
17141
17142    // Otherwise, lower to two pairs of 32-bit loads / stores.
17143    SDValue LoAddr = Ld->getBasePtr();
17144    SDValue HiAddr = DAG.getNode(ISD::ADD, LdDL, MVT::i32, LoAddr,
17145                                 DAG.getConstant(4, MVT::i32));
17146
17147    SDValue LoLd = DAG.getLoad(MVT::i32, LdDL, Ld->getChain(), LoAddr,
17148                               Ld->getPointerInfo(),
17149                               Ld->isVolatile(), Ld->isNonTemporal(),
17150                               Ld->isInvariant(), Ld->getAlignment());
17151    SDValue HiLd = DAG.getLoad(MVT::i32, LdDL, Ld->getChain(), HiAddr,
17152                               Ld->getPointerInfo().getWithOffset(4),
17153                               Ld->isVolatile(), Ld->isNonTemporal(),
17154                               Ld->isInvariant(),
17155                               MinAlign(Ld->getAlignment(), 4));
17156
17157    SDValue NewChain = LoLd.getValue(1);
17158    if (TokenFactorIndex != -1) {
17159      Ops.push_back(LoLd);
17160      Ops.push_back(HiLd);
17161      NewChain = DAG.getNode(ISD::TokenFactor, LdDL, MVT::Other, &Ops[0],
17162                             Ops.size());
17163    }
17164
17165    LoAddr = St->getBasePtr();
17166    HiAddr = DAG.getNode(ISD::ADD, StDL, MVT::i32, LoAddr,
17167                         DAG.getConstant(4, MVT::i32));
17168
17169    SDValue LoSt = DAG.getStore(NewChain, StDL, LoLd, LoAddr,
17170                                St->getPointerInfo(),
17171                                St->isVolatile(), St->isNonTemporal(),
17172                                St->getAlignment());
17173    SDValue HiSt = DAG.getStore(NewChain, StDL, HiLd, HiAddr,
17174                                St->getPointerInfo().getWithOffset(4),
17175                                St->isVolatile(),
17176                                St->isNonTemporal(),
17177                                MinAlign(St->getAlignment(), 4));
17178    return DAG.getNode(ISD::TokenFactor, StDL, MVT::Other, LoSt, HiSt);
17179  }
17180  return SDValue();
17181}
17182
17183/// isHorizontalBinOp - Return 'true' if this vector operation is "horizontal"
17184/// and return the operands for the horizontal operation in LHS and RHS.  A
17185/// horizontal operation performs the binary operation on successive elements
17186/// of its first operand, then on successive elements of its second operand,
17187/// returning the resulting values in a vector.  For example, if
17188///   A = < float a0, float a1, float a2, float a3 >
17189/// and
17190///   B = < float b0, float b1, float b2, float b3 >
17191/// then the result of doing a horizontal operation on A and B is
17192///   A horizontal-op B = < a0 op a1, a2 op a3, b0 op b1, b2 op b3 >.
17193/// In short, LHS and RHS are inspected to see if LHS op RHS is of the form
17194/// A horizontal-op B, for some already available A and B, and if so then LHS is
17195/// set to A, RHS to B, and the routine returns 'true'.
17196/// Note that the binary operation should have the property that if one of the
17197/// operands is UNDEF then the result is UNDEF.
17198static bool isHorizontalBinOp(SDValue &LHS, SDValue &RHS, bool IsCommutative) {
17199  // Look for the following pattern: if
17200  //   A = < float a0, float a1, float a2, float a3 >
17201  //   B = < float b0, float b1, float b2, float b3 >
17202  // and
17203  //   LHS = VECTOR_SHUFFLE A, B, <0, 2, 4, 6>
17204  //   RHS = VECTOR_SHUFFLE A, B, <1, 3, 5, 7>
17205  // then LHS op RHS = < a0 op a1, a2 op a3, b0 op b1, b2 op b3 >
17206  // which is A horizontal-op B.
17207
17208  // At least one of the operands should be a vector shuffle.
17209  if (LHS.getOpcode() != ISD::VECTOR_SHUFFLE &&
17210      RHS.getOpcode() != ISD::VECTOR_SHUFFLE)
17211    return false;
17212
17213  EVT VT = LHS.getValueType();
17214
17215  assert((VT.is128BitVector() || VT.is256BitVector()) &&
17216         "Unsupported vector type for horizontal add/sub");
17217
17218  // Handle 128 and 256-bit vector lengths. AVX defines horizontal add/sub to
17219  // operate independently on 128-bit lanes.
17220  unsigned NumElts = VT.getVectorNumElements();
17221  unsigned NumLanes = VT.getSizeInBits()/128;
17222  unsigned NumLaneElts = NumElts / NumLanes;
17223  assert((NumLaneElts % 2 == 0) &&
17224         "Vector type should have an even number of elements in each lane");
17225  unsigned HalfLaneElts = NumLaneElts/2;
17226
17227  // View LHS in the form
17228  //   LHS = VECTOR_SHUFFLE A, B, LMask
17229  // If LHS is not a shuffle then pretend it is the shuffle
17230  //   LHS = VECTOR_SHUFFLE LHS, undef, <0, 1, ..., N-1>
17231  // NOTE: in what follows a default initialized SDValue represents an UNDEF of
17232  // type VT.
17233  SDValue A, B;
17234  SmallVector<int, 16> LMask(NumElts);
17235  if (LHS.getOpcode() == ISD::VECTOR_SHUFFLE) {
17236    if (LHS.getOperand(0).getOpcode() != ISD::UNDEF)
17237      A = LHS.getOperand(0);
17238    if (LHS.getOperand(1).getOpcode() != ISD::UNDEF)
17239      B = LHS.getOperand(1);
17240    ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(LHS.getNode())->getMask();
17241    std::copy(Mask.begin(), Mask.end(), LMask.begin());
17242  } else {
17243    if (LHS.getOpcode() != ISD::UNDEF)
17244      A = LHS;
17245    for (unsigned i = 0; i != NumElts; ++i)
17246      LMask[i] = i;
17247  }
17248
17249  // Likewise, view RHS in the form
17250  //   RHS = VECTOR_SHUFFLE C, D, RMask
17251  SDValue C, D;
17252  SmallVector<int, 16> RMask(NumElts);
17253  if (RHS.getOpcode() == ISD::VECTOR_SHUFFLE) {
17254    if (RHS.getOperand(0).getOpcode() != ISD::UNDEF)
17255      C = RHS.getOperand(0);
17256    if (RHS.getOperand(1).getOpcode() != ISD::UNDEF)
17257      D = RHS.getOperand(1);
17258    ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(RHS.getNode())->getMask();
17259    std::copy(Mask.begin(), Mask.end(), RMask.begin());
17260  } else {
17261    if (RHS.getOpcode() != ISD::UNDEF)
17262      C = RHS;
17263    for (unsigned i = 0; i != NumElts; ++i)
17264      RMask[i] = i;
17265  }
17266
17267  // Check that the shuffles are both shuffling the same vectors.
17268  if (!(A == C && B == D) && !(A == D && B == C))
17269    return false;
17270
17271  // If everything is UNDEF then bail out: it would be better to fold to UNDEF.
17272  if (!A.getNode() && !B.getNode())
17273    return false;
17274
17275  // If A and B occur in reverse order in RHS, then "swap" them (which means
17276  // rewriting the mask).
17277  if (A != C)
17278    CommuteVectorShuffleMask(RMask, NumElts);
17279
17280  // At this point LHS and RHS are equivalent to
17281  //   LHS = VECTOR_SHUFFLE A, B, LMask
17282  //   RHS = VECTOR_SHUFFLE A, B, RMask
17283  // Check that the masks correspond to performing a horizontal operation.
17284  for (unsigned i = 0; i != NumElts; ++i) {
17285    int LIdx = LMask[i], RIdx = RMask[i];
17286
17287    // Ignore any UNDEF components.
17288    if (LIdx < 0 || RIdx < 0 ||
17289        (!A.getNode() && (LIdx < (int)NumElts || RIdx < (int)NumElts)) ||
17290        (!B.getNode() && (LIdx >= (int)NumElts || RIdx >= (int)NumElts)))
17291      continue;
17292
17293    // Check that successive elements are being operated on.  If not, this is
17294    // not a horizontal operation.
17295    unsigned Src = (i/HalfLaneElts) % 2; // each lane is split between srcs
17296    unsigned LaneStart = (i/NumLaneElts) * NumLaneElts;
17297    int Index = 2*(i%HalfLaneElts) + NumElts*Src + LaneStart;
17298    if (!(LIdx == Index && RIdx == Index + 1) &&
17299        !(IsCommutative && LIdx == Index + 1 && RIdx == Index))
17300      return false;
17301  }
17302
17303  LHS = A.getNode() ? A : B; // If A is 'UNDEF', use B for it.
17304  RHS = B.getNode() ? B : A; // If B is 'UNDEF', use A for it.
17305  return true;
17306}
17307
17308/// PerformFADDCombine - Do target-specific dag combines on floating point adds.
17309static SDValue PerformFADDCombine(SDNode *N, SelectionDAG &DAG,
17310                                  const X86Subtarget *Subtarget) {
17311  EVT VT = N->getValueType(0);
17312  SDValue LHS = N->getOperand(0);
17313  SDValue RHS = N->getOperand(1);
17314
17315  // Try to synthesize horizontal adds from adds of shuffles.
17316  if (((Subtarget->hasSSE3() && (VT == MVT::v4f32 || VT == MVT::v2f64)) ||
17317       (Subtarget->hasFp256() && (VT == MVT::v8f32 || VT == MVT::v4f64))) &&
17318      isHorizontalBinOp(LHS, RHS, true))
17319    return DAG.getNode(X86ISD::FHADD, N->getDebugLoc(), VT, LHS, RHS);
17320  return SDValue();
17321}
17322
17323/// PerformFSUBCombine - Do target-specific dag combines on floating point subs.
17324static SDValue PerformFSUBCombine(SDNode *N, SelectionDAG &DAG,
17325                                  const X86Subtarget *Subtarget) {
17326  EVT VT = N->getValueType(0);
17327  SDValue LHS = N->getOperand(0);
17328  SDValue RHS = N->getOperand(1);
17329
17330  // Try to synthesize horizontal subs from subs of shuffles.
17331  if (((Subtarget->hasSSE3() && (VT == MVT::v4f32 || VT == MVT::v2f64)) ||
17332       (Subtarget->hasFp256() && (VT == MVT::v8f32 || VT == MVT::v4f64))) &&
17333      isHorizontalBinOp(LHS, RHS, false))
17334    return DAG.getNode(X86ISD::FHSUB, N->getDebugLoc(), VT, LHS, RHS);
17335  return SDValue();
17336}
17337
17338/// PerformFORCombine - Do target-specific dag combines on X86ISD::FOR and
17339/// X86ISD::FXOR nodes.
17340static SDValue PerformFORCombine(SDNode *N, SelectionDAG &DAG) {
17341  assert(N->getOpcode() == X86ISD::FOR || N->getOpcode() == X86ISD::FXOR);
17342  // F[X]OR(0.0, x) -> x
17343  // F[X]OR(x, 0.0) -> x
17344  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(0)))
17345    if (C->getValueAPF().isPosZero())
17346      return N->getOperand(1);
17347  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(1)))
17348    if (C->getValueAPF().isPosZero())
17349      return N->getOperand(0);
17350  return SDValue();
17351}
17352
17353/// PerformFMinFMaxCombine - Do target-specific dag combines on X86ISD::FMIN and
17354/// X86ISD::FMAX nodes.
17355static SDValue PerformFMinFMaxCombine(SDNode *N, SelectionDAG &DAG) {
17356  assert(N->getOpcode() == X86ISD::FMIN || N->getOpcode() == X86ISD::FMAX);
17357
17358  // Only perform optimizations if UnsafeMath is used.
17359  if (!DAG.getTarget().Options.UnsafeFPMath)
17360    return SDValue();
17361
17362  // If we run in unsafe-math mode, then convert the FMAX and FMIN nodes
17363  // into FMINC and FMAXC, which are Commutative operations.
17364  unsigned NewOp = 0;
17365  switch (N->getOpcode()) {
17366    default: llvm_unreachable("unknown opcode");
17367    case X86ISD::FMIN:  NewOp = X86ISD::FMINC; break;
17368    case X86ISD::FMAX:  NewOp = X86ISD::FMAXC; break;
17369  }
17370
17371  return DAG.getNode(NewOp, N->getDebugLoc(), N->getValueType(0),
17372                     N->getOperand(0), N->getOperand(1));
17373}
17374
17375/// PerformFANDCombine - Do target-specific dag combines on X86ISD::FAND nodes.
17376static SDValue PerformFANDCombine(SDNode *N, SelectionDAG &DAG) {
17377  // FAND(0.0, x) -> 0.0
17378  // FAND(x, 0.0) -> 0.0
17379  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(0)))
17380    if (C->getValueAPF().isPosZero())
17381      return N->getOperand(0);
17382  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(1)))
17383    if (C->getValueAPF().isPosZero())
17384      return N->getOperand(1);
17385  return SDValue();
17386}
17387
17388static SDValue PerformBTCombine(SDNode *N,
17389                                SelectionDAG &DAG,
17390                                TargetLowering::DAGCombinerInfo &DCI) {
17391  // BT ignores high bits in the bit index operand.
17392  SDValue Op1 = N->getOperand(1);
17393  if (Op1.hasOneUse()) {
17394    unsigned BitWidth = Op1.getValueSizeInBits();
17395    APInt DemandedMask = APInt::getLowBitsSet(BitWidth, Log2_32(BitWidth));
17396    APInt KnownZero, KnownOne;
17397    TargetLowering::TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(),
17398                                          !DCI.isBeforeLegalizeOps());
17399    const TargetLowering &TLI = DAG.getTargetLoweringInfo();
17400    if (TLO.ShrinkDemandedConstant(Op1, DemandedMask) ||
17401        TLI.SimplifyDemandedBits(Op1, DemandedMask, KnownZero, KnownOne, TLO))
17402      DCI.CommitTargetLoweringOpt(TLO);
17403  }
17404  return SDValue();
17405}
17406
17407static SDValue PerformVZEXT_MOVLCombine(SDNode *N, SelectionDAG &DAG) {
17408  SDValue Op = N->getOperand(0);
17409  if (Op.getOpcode() == ISD::BITCAST)
17410    Op = Op.getOperand(0);
17411  EVT VT = N->getValueType(0), OpVT = Op.getValueType();
17412  if (Op.getOpcode() == X86ISD::VZEXT_LOAD &&
17413      VT.getVectorElementType().getSizeInBits() ==
17414      OpVT.getVectorElementType().getSizeInBits()) {
17415    return DAG.getNode(ISD::BITCAST, N->getDebugLoc(), VT, Op);
17416  }
17417  return SDValue();
17418}
17419
17420static SDValue PerformSIGN_EXTEND_INREGCombine(SDNode *N, SelectionDAG &DAG,
17421                                               const X86Subtarget *Subtarget) {
17422  EVT VT = N->getValueType(0);
17423  if (!VT.isVector())
17424    return SDValue();
17425
17426  SDValue N0 = N->getOperand(0);
17427  SDValue N1 = N->getOperand(1);
17428  EVT ExtraVT = cast<VTSDNode>(N1)->getVT();
17429  DebugLoc dl = N->getDebugLoc();
17430
17431  // The SIGN_EXTEND_INREG to v4i64 is expensive operation on the
17432  // both SSE and AVX2 since there is no sign-extended shift right
17433  // operation on a vector with 64-bit elements.
17434  //(sext_in_reg (v4i64 anyext (v4i32 x )), ExtraVT) ->
17435  // (v4i64 sext (v4i32 sext_in_reg (v4i32 x , ExtraVT)))
17436  if (VT == MVT::v4i64 && (N0.getOpcode() == ISD::ANY_EXTEND ||
17437      N0.getOpcode() == ISD::SIGN_EXTEND)) {
17438    SDValue N00 = N0.getOperand(0);
17439
17440    // EXTLOAD has a better solution on AVX2,
17441    // it may be replaced with X86ISD::VSEXT node.
17442    if (N00.getOpcode() == ISD::LOAD && Subtarget->hasInt256())
17443      if (!ISD::isNormalLoad(N00.getNode()))
17444        return SDValue();
17445
17446    if (N00.getValueType() == MVT::v4i32 && ExtraVT.getSizeInBits() < 128) {
17447        SDValue Tmp = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, MVT::v4i32,
17448                                  N00, N1);
17449      return DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::v4i64, Tmp);
17450    }
17451  }
17452  return SDValue();
17453}
17454
17455static SDValue PerformSExtCombine(SDNode *N, SelectionDAG &DAG,
17456                                  TargetLowering::DAGCombinerInfo &DCI,
17457                                  const X86Subtarget *Subtarget) {
17458  if (!DCI.isBeforeLegalizeOps())
17459    return SDValue();
17460
17461  if (!Subtarget->hasFp256())
17462    return SDValue();
17463
17464  EVT VT = N->getValueType(0);
17465  if (VT.isVector() && VT.getSizeInBits() == 256) {
17466    SDValue R = WidenMaskArithmetic(N, DAG, DCI, Subtarget);
17467    if (R.getNode())
17468      return R;
17469  }
17470
17471  return SDValue();
17472}
17473
17474static SDValue PerformFMACombine(SDNode *N, SelectionDAG &DAG,
17475                                 const X86Subtarget* Subtarget) {
17476  DebugLoc dl = N->getDebugLoc();
17477  EVT VT = N->getValueType(0);
17478
17479  // Let legalize expand this if it isn't a legal type yet.
17480  if (!DAG.getTargetLoweringInfo().isTypeLegal(VT))
17481    return SDValue();
17482
17483  EVT ScalarVT = VT.getScalarType();
17484  if ((ScalarVT != MVT::f32 && ScalarVT != MVT::f64) ||
17485      (!Subtarget->hasFMA() && !Subtarget->hasFMA4()))
17486    return SDValue();
17487
17488  SDValue A = N->getOperand(0);
17489  SDValue B = N->getOperand(1);
17490  SDValue C = N->getOperand(2);
17491
17492  bool NegA = (A.getOpcode() == ISD::FNEG);
17493  bool NegB = (B.getOpcode() == ISD::FNEG);
17494  bool NegC = (C.getOpcode() == ISD::FNEG);
17495
17496  // Negative multiplication when NegA xor NegB
17497  bool NegMul = (NegA != NegB);
17498  if (NegA)
17499    A = A.getOperand(0);
17500  if (NegB)
17501    B = B.getOperand(0);
17502  if (NegC)
17503    C = C.getOperand(0);
17504
17505  unsigned Opcode;
17506  if (!NegMul)
17507    Opcode = (!NegC) ? X86ISD::FMADD : X86ISD::FMSUB;
17508  else
17509    Opcode = (!NegC) ? X86ISD::FNMADD : X86ISD::FNMSUB;
17510
17511  return DAG.getNode(Opcode, dl, VT, A, B, C);
17512}
17513
17514static SDValue PerformZExtCombine(SDNode *N, SelectionDAG &DAG,
17515                                  TargetLowering::DAGCombinerInfo &DCI,
17516                                  const X86Subtarget *Subtarget) {
17517  // (i32 zext (and (i8  x86isd::setcc_carry), 1)) ->
17518  //           (and (i32 x86isd::setcc_carry), 1)
17519  // This eliminates the zext. This transformation is necessary because
17520  // ISD::SETCC is always legalized to i8.
17521  DebugLoc dl = N->getDebugLoc();
17522  SDValue N0 = N->getOperand(0);
17523  EVT VT = N->getValueType(0);
17524
17525  if (N0.getOpcode() == ISD::AND &&
17526      N0.hasOneUse() &&
17527      N0.getOperand(0).hasOneUse()) {
17528    SDValue N00 = N0.getOperand(0);
17529    if (N00.getOpcode() == X86ISD::SETCC_CARRY) {
17530      ConstantSDNode *C = dyn_cast<ConstantSDNode>(N0.getOperand(1));
17531      if (!C || C->getZExtValue() != 1)
17532        return SDValue();
17533      return DAG.getNode(ISD::AND, dl, VT,
17534                         DAG.getNode(X86ISD::SETCC_CARRY, dl, VT,
17535                                     N00.getOperand(0), N00.getOperand(1)),
17536                         DAG.getConstant(1, VT));
17537    }
17538  }
17539
17540  if (VT.is256BitVector()) {
17541    SDValue R = WidenMaskArithmetic(N, DAG, DCI, Subtarget);
17542    if (R.getNode())
17543      return R;
17544  }
17545
17546  return SDValue();
17547}
17548
17549// Optimize x == -y --> x+y == 0
17550//          x != -y --> x+y != 0
17551static SDValue PerformISDSETCCCombine(SDNode *N, SelectionDAG &DAG) {
17552  ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(2))->get();
17553  SDValue LHS = N->getOperand(0);
17554  SDValue RHS = N->getOperand(1);
17555
17556  if ((CC == ISD::SETNE || CC == ISD::SETEQ) && LHS.getOpcode() == ISD::SUB)
17557    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(LHS.getOperand(0)))
17558      if (C->getAPIntValue() == 0 && LHS.hasOneUse()) {
17559        SDValue addV = DAG.getNode(ISD::ADD, N->getDebugLoc(),
17560                                   LHS.getValueType(), RHS, LHS.getOperand(1));
17561        return DAG.getSetCC(N->getDebugLoc(), N->getValueType(0),
17562                            addV, DAG.getConstant(0, addV.getValueType()), CC);
17563      }
17564  if ((CC == ISD::SETNE || CC == ISD::SETEQ) && RHS.getOpcode() == ISD::SUB)
17565    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(RHS.getOperand(0)))
17566      if (C->getAPIntValue() == 0 && RHS.hasOneUse()) {
17567        SDValue addV = DAG.getNode(ISD::ADD, N->getDebugLoc(),
17568                                   RHS.getValueType(), LHS, RHS.getOperand(1));
17569        return DAG.getSetCC(N->getDebugLoc(), N->getValueType(0),
17570                            addV, DAG.getConstant(0, addV.getValueType()), CC);
17571      }
17572  return SDValue();
17573}
17574
17575// Helper function of PerformSETCCCombine. It is to materialize "setb reg"
17576// as "sbb reg,reg", since it can be extended without zext and produces
17577// an all-ones bit which is more useful than 0/1 in some cases.
17578static SDValue MaterializeSETB(DebugLoc DL, SDValue EFLAGS, SelectionDAG &DAG) {
17579  return DAG.getNode(ISD::AND, DL, MVT::i8,
17580                     DAG.getNode(X86ISD::SETCC_CARRY, DL, MVT::i8,
17581                                 DAG.getConstant(X86::COND_B, MVT::i8), EFLAGS),
17582                     DAG.getConstant(1, MVT::i8));
17583}
17584
17585// Optimize  RES = X86ISD::SETCC CONDCODE, EFLAG_INPUT
17586static SDValue PerformSETCCCombine(SDNode *N, SelectionDAG &DAG,
17587                                   TargetLowering::DAGCombinerInfo &DCI,
17588                                   const X86Subtarget *Subtarget) {
17589  DebugLoc DL = N->getDebugLoc();
17590  X86::CondCode CC = X86::CondCode(N->getConstantOperandVal(0));
17591  SDValue EFLAGS = N->getOperand(1);
17592
17593  if (CC == X86::COND_A) {
17594    // Try to convert COND_A into COND_B in an attempt to facilitate
17595    // materializing "setb reg".
17596    //
17597    // Do not flip "e > c", where "c" is a constant, because Cmp instruction
17598    // cannot take an immediate as its first operand.
17599    //
17600    if (EFLAGS.getOpcode() == X86ISD::SUB && EFLAGS.hasOneUse() &&
17601        EFLAGS.getValueType().isInteger() &&
17602        !isa<ConstantSDNode>(EFLAGS.getOperand(1))) {
17603      SDValue NewSub = DAG.getNode(X86ISD::SUB, EFLAGS.getDebugLoc(),
17604                                   EFLAGS.getNode()->getVTList(),
17605                                   EFLAGS.getOperand(1), EFLAGS.getOperand(0));
17606      SDValue NewEFLAGS = SDValue(NewSub.getNode(), EFLAGS.getResNo());
17607      return MaterializeSETB(DL, NewEFLAGS, DAG);
17608    }
17609  }
17610
17611  // Materialize "setb reg" as "sbb reg,reg", since it can be extended without
17612  // a zext and produces an all-ones bit which is more useful than 0/1 in some
17613  // cases.
17614  if (CC == X86::COND_B)
17615    return MaterializeSETB(DL, EFLAGS, DAG);
17616
17617  SDValue Flags;
17618
17619  Flags = checkBoolTestSetCCCombine(EFLAGS, CC);
17620  if (Flags.getNode()) {
17621    SDValue Cond = DAG.getConstant(CC, MVT::i8);
17622    return DAG.getNode(X86ISD::SETCC, DL, N->getVTList(), Cond, Flags);
17623  }
17624
17625  return SDValue();
17626}
17627
17628// Optimize branch condition evaluation.
17629//
17630static SDValue PerformBrCondCombine(SDNode *N, SelectionDAG &DAG,
17631                                    TargetLowering::DAGCombinerInfo &DCI,
17632                                    const X86Subtarget *Subtarget) {
17633  DebugLoc DL = N->getDebugLoc();
17634  SDValue Chain = N->getOperand(0);
17635  SDValue Dest = N->getOperand(1);
17636  SDValue EFLAGS = N->getOperand(3);
17637  X86::CondCode CC = X86::CondCode(N->getConstantOperandVal(2));
17638
17639  SDValue Flags;
17640
17641  Flags = checkBoolTestSetCCCombine(EFLAGS, CC);
17642  if (Flags.getNode()) {
17643    SDValue Cond = DAG.getConstant(CC, MVT::i8);
17644    return DAG.getNode(X86ISD::BRCOND, DL, N->getVTList(), Chain, Dest, Cond,
17645                       Flags);
17646  }
17647
17648  return SDValue();
17649}
17650
17651static SDValue PerformSINT_TO_FPCombine(SDNode *N, SelectionDAG &DAG,
17652                                        const X86TargetLowering *XTLI) {
17653  SDValue Op0 = N->getOperand(0);
17654  EVT InVT = Op0->getValueType(0);
17655
17656  // SINT_TO_FP(v4i8) -> SINT_TO_FP(SEXT(v4i8 to v4i32))
17657  if (InVT == MVT::v8i8 || InVT == MVT::v4i8) {
17658    DebugLoc dl = N->getDebugLoc();
17659    MVT DstVT = InVT == MVT::v4i8 ? MVT::v4i32 : MVT::v8i32;
17660    SDValue P = DAG.getNode(ISD::SIGN_EXTEND, dl, DstVT, Op0);
17661    return DAG.getNode(ISD::SINT_TO_FP, dl, N->getValueType(0), P);
17662  }
17663
17664  // Transform (SINT_TO_FP (i64 ...)) into an x87 operation if we have
17665  // a 32-bit target where SSE doesn't support i64->FP operations.
17666  if (Op0.getOpcode() == ISD::LOAD) {
17667    LoadSDNode *Ld = cast<LoadSDNode>(Op0.getNode());
17668    EVT VT = Ld->getValueType(0);
17669    if (!Ld->isVolatile() && !N->getValueType(0).isVector() &&
17670        ISD::isNON_EXTLoad(Op0.getNode()) && Op0.hasOneUse() &&
17671        !XTLI->getSubtarget()->is64Bit() &&
17672        VT == MVT::i64) {
17673      SDValue FILDChain = XTLI->BuildFILD(SDValue(N, 0), Ld->getValueType(0),
17674                                          Ld->getChain(), Op0, DAG);
17675      DAG.ReplaceAllUsesOfValueWith(Op0.getValue(1), FILDChain.getValue(1));
17676      return FILDChain;
17677    }
17678  }
17679  return SDValue();
17680}
17681
17682// Optimize RES, EFLAGS = X86ISD::ADC LHS, RHS, EFLAGS
17683static SDValue PerformADCCombine(SDNode *N, SelectionDAG &DAG,
17684                                 X86TargetLowering::DAGCombinerInfo &DCI) {
17685  // If the LHS and RHS of the ADC node are zero, then it can't overflow and
17686  // the result is either zero or one (depending on the input carry bit).
17687  // Strength reduce this down to a "set on carry" aka SETCC_CARRY&1.
17688  if (X86::isZeroNode(N->getOperand(0)) &&
17689      X86::isZeroNode(N->getOperand(1)) &&
17690      // We don't have a good way to replace an EFLAGS use, so only do this when
17691      // dead right now.
17692      SDValue(N, 1).use_empty()) {
17693    DebugLoc DL = N->getDebugLoc();
17694    EVT VT = N->getValueType(0);
17695    SDValue CarryOut = DAG.getConstant(0, N->getValueType(1));
17696    SDValue Res1 = DAG.getNode(ISD::AND, DL, VT,
17697                               DAG.getNode(X86ISD::SETCC_CARRY, DL, VT,
17698                                           DAG.getConstant(X86::COND_B,MVT::i8),
17699                                           N->getOperand(2)),
17700                               DAG.getConstant(1, VT));
17701    return DCI.CombineTo(N, Res1, CarryOut);
17702  }
17703
17704  return SDValue();
17705}
17706
17707// fold (add Y, (sete  X, 0)) -> adc  0, Y
17708//      (add Y, (setne X, 0)) -> sbb -1, Y
17709//      (sub (sete  X, 0), Y) -> sbb  0, Y
17710//      (sub (setne X, 0), Y) -> adc -1, Y
17711static SDValue OptimizeConditionalInDecrement(SDNode *N, SelectionDAG &DAG) {
17712  DebugLoc DL = N->getDebugLoc();
17713
17714  // Look through ZExts.
17715  SDValue Ext = N->getOperand(N->getOpcode() == ISD::SUB ? 1 : 0);
17716  if (Ext.getOpcode() != ISD::ZERO_EXTEND || !Ext.hasOneUse())
17717    return SDValue();
17718
17719  SDValue SetCC = Ext.getOperand(0);
17720  if (SetCC.getOpcode() != X86ISD::SETCC || !SetCC.hasOneUse())
17721    return SDValue();
17722
17723  X86::CondCode CC = (X86::CondCode)SetCC.getConstantOperandVal(0);
17724  if (CC != X86::COND_E && CC != X86::COND_NE)
17725    return SDValue();
17726
17727  SDValue Cmp = SetCC.getOperand(1);
17728  if (Cmp.getOpcode() != X86ISD::CMP || !Cmp.hasOneUse() ||
17729      !X86::isZeroNode(Cmp.getOperand(1)) ||
17730      !Cmp.getOperand(0).getValueType().isInteger())
17731    return SDValue();
17732
17733  SDValue CmpOp0 = Cmp.getOperand(0);
17734  SDValue NewCmp = DAG.getNode(X86ISD::CMP, DL, MVT::i32, CmpOp0,
17735                               DAG.getConstant(1, CmpOp0.getValueType()));
17736
17737  SDValue OtherVal = N->getOperand(N->getOpcode() == ISD::SUB ? 0 : 1);
17738  if (CC == X86::COND_NE)
17739    return DAG.getNode(N->getOpcode() == ISD::SUB ? X86ISD::ADC : X86ISD::SBB,
17740                       DL, OtherVal.getValueType(), OtherVal,
17741                       DAG.getConstant(-1ULL, OtherVal.getValueType()), NewCmp);
17742  return DAG.getNode(N->getOpcode() == ISD::SUB ? X86ISD::SBB : X86ISD::ADC,
17743                     DL, OtherVal.getValueType(), OtherVal,
17744                     DAG.getConstant(0, OtherVal.getValueType()), NewCmp);
17745}
17746
17747/// PerformADDCombine - Do target-specific dag combines on integer adds.
17748static SDValue PerformAddCombine(SDNode *N, SelectionDAG &DAG,
17749                                 const X86Subtarget *Subtarget) {
17750  EVT VT = N->getValueType(0);
17751  SDValue Op0 = N->getOperand(0);
17752  SDValue Op1 = N->getOperand(1);
17753
17754  // Try to synthesize horizontal adds from adds of shuffles.
17755  if (((Subtarget->hasSSSE3() && (VT == MVT::v8i16 || VT == MVT::v4i32)) ||
17756       (Subtarget->hasInt256() && (VT == MVT::v16i16 || VT == MVT::v8i32))) &&
17757      isHorizontalBinOp(Op0, Op1, true))
17758    return DAG.getNode(X86ISD::HADD, N->getDebugLoc(), VT, Op0, Op1);
17759
17760  return OptimizeConditionalInDecrement(N, DAG);
17761}
17762
17763static SDValue PerformSubCombine(SDNode *N, SelectionDAG &DAG,
17764                                 const X86Subtarget *Subtarget) {
17765  SDValue Op0 = N->getOperand(0);
17766  SDValue Op1 = N->getOperand(1);
17767
17768  // X86 can't encode an immediate LHS of a sub. See if we can push the
17769  // negation into a preceding instruction.
17770  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op0)) {
17771    // If the RHS of the sub is a XOR with one use and a constant, invert the
17772    // immediate. Then add one to the LHS of the sub so we can turn
17773    // X-Y -> X+~Y+1, saving one register.
17774    if (Op1->hasOneUse() && Op1.getOpcode() == ISD::XOR &&
17775        isa<ConstantSDNode>(Op1.getOperand(1))) {
17776      APInt XorC = cast<ConstantSDNode>(Op1.getOperand(1))->getAPIntValue();
17777      EVT VT = Op0.getValueType();
17778      SDValue NewXor = DAG.getNode(ISD::XOR, Op1.getDebugLoc(), VT,
17779                                   Op1.getOperand(0),
17780                                   DAG.getConstant(~XorC, VT));
17781      return DAG.getNode(ISD::ADD, N->getDebugLoc(), VT, NewXor,
17782                         DAG.getConstant(C->getAPIntValue()+1, VT));
17783    }
17784  }
17785
17786  // Try to synthesize horizontal adds from adds of shuffles.
17787  EVT VT = N->getValueType(0);
17788  if (((Subtarget->hasSSSE3() && (VT == MVT::v8i16 || VT == MVT::v4i32)) ||
17789       (Subtarget->hasInt256() && (VT == MVT::v16i16 || VT == MVT::v8i32))) &&
17790      isHorizontalBinOp(Op0, Op1, true))
17791    return DAG.getNode(X86ISD::HSUB, N->getDebugLoc(), VT, Op0, Op1);
17792
17793  return OptimizeConditionalInDecrement(N, DAG);
17794}
17795
17796/// performVZEXTCombine - Performs build vector combines
17797static SDValue performVZEXTCombine(SDNode *N, SelectionDAG &DAG,
17798                                        TargetLowering::DAGCombinerInfo &DCI,
17799                                        const X86Subtarget *Subtarget) {
17800  // (vzext (bitcast (vzext (x)) -> (vzext x)
17801  SDValue In = N->getOperand(0);
17802  while (In.getOpcode() == ISD::BITCAST)
17803    In = In.getOperand(0);
17804
17805  if (In.getOpcode() != X86ISD::VZEXT)
17806    return SDValue();
17807
17808  return DAG.getNode(X86ISD::VZEXT, N->getDebugLoc(), N->getValueType(0),
17809                     In.getOperand(0));
17810}
17811
17812SDValue X86TargetLowering::PerformDAGCombine(SDNode *N,
17813                                             DAGCombinerInfo &DCI) const {
17814  SelectionDAG &DAG = DCI.DAG;
17815  switch (N->getOpcode()) {
17816  default: break;
17817  case ISD::EXTRACT_VECTOR_ELT:
17818    return PerformEXTRACT_VECTOR_ELTCombine(N, DAG, DCI);
17819  case ISD::VSELECT:
17820  case ISD::SELECT:         return PerformSELECTCombine(N, DAG, DCI, Subtarget);
17821  case X86ISD::CMOV:        return PerformCMOVCombine(N, DAG, DCI, Subtarget);
17822  case ISD::ADD:            return PerformAddCombine(N, DAG, Subtarget);
17823  case ISD::SUB:            return PerformSubCombine(N, DAG, Subtarget);
17824  case X86ISD::ADC:         return PerformADCCombine(N, DAG, DCI);
17825  case ISD::MUL:            return PerformMulCombine(N, DAG, DCI);
17826  case ISD::SHL:
17827  case ISD::SRA:
17828  case ISD::SRL:            return PerformShiftCombine(N, DAG, DCI, Subtarget);
17829  case ISD::AND:            return PerformAndCombine(N, DAG, DCI, Subtarget);
17830  case ISD::OR:             return PerformOrCombine(N, DAG, DCI, Subtarget);
17831  case ISD::XOR:            return PerformXorCombine(N, DAG, DCI, Subtarget);
17832  case ISD::LOAD:           return PerformLOADCombine(N, DAG, DCI, Subtarget);
17833  case ISD::STORE:          return PerformSTORECombine(N, DAG, Subtarget);
17834  case ISD::SINT_TO_FP:     return PerformSINT_TO_FPCombine(N, DAG, this);
17835  case ISD::FADD:           return PerformFADDCombine(N, DAG, Subtarget);
17836  case ISD::FSUB:           return PerformFSUBCombine(N, DAG, Subtarget);
17837  case X86ISD::FXOR:
17838  case X86ISD::FOR:         return PerformFORCombine(N, DAG);
17839  case X86ISD::FMIN:
17840  case X86ISD::FMAX:        return PerformFMinFMaxCombine(N, DAG);
17841  case X86ISD::FAND:        return PerformFANDCombine(N, DAG);
17842  case X86ISD::BT:          return PerformBTCombine(N, DAG, DCI);
17843  case X86ISD::VZEXT_MOVL:  return PerformVZEXT_MOVLCombine(N, DAG);
17844  case ISD::ANY_EXTEND:
17845  case ISD::ZERO_EXTEND:    return PerformZExtCombine(N, DAG, DCI, Subtarget);
17846  case ISD::SIGN_EXTEND:    return PerformSExtCombine(N, DAG, DCI, Subtarget);
17847  case ISD::SIGN_EXTEND_INREG: return PerformSIGN_EXTEND_INREGCombine(N, DAG, Subtarget);
17848  case ISD::TRUNCATE:       return PerformTruncateCombine(N, DAG,DCI,Subtarget);
17849  case ISD::SETCC:          return PerformISDSETCCCombine(N, DAG);
17850  case X86ISD::SETCC:       return PerformSETCCCombine(N, DAG, DCI, Subtarget);
17851  case X86ISD::BRCOND:      return PerformBrCondCombine(N, DAG, DCI, Subtarget);
17852  case X86ISD::VZEXT:       return performVZEXTCombine(N, DAG, DCI, Subtarget);
17853  case X86ISD::SHUFP:       // Handle all target specific shuffles
17854  case X86ISD::PALIGNR:
17855  case X86ISD::UNPCKH:
17856  case X86ISD::UNPCKL:
17857  case X86ISD::MOVHLPS:
17858  case X86ISD::MOVLHPS:
17859  case X86ISD::PSHUFD:
17860  case X86ISD::PSHUFHW:
17861  case X86ISD::PSHUFLW:
17862  case X86ISD::MOVSS:
17863  case X86ISD::MOVSD:
17864  case X86ISD::VPERMILP:
17865  case X86ISD::VPERM2X128:
17866  case ISD::VECTOR_SHUFFLE: return PerformShuffleCombine(N, DAG, DCI,Subtarget);
17867  case ISD::FMA:            return PerformFMACombine(N, DAG, Subtarget);
17868  }
17869
17870  return SDValue();
17871}
17872
17873/// isTypeDesirableForOp - Return true if the target has native support for
17874/// the specified value type and it is 'desirable' to use the type for the
17875/// given node type. e.g. On x86 i16 is legal, but undesirable since i16
17876/// instruction encodings are longer and some i16 instructions are slow.
17877bool X86TargetLowering::isTypeDesirableForOp(unsigned Opc, EVT VT) const {
17878  if (!isTypeLegal(VT))
17879    return false;
17880  if (VT != MVT::i16)
17881    return true;
17882
17883  switch (Opc) {
17884  default:
17885    return true;
17886  case ISD::LOAD:
17887  case ISD::SIGN_EXTEND:
17888  case ISD::ZERO_EXTEND:
17889  case ISD::ANY_EXTEND:
17890  case ISD::SHL:
17891  case ISD::SRL:
17892  case ISD::SUB:
17893  case ISD::ADD:
17894  case ISD::MUL:
17895  case ISD::AND:
17896  case ISD::OR:
17897  case ISD::XOR:
17898    return false;
17899  }
17900}
17901
17902/// IsDesirableToPromoteOp - This method query the target whether it is
17903/// beneficial for dag combiner to promote the specified node. If true, it
17904/// should return the desired promotion type by reference.
17905bool X86TargetLowering::IsDesirableToPromoteOp(SDValue Op, EVT &PVT) const {
17906  EVT VT = Op.getValueType();
17907  if (VT != MVT::i16)
17908    return false;
17909
17910  bool Promote = false;
17911  bool Commute = false;
17912  switch (Op.getOpcode()) {
17913  default: break;
17914  case ISD::LOAD: {
17915    LoadSDNode *LD = cast<LoadSDNode>(Op);
17916    // If the non-extending load has a single use and it's not live out, then it
17917    // might be folded.
17918    if (LD->getExtensionType() == ISD::NON_EXTLOAD /*&&
17919                                                     Op.hasOneUse()*/) {
17920      for (SDNode::use_iterator UI = Op.getNode()->use_begin(),
17921             UE = Op.getNode()->use_end(); UI != UE; ++UI) {
17922        // The only case where we'd want to promote LOAD (rather then it being
17923        // promoted as an operand is when it's only use is liveout.
17924        if (UI->getOpcode() != ISD::CopyToReg)
17925          return false;
17926      }
17927    }
17928    Promote = true;
17929    break;
17930  }
17931  case ISD::SIGN_EXTEND:
17932  case ISD::ZERO_EXTEND:
17933  case ISD::ANY_EXTEND:
17934    Promote = true;
17935    break;
17936  case ISD::SHL:
17937  case ISD::SRL: {
17938    SDValue N0 = Op.getOperand(0);
17939    // Look out for (store (shl (load), x)).
17940    if (MayFoldLoad(N0) && MayFoldIntoStore(Op))
17941      return false;
17942    Promote = true;
17943    break;
17944  }
17945  case ISD::ADD:
17946  case ISD::MUL:
17947  case ISD::AND:
17948  case ISD::OR:
17949  case ISD::XOR:
17950    Commute = true;
17951    // fallthrough
17952  case ISD::SUB: {
17953    SDValue N0 = Op.getOperand(0);
17954    SDValue N1 = Op.getOperand(1);
17955    if (!Commute && MayFoldLoad(N1))
17956      return false;
17957    // Avoid disabling potential load folding opportunities.
17958    if (MayFoldLoad(N0) && (!isa<ConstantSDNode>(N1) || MayFoldIntoStore(Op)))
17959      return false;
17960    if (MayFoldLoad(N1) && (!isa<ConstantSDNode>(N0) || MayFoldIntoStore(Op)))
17961      return false;
17962    Promote = true;
17963  }
17964  }
17965
17966  PVT = MVT::i32;
17967  return Promote;
17968}
17969
17970//===----------------------------------------------------------------------===//
17971//                           X86 Inline Assembly Support
17972//===----------------------------------------------------------------------===//
17973
17974namespace {
17975  // Helper to match a string separated by whitespace.
17976  bool matchAsmImpl(StringRef s, ArrayRef<const StringRef *> args) {
17977    s = s.substr(s.find_first_not_of(" \t")); // Skip leading whitespace.
17978
17979    for (unsigned i = 0, e = args.size(); i != e; ++i) {
17980      StringRef piece(*args[i]);
17981      if (!s.startswith(piece)) // Check if the piece matches.
17982        return false;
17983
17984      s = s.substr(piece.size());
17985      StringRef::size_type pos = s.find_first_not_of(" \t");
17986      if (pos == 0) // We matched a prefix.
17987        return false;
17988
17989      s = s.substr(pos);
17990    }
17991
17992    return s.empty();
17993  }
17994  const VariadicFunction1<bool, StringRef, StringRef, matchAsmImpl> matchAsm={};
17995}
17996
17997bool X86TargetLowering::ExpandInlineAsm(CallInst *CI) const {
17998  InlineAsm *IA = cast<InlineAsm>(CI->getCalledValue());
17999
18000  std::string AsmStr = IA->getAsmString();
18001
18002  IntegerType *Ty = dyn_cast<IntegerType>(CI->getType());
18003  if (!Ty || Ty->getBitWidth() % 16 != 0)
18004    return false;
18005
18006  // TODO: should remove alternatives from the asmstring: "foo {a|b}" -> "foo a"
18007  SmallVector<StringRef, 4> AsmPieces;
18008  SplitString(AsmStr, AsmPieces, ";\n");
18009
18010  switch (AsmPieces.size()) {
18011  default: return false;
18012  case 1:
18013    // FIXME: this should verify that we are targeting a 486 or better.  If not,
18014    // we will turn this bswap into something that will be lowered to logical
18015    // ops instead of emitting the bswap asm.  For now, we don't support 486 or
18016    // lower so don't worry about this.
18017    // bswap $0
18018    if (matchAsm(AsmPieces[0], "bswap", "$0") ||
18019        matchAsm(AsmPieces[0], "bswapl", "$0") ||
18020        matchAsm(AsmPieces[0], "bswapq", "$0") ||
18021        matchAsm(AsmPieces[0], "bswap", "${0:q}") ||
18022        matchAsm(AsmPieces[0], "bswapl", "${0:q}") ||
18023        matchAsm(AsmPieces[0], "bswapq", "${0:q}")) {
18024      // No need to check constraints, nothing other than the equivalent of
18025      // "=r,0" would be valid here.
18026      return IntrinsicLowering::LowerToByteSwap(CI);
18027    }
18028
18029    // rorw $$8, ${0:w}  -->  llvm.bswap.i16
18030    if (CI->getType()->isIntegerTy(16) &&
18031        IA->getConstraintString().compare(0, 5, "=r,0,") == 0 &&
18032        (matchAsm(AsmPieces[0], "rorw", "$$8,", "${0:w}") ||
18033         matchAsm(AsmPieces[0], "rolw", "$$8,", "${0:w}"))) {
18034      AsmPieces.clear();
18035      const std::string &ConstraintsStr = IA->getConstraintString();
18036      SplitString(StringRef(ConstraintsStr).substr(5), AsmPieces, ",");
18037      array_pod_sort(AsmPieces.begin(), AsmPieces.end());
18038      if (AsmPieces.size() == 4 &&
18039          AsmPieces[0] == "~{cc}" &&
18040          AsmPieces[1] == "~{dirflag}" &&
18041          AsmPieces[2] == "~{flags}" &&
18042          AsmPieces[3] == "~{fpsr}")
18043      return IntrinsicLowering::LowerToByteSwap(CI);
18044    }
18045    break;
18046  case 3:
18047    if (CI->getType()->isIntegerTy(32) &&
18048        IA->getConstraintString().compare(0, 5, "=r,0,") == 0 &&
18049        matchAsm(AsmPieces[0], "rorw", "$$8,", "${0:w}") &&
18050        matchAsm(AsmPieces[1], "rorl", "$$16,", "$0") &&
18051        matchAsm(AsmPieces[2], "rorw", "$$8,", "${0:w}")) {
18052      AsmPieces.clear();
18053      const std::string &ConstraintsStr = IA->getConstraintString();
18054      SplitString(StringRef(ConstraintsStr).substr(5), AsmPieces, ",");
18055      array_pod_sort(AsmPieces.begin(), AsmPieces.end());
18056      if (AsmPieces.size() == 4 &&
18057          AsmPieces[0] == "~{cc}" &&
18058          AsmPieces[1] == "~{dirflag}" &&
18059          AsmPieces[2] == "~{flags}" &&
18060          AsmPieces[3] == "~{fpsr}")
18061        return IntrinsicLowering::LowerToByteSwap(CI);
18062    }
18063
18064    if (CI->getType()->isIntegerTy(64)) {
18065      InlineAsm::ConstraintInfoVector Constraints = IA->ParseConstraints();
18066      if (Constraints.size() >= 2 &&
18067          Constraints[0].Codes.size() == 1 && Constraints[0].Codes[0] == "A" &&
18068          Constraints[1].Codes.size() == 1 && Constraints[1].Codes[0] == "0") {
18069        // bswap %eax / bswap %edx / xchgl %eax, %edx  -> llvm.bswap.i64
18070        if (matchAsm(AsmPieces[0], "bswap", "%eax") &&
18071            matchAsm(AsmPieces[1], "bswap", "%edx") &&
18072            matchAsm(AsmPieces[2], "xchgl", "%eax,", "%edx"))
18073          return IntrinsicLowering::LowerToByteSwap(CI);
18074      }
18075    }
18076    break;
18077  }
18078  return false;
18079}
18080
18081/// getConstraintType - Given a constraint letter, return the type of
18082/// constraint it is for this target.
18083X86TargetLowering::ConstraintType
18084X86TargetLowering::getConstraintType(const std::string &Constraint) const {
18085  if (Constraint.size() == 1) {
18086    switch (Constraint[0]) {
18087    case 'R':
18088    case 'q':
18089    case 'Q':
18090    case 'f':
18091    case 't':
18092    case 'u':
18093    case 'y':
18094    case 'x':
18095    case 'Y':
18096    case 'l':
18097      return C_RegisterClass;
18098    case 'a':
18099    case 'b':
18100    case 'c':
18101    case 'd':
18102    case 'S':
18103    case 'D':
18104    case 'A':
18105      return C_Register;
18106    case 'I':
18107    case 'J':
18108    case 'K':
18109    case 'L':
18110    case 'M':
18111    case 'N':
18112    case 'G':
18113    case 'C':
18114    case 'e':
18115    case 'Z':
18116      return C_Other;
18117    default:
18118      break;
18119    }
18120  }
18121  return TargetLowering::getConstraintType(Constraint);
18122}
18123
18124/// Examine constraint type and operand type and determine a weight value.
18125/// This object must already have been set up with the operand type
18126/// and the current alternative constraint selected.
18127TargetLowering::ConstraintWeight
18128  X86TargetLowering::getSingleConstraintMatchWeight(
18129    AsmOperandInfo &info, const char *constraint) const {
18130  ConstraintWeight weight = CW_Invalid;
18131  Value *CallOperandVal = info.CallOperandVal;
18132    // If we don't have a value, we can't do a match,
18133    // but allow it at the lowest weight.
18134  if (CallOperandVal == NULL)
18135    return CW_Default;
18136  Type *type = CallOperandVal->getType();
18137  // Look at the constraint type.
18138  switch (*constraint) {
18139  default:
18140    weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint);
18141  case 'R':
18142  case 'q':
18143  case 'Q':
18144  case 'a':
18145  case 'b':
18146  case 'c':
18147  case 'd':
18148  case 'S':
18149  case 'D':
18150  case 'A':
18151    if (CallOperandVal->getType()->isIntegerTy())
18152      weight = CW_SpecificReg;
18153    break;
18154  case 'f':
18155  case 't':
18156  case 'u':
18157    if (type->isFloatingPointTy())
18158      weight = CW_SpecificReg;
18159    break;
18160  case 'y':
18161    if (type->isX86_MMXTy() && Subtarget->hasMMX())
18162      weight = CW_SpecificReg;
18163    break;
18164  case 'x':
18165  case 'Y':
18166    if (((type->getPrimitiveSizeInBits() == 128) && Subtarget->hasSSE1()) ||
18167        ((type->getPrimitiveSizeInBits() == 256) && Subtarget->hasFp256()))
18168      weight = CW_Register;
18169    break;
18170  case 'I':
18171    if (ConstantInt *C = dyn_cast<ConstantInt>(info.CallOperandVal)) {
18172      if (C->getZExtValue() <= 31)
18173        weight = CW_Constant;
18174    }
18175    break;
18176  case 'J':
18177    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
18178      if (C->getZExtValue() <= 63)
18179        weight = CW_Constant;
18180    }
18181    break;
18182  case 'K':
18183    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
18184      if ((C->getSExtValue() >= -0x80) && (C->getSExtValue() <= 0x7f))
18185        weight = CW_Constant;
18186    }
18187    break;
18188  case 'L':
18189    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
18190      if ((C->getZExtValue() == 0xff) || (C->getZExtValue() == 0xffff))
18191        weight = CW_Constant;
18192    }
18193    break;
18194  case 'M':
18195    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
18196      if (C->getZExtValue() <= 3)
18197        weight = CW_Constant;
18198    }
18199    break;
18200  case 'N':
18201    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
18202      if (C->getZExtValue() <= 0xff)
18203        weight = CW_Constant;
18204    }
18205    break;
18206  case 'G':
18207  case 'C':
18208    if (dyn_cast<ConstantFP>(CallOperandVal)) {
18209      weight = CW_Constant;
18210    }
18211    break;
18212  case 'e':
18213    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
18214      if ((C->getSExtValue() >= -0x80000000LL) &&
18215          (C->getSExtValue() <= 0x7fffffffLL))
18216        weight = CW_Constant;
18217    }
18218    break;
18219  case 'Z':
18220    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
18221      if (C->getZExtValue() <= 0xffffffff)
18222        weight = CW_Constant;
18223    }
18224    break;
18225  }
18226  return weight;
18227}
18228
18229/// LowerXConstraint - try to replace an X constraint, which matches anything,
18230/// with another that has more specific requirements based on the type of the
18231/// corresponding operand.
18232const char *X86TargetLowering::
18233LowerXConstraint(EVT ConstraintVT) const {
18234  // FP X constraints get lowered to SSE1/2 registers if available, otherwise
18235  // 'f' like normal targets.
18236  if (ConstraintVT.isFloatingPoint()) {
18237    if (Subtarget->hasSSE2())
18238      return "Y";
18239    if (Subtarget->hasSSE1())
18240      return "x";
18241  }
18242
18243  return TargetLowering::LowerXConstraint(ConstraintVT);
18244}
18245
18246/// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
18247/// vector.  If it is invalid, don't add anything to Ops.
18248void X86TargetLowering::LowerAsmOperandForConstraint(SDValue Op,
18249                                                     std::string &Constraint,
18250                                                     std::vector<SDValue>&Ops,
18251                                                     SelectionDAG &DAG) const {
18252  SDValue Result(0, 0);
18253
18254  // Only support length 1 constraints for now.
18255  if (Constraint.length() > 1) return;
18256
18257  char ConstraintLetter = Constraint[0];
18258  switch (ConstraintLetter) {
18259  default: break;
18260  case 'I':
18261    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
18262      if (C->getZExtValue() <= 31) {
18263        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
18264        break;
18265      }
18266    }
18267    return;
18268  case 'J':
18269    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
18270      if (C->getZExtValue() <= 63) {
18271        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
18272        break;
18273      }
18274    }
18275    return;
18276  case 'K':
18277    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
18278      if (isInt<8>(C->getSExtValue())) {
18279        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
18280        break;
18281      }
18282    }
18283    return;
18284  case 'N':
18285    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
18286      if (C->getZExtValue() <= 255) {
18287        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
18288        break;
18289      }
18290    }
18291    return;
18292  case 'e': {
18293    // 32-bit signed value
18294    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
18295      if (ConstantInt::isValueValidForType(Type::getInt32Ty(*DAG.getContext()),
18296                                           C->getSExtValue())) {
18297        // Widen to 64 bits here to get it sign extended.
18298        Result = DAG.getTargetConstant(C->getSExtValue(), MVT::i64);
18299        break;
18300      }
18301    // FIXME gcc accepts some relocatable values here too, but only in certain
18302    // memory models; it's complicated.
18303    }
18304    return;
18305  }
18306  case 'Z': {
18307    // 32-bit unsigned value
18308    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
18309      if (ConstantInt::isValueValidForType(Type::getInt32Ty(*DAG.getContext()),
18310                                           C->getZExtValue())) {
18311        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
18312        break;
18313      }
18314    }
18315    // FIXME gcc accepts some relocatable values here too, but only in certain
18316    // memory models; it's complicated.
18317    return;
18318  }
18319  case 'i': {
18320    // Literal immediates are always ok.
18321    if (ConstantSDNode *CST = dyn_cast<ConstantSDNode>(Op)) {
18322      // Widen to 64 bits here to get it sign extended.
18323      Result = DAG.getTargetConstant(CST->getSExtValue(), MVT::i64);
18324      break;
18325    }
18326
18327    // In any sort of PIC mode addresses need to be computed at runtime by
18328    // adding in a register or some sort of table lookup.  These can't
18329    // be used as immediates.
18330    if (Subtarget->isPICStyleGOT() || Subtarget->isPICStyleStubPIC())
18331      return;
18332
18333    // If we are in non-pic codegen mode, we allow the address of a global (with
18334    // an optional displacement) to be used with 'i'.
18335    GlobalAddressSDNode *GA = 0;
18336    int64_t Offset = 0;
18337
18338    // Match either (GA), (GA+C), (GA+C1+C2), etc.
18339    while (1) {
18340      if ((GA = dyn_cast<GlobalAddressSDNode>(Op))) {
18341        Offset += GA->getOffset();
18342        break;
18343      } else if (Op.getOpcode() == ISD::ADD) {
18344        if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
18345          Offset += C->getZExtValue();
18346          Op = Op.getOperand(0);
18347          continue;
18348        }
18349      } else if (Op.getOpcode() == ISD::SUB) {
18350        if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
18351          Offset += -C->getZExtValue();
18352          Op = Op.getOperand(0);
18353          continue;
18354        }
18355      }
18356
18357      // Otherwise, this isn't something we can handle, reject it.
18358      return;
18359    }
18360
18361    const GlobalValue *GV = GA->getGlobal();
18362    // If we require an extra load to get this address, as in PIC mode, we
18363    // can't accept it.
18364    if (isGlobalStubReference(Subtarget->ClassifyGlobalReference(GV,
18365                                                        getTargetMachine())))
18366      return;
18367
18368    Result = DAG.getTargetGlobalAddress(GV, Op.getDebugLoc(),
18369                                        GA->getValueType(0), Offset);
18370    break;
18371  }
18372  }
18373
18374  if (Result.getNode()) {
18375    Ops.push_back(Result);
18376    return;
18377  }
18378  return TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
18379}
18380
18381std::pair<unsigned, const TargetRegisterClass*>
18382X86TargetLowering::getRegForInlineAsmConstraint(const std::string &Constraint,
18383                                                EVT VT) const {
18384  // First, see if this is a constraint that directly corresponds to an LLVM
18385  // register class.
18386  if (Constraint.size() == 1) {
18387    // GCC Constraint Letters
18388    switch (Constraint[0]) {
18389    default: break;
18390      // TODO: Slight differences here in allocation order and leaving
18391      // RIP in the class. Do they matter any more here than they do
18392      // in the normal allocation?
18393    case 'q':   // GENERAL_REGS in 64-bit mode, Q_REGS in 32-bit mode.
18394      if (Subtarget->is64Bit()) {
18395        if (VT == MVT::i32 || VT == MVT::f32)
18396          return std::make_pair(0U, &X86::GR32RegClass);
18397        if (VT == MVT::i16)
18398          return std::make_pair(0U, &X86::GR16RegClass);
18399        if (VT == MVT::i8 || VT == MVT::i1)
18400          return std::make_pair(0U, &X86::GR8RegClass);
18401        if (VT == MVT::i64 || VT == MVT::f64)
18402          return std::make_pair(0U, &X86::GR64RegClass);
18403        break;
18404      }
18405      // 32-bit fallthrough
18406    case 'Q':   // Q_REGS
18407      if (VT == MVT::i32 || VT == MVT::f32)
18408        return std::make_pair(0U, &X86::GR32_ABCDRegClass);
18409      if (VT == MVT::i16)
18410        return std::make_pair(0U, &X86::GR16_ABCDRegClass);
18411      if (VT == MVT::i8 || VT == MVT::i1)
18412        return std::make_pair(0U, &X86::GR8_ABCD_LRegClass);
18413      if (VT == MVT::i64)
18414        return std::make_pair(0U, &X86::GR64_ABCDRegClass);
18415      break;
18416    case 'r':   // GENERAL_REGS
18417    case 'l':   // INDEX_REGS
18418      if (VT == MVT::i8 || VT == MVT::i1)
18419        return std::make_pair(0U, &X86::GR8RegClass);
18420      if (VT == MVT::i16)
18421        return std::make_pair(0U, &X86::GR16RegClass);
18422      if (VT == MVT::i32 || VT == MVT::f32 || !Subtarget->is64Bit())
18423        return std::make_pair(0U, &X86::GR32RegClass);
18424      return std::make_pair(0U, &X86::GR64RegClass);
18425    case 'R':   // LEGACY_REGS
18426      if (VT == MVT::i8 || VT == MVT::i1)
18427        return std::make_pair(0U, &X86::GR8_NOREXRegClass);
18428      if (VT == MVT::i16)
18429        return std::make_pair(0U, &X86::GR16_NOREXRegClass);
18430      if (VT == MVT::i32 || !Subtarget->is64Bit())
18431        return std::make_pair(0U, &X86::GR32_NOREXRegClass);
18432      return std::make_pair(0U, &X86::GR64_NOREXRegClass);
18433    case 'f':  // FP Stack registers.
18434      // If SSE is enabled for this VT, use f80 to ensure the isel moves the
18435      // value to the correct fpstack register class.
18436      if (VT == MVT::f32 && !isScalarFPTypeInSSEReg(VT))
18437        return std::make_pair(0U, &X86::RFP32RegClass);
18438      if (VT == MVT::f64 && !isScalarFPTypeInSSEReg(VT))
18439        return std::make_pair(0U, &X86::RFP64RegClass);
18440      return std::make_pair(0U, &X86::RFP80RegClass);
18441    case 'y':   // MMX_REGS if MMX allowed.
18442      if (!Subtarget->hasMMX()) break;
18443      return std::make_pair(0U, &X86::VR64RegClass);
18444    case 'Y':   // SSE_REGS if SSE2 allowed
18445      if (!Subtarget->hasSSE2()) break;
18446      // FALL THROUGH.
18447    case 'x':   // SSE_REGS if SSE1 allowed or AVX_REGS if AVX allowed
18448      if (!Subtarget->hasSSE1()) break;
18449
18450      switch (VT.getSimpleVT().SimpleTy) {
18451      default: break;
18452      // Scalar SSE types.
18453      case MVT::f32:
18454      case MVT::i32:
18455        return std::make_pair(0U, &X86::FR32RegClass);
18456      case MVT::f64:
18457      case MVT::i64:
18458        return std::make_pair(0U, &X86::FR64RegClass);
18459      // Vector types.
18460      case MVT::v16i8:
18461      case MVT::v8i16:
18462      case MVT::v4i32:
18463      case MVT::v2i64:
18464      case MVT::v4f32:
18465      case MVT::v2f64:
18466        return std::make_pair(0U, &X86::VR128RegClass);
18467      // AVX types.
18468      case MVT::v32i8:
18469      case MVT::v16i16:
18470      case MVT::v8i32:
18471      case MVT::v4i64:
18472      case MVT::v8f32:
18473      case MVT::v4f64:
18474        return std::make_pair(0U, &X86::VR256RegClass);
18475      }
18476      break;
18477    }
18478  }
18479
18480  // Use the default implementation in TargetLowering to convert the register
18481  // constraint into a member of a register class.
18482  std::pair<unsigned, const TargetRegisterClass*> Res;
18483  Res = TargetLowering::getRegForInlineAsmConstraint(Constraint, VT);
18484
18485  // Not found as a standard register?
18486  if (Res.second == 0) {
18487    // Map st(0) -> st(7) -> ST0
18488    if (Constraint.size() == 7 && Constraint[0] == '{' &&
18489        tolower(Constraint[1]) == 's' &&
18490        tolower(Constraint[2]) == 't' &&
18491        Constraint[3] == '(' &&
18492        (Constraint[4] >= '0' && Constraint[4] <= '7') &&
18493        Constraint[5] == ')' &&
18494        Constraint[6] == '}') {
18495
18496      Res.first = X86::ST0+Constraint[4]-'0';
18497      Res.second = &X86::RFP80RegClass;
18498      return Res;
18499    }
18500
18501    // GCC allows "st(0)" to be called just plain "st".
18502    if (StringRef("{st}").equals_lower(Constraint)) {
18503      Res.first = X86::ST0;
18504      Res.second = &X86::RFP80RegClass;
18505      return Res;
18506    }
18507
18508    // flags -> EFLAGS
18509    if (StringRef("{flags}").equals_lower(Constraint)) {
18510      Res.first = X86::EFLAGS;
18511      Res.second = &X86::CCRRegClass;
18512      return Res;
18513    }
18514
18515    // 'A' means EAX + EDX.
18516    if (Constraint == "A") {
18517      Res.first = X86::EAX;
18518      Res.second = &X86::GR32_ADRegClass;
18519      return Res;
18520    }
18521    return Res;
18522  }
18523
18524  // Otherwise, check to see if this is a register class of the wrong value
18525  // type.  For example, we want to map "{ax},i32" -> {eax}, we don't want it to
18526  // turn into {ax},{dx}.
18527  if (Res.second->hasType(VT))
18528    return Res;   // Correct type already, nothing to do.
18529
18530  // All of the single-register GCC register classes map their values onto
18531  // 16-bit register pieces "ax","dx","cx","bx","si","di","bp","sp".  If we
18532  // really want an 8-bit or 32-bit register, map to the appropriate register
18533  // class and return the appropriate register.
18534  if (Res.second == &X86::GR16RegClass) {
18535    if (VT == MVT::i8 || VT == MVT::i1) {
18536      unsigned DestReg = 0;
18537      switch (Res.first) {
18538      default: break;
18539      case X86::AX: DestReg = X86::AL; break;
18540      case X86::DX: DestReg = X86::DL; break;
18541      case X86::CX: DestReg = X86::CL; break;
18542      case X86::BX: DestReg = X86::BL; break;
18543      }
18544      if (DestReg) {
18545        Res.first = DestReg;
18546        Res.second = &X86::GR8RegClass;
18547      }
18548    } else if (VT == MVT::i32 || VT == MVT::f32) {
18549      unsigned DestReg = 0;
18550      switch (Res.first) {
18551      default: break;
18552      case X86::AX: DestReg = X86::EAX; break;
18553      case X86::DX: DestReg = X86::EDX; break;
18554      case X86::CX: DestReg = X86::ECX; break;
18555      case X86::BX: DestReg = X86::EBX; break;
18556      case X86::SI: DestReg = X86::ESI; break;
18557      case X86::DI: DestReg = X86::EDI; break;
18558      case X86::BP: DestReg = X86::EBP; break;
18559      case X86::SP: DestReg = X86::ESP; break;
18560      }
18561      if (DestReg) {
18562        Res.first = DestReg;
18563        Res.second = &X86::GR32RegClass;
18564      }
18565    } else if (VT == MVT::i64 || VT == MVT::f64) {
18566      unsigned DestReg = 0;
18567      switch (Res.first) {
18568      default: break;
18569      case X86::AX: DestReg = X86::RAX; break;
18570      case X86::DX: DestReg = X86::RDX; break;
18571      case X86::CX: DestReg = X86::RCX; break;
18572      case X86::BX: DestReg = X86::RBX; break;
18573      case X86::SI: DestReg = X86::RSI; break;
18574      case X86::DI: DestReg = X86::RDI; break;
18575      case X86::BP: DestReg = X86::RBP; break;
18576      case X86::SP: DestReg = X86::RSP; break;
18577      }
18578      if (DestReg) {
18579        Res.first = DestReg;
18580        Res.second = &X86::GR64RegClass;
18581      }
18582    }
18583  } else if (Res.second == &X86::FR32RegClass ||
18584             Res.second == &X86::FR64RegClass ||
18585             Res.second == &X86::VR128RegClass) {
18586    // Handle references to XMM physical registers that got mapped into the
18587    // wrong class.  This can happen with constraints like {xmm0} where the
18588    // target independent register mapper will just pick the first match it can
18589    // find, ignoring the required type.
18590
18591    if (VT == MVT::f32 || VT == MVT::i32)
18592      Res.second = &X86::FR32RegClass;
18593    else if (VT == MVT::f64 || VT == MVT::i64)
18594      Res.second = &X86::FR64RegClass;
18595    else if (X86::VR128RegClass.hasType(VT))
18596      Res.second = &X86::VR128RegClass;
18597    else if (X86::VR256RegClass.hasType(VT))
18598      Res.second = &X86::VR256RegClass;
18599  }
18600
18601  return Res;
18602}
18603