X86ISelDAGToDAG.cpp revision 286033
1//===- X86ISelDAGToDAG.cpp - A DAG pattern matching inst selector for X86 -===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines a DAG pattern matching instruction selector for X86,
11// converting from a legalized dag to a X86 dag.
12//
13//===----------------------------------------------------------------------===//
14
15#define DEBUG_TYPE "x86-isel"
16#include "X86.h"
17#include "X86InstrBuilder.h"
18#include "X86MachineFunctionInfo.h"
19#include "X86RegisterInfo.h"
20#include "X86Subtarget.h"
21#include "X86TargetMachine.h"
22#include "llvm/ADT/Statistic.h"
23#include "llvm/CodeGen/MachineFrameInfo.h"
24#include "llvm/CodeGen/MachineFunction.h"
25#include "llvm/CodeGen/MachineInstrBuilder.h"
26#include "llvm/CodeGen/MachineRegisterInfo.h"
27#include "llvm/CodeGen/SelectionDAGISel.h"
28#include "llvm/IR/Instructions.h"
29#include "llvm/IR/Intrinsics.h"
30#include "llvm/IR/Type.h"
31#include "llvm/Support/Debug.h"
32#include "llvm/Support/ErrorHandling.h"
33#include "llvm/Support/MathExtras.h"
34#include "llvm/Support/raw_ostream.h"
35#include "llvm/Target/TargetMachine.h"
36#include "llvm/Target/TargetOptions.h"
37using namespace llvm;
38
39STATISTIC(NumLoadMoved, "Number of loads moved below TokenFactor");
40
41//===----------------------------------------------------------------------===//
42//                      Pattern Matcher Implementation
43//===----------------------------------------------------------------------===//
44
45namespace {
46  /// X86ISelAddressMode - This corresponds to X86AddressMode, but uses
47  /// SDValue's instead of register numbers for the leaves of the matched
48  /// tree.
49  struct X86ISelAddressMode {
50    enum {
51      RegBase,
52      FrameIndexBase
53    } BaseType;
54
55    // This is really a union, discriminated by BaseType!
56    SDValue Base_Reg;
57    int Base_FrameIndex;
58
59    unsigned Scale;
60    SDValue IndexReg;
61    int32_t Disp;
62    SDValue Segment;
63    const GlobalValue *GV;
64    const Constant *CP;
65    const BlockAddress *BlockAddr;
66    const char *ES;
67    int JT;
68    unsigned Align;    // CP alignment.
69    unsigned char SymbolFlags;  // X86II::MO_*
70
71    X86ISelAddressMode()
72      : BaseType(RegBase), Base_FrameIndex(0), Scale(1), IndexReg(), Disp(0),
73        Segment(), GV(0), CP(0), BlockAddr(0), ES(0), JT(-1), Align(0),
74        SymbolFlags(X86II::MO_NO_FLAG) {
75    }
76
77    bool hasSymbolicDisplacement() const {
78      return GV != 0 || CP != 0 || ES != 0 || JT != -1 || BlockAddr != 0;
79    }
80
81    bool hasBaseOrIndexReg() const {
82      return BaseType == FrameIndexBase ||
83             IndexReg.getNode() != 0 || Base_Reg.getNode() != 0;
84    }
85
86    /// isRIPRelative - Return true if this addressing mode is already RIP
87    /// relative.
88    bool isRIPRelative() const {
89      if (BaseType != RegBase) return false;
90      if (RegisterSDNode *RegNode =
91            dyn_cast_or_null<RegisterSDNode>(Base_Reg.getNode()))
92        return RegNode->getReg() == X86::RIP;
93      return false;
94    }
95
96    void setBaseReg(SDValue Reg) {
97      BaseType = RegBase;
98      Base_Reg = Reg;
99    }
100
101#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
102    void dump() {
103      dbgs() << "X86ISelAddressMode " << this << '\n';
104      dbgs() << "Base_Reg ";
105      if (Base_Reg.getNode() != 0)
106        Base_Reg.getNode()->dump();
107      else
108        dbgs() << "nul";
109      dbgs() << " Base.FrameIndex " << Base_FrameIndex << '\n'
110             << " Scale" << Scale << '\n'
111             << "IndexReg ";
112      if (IndexReg.getNode() != 0)
113        IndexReg.getNode()->dump();
114      else
115        dbgs() << "nul";
116      dbgs() << " Disp " << Disp << '\n'
117             << "GV ";
118      if (GV)
119        GV->dump();
120      else
121        dbgs() << "nul";
122      dbgs() << " CP ";
123      if (CP)
124        CP->dump();
125      else
126        dbgs() << "nul";
127      dbgs() << '\n'
128             << "ES ";
129      if (ES)
130        dbgs() << ES;
131      else
132        dbgs() << "nul";
133      dbgs() << " JT" << JT << " Align" << Align << '\n';
134    }
135#endif
136  };
137}
138
139namespace {
140  //===--------------------------------------------------------------------===//
141  /// ISel - X86 specific code to select X86 machine instructions for
142  /// SelectionDAG operations.
143  ///
144  class X86DAGToDAGISel : public SelectionDAGISel {
145    /// Subtarget - Keep a pointer to the X86Subtarget around so that we can
146    /// make the right decision when generating code for different targets.
147    const X86Subtarget *Subtarget;
148
149    /// OptForSize - If true, selector should try to optimize for code size
150    /// instead of performance.
151    bool OptForSize;
152
153  public:
154    explicit X86DAGToDAGISel(X86TargetMachine &tm, CodeGenOpt::Level OptLevel)
155      : SelectionDAGISel(tm, OptLevel),
156        Subtarget(&tm.getSubtarget<X86Subtarget>()),
157        OptForSize(false) {}
158
159    virtual const char *getPassName() const {
160      return "X86 DAG->DAG Instruction Selection";
161    }
162
163    virtual void EmitFunctionEntryCode();
164
165    virtual bool IsProfitableToFold(SDValue N, SDNode *U, SDNode *Root) const;
166
167    virtual void PreprocessISelDAG();
168
169    inline bool immSext8(SDNode *N) const {
170      return isInt<8>(cast<ConstantSDNode>(N)->getSExtValue());
171    }
172
173    // i64immSExt32 predicate - True if the 64-bit immediate fits in a 32-bit
174    // sign extended field.
175    inline bool i64immSExt32(SDNode *N) const {
176      uint64_t v = cast<ConstantSDNode>(N)->getZExtValue();
177      return (int64_t)v == (int32_t)v;
178    }
179
180// Include the pieces autogenerated from the target description.
181#include "X86GenDAGISel.inc"
182
183  private:
184    SDNode *Select(SDNode *N);
185    SDNode *SelectGather(SDNode *N, unsigned Opc);
186    SDNode *SelectAtomic64(SDNode *Node, unsigned Opc);
187    SDNode *SelectAtomicLoadArith(SDNode *Node, MVT NVT);
188
189    bool FoldOffsetIntoAddress(uint64_t Offset, X86ISelAddressMode &AM);
190    bool MatchLoadInAddress(LoadSDNode *N, X86ISelAddressMode &AM);
191    bool MatchWrapper(SDValue N, X86ISelAddressMode &AM);
192    bool MatchAddress(SDValue N, X86ISelAddressMode &AM);
193    bool MatchAddressRecursively(SDValue N, X86ISelAddressMode &AM,
194                                 unsigned Depth);
195    bool MatchAddressBase(SDValue N, X86ISelAddressMode &AM);
196    bool SelectAddr(SDNode *Parent, SDValue N, SDValue &Base,
197                    SDValue &Scale, SDValue &Index, SDValue &Disp,
198                    SDValue &Segment);
199    bool SelectMOV64Imm32(SDValue N, SDValue &Imm);
200    bool SelectLEAAddr(SDValue N, SDValue &Base,
201                       SDValue &Scale, SDValue &Index, SDValue &Disp,
202                       SDValue &Segment);
203    bool SelectLEA64_32Addr(SDValue N, SDValue &Base,
204                            SDValue &Scale, SDValue &Index, SDValue &Disp,
205                            SDValue &Segment);
206    bool SelectTLSADDRAddr(SDValue N, SDValue &Base,
207                           SDValue &Scale, SDValue &Index, SDValue &Disp,
208                           SDValue &Segment);
209    bool SelectScalarSSELoad(SDNode *Root, SDValue N,
210                             SDValue &Base, SDValue &Scale,
211                             SDValue &Index, SDValue &Disp,
212                             SDValue &Segment,
213                             SDValue &NodeWithChain);
214
215    bool TryFoldLoad(SDNode *P, SDValue N,
216                     SDValue &Base, SDValue &Scale,
217                     SDValue &Index, SDValue &Disp,
218                     SDValue &Segment);
219
220    /// SelectInlineAsmMemoryOperand - Implement addressing mode selection for
221    /// inline asm expressions.
222    virtual bool SelectInlineAsmMemoryOperand(const SDValue &Op,
223                                              char ConstraintCode,
224                                              std::vector<SDValue> &OutOps);
225
226    void EmitSpecialCodeForMain(MachineBasicBlock *BB, MachineFrameInfo *MFI);
227
228    inline void getAddressOperands(X86ISelAddressMode &AM, SDValue &Base,
229                                   SDValue &Scale, SDValue &Index,
230                                   SDValue &Disp, SDValue &Segment) {
231      Base  = (AM.BaseType == X86ISelAddressMode::FrameIndexBase) ?
232        CurDAG->getTargetFrameIndex(AM.Base_FrameIndex,
233                                    getTargetLowering()->getPointerTy()) :
234        AM.Base_Reg;
235      Scale = getI8Imm(AM.Scale);
236      Index = AM.IndexReg;
237      // These are 32-bit even in 64-bit mode since RIP relative offset
238      // is 32-bit.
239      if (AM.GV)
240        Disp = CurDAG->getTargetGlobalAddress(AM.GV, SDLoc(),
241                                              MVT::i32, AM.Disp,
242                                              AM.SymbolFlags);
243      else if (AM.CP)
244        Disp = CurDAG->getTargetConstantPool(AM.CP, MVT::i32,
245                                             AM.Align, AM.Disp, AM.SymbolFlags);
246      else if (AM.ES) {
247        assert(!AM.Disp && "Non-zero displacement is ignored with ES.");
248        Disp = CurDAG->getTargetExternalSymbol(AM.ES, MVT::i32, AM.SymbolFlags);
249      } else if (AM.JT != -1) {
250        assert(!AM.Disp && "Non-zero displacement is ignored with JT.");
251        Disp = CurDAG->getTargetJumpTable(AM.JT, MVT::i32, AM.SymbolFlags);
252      } else if (AM.BlockAddr)
253        Disp = CurDAG->getTargetBlockAddress(AM.BlockAddr, MVT::i32, AM.Disp,
254                                             AM.SymbolFlags);
255      else
256        Disp = CurDAG->getTargetConstant(AM.Disp, MVT::i32);
257
258      if (AM.Segment.getNode())
259        Segment = AM.Segment;
260      else
261        Segment = CurDAG->getRegister(0, MVT::i32);
262    }
263
264    /// getI8Imm - Return a target constant with the specified value, of type
265    /// i8.
266    inline SDValue getI8Imm(unsigned Imm) {
267      return CurDAG->getTargetConstant(Imm, MVT::i8);
268    }
269
270    /// getI32Imm - Return a target constant with the specified value, of type
271    /// i32.
272    inline SDValue getI32Imm(unsigned Imm) {
273      return CurDAG->getTargetConstant(Imm, MVT::i32);
274    }
275
276    /// getGlobalBaseReg - Return an SDNode that returns the value of
277    /// the global base register. Output instructions required to
278    /// initialize the global base register, if necessary.
279    ///
280    SDNode *getGlobalBaseReg();
281
282    /// getTargetMachine - Return a reference to the TargetMachine, casted
283    /// to the target-specific type.
284    const X86TargetMachine &getTargetMachine() const {
285      return static_cast<const X86TargetMachine &>(TM);
286    }
287
288    /// getInstrInfo - Return a reference to the TargetInstrInfo, casted
289    /// to the target-specific type.
290    const X86InstrInfo *getInstrInfo() const {
291      return getTargetMachine().getInstrInfo();
292    }
293
294    /// \brief Address-mode matching performs shift-of-and to and-of-shift
295    /// reassociation in order to expose more scaled addressing
296    /// opportunities.
297    bool ComplexPatternFuncMutatesDAG() const {
298      return true;
299    }
300  };
301}
302
303
304bool
305X86DAGToDAGISel::IsProfitableToFold(SDValue N, SDNode *U, SDNode *Root) const {
306  if (OptLevel == CodeGenOpt::None) return false;
307
308  if (!N.hasOneUse())
309    return false;
310
311  if (N.getOpcode() != ISD::LOAD)
312    return true;
313
314  // If N is a load, do additional profitability checks.
315  if (U == Root) {
316    switch (U->getOpcode()) {
317    default: break;
318    case X86ISD::ADD:
319    case X86ISD::SUB:
320    case X86ISD::AND:
321    case X86ISD::XOR:
322    case X86ISD::OR:
323    case ISD::ADD:
324    case ISD::ADDC:
325    case ISD::ADDE:
326    case ISD::AND:
327    case ISD::OR:
328    case ISD::XOR: {
329      SDValue Op1 = U->getOperand(1);
330
331      // If the other operand is a 8-bit immediate we should fold the immediate
332      // instead. This reduces code size.
333      // e.g.
334      // movl 4(%esp), %eax
335      // addl $4, %eax
336      // vs.
337      // movl $4, %eax
338      // addl 4(%esp), %eax
339      // The former is 2 bytes shorter. In case where the increment is 1, then
340      // the saving can be 4 bytes (by using incl %eax).
341      if (ConstantSDNode *Imm = dyn_cast<ConstantSDNode>(Op1))
342        if (Imm->getAPIntValue().isSignedIntN(8))
343          return false;
344
345      // If the other operand is a TLS address, we should fold it instead.
346      // This produces
347      // movl    %gs:0, %eax
348      // leal    i@NTPOFF(%eax), %eax
349      // instead of
350      // movl    $i@NTPOFF, %eax
351      // addl    %gs:0, %eax
352      // if the block also has an access to a second TLS address this will save
353      // a load.
354      // FIXME: This is probably also true for non TLS addresses.
355      if (Op1.getOpcode() == X86ISD::Wrapper) {
356        SDValue Val = Op1.getOperand(0);
357        if (Val.getOpcode() == ISD::TargetGlobalTLSAddress)
358          return false;
359      }
360    }
361    }
362  }
363
364  return true;
365}
366
367/// MoveBelowCallOrigChain - Replace the original chain operand of the call with
368/// load's chain operand and move load below the call's chain operand.
369static void MoveBelowOrigChain(SelectionDAG *CurDAG, SDValue Load,
370                               SDValue Call, SDValue OrigChain) {
371  SmallVector<SDValue, 8> Ops;
372  SDValue Chain = OrigChain.getOperand(0);
373  if (Chain.getNode() == Load.getNode())
374    Ops.push_back(Load.getOperand(0));
375  else {
376    assert(Chain.getOpcode() == ISD::TokenFactor &&
377           "Unexpected chain operand");
378    for (unsigned i = 0, e = Chain.getNumOperands(); i != e; ++i)
379      if (Chain.getOperand(i).getNode() == Load.getNode())
380        Ops.push_back(Load.getOperand(0));
381      else
382        Ops.push_back(Chain.getOperand(i));
383    SDValue NewChain =
384      CurDAG->getNode(ISD::TokenFactor, SDLoc(Load),
385                      MVT::Other, &Ops[0], Ops.size());
386    Ops.clear();
387    Ops.push_back(NewChain);
388  }
389  for (unsigned i = 1, e = OrigChain.getNumOperands(); i != e; ++i)
390    Ops.push_back(OrigChain.getOperand(i));
391  CurDAG->UpdateNodeOperands(OrigChain.getNode(), &Ops[0], Ops.size());
392  CurDAG->UpdateNodeOperands(Load.getNode(), Call.getOperand(0),
393                             Load.getOperand(1), Load.getOperand(2));
394
395  unsigned NumOps = Call.getNode()->getNumOperands();
396  Ops.clear();
397  Ops.push_back(SDValue(Load.getNode(), 1));
398  for (unsigned i = 1, e = NumOps; i != e; ++i)
399    Ops.push_back(Call.getOperand(i));
400  CurDAG->UpdateNodeOperands(Call.getNode(), &Ops[0], NumOps);
401}
402
403/// isCalleeLoad - Return true if call address is a load and it can be
404/// moved below CALLSEQ_START and the chains leading up to the call.
405/// Return the CALLSEQ_START by reference as a second output.
406/// In the case of a tail call, there isn't a callseq node between the call
407/// chain and the load.
408static bool isCalleeLoad(SDValue Callee, SDValue &Chain, bool HasCallSeq) {
409  // The transformation is somewhat dangerous if the call's chain was glued to
410  // the call. After MoveBelowOrigChain the load is moved between the call and
411  // the chain, this can create a cycle if the load is not folded. So it is
412  // *really* important that we are sure the load will be folded.
413  if (Callee.getNode() == Chain.getNode() || !Callee.hasOneUse())
414    return false;
415  LoadSDNode *LD = dyn_cast<LoadSDNode>(Callee.getNode());
416  if (!LD ||
417      LD->isVolatile() ||
418      LD->getAddressingMode() != ISD::UNINDEXED ||
419      LD->getExtensionType() != ISD::NON_EXTLOAD)
420    return false;
421
422  // Now let's find the callseq_start.
423  while (HasCallSeq && Chain.getOpcode() != ISD::CALLSEQ_START) {
424    if (!Chain.hasOneUse())
425      return false;
426    Chain = Chain.getOperand(0);
427  }
428
429  if (!Chain.getNumOperands())
430    return false;
431  // Since we are not checking for AA here, conservatively abort if the chain
432  // writes to memory. It's not safe to move the callee (a load) across a store.
433  if (isa<MemSDNode>(Chain.getNode()) &&
434      cast<MemSDNode>(Chain.getNode())->writeMem())
435    return false;
436  if (Chain.getOperand(0).getNode() == Callee.getNode())
437    return true;
438  if (Chain.getOperand(0).getOpcode() == ISD::TokenFactor &&
439      Callee.getValue(1).isOperandOf(Chain.getOperand(0).getNode()) &&
440      Callee.getValue(1).hasOneUse())
441    return true;
442  return false;
443}
444
445void X86DAGToDAGISel::PreprocessISelDAG() {
446  // OptForSize is used in pattern predicates that isel is matching.
447  OptForSize = MF->getFunction()->getAttributes().
448    hasAttribute(AttributeSet::FunctionIndex, Attribute::OptimizeForSize);
449
450  for (SelectionDAG::allnodes_iterator I = CurDAG->allnodes_begin(),
451       E = CurDAG->allnodes_end(); I != E; ) {
452    SDNode *N = I++;  // Preincrement iterator to avoid invalidation issues.
453
454    if (OptLevel != CodeGenOpt::None &&
455        // Only does this when target favors doesn't favor register indirect
456        // call.
457        ((N->getOpcode() == X86ISD::CALL && !Subtarget->callRegIndirect()) ||
458         (N->getOpcode() == X86ISD::TC_RETURN &&
459          // Only does this if load can be folded into TC_RETURN.
460          (Subtarget->is64Bit() ||
461           getTargetMachine().getRelocationModel() != Reloc::PIC_)))) {
462      /// Also try moving call address load from outside callseq_start to just
463      /// before the call to allow it to be folded.
464      ///
465      ///     [Load chain]
466      ///         ^
467      ///         |
468      ///       [Load]
469      ///       ^    ^
470      ///       |    |
471      ///      /      \--
472      ///     /          |
473      ///[CALLSEQ_START] |
474      ///     ^          |
475      ///     |          |
476      /// [LOAD/C2Reg]   |
477      ///     |          |
478      ///      \        /
479      ///       \      /
480      ///       [CALL]
481      bool HasCallSeq = N->getOpcode() == X86ISD::CALL;
482      SDValue Chain = N->getOperand(0);
483      SDValue Load  = N->getOperand(1);
484      if (!isCalleeLoad(Load, Chain, HasCallSeq))
485        continue;
486      MoveBelowOrigChain(CurDAG, Load, SDValue(N, 0), Chain);
487      ++NumLoadMoved;
488      continue;
489    }
490
491    // Lower fpround and fpextend nodes that target the FP stack to be store and
492    // load to the stack.  This is a gross hack.  We would like to simply mark
493    // these as being illegal, but when we do that, legalize produces these when
494    // it expands calls, then expands these in the same legalize pass.  We would
495    // like dag combine to be able to hack on these between the call expansion
496    // and the node legalization.  As such this pass basically does "really
497    // late" legalization of these inline with the X86 isel pass.
498    // FIXME: This should only happen when not compiled with -O0.
499    if (N->getOpcode() != ISD::FP_ROUND && N->getOpcode() != ISD::FP_EXTEND)
500      continue;
501
502    MVT SrcVT = N->getOperand(0).getSimpleValueType();
503    MVT DstVT = N->getSimpleValueType(0);
504
505    // If any of the sources are vectors, no fp stack involved.
506    if (SrcVT.isVector() || DstVT.isVector())
507      continue;
508
509    // If the source and destination are SSE registers, then this is a legal
510    // conversion that should not be lowered.
511    const X86TargetLowering *X86Lowering =
512        static_cast<const X86TargetLowering *>(getTargetLowering());
513    bool SrcIsSSE = X86Lowering->isScalarFPTypeInSSEReg(SrcVT);
514    bool DstIsSSE = X86Lowering->isScalarFPTypeInSSEReg(DstVT);
515    if (SrcIsSSE && DstIsSSE)
516      continue;
517
518    if (!SrcIsSSE && !DstIsSSE) {
519      // If this is an FPStack extension, it is a noop.
520      if (N->getOpcode() == ISD::FP_EXTEND)
521        continue;
522      // If this is a value-preserving FPStack truncation, it is a noop.
523      if (N->getConstantOperandVal(1))
524        continue;
525    }
526
527    // Here we could have an FP stack truncation or an FPStack <-> SSE convert.
528    // FPStack has extload and truncstore.  SSE can fold direct loads into other
529    // operations.  Based on this, decide what we want to do.
530    MVT MemVT;
531    if (N->getOpcode() == ISD::FP_ROUND)
532      MemVT = DstVT;  // FP_ROUND must use DstVT, we can't do a 'trunc load'.
533    else
534      MemVT = SrcIsSSE ? SrcVT : DstVT;
535
536    SDValue MemTmp = CurDAG->CreateStackTemporary(MemVT);
537    SDLoc dl(N);
538
539    // FIXME: optimize the case where the src/dest is a load or store?
540    SDValue Store = CurDAG->getTruncStore(CurDAG->getEntryNode(), dl,
541                                          N->getOperand(0),
542                                          MemTmp, MachinePointerInfo(), MemVT,
543                                          false, false, 0);
544    SDValue Result = CurDAG->getExtLoad(ISD::EXTLOAD, dl, DstVT, Store, MemTmp,
545                                        MachinePointerInfo(),
546                                        MemVT, false, false, 0);
547
548    // We're about to replace all uses of the FP_ROUND/FP_EXTEND with the
549    // extload we created.  This will cause general havok on the dag because
550    // anything below the conversion could be folded into other existing nodes.
551    // To avoid invalidating 'I', back it up to the convert node.
552    --I;
553    CurDAG->ReplaceAllUsesOfValueWith(SDValue(N, 0), Result);
554
555    // Now that we did that, the node is dead.  Increment the iterator to the
556    // next node to process, then delete N.
557    ++I;
558    CurDAG->DeleteNode(N);
559  }
560}
561
562
563/// EmitSpecialCodeForMain - Emit any code that needs to be executed only in
564/// the main function.
565void X86DAGToDAGISel::EmitSpecialCodeForMain(MachineBasicBlock *BB,
566                                             MachineFrameInfo *MFI) {
567  const TargetInstrInfo *TII = TM.getInstrInfo();
568  if (Subtarget->isTargetCygMing()) {
569    unsigned CallOp =
570      Subtarget->is64Bit() ? X86::CALL64pcrel32 : X86::CALLpcrel32;
571    BuildMI(BB, DebugLoc(),
572            TII->get(CallOp)).addExternalSymbol("__main");
573  }
574}
575
576void X86DAGToDAGISel::EmitFunctionEntryCode() {
577  // If this is main, emit special code for main.
578  if (const Function *Fn = MF->getFunction())
579    if (Fn->hasExternalLinkage() && Fn->getName() == "main")
580      EmitSpecialCodeForMain(MF->begin(), MF->getFrameInfo());
581}
582
583static bool isDispSafeForFrameIndex(int64_t Val) {
584  // On 64-bit platforms, we can run into an issue where a frame index
585  // includes a displacement that, when added to the explicit displacement,
586  // will overflow the displacement field. Assuming that the frame index
587  // displacement fits into a 31-bit integer  (which is only slightly more
588  // aggressive than the current fundamental assumption that it fits into
589  // a 32-bit integer), a 31-bit disp should always be safe.
590  return isInt<31>(Val);
591}
592
593bool X86DAGToDAGISel::FoldOffsetIntoAddress(uint64_t Offset,
594                                            X86ISelAddressMode &AM) {
595  int64_t Val = AM.Disp + Offset;
596  CodeModel::Model M = TM.getCodeModel();
597  if (Subtarget->is64Bit()) {
598    if (!X86::isOffsetSuitableForCodeModel(Val, M,
599                                           AM.hasSymbolicDisplacement()))
600      return true;
601    // In addition to the checks required for a register base, check that
602    // we do not try to use an unsafe Disp with a frame index.
603    if (AM.BaseType == X86ISelAddressMode::FrameIndexBase &&
604        !isDispSafeForFrameIndex(Val))
605      return true;
606  }
607  AM.Disp = Val;
608  return false;
609
610}
611
612bool X86DAGToDAGISel::MatchLoadInAddress(LoadSDNode *N, X86ISelAddressMode &AM){
613  SDValue Address = N->getOperand(1);
614
615  // load gs:0 -> GS segment register.
616  // load fs:0 -> FS segment register.
617  //
618  // This optimization is valid because the GNU TLS model defines that
619  // gs:0 (or fs:0 on X86-64) contains its own address.
620  // For more information see http://people.redhat.com/drepper/tls.pdf
621  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Address))
622    if (C->getSExtValue() == 0 && AM.Segment.getNode() == 0 &&
623        Subtarget->isTargetLinux())
624      switch (N->getPointerInfo().getAddrSpace()) {
625      case 256:
626        AM.Segment = CurDAG->getRegister(X86::GS, MVT::i16);
627        return false;
628      case 257:
629        AM.Segment = CurDAG->getRegister(X86::FS, MVT::i16);
630        return false;
631      }
632
633  return true;
634}
635
636/// MatchWrapper - Try to match X86ISD::Wrapper and X86ISD::WrapperRIP nodes
637/// into an addressing mode.  These wrap things that will resolve down into a
638/// symbol reference.  If no match is possible, this returns true, otherwise it
639/// returns false.
640bool X86DAGToDAGISel::MatchWrapper(SDValue N, X86ISelAddressMode &AM) {
641  // If the addressing mode already has a symbol as the displacement, we can
642  // never match another symbol.
643  if (AM.hasSymbolicDisplacement())
644    return true;
645
646  SDValue N0 = N.getOperand(0);
647  CodeModel::Model M = TM.getCodeModel();
648
649  // Handle X86-64 rip-relative addresses.  We check this before checking direct
650  // folding because RIP is preferable to non-RIP accesses.
651  if (Subtarget->is64Bit() && N.getOpcode() == X86ISD::WrapperRIP &&
652      // Under X86-64 non-small code model, GV (and friends) are 64-bits, so
653      // they cannot be folded into immediate fields.
654      // FIXME: This can be improved for kernel and other models?
655      (M == CodeModel::Small || M == CodeModel::Kernel)) {
656    // Base and index reg must be 0 in order to use %rip as base.
657    if (AM.hasBaseOrIndexReg())
658      return true;
659    if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(N0)) {
660      X86ISelAddressMode Backup = AM;
661      AM.GV = G->getGlobal();
662      AM.SymbolFlags = G->getTargetFlags();
663      if (FoldOffsetIntoAddress(G->getOffset(), AM)) {
664        AM = Backup;
665        return true;
666      }
667    } else if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(N0)) {
668      X86ISelAddressMode Backup = AM;
669      AM.CP = CP->getConstVal();
670      AM.Align = CP->getAlignment();
671      AM.SymbolFlags = CP->getTargetFlags();
672      if (FoldOffsetIntoAddress(CP->getOffset(), AM)) {
673        AM = Backup;
674        return true;
675      }
676    } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(N0)) {
677      AM.ES = S->getSymbol();
678      AM.SymbolFlags = S->getTargetFlags();
679    } else if (JumpTableSDNode *J = dyn_cast<JumpTableSDNode>(N0)) {
680      AM.JT = J->getIndex();
681      AM.SymbolFlags = J->getTargetFlags();
682    } else if (BlockAddressSDNode *BA = dyn_cast<BlockAddressSDNode>(N0)) {
683      X86ISelAddressMode Backup = AM;
684      AM.BlockAddr = BA->getBlockAddress();
685      AM.SymbolFlags = BA->getTargetFlags();
686      if (FoldOffsetIntoAddress(BA->getOffset(), AM)) {
687        AM = Backup;
688        return true;
689      }
690    } else
691      llvm_unreachable("Unhandled symbol reference node.");
692
693    if (N.getOpcode() == X86ISD::WrapperRIP)
694      AM.setBaseReg(CurDAG->getRegister(X86::RIP, MVT::i64));
695    return false;
696  }
697
698  // Handle the case when globals fit in our immediate field: This is true for
699  // X86-32 always and X86-64 when in -mcmodel=small mode.  In 64-bit
700  // mode, this only applies to a non-RIP-relative computation.
701  if (!Subtarget->is64Bit() ||
702      M == CodeModel::Small || M == CodeModel::Kernel) {
703    assert(N.getOpcode() != X86ISD::WrapperRIP &&
704           "RIP-relative addressing already handled");
705    if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(N0)) {
706      AM.GV = G->getGlobal();
707      AM.Disp += G->getOffset();
708      AM.SymbolFlags = G->getTargetFlags();
709    } else if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(N0)) {
710      AM.CP = CP->getConstVal();
711      AM.Align = CP->getAlignment();
712      AM.Disp += CP->getOffset();
713      AM.SymbolFlags = CP->getTargetFlags();
714    } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(N0)) {
715      AM.ES = S->getSymbol();
716      AM.SymbolFlags = S->getTargetFlags();
717    } else if (JumpTableSDNode *J = dyn_cast<JumpTableSDNode>(N0)) {
718      AM.JT = J->getIndex();
719      AM.SymbolFlags = J->getTargetFlags();
720    } else if (BlockAddressSDNode *BA = dyn_cast<BlockAddressSDNode>(N0)) {
721      AM.BlockAddr = BA->getBlockAddress();
722      AM.Disp += BA->getOffset();
723      AM.SymbolFlags = BA->getTargetFlags();
724    } else
725      llvm_unreachable("Unhandled symbol reference node.");
726    return false;
727  }
728
729  return true;
730}
731
732/// MatchAddress - Add the specified node to the specified addressing mode,
733/// returning true if it cannot be done.  This just pattern matches for the
734/// addressing mode.
735bool X86DAGToDAGISel::MatchAddress(SDValue N, X86ISelAddressMode &AM) {
736  if (MatchAddressRecursively(N, AM, 0))
737    return true;
738
739  // Post-processing: Convert lea(,%reg,2) to lea(%reg,%reg), which has
740  // a smaller encoding and avoids a scaled-index.
741  if (AM.Scale == 2 &&
742      AM.BaseType == X86ISelAddressMode::RegBase &&
743      AM.Base_Reg.getNode() == 0) {
744    AM.Base_Reg = AM.IndexReg;
745    AM.Scale = 1;
746  }
747
748  // Post-processing: Convert foo to foo(%rip), even in non-PIC mode,
749  // because it has a smaller encoding.
750  // TODO: Which other code models can use this?
751  if (TM.getCodeModel() == CodeModel::Small &&
752      Subtarget->is64Bit() &&
753      AM.Scale == 1 &&
754      AM.BaseType == X86ISelAddressMode::RegBase &&
755      AM.Base_Reg.getNode() == 0 &&
756      AM.IndexReg.getNode() == 0 &&
757      AM.SymbolFlags == X86II::MO_NO_FLAG &&
758      AM.hasSymbolicDisplacement())
759    AM.Base_Reg = CurDAG->getRegister(X86::RIP, MVT::i64);
760
761  return false;
762}
763
764// Insert a node into the DAG at least before the Pos node's position. This
765// will reposition the node as needed, and will assign it a node ID that is <=
766// the Pos node's ID. Note that this does *not* preserve the uniqueness of node
767// IDs! The selection DAG must no longer depend on their uniqueness when this
768// is used.
769static void InsertDAGNode(SelectionDAG &DAG, SDValue Pos, SDValue N) {
770  if (N.getNode()->getNodeId() == -1 ||
771      N.getNode()->getNodeId() > Pos.getNode()->getNodeId()) {
772    DAG.RepositionNode(Pos.getNode(), N.getNode());
773    N.getNode()->setNodeId(Pos.getNode()->getNodeId());
774  }
775}
776
777// Transform "(X >> (8-C1)) & C2" to "(X >> 8) & 0xff)" if safe. This
778// allows us to convert the shift and and into an h-register extract and
779// a scaled index. Returns false if the simplification is performed.
780static bool FoldMaskAndShiftToExtract(SelectionDAG &DAG, SDValue N,
781                                      uint64_t Mask,
782                                      SDValue Shift, SDValue X,
783                                      X86ISelAddressMode &AM) {
784  if (Shift.getOpcode() != ISD::SRL ||
785      !isa<ConstantSDNode>(Shift.getOperand(1)) ||
786      !Shift.hasOneUse())
787    return true;
788
789  int ScaleLog = 8 - Shift.getConstantOperandVal(1);
790  if (ScaleLog <= 0 || ScaleLog >= 4 ||
791      Mask != (0xffu << ScaleLog))
792    return true;
793
794  MVT VT = N.getSimpleValueType();
795  SDLoc DL(N);
796  SDValue Eight = DAG.getConstant(8, MVT::i8);
797  SDValue NewMask = DAG.getConstant(0xff, VT);
798  SDValue Srl = DAG.getNode(ISD::SRL, DL, VT, X, Eight);
799  SDValue And = DAG.getNode(ISD::AND, DL, VT, Srl, NewMask);
800  SDValue ShlCount = DAG.getConstant(ScaleLog, MVT::i8);
801  SDValue Shl = DAG.getNode(ISD::SHL, DL, VT, And, ShlCount);
802
803  // Insert the new nodes into the topological ordering. We must do this in
804  // a valid topological ordering as nothing is going to go back and re-sort
805  // these nodes. We continually insert before 'N' in sequence as this is
806  // essentially a pre-flattened and pre-sorted sequence of nodes. There is no
807  // hierarchy left to express.
808  InsertDAGNode(DAG, N, Eight);
809  InsertDAGNode(DAG, N, Srl);
810  InsertDAGNode(DAG, N, NewMask);
811  InsertDAGNode(DAG, N, And);
812  InsertDAGNode(DAG, N, ShlCount);
813  InsertDAGNode(DAG, N, Shl);
814  DAG.ReplaceAllUsesWith(N, Shl);
815  AM.IndexReg = And;
816  AM.Scale = (1 << ScaleLog);
817  return false;
818}
819
820// Transforms "(X << C1) & C2" to "(X & (C2>>C1)) << C1" if safe and if this
821// allows us to fold the shift into this addressing mode. Returns false if the
822// transform succeeded.
823static bool FoldMaskedShiftToScaledMask(SelectionDAG &DAG, SDValue N,
824                                        uint64_t Mask,
825                                        SDValue Shift, SDValue X,
826                                        X86ISelAddressMode &AM) {
827  if (Shift.getOpcode() != ISD::SHL ||
828      !isa<ConstantSDNode>(Shift.getOperand(1)))
829    return true;
830
831  // Not likely to be profitable if either the AND or SHIFT node has more
832  // than one use (unless all uses are for address computation). Besides,
833  // isel mechanism requires their node ids to be reused.
834  if (!N.hasOneUse() || !Shift.hasOneUse())
835    return true;
836
837  // Verify that the shift amount is something we can fold.
838  unsigned ShiftAmt = Shift.getConstantOperandVal(1);
839  if (ShiftAmt != 1 && ShiftAmt != 2 && ShiftAmt != 3)
840    return true;
841
842  MVT VT = N.getSimpleValueType();
843  SDLoc DL(N);
844  SDValue NewMask = DAG.getConstant(Mask >> ShiftAmt, VT);
845  SDValue NewAnd = DAG.getNode(ISD::AND, DL, VT, X, NewMask);
846  SDValue NewShift = DAG.getNode(ISD::SHL, DL, VT, NewAnd, Shift.getOperand(1));
847
848  // Insert the new nodes into the topological ordering. We must do this in
849  // a valid topological ordering as nothing is going to go back and re-sort
850  // these nodes. We continually insert before 'N' in sequence as this is
851  // essentially a pre-flattened and pre-sorted sequence of nodes. There is no
852  // hierarchy left to express.
853  InsertDAGNode(DAG, N, NewMask);
854  InsertDAGNode(DAG, N, NewAnd);
855  InsertDAGNode(DAG, N, NewShift);
856  DAG.ReplaceAllUsesWith(N, NewShift);
857
858  AM.Scale = 1 << ShiftAmt;
859  AM.IndexReg = NewAnd;
860  return false;
861}
862
863// Implement some heroics to detect shifts of masked values where the mask can
864// be replaced by extending the shift and undoing that in the addressing mode
865// scale. Patterns such as (shl (srl x, c1), c2) are canonicalized into (and
866// (srl x, SHIFT), MASK) by DAGCombines that don't know the shl can be done in
867// the addressing mode. This results in code such as:
868//
869//   int f(short *y, int *lookup_table) {
870//     ...
871//     return *y + lookup_table[*y >> 11];
872//   }
873//
874// Turning into:
875//   movzwl (%rdi), %eax
876//   movl %eax, %ecx
877//   shrl $11, %ecx
878//   addl (%rsi,%rcx,4), %eax
879//
880// Instead of:
881//   movzwl (%rdi), %eax
882//   movl %eax, %ecx
883//   shrl $9, %ecx
884//   andl $124, %rcx
885//   addl (%rsi,%rcx), %eax
886//
887// Note that this function assumes the mask is provided as a mask *after* the
888// value is shifted. The input chain may or may not match that, but computing
889// such a mask is trivial.
890static bool FoldMaskAndShiftToScale(SelectionDAG &DAG, SDValue N,
891                                    uint64_t Mask,
892                                    SDValue Shift, SDValue X,
893                                    X86ISelAddressMode &AM) {
894  if (Shift.getOpcode() != ISD::SRL || !Shift.hasOneUse() ||
895      !isa<ConstantSDNode>(Shift.getOperand(1)))
896    return true;
897
898  unsigned ShiftAmt = Shift.getConstantOperandVal(1);
899  unsigned MaskLZ = countLeadingZeros(Mask);
900  unsigned MaskTZ = countTrailingZeros(Mask);
901
902  // The amount of shift we're trying to fit into the addressing mode is taken
903  // from the trailing zeros of the mask.
904  unsigned AMShiftAmt = MaskTZ;
905
906  // There is nothing we can do here unless the mask is removing some bits.
907  // Also, the addressing mode can only represent shifts of 1, 2, or 3 bits.
908  if (AMShiftAmt <= 0 || AMShiftAmt > 3) return true;
909
910  // We also need to ensure that mask is a continuous run of bits.
911  if (CountTrailingOnes_64(Mask >> MaskTZ) + MaskTZ + MaskLZ != 64) return true;
912
913  // Scale the leading zero count down based on the actual size of the value.
914  // Also scale it down based on the size of the shift.
915  MaskLZ -= (64 - X.getSimpleValueType().getSizeInBits()) + ShiftAmt;
916
917  // The final check is to ensure that any masked out high bits of X are
918  // already known to be zero. Otherwise, the mask has a semantic impact
919  // other than masking out a couple of low bits. Unfortunately, because of
920  // the mask, zero extensions will be removed from operands in some cases.
921  // This code works extra hard to look through extensions because we can
922  // replace them with zero extensions cheaply if necessary.
923  bool ReplacingAnyExtend = false;
924  if (X.getOpcode() == ISD::ANY_EXTEND) {
925    unsigned ExtendBits = X.getSimpleValueType().getSizeInBits() -
926                          X.getOperand(0).getSimpleValueType().getSizeInBits();
927    // Assume that we'll replace the any-extend with a zero-extend, and
928    // narrow the search to the extended value.
929    X = X.getOperand(0);
930    MaskLZ = ExtendBits > MaskLZ ? 0 : MaskLZ - ExtendBits;
931    ReplacingAnyExtend = true;
932  }
933  APInt MaskedHighBits =
934    APInt::getHighBitsSet(X.getSimpleValueType().getSizeInBits(), MaskLZ);
935  APInt KnownZero, KnownOne;
936  DAG.ComputeMaskedBits(X, KnownZero, KnownOne);
937  if (MaskedHighBits != KnownZero) return true;
938
939  // We've identified a pattern that can be transformed into a single shift
940  // and an addressing mode. Make it so.
941  MVT VT = N.getSimpleValueType();
942  if (ReplacingAnyExtend) {
943    assert(X.getValueType() != VT);
944    // We looked through an ANY_EXTEND node, insert a ZERO_EXTEND.
945    SDValue NewX = DAG.getNode(ISD::ZERO_EXTEND, SDLoc(X), VT, X);
946    InsertDAGNode(DAG, N, NewX);
947    X = NewX;
948  }
949  SDLoc DL(N);
950  SDValue NewSRLAmt = DAG.getConstant(ShiftAmt + AMShiftAmt, MVT::i8);
951  SDValue NewSRL = DAG.getNode(ISD::SRL, DL, VT, X, NewSRLAmt);
952  SDValue NewSHLAmt = DAG.getConstant(AMShiftAmt, MVT::i8);
953  SDValue NewSHL = DAG.getNode(ISD::SHL, DL, VT, NewSRL, NewSHLAmt);
954
955  // Insert the new nodes into the topological ordering. We must do this in
956  // a valid topological ordering as nothing is going to go back and re-sort
957  // these nodes. We continually insert before 'N' in sequence as this is
958  // essentially a pre-flattened and pre-sorted sequence of nodes. There is no
959  // hierarchy left to express.
960  InsertDAGNode(DAG, N, NewSRLAmt);
961  InsertDAGNode(DAG, N, NewSRL);
962  InsertDAGNode(DAG, N, NewSHLAmt);
963  InsertDAGNode(DAG, N, NewSHL);
964  DAG.ReplaceAllUsesWith(N, NewSHL);
965
966  AM.Scale = 1 << AMShiftAmt;
967  AM.IndexReg = NewSRL;
968  return false;
969}
970
971bool X86DAGToDAGISel::MatchAddressRecursively(SDValue N, X86ISelAddressMode &AM,
972                                              unsigned Depth) {
973  SDLoc dl(N);
974  DEBUG({
975      dbgs() << "MatchAddress: ";
976      AM.dump();
977    });
978  // Limit recursion.
979  if (Depth > 5)
980    return MatchAddressBase(N, AM);
981
982  // If this is already a %rip relative address, we can only merge immediates
983  // into it.  Instead of handling this in every case, we handle it here.
984  // RIP relative addressing: %rip + 32-bit displacement!
985  if (AM.isRIPRelative()) {
986    // FIXME: JumpTable and ExternalSymbol address currently don't like
987    // displacements.  It isn't very important, but this should be fixed for
988    // consistency.
989    if (!AM.ES && AM.JT != -1) return true;
990
991    if (ConstantSDNode *Cst = dyn_cast<ConstantSDNode>(N))
992      if (!FoldOffsetIntoAddress(Cst->getSExtValue(), AM))
993        return false;
994    return true;
995  }
996
997  switch (N.getOpcode()) {
998  default: break;
999  case ISD::Constant: {
1000    uint64_t Val = cast<ConstantSDNode>(N)->getSExtValue();
1001    if (!FoldOffsetIntoAddress(Val, AM))
1002      return false;
1003    break;
1004  }
1005
1006  case X86ISD::Wrapper:
1007  case X86ISD::WrapperRIP:
1008    if (!MatchWrapper(N, AM))
1009      return false;
1010    break;
1011
1012  case ISD::LOAD:
1013    if (!MatchLoadInAddress(cast<LoadSDNode>(N), AM))
1014      return false;
1015    break;
1016
1017  case ISD::FrameIndex:
1018    if (AM.BaseType == X86ISelAddressMode::RegBase &&
1019        AM.Base_Reg.getNode() == 0 &&
1020        (!Subtarget->is64Bit() || isDispSafeForFrameIndex(AM.Disp))) {
1021      AM.BaseType = X86ISelAddressMode::FrameIndexBase;
1022      AM.Base_FrameIndex = cast<FrameIndexSDNode>(N)->getIndex();
1023      return false;
1024    }
1025    break;
1026
1027  case ISD::SHL:
1028    if (AM.IndexReg.getNode() != 0 || AM.Scale != 1)
1029      break;
1030
1031    if (ConstantSDNode
1032          *CN = dyn_cast<ConstantSDNode>(N.getNode()->getOperand(1))) {
1033      unsigned Val = CN->getZExtValue();
1034      // Note that we handle x<<1 as (,x,2) rather than (x,x) here so
1035      // that the base operand remains free for further matching. If
1036      // the base doesn't end up getting used, a post-processing step
1037      // in MatchAddress turns (,x,2) into (x,x), which is cheaper.
1038      if (Val == 1 || Val == 2 || Val == 3) {
1039        AM.Scale = 1 << Val;
1040        SDValue ShVal = N.getNode()->getOperand(0);
1041
1042        // Okay, we know that we have a scale by now.  However, if the scaled
1043        // value is an add of something and a constant, we can fold the
1044        // constant into the disp field here.
1045        if (CurDAG->isBaseWithConstantOffset(ShVal)) {
1046          AM.IndexReg = ShVal.getNode()->getOperand(0);
1047          ConstantSDNode *AddVal =
1048            cast<ConstantSDNode>(ShVal.getNode()->getOperand(1));
1049          uint64_t Disp = (uint64_t)AddVal->getSExtValue() << Val;
1050          if (!FoldOffsetIntoAddress(Disp, AM))
1051            return false;
1052        }
1053
1054        AM.IndexReg = ShVal;
1055        return false;
1056      }
1057    }
1058    break;
1059
1060  case ISD::SRL: {
1061    // Scale must not be used already.
1062    if (AM.IndexReg.getNode() != 0 || AM.Scale != 1) break;
1063
1064    SDValue And = N.getOperand(0);
1065    if (And.getOpcode() != ISD::AND) break;
1066    SDValue X = And.getOperand(0);
1067
1068    // We only handle up to 64-bit values here as those are what matter for
1069    // addressing mode optimizations.
1070    if (X.getSimpleValueType().getSizeInBits() > 64) break;
1071
1072    // The mask used for the transform is expected to be post-shift, but we
1073    // found the shift first so just apply the shift to the mask before passing
1074    // it down.
1075    if (!isa<ConstantSDNode>(N.getOperand(1)) ||
1076        !isa<ConstantSDNode>(And.getOperand(1)))
1077      break;
1078    uint64_t Mask = And.getConstantOperandVal(1) >> N.getConstantOperandVal(1);
1079
1080    // Try to fold the mask and shift into the scale, and return false if we
1081    // succeed.
1082    if (!FoldMaskAndShiftToScale(*CurDAG, N, Mask, N, X, AM))
1083      return false;
1084    break;
1085  }
1086
1087  case ISD::SMUL_LOHI:
1088  case ISD::UMUL_LOHI:
1089    // A mul_lohi where we need the low part can be folded as a plain multiply.
1090    if (N.getResNo() != 0) break;
1091    // FALL THROUGH
1092  case ISD::MUL:
1093  case X86ISD::MUL_IMM:
1094    // X*[3,5,9] -> X+X*[2,4,8]
1095    if (AM.BaseType == X86ISelAddressMode::RegBase &&
1096        AM.Base_Reg.getNode() == 0 &&
1097        AM.IndexReg.getNode() == 0) {
1098      if (ConstantSDNode
1099            *CN = dyn_cast<ConstantSDNode>(N.getNode()->getOperand(1)))
1100        if (CN->getZExtValue() == 3 || CN->getZExtValue() == 5 ||
1101            CN->getZExtValue() == 9) {
1102          AM.Scale = unsigned(CN->getZExtValue())-1;
1103
1104          SDValue MulVal = N.getNode()->getOperand(0);
1105          SDValue Reg;
1106
1107          // Okay, we know that we have a scale by now.  However, if the scaled
1108          // value is an add of something and a constant, we can fold the
1109          // constant into the disp field here.
1110          if (MulVal.getNode()->getOpcode() == ISD::ADD && MulVal.hasOneUse() &&
1111              isa<ConstantSDNode>(MulVal.getNode()->getOperand(1))) {
1112            Reg = MulVal.getNode()->getOperand(0);
1113            ConstantSDNode *AddVal =
1114              cast<ConstantSDNode>(MulVal.getNode()->getOperand(1));
1115            uint64_t Disp = AddVal->getSExtValue() * CN->getZExtValue();
1116            if (FoldOffsetIntoAddress(Disp, AM))
1117              Reg = N.getNode()->getOperand(0);
1118          } else {
1119            Reg = N.getNode()->getOperand(0);
1120          }
1121
1122          AM.IndexReg = AM.Base_Reg = Reg;
1123          return false;
1124        }
1125    }
1126    break;
1127
1128  case ISD::SUB: {
1129    // Given A-B, if A can be completely folded into the address and
1130    // the index field with the index field unused, use -B as the index.
1131    // This is a win if a has multiple parts that can be folded into
1132    // the address. Also, this saves a mov if the base register has
1133    // other uses, since it avoids a two-address sub instruction, however
1134    // it costs an additional mov if the index register has other uses.
1135
1136    // Add an artificial use to this node so that we can keep track of
1137    // it if it gets CSE'd with a different node.
1138    HandleSDNode Handle(N);
1139
1140    // Test if the LHS of the sub can be folded.
1141    X86ISelAddressMode Backup = AM;
1142    if (MatchAddressRecursively(N.getNode()->getOperand(0), AM, Depth+1)) {
1143      AM = Backup;
1144      break;
1145    }
1146    // Test if the index field is free for use.
1147    if (AM.IndexReg.getNode() || AM.isRIPRelative()) {
1148      AM = Backup;
1149      break;
1150    }
1151
1152    int Cost = 0;
1153    SDValue RHS = Handle.getValue().getNode()->getOperand(1);
1154    // If the RHS involves a register with multiple uses, this
1155    // transformation incurs an extra mov, due to the neg instruction
1156    // clobbering its operand.
1157    if (!RHS.getNode()->hasOneUse() ||
1158        RHS.getNode()->getOpcode() == ISD::CopyFromReg ||
1159        RHS.getNode()->getOpcode() == ISD::TRUNCATE ||
1160        RHS.getNode()->getOpcode() == ISD::ANY_EXTEND ||
1161        (RHS.getNode()->getOpcode() == ISD::ZERO_EXTEND &&
1162         RHS.getNode()->getOperand(0).getValueType() == MVT::i32))
1163      ++Cost;
1164    // If the base is a register with multiple uses, this
1165    // transformation may save a mov.
1166    if ((AM.BaseType == X86ISelAddressMode::RegBase &&
1167         AM.Base_Reg.getNode() &&
1168         !AM.Base_Reg.getNode()->hasOneUse()) ||
1169        AM.BaseType == X86ISelAddressMode::FrameIndexBase)
1170      --Cost;
1171    // If the folded LHS was interesting, this transformation saves
1172    // address arithmetic.
1173    if ((AM.hasSymbolicDisplacement() && !Backup.hasSymbolicDisplacement()) +
1174        ((AM.Disp != 0) && (Backup.Disp == 0)) +
1175        (AM.Segment.getNode() && !Backup.Segment.getNode()) >= 2)
1176      --Cost;
1177    // If it doesn't look like it may be an overall win, don't do it.
1178    if (Cost >= 0) {
1179      AM = Backup;
1180      break;
1181    }
1182
1183    // Ok, the transformation is legal and appears profitable. Go for it.
1184    SDValue Zero = CurDAG->getConstant(0, N.getValueType());
1185    SDValue Neg = CurDAG->getNode(ISD::SUB, dl, N.getValueType(), Zero, RHS);
1186    AM.IndexReg = Neg;
1187    AM.Scale = 1;
1188
1189    // Insert the new nodes into the topological ordering.
1190    InsertDAGNode(*CurDAG, N, Zero);
1191    InsertDAGNode(*CurDAG, N, Neg);
1192    return false;
1193  }
1194
1195  case ISD::ADD: {
1196    // Add an artificial use to this node so that we can keep track of
1197    // it if it gets CSE'd with a different node.
1198    HandleSDNode Handle(N);
1199
1200    X86ISelAddressMode Backup = AM;
1201    if (!MatchAddressRecursively(N.getOperand(0), AM, Depth+1) &&
1202        !MatchAddressRecursively(Handle.getValue().getOperand(1), AM, Depth+1))
1203      return false;
1204    AM = Backup;
1205
1206    // Try again after commuting the operands.
1207    if (!MatchAddressRecursively(Handle.getValue().getOperand(1), AM, Depth+1)&&
1208        !MatchAddressRecursively(Handle.getValue().getOperand(0), AM, Depth+1))
1209      return false;
1210    AM = Backup;
1211
1212    // If we couldn't fold both operands into the address at the same time,
1213    // see if we can just put each operand into a register and fold at least
1214    // the add.
1215    if (AM.BaseType == X86ISelAddressMode::RegBase &&
1216        !AM.Base_Reg.getNode() &&
1217        !AM.IndexReg.getNode()) {
1218      N = Handle.getValue();
1219      AM.Base_Reg = N.getOperand(0);
1220      AM.IndexReg = N.getOperand(1);
1221      AM.Scale = 1;
1222      return false;
1223    }
1224    N = Handle.getValue();
1225    break;
1226  }
1227
1228  case ISD::OR:
1229    // Handle "X | C" as "X + C" iff X is known to have C bits clear.
1230    if (CurDAG->isBaseWithConstantOffset(N)) {
1231      X86ISelAddressMode Backup = AM;
1232      ConstantSDNode *CN = cast<ConstantSDNode>(N.getOperand(1));
1233
1234      // Start with the LHS as an addr mode.
1235      if (!MatchAddressRecursively(N.getOperand(0), AM, Depth+1) &&
1236          !FoldOffsetIntoAddress(CN->getSExtValue(), AM))
1237        return false;
1238      AM = Backup;
1239    }
1240    break;
1241
1242  case ISD::AND: {
1243    // Perform some heroic transforms on an and of a constant-count shift
1244    // with a constant to enable use of the scaled offset field.
1245
1246    // Scale must not be used already.
1247    if (AM.IndexReg.getNode() != 0 || AM.Scale != 1) break;
1248
1249    SDValue Shift = N.getOperand(0);
1250    if (Shift.getOpcode() != ISD::SRL && Shift.getOpcode() != ISD::SHL) break;
1251    SDValue X = Shift.getOperand(0);
1252
1253    // We only handle up to 64-bit values here as those are what matter for
1254    // addressing mode optimizations.
1255    if (X.getSimpleValueType().getSizeInBits() > 64) break;
1256
1257    if (!isa<ConstantSDNode>(N.getOperand(1)))
1258      break;
1259    uint64_t Mask = N.getConstantOperandVal(1);
1260
1261    // Try to fold the mask and shift into an extract and scale.
1262    if (!FoldMaskAndShiftToExtract(*CurDAG, N, Mask, Shift, X, AM))
1263      return false;
1264
1265    // Try to fold the mask and shift directly into the scale.
1266    if (!FoldMaskAndShiftToScale(*CurDAG, N, Mask, Shift, X, AM))
1267      return false;
1268
1269    // Try to swap the mask and shift to place shifts which can be done as
1270    // a scale on the outside of the mask.
1271    if (!FoldMaskedShiftToScaledMask(*CurDAG, N, Mask, Shift, X, AM))
1272      return false;
1273    break;
1274  }
1275  }
1276
1277  return MatchAddressBase(N, AM);
1278}
1279
1280/// MatchAddressBase - Helper for MatchAddress. Add the specified node to the
1281/// specified addressing mode without any further recursion.
1282bool X86DAGToDAGISel::MatchAddressBase(SDValue N, X86ISelAddressMode &AM) {
1283  // Is the base register already occupied?
1284  if (AM.BaseType != X86ISelAddressMode::RegBase || AM.Base_Reg.getNode()) {
1285    // If so, check to see if the scale index register is set.
1286    if (AM.IndexReg.getNode() == 0) {
1287      AM.IndexReg = N;
1288      AM.Scale = 1;
1289      return false;
1290    }
1291
1292    // Otherwise, we cannot select it.
1293    return true;
1294  }
1295
1296  // Default, generate it as a register.
1297  AM.BaseType = X86ISelAddressMode::RegBase;
1298  AM.Base_Reg = N;
1299  return false;
1300}
1301
1302/// SelectAddr - returns true if it is able pattern match an addressing mode.
1303/// It returns the operands which make up the maximal addressing mode it can
1304/// match by reference.
1305///
1306/// Parent is the parent node of the addr operand that is being matched.  It
1307/// is always a load, store, atomic node, or null.  It is only null when
1308/// checking memory operands for inline asm nodes.
1309bool X86DAGToDAGISel::SelectAddr(SDNode *Parent, SDValue N, SDValue &Base,
1310                                 SDValue &Scale, SDValue &Index,
1311                                 SDValue &Disp, SDValue &Segment) {
1312  X86ISelAddressMode AM;
1313
1314  if (Parent &&
1315      // This list of opcodes are all the nodes that have an "addr:$ptr" operand
1316      // that are not a MemSDNode, and thus don't have proper addrspace info.
1317      Parent->getOpcode() != ISD::INTRINSIC_W_CHAIN && // unaligned loads, fixme
1318      Parent->getOpcode() != ISD::INTRINSIC_VOID && // nontemporal stores
1319      Parent->getOpcode() != X86ISD::TLSCALL && // Fixme
1320      Parent->getOpcode() != X86ISD::EH_SJLJ_SETJMP && // setjmp
1321      Parent->getOpcode() != X86ISD::EH_SJLJ_LONGJMP) { // longjmp
1322    unsigned AddrSpace =
1323      cast<MemSDNode>(Parent)->getPointerInfo().getAddrSpace();
1324    // AddrSpace 256 -> GS, 257 -> FS.
1325    if (AddrSpace == 256)
1326      AM.Segment = CurDAG->getRegister(X86::GS, MVT::i16);
1327    if (AddrSpace == 257)
1328      AM.Segment = CurDAG->getRegister(X86::FS, MVT::i16);
1329  }
1330
1331  if (MatchAddress(N, AM))
1332    return false;
1333
1334  MVT VT = N.getSimpleValueType();
1335  if (AM.BaseType == X86ISelAddressMode::RegBase) {
1336    if (!AM.Base_Reg.getNode())
1337      AM.Base_Reg = CurDAG->getRegister(0, VT);
1338  }
1339
1340  if (!AM.IndexReg.getNode())
1341    AM.IndexReg = CurDAG->getRegister(0, VT);
1342
1343  getAddressOperands(AM, Base, Scale, Index, Disp, Segment);
1344  return true;
1345}
1346
1347/// SelectScalarSSELoad - Match a scalar SSE load.  In particular, we want to
1348/// match a load whose top elements are either undef or zeros.  The load flavor
1349/// is derived from the type of N, which is either v4f32 or v2f64.
1350///
1351/// We also return:
1352///   PatternChainNode: this is the matched node that has a chain input and
1353///   output.
1354bool X86DAGToDAGISel::SelectScalarSSELoad(SDNode *Root,
1355                                          SDValue N, SDValue &Base,
1356                                          SDValue &Scale, SDValue &Index,
1357                                          SDValue &Disp, SDValue &Segment,
1358                                          SDValue &PatternNodeWithChain) {
1359  if (N.getOpcode() == ISD::SCALAR_TO_VECTOR) {
1360    PatternNodeWithChain = N.getOperand(0);
1361    if (ISD::isNON_EXTLoad(PatternNodeWithChain.getNode()) &&
1362        PatternNodeWithChain.hasOneUse() &&
1363        IsProfitableToFold(N.getOperand(0), N.getNode(), Root) &&
1364        IsLegalToFold(N.getOperand(0), N.getNode(), Root, OptLevel)) {
1365      LoadSDNode *LD = cast<LoadSDNode>(PatternNodeWithChain);
1366      if (!SelectAddr(LD, LD->getBasePtr(), Base, Scale, Index, Disp, Segment))
1367        return false;
1368      return true;
1369    }
1370  }
1371
1372  // Also handle the case where we explicitly require zeros in the top
1373  // elements.  This is a vector shuffle from the zero vector.
1374  if (N.getOpcode() == X86ISD::VZEXT_MOVL && N.getNode()->hasOneUse() &&
1375      // Check to see if the top elements are all zeros (or bitcast of zeros).
1376      N.getOperand(0).getOpcode() == ISD::SCALAR_TO_VECTOR &&
1377      N.getOperand(0).getNode()->hasOneUse() &&
1378      ISD::isNON_EXTLoad(N.getOperand(0).getOperand(0).getNode()) &&
1379      N.getOperand(0).getOperand(0).hasOneUse() &&
1380      IsProfitableToFold(N.getOperand(0), N.getNode(), Root) &&
1381      IsLegalToFold(N.getOperand(0), N.getNode(), Root, OptLevel)) {
1382    // Okay, this is a zero extending load.  Fold it.
1383    LoadSDNode *LD = cast<LoadSDNode>(N.getOperand(0).getOperand(0));
1384    if (!SelectAddr(LD, LD->getBasePtr(), Base, Scale, Index, Disp, Segment))
1385      return false;
1386    PatternNodeWithChain = SDValue(LD, 0);
1387    return true;
1388  }
1389  return false;
1390}
1391
1392
1393bool X86DAGToDAGISel::SelectMOV64Imm32(SDValue N, SDValue &Imm) {
1394  if (const ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) {
1395    uint64_t ImmVal = CN->getZExtValue();
1396    if ((uint32_t)ImmVal != (uint64_t)ImmVal)
1397      return false;
1398
1399    Imm = CurDAG->getTargetConstant(ImmVal, MVT::i64);
1400    return true;
1401  }
1402
1403  // In static codegen with small code model, we can get the address of a label
1404  // into a register with 'movl'. TableGen has already made sure we're looking
1405  // at a label of some kind.
1406  assert(N->getOpcode() == X86ISD::Wrapper &&
1407         "Unexpected node type for MOV32ri64");
1408  N = N.getOperand(0);
1409
1410  if (N->getOpcode() != ISD::TargetConstantPool &&
1411      N->getOpcode() != ISD::TargetJumpTable &&
1412      N->getOpcode() != ISD::TargetGlobalAddress &&
1413      N->getOpcode() != ISD::TargetExternalSymbol &&
1414      N->getOpcode() != ISD::TargetBlockAddress)
1415    return false;
1416
1417  Imm = N;
1418  return TM.getCodeModel() == CodeModel::Small;
1419}
1420
1421bool X86DAGToDAGISel::SelectLEA64_32Addr(SDValue N, SDValue &Base,
1422                                         SDValue &Scale, SDValue &Index,
1423                                         SDValue &Disp, SDValue &Segment) {
1424  if (!SelectLEAAddr(N, Base, Scale, Index, Disp, Segment))
1425    return false;
1426
1427  SDLoc DL(N);
1428  RegisterSDNode *RN = dyn_cast<RegisterSDNode>(Base);
1429  if (RN && RN->getReg() == 0)
1430    Base = CurDAG->getRegister(0, MVT::i64);
1431  else if (Base.getValueType() == MVT::i32 && !dyn_cast<FrameIndexSDNode>(N)) {
1432    // Base could already be %rip, particularly in the x32 ABI.
1433    Base = SDValue(CurDAG->getMachineNode(
1434                       TargetOpcode::SUBREG_TO_REG, DL, MVT::i64,
1435                       CurDAG->getTargetConstant(0, MVT::i64),
1436                       Base,
1437                       CurDAG->getTargetConstant(X86::sub_32bit, MVT::i32)),
1438                   0);
1439  }
1440
1441  RN = dyn_cast<RegisterSDNode>(Index);
1442  if (RN && RN->getReg() == 0)
1443    Index = CurDAG->getRegister(0, MVT::i64);
1444  else {
1445    assert(Index.getValueType() == MVT::i32 &&
1446           "Expect to be extending 32-bit registers for use in LEA");
1447    Index = SDValue(CurDAG->getMachineNode(
1448                        TargetOpcode::SUBREG_TO_REG, DL, MVT::i64,
1449                        CurDAG->getTargetConstant(0, MVT::i64),
1450                        Index,
1451                        CurDAG->getTargetConstant(X86::sub_32bit, MVT::i32)),
1452                    0);
1453  }
1454
1455  return true;
1456}
1457
1458/// SelectLEAAddr - it calls SelectAddr and determines if the maximal addressing
1459/// mode it matches can be cost effectively emitted as an LEA instruction.
1460bool X86DAGToDAGISel::SelectLEAAddr(SDValue N,
1461                                    SDValue &Base, SDValue &Scale,
1462                                    SDValue &Index, SDValue &Disp,
1463                                    SDValue &Segment) {
1464  X86ISelAddressMode AM;
1465
1466  // Set AM.Segment to prevent MatchAddress from using one. LEA doesn't support
1467  // segments.
1468  SDValue Copy = AM.Segment;
1469  SDValue T = CurDAG->getRegister(0, MVT::i32);
1470  AM.Segment = T;
1471  if (MatchAddress(N, AM))
1472    return false;
1473  assert (T == AM.Segment);
1474  AM.Segment = Copy;
1475
1476  MVT VT = N.getSimpleValueType();
1477  unsigned Complexity = 0;
1478  if (AM.BaseType == X86ISelAddressMode::RegBase)
1479    if (AM.Base_Reg.getNode())
1480      Complexity = 1;
1481    else
1482      AM.Base_Reg = CurDAG->getRegister(0, VT);
1483  else if (AM.BaseType == X86ISelAddressMode::FrameIndexBase)
1484    Complexity = 4;
1485
1486  if (AM.IndexReg.getNode())
1487    Complexity++;
1488  else
1489    AM.IndexReg = CurDAG->getRegister(0, VT);
1490
1491  // Don't match just leal(,%reg,2). It's cheaper to do addl %reg, %reg, or with
1492  // a simple shift.
1493  if (AM.Scale > 1)
1494    Complexity++;
1495
1496  // FIXME: We are artificially lowering the criteria to turn ADD %reg, $GA
1497  // to a LEA. This is determined with some expermentation but is by no means
1498  // optimal (especially for code size consideration). LEA is nice because of
1499  // its three-address nature. Tweak the cost function again when we can run
1500  // convertToThreeAddress() at register allocation time.
1501  if (AM.hasSymbolicDisplacement()) {
1502    // For X86-64, we should always use lea to materialize RIP relative
1503    // addresses.
1504    if (Subtarget->is64Bit())
1505      Complexity = 4;
1506    else
1507      Complexity += 2;
1508  }
1509
1510  if (AM.Disp && (AM.Base_Reg.getNode() || AM.IndexReg.getNode()))
1511    Complexity++;
1512
1513  // If it isn't worth using an LEA, reject it.
1514  if (Complexity <= 2)
1515    return false;
1516
1517  getAddressOperands(AM, Base, Scale, Index, Disp, Segment);
1518  return true;
1519}
1520
1521/// SelectTLSADDRAddr - This is only run on TargetGlobalTLSAddress nodes.
1522bool X86DAGToDAGISel::SelectTLSADDRAddr(SDValue N, SDValue &Base,
1523                                        SDValue &Scale, SDValue &Index,
1524                                        SDValue &Disp, SDValue &Segment) {
1525  assert(N.getOpcode() == ISD::TargetGlobalTLSAddress);
1526  const GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(N);
1527
1528  X86ISelAddressMode AM;
1529  AM.GV = GA->getGlobal();
1530  AM.Disp += GA->getOffset();
1531  AM.Base_Reg = CurDAG->getRegister(0, N.getValueType());
1532  AM.SymbolFlags = GA->getTargetFlags();
1533
1534  if (N.getValueType() == MVT::i32) {
1535    AM.Scale = 1;
1536    AM.IndexReg = CurDAG->getRegister(X86::EBX, MVT::i32);
1537  } else {
1538    AM.IndexReg = CurDAG->getRegister(0, MVT::i64);
1539  }
1540
1541  getAddressOperands(AM, Base, Scale, Index, Disp, Segment);
1542  return true;
1543}
1544
1545
1546bool X86DAGToDAGISel::TryFoldLoad(SDNode *P, SDValue N,
1547                                  SDValue &Base, SDValue &Scale,
1548                                  SDValue &Index, SDValue &Disp,
1549                                  SDValue &Segment) {
1550  if (!ISD::isNON_EXTLoad(N.getNode()) ||
1551      !IsProfitableToFold(N, P, P) ||
1552      !IsLegalToFold(N, P, P, OptLevel))
1553    return false;
1554
1555  return SelectAddr(N.getNode(),
1556                    N.getOperand(1), Base, Scale, Index, Disp, Segment);
1557}
1558
1559/// getGlobalBaseReg - Return an SDNode that returns the value of
1560/// the global base register. Output instructions required to
1561/// initialize the global base register, if necessary.
1562///
1563SDNode *X86DAGToDAGISel::getGlobalBaseReg() {
1564  unsigned GlobalBaseReg = getInstrInfo()->getGlobalBaseReg(MF);
1565  return CurDAG->getRegister(GlobalBaseReg,
1566                             getTargetLowering()->getPointerTy()).getNode();
1567}
1568
1569SDNode *X86DAGToDAGISel::SelectAtomic64(SDNode *Node, unsigned Opc) {
1570  SDValue Chain = Node->getOperand(0);
1571  SDValue In1 = Node->getOperand(1);
1572  SDValue In2L = Node->getOperand(2);
1573  SDValue In2H = Node->getOperand(3);
1574
1575  SDValue Tmp0, Tmp1, Tmp2, Tmp3, Tmp4;
1576  if (!SelectAddr(Node, In1, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4))
1577    return NULL;
1578  MachineSDNode::mmo_iterator MemOp = MF->allocateMemRefsArray(1);
1579  MemOp[0] = cast<MemSDNode>(Node)->getMemOperand();
1580  const SDValue Ops[] = { Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, In2L, In2H, Chain};
1581  SDNode *ResNode = CurDAG->getMachineNode(Opc, SDLoc(Node),
1582                                           MVT::i32, MVT::i32, MVT::Other, Ops);
1583  cast<MachineSDNode>(ResNode)->setMemRefs(MemOp, MemOp + 1);
1584  return ResNode;
1585}
1586
1587/// Atomic opcode table
1588///
1589enum AtomicOpc {
1590  ADD,
1591  SUB,
1592  INC,
1593  DEC,
1594  OR,
1595  AND,
1596  XOR,
1597  AtomicOpcEnd
1598};
1599
1600enum AtomicSz {
1601  ConstantI8,
1602  I8,
1603  SextConstantI16,
1604  ConstantI16,
1605  I16,
1606  SextConstantI32,
1607  ConstantI32,
1608  I32,
1609  SextConstantI64,
1610  ConstantI64,
1611  I64,
1612  AtomicSzEnd
1613};
1614
1615static const uint16_t AtomicOpcTbl[AtomicOpcEnd][AtomicSzEnd] = {
1616  {
1617    X86::LOCK_ADD8mi,
1618    X86::LOCK_ADD8mr,
1619    X86::LOCK_ADD16mi8,
1620    X86::LOCK_ADD16mi,
1621    X86::LOCK_ADD16mr,
1622    X86::LOCK_ADD32mi8,
1623    X86::LOCK_ADD32mi,
1624    X86::LOCK_ADD32mr,
1625    X86::LOCK_ADD64mi8,
1626    X86::LOCK_ADD64mi32,
1627    X86::LOCK_ADD64mr,
1628  },
1629  {
1630    X86::LOCK_SUB8mi,
1631    X86::LOCK_SUB8mr,
1632    X86::LOCK_SUB16mi8,
1633    X86::LOCK_SUB16mi,
1634    X86::LOCK_SUB16mr,
1635    X86::LOCK_SUB32mi8,
1636    X86::LOCK_SUB32mi,
1637    X86::LOCK_SUB32mr,
1638    X86::LOCK_SUB64mi8,
1639    X86::LOCK_SUB64mi32,
1640    X86::LOCK_SUB64mr,
1641  },
1642  {
1643    0,
1644    X86::LOCK_INC8m,
1645    0,
1646    0,
1647    X86::LOCK_INC16m,
1648    0,
1649    0,
1650    X86::LOCK_INC32m,
1651    0,
1652    0,
1653    X86::LOCK_INC64m,
1654  },
1655  {
1656    0,
1657    X86::LOCK_DEC8m,
1658    0,
1659    0,
1660    X86::LOCK_DEC16m,
1661    0,
1662    0,
1663    X86::LOCK_DEC32m,
1664    0,
1665    0,
1666    X86::LOCK_DEC64m,
1667  },
1668  {
1669    X86::LOCK_OR8mi,
1670    X86::LOCK_OR8mr,
1671    X86::LOCK_OR16mi8,
1672    X86::LOCK_OR16mi,
1673    X86::LOCK_OR16mr,
1674    X86::LOCK_OR32mi8,
1675    X86::LOCK_OR32mi,
1676    X86::LOCK_OR32mr,
1677    X86::LOCK_OR64mi8,
1678    X86::LOCK_OR64mi32,
1679    X86::LOCK_OR64mr,
1680  },
1681  {
1682    X86::LOCK_AND8mi,
1683    X86::LOCK_AND8mr,
1684    X86::LOCK_AND16mi8,
1685    X86::LOCK_AND16mi,
1686    X86::LOCK_AND16mr,
1687    X86::LOCK_AND32mi8,
1688    X86::LOCK_AND32mi,
1689    X86::LOCK_AND32mr,
1690    X86::LOCK_AND64mi8,
1691    X86::LOCK_AND64mi32,
1692    X86::LOCK_AND64mr,
1693  },
1694  {
1695    X86::LOCK_XOR8mi,
1696    X86::LOCK_XOR8mr,
1697    X86::LOCK_XOR16mi8,
1698    X86::LOCK_XOR16mi,
1699    X86::LOCK_XOR16mr,
1700    X86::LOCK_XOR32mi8,
1701    X86::LOCK_XOR32mi,
1702    X86::LOCK_XOR32mr,
1703    X86::LOCK_XOR64mi8,
1704    X86::LOCK_XOR64mi32,
1705    X86::LOCK_XOR64mr,
1706  }
1707};
1708
1709// Return the target constant operand for atomic-load-op and do simple
1710// translations, such as from atomic-load-add to lock-sub. The return value is
1711// one of the following 3 cases:
1712// + target-constant, the operand could be supported as a target constant.
1713// + empty, the operand is not needed any more with the new op selected.
1714// + non-empty, otherwise.
1715static SDValue getAtomicLoadArithTargetConstant(SelectionDAG *CurDAG,
1716                                                SDLoc dl,
1717                                                enum AtomicOpc &Op, MVT NVT,
1718                                                SDValue Val) {
1719  if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(Val)) {
1720    int64_t CNVal = CN->getSExtValue();
1721    // Quit if not 32-bit imm.
1722    if ((int32_t)CNVal != CNVal)
1723      return Val;
1724    // For atomic-load-add, we could do some optimizations.
1725    if (Op == ADD) {
1726      // Translate to INC/DEC if ADD by 1 or -1.
1727      if ((CNVal == 1) || (CNVal == -1)) {
1728        Op = (CNVal == 1) ? INC : DEC;
1729        // No more constant operand after being translated into INC/DEC.
1730        return SDValue();
1731      }
1732      // Translate to SUB if ADD by negative value.
1733      if (CNVal < 0) {
1734        Op = SUB;
1735        CNVal = -CNVal;
1736      }
1737    }
1738    return CurDAG->getTargetConstant(CNVal, NVT);
1739  }
1740
1741  // If the value operand is single-used, try to optimize it.
1742  if (Op == ADD && Val.hasOneUse()) {
1743    // Translate (atomic-load-add ptr (sub 0 x)) back to (lock-sub x).
1744    if (Val.getOpcode() == ISD::SUB && X86::isZeroNode(Val.getOperand(0))) {
1745      Op = SUB;
1746      return Val.getOperand(1);
1747    }
1748    // A special case for i16, which needs truncating as, in most cases, it's
1749    // promoted to i32. We will translate
1750    // (atomic-load-add (truncate (sub 0 x))) to (lock-sub (EXTRACT_SUBREG x))
1751    if (Val.getOpcode() == ISD::TRUNCATE && NVT == MVT::i16 &&
1752        Val.getOperand(0).getOpcode() == ISD::SUB &&
1753        X86::isZeroNode(Val.getOperand(0).getOperand(0))) {
1754      Op = SUB;
1755      Val = Val.getOperand(0);
1756      return CurDAG->getTargetExtractSubreg(X86::sub_16bit, dl, NVT,
1757                                            Val.getOperand(1));
1758    }
1759  }
1760
1761  return Val;
1762}
1763
1764SDNode *X86DAGToDAGISel::SelectAtomicLoadArith(SDNode *Node, MVT NVT) {
1765  if (Node->hasAnyUseOfValue(0))
1766    return 0;
1767
1768  SDLoc dl(Node);
1769
1770  // Optimize common patterns for __sync_or_and_fetch and similar arith
1771  // operations where the result is not used. This allows us to use the "lock"
1772  // version of the arithmetic instruction.
1773  SDValue Chain = Node->getOperand(0);
1774  SDValue Ptr = Node->getOperand(1);
1775  SDValue Val = Node->getOperand(2);
1776  SDValue Tmp0, Tmp1, Tmp2, Tmp3, Tmp4;
1777  if (!SelectAddr(Node, Ptr, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4))
1778    return 0;
1779
1780  // Which index into the table.
1781  enum AtomicOpc Op;
1782  switch (Node->getOpcode()) {
1783    default:
1784      return 0;
1785    case ISD::ATOMIC_LOAD_OR:
1786      Op = OR;
1787      break;
1788    case ISD::ATOMIC_LOAD_AND:
1789      Op = AND;
1790      break;
1791    case ISD::ATOMIC_LOAD_XOR:
1792      Op = XOR;
1793      break;
1794    case ISD::ATOMIC_LOAD_ADD:
1795      Op = ADD;
1796      break;
1797  }
1798
1799  Val = getAtomicLoadArithTargetConstant(CurDAG, dl, Op, NVT, Val);
1800  bool isUnOp = !Val.getNode();
1801  bool isCN = Val.getNode() && (Val.getOpcode() == ISD::TargetConstant);
1802
1803  unsigned Opc = 0;
1804  switch (NVT.SimpleTy) {
1805    default: return 0;
1806    case MVT::i8:
1807      if (isCN)
1808        Opc = AtomicOpcTbl[Op][ConstantI8];
1809      else
1810        Opc = AtomicOpcTbl[Op][I8];
1811      break;
1812    case MVT::i16:
1813      if (isCN) {
1814        if (immSext8(Val.getNode()))
1815          Opc = AtomicOpcTbl[Op][SextConstantI16];
1816        else
1817          Opc = AtomicOpcTbl[Op][ConstantI16];
1818      } else
1819        Opc = AtomicOpcTbl[Op][I16];
1820      break;
1821    case MVT::i32:
1822      if (isCN) {
1823        if (immSext8(Val.getNode()))
1824          Opc = AtomicOpcTbl[Op][SextConstantI32];
1825        else
1826          Opc = AtomicOpcTbl[Op][ConstantI32];
1827      } else
1828        Opc = AtomicOpcTbl[Op][I32];
1829      break;
1830    case MVT::i64:
1831      Opc = AtomicOpcTbl[Op][I64];
1832      if (isCN) {
1833        if (immSext8(Val.getNode()))
1834          Opc = AtomicOpcTbl[Op][SextConstantI64];
1835        else if (i64immSExt32(Val.getNode()))
1836          Opc = AtomicOpcTbl[Op][ConstantI64];
1837      }
1838      break;
1839  }
1840
1841  assert(Opc != 0 && "Invalid arith lock transform!");
1842
1843  SDValue Ret;
1844  SDValue Undef = SDValue(CurDAG->getMachineNode(TargetOpcode::IMPLICIT_DEF,
1845                                                 dl, NVT), 0);
1846  MachineSDNode::mmo_iterator MemOp = MF->allocateMemRefsArray(1);
1847  MemOp[0] = cast<MemSDNode>(Node)->getMemOperand();
1848  if (isUnOp) {
1849    SDValue Ops[] = { Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, Chain };
1850    Ret = SDValue(CurDAG->getMachineNode(Opc, dl, MVT::Other, Ops), 0);
1851  } else {
1852    SDValue Ops[] = { Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, Val, Chain };
1853    Ret = SDValue(CurDAG->getMachineNode(Opc, dl, MVT::Other, Ops), 0);
1854  }
1855  cast<MachineSDNode>(Ret)->setMemRefs(MemOp, MemOp + 1);
1856  SDValue RetVals[] = { Undef, Ret };
1857  return CurDAG->getMergeValues(RetVals, 2, dl).getNode();
1858}
1859
1860/// HasNoSignedComparisonUses - Test whether the given X86ISD::CMP node has
1861/// any uses which require the SF or OF bits to be accurate.
1862static bool HasNoSignedComparisonUses(SDNode *N) {
1863  // Examine each user of the node.
1864  for (SDNode::use_iterator UI = N->use_begin(),
1865         UE = N->use_end(); UI != UE; ++UI) {
1866    // Only examine CopyToReg uses.
1867    if (UI->getOpcode() != ISD::CopyToReg)
1868      return false;
1869    // Only examine CopyToReg uses that copy to EFLAGS.
1870    if (cast<RegisterSDNode>(UI->getOperand(1))->getReg() !=
1871          X86::EFLAGS)
1872      return false;
1873    // Examine each user of the CopyToReg use.
1874    for (SDNode::use_iterator FlagUI = UI->use_begin(),
1875           FlagUE = UI->use_end(); FlagUI != FlagUE; ++FlagUI) {
1876      // Only examine the Flag result.
1877      if (FlagUI.getUse().getResNo() != 1) continue;
1878      // Anything unusual: assume conservatively.
1879      if (!FlagUI->isMachineOpcode()) return false;
1880      // Examine the opcode of the user.
1881      switch (FlagUI->getMachineOpcode()) {
1882      // These comparisons don't treat the most significant bit specially.
1883      case X86::SETAr: case X86::SETAEr: case X86::SETBr: case X86::SETBEr:
1884      case X86::SETEr: case X86::SETNEr: case X86::SETPr: case X86::SETNPr:
1885      case X86::SETAm: case X86::SETAEm: case X86::SETBm: case X86::SETBEm:
1886      case X86::SETEm: case X86::SETNEm: case X86::SETPm: case X86::SETNPm:
1887      case X86::JA_4: case X86::JAE_4: case X86::JB_4: case X86::JBE_4:
1888      case X86::JE_4: case X86::JNE_4: case X86::JP_4: case X86::JNP_4:
1889      case X86::CMOVA16rr: case X86::CMOVA16rm:
1890      case X86::CMOVA32rr: case X86::CMOVA32rm:
1891      case X86::CMOVA64rr: case X86::CMOVA64rm:
1892      case X86::CMOVAE16rr: case X86::CMOVAE16rm:
1893      case X86::CMOVAE32rr: case X86::CMOVAE32rm:
1894      case X86::CMOVAE64rr: case X86::CMOVAE64rm:
1895      case X86::CMOVB16rr: case X86::CMOVB16rm:
1896      case X86::CMOVB32rr: case X86::CMOVB32rm:
1897      case X86::CMOVB64rr: case X86::CMOVB64rm:
1898      case X86::CMOVBE16rr: case X86::CMOVBE16rm:
1899      case X86::CMOVBE32rr: case X86::CMOVBE32rm:
1900      case X86::CMOVBE64rr: case X86::CMOVBE64rm:
1901      case X86::CMOVE16rr: case X86::CMOVE16rm:
1902      case X86::CMOVE32rr: case X86::CMOVE32rm:
1903      case X86::CMOVE64rr: case X86::CMOVE64rm:
1904      case X86::CMOVNE16rr: case X86::CMOVNE16rm:
1905      case X86::CMOVNE32rr: case X86::CMOVNE32rm:
1906      case X86::CMOVNE64rr: case X86::CMOVNE64rm:
1907      case X86::CMOVNP16rr: case X86::CMOVNP16rm:
1908      case X86::CMOVNP32rr: case X86::CMOVNP32rm:
1909      case X86::CMOVNP64rr: case X86::CMOVNP64rm:
1910      case X86::CMOVP16rr: case X86::CMOVP16rm:
1911      case X86::CMOVP32rr: case X86::CMOVP32rm:
1912      case X86::CMOVP64rr: case X86::CMOVP64rm:
1913        continue;
1914      // Anything else: assume conservatively.
1915      default: return false;
1916      }
1917    }
1918  }
1919  return true;
1920}
1921
1922/// isLoadIncOrDecStore - Check whether or not the chain ending in StoreNode
1923/// is suitable for doing the {load; increment or decrement; store} to modify
1924/// transformation.
1925static bool isLoadIncOrDecStore(StoreSDNode *StoreNode, unsigned Opc,
1926                                SDValue StoredVal, SelectionDAG *CurDAG,
1927                                LoadSDNode* &LoadNode, SDValue &InputChain) {
1928
1929  // is the value stored the result of a DEC or INC?
1930  if (!(Opc == X86ISD::DEC || Opc == X86ISD::INC)) return false;
1931
1932  // is the stored value result 0 of the load?
1933  if (StoredVal.getResNo() != 0) return false;
1934
1935  // are there other uses of the loaded value than the inc or dec?
1936  if (!StoredVal.getNode()->hasNUsesOfValue(1, 0)) return false;
1937
1938  // is the store non-extending and non-indexed?
1939  if (!ISD::isNormalStore(StoreNode) || StoreNode->isNonTemporal())
1940    return false;
1941
1942  SDValue Load = StoredVal->getOperand(0);
1943  // Is the stored value a non-extending and non-indexed load?
1944  if (!ISD::isNormalLoad(Load.getNode())) return false;
1945
1946  // Return LoadNode by reference.
1947  LoadNode = cast<LoadSDNode>(Load);
1948  // is the size of the value one that we can handle? (i.e. 64, 32, 16, or 8)
1949  EVT LdVT = LoadNode->getMemoryVT();
1950  if (LdVT != MVT::i64 && LdVT != MVT::i32 && LdVT != MVT::i16 &&
1951      LdVT != MVT::i8)
1952    return false;
1953
1954  // Is store the only read of the loaded value?
1955  if (!Load.hasOneUse())
1956    return false;
1957
1958  // Is the address of the store the same as the load?
1959  if (LoadNode->getBasePtr() != StoreNode->getBasePtr() ||
1960      LoadNode->getOffset() != StoreNode->getOffset())
1961    return false;
1962
1963  // Check if the chain is produced by the load or is a TokenFactor with
1964  // the load output chain as an operand. Return InputChain by reference.
1965  SDValue Chain = StoreNode->getChain();
1966
1967  bool ChainCheck = false;
1968  if (Chain == Load.getValue(1)) {
1969    ChainCheck = true;
1970    InputChain = LoadNode->getChain();
1971  } else if (Chain.getOpcode() == ISD::TokenFactor) {
1972    SmallVector<SDValue, 4> ChainOps;
1973    for (unsigned i = 0, e = Chain.getNumOperands(); i != e; ++i) {
1974      SDValue Op = Chain.getOperand(i);
1975      if (Op == Load.getValue(1)) {
1976        ChainCheck = true;
1977        continue;
1978      }
1979
1980      // Make sure using Op as part of the chain would not cause a cycle here.
1981      // In theory, we could check whether the chain node is a predecessor of
1982      // the load. But that can be very expensive. Instead visit the uses and
1983      // make sure they all have smaller node id than the load.
1984      int LoadId = LoadNode->getNodeId();
1985      for (SDNode::use_iterator UI = Op.getNode()->use_begin(),
1986             UE = UI->use_end(); UI != UE; ++UI) {
1987        if (UI.getUse().getResNo() != 0)
1988          continue;
1989        if (UI->getNodeId() > LoadId)
1990          return false;
1991      }
1992
1993      ChainOps.push_back(Op);
1994    }
1995
1996    if (ChainCheck)
1997      // Make a new TokenFactor with all the other input chains except
1998      // for the load.
1999      InputChain = CurDAG->getNode(ISD::TokenFactor, SDLoc(Chain),
2000                                   MVT::Other, &ChainOps[0], ChainOps.size());
2001  }
2002  if (!ChainCheck)
2003    return false;
2004
2005  return true;
2006}
2007
2008/// getFusedLdStOpcode - Get the appropriate X86 opcode for an in memory
2009/// increment or decrement. Opc should be X86ISD::DEC or X86ISD::INC.
2010static unsigned getFusedLdStOpcode(EVT &LdVT, unsigned Opc) {
2011  if (Opc == X86ISD::DEC) {
2012    if (LdVT == MVT::i64) return X86::DEC64m;
2013    if (LdVT == MVT::i32) return X86::DEC32m;
2014    if (LdVT == MVT::i16) return X86::DEC16m;
2015    if (LdVT == MVT::i8)  return X86::DEC8m;
2016  } else {
2017    assert(Opc == X86ISD::INC && "unrecognized opcode");
2018    if (LdVT == MVT::i64) return X86::INC64m;
2019    if (LdVT == MVT::i32) return X86::INC32m;
2020    if (LdVT == MVT::i16) return X86::INC16m;
2021    if (LdVT == MVT::i8)  return X86::INC8m;
2022  }
2023  llvm_unreachable("unrecognized size for LdVT");
2024}
2025
2026/// SelectGather - Customized ISel for GATHER operations.
2027///
2028SDNode *X86DAGToDAGISel::SelectGather(SDNode *Node, unsigned Opc) {
2029  // Operands of Gather: VSrc, Base, VIdx, VMask, Scale
2030  SDValue Chain = Node->getOperand(0);
2031  SDValue VSrc = Node->getOperand(2);
2032  SDValue Base = Node->getOperand(3);
2033  SDValue VIdx = Node->getOperand(4);
2034  SDValue VMask = Node->getOperand(5);
2035  ConstantSDNode *Scale = dyn_cast<ConstantSDNode>(Node->getOperand(6));
2036  if (!Scale)
2037    return 0;
2038
2039  SDVTList VTs = CurDAG->getVTList(VSrc.getValueType(), VSrc.getValueType(),
2040                                   MVT::Other);
2041
2042  // Memory Operands: Base, Scale, Index, Disp, Segment
2043  SDValue Disp = CurDAG->getTargetConstant(0, MVT::i32);
2044  SDValue Segment = CurDAG->getRegister(0, MVT::i32);
2045  const SDValue Ops[] = { VSrc, Base, getI8Imm(Scale->getSExtValue()), VIdx,
2046                          Disp, Segment, VMask, Chain};
2047  SDNode *ResNode = CurDAG->getMachineNode(Opc, SDLoc(Node), VTs, Ops);
2048  // Node has 2 outputs: VDst and MVT::Other.
2049  // ResNode has 3 outputs: VDst, VMask_wb, and MVT::Other.
2050  // We replace VDst of Node with VDst of ResNode, and Other of Node with Other
2051  // of ResNode.
2052  ReplaceUses(SDValue(Node, 0), SDValue(ResNode, 0));
2053  ReplaceUses(SDValue(Node, 1), SDValue(ResNode, 2));
2054  return ResNode;
2055}
2056
2057SDNode *X86DAGToDAGISel::Select(SDNode *Node) {
2058  MVT NVT = Node->getSimpleValueType(0);
2059  unsigned Opc, MOpc;
2060  unsigned Opcode = Node->getOpcode();
2061  SDLoc dl(Node);
2062
2063  DEBUG(dbgs() << "Selecting: "; Node->dump(CurDAG); dbgs() << '\n');
2064
2065  if (Node->isMachineOpcode()) {
2066    DEBUG(dbgs() << "== ";  Node->dump(CurDAG); dbgs() << '\n');
2067    Node->setNodeId(-1);
2068    return NULL;   // Already selected.
2069  }
2070
2071  switch (Opcode) {
2072  default: break;
2073  case ISD::INTRINSIC_W_CHAIN: {
2074    unsigned IntNo = cast<ConstantSDNode>(Node->getOperand(1))->getZExtValue();
2075    switch (IntNo) {
2076    default: break;
2077    case Intrinsic::x86_avx2_gather_d_pd:
2078    case Intrinsic::x86_avx2_gather_d_pd_256:
2079    case Intrinsic::x86_avx2_gather_q_pd:
2080    case Intrinsic::x86_avx2_gather_q_pd_256:
2081    case Intrinsic::x86_avx2_gather_d_ps:
2082    case Intrinsic::x86_avx2_gather_d_ps_256:
2083    case Intrinsic::x86_avx2_gather_q_ps:
2084    case Intrinsic::x86_avx2_gather_q_ps_256:
2085    case Intrinsic::x86_avx2_gather_d_q:
2086    case Intrinsic::x86_avx2_gather_d_q_256:
2087    case Intrinsic::x86_avx2_gather_q_q:
2088    case Intrinsic::x86_avx2_gather_q_q_256:
2089    case Intrinsic::x86_avx2_gather_d_d:
2090    case Intrinsic::x86_avx2_gather_d_d_256:
2091    case Intrinsic::x86_avx2_gather_q_d:
2092    case Intrinsic::x86_avx2_gather_q_d_256: {
2093      if (!Subtarget->hasAVX2())
2094        break;
2095      unsigned Opc;
2096      switch (IntNo) {
2097      default: llvm_unreachable("Impossible intrinsic");
2098      case Intrinsic::x86_avx2_gather_d_pd:     Opc = X86::VGATHERDPDrm;  break;
2099      case Intrinsic::x86_avx2_gather_d_pd_256: Opc = X86::VGATHERDPDYrm; break;
2100      case Intrinsic::x86_avx2_gather_q_pd:     Opc = X86::VGATHERQPDrm;  break;
2101      case Intrinsic::x86_avx2_gather_q_pd_256: Opc = X86::VGATHERQPDYrm; break;
2102      case Intrinsic::x86_avx2_gather_d_ps:     Opc = X86::VGATHERDPSrm;  break;
2103      case Intrinsic::x86_avx2_gather_d_ps_256: Opc = X86::VGATHERDPSYrm; break;
2104      case Intrinsic::x86_avx2_gather_q_ps:     Opc = X86::VGATHERQPSrm;  break;
2105      case Intrinsic::x86_avx2_gather_q_ps_256: Opc = X86::VGATHERQPSYrm; break;
2106      case Intrinsic::x86_avx2_gather_d_q:      Opc = X86::VPGATHERDQrm;  break;
2107      case Intrinsic::x86_avx2_gather_d_q_256:  Opc = X86::VPGATHERDQYrm; break;
2108      case Intrinsic::x86_avx2_gather_q_q:      Opc = X86::VPGATHERQQrm;  break;
2109      case Intrinsic::x86_avx2_gather_q_q_256:  Opc = X86::VPGATHERQQYrm; break;
2110      case Intrinsic::x86_avx2_gather_d_d:      Opc = X86::VPGATHERDDrm;  break;
2111      case Intrinsic::x86_avx2_gather_d_d_256:  Opc = X86::VPGATHERDDYrm; break;
2112      case Intrinsic::x86_avx2_gather_q_d:      Opc = X86::VPGATHERQDrm;  break;
2113      case Intrinsic::x86_avx2_gather_q_d_256:  Opc = X86::VPGATHERQDYrm; break;
2114      }
2115      SDNode *RetVal = SelectGather(Node, Opc);
2116      if (RetVal)
2117        // We already called ReplaceUses inside SelectGather.
2118        return NULL;
2119      break;
2120    }
2121    }
2122    break;
2123  }
2124  case X86ISD::GlobalBaseReg:
2125    return getGlobalBaseReg();
2126
2127
2128  case X86ISD::ATOMOR64_DAG:
2129  case X86ISD::ATOMXOR64_DAG:
2130  case X86ISD::ATOMADD64_DAG:
2131  case X86ISD::ATOMSUB64_DAG:
2132  case X86ISD::ATOMNAND64_DAG:
2133  case X86ISD::ATOMAND64_DAG:
2134  case X86ISD::ATOMMAX64_DAG:
2135  case X86ISD::ATOMMIN64_DAG:
2136  case X86ISD::ATOMUMAX64_DAG:
2137  case X86ISD::ATOMUMIN64_DAG:
2138  case X86ISD::ATOMSWAP64_DAG: {
2139    unsigned Opc;
2140    switch (Opcode) {
2141    default: llvm_unreachable("Impossible opcode");
2142    case X86ISD::ATOMOR64_DAG:   Opc = X86::ATOMOR6432;   break;
2143    case X86ISD::ATOMXOR64_DAG:  Opc = X86::ATOMXOR6432;  break;
2144    case X86ISD::ATOMADD64_DAG:  Opc = X86::ATOMADD6432;  break;
2145    case X86ISD::ATOMSUB64_DAG:  Opc = X86::ATOMSUB6432;  break;
2146    case X86ISD::ATOMNAND64_DAG: Opc = X86::ATOMNAND6432; break;
2147    case X86ISD::ATOMAND64_DAG:  Opc = X86::ATOMAND6432;  break;
2148    case X86ISD::ATOMMAX64_DAG:  Opc = X86::ATOMMAX6432;  break;
2149    case X86ISD::ATOMMIN64_DAG:  Opc = X86::ATOMMIN6432;  break;
2150    case X86ISD::ATOMUMAX64_DAG: Opc = X86::ATOMUMAX6432; break;
2151    case X86ISD::ATOMUMIN64_DAG: Opc = X86::ATOMUMIN6432; break;
2152    case X86ISD::ATOMSWAP64_DAG: Opc = X86::ATOMSWAP6432; break;
2153    }
2154    SDNode *RetVal = SelectAtomic64(Node, Opc);
2155    if (RetVal)
2156      return RetVal;
2157    break;
2158  }
2159
2160  case ISD::ATOMIC_LOAD_XOR:
2161  case ISD::ATOMIC_LOAD_AND:
2162  case ISD::ATOMIC_LOAD_OR:
2163  case ISD::ATOMIC_LOAD_ADD: {
2164    SDNode *RetVal = SelectAtomicLoadArith(Node, NVT);
2165    if (RetVal)
2166      return RetVal;
2167    break;
2168  }
2169  case ISD::AND:
2170  case ISD::OR:
2171  case ISD::XOR: {
2172    // For operations of the form (x << C1) op C2, check if we can use a smaller
2173    // encoding for C2 by transforming it into (x op (C2>>C1)) << C1.
2174    SDValue N0 = Node->getOperand(0);
2175    SDValue N1 = Node->getOperand(1);
2176
2177    if (N0->getOpcode() != ISD::SHL || !N0->hasOneUse())
2178      break;
2179
2180    // i8 is unshrinkable, i16 should be promoted to i32.
2181    if (NVT != MVT::i32 && NVT != MVT::i64)
2182      break;
2183
2184    ConstantSDNode *Cst = dyn_cast<ConstantSDNode>(N1);
2185    ConstantSDNode *ShlCst = dyn_cast<ConstantSDNode>(N0->getOperand(1));
2186    if (!Cst || !ShlCst)
2187      break;
2188
2189    int64_t Val = Cst->getSExtValue();
2190    uint64_t ShlVal = ShlCst->getZExtValue();
2191
2192    // Make sure that we don't change the operation by removing bits.
2193    // This only matters for OR and XOR, AND is unaffected.
2194    uint64_t RemovedBitsMask = (1ULL << ShlVal) - 1;
2195    if (Opcode != ISD::AND && (Val & RemovedBitsMask) != 0)
2196      break;
2197
2198    unsigned ShlOp, Op;
2199    MVT CstVT = NVT;
2200
2201    // Check the minimum bitwidth for the new constant.
2202    // TODO: AND32ri is the same as AND64ri32 with zext imm.
2203    // TODO: MOV32ri+OR64r is cheaper than MOV64ri64+OR64rr
2204    // TODO: Using 16 and 8 bit operations is also possible for or32 & xor32.
2205    if (!isInt<8>(Val) && isInt<8>(Val >> ShlVal))
2206      CstVT = MVT::i8;
2207    else if (!isInt<32>(Val) && isInt<32>(Val >> ShlVal))
2208      CstVT = MVT::i32;
2209
2210    // Bail if there is no smaller encoding.
2211    if (NVT == CstVT)
2212      break;
2213
2214    switch (NVT.SimpleTy) {
2215    default: llvm_unreachable("Unsupported VT!");
2216    case MVT::i32:
2217      assert(CstVT == MVT::i8);
2218      ShlOp = X86::SHL32ri;
2219
2220      switch (Opcode) {
2221      default: llvm_unreachable("Impossible opcode");
2222      case ISD::AND: Op = X86::AND32ri8; break;
2223      case ISD::OR:  Op =  X86::OR32ri8; break;
2224      case ISD::XOR: Op = X86::XOR32ri8; break;
2225      }
2226      break;
2227    case MVT::i64:
2228      assert(CstVT == MVT::i8 || CstVT == MVT::i32);
2229      ShlOp = X86::SHL64ri;
2230
2231      switch (Opcode) {
2232      default: llvm_unreachable("Impossible opcode");
2233      case ISD::AND: Op = CstVT==MVT::i8? X86::AND64ri8 : X86::AND64ri32; break;
2234      case ISD::OR:  Op = CstVT==MVT::i8?  X86::OR64ri8 :  X86::OR64ri32; break;
2235      case ISD::XOR: Op = CstVT==MVT::i8? X86::XOR64ri8 : X86::XOR64ri32; break;
2236      }
2237      break;
2238    }
2239
2240    // Emit the smaller op and the shift.
2241    SDValue NewCst = CurDAG->getTargetConstant(Val >> ShlVal, CstVT);
2242    SDNode *New = CurDAG->getMachineNode(Op, dl, NVT, N0->getOperand(0),NewCst);
2243    return CurDAG->SelectNodeTo(Node, ShlOp, NVT, SDValue(New, 0),
2244                                getI8Imm(ShlVal));
2245  }
2246  case X86ISD::UMUL: {
2247    SDValue N0 = Node->getOperand(0);
2248    SDValue N1 = Node->getOperand(1);
2249
2250    unsigned LoReg;
2251    switch (NVT.SimpleTy) {
2252    default: llvm_unreachable("Unsupported VT!");
2253    case MVT::i8:  LoReg = X86::AL;  Opc = X86::MUL8r; break;
2254    case MVT::i16: LoReg = X86::AX;  Opc = X86::MUL16r; break;
2255    case MVT::i32: LoReg = X86::EAX; Opc = X86::MUL32r; break;
2256    case MVT::i64: LoReg = X86::RAX; Opc = X86::MUL64r; break;
2257    }
2258
2259    SDValue InFlag = CurDAG->getCopyToReg(CurDAG->getEntryNode(), dl, LoReg,
2260                                          N0, SDValue()).getValue(1);
2261
2262    SDVTList VTs = CurDAG->getVTList(NVT, NVT, MVT::i32);
2263    SDValue Ops[] = {N1, InFlag};
2264    SDNode *CNode = CurDAG->getMachineNode(Opc, dl, VTs, Ops);
2265
2266    ReplaceUses(SDValue(Node, 0), SDValue(CNode, 0));
2267    ReplaceUses(SDValue(Node, 1), SDValue(CNode, 1));
2268    ReplaceUses(SDValue(Node, 2), SDValue(CNode, 2));
2269    return NULL;
2270  }
2271
2272  case ISD::SMUL_LOHI:
2273  case ISD::UMUL_LOHI: {
2274    SDValue N0 = Node->getOperand(0);
2275    SDValue N1 = Node->getOperand(1);
2276
2277    bool isSigned = Opcode == ISD::SMUL_LOHI;
2278    bool hasBMI2 = Subtarget->hasBMI2();
2279    if (!isSigned) {
2280      switch (NVT.SimpleTy) {
2281      default: llvm_unreachable("Unsupported VT!");
2282      case MVT::i8:  Opc = X86::MUL8r;  MOpc = X86::MUL8m;  break;
2283      case MVT::i16: Opc = X86::MUL16r; MOpc = X86::MUL16m; break;
2284      case MVT::i32: Opc = hasBMI2 ? X86::MULX32rr : X86::MUL32r;
2285                     MOpc = hasBMI2 ? X86::MULX32rm : X86::MUL32m; break;
2286      case MVT::i64: Opc = hasBMI2 ? X86::MULX64rr : X86::MUL64r;
2287                     MOpc = hasBMI2 ? X86::MULX64rm : X86::MUL64m; break;
2288      }
2289    } else {
2290      switch (NVT.SimpleTy) {
2291      default: llvm_unreachable("Unsupported VT!");
2292      case MVT::i8:  Opc = X86::IMUL8r;  MOpc = X86::IMUL8m;  break;
2293      case MVT::i16: Opc = X86::IMUL16r; MOpc = X86::IMUL16m; break;
2294      case MVT::i32: Opc = X86::IMUL32r; MOpc = X86::IMUL32m; break;
2295      case MVT::i64: Opc = X86::IMUL64r; MOpc = X86::IMUL64m; break;
2296      }
2297    }
2298
2299    unsigned SrcReg, LoReg, HiReg;
2300    switch (Opc) {
2301    default: llvm_unreachable("Unknown MUL opcode!");
2302    case X86::IMUL8r:
2303    case X86::MUL8r:
2304      SrcReg = LoReg = X86::AL; HiReg = X86::AH;
2305      break;
2306    case X86::IMUL16r:
2307    case X86::MUL16r:
2308      SrcReg = LoReg = X86::AX; HiReg = X86::DX;
2309      break;
2310    case X86::IMUL32r:
2311    case X86::MUL32r:
2312      SrcReg = LoReg = X86::EAX; HiReg = X86::EDX;
2313      break;
2314    case X86::IMUL64r:
2315    case X86::MUL64r:
2316      SrcReg = LoReg = X86::RAX; HiReg = X86::RDX;
2317      break;
2318    case X86::MULX32rr:
2319      SrcReg = X86::EDX; LoReg = HiReg = 0;
2320      break;
2321    case X86::MULX64rr:
2322      SrcReg = X86::RDX; LoReg = HiReg = 0;
2323      break;
2324    }
2325
2326    SDValue Tmp0, Tmp1, Tmp2, Tmp3, Tmp4;
2327    bool foldedLoad = TryFoldLoad(Node, N1, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4);
2328    // Multiply is commmutative.
2329    if (!foldedLoad) {
2330      foldedLoad = TryFoldLoad(Node, N0, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4);
2331      if (foldedLoad)
2332        std::swap(N0, N1);
2333    }
2334
2335    SDValue InFlag = CurDAG->getCopyToReg(CurDAG->getEntryNode(), dl, SrcReg,
2336                                          N0, SDValue()).getValue(1);
2337    SDValue ResHi, ResLo;
2338
2339    if (foldedLoad) {
2340      SDValue Chain;
2341      SDValue Ops[] = { Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, N1.getOperand(0),
2342                        InFlag };
2343      if (MOpc == X86::MULX32rm || MOpc == X86::MULX64rm) {
2344        SDVTList VTs = CurDAG->getVTList(NVT, NVT, MVT::Other, MVT::Glue);
2345        SDNode *CNode = CurDAG->getMachineNode(MOpc, dl, VTs, Ops);
2346        ResHi = SDValue(CNode, 0);
2347        ResLo = SDValue(CNode, 1);
2348        Chain = SDValue(CNode, 2);
2349        InFlag = SDValue(CNode, 3);
2350      } else {
2351        SDVTList VTs = CurDAG->getVTList(MVT::Other, MVT::Glue);
2352        SDNode *CNode = CurDAG->getMachineNode(MOpc, dl, VTs, Ops);
2353        Chain = SDValue(CNode, 0);
2354        InFlag = SDValue(CNode, 1);
2355      }
2356
2357      // Update the chain.
2358      ReplaceUses(N1.getValue(1), Chain);
2359    } else {
2360      SDValue Ops[] = { N1, InFlag };
2361      if (Opc == X86::MULX32rr || Opc == X86::MULX64rr) {
2362        SDVTList VTs = CurDAG->getVTList(NVT, NVT, MVT::Glue);
2363        SDNode *CNode = CurDAG->getMachineNode(Opc, dl, VTs, Ops);
2364        ResHi = SDValue(CNode, 0);
2365        ResLo = SDValue(CNode, 1);
2366        InFlag = SDValue(CNode, 2);
2367      } else {
2368        SDVTList VTs = CurDAG->getVTList(MVT::Glue);
2369        SDNode *CNode = CurDAG->getMachineNode(Opc, dl, VTs, Ops);
2370        InFlag = SDValue(CNode, 0);
2371      }
2372    }
2373
2374    // Prevent use of AH in a REX instruction by referencing AX instead.
2375    if (HiReg == X86::AH && Subtarget->is64Bit() &&
2376        !SDValue(Node, 1).use_empty()) {
2377      SDValue Result = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), dl,
2378                                              X86::AX, MVT::i16, InFlag);
2379      InFlag = Result.getValue(2);
2380      // Get the low part if needed. Don't use getCopyFromReg for aliasing
2381      // registers.
2382      if (!SDValue(Node, 0).use_empty())
2383        ReplaceUses(SDValue(Node, 1),
2384          CurDAG->getTargetExtractSubreg(X86::sub_8bit, dl, MVT::i8, Result));
2385
2386      // Shift AX down 8 bits.
2387      Result = SDValue(CurDAG->getMachineNode(X86::SHR16ri, dl, MVT::i16,
2388                                              Result,
2389                                     CurDAG->getTargetConstant(8, MVT::i8)), 0);
2390      // Then truncate it down to i8.
2391      ReplaceUses(SDValue(Node, 1),
2392        CurDAG->getTargetExtractSubreg(X86::sub_8bit, dl, MVT::i8, Result));
2393    }
2394    // Copy the low half of the result, if it is needed.
2395    if (!SDValue(Node, 0).use_empty()) {
2396      if (ResLo.getNode() == 0) {
2397        assert(LoReg && "Register for low half is not defined!");
2398        ResLo = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), dl, LoReg, NVT,
2399                                       InFlag);
2400        InFlag = ResLo.getValue(2);
2401      }
2402      ReplaceUses(SDValue(Node, 0), ResLo);
2403      DEBUG(dbgs() << "=> "; ResLo.getNode()->dump(CurDAG); dbgs() << '\n');
2404    }
2405    // Copy the high half of the result, if it is needed.
2406    if (!SDValue(Node, 1).use_empty()) {
2407      if (ResHi.getNode() == 0) {
2408        assert(HiReg && "Register for high half is not defined!");
2409        ResHi = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), dl, HiReg, NVT,
2410                                       InFlag);
2411        InFlag = ResHi.getValue(2);
2412      }
2413      ReplaceUses(SDValue(Node, 1), ResHi);
2414      DEBUG(dbgs() << "=> "; ResHi.getNode()->dump(CurDAG); dbgs() << '\n');
2415    }
2416
2417    return NULL;
2418  }
2419
2420  case ISD::SDIVREM:
2421  case ISD::UDIVREM: {
2422    SDValue N0 = Node->getOperand(0);
2423    SDValue N1 = Node->getOperand(1);
2424
2425    bool isSigned = Opcode == ISD::SDIVREM;
2426    if (!isSigned) {
2427      switch (NVT.SimpleTy) {
2428      default: llvm_unreachable("Unsupported VT!");
2429      case MVT::i8:  Opc = X86::DIV8r;  MOpc = X86::DIV8m;  break;
2430      case MVT::i16: Opc = X86::DIV16r; MOpc = X86::DIV16m; break;
2431      case MVT::i32: Opc = X86::DIV32r; MOpc = X86::DIV32m; break;
2432      case MVT::i64: Opc = X86::DIV64r; MOpc = X86::DIV64m; break;
2433      }
2434    } else {
2435      switch (NVT.SimpleTy) {
2436      default: llvm_unreachable("Unsupported VT!");
2437      case MVT::i8:  Opc = X86::IDIV8r;  MOpc = X86::IDIV8m;  break;
2438      case MVT::i16: Opc = X86::IDIV16r; MOpc = X86::IDIV16m; break;
2439      case MVT::i32: Opc = X86::IDIV32r; MOpc = X86::IDIV32m; break;
2440      case MVT::i64: Opc = X86::IDIV64r; MOpc = X86::IDIV64m; break;
2441      }
2442    }
2443
2444    unsigned LoReg, HiReg, ClrReg;
2445    unsigned SExtOpcode;
2446    switch (NVT.SimpleTy) {
2447    default: llvm_unreachable("Unsupported VT!");
2448    case MVT::i8:
2449      LoReg = X86::AL;  ClrReg = HiReg = X86::AH;
2450      SExtOpcode = X86::CBW;
2451      break;
2452    case MVT::i16:
2453      LoReg = X86::AX;  HiReg = X86::DX;
2454      ClrReg = X86::DX;
2455      SExtOpcode = X86::CWD;
2456      break;
2457    case MVT::i32:
2458      LoReg = X86::EAX; ClrReg = HiReg = X86::EDX;
2459      SExtOpcode = X86::CDQ;
2460      break;
2461    case MVT::i64:
2462      LoReg = X86::RAX; ClrReg = HiReg = X86::RDX;
2463      SExtOpcode = X86::CQO;
2464      break;
2465    }
2466
2467    SDValue Tmp0, Tmp1, Tmp2, Tmp3, Tmp4;
2468    bool foldedLoad = TryFoldLoad(Node, N1, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4);
2469    bool signBitIsZero = CurDAG->SignBitIsZero(N0);
2470
2471    SDValue InFlag;
2472    if (NVT == MVT::i8 && (!isSigned || signBitIsZero)) {
2473      // Special case for div8, just use a move with zero extension to AX to
2474      // clear the upper 8 bits (AH).
2475      SDValue Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, Move, Chain;
2476      if (TryFoldLoad(Node, N0, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4)) {
2477        SDValue Ops[] = { Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, N0.getOperand(0) };
2478        Move =
2479          SDValue(CurDAG->getMachineNode(X86::MOVZX32rm8, dl, MVT::i32,
2480                                         MVT::Other, Ops), 0);
2481        Chain = Move.getValue(1);
2482        ReplaceUses(N0.getValue(1), Chain);
2483      } else {
2484        Move =
2485          SDValue(CurDAG->getMachineNode(X86::MOVZX32rr8, dl, MVT::i32, N0),0);
2486        Chain = CurDAG->getEntryNode();
2487      }
2488      Chain  = CurDAG->getCopyToReg(Chain, dl, X86::EAX, Move, SDValue());
2489      InFlag = Chain.getValue(1);
2490    } else {
2491      InFlag =
2492        CurDAG->getCopyToReg(CurDAG->getEntryNode(), dl,
2493                             LoReg, N0, SDValue()).getValue(1);
2494      if (isSigned && !signBitIsZero) {
2495        // Sign extend the low part into the high part.
2496        InFlag =
2497          SDValue(CurDAG->getMachineNode(SExtOpcode, dl, MVT::Glue, InFlag),0);
2498      } else {
2499        // Zero out the high part, effectively zero extending the input.
2500        SDValue ClrNode = SDValue(CurDAG->getMachineNode(X86::MOV32r0, dl, NVT), 0);
2501        switch (NVT.SimpleTy) {
2502        case MVT::i16:
2503          ClrNode =
2504              SDValue(CurDAG->getMachineNode(
2505                          TargetOpcode::EXTRACT_SUBREG, dl, MVT::i16, ClrNode,
2506                          CurDAG->getTargetConstant(X86::sub_16bit, MVT::i32)),
2507                      0);
2508          break;
2509        case MVT::i32:
2510          break;
2511        case MVT::i64:
2512          ClrNode =
2513              SDValue(CurDAG->getMachineNode(
2514                          TargetOpcode::SUBREG_TO_REG, dl, MVT::i64,
2515                          CurDAG->getTargetConstant(0, MVT::i64), ClrNode,
2516                          CurDAG->getTargetConstant(X86::sub_32bit, MVT::i32)),
2517                      0);
2518          break;
2519        default:
2520          llvm_unreachable("Unexpected division source");
2521        }
2522
2523        InFlag = CurDAG->getCopyToReg(CurDAG->getEntryNode(), dl, ClrReg,
2524                                      ClrNode, InFlag).getValue(1);
2525      }
2526    }
2527
2528    if (foldedLoad) {
2529      SDValue Ops[] = { Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, N1.getOperand(0),
2530                        InFlag };
2531      SDNode *CNode =
2532        CurDAG->getMachineNode(MOpc, dl, MVT::Other, MVT::Glue, Ops);
2533      InFlag = SDValue(CNode, 1);
2534      // Update the chain.
2535      ReplaceUses(N1.getValue(1), SDValue(CNode, 0));
2536    } else {
2537      InFlag =
2538        SDValue(CurDAG->getMachineNode(Opc, dl, MVT::Glue, N1, InFlag), 0);
2539    }
2540
2541    // Prevent use of AH in a REX instruction by referencing AX instead.
2542    // Shift it down 8 bits.
2543    //
2544    // The current assumption of the register allocator is that isel
2545    // won't generate explicit references to the GPR8_NOREX registers. If
2546    // the allocator and/or the backend get enhanced to be more robust in
2547    // that regard, this can be, and should be, removed.
2548    if (HiReg == X86::AH && Subtarget->is64Bit() &&
2549        !SDValue(Node, 1).use_empty()) {
2550      SDValue Result = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), dl,
2551                                              X86::AX, MVT::i16, InFlag);
2552      InFlag = Result.getValue(2);
2553
2554      // If we also need AL (the quotient), get it by extracting a subreg from
2555      // Result. The fast register allocator does not like multiple CopyFromReg
2556      // nodes using aliasing registers.
2557      if (!SDValue(Node, 0).use_empty())
2558        ReplaceUses(SDValue(Node, 0),
2559          CurDAG->getTargetExtractSubreg(X86::sub_8bit, dl, MVT::i8, Result));
2560
2561      // Shift AX right by 8 bits instead of using AH.
2562      Result = SDValue(CurDAG->getMachineNode(X86::SHR16ri, dl, MVT::i16,
2563                                         Result,
2564                                         CurDAG->getTargetConstant(8, MVT::i8)),
2565                       0);
2566      ReplaceUses(SDValue(Node, 1),
2567        CurDAG->getTargetExtractSubreg(X86::sub_8bit, dl, MVT::i8, Result));
2568    }
2569    // Copy the division (low) result, if it is needed.
2570    if (!SDValue(Node, 0).use_empty()) {
2571      SDValue Result = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), dl,
2572                                                LoReg, NVT, InFlag);
2573      InFlag = Result.getValue(2);
2574      ReplaceUses(SDValue(Node, 0), Result);
2575      DEBUG(dbgs() << "=> "; Result.getNode()->dump(CurDAG); dbgs() << '\n');
2576    }
2577    // Copy the remainder (high) result, if it is needed.
2578    if (!SDValue(Node, 1).use_empty()) {
2579      SDValue Result = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), dl,
2580                                              HiReg, NVT, InFlag);
2581      InFlag = Result.getValue(2);
2582      ReplaceUses(SDValue(Node, 1), Result);
2583      DEBUG(dbgs() << "=> "; Result.getNode()->dump(CurDAG); dbgs() << '\n');
2584    }
2585    return NULL;
2586  }
2587
2588  case X86ISD::CMP:
2589  case X86ISD::SUB: {
2590    // Sometimes a SUB is used to perform comparison.
2591    if (Opcode == X86ISD::SUB && Node->hasAnyUseOfValue(0))
2592      // This node is not a CMP.
2593      break;
2594    SDValue N0 = Node->getOperand(0);
2595    SDValue N1 = Node->getOperand(1);
2596
2597    // Look for (X86cmp (and $op, $imm), 0) and see if we can convert it to
2598    // use a smaller encoding.
2599    if (N0.getOpcode() == ISD::TRUNCATE && N0.hasOneUse() &&
2600        HasNoSignedComparisonUses(Node))
2601      // Look past the truncate if CMP is the only use of it.
2602      N0 = N0.getOperand(0);
2603    if ((N0.getNode()->getOpcode() == ISD::AND ||
2604         (N0.getResNo() == 0 && N0.getNode()->getOpcode() == X86ISD::AND)) &&
2605        N0.getNode()->hasOneUse() &&
2606        N0.getValueType() != MVT::i8 &&
2607        X86::isZeroNode(N1)) {
2608      ConstantSDNode *C = dyn_cast<ConstantSDNode>(N0.getNode()->getOperand(1));
2609      if (!C) break;
2610
2611      // For example, convert "testl %eax, $8" to "testb %al, $8"
2612      if ((C->getZExtValue() & ~UINT64_C(0xff)) == 0 &&
2613          (!(C->getZExtValue() & 0x80) ||
2614           HasNoSignedComparisonUses(Node))) {
2615        SDValue Imm = CurDAG->getTargetConstant(C->getZExtValue(), MVT::i8);
2616        SDValue Reg = N0.getNode()->getOperand(0);
2617
2618        // On x86-32, only the ABCD registers have 8-bit subregisters.
2619        if (!Subtarget->is64Bit()) {
2620          const TargetRegisterClass *TRC;
2621          switch (N0.getSimpleValueType().SimpleTy) {
2622          case MVT::i32: TRC = &X86::GR32_ABCDRegClass; break;
2623          case MVT::i16: TRC = &X86::GR16_ABCDRegClass; break;
2624          default: llvm_unreachable("Unsupported TEST operand type!");
2625          }
2626          SDValue RC = CurDAG->getTargetConstant(TRC->getID(), MVT::i32);
2627          Reg = SDValue(CurDAG->getMachineNode(X86::COPY_TO_REGCLASS, dl,
2628                                               Reg.getValueType(), Reg, RC), 0);
2629        }
2630
2631        // Extract the l-register.
2632        SDValue Subreg = CurDAG->getTargetExtractSubreg(X86::sub_8bit, dl,
2633                                                        MVT::i8, Reg);
2634
2635        // Emit a testb.
2636        SDNode *NewNode = CurDAG->getMachineNode(X86::TEST8ri, dl, MVT::i32,
2637                                                 Subreg, Imm);
2638        // Replace SUB|CMP with TEST, since SUB has two outputs while TEST has
2639        // one, do not call ReplaceAllUsesWith.
2640        ReplaceUses(SDValue(Node, (Opcode == X86ISD::SUB ? 1 : 0)),
2641                    SDValue(NewNode, 0));
2642        return NULL;
2643      }
2644
2645      // For example, "testl %eax, $2048" to "testb %ah, $8".
2646      if ((C->getZExtValue() & ~UINT64_C(0xff00)) == 0 &&
2647          (!(C->getZExtValue() & 0x8000) ||
2648           HasNoSignedComparisonUses(Node))) {
2649        // Shift the immediate right by 8 bits.
2650        SDValue ShiftedImm = CurDAG->getTargetConstant(C->getZExtValue() >> 8,
2651                                                       MVT::i8);
2652        SDValue Reg = N0.getNode()->getOperand(0);
2653
2654        // Put the value in an ABCD register.
2655        const TargetRegisterClass *TRC;
2656        switch (N0.getSimpleValueType().SimpleTy) {
2657        case MVT::i64: TRC = &X86::GR64_ABCDRegClass; break;
2658        case MVT::i32: TRC = &X86::GR32_ABCDRegClass; break;
2659        case MVT::i16: TRC = &X86::GR16_ABCDRegClass; break;
2660        default: llvm_unreachable("Unsupported TEST operand type!");
2661        }
2662        SDValue RC = CurDAG->getTargetConstant(TRC->getID(), MVT::i32);
2663        Reg = SDValue(CurDAG->getMachineNode(X86::COPY_TO_REGCLASS, dl,
2664                                             Reg.getValueType(), Reg, RC), 0);
2665
2666        // Extract the h-register.
2667        SDValue Subreg = CurDAG->getTargetExtractSubreg(X86::sub_8bit_hi, dl,
2668                                                        MVT::i8, Reg);
2669
2670        // Emit a testb.  The EXTRACT_SUBREG becomes a COPY that can only
2671        // target GR8_NOREX registers, so make sure the register class is
2672        // forced.
2673        SDNode *NewNode = CurDAG->getMachineNode(X86::TEST8ri_NOREX, dl,
2674                                                 MVT::i32, Subreg, ShiftedImm);
2675        // Replace SUB|CMP with TEST, since SUB has two outputs while TEST has
2676        // one, do not call ReplaceAllUsesWith.
2677        ReplaceUses(SDValue(Node, (Opcode == X86ISD::SUB ? 1 : 0)),
2678                    SDValue(NewNode, 0));
2679        return NULL;
2680      }
2681
2682      // For example, "testl %eax, $32776" to "testw %ax, $32776".
2683      if ((C->getZExtValue() & ~UINT64_C(0xffff)) == 0 &&
2684          N0.getValueType() != MVT::i16 &&
2685          (!(C->getZExtValue() & 0x8000) ||
2686           HasNoSignedComparisonUses(Node))) {
2687        SDValue Imm = CurDAG->getTargetConstant(C->getZExtValue(), MVT::i16);
2688        SDValue Reg = N0.getNode()->getOperand(0);
2689
2690        // Extract the 16-bit subregister.
2691        SDValue Subreg = CurDAG->getTargetExtractSubreg(X86::sub_16bit, dl,
2692                                                        MVT::i16, Reg);
2693
2694        // Emit a testw.
2695        SDNode *NewNode = CurDAG->getMachineNode(X86::TEST16ri, dl, MVT::i32,
2696                                                 Subreg, Imm);
2697        // Replace SUB|CMP with TEST, since SUB has two outputs while TEST has
2698        // one, do not call ReplaceAllUsesWith.
2699        ReplaceUses(SDValue(Node, (Opcode == X86ISD::SUB ? 1 : 0)),
2700                    SDValue(NewNode, 0));
2701        return NULL;
2702      }
2703
2704      // For example, "testq %rax, $268468232" to "testl %eax, $268468232".
2705      if ((C->getZExtValue() & ~UINT64_C(0xffffffff)) == 0 &&
2706          N0.getValueType() == MVT::i64 &&
2707          (!(C->getZExtValue() & 0x80000000) ||
2708           HasNoSignedComparisonUses(Node))) {
2709        SDValue Imm = CurDAG->getTargetConstant(C->getZExtValue(), MVT::i32);
2710        SDValue Reg = N0.getNode()->getOperand(0);
2711
2712        // Extract the 32-bit subregister.
2713        SDValue Subreg = CurDAG->getTargetExtractSubreg(X86::sub_32bit, dl,
2714                                                        MVT::i32, Reg);
2715
2716        // Emit a testl.
2717        SDNode *NewNode = CurDAG->getMachineNode(X86::TEST32ri, dl, MVT::i32,
2718                                                 Subreg, Imm);
2719        // Replace SUB|CMP with TEST, since SUB has two outputs while TEST has
2720        // one, do not call ReplaceAllUsesWith.
2721        ReplaceUses(SDValue(Node, (Opcode == X86ISD::SUB ? 1 : 0)),
2722                    SDValue(NewNode, 0));
2723        return NULL;
2724      }
2725    }
2726    break;
2727  }
2728  case ISD::STORE: {
2729    // Change a chain of {load; incr or dec; store} of the same value into
2730    // a simple increment or decrement through memory of that value, if the
2731    // uses of the modified value and its address are suitable.
2732    // The DEC64m tablegen pattern is currently not able to match the case where
2733    // the EFLAGS on the original DEC are used. (This also applies to
2734    // {INC,DEC}X{64,32,16,8}.)
2735    // We'll need to improve tablegen to allow flags to be transferred from a
2736    // node in the pattern to the result node.  probably with a new keyword
2737    // for example, we have this
2738    // def DEC64m : RI<0xFF, MRM1m, (outs), (ins i64mem:$dst), "dec{q}\t$dst",
2739    //  [(store (add (loadi64 addr:$dst), -1), addr:$dst),
2740    //   (implicit EFLAGS)]>;
2741    // but maybe need something like this
2742    // def DEC64m : RI<0xFF, MRM1m, (outs), (ins i64mem:$dst), "dec{q}\t$dst",
2743    //  [(store (add (loadi64 addr:$dst), -1), addr:$dst),
2744    //   (transferrable EFLAGS)]>;
2745
2746    StoreSDNode *StoreNode = cast<StoreSDNode>(Node);
2747    SDValue StoredVal = StoreNode->getOperand(1);
2748    unsigned Opc = StoredVal->getOpcode();
2749
2750    LoadSDNode *LoadNode = 0;
2751    SDValue InputChain;
2752    if (!isLoadIncOrDecStore(StoreNode, Opc, StoredVal, CurDAG,
2753                             LoadNode, InputChain))
2754      break;
2755
2756    SDValue Base, Scale, Index, Disp, Segment;
2757    if (!SelectAddr(LoadNode, LoadNode->getBasePtr(),
2758                    Base, Scale, Index, Disp, Segment))
2759      break;
2760
2761    MachineSDNode::mmo_iterator MemOp = MF->allocateMemRefsArray(2);
2762    MemOp[0] = StoreNode->getMemOperand();
2763    MemOp[1] = LoadNode->getMemOperand();
2764    const SDValue Ops[] = { Base, Scale, Index, Disp, Segment, InputChain };
2765    EVT LdVT = LoadNode->getMemoryVT();
2766    unsigned newOpc = getFusedLdStOpcode(LdVT, Opc);
2767    MachineSDNode *Result = CurDAG->getMachineNode(newOpc,
2768                                                   SDLoc(Node),
2769                                                   MVT::i32, MVT::Other, Ops);
2770    Result->setMemRefs(MemOp, MemOp + 2);
2771
2772    ReplaceUses(SDValue(StoreNode, 0), SDValue(Result, 1));
2773    ReplaceUses(SDValue(StoredVal.getNode(), 1), SDValue(Result, 0));
2774
2775    return Result;
2776  }
2777  }
2778
2779  SDNode *ResNode = SelectCode(Node);
2780
2781  DEBUG(dbgs() << "=> ";
2782        if (ResNode == NULL || ResNode == Node)
2783          Node->dump(CurDAG);
2784        else
2785          ResNode->dump(CurDAG);
2786        dbgs() << '\n');
2787
2788  return ResNode;
2789}
2790
2791bool X86DAGToDAGISel::
2792SelectInlineAsmMemoryOperand(const SDValue &Op, char ConstraintCode,
2793                             std::vector<SDValue> &OutOps) {
2794  SDValue Op0, Op1, Op2, Op3, Op4;
2795  switch (ConstraintCode) {
2796  case 'o':   // offsetable        ??
2797  case 'v':   // not offsetable    ??
2798  default: return true;
2799  case 'm':   // memory
2800    if (!SelectAddr(0, Op, Op0, Op1, Op2, Op3, Op4))
2801      return true;
2802    break;
2803  }
2804
2805  OutOps.push_back(Op0);
2806  OutOps.push_back(Op1);
2807  OutOps.push_back(Op2);
2808  OutOps.push_back(Op3);
2809  OutOps.push_back(Op4);
2810  return false;
2811}
2812
2813/// createX86ISelDag - This pass converts a legalized DAG into a
2814/// X86-specific DAG, ready for instruction scheduling.
2815///
2816FunctionPass *llvm::createX86ISelDag(X86TargetMachine &TM,
2817                                     CodeGenOpt::Level OptLevel) {
2818  return new X86DAGToDAGISel(TM, OptLevel);
2819}
2820