X86BaseInfo.h revision 263508
1//===-- X86BaseInfo.h - Top level definitions for X86 -------- --*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file contains small standalone helper functions and enum definitions for
11// the X86 target useful for the compiler back-end and the MC libraries.
12// As such, it deliberately does not include references to LLVM core
13// code gen types, passes, etc..
14//
15//===----------------------------------------------------------------------===//
16
17#ifndef X86BASEINFO_H
18#define X86BASEINFO_H
19
20#include "X86MCTargetDesc.h"
21#include "llvm/Support/DataTypes.h"
22#include "llvm/Support/ErrorHandling.h"
23#include "llvm/MC/MCInstrInfo.h"
24
25namespace llvm {
26
27namespace X86 {
28  // Enums for memory operand decoding.  Each memory operand is represented with
29  // a 5 operand sequence in the form:
30  //   [BaseReg, ScaleAmt, IndexReg, Disp, Segment]
31  // These enums help decode this.
32  enum {
33    AddrBaseReg = 0,
34    AddrScaleAmt = 1,
35    AddrIndexReg = 2,
36    AddrDisp = 3,
37
38    /// AddrSegmentReg - The operand # of the segment in the memory operand.
39    AddrSegmentReg = 4,
40
41    /// AddrNumOperands - Total number of operands in a memory reference.
42    AddrNumOperands = 5
43  };
44} // end namespace X86;
45
46/// X86II - This namespace holds all of the target specific flags that
47/// instruction info tracks.
48///
49namespace X86II {
50  /// Target Operand Flag enum.
51  enum TOF {
52    //===------------------------------------------------------------------===//
53    // X86 Specific MachineOperand flags.
54
55    MO_NO_FLAG,
56
57    /// MO_GOT_ABSOLUTE_ADDRESS - On a symbol operand, this represents a
58    /// relocation of:
59    ///    SYMBOL_LABEL + [. - PICBASELABEL]
60    MO_GOT_ABSOLUTE_ADDRESS,
61
62    /// MO_PIC_BASE_OFFSET - On a symbol operand this indicates that the
63    /// immediate should get the value of the symbol minus the PIC base label:
64    ///    SYMBOL_LABEL - PICBASELABEL
65    MO_PIC_BASE_OFFSET,
66
67    /// MO_GOT - On a symbol operand this indicates that the immediate is the
68    /// offset to the GOT entry for the symbol name from the base of the GOT.
69    ///
70    /// See the X86-64 ELF ABI supplement for more details.
71    ///    SYMBOL_LABEL @GOT
72    MO_GOT,
73
74    /// MO_GOTOFF - On a symbol operand this indicates that the immediate is
75    /// the offset to the location of the symbol name from the base of the GOT.
76    ///
77    /// See the X86-64 ELF ABI supplement for more details.
78    ///    SYMBOL_LABEL @GOTOFF
79    MO_GOTOFF,
80
81    /// MO_GOTPCREL - On a symbol operand this indicates that the immediate is
82    /// offset to the GOT entry for the symbol name from the current code
83    /// location.
84    ///
85    /// See the X86-64 ELF ABI supplement for more details.
86    ///    SYMBOL_LABEL @GOTPCREL
87    MO_GOTPCREL,
88
89    /// MO_PLT - On a symbol operand this indicates that the immediate is
90    /// offset to the PLT entry of symbol name from the current code location.
91    ///
92    /// See the X86-64 ELF ABI supplement for more details.
93    ///    SYMBOL_LABEL @PLT
94    MO_PLT,
95
96    /// MO_TLSGD - On a symbol operand this indicates that the immediate is
97    /// the offset of the GOT entry with the TLS index structure that contains
98    /// the module number and variable offset for the symbol. Used in the
99    /// general dynamic TLS access model.
100    ///
101    /// See 'ELF Handling for Thread-Local Storage' for more details.
102    ///    SYMBOL_LABEL @TLSGD
103    MO_TLSGD,
104
105    /// MO_TLSLD - On a symbol operand this indicates that the immediate is
106    /// the offset of the GOT entry with the TLS index for the module that
107    /// contains the symbol. When this index is passed to a call to
108    /// __tls_get_addr, the function will return the base address of the TLS
109    /// block for the symbol. Used in the x86-64 local dynamic TLS access model.
110    ///
111    /// See 'ELF Handling for Thread-Local Storage' for more details.
112    ///    SYMBOL_LABEL @TLSLD
113    MO_TLSLD,
114
115    /// MO_TLSLDM - On a symbol operand this indicates that the immediate is
116    /// the offset of the GOT entry with the TLS index for the module that
117    /// contains the symbol. When this index is passed to a call to
118    /// ___tls_get_addr, the function will return the base address of the TLS
119    /// block for the symbol. Used in the IA32 local dynamic TLS access model.
120    ///
121    /// See 'ELF Handling for Thread-Local Storage' for more details.
122    ///    SYMBOL_LABEL @TLSLDM
123    MO_TLSLDM,
124
125    /// MO_GOTTPOFF - On a symbol operand this indicates that the immediate is
126    /// the offset of the GOT entry with the thread-pointer offset for the
127    /// symbol. Used in the x86-64 initial exec TLS access model.
128    ///
129    /// See 'ELF Handling for Thread-Local Storage' for more details.
130    ///    SYMBOL_LABEL @GOTTPOFF
131    MO_GOTTPOFF,
132
133    /// MO_INDNTPOFF - On a symbol operand this indicates that the immediate is
134    /// the absolute address of the GOT entry with the negative thread-pointer
135    /// offset for the symbol. Used in the non-PIC IA32 initial exec TLS access
136    /// model.
137    ///
138    /// See 'ELF Handling for Thread-Local Storage' for more details.
139    ///    SYMBOL_LABEL @INDNTPOFF
140    MO_INDNTPOFF,
141
142    /// MO_TPOFF - On a symbol operand this indicates that the immediate is
143    /// the thread-pointer offset for the symbol. Used in the x86-64 local
144    /// exec TLS access model.
145    ///
146    /// See 'ELF Handling for Thread-Local Storage' for more details.
147    ///    SYMBOL_LABEL @TPOFF
148    MO_TPOFF,
149
150    /// MO_DTPOFF - On a symbol operand this indicates that the immediate is
151    /// the offset of the GOT entry with the TLS offset of the symbol. Used
152    /// in the local dynamic TLS access model.
153    ///
154    /// See 'ELF Handling for Thread-Local Storage' for more details.
155    ///    SYMBOL_LABEL @DTPOFF
156    MO_DTPOFF,
157
158    /// MO_NTPOFF - On a symbol operand this indicates that the immediate is
159    /// the negative thread-pointer offset for the symbol. Used in the IA32
160    /// local exec TLS access model.
161    ///
162    /// See 'ELF Handling for Thread-Local Storage' for more details.
163    ///    SYMBOL_LABEL @NTPOFF
164    MO_NTPOFF,
165
166    /// MO_GOTNTPOFF - On a symbol operand this indicates that the immediate is
167    /// the offset of the GOT entry with the negative thread-pointer offset for
168    /// the symbol. Used in the PIC IA32 initial exec TLS access model.
169    ///
170    /// See 'ELF Handling for Thread-Local Storage' for more details.
171    ///    SYMBOL_LABEL @GOTNTPOFF
172    MO_GOTNTPOFF,
173
174    /// MO_DLLIMPORT - On a symbol operand "FOO", this indicates that the
175    /// reference is actually to the "__imp_FOO" symbol.  This is used for
176    /// dllimport linkage on windows.
177    MO_DLLIMPORT,
178
179    /// MO_DARWIN_STUB - On a symbol operand "FOO", this indicates that the
180    /// reference is actually to the "FOO$stub" symbol.  This is used for calls
181    /// and jumps to external functions on Tiger and earlier.
182    MO_DARWIN_STUB,
183
184    /// MO_DARWIN_NONLAZY - On a symbol operand "FOO", this indicates that the
185    /// reference is actually to the "FOO$non_lazy_ptr" symbol, which is a
186    /// non-PIC-base-relative reference to a non-hidden dyld lazy pointer stub.
187    MO_DARWIN_NONLAZY,
188
189    /// MO_DARWIN_NONLAZY_PIC_BASE - On a symbol operand "FOO", this indicates
190    /// that the reference is actually to "FOO$non_lazy_ptr - PICBASE", which is
191    /// a PIC-base-relative reference to a non-hidden dyld lazy pointer stub.
192    MO_DARWIN_NONLAZY_PIC_BASE,
193
194    /// MO_DARWIN_HIDDEN_NONLAZY_PIC_BASE - On a symbol operand "FOO", this
195    /// indicates that the reference is actually to "FOO$non_lazy_ptr -PICBASE",
196    /// which is a PIC-base-relative reference to a hidden dyld lazy pointer
197    /// stub.
198    MO_DARWIN_HIDDEN_NONLAZY_PIC_BASE,
199
200    /// MO_TLVP - On a symbol operand this indicates that the immediate is
201    /// some TLS offset.
202    ///
203    /// This is the TLS offset for the Darwin TLS mechanism.
204    MO_TLVP,
205
206    /// MO_TLVP_PIC_BASE - On a symbol operand this indicates that the immediate
207    /// is some TLS offset from the picbase.
208    ///
209    /// This is the 32-bit TLS offset for Darwin TLS in PIC mode.
210    MO_TLVP_PIC_BASE,
211
212    /// MO_SECREL - On a symbol operand this indicates that the immediate is
213    /// the offset from beginning of section.
214    ///
215    /// This is the TLS offset for the COFF/Windows TLS mechanism.
216    MO_SECREL
217  };
218
219  enum {
220    //===------------------------------------------------------------------===//
221    // Instruction encodings.  These are the standard/most common forms for X86
222    // instructions.
223    //
224
225    // PseudoFrm - This represents an instruction that is a pseudo instruction
226    // or one that has not been implemented yet.  It is illegal to code generate
227    // it, but tolerated for intermediate implementation stages.
228    Pseudo         = 0,
229
230    /// Raw - This form is for instructions that don't have any operands, so
231    /// they are just a fixed opcode value, like 'leave'.
232    RawFrm         = 1,
233
234    /// AddRegFrm - This form is used for instructions like 'push r32' that have
235    /// their one register operand added to their opcode.
236    AddRegFrm      = 2,
237
238    /// MRMDestReg - This form is used for instructions that use the Mod/RM byte
239    /// to specify a destination, which in this case is a register.
240    ///
241    MRMDestReg     = 3,
242
243    /// MRMDestMem - This form is used for instructions that use the Mod/RM byte
244    /// to specify a destination, which in this case is memory.
245    ///
246    MRMDestMem     = 4,
247
248    /// MRMSrcReg - This form is used for instructions that use the Mod/RM byte
249    /// to specify a source, which in this case is a register.
250    ///
251    MRMSrcReg      = 5,
252
253    /// MRMSrcMem - This form is used for instructions that use the Mod/RM byte
254    /// to specify a source, which in this case is memory.
255    ///
256    MRMSrcMem      = 6,
257
258    /// MRM[0-7][rm] - These forms are used to represent instructions that use
259    /// a Mod/RM byte, and use the middle field to hold extended opcode
260    /// information.  In the intel manual these are represented as /0, /1, ...
261    ///
262
263    // First, instructions that operate on a register r/m operand...
264    MRM0r = 16,  MRM1r = 17,  MRM2r = 18,  MRM3r = 19, // Format /0 /1 /2 /3
265    MRM4r = 20,  MRM5r = 21,  MRM6r = 22,  MRM7r = 23, // Format /4 /5 /6 /7
266
267    // Next, instructions that operate on a memory r/m operand...
268    MRM0m = 24,  MRM1m = 25,  MRM2m = 26,  MRM3m = 27, // Format /0 /1 /2 /3
269    MRM4m = 28,  MRM5m = 29,  MRM6m = 30,  MRM7m = 31, // Format /4 /5 /6 /7
270
271    // MRMInitReg - This form is used for instructions whose source and
272    // destinations are the same register.
273    MRMInitReg = 32,
274
275    //// MRM_XX - A mod/rm byte of exactly 0xXX.
276    MRM_C1 = 33, MRM_C2 = 34, MRM_C3 = 35, MRM_C4 = 36,
277    MRM_C8 = 37, MRM_C9 = 38, MRM_CA = 39, MRM_CB = 40,
278    MRM_E8 = 41, MRM_F0 = 42, MRM_F8 = 45, MRM_F9 = 46,
279    MRM_D0 = 47, MRM_D1 = 48, MRM_D4 = 49, MRM_D5 = 50,
280    MRM_D6 = 51, MRM_D8 = 52, MRM_D9 = 53, MRM_DA = 54,
281    MRM_DB = 55, MRM_DC = 56, MRM_DD = 57, MRM_DE = 58,
282    MRM_DF = 59,
283
284    /// RawFrmImm8 - This is used for the ENTER instruction, which has two
285    /// immediates, the first of which is a 16-bit immediate (specified by
286    /// the imm encoding) and the second is a 8-bit fixed value.
287    RawFrmImm8 = 43,
288
289    /// RawFrmImm16 - This is used for CALL FAR instructions, which have two
290    /// immediates, the first of which is a 16 or 32-bit immediate (specified by
291    /// the imm encoding) and the second is a 16-bit fixed value.  In the AMD
292    /// manual, this operand is described as pntr16:32 and pntr16:16
293    RawFrmImm16 = 44,
294
295    FormMask       = 63,
296
297    //===------------------------------------------------------------------===//
298    // Actual flags...
299
300    // OpSize - Set if this instruction requires an operand size prefix (0x66),
301    // which most often indicates that the instruction operates on 16 bit data
302    // instead of 32 bit data.
303    OpSize      = 1 << 6,
304
305    // AsSize - Set if this instruction requires an operand size prefix (0x67),
306    // which most often indicates that the instruction address 16 bit address
307    // instead of 32 bit address (or 32 bit address in 64 bit mode).
308    AdSize      = 1 << 7,
309
310    //===------------------------------------------------------------------===//
311    // Op0Mask - There are several prefix bytes that are used to form two byte
312    // opcodes.  These are currently 0x0F, 0xF3, and 0xD8-0xDF.  This mask is
313    // used to obtain the setting of this field.  If no bits in this field is
314    // set, there is no prefix byte for obtaining a multibyte opcode.
315    //
316    Op0Shift    = 8,
317    Op0Mask     = 0x1F << Op0Shift,
318
319    // TB - TwoByte - Set if this instruction has a two byte opcode, which
320    // starts with a 0x0F byte before the real opcode.
321    TB          = 1 << Op0Shift,
322
323    // REP - The 0xF3 prefix byte indicating repetition of the following
324    // instruction.
325    REP         = 2 << Op0Shift,
326
327    // D8-DF - These escape opcodes are used by the floating point unit.  These
328    // values must remain sequential.
329    D8 = 3 << Op0Shift,   D9 = 4 << Op0Shift,
330    DA = 5 << Op0Shift,   DB = 6 << Op0Shift,
331    DC = 7 << Op0Shift,   DD = 8 << Op0Shift,
332    DE = 9 << Op0Shift,   DF = 10 << Op0Shift,
333
334    // XS, XD - These prefix codes are for single and double precision scalar
335    // floating point operations performed in the SSE registers.
336    XD = 11 << Op0Shift,  XS = 12 << Op0Shift,
337
338    // T8, TA, A6, A7 - Prefix after the 0x0F prefix.
339    T8 = 13 << Op0Shift,  TA = 14 << Op0Shift,
340    A6 = 15 << Op0Shift,  A7 = 16 << Op0Shift,
341
342    // T8XD - Prefix before and after 0x0F. Combination of T8 and XD.
343    T8XD = 17 << Op0Shift,
344
345    // T8XS - Prefix before and after 0x0F. Combination of T8 and XS.
346    T8XS = 18 << Op0Shift,
347
348    // TAXD - Prefix before and after 0x0F. Combination of TA and XD.
349    TAXD = 19 << Op0Shift,
350
351    // XOP8 - Prefix to include use of imm byte.
352    XOP8 = 20 << Op0Shift,
353
354    // XOP9 - Prefix to exclude use of imm byte.
355    XOP9 = 21 << Op0Shift,
356
357    // XOPA - Prefix to encode 0xA in VEX.MMMM of XOP instructions.
358    XOPA = 22 << Op0Shift,
359
360    //===------------------------------------------------------------------===//
361    // REX_W - REX prefixes are instruction prefixes used in 64-bit mode.
362    // They are used to specify GPRs and SSE registers, 64-bit operand size,
363    // etc. We only cares about REX.W and REX.R bits and only the former is
364    // statically determined.
365    //
366    REXShift    = Op0Shift + 5,
367    REX_W       = 1 << REXShift,
368
369    //===------------------------------------------------------------------===//
370    // This three-bit field describes the size of an immediate operand.  Zero is
371    // unused so that we can tell if we forgot to set a value.
372    ImmShift = REXShift + 1,
373    ImmMask    = 7 << ImmShift,
374    Imm8       = 1 << ImmShift,
375    Imm8PCRel  = 2 << ImmShift,
376    Imm16      = 3 << ImmShift,
377    Imm16PCRel = 4 << ImmShift,
378    Imm32      = 5 << ImmShift,
379    Imm32PCRel = 6 << ImmShift,
380    Imm64      = 7 << ImmShift,
381
382    //===------------------------------------------------------------------===//
383    // FP Instruction Classification...  Zero is non-fp instruction.
384
385    // FPTypeMask - Mask for all of the FP types...
386    FPTypeShift = ImmShift + 3,
387    FPTypeMask  = 7 << FPTypeShift,
388
389    // NotFP - The default, set for instructions that do not use FP registers.
390    NotFP      = 0 << FPTypeShift,
391
392    // ZeroArgFP - 0 arg FP instruction which implicitly pushes ST(0), f.e. fld0
393    ZeroArgFP  = 1 << FPTypeShift,
394
395    // OneArgFP - 1 arg FP instructions which implicitly read ST(0), such as fst
396    OneArgFP   = 2 << FPTypeShift,
397
398    // OneArgFPRW - 1 arg FP instruction which implicitly read ST(0) and write a
399    // result back to ST(0).  For example, fcos, fsqrt, etc.
400    //
401    OneArgFPRW = 3 << FPTypeShift,
402
403    // TwoArgFP - 2 arg FP instructions which implicitly read ST(0), and an
404    // explicit argument, storing the result to either ST(0) or the implicit
405    // argument.  For example: fadd, fsub, fmul, etc...
406    TwoArgFP   = 4 << FPTypeShift,
407
408    // CompareFP - 2 arg FP instructions which implicitly read ST(0) and an
409    // explicit argument, but have no destination.  Example: fucom, fucomi, ...
410    CompareFP  = 5 << FPTypeShift,
411
412    // CondMovFP - "2 operand" floating point conditional move instructions.
413    CondMovFP  = 6 << FPTypeShift,
414
415    // SpecialFP - Special instruction forms.  Dispatch by opcode explicitly.
416    SpecialFP  = 7 << FPTypeShift,
417
418    // Lock prefix
419    LOCKShift = FPTypeShift + 3,
420    LOCK = 1 << LOCKShift,
421
422    // Segment override prefixes. Currently we just need ability to address
423    // stuff in gs and fs segments.
424    SegOvrShift = LOCKShift + 1,
425    SegOvrMask  = 3 << SegOvrShift,
426    FS          = 1 << SegOvrShift,
427    GS          = 2 << SegOvrShift,
428
429    // Execution domain for SSE instructions in bits 23, 24.
430    // 0 in bits 23-24 means normal, non-SSE instruction.
431    SSEDomainShift = SegOvrShift + 2,
432
433    OpcodeShift   = SSEDomainShift + 2,
434
435    //===------------------------------------------------------------------===//
436    /// VEX - The opcode prefix used by AVX instructions
437    VEXShift = OpcodeShift + 8,
438    VEX         = 1U << 0,
439
440    /// VEX_W - Has a opcode specific functionality, but is used in the same
441    /// way as REX_W is for regular SSE instructions.
442    VEX_W       = 1U << 1,
443
444    /// VEX_4V - Used to specify an additional AVX/SSE register. Several 2
445    /// address instructions in SSE are represented as 3 address ones in AVX
446    /// and the additional register is encoded in VEX_VVVV prefix.
447    VEX_4V      = 1U << 2,
448
449    /// VEX_4VOp3 - Similar to VEX_4V, but used on instructions that encode
450    /// operand 3 with VEX.vvvv.
451    VEX_4VOp3   = 1U << 3,
452
453    /// VEX_I8IMM - Specifies that the last register used in a AVX instruction,
454    /// must be encoded in the i8 immediate field. This usually happens in
455    /// instructions with 4 operands.
456    VEX_I8IMM   = 1U << 4,
457
458    /// VEX_L - Stands for a bit in the VEX opcode prefix meaning the current
459    /// instruction uses 256-bit wide registers. This is usually auto detected
460    /// if a VR256 register is used, but some AVX instructions also have this
461    /// field marked when using a f256 memory references.
462    VEX_L       = 1U << 5,
463
464    // VEX_LIG - Specifies that this instruction ignores the L-bit in the VEX
465    // prefix. Usually used for scalar instructions. Needed by disassembler.
466    VEX_LIG     = 1U << 6,
467
468    // TODO: we should combine VEX_L and VEX_LIG together to form a 2-bit field
469    // with following encoding:
470    // - 00 V128
471    // - 01 V256
472    // - 10 V512
473    // - 11 LIG (but, in insn encoding, leave VEX.L and EVEX.L in zeros.
474    // this will save 1 tsflag bit
475
476    // VEX_EVEX - Specifies that this instruction use EVEX form which provides
477    // syntax support up to 32 512-bit register operands and up to 7 16-bit
478    // mask operands as well as source operand data swizzling/memory operand
479    // conversion, eviction hint, and rounding mode.
480    EVEX        = 1U << 7,
481
482    // EVEX_K - Set if this instruction requires masking
483    EVEX_K      = 1U << 8,
484
485    // EVEX_Z - Set if this instruction has EVEX.Z field set.
486    EVEX_Z      = 1U << 9,
487
488    // EVEX_L2 - Set if this instruction has EVEX.L' field set.
489    EVEX_L2     = 1U << 10,
490
491    // EVEX_B - Set if this instruction has EVEX.B field set.
492    EVEX_B      = 1U << 11,
493
494    // EVEX_CD8E - compressed disp8 form, element-size
495    EVEX_CD8EShift = VEXShift + 12,
496    EVEX_CD8EMask = 3,
497
498    // EVEX_CD8V - compressed disp8 form, vector-width
499    EVEX_CD8VShift = EVEX_CD8EShift + 2,
500    EVEX_CD8VMask = 7,
501
502    /// Has3DNow0F0FOpcode - This flag indicates that the instruction uses the
503    /// wacky 0x0F 0x0F prefix for 3DNow! instructions.  The manual documents
504    /// this as having a 0x0F prefix with a 0x0F opcode, and each instruction
505    /// storing a classifier in the imm8 field.  To simplify our implementation,
506    /// we handle this by storeing the classifier in the opcode field and using
507    /// this flag to indicate that the encoder should do the wacky 3DNow! thing.
508    Has3DNow0F0FOpcode = 1U << 17,
509
510    /// MemOp4 - Used to indicate swapping of operand 3 and 4 to be encoded in
511    /// ModRM or I8IMM. This is used for FMA4 and XOP instructions.
512    MemOp4 = 1U << 18,
513
514    /// XOP - Opcode prefix used by XOP instructions.
515    XOP = 1U << 19
516
517  };
518
519  // getBaseOpcodeFor - This function returns the "base" X86 opcode for the
520  // specified machine instruction.
521  //
522  inline unsigned char getBaseOpcodeFor(uint64_t TSFlags) {
523    return TSFlags >> X86II::OpcodeShift;
524  }
525
526  inline bool hasImm(uint64_t TSFlags) {
527    return (TSFlags & X86II::ImmMask) != 0;
528  }
529
530  /// getSizeOfImm - Decode the "size of immediate" field from the TSFlags field
531  /// of the specified instruction.
532  inline unsigned getSizeOfImm(uint64_t TSFlags) {
533    switch (TSFlags & X86II::ImmMask) {
534    default: llvm_unreachable("Unknown immediate size");
535    case X86II::Imm8:
536    case X86II::Imm8PCRel:  return 1;
537    case X86II::Imm16:
538    case X86II::Imm16PCRel: return 2;
539    case X86II::Imm32:
540    case X86II::Imm32PCRel: return 4;
541    case X86II::Imm64:      return 8;
542    }
543  }
544
545  /// isImmPCRel - Return true if the immediate of the specified instruction's
546  /// TSFlags indicates that it is pc relative.
547  inline unsigned isImmPCRel(uint64_t TSFlags) {
548    switch (TSFlags & X86II::ImmMask) {
549    default: llvm_unreachable("Unknown immediate size");
550    case X86II::Imm8PCRel:
551    case X86II::Imm16PCRel:
552    case X86II::Imm32PCRel:
553      return true;
554    case X86II::Imm8:
555    case X86II::Imm16:
556    case X86II::Imm32:
557    case X86II::Imm64:
558      return false;
559    }
560  }
561
562  /// getOperandBias - compute any additional adjustment needed to
563  ///                  the offset to the start of the memory operand
564  ///                  in this instruction.
565  /// If this is a two-address instruction,skip one of the register operands.
566  /// FIXME: This should be handled during MCInst lowering.
567  inline int getOperandBias(const MCInstrDesc& Desc)
568  {
569    unsigned NumOps = Desc.getNumOperands();
570    unsigned CurOp = 0;
571    if (NumOps > 1 && Desc.getOperandConstraint(1, MCOI::TIED_TO) == 0)
572      ++CurOp;
573    else if (NumOps > 3 && Desc.getOperandConstraint(2, MCOI::TIED_TO) == 0 &&
574             Desc.getOperandConstraint(3, MCOI::TIED_TO) == 1)
575      // Special case for AVX-512 GATHER with 2 TIED_TO operands
576      // Skip the first 2 operands: dst, mask_wb
577      CurOp += 2;
578    else if (NumOps > 3 && Desc.getOperandConstraint(2, MCOI::TIED_TO) == 0 &&
579             Desc.getOperandConstraint(NumOps - 1, MCOI::TIED_TO) == 1)
580      // Special case for GATHER with 2 TIED_TO operands
581      // Skip the first 2 operands: dst, mask_wb
582      CurOp += 2;
583    else if (NumOps > 2 && Desc.getOperandConstraint(NumOps - 2, MCOI::TIED_TO) == 0)
584      // SCATTER
585      ++CurOp;
586    return CurOp;
587  }
588
589  /// getMemoryOperandNo - The function returns the MCInst operand # for the
590  /// first field of the memory operand.  If the instruction doesn't have a
591  /// memory operand, this returns -1.
592  ///
593  /// Note that this ignores tied operands.  If there is a tied register which
594  /// is duplicated in the MCInst (e.g. "EAX = addl EAX, [mem]") it is only
595  /// counted as one operand.
596  ///
597  inline int getMemoryOperandNo(uint64_t TSFlags, unsigned Opcode) {
598    switch (TSFlags & X86II::FormMask) {
599    case X86II::MRMInitReg:
600        // FIXME: Remove this form.
601        return -1;
602    default: llvm_unreachable("Unknown FormMask value in getMemoryOperandNo!");
603    case X86II::Pseudo:
604    case X86II::RawFrm:
605    case X86II::AddRegFrm:
606    case X86II::MRMDestReg:
607    case X86II::MRMSrcReg:
608    case X86II::RawFrmImm8:
609    case X86II::RawFrmImm16:
610       return -1;
611    case X86II::MRMDestMem:
612      return 0;
613    case X86II::MRMSrcMem: {
614      bool HasVEX_4V = (TSFlags >> X86II::VEXShift) & X86II::VEX_4V;
615      bool HasMemOp4 = (TSFlags >> X86II::VEXShift) & X86II::MemOp4;
616      bool HasEVEX = (TSFlags >> X86II::VEXShift) & X86II::EVEX;
617      bool HasEVEX_K = HasEVEX && ((TSFlags >> X86II::VEXShift) & X86II::EVEX_K);
618      unsigned FirstMemOp = 1;
619      if (HasVEX_4V)
620        ++FirstMemOp;// Skip the register source (which is encoded in VEX_VVVV).
621      if (HasMemOp4)
622        ++FirstMemOp;// Skip the register source (which is encoded in I8IMM).
623      if (HasEVEX_K)
624        ++FirstMemOp;// Skip the mask register
625      // FIXME: Maybe lea should have its own form?  This is a horrible hack.
626      //if (Opcode == X86::LEA64r || Opcode == X86::LEA64_32r ||
627      //    Opcode == X86::LEA16r || Opcode == X86::LEA32r)
628      return FirstMemOp;
629    }
630    case X86II::MRM0r: case X86II::MRM1r:
631    case X86II::MRM2r: case X86II::MRM3r:
632    case X86II::MRM4r: case X86II::MRM5r:
633    case X86II::MRM6r: case X86II::MRM7r:
634      return -1;
635    case X86II::MRM0m: case X86II::MRM1m:
636    case X86II::MRM2m: case X86II::MRM3m:
637    case X86II::MRM4m: case X86II::MRM5m:
638    case X86II::MRM6m: case X86II::MRM7m: {
639      bool HasVEX_4V = (TSFlags >> X86II::VEXShift) & X86II::VEX_4V;
640      unsigned FirstMemOp = 0;
641      if (HasVEX_4V)
642        ++FirstMemOp;// Skip the register dest (which is encoded in VEX_VVVV).
643      return FirstMemOp;
644    }
645    case X86II::MRM_C1: case X86II::MRM_C2: case X86II::MRM_C3:
646    case X86II::MRM_C4: case X86II::MRM_C8: case X86II::MRM_C9:
647    case X86II::MRM_CA: case X86II::MRM_CB: case X86II::MRM_E8:
648    case X86II::MRM_F0: case X86II::MRM_F8: case X86II::MRM_F9:
649    case X86II::MRM_D0: case X86II::MRM_D1: case X86II::MRM_D4:
650    case X86II::MRM_D5: case X86II::MRM_D6: case X86II::MRM_D8:
651    case X86II::MRM_D9: case X86II::MRM_DA: case X86II::MRM_DB:
652    case X86II::MRM_DC: case X86II::MRM_DD: case X86II::MRM_DE:
653    case X86II::MRM_DF:
654      return -1;
655    }
656  }
657
658  /// isX86_64ExtendedReg - Is the MachineOperand a x86-64 extended (r8 or
659  /// higher) register?  e.g. r8, xmm8, xmm13, etc.
660  inline bool isX86_64ExtendedReg(unsigned RegNo) {
661    if ((RegNo > X86::XMM7 && RegNo <= X86::XMM15) ||
662        (RegNo > X86::XMM23 && RegNo <= X86::XMM31) ||
663        (RegNo > X86::YMM7 && RegNo <= X86::YMM15) ||
664        (RegNo > X86::YMM23 && RegNo <= X86::YMM31) ||
665        (RegNo > X86::ZMM7 && RegNo <= X86::ZMM15) ||
666        (RegNo > X86::ZMM23 && RegNo <= X86::ZMM31))
667      return true;
668
669    switch (RegNo) {
670    default: break;
671    case X86::R8:    case X86::R9:    case X86::R10:   case X86::R11:
672    case X86::R12:   case X86::R13:   case X86::R14:   case X86::R15:
673    case X86::R8D:   case X86::R9D:   case X86::R10D:  case X86::R11D:
674    case X86::R12D:  case X86::R13D:  case X86::R14D:  case X86::R15D:
675    case X86::R8W:   case X86::R9W:   case X86::R10W:  case X86::R11W:
676    case X86::R12W:  case X86::R13W:  case X86::R14W:  case X86::R15W:
677    case X86::R8B:   case X86::R9B:   case X86::R10B:  case X86::R11B:
678    case X86::R12B:  case X86::R13B:  case X86::R14B:  case X86::R15B:
679    case X86::CR8:   case X86::CR9:   case X86::CR10:  case X86::CR11:
680    case X86::CR12:  case X86::CR13:  case X86::CR14:  case X86::CR15:
681        return true;
682    }
683    return false;
684  }
685
686  /// is32ExtendedReg - Is the MemoryOperand a 32 extended (zmm16 or higher)
687  /// registers? e.g. zmm21, etc.
688  static inline bool is32ExtendedReg(unsigned RegNo) {
689    return ((RegNo > X86::XMM15 && RegNo <= X86::XMM31) ||
690            (RegNo > X86::YMM15 && RegNo <= X86::YMM31) ||
691            (RegNo > X86::ZMM15 && RegNo <= X86::ZMM31));
692  }
693
694
695  inline bool isX86_64NonExtLowByteReg(unsigned reg) {
696    return (reg == X86::SPL || reg == X86::BPL ||
697            reg == X86::SIL || reg == X86::DIL);
698  }
699}
700
701} // end namespace llvm;
702
703#endif
704