X86AsmBackend.cpp revision 261225
1//===-- X86AsmBackend.cpp - X86 Assembler Backend -------------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9
10#include "MCTargetDesc/X86BaseInfo.h"
11#include "MCTargetDesc/X86FixupKinds.h"
12#include "llvm/MC/MCAsmBackend.h"
13#include "llvm/MC/MCAssembler.h"
14#include "llvm/MC/MCELFObjectWriter.h"
15#include "llvm/MC/MCExpr.h"
16#include "llvm/MC/MCFixupKindInfo.h"
17#include "llvm/MC/MCMachObjectWriter.h"
18#include "llvm/MC/MCObjectWriter.h"
19#include "llvm/MC/MCSectionCOFF.h"
20#include "llvm/MC/MCSectionELF.h"
21#include "llvm/MC/MCSectionMachO.h"
22#include "llvm/Object/MachOFormat.h"
23#include "llvm/Support/CommandLine.h"
24#include "llvm/Support/ELF.h"
25#include "llvm/Support/ErrorHandling.h"
26#include "llvm/Support/TargetRegistry.h"
27#include "llvm/Support/raw_ostream.h"
28using namespace llvm;
29
30// Option to allow disabling arithmetic relaxation to workaround PR9807, which
31// is useful when running bitwise comparison experiments on Darwin. We should be
32// able to remove this once PR9807 is resolved.
33static cl::opt<bool>
34MCDisableArithRelaxation("mc-x86-disable-arith-relaxation",
35         cl::desc("Disable relaxation of arithmetic instruction for X86"));
36
37static unsigned getFixupKindLog2Size(unsigned Kind) {
38  switch (Kind) {
39  default: llvm_unreachable("invalid fixup kind!");
40  case FK_PCRel_1:
41  case FK_SecRel_1:
42  case FK_Data_1: return 0;
43  case FK_PCRel_2:
44  case FK_SecRel_2:
45  case FK_Data_2: return 1;
46  case FK_PCRel_4:
47  case X86::reloc_riprel_4byte:
48  case X86::reloc_riprel_4byte_movq_load:
49  case X86::reloc_signed_4byte:
50  case X86::reloc_global_offset_table:
51  case FK_SecRel_4:
52  case FK_Data_4: return 2;
53  case FK_PCRel_8:
54  case FK_SecRel_8:
55  case FK_Data_8: return 3;
56  }
57}
58
59namespace {
60
61class X86ELFObjectWriter : public MCELFObjectTargetWriter {
62public:
63  X86ELFObjectWriter(bool is64Bit, uint8_t OSABI, uint16_t EMachine,
64                     bool HasRelocationAddend, bool foobar)
65    : MCELFObjectTargetWriter(is64Bit, OSABI, EMachine, HasRelocationAddend) {}
66};
67
68class X86AsmBackend : public MCAsmBackend {
69  StringRef CPU;
70public:
71  X86AsmBackend(const Target &T, StringRef _CPU)
72    : MCAsmBackend(), CPU(_CPU) {}
73
74  unsigned getNumFixupKinds() const {
75    return X86::NumTargetFixupKinds;
76  }
77
78  const MCFixupKindInfo &getFixupKindInfo(MCFixupKind Kind) const {
79    const static MCFixupKindInfo Infos[X86::NumTargetFixupKinds] = {
80      { "reloc_riprel_4byte", 0, 4 * 8, MCFixupKindInfo::FKF_IsPCRel },
81      { "reloc_riprel_4byte_movq_load", 0, 4 * 8, MCFixupKindInfo::FKF_IsPCRel},
82      { "reloc_signed_4byte", 0, 4 * 8, 0},
83      { "reloc_global_offset_table", 0, 4 * 8, 0}
84    };
85
86    if (Kind < FirstTargetFixupKind)
87      return MCAsmBackend::getFixupKindInfo(Kind);
88
89    assert(unsigned(Kind - FirstTargetFixupKind) < getNumFixupKinds() &&
90           "Invalid kind!");
91    return Infos[Kind - FirstTargetFixupKind];
92  }
93
94  void applyFixup(const MCFixup &Fixup, char *Data, unsigned DataSize,
95                  uint64_t Value) const {
96    unsigned Size = 1 << getFixupKindLog2Size(Fixup.getKind());
97
98    assert(Fixup.getOffset() + Size <= DataSize &&
99           "Invalid fixup offset!");
100
101    // Check that uppper bits are either all zeros or all ones.
102    // Specifically ignore overflow/underflow as long as the leakage is
103    // limited to the lower bits. This is to remain compatible with
104    // other assemblers.
105    assert(isIntN(Size * 8 + 1, Value) &&
106           "Value does not fit in the Fixup field");
107
108    for (unsigned i = 0; i != Size; ++i)
109      Data[Fixup.getOffset() + i] = uint8_t(Value >> (i * 8));
110  }
111
112  bool mayNeedRelaxation(const MCInst &Inst) const;
113
114  bool fixupNeedsRelaxation(const MCFixup &Fixup,
115                            uint64_t Value,
116                            const MCRelaxableFragment *DF,
117                            const MCAsmLayout &Layout) const;
118
119  void relaxInstruction(const MCInst &Inst, MCInst &Res) const;
120
121  bool writeNopData(uint64_t Count, MCObjectWriter *OW) const;
122};
123} // end anonymous namespace
124
125static unsigned getRelaxedOpcodeBranch(unsigned Op) {
126  switch (Op) {
127  default:
128    return Op;
129
130  case X86::JAE_1: return X86::JAE_4;
131  case X86::JA_1:  return X86::JA_4;
132  case X86::JBE_1: return X86::JBE_4;
133  case X86::JB_1:  return X86::JB_4;
134  case X86::JE_1:  return X86::JE_4;
135  case X86::JGE_1: return X86::JGE_4;
136  case X86::JG_1:  return X86::JG_4;
137  case X86::JLE_1: return X86::JLE_4;
138  case X86::JL_1:  return X86::JL_4;
139  case X86::JMP_1: return X86::JMP_4;
140  case X86::JNE_1: return X86::JNE_4;
141  case X86::JNO_1: return X86::JNO_4;
142  case X86::JNP_1: return X86::JNP_4;
143  case X86::JNS_1: return X86::JNS_4;
144  case X86::JO_1:  return X86::JO_4;
145  case X86::JP_1:  return X86::JP_4;
146  case X86::JS_1:  return X86::JS_4;
147  }
148}
149
150static unsigned getRelaxedOpcodeArith(unsigned Op) {
151  switch (Op) {
152  default:
153    return Op;
154
155    // IMUL
156  case X86::IMUL16rri8: return X86::IMUL16rri;
157  case X86::IMUL16rmi8: return X86::IMUL16rmi;
158  case X86::IMUL32rri8: return X86::IMUL32rri;
159  case X86::IMUL32rmi8: return X86::IMUL32rmi;
160  case X86::IMUL64rri8: return X86::IMUL64rri32;
161  case X86::IMUL64rmi8: return X86::IMUL64rmi32;
162
163    // AND
164  case X86::AND16ri8: return X86::AND16ri;
165  case X86::AND16mi8: return X86::AND16mi;
166  case X86::AND32ri8: return X86::AND32ri;
167  case X86::AND32mi8: return X86::AND32mi;
168  case X86::AND64ri8: return X86::AND64ri32;
169  case X86::AND64mi8: return X86::AND64mi32;
170
171    // OR
172  case X86::OR16ri8: return X86::OR16ri;
173  case X86::OR16mi8: return X86::OR16mi;
174  case X86::OR32ri8: return X86::OR32ri;
175  case X86::OR32mi8: return X86::OR32mi;
176  case X86::OR64ri8: return X86::OR64ri32;
177  case X86::OR64mi8: return X86::OR64mi32;
178
179    // XOR
180  case X86::XOR16ri8: return X86::XOR16ri;
181  case X86::XOR16mi8: return X86::XOR16mi;
182  case X86::XOR32ri8: return X86::XOR32ri;
183  case X86::XOR32mi8: return X86::XOR32mi;
184  case X86::XOR64ri8: return X86::XOR64ri32;
185  case X86::XOR64mi8: return X86::XOR64mi32;
186
187    // ADD
188  case X86::ADD16ri8: return X86::ADD16ri;
189  case X86::ADD16mi8: return X86::ADD16mi;
190  case X86::ADD32ri8: return X86::ADD32ri;
191  case X86::ADD32mi8: return X86::ADD32mi;
192  case X86::ADD64ri8: return X86::ADD64ri32;
193  case X86::ADD64mi8: return X86::ADD64mi32;
194
195    // SUB
196  case X86::SUB16ri8: return X86::SUB16ri;
197  case X86::SUB16mi8: return X86::SUB16mi;
198  case X86::SUB32ri8: return X86::SUB32ri;
199  case X86::SUB32mi8: return X86::SUB32mi;
200  case X86::SUB64ri8: return X86::SUB64ri32;
201  case X86::SUB64mi8: return X86::SUB64mi32;
202
203    // CMP
204  case X86::CMP16ri8: return X86::CMP16ri;
205  case X86::CMP16mi8: return X86::CMP16mi;
206  case X86::CMP32ri8: return X86::CMP32ri;
207  case X86::CMP32mi8: return X86::CMP32mi;
208  case X86::CMP64ri8: return X86::CMP64ri32;
209  case X86::CMP64mi8: return X86::CMP64mi32;
210
211    // PUSH
212  case X86::PUSHi8: return X86::PUSHi32;
213  case X86::PUSHi16: return X86::PUSHi32;
214  case X86::PUSH64i8: return X86::PUSH64i32;
215  case X86::PUSH64i16: return X86::PUSH64i32;
216  }
217}
218
219static unsigned getRelaxedOpcode(unsigned Op) {
220  unsigned R = getRelaxedOpcodeArith(Op);
221  if (R != Op)
222    return R;
223  return getRelaxedOpcodeBranch(Op);
224}
225
226bool X86AsmBackend::mayNeedRelaxation(const MCInst &Inst) const {
227  // Branches can always be relaxed.
228  if (getRelaxedOpcodeBranch(Inst.getOpcode()) != Inst.getOpcode())
229    return true;
230
231  if (MCDisableArithRelaxation)
232    return false;
233
234  // Check if this instruction is ever relaxable.
235  if (getRelaxedOpcodeArith(Inst.getOpcode()) == Inst.getOpcode())
236    return false;
237
238
239  // Check if it has an expression and is not RIP relative.
240  bool hasExp = false;
241  bool hasRIP = false;
242  for (unsigned i = 0; i < Inst.getNumOperands(); ++i) {
243    const MCOperand &Op = Inst.getOperand(i);
244    if (Op.isExpr())
245      hasExp = true;
246
247    if (Op.isReg() && Op.getReg() == X86::RIP)
248      hasRIP = true;
249  }
250
251  // FIXME: Why exactly do we need the !hasRIP? Is it just a limitation on
252  // how we do relaxations?
253  return hasExp && !hasRIP;
254}
255
256bool X86AsmBackend::fixupNeedsRelaxation(const MCFixup &Fixup,
257                                         uint64_t Value,
258                                         const MCRelaxableFragment *DF,
259                                         const MCAsmLayout &Layout) const {
260  // Relax if the value is too big for a (signed) i8.
261  return int64_t(Value) != int64_t(int8_t(Value));
262}
263
264// FIXME: Can tblgen help at all here to verify there aren't other instructions
265// we can relax?
266void X86AsmBackend::relaxInstruction(const MCInst &Inst, MCInst &Res) const {
267  // The only relaxations X86 does is from a 1byte pcrel to a 4byte pcrel.
268  unsigned RelaxedOp = getRelaxedOpcode(Inst.getOpcode());
269
270  if (RelaxedOp == Inst.getOpcode()) {
271    SmallString<256> Tmp;
272    raw_svector_ostream OS(Tmp);
273    Inst.dump_pretty(OS);
274    OS << "\n";
275    report_fatal_error("unexpected instruction to relax: " + OS.str());
276  }
277
278  Res = Inst;
279  Res.setOpcode(RelaxedOp);
280}
281
282/// \brief Write a sequence of optimal nops to the output, covering \p Count
283/// bytes.
284/// \return - true on success, false on failure
285bool X86AsmBackend::writeNopData(uint64_t Count, MCObjectWriter *OW) const {
286  static const uint8_t Nops[10][10] = {
287    // nop
288    {0x90},
289    // xchg %ax,%ax
290    {0x66, 0x90},
291    // nopl (%[re]ax)
292    {0x0f, 0x1f, 0x00},
293    // nopl 0(%[re]ax)
294    {0x0f, 0x1f, 0x40, 0x00},
295    // nopl 0(%[re]ax,%[re]ax,1)
296    {0x0f, 0x1f, 0x44, 0x00, 0x00},
297    // nopw 0(%[re]ax,%[re]ax,1)
298    {0x66, 0x0f, 0x1f, 0x44, 0x00, 0x00},
299    // nopl 0L(%[re]ax)
300    {0x0f, 0x1f, 0x80, 0x00, 0x00, 0x00, 0x00},
301    // nopl 0L(%[re]ax,%[re]ax,1)
302    {0x0f, 0x1f, 0x84, 0x00, 0x00, 0x00, 0x00, 0x00},
303    // nopw 0L(%[re]ax,%[re]ax,1)
304    {0x66, 0x0f, 0x1f, 0x84, 0x00, 0x00, 0x00, 0x00, 0x00},
305    // nopw %cs:0L(%[re]ax,%[re]ax,1)
306    {0x66, 0x2e, 0x0f, 0x1f, 0x84, 0x00, 0x00, 0x00, 0x00, 0x00},
307  };
308
309  // This CPU doesnt support long nops. If needed add more.
310  // FIXME: Can we get this from the subtarget somehow?
311  // FIXME: We could generated something better than plain 0x90.
312  if (CPU == "generic" || CPU == "i386" || CPU == "i486" || CPU == "i586" ||
313      CPU == "pentium" || CPU == "pentium-mmx" || CPU == "i686" ||
314      CPU == "k6" || CPU == "k6-2" || CPU == "k6-3" || CPU == "geode" ||
315      CPU == "winchip-c6" || CPU == "winchip2" || CPU == "c3" ||
316      CPU == "c3-2") {
317    for (uint64_t i = 0; i < Count; ++i)
318      OW->Write8(0x90);
319    return true;
320  }
321
322  // 15 is the longest single nop instruction.  Emit as many 15-byte nops as
323  // needed, then emit a nop of the remaining length.
324  do {
325    const uint8_t ThisNopLength = (uint8_t) std::min(Count, (uint64_t) 15);
326    const uint8_t Prefixes = ThisNopLength <= 10 ? 0 : ThisNopLength - 10;
327    for (uint8_t i = 0; i < Prefixes; i++)
328      OW->Write8(0x66);
329    const uint8_t Rest = ThisNopLength - Prefixes;
330    for (uint8_t i = 0; i < Rest; i++)
331      OW->Write8(Nops[Rest - 1][i]);
332    Count -= ThisNopLength;
333  } while (Count != 0);
334
335  return true;
336}
337
338/* *** */
339
340namespace {
341class ELFX86AsmBackend : public X86AsmBackend {
342public:
343  uint8_t OSABI;
344  ELFX86AsmBackend(const Target &T, uint8_t _OSABI, StringRef CPU)
345    : X86AsmBackend(T, CPU), OSABI(_OSABI) {
346    HasReliableSymbolDifference = true;
347  }
348
349  virtual bool doesSectionRequireSymbols(const MCSection &Section) const {
350    const MCSectionELF &ES = static_cast<const MCSectionELF&>(Section);
351    return ES.getFlags() & ELF::SHF_MERGE;
352  }
353};
354
355class ELFX86_32AsmBackend : public ELFX86AsmBackend {
356public:
357  ELFX86_32AsmBackend(const Target &T, uint8_t OSABI, StringRef CPU)
358    : ELFX86AsmBackend(T, OSABI, CPU) {}
359
360  MCObjectWriter *createObjectWriter(raw_ostream &OS) const {
361    return createX86ELFObjectWriter(OS, /*IsELF64*/ false, OSABI, ELF::EM_386);
362  }
363};
364
365class ELFX86_64AsmBackend : public ELFX86AsmBackend {
366public:
367  ELFX86_64AsmBackend(const Target &T, uint8_t OSABI, StringRef CPU)
368    : ELFX86AsmBackend(T, OSABI, CPU) {}
369
370  MCObjectWriter *createObjectWriter(raw_ostream &OS) const {
371    return createX86ELFObjectWriter(OS, /*IsELF64*/ true, OSABI, ELF::EM_X86_64);
372  }
373};
374
375class WindowsX86AsmBackend : public X86AsmBackend {
376  bool Is64Bit;
377
378public:
379  WindowsX86AsmBackend(const Target &T, bool is64Bit, StringRef CPU)
380    : X86AsmBackend(T, CPU)
381    , Is64Bit(is64Bit) {
382  }
383
384  MCObjectWriter *createObjectWriter(raw_ostream &OS) const {
385    return createX86WinCOFFObjectWriter(OS, Is64Bit);
386  }
387};
388
389class DarwinX86AsmBackend : public X86AsmBackend {
390public:
391  DarwinX86AsmBackend(const Target &T, StringRef CPU)
392    : X86AsmBackend(T, CPU) { }
393};
394
395class DarwinX86_32AsmBackend : public DarwinX86AsmBackend {
396public:
397  DarwinX86_32AsmBackend(const Target &T, StringRef CPU)
398    : DarwinX86AsmBackend(T, CPU) {}
399
400  MCObjectWriter *createObjectWriter(raw_ostream &OS) const {
401    return createX86MachObjectWriter(OS, /*Is64Bit=*/false,
402                                     object::mach::CTM_i386,
403                                     object::mach::CSX86_ALL);
404  }
405};
406
407class DarwinX86_64AsmBackend : public DarwinX86AsmBackend {
408public:
409  DarwinX86_64AsmBackend(const Target &T, StringRef CPU)
410    : DarwinX86AsmBackend(T, CPU) {
411    HasReliableSymbolDifference = true;
412  }
413
414  MCObjectWriter *createObjectWriter(raw_ostream &OS) const {
415    return createX86MachObjectWriter(OS, /*Is64Bit=*/true,
416                                     object::mach::CTM_x86_64,
417                                     object::mach::CSX86_ALL);
418  }
419
420  virtual bool doesSectionRequireSymbols(const MCSection &Section) const {
421    // Temporary labels in the string literals sections require symbols. The
422    // issue is that the x86_64 relocation format does not allow symbol +
423    // offset, and so the linker does not have enough information to resolve the
424    // access to the appropriate atom unless an external relocation is used. For
425    // non-cstring sections, we expect the compiler to use a non-temporary label
426    // for anything that could have an addend pointing outside the symbol.
427    //
428    // See <rdar://problem/4765733>.
429    const MCSectionMachO &SMO = static_cast<const MCSectionMachO&>(Section);
430    return SMO.getType() == MCSectionMachO::S_CSTRING_LITERALS;
431  }
432
433  virtual bool isSectionAtomizable(const MCSection &Section) const {
434    const MCSectionMachO &SMO = static_cast<const MCSectionMachO&>(Section);
435    // Fixed sized data sections are uniqued, they cannot be diced into atoms.
436    switch (SMO.getType()) {
437    default:
438      return true;
439
440    case MCSectionMachO::S_4BYTE_LITERALS:
441    case MCSectionMachO::S_8BYTE_LITERALS:
442    case MCSectionMachO::S_16BYTE_LITERALS:
443    case MCSectionMachO::S_LITERAL_POINTERS:
444    case MCSectionMachO::S_NON_LAZY_SYMBOL_POINTERS:
445    case MCSectionMachO::S_LAZY_SYMBOL_POINTERS:
446    case MCSectionMachO::S_MOD_INIT_FUNC_POINTERS:
447    case MCSectionMachO::S_MOD_TERM_FUNC_POINTERS:
448    case MCSectionMachO::S_INTERPOSING:
449      return false;
450    }
451  }
452};
453
454} // end anonymous namespace
455
456MCAsmBackend *llvm::createX86_32AsmBackend(const Target &T, StringRef TT, StringRef CPU) {
457  Triple TheTriple(TT);
458
459  if (TheTriple.isOSDarwin() || TheTriple.getEnvironment() == Triple::MachO)
460    return new DarwinX86_32AsmBackend(T, CPU);
461
462  if (TheTriple.isOSWindows() && TheTriple.getEnvironment() != Triple::ELF)
463    return new WindowsX86AsmBackend(T, false, CPU);
464
465  uint8_t OSABI = MCELFObjectTargetWriter::getOSABI(TheTriple.getOS());
466  return new ELFX86_32AsmBackend(T, OSABI, CPU);
467}
468
469MCAsmBackend *llvm::createX86_64AsmBackend(const Target &T, StringRef TT, StringRef CPU) {
470  Triple TheTriple(TT);
471
472  if (TheTriple.isOSDarwin() || TheTriple.getEnvironment() == Triple::MachO)
473    return new DarwinX86_64AsmBackend(T, CPU);
474
475  if (TheTriple.isOSWindows() && TheTriple.getEnvironment() != Triple::ELF)
476    return new WindowsX86AsmBackend(T, true, CPU);
477
478  uint8_t OSABI = MCELFObjectTargetWriter::getOSABI(TheTriple.getOS());
479  return new ELFX86_64AsmBackend(T, OSABI, CPU);
480}
481