SystemZOperands.td revision 263508
1//===-- SystemZOperands.td - SystemZ instruction operands ----*- tblgen-*--===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9
10//===----------------------------------------------------------------------===//
11// Class definitions
12//===----------------------------------------------------------------------===//
13
14class ImmediateAsmOperand<string name>
15  : AsmOperandClass {
16  let Name = name;
17  let RenderMethod = "addImmOperands";
18}
19
20// Constructs both a DAG pattern and instruction operand for an immediate
21// of type VT.  PRED returns true if a node is acceptable and XFORM returns
22// the operand value associated with the node.  ASMOP is the name of the
23// associated asm operand, and also forms the basis of the asm print method.
24class Immediate<ValueType vt, code pred, SDNodeXForm xform, string asmop>
25  : PatLeaf<(vt imm), pred, xform>, Operand<vt> {
26  let PrintMethod = "print"##asmop##"Operand";
27  let DecoderMethod = "decode"##asmop##"Operand";
28  let ParserMatchClass = !cast<AsmOperandClass>(asmop);
29}
30
31// Constructs an asm operand for a PC-relative address.  SIZE says how
32// many bits there are.
33class PCRelAsmOperand<string size> : ImmediateAsmOperand<"PCRel"##size> {
34  let PredicateMethod = "isImm";
35  let ParserMethod = "parsePCRel"##size;
36}
37
38// Constructs an operand for a PC-relative address with address type VT.
39// ASMOP is the associated asm operand.
40class PCRelOperand<ValueType vt, AsmOperandClass asmop> : Operand<vt> {
41  let PrintMethod = "printPCRelOperand";
42  let ParserMatchClass = asmop;
43}
44
45// Constructs both a DAG pattern and instruction operand for a PC-relative
46// address with address size VT.  SELF is the name of the operand and
47// ASMOP is the associated asm operand.
48class PCRelAddress<ValueType vt, string self, AsmOperandClass asmop>
49  : ComplexPattern<vt, 1, "selectPCRelAddress",
50                   [z_pcrel_wrapper, z_pcrel_offset]>,
51    PCRelOperand<vt, asmop> {
52  let MIOperandInfo = (ops !cast<Operand>(self));
53}
54
55// Constructs an AsmOperandClass for addressing mode FORMAT, treating the
56// registers as having BITSIZE bits and displacements as having DISPSIZE bits.
57// LENGTH is "LenN" for addresses with an N-bit length field, otherwise it
58// is "".
59class AddressAsmOperand<string format, string bitsize, string dispsize,
60                        string length = "">
61  : AsmOperandClass {
62  let Name = format##bitsize##"Disp"##dispsize##length;
63  let ParserMethod = "parse"##format##bitsize;
64  let RenderMethod = "add"##format##"Operands";
65}
66
67// Constructs both a DAG pattern and instruction operand for an addressing mode.
68// FORMAT, BITSIZE, DISPSIZE and LENGTH are the parameters to an associated
69// AddressAsmOperand.  OPERANDS is a list of NUMOPS individual operands
70// (base register, displacement, etc.).  SELTYPE is the type of the memory
71// operand for selection purposes; sometimes we want different selection
72// choices for the same underlying addressing mode.  SUFFIX is similarly
73// a suffix appended to the displacement for selection purposes;
74// e.g. we want to reject small 20-bit displacements if a 12-bit form
75// also exists, but we want to accept them otherwise.
76class AddressingMode<string seltype, string bitsize, string dispsize,
77                     string suffix, string length, int numops, string format,
78                     dag operands>
79  : ComplexPattern<!cast<ValueType>("i"##bitsize), numops,
80                   "select"##seltype##dispsize##suffix##length,
81                   [add, sub, or, frameindex, z_adjdynalloc]>,
82    Operand<!cast<ValueType>("i"##bitsize)> {
83  let PrintMethod = "print"##format##"Operand";
84  let EncoderMethod = "get"##format##dispsize##length##"Encoding";
85  let DecoderMethod =
86    "decode"##format##bitsize##"Disp"##dispsize##length##"Operand";
87  let MIOperandInfo = operands;
88  let ParserMatchClass =
89    !cast<AddressAsmOperand>(format##bitsize##"Disp"##dispsize##length);
90}
91
92// An addressing mode with a base and displacement but no index.
93class BDMode<string type, string bitsize, string dispsize, string suffix>
94  : AddressingMode<type, bitsize, dispsize, suffix, "", 2, "BDAddr",
95                   (ops !cast<RegisterOperand>("ADDR"##bitsize),
96                        !cast<Immediate>("disp"##dispsize##"imm"##bitsize))>;
97
98// An addressing mode with a base, displacement and index.
99class BDXMode<string type, string bitsize, string dispsize, string suffix>
100  : AddressingMode<type, bitsize, dispsize, suffix, "", 3, "BDXAddr",
101                   (ops !cast<RegisterOperand>("ADDR"##bitsize),
102                        !cast<Immediate>("disp"##dispsize##"imm"##bitsize),
103                        !cast<RegisterOperand>("ADDR"##bitsize))>;
104
105// A BDMode paired with an immediate length operand of LENSIZE bits.
106class BDLMode<string type, string bitsize, string dispsize, string suffix,
107              string lensize>
108  : AddressingMode<type, bitsize, dispsize, suffix, "Len"##lensize, 3,
109                   "BDLAddr",
110                   (ops !cast<RegisterOperand>("ADDR"##bitsize),
111                        !cast<Immediate>("disp"##dispsize##"imm"##bitsize),
112                        !cast<Immediate>("imm"##bitsize))>;
113
114//===----------------------------------------------------------------------===//
115// Extracting immediate operands from nodes
116// These all create MVT::i64 nodes to ensure the value is not sign-extended
117// when converted from an SDNode to a MachineOperand later on.
118//===----------------------------------------------------------------------===//
119
120// Bits 0-15 (counting from the lsb).
121def LL16 : SDNodeXForm<imm, [{
122  uint64_t Value = N->getZExtValue() & 0x000000000000FFFFULL;
123  return CurDAG->getTargetConstant(Value, MVT::i64);
124}]>;
125
126// Bits 16-31 (counting from the lsb).
127def LH16 : SDNodeXForm<imm, [{
128  uint64_t Value = (N->getZExtValue() & 0x00000000FFFF0000ULL) >> 16;
129  return CurDAG->getTargetConstant(Value, MVT::i64);
130}]>;
131
132// Bits 32-47 (counting from the lsb).
133def HL16 : SDNodeXForm<imm, [{
134  uint64_t Value = (N->getZExtValue() & 0x0000FFFF00000000ULL) >> 32;
135  return CurDAG->getTargetConstant(Value, MVT::i64);
136}]>;
137
138// Bits 48-63 (counting from the lsb).
139def HH16 : SDNodeXForm<imm, [{
140  uint64_t Value = (N->getZExtValue() & 0xFFFF000000000000ULL) >> 48;
141  return CurDAG->getTargetConstant(Value, MVT::i64);
142}]>;
143
144// Low 32 bits.
145def LF32 : SDNodeXForm<imm, [{
146  uint64_t Value = N->getZExtValue() & 0x00000000FFFFFFFFULL;
147  return CurDAG->getTargetConstant(Value, MVT::i64);
148}]>;
149
150// High 32 bits.
151def HF32 : SDNodeXForm<imm, [{
152  uint64_t Value = N->getZExtValue() >> 32;
153  return CurDAG->getTargetConstant(Value, MVT::i64);
154}]>;
155
156// Truncate an immediate to a 8-bit signed quantity.
157def SIMM8 : SDNodeXForm<imm, [{
158  return CurDAG->getTargetConstant(int8_t(N->getZExtValue()), MVT::i64);
159}]>;
160
161// Truncate an immediate to a 8-bit unsigned quantity.
162def UIMM8 : SDNodeXForm<imm, [{
163  return CurDAG->getTargetConstant(uint8_t(N->getZExtValue()), MVT::i64);
164}]>;
165
166// Truncate an immediate to a 16-bit signed quantity.
167def SIMM16 : SDNodeXForm<imm, [{
168  return CurDAG->getTargetConstant(int16_t(N->getZExtValue()), MVT::i64);
169}]>;
170
171// Truncate an immediate to a 16-bit unsigned quantity.
172def UIMM16 : SDNodeXForm<imm, [{
173  return CurDAG->getTargetConstant(uint16_t(N->getZExtValue()), MVT::i64);
174}]>;
175
176// Truncate an immediate to a 32-bit signed quantity.
177def SIMM32 : SDNodeXForm<imm, [{
178  return CurDAG->getTargetConstant(int32_t(N->getZExtValue()), MVT::i64);
179}]>;
180
181// Truncate an immediate to a 32-bit unsigned quantity.
182def UIMM32 : SDNodeXForm<imm, [{
183  return CurDAG->getTargetConstant(uint32_t(N->getZExtValue()), MVT::i64);
184}]>;
185
186// Negate and then truncate an immediate to a 32-bit unsigned quantity.
187def NEGIMM32 : SDNodeXForm<imm, [{
188  return CurDAG->getTargetConstant(uint32_t(-N->getZExtValue()), MVT::i64);
189}]>;
190
191//===----------------------------------------------------------------------===//
192// Immediate asm operands.
193//===----------------------------------------------------------------------===//
194
195def U4Imm  : ImmediateAsmOperand<"U4Imm">;
196def U6Imm  : ImmediateAsmOperand<"U6Imm">;
197def S8Imm  : ImmediateAsmOperand<"S8Imm">;
198def U8Imm  : ImmediateAsmOperand<"U8Imm">;
199def S16Imm : ImmediateAsmOperand<"S16Imm">;
200def U16Imm : ImmediateAsmOperand<"U16Imm">;
201def S32Imm : ImmediateAsmOperand<"S32Imm">;
202def U32Imm : ImmediateAsmOperand<"U32Imm">;
203
204//===----------------------------------------------------------------------===//
205// 8-bit immediates
206//===----------------------------------------------------------------------===//
207
208def uimm8zx4 : Immediate<i8, [{
209  return isUInt<4>(N->getZExtValue());
210}], NOOP_SDNodeXForm, "U4Imm">;
211
212def uimm8zx6 : Immediate<i8, [{
213  return isUInt<6>(N->getZExtValue());
214}], NOOP_SDNodeXForm, "U6Imm">;
215
216def simm8    : Immediate<i8, [{}], SIMM8, "S8Imm">;
217def uimm8    : Immediate<i8, [{}], UIMM8, "U8Imm">;
218
219//===----------------------------------------------------------------------===//
220// i32 immediates
221//===----------------------------------------------------------------------===//
222
223// Immediates for the lower and upper 16 bits of an i32, with the other
224// bits of the i32 being zero.
225def imm32ll16 : Immediate<i32, [{
226  return SystemZ::isImmLL(N->getZExtValue());
227}], LL16, "U16Imm">;
228
229def imm32lh16 : Immediate<i32, [{
230  return SystemZ::isImmLH(N->getZExtValue());
231}], LH16, "U16Imm">;
232
233// Immediates for the lower and upper 16 bits of an i32, with the other
234// bits of the i32 being one.
235def imm32ll16c : Immediate<i32, [{
236  return SystemZ::isImmLL(uint32_t(~N->getZExtValue()));
237}], LL16, "U16Imm">;
238
239def imm32lh16c : Immediate<i32, [{
240  return SystemZ::isImmLH(uint32_t(~N->getZExtValue()));
241}], LH16, "U16Imm">;
242
243// Short immediates
244def imm32sx8 : Immediate<i32, [{
245  return isInt<8>(N->getSExtValue());
246}], SIMM8, "S8Imm">;
247
248def imm32zx8 : Immediate<i32, [{
249  return isUInt<8>(N->getZExtValue());
250}], UIMM8, "U8Imm">;
251
252def imm32zx8trunc : Immediate<i32, [{}], UIMM8, "U8Imm">;
253
254def imm32sx16 : Immediate<i32, [{
255  return isInt<16>(N->getSExtValue());
256}], SIMM16, "S16Imm">;
257
258def imm32zx16 : Immediate<i32, [{
259  return isUInt<16>(N->getZExtValue());
260}], UIMM16, "U16Imm">;
261
262def imm32sx16trunc : Immediate<i32, [{}], SIMM16, "S16Imm">;
263
264// Full 32-bit immediates.  we need both signed and unsigned versions
265// because the assembler is picky.  E.g. AFI requires signed operands
266// while NILF requires unsigned ones.
267def simm32 : Immediate<i32, [{}], SIMM32, "S32Imm">;
268def uimm32 : Immediate<i32, [{}], UIMM32, "U32Imm">;
269
270def imm32 : ImmLeaf<i32, [{}]>;
271
272//===----------------------------------------------------------------------===//
273// 64-bit immediates
274//===----------------------------------------------------------------------===//
275
276// Immediates for 16-bit chunks of an i64, with the other bits of the
277// i32 being zero.
278def imm64ll16 : Immediate<i64, [{
279  return SystemZ::isImmLL(N->getZExtValue());
280}], LL16, "U16Imm">;
281
282def imm64lh16 : Immediate<i64, [{
283  return SystemZ::isImmLH(N->getZExtValue());
284}], LH16, "U16Imm">;
285
286def imm64hl16 : Immediate<i64, [{
287  return SystemZ::isImmHL(N->getZExtValue());
288}], HL16, "U16Imm">;
289
290def imm64hh16 : Immediate<i64, [{
291  return SystemZ::isImmHH(N->getZExtValue());
292}], HH16, "U16Imm">;
293
294// Immediates for 16-bit chunks of an i64, with the other bits of the
295// i32 being one.
296def imm64ll16c : Immediate<i64, [{
297  return SystemZ::isImmLL(uint64_t(~N->getZExtValue()));
298}], LL16, "U16Imm">;
299
300def imm64lh16c : Immediate<i64, [{
301  return SystemZ::isImmLH(uint64_t(~N->getZExtValue()));
302}], LH16, "U16Imm">;
303
304def imm64hl16c : Immediate<i64, [{
305  return SystemZ::isImmHL(uint64_t(~N->getZExtValue()));
306}], HL16, "U16Imm">;
307
308def imm64hh16c : Immediate<i64, [{
309  return SystemZ::isImmHH(uint64_t(~N->getZExtValue()));
310}], HH16, "U16Imm">;
311
312// Immediates for the lower and upper 32 bits of an i64, with the other
313// bits of the i32 being zero.
314def imm64lf32 : Immediate<i64, [{
315  return SystemZ::isImmLF(N->getZExtValue());
316}], LF32, "U32Imm">;
317
318def imm64hf32 : Immediate<i64, [{
319  return SystemZ::isImmHF(N->getZExtValue());
320}], HF32, "U32Imm">;
321
322// Immediates for the lower and upper 32 bits of an i64, with the other
323// bits of the i32 being one.
324def imm64lf32c : Immediate<i64, [{
325  return SystemZ::isImmLF(uint64_t(~N->getZExtValue()));
326}], LF32, "U32Imm">;
327
328def imm64hf32c : Immediate<i64, [{
329  return SystemZ::isImmHF(uint64_t(~N->getZExtValue()));
330}], HF32, "U32Imm">;
331
332// Short immediates.
333def imm64sx8 : Immediate<i64, [{
334  return isInt<8>(N->getSExtValue());
335}], SIMM8, "S8Imm">;
336
337def imm64zx8 : Immediate<i64, [{
338  return isUInt<8>(N->getSExtValue());
339}], UIMM8, "U8Imm">;
340
341def imm64sx16 : Immediate<i64, [{
342  return isInt<16>(N->getSExtValue());
343}], SIMM16, "S16Imm">;
344
345def imm64zx16 : Immediate<i64, [{
346  return isUInt<16>(N->getZExtValue());
347}], UIMM16, "U16Imm">;
348
349def imm64sx32 : Immediate<i64, [{
350  return isInt<32>(N->getSExtValue());
351}], SIMM32, "S32Imm">;
352
353def imm64zx32 : Immediate<i64, [{
354  return isUInt<32>(N->getZExtValue());
355}], UIMM32, "U32Imm">;
356
357def imm64zx32n : Immediate<i64, [{
358  return isUInt<32>(-N->getSExtValue());
359}], NEGIMM32, "U32Imm">;
360
361def imm64 : ImmLeaf<i64, [{}]>, Operand<i64>;
362
363//===----------------------------------------------------------------------===//
364// Floating-point immediates
365//===----------------------------------------------------------------------===//
366
367// Floating-point zero.
368def fpimm0 : PatLeaf<(fpimm), [{ return N->isExactlyValue(+0.0); }]>;
369
370// Floating point negative zero.
371def fpimmneg0 : PatLeaf<(fpimm), [{ return N->isExactlyValue(-0.0); }]>;
372
373//===----------------------------------------------------------------------===//
374// Symbolic address operands
375//===----------------------------------------------------------------------===//
376
377// PC-relative asm operands.
378def PCRel16 : PCRelAsmOperand<"16">;
379def PCRel32 : PCRelAsmOperand<"32">;
380
381// PC-relative offsets of a basic block.  The offset is sign-extended
382// and multiplied by 2.
383def brtarget16 : PCRelOperand<OtherVT, PCRel16> {
384  let EncoderMethod = "getPC16DBLEncoding";
385  let DecoderMethod = "decodePC16DBLOperand";
386}
387def brtarget32 : PCRelOperand<OtherVT, PCRel32> {
388  let EncoderMethod = "getPC32DBLEncoding";
389  let DecoderMethod = "decodePC32DBLOperand";
390}
391
392// A PC-relative offset of a global value.  The offset is sign-extended
393// and multiplied by 2.
394def pcrel32 : PCRelAddress<i64, "pcrel32", PCRel32> {
395  let EncoderMethod = "getPC32DBLEncoding";
396  let DecoderMethod = "decodePC32DBLOperand";
397}
398
399//===----------------------------------------------------------------------===//
400// Addressing modes
401//===----------------------------------------------------------------------===//
402
403// 12-bit displacement operands.
404def disp12imm32 : Operand<i32>;
405def disp12imm64 : Operand<i64>;
406
407// 20-bit displacement operands.
408def disp20imm32 : Operand<i32>;
409def disp20imm64 : Operand<i64>;
410
411def BDAddr32Disp12      : AddressAsmOperand<"BDAddr",   "32", "12">;
412def BDAddr32Disp20      : AddressAsmOperand<"BDAddr",   "32", "20">;
413def BDAddr64Disp12      : AddressAsmOperand<"BDAddr",   "64", "12">;
414def BDAddr64Disp20      : AddressAsmOperand<"BDAddr",   "64", "20">;
415def BDXAddr64Disp12     : AddressAsmOperand<"BDXAddr",  "64", "12">;
416def BDXAddr64Disp20     : AddressAsmOperand<"BDXAddr",  "64", "20">;
417def BDLAddr64Disp12Len8 : AddressAsmOperand<"BDLAddr",  "64", "12", "Len8">;
418
419// DAG patterns and operands for addressing modes.  Each mode has
420// the form <type><range><group>[<len>] where:
421//
422// <type> is one of:
423//   shift    : base + displacement (32-bit)
424//   bdaddr   : base + displacement
425//   mviaddr  : like bdaddr, but reject cases with a natural index
426//   bdxaddr  : base + displacement + index
427//   laaddr   : like bdxaddr, but used for Load Address operations
428//   dynalloc : base + displacement + index + ADJDYNALLOC
429//   bdladdr  : base + displacement with a length field
430//
431// <range> is one of:
432//   12       : the displacement is an unsigned 12-bit value
433//   20       : the displacement is a signed 20-bit value
434//
435// <group> is one of:
436//   pair     : used when there is an equivalent instruction with the opposite
437//              range value (12 or 20)
438//   only     : used when there is no equivalent instruction with the opposite
439//              range value
440//
441// <len> is one of:
442//
443//   <empty>  : there is no length field
444//   len8     : the length field is 8 bits, with a range of [1, 0x100].
445def shift12only       : BDMode <"BDAddr",   "32", "12", "Only">;
446def shift20only       : BDMode <"BDAddr",   "32", "20", "Only">;
447def bdaddr12only      : BDMode <"BDAddr",   "64", "12", "Only">;
448def bdaddr12pair      : BDMode <"BDAddr",   "64", "12", "Pair">;
449def bdaddr20only      : BDMode <"BDAddr",   "64", "20", "Only">;
450def bdaddr20pair      : BDMode <"BDAddr",   "64", "20", "Pair">;
451def mviaddr12pair     : BDMode <"MVIAddr",  "64", "12", "Pair">;
452def mviaddr20pair     : BDMode <"MVIAddr",  "64", "20", "Pair">;
453def bdxaddr12only     : BDXMode<"BDXAddr",  "64", "12", "Only">;
454def bdxaddr12pair     : BDXMode<"BDXAddr",  "64", "12", "Pair">;
455def bdxaddr20only     : BDXMode<"BDXAddr",  "64", "20", "Only">;
456def bdxaddr20only128  : BDXMode<"BDXAddr",  "64", "20", "Only128">;
457def bdxaddr20pair     : BDXMode<"BDXAddr",  "64", "20", "Pair">;
458def dynalloc12only    : BDXMode<"DynAlloc", "64", "12", "Only">;
459def laaddr12pair      : BDXMode<"LAAddr",   "64", "12", "Pair">;
460def laaddr20pair      : BDXMode<"LAAddr",   "64", "20", "Pair">;
461def bdladdr12onlylen8 : BDLMode<"BDLAddr",  "64", "12", "Only", "8">;
462
463//===----------------------------------------------------------------------===//
464// Miscellaneous
465//===----------------------------------------------------------------------===//
466
467// Access registers.  At present we just use them for accessing the thread
468// pointer, so we don't expose them as register to LLVM.
469def AccessReg : AsmOperandClass {
470  let Name = "AccessReg";
471  let ParserMethod = "parseAccessReg";
472}
473def access_reg : Immediate<i8, [{ return N->getZExtValue() < 16; }],
474                           NOOP_SDNodeXForm, "AccessReg"> {
475  let ParserMatchClass = AccessReg;
476}
477
478// A 4-bit condition-code mask.
479def cond4 : PatLeaf<(i8 imm), [{ return (N->getZExtValue() < 16); }]>,
480            Operand<i8> {
481  let PrintMethod = "printCond4Operand";
482}
483