SparcInstr64Bit.td revision 263763
1//===-- SparcInstr64Bit.td - 64-bit instructions for Sparc Target ---------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file contains instruction definitions and patterns needed for 64-bit
11// code generation on SPARC v9.
12//
13// Some SPARC v9 instructions are defined in SparcInstrInfo.td because they can
14// also be used in 32-bit code running on a SPARC v9 CPU.
15//
16//===----------------------------------------------------------------------===//
17
18let Predicates = [Is64Bit] in {
19// The same integer registers are used for i32 and i64 values.
20// When registers hold i32 values, the high bits are don't care.
21// This give us free trunc and anyext.
22def : Pat<(i64 (anyext i32:$val)), (COPY_TO_REGCLASS $val, I64Regs)>;
23def : Pat<(i32 (trunc i64:$val)), (COPY_TO_REGCLASS $val, IntRegs)>;
24
25} // Predicates = [Is64Bit]
26
27
28//===----------------------------------------------------------------------===//
29// 64-bit Shift Instructions.
30//===----------------------------------------------------------------------===//
31//
32// The 32-bit shift instructions are still available. The left shift srl
33// instructions shift all 64 bits, but it only accepts a 5-bit shift amount.
34//
35// The srl instructions only shift the low 32 bits and clear the high 32 bits.
36// Finally, sra shifts the low 32 bits and sign-extends to 64 bits.
37
38let Predicates = [Is64Bit] in {
39
40def : Pat<(i64 (zext i32:$val)), (SRLri $val, 0)>;
41def : Pat<(i64 (sext i32:$val)), (SRAri $val, 0)>;
42
43def : Pat<(i64 (and i64:$val, 0xffffffff)), (SRLri $val, 0)>;
44def : Pat<(i64 (sext_inreg i64:$val, i32)), (SRAri $val, 0)>;
45
46defm SLLX : F3_S<"sllx", 0b100101, 1, shl, i64, I64Regs>;
47defm SRLX : F3_S<"srlx", 0b100110, 1, srl, i64, I64Regs>;
48defm SRAX : F3_S<"srax", 0b100111, 1, sra, i64, I64Regs>;
49
50} // Predicates = [Is64Bit]
51
52
53//===----------------------------------------------------------------------===//
54// 64-bit Immediates.
55//===----------------------------------------------------------------------===//
56//
57// All 32-bit immediates can be materialized with sethi+or, but 64-bit
58// immediates may require more code. There may be a point where it is
59// preferable to use a constant pool load instead, depending on the
60// microarchitecture.
61
62// Single-instruction patterns.
63
64// The ALU instructions want their simm13 operands as i32 immediates.
65def as_i32imm : SDNodeXForm<imm, [{
66  return CurDAG->getTargetConstant(N->getSExtValue(), MVT::i32);
67}]>;
68def : Pat<(i64 simm13:$val), (ORri (i64 G0), (as_i32imm $val))>;
69def : Pat<(i64 SETHIimm:$val), (SETHIi (HI22 $val))>;
70
71// Double-instruction patterns.
72
73// All unsigned i32 immediates can be handled by sethi+or.
74def uimm32 : PatLeaf<(imm), [{ return isUInt<32>(N->getZExtValue()); }]>;
75def : Pat<(i64 uimm32:$val), (ORri (SETHIi (HI22 $val)), (LO10 $val))>,
76      Requires<[Is64Bit]>;
77
78// All negative i33 immediates can be handled by sethi+xor.
79def nimm33 : PatLeaf<(imm), [{
80  int64_t Imm = N->getSExtValue();
81  return Imm < 0 && isInt<33>(Imm);
82}]>;
83// Bits 10-31 inverted. Same as assembler's %hix.
84def HIX22 : SDNodeXForm<imm, [{
85  uint64_t Val = (~N->getZExtValue() >> 10) & ((1u << 22) - 1);
86  return CurDAG->getTargetConstant(Val, MVT::i32);
87}]>;
88// Bits 0-9 with ones in bits 10-31. Same as assembler's %lox.
89def LOX10 : SDNodeXForm<imm, [{
90  return CurDAG->getTargetConstant(~(~N->getZExtValue() & 0x3ff), MVT::i32);
91}]>;
92def : Pat<(i64 nimm33:$val), (XORri (SETHIi (HIX22 $val)), (LOX10 $val))>,
93      Requires<[Is64Bit]>;
94
95// More possible patterns:
96//
97//   (sllx sethi, n)
98//   (sllx simm13, n)
99//
100// 3 instrs:
101//
102//   (xor (sllx sethi), simm13)
103//   (sllx (xor sethi, simm13))
104//
105// 4 instrs:
106//
107//   (or sethi, (sllx sethi))
108//   (xnor sethi, (sllx sethi))
109//
110// 5 instrs:
111//
112//   (or (sllx sethi), (or sethi, simm13))
113//   (xnor (sllx sethi), (or sethi, simm13))
114//   (or (sllx sethi), (sllx sethi))
115//   (xnor (sllx sethi), (sllx sethi))
116//
117// Worst case is 6 instrs:
118//
119//   (or (sllx (or sethi, simmm13)), (or sethi, simm13))
120
121// Bits 42-63, same as assembler's %hh.
122def HH22 : SDNodeXForm<imm, [{
123  uint64_t Val = (N->getZExtValue() >> 42) & ((1u << 22) - 1);
124  return CurDAG->getTargetConstant(Val, MVT::i32);
125}]>;
126// Bits 32-41, same as assembler's %hm.
127def HM10 : SDNodeXForm<imm, [{
128  uint64_t Val = (N->getZExtValue() >> 32) & ((1u << 10) - 1);
129  return CurDAG->getTargetConstant(Val, MVT::i32);
130}]>;
131def : Pat<(i64 imm:$val),
132          (ORrr (SLLXri (ORri (SETHIi (HH22 $val)), (HM10 $val)), (i32 32)),
133                (ORri (SETHIi (HI22 $val)), (LO10 $val)))>,
134      Requires<[Is64Bit]>;
135
136
137//===----------------------------------------------------------------------===//
138// 64-bit Integer Arithmetic and Logic.
139//===----------------------------------------------------------------------===//
140
141let Predicates = [Is64Bit] in {
142
143// Register-register instructions.
144let isCodeGenOnly = 1 in {
145defm ANDX    : F3_12<"and", 0b000001, and, I64Regs, i64, i64imm>;
146defm ORX     : F3_12<"or",  0b000010, or,  I64Regs, i64, i64imm>;
147defm XORX    : F3_12<"xor", 0b000011, xor, I64Regs, i64, i64imm>;
148
149def ANDXNrr  : F3_1<2, 0b000101,
150                 (outs I64Regs:$dst), (ins I64Regs:$b, I64Regs:$c),
151                 "andn $b, $c, $dst",
152                 [(set i64:$dst, (and i64:$b, (not i64:$c)))]>;
153def ORXNrr   : F3_1<2, 0b000110,
154                 (outs I64Regs:$dst), (ins I64Regs:$b, I64Regs:$c),
155                 "orn $b, $c, $dst",
156                 [(set i64:$dst, (or i64:$b, (not i64:$c)))]>;
157def XNORXrr  : F3_1<2, 0b000111,
158                   (outs I64Regs:$dst), (ins I64Regs:$b, I64Regs:$c),
159                   "xnor $b, $c, $dst",
160                   [(set i64:$dst, (not (xor i64:$b, i64:$c)))]>;
161
162defm ADDX    : F3_12<"add", 0b000000, add, I64Regs, i64, i64imm>;
163defm SUBX    : F3_12<"sub", 0b000100, sub, I64Regs, i64, i64imm>;
164
165def TLS_ADDXrr : F3_1<2, 0b000000, (outs I64Regs:$rd),
166                   (ins I64Regs:$rs1, I64Regs:$rs2, TLSSym:$sym),
167                   "add $rs1, $rs2, $rd, $sym",
168                   [(set i64:$rd,
169                       (tlsadd i64:$rs1, i64:$rs2, tglobaltlsaddr:$sym))]>;
170
171// "LEA" form of add
172def LEAX_ADDri : F3_2<2, 0b000000,
173                     (outs I64Regs:$dst), (ins MEMri:$addr),
174                     "add ${addr:arith}, $dst",
175                     [(set iPTR:$dst, ADDRri:$addr)]>;
176}
177
178def : Pat<(SPcmpicc i64:$a, i64:$b), (CMPrr $a, $b)>;
179def : Pat<(SPcmpicc i64:$a, (i64 simm13:$b)), (CMPri $a, (as_i32imm $b))>;
180def : Pat<(ctpop i64:$src), (POPCrr $src)>;
181
182} // Predicates = [Is64Bit]
183
184
185//===----------------------------------------------------------------------===//
186// 64-bit Integer Multiply and Divide.
187//===----------------------------------------------------------------------===//
188
189let Predicates = [Is64Bit] in {
190
191def MULXrr : F3_1<2, 0b001001,
192                  (outs I64Regs:$rd), (ins I64Regs:$rs1, I64Regs:$rs2),
193                  "mulx $rs1, $rs2, $rd",
194                  [(set i64:$rd, (mul i64:$rs1, i64:$rs2))]>;
195def MULXri : F3_2<2, 0b001001,
196                  (outs IntRegs:$rd), (ins IntRegs:$rs1, i64imm:$simm13),
197                  "mulx $rs1, $simm13, $rd",
198                  [(set i64:$rd, (mul i64:$rs1, (i64 simm13:$simm13)))]>;
199
200// Division can trap.
201let hasSideEffects = 1 in {
202def SDIVXrr : F3_1<2, 0b101101,
203                   (outs I64Regs:$rd), (ins I64Regs:$rs1, I64Regs:$rs2),
204                   "sdivx $rs1, $rs2, $rd",
205                   [(set i64:$rd, (sdiv i64:$rs1, i64:$rs2))]>;
206def SDIVXri : F3_2<2, 0b101101,
207                   (outs IntRegs:$rd), (ins IntRegs:$rs1, i64imm:$simm13),
208                   "sdivx $rs1, $simm13, $rd",
209                   [(set i64:$rd, (sdiv i64:$rs1, (i64 simm13:$simm13)))]>;
210
211def UDIVXrr : F3_1<2, 0b001101,
212                   (outs I64Regs:$rd), (ins I64Regs:$rs1, I64Regs:$rs2),
213                   "udivx $rs1, $rs2, $rd",
214                   [(set i64:$rd, (udiv i64:$rs1, i64:$rs2))]>;
215def UDIVXri : F3_2<2, 0b001101,
216                   (outs IntRegs:$rd), (ins IntRegs:$rs1, i64imm:$simm13),
217                   "udivx $rs1, $simm13, $rd",
218                   [(set i64:$rd, (udiv i64:$rs1, (i64 simm13:$simm13)))]>;
219} // hasSideEffects = 1
220
221} // Predicates = [Is64Bit]
222
223
224//===----------------------------------------------------------------------===//
225// 64-bit Loads and Stores.
226//===----------------------------------------------------------------------===//
227//
228// All the 32-bit loads and stores are available. The extending loads are sign
229// or zero-extending to 64 bits. The LDrr and LDri instructions load 32 bits
230// zero-extended to i64. Their mnemonic is lduw in SPARC v9 (Load Unsigned
231// Word).
232//
233// SPARC v9 adds 64-bit loads as well as a sign-extending ldsw i32 loads.
234
235let Predicates = [Is64Bit] in {
236
237// 64-bit loads.
238defm LDX   : Load<"ldx", 0b001011, load, I64Regs, i64>;
239
240let mayLoad = 1, isCodeGenOnly = 1, isAsmParserOnly = 1 in
241  def TLS_LDXrr : F3_1<3, 0b001011,
242                       (outs IntRegs:$dst), (ins MEMrr:$addr, TLSSym:$sym),
243                       "ldx [$addr], $dst, $sym",
244                       [(set i64:$dst,
245                           (tlsld ADDRrr:$addr, tglobaltlsaddr:$sym))]>;
246
247// Extending loads to i64.
248def : Pat<(i64 (zextloadi1 ADDRrr:$addr)), (LDUBrr ADDRrr:$addr)>;
249def : Pat<(i64 (zextloadi1 ADDRri:$addr)), (LDUBri ADDRri:$addr)>;
250def : Pat<(i64 (extloadi1 ADDRrr:$addr)), (LDUBrr ADDRrr:$addr)>;
251def : Pat<(i64 (extloadi1 ADDRri:$addr)), (LDUBri ADDRri:$addr)>;
252
253def : Pat<(i64 (zextloadi8 ADDRrr:$addr)), (LDUBrr ADDRrr:$addr)>;
254def : Pat<(i64 (zextloadi8 ADDRri:$addr)), (LDUBri ADDRri:$addr)>;
255def : Pat<(i64 (extloadi8 ADDRrr:$addr)),  (LDUBrr ADDRrr:$addr)>;
256def : Pat<(i64 (extloadi8 ADDRri:$addr)),  (LDUBri ADDRri:$addr)>;
257def : Pat<(i64 (sextloadi8 ADDRrr:$addr)), (LDSBrr ADDRrr:$addr)>;
258def : Pat<(i64 (sextloadi8 ADDRri:$addr)), (LDSBri ADDRri:$addr)>;
259
260def : Pat<(i64 (zextloadi16 ADDRrr:$addr)), (LDUHrr ADDRrr:$addr)>;
261def : Pat<(i64 (zextloadi16 ADDRri:$addr)), (LDUHri ADDRri:$addr)>;
262def : Pat<(i64 (extloadi16 ADDRrr:$addr)),  (LDUHrr ADDRrr:$addr)>;
263def : Pat<(i64 (extloadi16 ADDRri:$addr)),  (LDUHri ADDRri:$addr)>;
264def : Pat<(i64 (sextloadi16 ADDRrr:$addr)), (LDSHrr ADDRrr:$addr)>;
265def : Pat<(i64 (sextloadi16 ADDRri:$addr)), (LDSHri ADDRri:$addr)>;
266
267def : Pat<(i64 (zextloadi32 ADDRrr:$addr)), (LDrr ADDRrr:$addr)>;
268def : Pat<(i64 (zextloadi32 ADDRri:$addr)), (LDri ADDRri:$addr)>;
269def : Pat<(i64 (extloadi32 ADDRrr:$addr)),  (LDrr ADDRrr:$addr)>;
270def : Pat<(i64 (extloadi32 ADDRri:$addr)),  (LDri ADDRri:$addr)>;
271
272// Sign-extending load of i32 into i64 is a new SPARC v9 instruction.
273defm LDSW   : Load<"ldsw", 0b001000, sextloadi32, I64Regs, i64>;
274
275// 64-bit stores.
276defm STX    : Store<"stx", 0b001110, store,  I64Regs, i64>;
277
278// Truncating stores from i64 are identical to the i32 stores.
279def : Pat<(truncstorei8  i64:$src, ADDRrr:$addr), (STBrr ADDRrr:$addr, $src)>;
280def : Pat<(truncstorei8  i64:$src, ADDRri:$addr), (STBri ADDRri:$addr, $src)>;
281def : Pat<(truncstorei16 i64:$src, ADDRrr:$addr), (STHrr ADDRrr:$addr, $src)>;
282def : Pat<(truncstorei16 i64:$src, ADDRri:$addr), (STHri ADDRri:$addr, $src)>;
283def : Pat<(truncstorei32 i64:$src, ADDRrr:$addr), (STrr  ADDRrr:$addr, $src)>;
284def : Pat<(truncstorei32 i64:$src, ADDRri:$addr), (STri  ADDRri:$addr, $src)>;
285
286// store 0, addr -> store %g0, addr
287def : Pat<(store (i64 0), ADDRrr:$dst), (STXrr ADDRrr:$dst, (i64 G0))>;
288def : Pat<(store (i64 0), ADDRri:$dst), (STXri ADDRri:$dst, (i64 G0))>;
289
290} // Predicates = [Is64Bit]
291
292
293//===----------------------------------------------------------------------===//
294// 64-bit Conditionals.
295//===----------------------------------------------------------------------===//
296
297// Conditional branch class on %xcc:
298class XBranchSP<dag ins, string asmstr, list<dag> pattern>
299  : F2_3<0b001, 0b10, (outs), ins, asmstr, pattern> {
300  let isBranch = 1;
301  let isTerminator = 1;
302  let hasDelaySlot = 1;
303}
304
305//
306// Flag-setting instructions like subcc and addcc set both icc and xcc flags.
307// The icc flags correspond to the 32-bit result, and the xcc are for the
308// full 64-bit result.
309//
310// We reuse CMPICC SDNodes for compares, but use new BRXCC branch nodes for
311// 64-bit compares. See LowerBR_CC.
312
313let Predicates = [Is64Bit] in {
314
315let Uses = [ICC] in
316def BPXCC : XBranchSP<(ins brtarget:$imm19, CCOp:$cond),
317                     "b$cond %xcc, $imm19",
318                     [(SPbrxcc bb:$imm19, imm:$cond)]>;
319
320// Conditional moves on %xcc.
321let Uses = [ICC], Constraints = "$f = $rd" in {
322let cc = 0b110 in {
323def MOVXCCrr : F4_1<0b101100, (outs IntRegs:$rd),
324                      (ins IntRegs:$rs2, IntRegs:$f, CCOp:$cond),
325                      "mov$cond %xcc, $rs2, $rd",
326                      [(set i32:$rd,
327                       (SPselectxcc i32:$rs2, i32:$f, imm:$cond))]>;
328def MOVXCCri : F4_2<0b101100, (outs IntRegs:$rd),
329                      (ins i32imm:$simm11, IntRegs:$f, CCOp:$cond),
330                      "mov$cond %xcc, $simm11, $rd",
331                      [(set i32:$rd,
332                       (SPselectxcc simm11:$simm11, i32:$f, imm:$cond))]>;
333} // cc
334
335let opf_cc = 0b110 in {
336def FMOVS_XCC : F4_3<0b110101, 0b000001, (outs FPRegs:$rd),
337                      (ins FPRegs:$rs2, FPRegs:$f, CCOp:$cond),
338                      "fmovs$cond %xcc, $rs2, $rd",
339                      [(set f32:$rd,
340                       (SPselectxcc f32:$rs2, f32:$f, imm:$cond))]>;
341def FMOVD_XCC : F4_3<0b110101, 0b000010, (outs DFPRegs:$rd),
342                      (ins DFPRegs:$rs2, DFPRegs:$f, CCOp:$cond),
343                      "fmovd$cond %xcc, $rs2, $rd",
344                      [(set f64:$rd,
345                       (SPselectxcc f64:$rs2, f64:$f, imm:$cond))]>;
346def FMOVQ_XCC : F4_3<0b110101, 0b000011, (outs QFPRegs:$rd),
347                      (ins QFPRegs:$rs2, QFPRegs:$f, CCOp:$cond),
348                      "fmovq$cond %xcc, $rs2, $rd",
349                      [(set f128:$rd,
350                       (SPselectxcc f128:$rs2, f128:$f, imm:$cond))]>;
351} // opf_cc
352} // Uses, Constraints
353
354//===----------------------------------------------------------------------===//
355// 64-bit Floating Point Conversions.
356//===----------------------------------------------------------------------===//
357
358let Predicates = [Is64Bit] in {
359
360def FXTOS : F3_3u<2, 0b110100, 0b010000100,
361                 (outs FPRegs:$rd), (ins DFPRegs:$rs2),
362                 "fxtos $rs2, $rd",
363                 [(set FPRegs:$rd, (SPxtof DFPRegs:$rs2))]>;
364def FXTOD : F3_3u<2, 0b110100, 0b010001000,
365                 (outs DFPRegs:$rd), (ins DFPRegs:$rs2),
366                 "fxtod $rs2, $rd",
367                 [(set DFPRegs:$rd, (SPxtof DFPRegs:$rs2))]>;
368def FXTOQ : F3_3u<2, 0b110100, 0b010001100,
369                 (outs QFPRegs:$rd), (ins DFPRegs:$rs2),
370                 "fxtoq $rs2, $rd",
371                 [(set QFPRegs:$rd, (SPxtof DFPRegs:$rs2))]>,
372                 Requires<[HasHardQuad]>;
373
374def FSTOX : F3_3u<2, 0b110100, 0b010000001,
375                 (outs DFPRegs:$rd), (ins FPRegs:$rs2),
376                 "fstox $rs2, $rd",
377                 [(set DFPRegs:$rd, (SPftox FPRegs:$rs2))]>;
378def FDTOX : F3_3u<2, 0b110100, 0b010000010,
379                 (outs DFPRegs:$rd), (ins DFPRegs:$rs2),
380                 "fdtox $rs2, $rd",
381                 [(set DFPRegs:$rd, (SPftox DFPRegs:$rs2))]>;
382def FQTOX : F3_3u<2, 0b110100, 0b010000011,
383                 (outs DFPRegs:$rd), (ins QFPRegs:$rs2),
384                 "fqtox $rs2, $rd",
385                 [(set DFPRegs:$rd, (SPftox QFPRegs:$rs2))]>,
386                 Requires<[HasHardQuad]>;
387
388} // Predicates = [Is64Bit]
389
390def : Pat<(SPselectxcc i64:$t, i64:$f, imm:$cond),
391          (MOVXCCrr $t, $f, imm:$cond)>;
392def : Pat<(SPselectxcc (i64 simm11:$t), i64:$f, imm:$cond),
393          (MOVXCCri (as_i32imm $t), $f, imm:$cond)>;
394
395def : Pat<(SPselecticc i64:$t, i64:$f, imm:$cond),
396          (MOVICCrr $t, $f, imm:$cond)>;
397def : Pat<(SPselecticc (i64 simm11:$t), i64:$f, imm:$cond),
398          (MOVICCri (as_i32imm $t), $f, imm:$cond)>;
399
400def : Pat<(SPselectfcc i64:$t, i64:$f, imm:$cond),
401          (MOVFCCrr $t, $f, imm:$cond)>;
402def : Pat<(SPselectfcc (i64 simm11:$t), i64:$f, imm:$cond),
403          (MOVFCCri (as_i32imm $t), $f, imm:$cond)>;
404
405} // Predicates = [Is64Bit]
406
407
408// 64 bit SETHI
409let Predicates = [Is64Bit], isCodeGenOnly = 1 in {
410def SETHIXi : F2_1<0b100,
411                   (outs IntRegs:$rd), (ins i64imm:$imm22),
412                   "sethi $imm22, $rd",
413                   [(set i64:$rd, SETHIimm:$imm22)]>;
414}
415
416// ATOMICS.
417let Predicates = [Is64Bit], Constraints = "$swap = $rd" in {
418  def CASXrr: F3_1_asi<3, 0b111110, 0b10000000,
419                (outs I64Regs:$rd), (ins I64Regs:$rs1, I64Regs:$rs2,
420                                     I64Regs:$swap),
421                 "casx [$rs1], $rs2, $rd",
422                 [(set i64:$rd,
423                     (atomic_cmp_swap i64:$rs1, i64:$rs2, i64:$swap))]>;
424
425} // Predicates = [Is64Bit], Constraints = ...
426
427let Predicates = [Is64Bit] in {
428
429def : Pat<(atomic_fence imm, imm), (MEMBARi 0xf)>;
430
431// atomic_load_64 addr -> load addr
432def : Pat<(i64 (atomic_load ADDRrr:$src)), (LDXrr ADDRrr:$src)>;
433def : Pat<(i64 (atomic_load ADDRri:$src)), (LDXri ADDRri:$src)>;
434
435// atomic_store_64 val, addr -> store val, addr
436def : Pat<(atomic_store ADDRrr:$dst, i64:$val), (STXrr ADDRrr:$dst, $val)>;
437def : Pat<(atomic_store ADDRri:$dst, i64:$val), (STXri ADDRri:$dst, $val)>;
438
439} // Predicates = [Is64Bit]
440
441let usesCustomInserter = 1, hasCtrlDep = 1, mayLoad = 1, mayStore = 1,
442    Defs = [ICC] in
443multiclass AtomicRMW<SDPatternOperator op32, SDPatternOperator op64> {
444
445  def _32 : Pseudo<(outs IntRegs:$rd),
446                   (ins ptr_rc:$addr, IntRegs:$rs2), "",
447                   [(set i32:$rd, (op32 iPTR:$addr, i32:$rs2))]>;
448
449  let Predicates = [Is64Bit] in
450  def _64 : Pseudo<(outs I64Regs:$rd),
451                   (ins ptr_rc:$addr, I64Regs:$rs2), "",
452                   [(set i64:$rd, (op64 iPTR:$addr, i64:$rs2))]>;
453}
454
455defm ATOMIC_LOAD_ADD  : AtomicRMW<atomic_load_add_32,  atomic_load_add_64>;
456defm ATOMIC_LOAD_SUB  : AtomicRMW<atomic_load_sub_32,  atomic_load_sub_64>;
457defm ATOMIC_LOAD_AND  : AtomicRMW<atomic_load_and_32,  atomic_load_and_64>;
458defm ATOMIC_LOAD_OR   : AtomicRMW<atomic_load_or_32,   atomic_load_or_64>;
459defm ATOMIC_LOAD_XOR  : AtomicRMW<atomic_load_xor_32,  atomic_load_xor_64>;
460defm ATOMIC_LOAD_NAND : AtomicRMW<atomic_load_nand_32, atomic_load_nand_64>;
461defm ATOMIC_LOAD_MIN  : AtomicRMW<atomic_load_min_32,  atomic_load_min_64>;
462defm ATOMIC_LOAD_MAX  : AtomicRMW<atomic_load_max_32,  atomic_load_max_64>;
463defm ATOMIC_LOAD_UMIN : AtomicRMW<atomic_load_umin_32, atomic_load_umin_64>;
464defm ATOMIC_LOAD_UMAX : AtomicRMW<atomic_load_umax_32, atomic_load_umax_64>;
465
466// There is no 64-bit variant of SWAP, so use a pseudo.
467let usesCustomInserter = 1, hasCtrlDep = 1, mayLoad = 1, mayStore = 1,
468    Defs = [ICC], Predicates = [Is64Bit] in
469def ATOMIC_SWAP_64 : Pseudo<(outs I64Regs:$rd),
470                            (ins ptr_rc:$addr, I64Regs:$rs2), "",
471                            [(set i64:$rd,
472                                  (atomic_swap_64 iPTR:$addr, i64:$rs2))]>;
473
474// Global addresses, constant pool entries
475let Predicates = [Is64Bit] in {
476
477def : Pat<(SPhi tglobaladdr:$in), (SETHIi tglobaladdr:$in)>;
478def : Pat<(SPlo tglobaladdr:$in), (ORXri (i64 G0), tglobaladdr:$in)>;
479def : Pat<(SPhi tconstpool:$in), (SETHIi tconstpool:$in)>;
480def : Pat<(SPlo tconstpool:$in), (ORXri (i64 G0), tconstpool:$in)>;
481
482// GlobalTLS addresses
483def : Pat<(SPhi tglobaltlsaddr:$in), (SETHIi tglobaltlsaddr:$in)>;
484def : Pat<(SPlo tglobaltlsaddr:$in), (ORXri (i64 G0), tglobaltlsaddr:$in)>;
485def : Pat<(add (SPhi tglobaltlsaddr:$in1), (SPlo tglobaltlsaddr:$in2)),
486          (ADDXri (SETHIXi tglobaltlsaddr:$in1), (tglobaltlsaddr:$in2))>;
487def : Pat<(xor (SPhi tglobaltlsaddr:$in1), (SPlo tglobaltlsaddr:$in2)),
488          (XORXri  (SETHIXi tglobaltlsaddr:$in1), (tglobaltlsaddr:$in2))>;
489
490// Blockaddress
491def : Pat<(SPhi tblockaddress:$in), (SETHIi tblockaddress:$in)>;
492def : Pat<(SPlo tblockaddress:$in), (ORXri (i64 G0), tblockaddress:$in)>;
493
494// Add reg, lo.  This is used when taking the addr of a global/constpool entry.
495def : Pat<(add iPTR:$r, (SPlo tglobaladdr:$in)), (ADDXri $r, tglobaladdr:$in)>;
496def : Pat<(add iPTR:$r, (SPlo tconstpool:$in)),  (ADDXri $r, tconstpool:$in)>;
497def : Pat<(add iPTR:$r, (SPlo tblockaddress:$in)),
498                        (ADDXri $r, tblockaddress:$in)>;
499}
500