PPCISelLowering.cpp revision 263508
1238106Sdes//===-- PPCISelLowering.cpp - PPC DAG Lowering Implementation -------------===//
2238106Sdes//
3238106Sdes//                     The LLVM Compiler Infrastructure
4238106Sdes//
5238106Sdes// This file is distributed under the University of Illinois Open Source
6238106Sdes// License. See LICENSE.TXT for details.
7238106Sdes//
8238106Sdes//===----------------------------------------------------------------------===//
9238106Sdes//
10238106Sdes// This file implements the PPCISelLowering class.
11238106Sdes//
12238106Sdes//===----------------------------------------------------------------------===//
13238106Sdes
14238106Sdes#include "PPCISelLowering.h"
15238106Sdes#include "MCTargetDesc/PPCPredicates.h"
16238106Sdes#include "PPCMachineFunctionInfo.h"
17238106Sdes#include "PPCPerfectShuffle.h"
18238106Sdes#include "PPCTargetMachine.h"
19238106Sdes#include "PPCTargetObjectFile.h"
20238106Sdes#include "llvm/ADT/STLExtras.h"
21238106Sdes#include "llvm/CodeGen/CallingConvLower.h"
22238106Sdes#include "llvm/CodeGen/MachineFrameInfo.h"
23238106Sdes#include "llvm/CodeGen/MachineFunction.h"
24269257Sdes#include "llvm/CodeGen/MachineInstrBuilder.h"
25269257Sdes#include "llvm/CodeGen/MachineRegisterInfo.h"
26269257Sdes#include "llvm/CodeGen/SelectionDAG.h"
27269257Sdes#include "llvm/CodeGen/TargetLoweringObjectFileImpl.h"
28269257Sdes#include "llvm/IR/CallingConv.h"
29269257Sdes#include "llvm/IR/Constants.h"
30269257Sdes#include "llvm/IR/DerivedTypes.h"
31269257Sdes#include "llvm/IR/Function.h"
32269257Sdes#include "llvm/IR/Intrinsics.h"
33269257Sdes#include "llvm/Support/CommandLine.h"
34238106Sdes#include "llvm/Support/ErrorHandling.h"
35238106Sdes#include "llvm/Support/MathExtras.h"
36238106Sdes#include "llvm/Support/raw_ostream.h"
37238106Sdes#include "llvm/Target/TargetOptions.h"
38238106Sdesusing namespace llvm;
39238106Sdes
40238106Sdesstatic cl::opt<bool> DisablePPCPreinc("disable-ppc-preinc",
41238106Sdescl::desc("disable preincrement load/store generation on PPC"), cl::Hidden);
42238106Sdes
43238106Sdesstatic cl::opt<bool> DisableILPPref("disable-ppc-ilp-pref",
44238106Sdescl::desc("disable setting the node scheduling preference to ILP on PPC"), cl::Hidden);
45238106Sdes
46238106Sdesstatic cl::opt<bool> DisablePPCUnaligned("disable-ppc-unaligned",
47238106Sdescl::desc("disable unaligned load/store generation on PPC"), cl::Hidden);
48238106Sdes
49238106Sdesstatic TargetLoweringObjectFile *CreateTLOF(const PPCTargetMachine &TM) {
50238106Sdes  if (TM.getSubtargetImpl()->isDarwin())
51238106Sdes    return new TargetLoweringObjectFileMachO();
52238106Sdes
53291767Sdes  if (TM.getSubtargetImpl()->isSVR4ABI())
54291767Sdes    return new PPC64LinuxTargetObjectFile();
55238106Sdes
56238106Sdes  return new TargetLoweringObjectFileELF();
57269257Sdes}
58238106Sdes
59269257SdesPPCTargetLowering::PPCTargetLowering(PPCTargetMachine &TM)
60291767Sdes  : TargetLowering(TM, CreateTLOF(TM)), PPCSubTarget(*TM.getSubtargetImpl()) {
61291767Sdes  const PPCSubtarget *Subtarget = &TM.getSubtarget<PPCSubtarget>();
62238106Sdes
63238106Sdes  setPow2DivIsCheap();
64238106Sdes
65269257Sdes  // Use _setjmp/_longjmp instead of setjmp/longjmp.
66238106Sdes  setUseUnderscoreSetJmp(true);
67238106Sdes  setUseUnderscoreLongJmp(true);
68238106Sdes
69238106Sdes  // On PPC32/64, arguments smaller than 4/8 bytes are extended, so all
70238106Sdes  // arguments are at least 4/8 bytes aligned.
71238106Sdes  bool isPPC64 = Subtarget->isPPC64();
72238106Sdes  setMinStackArgumentAlignment(isPPC64 ? 8:4);
73238106Sdes
74238106Sdes  // Set up the register classes.
75238106Sdes  addRegisterClass(MVT::i32, &PPC::GPRCRegClass);
76238106Sdes  addRegisterClass(MVT::f32, &PPC::F4RCRegClass);
77238106Sdes  addRegisterClass(MVT::f64, &PPC::F8RCRegClass);
78238106Sdes
79238106Sdes  // PowerPC has an i16 but no i8 (or i1) SEXTLOAD
80238106Sdes  setLoadExtAction(ISD::SEXTLOAD, MVT::i1, Promote);
81238106Sdes  setLoadExtAction(ISD::SEXTLOAD, MVT::i8, Expand);
82238106Sdes
83285206Sdes  setTruncStoreAction(MVT::f64, MVT::f32, Expand);
84238106Sdes
85269257Sdes  // PowerPC has pre-inc load and store's.
86238106Sdes  setIndexedLoadAction(ISD::PRE_INC, MVT::i1, Legal);
87238106Sdes  setIndexedLoadAction(ISD::PRE_INC, MVT::i8, Legal);
88238106Sdes  setIndexedLoadAction(ISD::PRE_INC, MVT::i16, Legal);
89238106Sdes  setIndexedLoadAction(ISD::PRE_INC, MVT::i32, Legal);
90238106Sdes  setIndexedLoadAction(ISD::PRE_INC, MVT::i64, Legal);
91238106Sdes  setIndexedStoreAction(ISD::PRE_INC, MVT::i1, Legal);
92291767Sdes  setIndexedStoreAction(ISD::PRE_INC, MVT::i8, Legal);
93238106Sdes  setIndexedStoreAction(ISD::PRE_INC, MVT::i16, Legal);
94238106Sdes  setIndexedStoreAction(ISD::PRE_INC, MVT::i32, Legal);
95238106Sdes  setIndexedStoreAction(ISD::PRE_INC, MVT::i64, Legal);
96238106Sdes
97238106Sdes  // This is used in the ppcf128->int sequence.  Note it has different semantics
98238106Sdes  // from FP_ROUND:  that rounds to nearest, this rounds to zero.
99238106Sdes  setOperationAction(ISD::FP_ROUND_INREG, MVT::ppcf128, Custom);
100238106Sdes
101238106Sdes  // We do not currently implement these libm ops for PowerPC.
102238106Sdes  setOperationAction(ISD::FFLOOR, MVT::ppcf128, Expand);
103238106Sdes  setOperationAction(ISD::FCEIL,  MVT::ppcf128, Expand);
104238106Sdes  setOperationAction(ISD::FTRUNC, MVT::ppcf128, Expand);
105238106Sdes  setOperationAction(ISD::FRINT,  MVT::ppcf128, Expand);
106238106Sdes  setOperationAction(ISD::FNEARBYINT, MVT::ppcf128, Expand);
107238106Sdes  setOperationAction(ISD::FREM, MVT::ppcf128, Expand);
108238106Sdes
109238106Sdes  // PowerPC has no SREM/UREM instructions
110238106Sdes  setOperationAction(ISD::SREM, MVT::i32, Expand);
111238106Sdes  setOperationAction(ISD::UREM, MVT::i32, Expand);
112238106Sdes  setOperationAction(ISD::SREM, MVT::i64, Expand);
113238106Sdes  setOperationAction(ISD::UREM, MVT::i64, Expand);
114238106Sdes
115238106Sdes  // Don't use SMUL_LOHI/UMUL_LOHI or SDIVREM/UDIVREM to lower SREM/UREM.
116238106Sdes  setOperationAction(ISD::UMUL_LOHI, MVT::i32, Expand);
117238106Sdes  setOperationAction(ISD::SMUL_LOHI, MVT::i32, Expand);
118238106Sdes  setOperationAction(ISD::UMUL_LOHI, MVT::i64, Expand);
119238106Sdes  setOperationAction(ISD::SMUL_LOHI, MVT::i64, Expand);
120238106Sdes  setOperationAction(ISD::UDIVREM, MVT::i32, Expand);
121238106Sdes  setOperationAction(ISD::SDIVREM, MVT::i32, Expand);
122238106Sdes  setOperationAction(ISD::UDIVREM, MVT::i64, Expand);
123238106Sdes  setOperationAction(ISD::SDIVREM, MVT::i64, Expand);
124238106Sdes
125238106Sdes  // We don't support sin/cos/sqrt/fmod/pow
126238106Sdes  setOperationAction(ISD::FSIN , MVT::f64, Expand);
127238106Sdes  setOperationAction(ISD::FCOS , MVT::f64, Expand);
128238106Sdes  setOperationAction(ISD::FSINCOS, MVT::f64, Expand);
129238106Sdes  setOperationAction(ISD::FREM , MVT::f64, Expand);
130238106Sdes  setOperationAction(ISD::FPOW , MVT::f64, Expand);
131238106Sdes  setOperationAction(ISD::FMA  , MVT::f64, Legal);
132238106Sdes  setOperationAction(ISD::FSIN , MVT::f32, Expand);
133238106Sdes  setOperationAction(ISD::FCOS , MVT::f32, Expand);
134238106Sdes  setOperationAction(ISD::FSINCOS, MVT::f32, Expand);
135238106Sdes  setOperationAction(ISD::FREM , MVT::f32, Expand);
136238106Sdes  setOperationAction(ISD::FPOW , MVT::f32, Expand);
137238106Sdes  setOperationAction(ISD::FMA  , MVT::f32, Legal);
138238106Sdes
139238106Sdes  setOperationAction(ISD::FLT_ROUNDS_, MVT::i32, Custom);
140238106Sdes
141238106Sdes  // If we're enabling GP optimizations, use hardware square root
142238106Sdes  if (!Subtarget->hasFSQRT() &&
143238106Sdes      !(TM.Options.UnsafeFPMath &&
144238106Sdes        Subtarget->hasFRSQRTE() && Subtarget->hasFRE()))
145238106Sdes    setOperationAction(ISD::FSQRT, MVT::f64, Expand);
146238106Sdes
147238106Sdes  if (!Subtarget->hasFSQRT() &&
148238106Sdes      !(TM.Options.UnsafeFPMath &&
149238106Sdes        Subtarget->hasFRSQRTES() && Subtarget->hasFRES()))
150238106Sdes    setOperationAction(ISD::FSQRT, MVT::f32, Expand);
151238106Sdes
152238106Sdes  if (Subtarget->hasFCPSGN()) {
153238106Sdes    setOperationAction(ISD::FCOPYSIGN, MVT::f64, Legal);
154238106Sdes    setOperationAction(ISD::FCOPYSIGN, MVT::f32, Legal);
155238106Sdes  } else {
156238106Sdes    setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
157238106Sdes    setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand);
158291767Sdes  }
159291767Sdes
160291767Sdes  if (Subtarget->hasFPRND()) {
161291767Sdes    setOperationAction(ISD::FFLOOR, MVT::f64, Legal);
162291767Sdes    setOperationAction(ISD::FCEIL,  MVT::f64, Legal);
163291767Sdes    setOperationAction(ISD::FTRUNC, MVT::f64, Legal);
164291767Sdes    setOperationAction(ISD::FROUND, MVT::f64, Legal);
165291767Sdes
166291767Sdes    setOperationAction(ISD::FFLOOR, MVT::f32, Legal);
167291767Sdes    setOperationAction(ISD::FCEIL,  MVT::f32, Legal);
168291767Sdes    setOperationAction(ISD::FTRUNC, MVT::f32, Legal);
169291767Sdes    setOperationAction(ISD::FROUND, MVT::f32, Legal);
170238106Sdes  }
171238106Sdes
172269257Sdes  // PowerPC does not have BSWAP, CTPOP or CTTZ
173291767Sdes  setOperationAction(ISD::BSWAP, MVT::i32  , Expand);
174291767Sdes  setOperationAction(ISD::CTTZ , MVT::i32  , Expand);
175238106Sdes  setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i32, Expand);
176238106Sdes  setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i32, Expand);
177269257Sdes  setOperationAction(ISD::BSWAP, MVT::i64  , Expand);
178238106Sdes  setOperationAction(ISD::CTTZ , MVT::i64  , Expand);
179269257Sdes  setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i64, Expand);
180238106Sdes  setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i64, Expand);
181238106Sdes
182238106Sdes  if (Subtarget->hasPOPCNTD()) {
183291767Sdes    setOperationAction(ISD::CTPOP, MVT::i32  , Legal);
184291767Sdes    setOperationAction(ISD::CTPOP, MVT::i64  , Legal);
185291767Sdes  } else {
186291767Sdes    setOperationAction(ISD::CTPOP, MVT::i32  , Expand);
187291767Sdes    setOperationAction(ISD::CTPOP, MVT::i64  , Expand);
188291767Sdes  }
189291767Sdes
190291767Sdes  // PowerPC does not have ROTR
191238106Sdes  setOperationAction(ISD::ROTR, MVT::i32   , Expand);
192238106Sdes  setOperationAction(ISD::ROTR, MVT::i64   , Expand);
193238106Sdes
194238106Sdes  // PowerPC does not have Select
195238106Sdes  setOperationAction(ISD::SELECT, MVT::i32, Expand);
196238106Sdes  setOperationAction(ISD::SELECT, MVT::i64, Expand);
197238106Sdes  setOperationAction(ISD::SELECT, MVT::f32, Expand);
198238106Sdes  setOperationAction(ISD::SELECT, MVT::f64, Expand);
199238106Sdes
200238106Sdes  // PowerPC wants to turn select_cc of FP into fsel when possible.
201238106Sdes  setOperationAction(ISD::SELECT_CC, MVT::f32, Custom);
202269257Sdes  setOperationAction(ISD::SELECT_CC, MVT::f64, Custom);
203269257Sdes
204238106Sdes  // PowerPC wants to optimize integer setcc a bit
205238106Sdes  setOperationAction(ISD::SETCC, MVT::i32, Custom);
206238106Sdes
207238106Sdes  // PowerPC does not have BRCOND which requires SetCC
208238106Sdes  setOperationAction(ISD::BRCOND, MVT::Other, Expand);
209238106Sdes
210269257Sdes  setOperationAction(ISD::BR_JT,  MVT::Other, Expand);
211269257Sdes
212238106Sdes  // PowerPC turns FP_TO_SINT into FCTIWZ and some load/stores.
213269257Sdes  setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom);
214238106Sdes
215238106Sdes  // PowerPC does not have [U|S]INT_TO_FP
216238106Sdes  setOperationAction(ISD::SINT_TO_FP, MVT::i32, Expand);
217238106Sdes  setOperationAction(ISD::UINT_TO_FP, MVT::i32, Expand);
218238106Sdes
219238106Sdes  setOperationAction(ISD::BITCAST, MVT::f32, Expand);
220238106Sdes  setOperationAction(ISD::BITCAST, MVT::i32, Expand);
221238106Sdes  setOperationAction(ISD::BITCAST, MVT::i64, Expand);
222238106Sdes  setOperationAction(ISD::BITCAST, MVT::f64, Expand);
223269257Sdes
224238106Sdes  // We cannot sextinreg(i1).  Expand to shifts.
225269257Sdes  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
226238106Sdes
227269257Sdes  // NOTE: EH_SJLJ_SETJMP/_LONGJMP supported here is NOT intended to support
228238106Sdes  // SjLj exception handling but a light-weight setjmp/longjmp replacement to
229238106Sdes  // support continuation, user-level threading, and etc.. As a result, no
230238106Sdes  // other SjLj exception interfaces are implemented and please don't build
231238106Sdes  // your own exception handling based on them.
232269257Sdes  // LLVM/Clang supports zero-cost DWARF exception handling.
233238106Sdes  setOperationAction(ISD::EH_SJLJ_SETJMP, MVT::i32, Custom);
234238106Sdes  setOperationAction(ISD::EH_SJLJ_LONGJMP, MVT::Other, Custom);
235238106Sdes
236238106Sdes  // We want to legalize GlobalAddress and ConstantPool nodes into the
237238106Sdes  // appropriate instructions to materialize the address.
238238106Sdes  setOperationAction(ISD::GlobalAddress, MVT::i32, Custom);
239269257Sdes  setOperationAction(ISD::GlobalTLSAddress, MVT::i32, Custom);
240238106Sdes  setOperationAction(ISD::BlockAddress,  MVT::i32, Custom);
241269257Sdes  setOperationAction(ISD::ConstantPool,  MVT::i32, Custom);
242238106Sdes  setOperationAction(ISD::JumpTable,     MVT::i32, Custom);
243238106Sdes  setOperationAction(ISD::GlobalAddress, MVT::i64, Custom);
244238106Sdes  setOperationAction(ISD::GlobalTLSAddress, MVT::i64, Custom);
245238106Sdes  setOperationAction(ISD::BlockAddress,  MVT::i64, Custom);
246238106Sdes  setOperationAction(ISD::ConstantPool,  MVT::i64, Custom);
247238106Sdes  setOperationAction(ISD::JumpTable,     MVT::i64, Custom);
248238106Sdes
249238106Sdes  // TRAP is legal.
250269257Sdes  setOperationAction(ISD::TRAP, MVT::Other, Legal);
251238106Sdes
252238106Sdes  // TRAMPOLINE is custom lowered.
253238106Sdes  setOperationAction(ISD::INIT_TRAMPOLINE, MVT::Other, Custom);
254238106Sdes  setOperationAction(ISD::ADJUST_TRAMPOLINE, MVT::Other, Custom);
255238106Sdes
256238106Sdes  // VASTART needs to be custom lowered to use the VarArgsFrameIndex
257269257Sdes  setOperationAction(ISD::VASTART           , MVT::Other, Custom);
258238106Sdes
259238106Sdes  if (Subtarget->isSVR4ABI()) {
260238106Sdes    if (isPPC64) {
261238106Sdes      // VAARG always uses double-word chunks, so promote anything smaller.
262238106Sdes      setOperationAction(ISD::VAARG, MVT::i1, Promote);
263238106Sdes      AddPromotedToType (ISD::VAARG, MVT::i1, MVT::i64);
264238106Sdes      setOperationAction(ISD::VAARG, MVT::i8, Promote);
265238106Sdes      AddPromotedToType (ISD::VAARG, MVT::i8, MVT::i64);
266238106Sdes      setOperationAction(ISD::VAARG, MVT::i16, Promote);
267238106Sdes      AddPromotedToType (ISD::VAARG, MVT::i16, MVT::i64);
268238106Sdes      setOperationAction(ISD::VAARG, MVT::i32, Promote);
269238106Sdes      AddPromotedToType (ISD::VAARG, MVT::i32, MVT::i64);
270238106Sdes      setOperationAction(ISD::VAARG, MVT::Other, Expand);
271238106Sdes    } else {
272238106Sdes      // VAARG is custom lowered with the 32-bit SVR4 ABI.
273269257Sdes      setOperationAction(ISD::VAARG, MVT::Other, Custom);
274238106Sdes      setOperationAction(ISD::VAARG, MVT::i64, Custom);
275238106Sdes    }
276238106Sdes  } else
277238106Sdes    setOperationAction(ISD::VAARG, MVT::Other, Expand);
278238106Sdes
279238106Sdes  if (Subtarget->isSVR4ABI() && !isPPC64)
280291767Sdes    // VACOPY is custom lowered with the 32-bit SVR4 ABI.
281238106Sdes    setOperationAction(ISD::VACOPY            , MVT::Other, Custom);
282238106Sdes  else
283238106Sdes    setOperationAction(ISD::VACOPY            , MVT::Other, Expand);
284238106Sdes
285238106Sdes  // Use the default implementation.
286238106Sdes  setOperationAction(ISD::VAEND             , MVT::Other, Expand);
287238106Sdes  setOperationAction(ISD::STACKSAVE         , MVT::Other, Expand);
288238106Sdes  setOperationAction(ISD::STACKRESTORE      , MVT::Other, Custom);
289238106Sdes  setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32  , Custom);
290238106Sdes  setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64  , Custom);
291291767Sdes
292238106Sdes  // We want to custom lower some of our intrinsics.
293238106Sdes  setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
294238106Sdes
295238106Sdes  // To handle counter-based loop conditions.
296238106Sdes  setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i1, Custom);
297238106Sdes
298238106Sdes  // Comparisons that require checking two conditions.
299238106Sdes  setCondCodeAction(ISD::SETULT, MVT::f32, Expand);
300269257Sdes  setCondCodeAction(ISD::SETULT, MVT::f64, Expand);
301238106Sdes  setCondCodeAction(ISD::SETUGT, MVT::f32, Expand);
302238106Sdes  setCondCodeAction(ISD::SETUGT, MVT::f64, Expand);
303238106Sdes  setCondCodeAction(ISD::SETUEQ, MVT::f32, Expand);
304291767Sdes  setCondCodeAction(ISD::SETUEQ, MVT::f64, Expand);
305291767Sdes  setCondCodeAction(ISD::SETOGE, MVT::f32, Expand);
306291767Sdes  setCondCodeAction(ISD::SETOGE, MVT::f64, Expand);
307291767Sdes  setCondCodeAction(ISD::SETOLE, MVT::f32, Expand);
308291767Sdes  setCondCodeAction(ISD::SETOLE, MVT::f64, Expand);
309238106Sdes  setCondCodeAction(ISD::SETONE, MVT::f32, Expand);
310269257Sdes  setCondCodeAction(ISD::SETONE, MVT::f64, Expand);
311238106Sdes
312238106Sdes  if (Subtarget->has64BitSupport()) {
313238106Sdes    // They also have instructions for converting between i64 and fp.
314238106Sdes    setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom);
315238106Sdes    setOperationAction(ISD::FP_TO_UINT, MVT::i64, Expand);
316238106Sdes    setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom);
317238106Sdes    setOperationAction(ISD::UINT_TO_FP, MVT::i64, Expand);
318238106Sdes    // This is just the low 32 bits of a (signed) fp->i64 conversion.
319238106Sdes    // We cannot do this with Promote because i64 is not a legal type.
320238106Sdes    setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom);
321238106Sdes
322238106Sdes    if (PPCSubTarget.hasLFIWAX() || Subtarget->isPPC64())
323238106Sdes      setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom);
324238106Sdes  } else {
325238106Sdes    // PowerPC does not have FP_TO_UINT on 32-bit implementations.
326238106Sdes    setOperationAction(ISD::FP_TO_UINT, MVT::i32, Expand);
327238106Sdes  }
328238106Sdes
329238106Sdes  // With the instructions enabled under FPCVT, we can do everything.
330238106Sdes  if (PPCSubTarget.hasFPCVT()) {
331238106Sdes    if (Subtarget->has64BitSupport()) {
332238106Sdes      setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom);
333238106Sdes      setOperationAction(ISD::FP_TO_UINT, MVT::i64, Custom);
334238106Sdes      setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom);
335238106Sdes      setOperationAction(ISD::UINT_TO_FP, MVT::i64, Custom);
336238106Sdes    }
337238106Sdes
338238106Sdes    setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom);
339238106Sdes    setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom);
340238106Sdes    setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom);
341238106Sdes    setOperationAction(ISD::UINT_TO_FP, MVT::i32, Custom);
342238106Sdes  }
343238106Sdes
344238106Sdes  if (Subtarget->use64BitRegs()) {
345238106Sdes    // 64-bit PowerPC implementations can support i64 types directly
346238106Sdes    addRegisterClass(MVT::i64, &PPC::G8RCRegClass);
347238106Sdes    // BUILD_PAIR can't be handled natively, and should be expanded to shl/or
348238106Sdes    setOperationAction(ISD::BUILD_PAIR, MVT::i64, Expand);
349238106Sdes    // 64-bit PowerPC wants to expand i128 shifts itself.
350238106Sdes    setOperationAction(ISD::SHL_PARTS, MVT::i64, Custom);
351238106Sdes    setOperationAction(ISD::SRA_PARTS, MVT::i64, Custom);
352238106Sdes    setOperationAction(ISD::SRL_PARTS, MVT::i64, Custom);
353238106Sdes  } else {
354238106Sdes    // 32-bit PowerPC wants to expand i64 shifts itself.
355238106Sdes    setOperationAction(ISD::SHL_PARTS, MVT::i32, Custom);
356238106Sdes    setOperationAction(ISD::SRA_PARTS, MVT::i32, Custom);
357238106Sdes    setOperationAction(ISD::SRL_PARTS, MVT::i32, Custom);
358238106Sdes  }
359238106Sdes
360238106Sdes  if (Subtarget->hasAltivec()) {
361238106Sdes    // First set operation action for all vector types to expand. Then we
362238106Sdes    // will selectively turn on ones that can be effectively codegen'd.
363238106Sdes    for (unsigned i = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
364269257Sdes         i <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++i) {
365238106Sdes      MVT::SimpleValueType VT = (MVT::SimpleValueType)i;
366238106Sdes
367238106Sdes      // add/sub are legal for all supported vector VT's.
368238106Sdes      setOperationAction(ISD::ADD , VT, Legal);
369238106Sdes      setOperationAction(ISD::SUB , VT, Legal);
370238106Sdes
371238106Sdes      // We promote all shuffles to v16i8.
372238106Sdes      setOperationAction(ISD::VECTOR_SHUFFLE, VT, Promote);
373238106Sdes      AddPromotedToType (ISD::VECTOR_SHUFFLE, VT, MVT::v16i8);
374238106Sdes
375238106Sdes      // We promote all non-typed operations to v4i32.
376238106Sdes      setOperationAction(ISD::AND   , VT, Promote);
377238106Sdes      AddPromotedToType (ISD::AND   , VT, MVT::v4i32);
378238106Sdes      setOperationAction(ISD::OR    , VT, Promote);
379238106Sdes      AddPromotedToType (ISD::OR    , VT, MVT::v4i32);
380238106Sdes      setOperationAction(ISD::XOR   , VT, Promote);
381238106Sdes      AddPromotedToType (ISD::XOR   , VT, MVT::v4i32);
382238106Sdes      setOperationAction(ISD::LOAD  , VT, Promote);
383238106Sdes      AddPromotedToType (ISD::LOAD  , VT, MVT::v4i32);
384238106Sdes      setOperationAction(ISD::SELECT, VT, Promote);
385238106Sdes      AddPromotedToType (ISD::SELECT, VT, MVT::v4i32);
386238106Sdes      setOperationAction(ISD::STORE, VT, Promote);
387238106Sdes      AddPromotedToType (ISD::STORE, VT, MVT::v4i32);
388238106Sdes
389238106Sdes      // No other operations are legal.
390238106Sdes      setOperationAction(ISD::MUL , VT, Expand);
391238106Sdes      setOperationAction(ISD::SDIV, VT, Expand);
392238106Sdes      setOperationAction(ISD::SREM, VT, Expand);
393238106Sdes      setOperationAction(ISD::UDIV, VT, Expand);
394238106Sdes      setOperationAction(ISD::UREM, VT, Expand);
395238106Sdes      setOperationAction(ISD::FDIV, VT, Expand);
396238106Sdes      setOperationAction(ISD::FREM, VT, Expand);
397238106Sdes      setOperationAction(ISD::FNEG, VT, Expand);
398238106Sdes      setOperationAction(ISD::FSQRT, VT, Expand);
399238106Sdes      setOperationAction(ISD::FLOG, VT, Expand);
400238106Sdes      setOperationAction(ISD::FLOG10, VT, Expand);
401238106Sdes      setOperationAction(ISD::FLOG2, VT, Expand);
402269257Sdes      setOperationAction(ISD::FEXP, VT, Expand);
403238106Sdes      setOperationAction(ISD::FEXP2, VT, Expand);
404238106Sdes      setOperationAction(ISD::FSIN, VT, Expand);
405238106Sdes      setOperationAction(ISD::FCOS, VT, Expand);
406238106Sdes      setOperationAction(ISD::FABS, VT, Expand);
407238106Sdes      setOperationAction(ISD::FPOWI, VT, Expand);
408238106Sdes      setOperationAction(ISD::FFLOOR, VT, Expand);
409238106Sdes      setOperationAction(ISD::FCEIL,  VT, Expand);
410238106Sdes      setOperationAction(ISD::FTRUNC, VT, Expand);
411238106Sdes      setOperationAction(ISD::FRINT,  VT, Expand);
412238106Sdes      setOperationAction(ISD::FNEARBYINT, VT, Expand);
413238106Sdes      setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Expand);
414238106Sdes      setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Expand);
415238106Sdes      setOperationAction(ISD::BUILD_VECTOR, VT, Expand);
416238106Sdes      setOperationAction(ISD::UMUL_LOHI, VT, Expand);
417238106Sdes      setOperationAction(ISD::SMUL_LOHI, VT, Expand);
418238106Sdes      setOperationAction(ISD::UDIVREM, VT, Expand);
419238106Sdes      setOperationAction(ISD::SDIVREM, VT, Expand);
420238106Sdes      setOperationAction(ISD::SCALAR_TO_VECTOR, VT, Expand);
421238106Sdes      setOperationAction(ISD::FPOW, VT, Expand);
422238106Sdes      setOperationAction(ISD::CTPOP, VT, Expand);
423238106Sdes      setOperationAction(ISD::CTLZ, VT, Expand);
424238106Sdes      setOperationAction(ISD::CTLZ_ZERO_UNDEF, VT, Expand);
425238106Sdes      setOperationAction(ISD::CTTZ, VT, Expand);
426238106Sdes      setOperationAction(ISD::CTTZ_ZERO_UNDEF, VT, Expand);
427238106Sdes      setOperationAction(ISD::VSELECT, VT, Expand);
428238106Sdes      setOperationAction(ISD::SIGN_EXTEND_INREG, VT, Expand);
429269257Sdes
430238106Sdes      for (unsigned j = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
431238106Sdes           j <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++j) {
432238106Sdes        MVT::SimpleValueType InnerVT = (MVT::SimpleValueType)j;
433238106Sdes        setTruncStoreAction(VT, InnerVT, Expand);
434238106Sdes      }
435238106Sdes      setLoadExtAction(ISD::SEXTLOAD, VT, Expand);
436238106Sdes      setLoadExtAction(ISD::ZEXTLOAD, VT, Expand);
437238106Sdes      setLoadExtAction(ISD::EXTLOAD, VT, Expand);
438238106Sdes    }
439238106Sdes
440238106Sdes    // We can custom expand all VECTOR_SHUFFLEs to VPERM, others we can handle
441238106Sdes    // with merges, splats, etc.
442238106Sdes    setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v16i8, Custom);
443238106Sdes
444238106Sdes    setOperationAction(ISD::AND   , MVT::v4i32, Legal);
445269257Sdes    setOperationAction(ISD::OR    , MVT::v4i32, Legal);
446238106Sdes    setOperationAction(ISD::XOR   , MVT::v4i32, Legal);
447238106Sdes    setOperationAction(ISD::LOAD  , MVT::v4i32, Legal);
448238106Sdes    setOperationAction(ISD::SELECT, MVT::v4i32, Expand);
449238106Sdes    setOperationAction(ISD::STORE , MVT::v4i32, Legal);
450238106Sdes    setOperationAction(ISD::FP_TO_SINT, MVT::v4i32, Legal);
451238106Sdes    setOperationAction(ISD::FP_TO_UINT, MVT::v4i32, Legal);
452238106Sdes    setOperationAction(ISD::SINT_TO_FP, MVT::v4i32, Legal);
453238106Sdes    setOperationAction(ISD::UINT_TO_FP, MVT::v4i32, Legal);
454238106Sdes    setOperationAction(ISD::FFLOOR, MVT::v4f32, Legal);
455238106Sdes    setOperationAction(ISD::FCEIL, MVT::v4f32, Legal);
456238106Sdes    setOperationAction(ISD::FTRUNC, MVT::v4f32, Legal);
457238106Sdes    setOperationAction(ISD::FNEARBYINT, MVT::v4f32, Legal);
458238106Sdes
459238106Sdes    addRegisterClass(MVT::v4f32, &PPC::VRRCRegClass);
460269257Sdes    addRegisterClass(MVT::v4i32, &PPC::VRRCRegClass);
461238106Sdes    addRegisterClass(MVT::v8i16, &PPC::VRRCRegClass);
462238106Sdes    addRegisterClass(MVT::v16i8, &PPC::VRRCRegClass);
463238106Sdes
464238106Sdes    setOperationAction(ISD::MUL, MVT::v4f32, Legal);
465238106Sdes    setOperationAction(ISD::FMA, MVT::v4f32, Legal);
466238106Sdes
467238106Sdes    if (TM.Options.UnsafeFPMath) {
468238106Sdes      setOperationAction(ISD::FDIV, MVT::v4f32, Legal);
469238106Sdes      setOperationAction(ISD::FSQRT, MVT::v4f32, Legal);
470238106Sdes    }
471238106Sdes
472238106Sdes    setOperationAction(ISD::MUL, MVT::v4i32, Custom);
473238106Sdes    setOperationAction(ISD::MUL, MVT::v8i16, Custom);
474238106Sdes    setOperationAction(ISD::MUL, MVT::v16i8, Custom);
475238106Sdes
476238106Sdes    setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Custom);
477238106Sdes    setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4i32, Custom);
478238106Sdes
479238106Sdes    setOperationAction(ISD::BUILD_VECTOR, MVT::v16i8, Custom);
480238106Sdes    setOperationAction(ISD::BUILD_VECTOR, MVT::v8i16, Custom);
481238106Sdes    setOperationAction(ISD::BUILD_VECTOR, MVT::v4i32, Custom);
482238106Sdes    setOperationAction(ISD::BUILD_VECTOR, MVT::v4f32, Custom);
483238106Sdes
484238106Sdes    // Altivec does not contain unordered floating-point compare instructions
485238106Sdes    setCondCodeAction(ISD::SETUO, MVT::v4f32, Expand);
486238106Sdes    setCondCodeAction(ISD::SETUEQ, MVT::v4f32, Expand);
487238106Sdes    setCondCodeAction(ISD::SETUGT, MVT::v4f32, Expand);
488238106Sdes    setCondCodeAction(ISD::SETUGE, MVT::v4f32, Expand);
489238106Sdes    setCondCodeAction(ISD::SETULT, MVT::v4f32, Expand);
490238106Sdes    setCondCodeAction(ISD::SETULE, MVT::v4f32, Expand);
491238106Sdes
492238106Sdes    setCondCodeAction(ISD::SETO,   MVT::v4f32, Expand);
493238106Sdes    setCondCodeAction(ISD::SETONE, MVT::v4f32, Expand);
494238106Sdes  }
495238106Sdes
496238106Sdes  if (Subtarget->has64BitSupport()) {
497269257Sdes    setOperationAction(ISD::PREFETCH, MVT::Other, Legal);
498238106Sdes    setOperationAction(ISD::READCYCLECOUNTER, MVT::i64, Legal);
499238106Sdes  }
500238106Sdes
501238106Sdes  setOperationAction(ISD::ATOMIC_LOAD,  MVT::i32, Expand);
502238106Sdes  setOperationAction(ISD::ATOMIC_STORE, MVT::i32, Expand);
503238106Sdes  setOperationAction(ISD::ATOMIC_LOAD,  MVT::i64, Expand);
504238106Sdes  setOperationAction(ISD::ATOMIC_STORE, MVT::i64, Expand);
505238106Sdes
506238106Sdes  setBooleanContents(ZeroOrOneBooleanContent);
507238106Sdes  // Altivec instructions set fields to all zeros or all ones.
508238106Sdes  setBooleanVectorContents(ZeroOrNegativeOneBooleanContent);
509238106Sdes
510238106Sdes  if (isPPC64) {
511238106Sdes    setStackPointerRegisterToSaveRestore(PPC::X1);
512238106Sdes    setExceptionPointerRegister(PPC::X3);
513238106Sdes    setExceptionSelectorRegister(PPC::X4);
514238106Sdes  } else {
515238106Sdes    setStackPointerRegisterToSaveRestore(PPC::R1);
516238106Sdes    setExceptionPointerRegister(PPC::R3);
517238106Sdes    setExceptionSelectorRegister(PPC::R4);
518238106Sdes  }
519238106Sdes
520238106Sdes  // We have target-specific dag combine patterns for the following nodes:
521238106Sdes  setTargetDAGCombine(ISD::SINT_TO_FP);
522238106Sdes  setTargetDAGCombine(ISD::LOAD);
523238106Sdes  setTargetDAGCombine(ISD::STORE);
524238106Sdes  setTargetDAGCombine(ISD::BR_CC);
525238106Sdes  setTargetDAGCombine(ISD::BSWAP);
526238106Sdes  setTargetDAGCombine(ISD::INTRINSIC_WO_CHAIN);
527238106Sdes
528269257Sdes  // Use reciprocal estimates.
529238106Sdes  if (TM.Options.UnsafeFPMath) {
530269257Sdes    setTargetDAGCombine(ISD::FDIV);
531238106Sdes    setTargetDAGCombine(ISD::FSQRT);
532269257Sdes  }
533238106Sdes
534238106Sdes  // Darwin long double math library functions have $LDBL128 appended.
535269257Sdes  if (Subtarget->isDarwin()) {
536238106Sdes    setLibcallName(RTLIB::COS_PPCF128, "cosl$LDBL128");
537269257Sdes    setLibcallName(RTLIB::POW_PPCF128, "powl$LDBL128");
538269257Sdes    setLibcallName(RTLIB::REM_PPCF128, "fmodl$LDBL128");
539238106Sdes    setLibcallName(RTLIB::SIN_PPCF128, "sinl$LDBL128");
540238106Sdes    setLibcallName(RTLIB::SQRT_PPCF128, "sqrtl$LDBL128");
541269257Sdes    setLibcallName(RTLIB::LOG_PPCF128, "logl$LDBL128");
542238106Sdes    setLibcallName(RTLIB::LOG2_PPCF128, "log2l$LDBL128");
543269257Sdes    setLibcallName(RTLIB::LOG10_PPCF128, "log10l$LDBL128");
544269257Sdes    setLibcallName(RTLIB::EXP_PPCF128, "expl$LDBL128");
545238106Sdes    setLibcallName(RTLIB::EXP2_PPCF128, "exp2l$LDBL128");
546238106Sdes  }
547238106Sdes
548238106Sdes  setMinFunctionAlignment(2);
549238106Sdes  if (PPCSubTarget.isDarwin())
550238106Sdes    setPrefFunctionAlignment(4);
551238106Sdes
552238106Sdes  if (isPPC64 && Subtarget->isJITCodeModel())
553238106Sdes    // Temporary workaround for the inability of PPC64 JIT to handle jump
554238106Sdes    // tables.
555238106Sdes    setSupportJumpTables(false);
556238106Sdes
557238106Sdes  setInsertFencesForAtomic(true);
558238106Sdes
559238106Sdes  if (Subtarget->enableMachineScheduler())
560238106Sdes    setSchedulingPreference(Sched::Source);
561238106Sdes  else
562238106Sdes    setSchedulingPreference(Sched::Hybrid);
563238106Sdes
564238106Sdes  computeRegisterProperties();
565238106Sdes
566238106Sdes  // The Freescale cores does better with aggressive inlining of memcpy and
567238106Sdes  // friends. Gcc uses same threshold of 128 bytes (= 32 word stores).
568238106Sdes  if (Subtarget->getDarwinDirective() == PPC::DIR_E500mc ||
569238106Sdes      Subtarget->getDarwinDirective() == PPC::DIR_E5500) {
570238106Sdes    MaxStoresPerMemset = 32;
571238106Sdes    MaxStoresPerMemsetOptSize = 16;
572238106Sdes    MaxStoresPerMemcpy = 32;
573238106Sdes    MaxStoresPerMemcpyOptSize = 8;
574238106Sdes    MaxStoresPerMemmove = 32;
575238106Sdes    MaxStoresPerMemmoveOptSize = 8;
576238106Sdes
577238106Sdes    setPrefFunctionAlignment(4);
578238106Sdes  }
579238106Sdes}
580238106Sdes
581238106Sdes/// getMaxByValAlign - Helper for getByValTypeAlignment to determine
582238106Sdes/// the desired ByVal argument alignment.
583238106Sdesstatic void getMaxByValAlign(Type *Ty, unsigned &MaxAlign,
584238106Sdes                             unsigned MaxMaxAlign) {
585238106Sdes  if (MaxAlign == MaxMaxAlign)
586238106Sdes    return;
587238106Sdes  if (VectorType *VTy = dyn_cast<VectorType>(Ty)) {
588238106Sdes    if (MaxMaxAlign >= 32 && VTy->getBitWidth() >= 256)
589238106Sdes      MaxAlign = 32;
590238106Sdes    else if (VTy->getBitWidth() >= 128 && MaxAlign < 16)
591238106Sdes      MaxAlign = 16;
592238106Sdes  } else if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
593238106Sdes    unsigned EltAlign = 0;
594238106Sdes    getMaxByValAlign(ATy->getElementType(), EltAlign, MaxMaxAlign);
595238106Sdes    if (EltAlign > MaxAlign)
596238106Sdes      MaxAlign = EltAlign;
597238106Sdes  } else if (StructType *STy = dyn_cast<StructType>(Ty)) {
598238106Sdes    for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
599238106Sdes      unsigned EltAlign = 0;
600238106Sdes      getMaxByValAlign(STy->getElementType(i), EltAlign, MaxMaxAlign);
601238106Sdes      if (EltAlign > MaxAlign)
602238106Sdes        MaxAlign = EltAlign;
603238106Sdes      if (MaxAlign == MaxMaxAlign)
604238106Sdes        break;
605238106Sdes    }
606238106Sdes  }
607285206Sdes}
608238106Sdes
609238106Sdes/// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
610238106Sdes/// function arguments in the caller parameter area.
611285206Sdesunsigned PPCTargetLowering::getByValTypeAlignment(Type *Ty) const {
612285206Sdes  // Darwin passes everything on 4 byte boundary.
613238106Sdes  if (PPCSubTarget.isDarwin())
614238106Sdes    return 4;
615238106Sdes
616238106Sdes  // 16byte and wider vectors are passed on 16byte boundary.
617238106Sdes  // The rest is 8 on PPC64 and 4 on PPC32 boundary.
618238106Sdes  unsigned Align = PPCSubTarget.isPPC64() ? 8 : 4;
619238106Sdes  if (PPCSubTarget.hasAltivec() || PPCSubTarget.hasQPX())
620238106Sdes    getMaxByValAlign(Ty, Align, PPCSubTarget.hasQPX() ? 32 : 16);
621238106Sdes  return Align;
622238106Sdes}
623238106Sdes
624238106Sdesconst char *PPCTargetLowering::getTargetNodeName(unsigned Opcode) const {
625238106Sdes  switch (Opcode) {
626238106Sdes  default: return 0;
627238106Sdes  case PPCISD::FSEL:            return "PPCISD::FSEL";
628238106Sdes  case PPCISD::FCFID:           return "PPCISD::FCFID";
629238106Sdes  case PPCISD::FCTIDZ:          return "PPCISD::FCTIDZ";
630238106Sdes  case PPCISD::FCTIWZ:          return "PPCISD::FCTIWZ";
631238106Sdes  case PPCISD::FRE:             return "PPCISD::FRE";
632238106Sdes  case PPCISD::FRSQRTE:         return "PPCISD::FRSQRTE";
633238106Sdes  case PPCISD::STFIWX:          return "PPCISD::STFIWX";
634238106Sdes  case PPCISD::VMADDFP:         return "PPCISD::VMADDFP";
635238106Sdes  case PPCISD::VNMSUBFP:        return "PPCISD::VNMSUBFP";
636238106Sdes  case PPCISD::VPERM:           return "PPCISD::VPERM";
637238106Sdes  case PPCISD::Hi:              return "PPCISD::Hi";
638238106Sdes  case PPCISD::Lo:              return "PPCISD::Lo";
639238106Sdes  case PPCISD::TOC_ENTRY:       return "PPCISD::TOC_ENTRY";
640238106Sdes  case PPCISD::TOC_RESTORE:     return "PPCISD::TOC_RESTORE";
641238106Sdes  case PPCISD::LOAD:            return "PPCISD::LOAD";
642238106Sdes  case PPCISD::LOAD_TOC:        return "PPCISD::LOAD_TOC";
643238106Sdes  case PPCISD::DYNALLOC:        return "PPCISD::DYNALLOC";
644238106Sdes  case PPCISD::GlobalBaseReg:   return "PPCISD::GlobalBaseReg";
645238106Sdes  case PPCISD::SRL:             return "PPCISD::SRL";
646238106Sdes  case PPCISD::SRA:             return "PPCISD::SRA";
647238106Sdes  case PPCISD::SHL:             return "PPCISD::SHL";
648238106Sdes  case PPCISD::CALL:            return "PPCISD::CALL";
649238106Sdes  case PPCISD::CALL_NOP:        return "PPCISD::CALL_NOP";
650238106Sdes  case PPCISD::MTCTR:           return "PPCISD::MTCTR";
651238106Sdes  case PPCISD::BCTRL:           return "PPCISD::BCTRL";
652238106Sdes  case PPCISD::RET_FLAG:        return "PPCISD::RET_FLAG";
653238106Sdes  case PPCISD::EH_SJLJ_SETJMP:  return "PPCISD::EH_SJLJ_SETJMP";
654238106Sdes  case PPCISD::EH_SJLJ_LONGJMP: return "PPCISD::EH_SJLJ_LONGJMP";
655238106Sdes  case PPCISD::MFOCRF:          return "PPCISD::MFOCRF";
656238106Sdes  case PPCISD::VCMP:            return "PPCISD::VCMP";
657238106Sdes  case PPCISD::VCMPo:           return "PPCISD::VCMPo";
658238106Sdes  case PPCISD::LBRX:            return "PPCISD::LBRX";
659238106Sdes  case PPCISD::STBRX:           return "PPCISD::STBRX";
660238106Sdes  case PPCISD::LARX:            return "PPCISD::LARX";
661238106Sdes  case PPCISD::STCX:            return "PPCISD::STCX";
662238106Sdes  case PPCISD::COND_BRANCH:     return "PPCISD::COND_BRANCH";
663238106Sdes  case PPCISD::BDNZ:            return "PPCISD::BDNZ";
664238106Sdes  case PPCISD::BDZ:             return "PPCISD::BDZ";
665238106Sdes  case PPCISD::MFFS:            return "PPCISD::MFFS";
666238106Sdes  case PPCISD::FADDRTZ:         return "PPCISD::FADDRTZ";
667238106Sdes  case PPCISD::TC_RETURN:       return "PPCISD::TC_RETURN";
668238106Sdes  case PPCISD::CR6SET:          return "PPCISD::CR6SET";
669238106Sdes  case PPCISD::CR6UNSET:        return "PPCISD::CR6UNSET";
670238106Sdes  case PPCISD::ADDIS_TOC_HA:    return "PPCISD::ADDIS_TOC_HA";
671238106Sdes  case PPCISD::LD_TOC_L:        return "PPCISD::LD_TOC_L";
672238106Sdes  case PPCISD::ADDI_TOC_L:      return "PPCISD::ADDI_TOC_L";
673238106Sdes  case PPCISD::ADDIS_GOT_TPREL_HA: return "PPCISD::ADDIS_GOT_TPREL_HA";
674238106Sdes  case PPCISD::LD_GOT_TPREL_L:  return "PPCISD::LD_GOT_TPREL_L";
675238106Sdes  case PPCISD::ADD_TLS:         return "PPCISD::ADD_TLS";
676238106Sdes  case PPCISD::ADDIS_TLSGD_HA:  return "PPCISD::ADDIS_TLSGD_HA";
677238106Sdes  case PPCISD::ADDI_TLSGD_L:    return "PPCISD::ADDI_TLSGD_L";
678238106Sdes  case PPCISD::GET_TLS_ADDR:    return "PPCISD::GET_TLS_ADDR";
679238106Sdes  case PPCISD::ADDIS_TLSLD_HA:  return "PPCISD::ADDIS_TLSLD_HA";
680238106Sdes  case PPCISD::ADDI_TLSLD_L:    return "PPCISD::ADDI_TLSLD_L";
681238106Sdes  case PPCISD::GET_TLSLD_ADDR:  return "PPCISD::GET_TLSLD_ADDR";
682238106Sdes  case PPCISD::ADDIS_DTPREL_HA: return "PPCISD::ADDIS_DTPREL_HA";
683238106Sdes  case PPCISD::ADDI_DTPREL_L:   return "PPCISD::ADDI_DTPREL_L";
684238106Sdes  case PPCISD::VADD_SPLAT:      return "PPCISD::VADD_SPLAT";
685238106Sdes  case PPCISD::SC:              return "PPCISD::SC";
686238106Sdes  }
687238106Sdes}
688238106Sdes
689238106SdesEVT PPCTargetLowering::getSetCCResultType(LLVMContext &, EVT VT) const {
690238106Sdes  if (!VT.isVector())
691238106Sdes    return MVT::i32;
692238106Sdes  return VT.changeVectorElementTypeToInteger();
693238106Sdes}
694238106Sdes
695238106Sdes//===----------------------------------------------------------------------===//
696238106Sdes// Node matching predicates, for use by the tblgen matching code.
697238106Sdes//===----------------------------------------------------------------------===//
698238106Sdes
699238106Sdes/// isFloatingPointZero - Return true if this is 0.0 or -0.0.
700238106Sdesstatic bool isFloatingPointZero(SDValue Op) {
701238106Sdes  if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(Op))
702238106Sdes    return CFP->getValueAPF().isZero();
703238106Sdes  else if (ISD::isEXTLoad(Op.getNode()) || ISD::isNON_EXTLoad(Op.getNode())) {
704238106Sdes    // Maybe this has already been legalized into the constant pool?
705238106Sdes    if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(Op.getOperand(1)))
706238106Sdes      if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CP->getConstVal()))
707238106Sdes        return CFP->getValueAPF().isZero();
708238106Sdes  }
709238106Sdes  return false;
710238106Sdes}
711238106Sdes
712238106Sdes/// isConstantOrUndef - Op is either an undef node or a ConstantSDNode.  Return
713238106Sdes/// true if Op is undef or if it matches the specified value.
714238106Sdesstatic bool isConstantOrUndef(int Op, int Val) {
715238106Sdes  return Op < 0 || Op == Val;
716238106Sdes}
717238106Sdes
718238106Sdes/// isVPKUHUMShuffleMask - Return true if this is the shuffle mask for a
719238106Sdes/// VPKUHUM instruction.
720238106Sdesbool PPC::isVPKUHUMShuffleMask(ShuffleVectorSDNode *N, bool isUnary) {
721238106Sdes  if (!isUnary) {
722238106Sdes    for (unsigned i = 0; i != 16; ++i)
723238106Sdes      if (!isConstantOrUndef(N->getMaskElt(i),  i*2+1))
724238106Sdes        return false;
725238106Sdes  } else {
726238106Sdes    for (unsigned i = 0; i != 8; ++i)
727238106Sdes      if (!isConstantOrUndef(N->getMaskElt(i),    i*2+1) ||
728238106Sdes          !isConstantOrUndef(N->getMaskElt(i+8),  i*2+1))
729238106Sdes        return false;
730238106Sdes  }
731238106Sdes  return true;
732238106Sdes}
733238106Sdes
734238106Sdes/// isVPKUWUMShuffleMask - Return true if this is the shuffle mask for a
735238106Sdes/// VPKUWUM instruction.
736238106Sdesbool PPC::isVPKUWUMShuffleMask(ShuffleVectorSDNode *N, bool isUnary) {
737238106Sdes  if (!isUnary) {
738238106Sdes    for (unsigned i = 0; i != 16; i += 2)
739238106Sdes      if (!isConstantOrUndef(N->getMaskElt(i  ),  i*2+2) ||
740238106Sdes          !isConstantOrUndef(N->getMaskElt(i+1),  i*2+3))
741238106Sdes        return false;
742238106Sdes  } else {
743238106Sdes    for (unsigned i = 0; i != 8; i += 2)
744238106Sdes      if (!isConstantOrUndef(N->getMaskElt(i  ),  i*2+2) ||
745238106Sdes          !isConstantOrUndef(N->getMaskElt(i+1),  i*2+3) ||
746238106Sdes          !isConstantOrUndef(N->getMaskElt(i+8),  i*2+2) ||
747238106Sdes          !isConstantOrUndef(N->getMaskElt(i+9),  i*2+3))
748238106Sdes        return false;
749238106Sdes  }
750238106Sdes  return true;
751238106Sdes}
752238106Sdes
753238106Sdes/// isVMerge - Common function, used to match vmrg* shuffles.
754238106Sdes///
755238106Sdesstatic bool isVMerge(ShuffleVectorSDNode *N, unsigned UnitSize,
756238106Sdes                     unsigned LHSStart, unsigned RHSStart) {
757238106Sdes  assert(N->getValueType(0) == MVT::v16i8 &&
758238106Sdes         "PPC only supports shuffles by bytes!");
759238106Sdes  assert((UnitSize == 1 || UnitSize == 2 || UnitSize == 4) &&
760238106Sdes         "Unsupported merge size!");
761238106Sdes
762238106Sdes  for (unsigned i = 0; i != 8/UnitSize; ++i)     // Step over units
763238106Sdes    for (unsigned j = 0; j != UnitSize; ++j) {   // Step over bytes within unit
764238106Sdes      if (!isConstantOrUndef(N->getMaskElt(i*UnitSize*2+j),
765238106Sdes                             LHSStart+j+i*UnitSize) ||
766238106Sdes          !isConstantOrUndef(N->getMaskElt(i*UnitSize*2+UnitSize+j),
767238106Sdes                             RHSStart+j+i*UnitSize))
768238106Sdes        return false;
769238106Sdes    }
770238106Sdes  return true;
771238106Sdes}
772238106Sdes
773238106Sdes/// isVMRGLShuffleMask - Return true if this is a shuffle mask suitable for
774238106Sdes/// a VRGL* instruction with the specified unit size (1,2 or 4 bytes).
775238106Sdesbool PPC::isVMRGLShuffleMask(ShuffleVectorSDNode *N, unsigned UnitSize,
776238106Sdes                             bool isUnary) {
777238106Sdes  if (!isUnary)
778238106Sdes    return isVMerge(N, UnitSize, 8, 24);
779238106Sdes  return isVMerge(N, UnitSize, 8, 8);
780238106Sdes}
781238106Sdes
782238106Sdes/// isVMRGHShuffleMask - Return true if this is a shuffle mask suitable for
783238106Sdes/// a VRGH* instruction with the specified unit size (1,2 or 4 bytes).
784238106Sdesbool PPC::isVMRGHShuffleMask(ShuffleVectorSDNode *N, unsigned UnitSize,
785238106Sdes                             bool isUnary) {
786238106Sdes  if (!isUnary)
787238106Sdes    return isVMerge(N, UnitSize, 0, 16);
788238106Sdes  return isVMerge(N, UnitSize, 0, 0);
789238106Sdes}
790238106Sdes
791238106Sdes
792238106Sdes/// isVSLDOIShuffleMask - If this is a vsldoi shuffle mask, return the shift
793238106Sdes/// amount, otherwise return -1.
794238106Sdesint PPC::isVSLDOIShuffleMask(SDNode *N, bool isUnary) {
795238106Sdes  assert(N->getValueType(0) == MVT::v16i8 &&
796238106Sdes         "PPC only supports shuffles by bytes!");
797238106Sdes
798269257Sdes  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
799238106Sdes
800238106Sdes  // Find the first non-undef value in the shuffle mask.
801238106Sdes  unsigned i;
802238106Sdes  for (i = 0; i != 16 && SVOp->getMaskElt(i) < 0; ++i)
803238106Sdes    /*search*/;
804285206Sdes
805269257Sdes  if (i == 16) return -1;  // all undef.
806285206Sdes
807269257Sdes  // Otherwise, check to see if the rest of the elements are consecutively
808238106Sdes  // numbered from this value.
809285206Sdes  unsigned ShiftAmt = SVOp->getMaskElt(i);
810238106Sdes  if (ShiftAmt < i) return -1;
811285206Sdes  ShiftAmt -= i;
812238106Sdes
813269257Sdes  if (!isUnary) {
814238106Sdes    // Check the rest of the elements to see if they are consecutive.
815238106Sdes    for (++i; i != 16; ++i)
816238106Sdes      if (!isConstantOrUndef(SVOp->getMaskElt(i), ShiftAmt+i))
817238106Sdes        return -1;
818238106Sdes  } else {
819238106Sdes    // Check the rest of the elements to see if they are consecutive.
820238106Sdes    for (++i; i != 16; ++i)
821238106Sdes      if (!isConstantOrUndef(SVOp->getMaskElt(i), (ShiftAmt+i) & 15))
822238106Sdes        return -1;
823238106Sdes  }
824238106Sdes  return ShiftAmt;
825291767Sdes}
826238106Sdes
827238106Sdes/// isSplatShuffleMask - Return true if the specified VECTOR_SHUFFLE operand
828238106Sdes/// specifies a splat of a single element that is suitable for input to
829238106Sdes/// VSPLTB/VSPLTH/VSPLTW.
830291767Sdesbool PPC::isSplatShuffleMask(ShuffleVectorSDNode *N, unsigned EltSize) {
831291767Sdes  assert(N->getValueType(0) == MVT::v16i8 &&
832238106Sdes         (EltSize == 1 || EltSize == 2 || EltSize == 4));
833238106Sdes
834238106Sdes  // This is a splat operation if each element of the permute is the same, and
835238106Sdes  // if the value doesn't reference the second vector.
836238106Sdes  unsigned ElementBase = N->getMaskElt(0);
837238106Sdes
838238106Sdes  // FIXME: Handle UNDEF elements too!
839238106Sdes  if (ElementBase >= 16)
840238106Sdes    return false;
841238106Sdes
842238106Sdes  // Check that the indices are consecutive, in the case of a multi-byte element
843238106Sdes  // splatted with a v16i8 mask.
844238106Sdes  for (unsigned i = 1; i != EltSize; ++i)
845238106Sdes    if (N->getMaskElt(i) < 0 || N->getMaskElt(i) != (int)(i+ElementBase))
846238106Sdes      return false;
847238106Sdes
848238106Sdes  for (unsigned i = EltSize, e = 16; i != e; i += EltSize) {
849238106Sdes    if (N->getMaskElt(i) < 0) continue;
850238106Sdes    for (unsigned j = 0; j != EltSize; ++j)
851238106Sdes      if (N->getMaskElt(i+j) != N->getMaskElt(j))
852238106Sdes        return false;
853238106Sdes  }
854238106Sdes  return true;
855238106Sdes}
856238106Sdes
857238106Sdes/// isAllNegativeZeroVector - Returns true if all elements of build_vector
858238106Sdes/// are -0.0.
859238106Sdesbool PPC::isAllNegativeZeroVector(SDNode *N) {
860  BuildVectorSDNode *BV = cast<BuildVectorSDNode>(N);
861
862  APInt APVal, APUndef;
863  unsigned BitSize;
864  bool HasAnyUndefs;
865
866  if (BV->isConstantSplat(APVal, APUndef, BitSize, HasAnyUndefs, 32, true))
867    if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N->getOperand(0)))
868      return CFP->getValueAPF().isNegZero();
869
870  return false;
871}
872
873/// getVSPLTImmediate - Return the appropriate VSPLT* immediate to splat the
874/// specified isSplatShuffleMask VECTOR_SHUFFLE mask.
875unsigned PPC::getVSPLTImmediate(SDNode *N, unsigned EltSize) {
876  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
877  assert(isSplatShuffleMask(SVOp, EltSize));
878  return SVOp->getMaskElt(0) / EltSize;
879}
880
881/// get_VSPLTI_elt - If this is a build_vector of constants which can be formed
882/// by using a vspltis[bhw] instruction of the specified element size, return
883/// the constant being splatted.  The ByteSize field indicates the number of
884/// bytes of each element [124] -> [bhw].
885SDValue PPC::get_VSPLTI_elt(SDNode *N, unsigned ByteSize, SelectionDAG &DAG) {
886  SDValue OpVal(0, 0);
887
888  // If ByteSize of the splat is bigger than the element size of the
889  // build_vector, then we have a case where we are checking for a splat where
890  // multiple elements of the buildvector are folded together into a single
891  // logical element of the splat (e.g. "vsplish 1" to splat {0,1}*8).
892  unsigned EltSize = 16/N->getNumOperands();
893  if (EltSize < ByteSize) {
894    unsigned Multiple = ByteSize/EltSize;   // Number of BV entries per spltval.
895    SDValue UniquedVals[4];
896    assert(Multiple > 1 && Multiple <= 4 && "How can this happen?");
897
898    // See if all of the elements in the buildvector agree across.
899    for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
900      if (N->getOperand(i).getOpcode() == ISD::UNDEF) continue;
901      // If the element isn't a constant, bail fully out.
902      if (!isa<ConstantSDNode>(N->getOperand(i))) return SDValue();
903
904
905      if (UniquedVals[i&(Multiple-1)].getNode() == 0)
906        UniquedVals[i&(Multiple-1)] = N->getOperand(i);
907      else if (UniquedVals[i&(Multiple-1)] != N->getOperand(i))
908        return SDValue();  // no match.
909    }
910
911    // Okay, if we reached this point, UniquedVals[0..Multiple-1] contains
912    // either constant or undef values that are identical for each chunk.  See
913    // if these chunks can form into a larger vspltis*.
914
915    // Check to see if all of the leading entries are either 0 or -1.  If
916    // neither, then this won't fit into the immediate field.
917    bool LeadingZero = true;
918    bool LeadingOnes = true;
919    for (unsigned i = 0; i != Multiple-1; ++i) {
920      if (UniquedVals[i].getNode() == 0) continue;  // Must have been undefs.
921
922      LeadingZero &= cast<ConstantSDNode>(UniquedVals[i])->isNullValue();
923      LeadingOnes &= cast<ConstantSDNode>(UniquedVals[i])->isAllOnesValue();
924    }
925    // Finally, check the least significant entry.
926    if (LeadingZero) {
927      if (UniquedVals[Multiple-1].getNode() == 0)
928        return DAG.getTargetConstant(0, MVT::i32);  // 0,0,0,undef
929      int Val = cast<ConstantSDNode>(UniquedVals[Multiple-1])->getZExtValue();
930      if (Val < 16)
931        return DAG.getTargetConstant(Val, MVT::i32);  // 0,0,0,4 -> vspltisw(4)
932    }
933    if (LeadingOnes) {
934      if (UniquedVals[Multiple-1].getNode() == 0)
935        return DAG.getTargetConstant(~0U, MVT::i32);  // -1,-1,-1,undef
936      int Val =cast<ConstantSDNode>(UniquedVals[Multiple-1])->getSExtValue();
937      if (Val >= -16)                            // -1,-1,-1,-2 -> vspltisw(-2)
938        return DAG.getTargetConstant(Val, MVT::i32);
939    }
940
941    return SDValue();
942  }
943
944  // Check to see if this buildvec has a single non-undef value in its elements.
945  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
946    if (N->getOperand(i).getOpcode() == ISD::UNDEF) continue;
947    if (OpVal.getNode() == 0)
948      OpVal = N->getOperand(i);
949    else if (OpVal != N->getOperand(i))
950      return SDValue();
951  }
952
953  if (OpVal.getNode() == 0) return SDValue();  // All UNDEF: use implicit def.
954
955  unsigned ValSizeInBytes = EltSize;
956  uint64_t Value = 0;
957  if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(OpVal)) {
958    Value = CN->getZExtValue();
959  } else if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(OpVal)) {
960    assert(CN->getValueType(0) == MVT::f32 && "Only one legal FP vector type!");
961    Value = FloatToBits(CN->getValueAPF().convertToFloat());
962  }
963
964  // If the splat value is larger than the element value, then we can never do
965  // this splat.  The only case that we could fit the replicated bits into our
966  // immediate field for would be zero, and we prefer to use vxor for it.
967  if (ValSizeInBytes < ByteSize) return SDValue();
968
969  // If the element value is larger than the splat value, cut it in half and
970  // check to see if the two halves are equal.  Continue doing this until we
971  // get to ByteSize.  This allows us to handle 0x01010101 as 0x01.
972  while (ValSizeInBytes > ByteSize) {
973    ValSizeInBytes >>= 1;
974
975    // If the top half equals the bottom half, we're still ok.
976    if (((Value >> (ValSizeInBytes*8)) & ((1 << (8*ValSizeInBytes))-1)) !=
977         (Value                        & ((1 << (8*ValSizeInBytes))-1)))
978      return SDValue();
979  }
980
981  // Properly sign extend the value.
982  int MaskVal = SignExtend32(Value, ByteSize * 8);
983
984  // If this is zero, don't match, zero matches ISD::isBuildVectorAllZeros.
985  if (MaskVal == 0) return SDValue();
986
987  // Finally, if this value fits in a 5 bit sext field, return it
988  if (SignExtend32<5>(MaskVal) == MaskVal)
989    return DAG.getTargetConstant(MaskVal, MVT::i32);
990  return SDValue();
991}
992
993//===----------------------------------------------------------------------===//
994//  Addressing Mode Selection
995//===----------------------------------------------------------------------===//
996
997/// isIntS16Immediate - This method tests to see if the node is either a 32-bit
998/// or 64-bit immediate, and if the value can be accurately represented as a
999/// sign extension from a 16-bit value.  If so, this returns true and the
1000/// immediate.
1001static bool isIntS16Immediate(SDNode *N, short &Imm) {
1002  if (N->getOpcode() != ISD::Constant)
1003    return false;
1004
1005  Imm = (short)cast<ConstantSDNode>(N)->getZExtValue();
1006  if (N->getValueType(0) == MVT::i32)
1007    return Imm == (int32_t)cast<ConstantSDNode>(N)->getZExtValue();
1008  else
1009    return Imm == (int64_t)cast<ConstantSDNode>(N)->getZExtValue();
1010}
1011static bool isIntS16Immediate(SDValue Op, short &Imm) {
1012  return isIntS16Immediate(Op.getNode(), Imm);
1013}
1014
1015
1016/// SelectAddressRegReg - Given the specified addressed, check to see if it
1017/// can be represented as an indexed [r+r] operation.  Returns false if it
1018/// can be more efficiently represented with [r+imm].
1019bool PPCTargetLowering::SelectAddressRegReg(SDValue N, SDValue &Base,
1020                                            SDValue &Index,
1021                                            SelectionDAG &DAG) const {
1022  short imm = 0;
1023  if (N.getOpcode() == ISD::ADD) {
1024    if (isIntS16Immediate(N.getOperand(1), imm))
1025      return false;    // r+i
1026    if (N.getOperand(1).getOpcode() == PPCISD::Lo)
1027      return false;    // r+i
1028
1029    Base = N.getOperand(0);
1030    Index = N.getOperand(1);
1031    return true;
1032  } else if (N.getOpcode() == ISD::OR) {
1033    if (isIntS16Immediate(N.getOperand(1), imm))
1034      return false;    // r+i can fold it if we can.
1035
1036    // If this is an or of disjoint bitfields, we can codegen this as an add
1037    // (for better address arithmetic) if the LHS and RHS of the OR are provably
1038    // disjoint.
1039    APInt LHSKnownZero, LHSKnownOne;
1040    APInt RHSKnownZero, RHSKnownOne;
1041    DAG.ComputeMaskedBits(N.getOperand(0),
1042                          LHSKnownZero, LHSKnownOne);
1043
1044    if (LHSKnownZero.getBoolValue()) {
1045      DAG.ComputeMaskedBits(N.getOperand(1),
1046                            RHSKnownZero, RHSKnownOne);
1047      // If all of the bits are known zero on the LHS or RHS, the add won't
1048      // carry.
1049      if (~(LHSKnownZero | RHSKnownZero) == 0) {
1050        Base = N.getOperand(0);
1051        Index = N.getOperand(1);
1052        return true;
1053      }
1054    }
1055  }
1056
1057  return false;
1058}
1059
1060// If we happen to be doing an i64 load or store into a stack slot that has
1061// less than a 4-byte alignment, then the frame-index elimination may need to
1062// use an indexed load or store instruction (because the offset may not be a
1063// multiple of 4). The extra register needed to hold the offset comes from the
1064// register scavenger, and it is possible that the scavenger will need to use
1065// an emergency spill slot. As a result, we need to make sure that a spill slot
1066// is allocated when doing an i64 load/store into a less-than-4-byte-aligned
1067// stack slot.
1068static void fixupFuncForFI(SelectionDAG &DAG, int FrameIdx, EVT VT) {
1069  // FIXME: This does not handle the LWA case.
1070  if (VT != MVT::i64)
1071    return;
1072
1073  // NOTE: We'll exclude negative FIs here, which come from argument
1074  // lowering, because there are no known test cases triggering this problem
1075  // using packed structures (or similar). We can remove this exclusion if
1076  // we find such a test case. The reason why this is so test-case driven is
1077  // because this entire 'fixup' is only to prevent crashes (from the
1078  // register scavenger) on not-really-valid inputs. For example, if we have:
1079  //   %a = alloca i1
1080  //   %b = bitcast i1* %a to i64*
1081  //   store i64* a, i64 b
1082  // then the store should really be marked as 'align 1', but is not. If it
1083  // were marked as 'align 1' then the indexed form would have been
1084  // instruction-selected initially, and the problem this 'fixup' is preventing
1085  // won't happen regardless.
1086  if (FrameIdx < 0)
1087    return;
1088
1089  MachineFunction &MF = DAG.getMachineFunction();
1090  MachineFrameInfo *MFI = MF.getFrameInfo();
1091
1092  unsigned Align = MFI->getObjectAlignment(FrameIdx);
1093  if (Align >= 4)
1094    return;
1095
1096  PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
1097  FuncInfo->setHasNonRISpills();
1098}
1099
1100/// Returns true if the address N can be represented by a base register plus
1101/// a signed 16-bit displacement [r+imm], and if it is not better
1102/// represented as reg+reg.  If Aligned is true, only accept displacements
1103/// suitable for STD and friends, i.e. multiples of 4.
1104bool PPCTargetLowering::SelectAddressRegImm(SDValue N, SDValue &Disp,
1105                                            SDValue &Base,
1106                                            SelectionDAG &DAG,
1107                                            bool Aligned) const {
1108  // FIXME dl should come from parent load or store, not from address
1109  SDLoc dl(N);
1110  // If this can be more profitably realized as r+r, fail.
1111  if (SelectAddressRegReg(N, Disp, Base, DAG))
1112    return false;
1113
1114  if (N.getOpcode() == ISD::ADD) {
1115    short imm = 0;
1116    if (isIntS16Immediate(N.getOperand(1), imm) &&
1117        (!Aligned || (imm & 3) == 0)) {
1118      Disp = DAG.getTargetConstant(imm, N.getValueType());
1119      if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N.getOperand(0))) {
1120        Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
1121        fixupFuncForFI(DAG, FI->getIndex(), N.getValueType());
1122      } else {
1123        Base = N.getOperand(0);
1124      }
1125      return true; // [r+i]
1126    } else if (N.getOperand(1).getOpcode() == PPCISD::Lo) {
1127      // Match LOAD (ADD (X, Lo(G))).
1128      assert(!cast<ConstantSDNode>(N.getOperand(1).getOperand(1))->getZExtValue()
1129             && "Cannot handle constant offsets yet!");
1130      Disp = N.getOperand(1).getOperand(0);  // The global address.
1131      assert(Disp.getOpcode() == ISD::TargetGlobalAddress ||
1132             Disp.getOpcode() == ISD::TargetGlobalTLSAddress ||
1133             Disp.getOpcode() == ISD::TargetConstantPool ||
1134             Disp.getOpcode() == ISD::TargetJumpTable);
1135      Base = N.getOperand(0);
1136      return true;  // [&g+r]
1137    }
1138  } else if (N.getOpcode() == ISD::OR) {
1139    short imm = 0;
1140    if (isIntS16Immediate(N.getOperand(1), imm) &&
1141        (!Aligned || (imm & 3) == 0)) {
1142      // If this is an or of disjoint bitfields, we can codegen this as an add
1143      // (for better address arithmetic) if the LHS and RHS of the OR are
1144      // provably disjoint.
1145      APInt LHSKnownZero, LHSKnownOne;
1146      DAG.ComputeMaskedBits(N.getOperand(0), LHSKnownZero, LHSKnownOne);
1147
1148      if ((LHSKnownZero.getZExtValue()|~(uint64_t)imm) == ~0ULL) {
1149        // If all of the bits are known zero on the LHS or RHS, the add won't
1150        // carry.
1151        Base = N.getOperand(0);
1152        Disp = DAG.getTargetConstant(imm, N.getValueType());
1153        return true;
1154      }
1155    }
1156  } else if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) {
1157    // Loading from a constant address.
1158
1159    // If this address fits entirely in a 16-bit sext immediate field, codegen
1160    // this as "d, 0"
1161    short Imm;
1162    if (isIntS16Immediate(CN, Imm) && (!Aligned || (Imm & 3) == 0)) {
1163      Disp = DAG.getTargetConstant(Imm, CN->getValueType(0));
1164      Base = DAG.getRegister(PPCSubTarget.isPPC64() ? PPC::ZERO8 : PPC::ZERO,
1165                             CN->getValueType(0));
1166      return true;
1167    }
1168
1169    // Handle 32-bit sext immediates with LIS + addr mode.
1170    if ((CN->getValueType(0) == MVT::i32 ||
1171         (int64_t)CN->getZExtValue() == (int)CN->getZExtValue()) &&
1172        (!Aligned || (CN->getZExtValue() & 3) == 0)) {
1173      int Addr = (int)CN->getZExtValue();
1174
1175      // Otherwise, break this down into an LIS + disp.
1176      Disp = DAG.getTargetConstant((short)Addr, MVT::i32);
1177
1178      Base = DAG.getTargetConstant((Addr - (signed short)Addr) >> 16, MVT::i32);
1179      unsigned Opc = CN->getValueType(0) == MVT::i32 ? PPC::LIS : PPC::LIS8;
1180      Base = SDValue(DAG.getMachineNode(Opc, dl, CN->getValueType(0), Base), 0);
1181      return true;
1182    }
1183  }
1184
1185  Disp = DAG.getTargetConstant(0, getPointerTy());
1186  if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N)) {
1187    Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
1188    fixupFuncForFI(DAG, FI->getIndex(), N.getValueType());
1189  } else
1190    Base = N;
1191  return true;      // [r+0]
1192}
1193
1194/// SelectAddressRegRegOnly - Given the specified addressed, force it to be
1195/// represented as an indexed [r+r] operation.
1196bool PPCTargetLowering::SelectAddressRegRegOnly(SDValue N, SDValue &Base,
1197                                                SDValue &Index,
1198                                                SelectionDAG &DAG) const {
1199  // Check to see if we can easily represent this as an [r+r] address.  This
1200  // will fail if it thinks that the address is more profitably represented as
1201  // reg+imm, e.g. where imm = 0.
1202  if (SelectAddressRegReg(N, Base, Index, DAG))
1203    return true;
1204
1205  // If the operand is an addition, always emit this as [r+r], since this is
1206  // better (for code size, and execution, as the memop does the add for free)
1207  // than emitting an explicit add.
1208  if (N.getOpcode() == ISD::ADD) {
1209    Base = N.getOperand(0);
1210    Index = N.getOperand(1);
1211    return true;
1212  }
1213
1214  // Otherwise, do it the hard way, using R0 as the base register.
1215  Base = DAG.getRegister(PPCSubTarget.isPPC64() ? PPC::ZERO8 : PPC::ZERO,
1216                         N.getValueType());
1217  Index = N;
1218  return true;
1219}
1220
1221/// getPreIndexedAddressParts - returns true by value, base pointer and
1222/// offset pointer and addressing mode by reference if the node's address
1223/// can be legally represented as pre-indexed load / store address.
1224bool PPCTargetLowering::getPreIndexedAddressParts(SDNode *N, SDValue &Base,
1225                                                  SDValue &Offset,
1226                                                  ISD::MemIndexedMode &AM,
1227                                                  SelectionDAG &DAG) const {
1228  if (DisablePPCPreinc) return false;
1229
1230  bool isLoad = true;
1231  SDValue Ptr;
1232  EVT VT;
1233  unsigned Alignment;
1234  if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
1235    Ptr = LD->getBasePtr();
1236    VT = LD->getMemoryVT();
1237    Alignment = LD->getAlignment();
1238  } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
1239    Ptr = ST->getBasePtr();
1240    VT  = ST->getMemoryVT();
1241    Alignment = ST->getAlignment();
1242    isLoad = false;
1243  } else
1244    return false;
1245
1246  // PowerPC doesn't have preinc load/store instructions for vectors.
1247  if (VT.isVector())
1248    return false;
1249
1250  if (SelectAddressRegReg(Ptr, Base, Offset, DAG)) {
1251
1252    // Common code will reject creating a pre-inc form if the base pointer
1253    // is a frame index, or if N is a store and the base pointer is either
1254    // the same as or a predecessor of the value being stored.  Check for
1255    // those situations here, and try with swapped Base/Offset instead.
1256    bool Swap = false;
1257
1258    if (isa<FrameIndexSDNode>(Base) || isa<RegisterSDNode>(Base))
1259      Swap = true;
1260    else if (!isLoad) {
1261      SDValue Val = cast<StoreSDNode>(N)->getValue();
1262      if (Val == Base || Base.getNode()->isPredecessorOf(Val.getNode()))
1263        Swap = true;
1264    }
1265
1266    if (Swap)
1267      std::swap(Base, Offset);
1268
1269    AM = ISD::PRE_INC;
1270    return true;
1271  }
1272
1273  // LDU/STU can only handle immediates that are a multiple of 4.
1274  if (VT != MVT::i64) {
1275    if (!SelectAddressRegImm(Ptr, Offset, Base, DAG, false))
1276      return false;
1277  } else {
1278    // LDU/STU need an address with at least 4-byte alignment.
1279    if (Alignment < 4)
1280      return false;
1281
1282    if (!SelectAddressRegImm(Ptr, Offset, Base, DAG, true))
1283      return false;
1284  }
1285
1286  if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
1287    // PPC64 doesn't have lwau, but it does have lwaux.  Reject preinc load of
1288    // sext i32 to i64 when addr mode is r+i.
1289    if (LD->getValueType(0) == MVT::i64 && LD->getMemoryVT() == MVT::i32 &&
1290        LD->getExtensionType() == ISD::SEXTLOAD &&
1291        isa<ConstantSDNode>(Offset))
1292      return false;
1293  }
1294
1295  AM = ISD::PRE_INC;
1296  return true;
1297}
1298
1299//===----------------------------------------------------------------------===//
1300//  LowerOperation implementation
1301//===----------------------------------------------------------------------===//
1302
1303/// GetLabelAccessInfo - Return true if we should reference labels using a
1304/// PICBase, set the HiOpFlags and LoOpFlags to the target MO flags.
1305static bool GetLabelAccessInfo(const TargetMachine &TM, unsigned &HiOpFlags,
1306                               unsigned &LoOpFlags, const GlobalValue *GV = 0) {
1307  HiOpFlags = PPCII::MO_HA;
1308  LoOpFlags = PPCII::MO_LO;
1309
1310  // Don't use the pic base if not in PIC relocation model.  Or if we are on a
1311  // non-darwin platform.  We don't support PIC on other platforms yet.
1312  bool isPIC = TM.getRelocationModel() == Reloc::PIC_ &&
1313               TM.getSubtarget<PPCSubtarget>().isDarwin();
1314  if (isPIC) {
1315    HiOpFlags |= PPCII::MO_PIC_FLAG;
1316    LoOpFlags |= PPCII::MO_PIC_FLAG;
1317  }
1318
1319  // If this is a reference to a global value that requires a non-lazy-ptr, make
1320  // sure that instruction lowering adds it.
1321  if (GV && TM.getSubtarget<PPCSubtarget>().hasLazyResolverStub(GV, TM)) {
1322    HiOpFlags |= PPCII::MO_NLP_FLAG;
1323    LoOpFlags |= PPCII::MO_NLP_FLAG;
1324
1325    if (GV->hasHiddenVisibility()) {
1326      HiOpFlags |= PPCII::MO_NLP_HIDDEN_FLAG;
1327      LoOpFlags |= PPCII::MO_NLP_HIDDEN_FLAG;
1328    }
1329  }
1330
1331  return isPIC;
1332}
1333
1334static SDValue LowerLabelRef(SDValue HiPart, SDValue LoPart, bool isPIC,
1335                             SelectionDAG &DAG) {
1336  EVT PtrVT = HiPart.getValueType();
1337  SDValue Zero = DAG.getConstant(0, PtrVT);
1338  SDLoc DL(HiPart);
1339
1340  SDValue Hi = DAG.getNode(PPCISD::Hi, DL, PtrVT, HiPart, Zero);
1341  SDValue Lo = DAG.getNode(PPCISD::Lo, DL, PtrVT, LoPart, Zero);
1342
1343  // With PIC, the first instruction is actually "GR+hi(&G)".
1344  if (isPIC)
1345    Hi = DAG.getNode(ISD::ADD, DL, PtrVT,
1346                     DAG.getNode(PPCISD::GlobalBaseReg, DL, PtrVT), Hi);
1347
1348  // Generate non-pic code that has direct accesses to the constant pool.
1349  // The address of the global is just (hi(&g)+lo(&g)).
1350  return DAG.getNode(ISD::ADD, DL, PtrVT, Hi, Lo);
1351}
1352
1353SDValue PPCTargetLowering::LowerConstantPool(SDValue Op,
1354                                             SelectionDAG &DAG) const {
1355  EVT PtrVT = Op.getValueType();
1356  ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
1357  const Constant *C = CP->getConstVal();
1358
1359  // 64-bit SVR4 ABI code is always position-independent.
1360  // The actual address of the GlobalValue is stored in the TOC.
1361  if (PPCSubTarget.isSVR4ABI() && PPCSubTarget.isPPC64()) {
1362    SDValue GA = DAG.getTargetConstantPool(C, PtrVT, CP->getAlignment(), 0);
1363    return DAG.getNode(PPCISD::TOC_ENTRY, SDLoc(CP), MVT::i64, GA,
1364                       DAG.getRegister(PPC::X2, MVT::i64));
1365  }
1366
1367  unsigned MOHiFlag, MOLoFlag;
1368  bool isPIC = GetLabelAccessInfo(DAG.getTarget(), MOHiFlag, MOLoFlag);
1369  SDValue CPIHi =
1370    DAG.getTargetConstantPool(C, PtrVT, CP->getAlignment(), 0, MOHiFlag);
1371  SDValue CPILo =
1372    DAG.getTargetConstantPool(C, PtrVT, CP->getAlignment(), 0, MOLoFlag);
1373  return LowerLabelRef(CPIHi, CPILo, isPIC, DAG);
1374}
1375
1376SDValue PPCTargetLowering::LowerJumpTable(SDValue Op, SelectionDAG &DAG) const {
1377  EVT PtrVT = Op.getValueType();
1378  JumpTableSDNode *JT = cast<JumpTableSDNode>(Op);
1379
1380  // 64-bit SVR4 ABI code is always position-independent.
1381  // The actual address of the GlobalValue is stored in the TOC.
1382  if (PPCSubTarget.isSVR4ABI() && PPCSubTarget.isPPC64()) {
1383    SDValue GA = DAG.getTargetJumpTable(JT->getIndex(), PtrVT);
1384    return DAG.getNode(PPCISD::TOC_ENTRY, SDLoc(JT), MVT::i64, GA,
1385                       DAG.getRegister(PPC::X2, MVT::i64));
1386  }
1387
1388  unsigned MOHiFlag, MOLoFlag;
1389  bool isPIC = GetLabelAccessInfo(DAG.getTarget(), MOHiFlag, MOLoFlag);
1390  SDValue JTIHi = DAG.getTargetJumpTable(JT->getIndex(), PtrVT, MOHiFlag);
1391  SDValue JTILo = DAG.getTargetJumpTable(JT->getIndex(), PtrVT, MOLoFlag);
1392  return LowerLabelRef(JTIHi, JTILo, isPIC, DAG);
1393}
1394
1395SDValue PPCTargetLowering::LowerBlockAddress(SDValue Op,
1396                                             SelectionDAG &DAG) const {
1397  EVT PtrVT = Op.getValueType();
1398
1399  const BlockAddress *BA = cast<BlockAddressSDNode>(Op)->getBlockAddress();
1400
1401  unsigned MOHiFlag, MOLoFlag;
1402  bool isPIC = GetLabelAccessInfo(DAG.getTarget(), MOHiFlag, MOLoFlag);
1403  SDValue TgtBAHi = DAG.getTargetBlockAddress(BA, PtrVT, 0, MOHiFlag);
1404  SDValue TgtBALo = DAG.getTargetBlockAddress(BA, PtrVT, 0, MOLoFlag);
1405  return LowerLabelRef(TgtBAHi, TgtBALo, isPIC, DAG);
1406}
1407
1408SDValue PPCTargetLowering::LowerGlobalTLSAddress(SDValue Op,
1409                                              SelectionDAG &DAG) const {
1410
1411  // FIXME: TLS addresses currently use medium model code sequences,
1412  // which is the most useful form.  Eventually support for small and
1413  // large models could be added if users need it, at the cost of
1414  // additional complexity.
1415  GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
1416  SDLoc dl(GA);
1417  const GlobalValue *GV = GA->getGlobal();
1418  EVT PtrVT = getPointerTy();
1419  bool is64bit = PPCSubTarget.isPPC64();
1420
1421  TLSModel::Model Model = getTargetMachine().getTLSModel(GV);
1422
1423  if (Model == TLSModel::LocalExec) {
1424    SDValue TGAHi = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0,
1425                                               PPCII::MO_TPREL_HA);
1426    SDValue TGALo = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0,
1427                                               PPCII::MO_TPREL_LO);
1428    SDValue TLSReg = DAG.getRegister(is64bit ? PPC::X13 : PPC::R2,
1429                                     is64bit ? MVT::i64 : MVT::i32);
1430    SDValue Hi = DAG.getNode(PPCISD::Hi, dl, PtrVT, TGAHi, TLSReg);
1431    return DAG.getNode(PPCISD::Lo, dl, PtrVT, TGALo, Hi);
1432  }
1433
1434  if (!is64bit)
1435    llvm_unreachable("only local-exec is currently supported for ppc32");
1436
1437  if (Model == TLSModel::InitialExec) {
1438    SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 0);
1439    SDValue TGATLS = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0,
1440                                                PPCII::MO_TLS);
1441    SDValue GOTReg = DAG.getRegister(PPC::X2, MVT::i64);
1442    SDValue TPOffsetHi = DAG.getNode(PPCISD::ADDIS_GOT_TPREL_HA, dl,
1443                                     PtrVT, GOTReg, TGA);
1444    SDValue TPOffset = DAG.getNode(PPCISD::LD_GOT_TPREL_L, dl,
1445                                   PtrVT, TGA, TPOffsetHi);
1446    return DAG.getNode(PPCISD::ADD_TLS, dl, PtrVT, TPOffset, TGATLS);
1447  }
1448
1449  if (Model == TLSModel::GeneralDynamic) {
1450    SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 0);
1451    SDValue GOTReg = DAG.getRegister(PPC::X2, MVT::i64);
1452    SDValue GOTEntryHi = DAG.getNode(PPCISD::ADDIS_TLSGD_HA, dl, PtrVT,
1453                                     GOTReg, TGA);
1454    SDValue GOTEntry = DAG.getNode(PPCISD::ADDI_TLSGD_L, dl, PtrVT,
1455                                   GOTEntryHi, TGA);
1456
1457    // We need a chain node, and don't have one handy.  The underlying
1458    // call has no side effects, so using the function entry node
1459    // suffices.
1460    SDValue Chain = DAG.getEntryNode();
1461    Chain = DAG.getCopyToReg(Chain, dl, PPC::X3, GOTEntry);
1462    SDValue ParmReg = DAG.getRegister(PPC::X3, MVT::i64);
1463    SDValue TLSAddr = DAG.getNode(PPCISD::GET_TLS_ADDR, dl,
1464                                  PtrVT, ParmReg, TGA);
1465    // The return value from GET_TLS_ADDR really is in X3 already, but
1466    // some hacks are needed here to tie everything together.  The extra
1467    // copies dissolve during subsequent transforms.
1468    Chain = DAG.getCopyToReg(Chain, dl, PPC::X3, TLSAddr);
1469    return DAG.getCopyFromReg(Chain, dl, PPC::X3, PtrVT);
1470  }
1471
1472  if (Model == TLSModel::LocalDynamic) {
1473    SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 0);
1474    SDValue GOTReg = DAG.getRegister(PPC::X2, MVT::i64);
1475    SDValue GOTEntryHi = DAG.getNode(PPCISD::ADDIS_TLSLD_HA, dl, PtrVT,
1476                                     GOTReg, TGA);
1477    SDValue GOTEntry = DAG.getNode(PPCISD::ADDI_TLSLD_L, dl, PtrVT,
1478                                   GOTEntryHi, TGA);
1479
1480    // We need a chain node, and don't have one handy.  The underlying
1481    // call has no side effects, so using the function entry node
1482    // suffices.
1483    SDValue Chain = DAG.getEntryNode();
1484    Chain = DAG.getCopyToReg(Chain, dl, PPC::X3, GOTEntry);
1485    SDValue ParmReg = DAG.getRegister(PPC::X3, MVT::i64);
1486    SDValue TLSAddr = DAG.getNode(PPCISD::GET_TLSLD_ADDR, dl,
1487                                  PtrVT, ParmReg, TGA);
1488    // The return value from GET_TLSLD_ADDR really is in X3 already, but
1489    // some hacks are needed here to tie everything together.  The extra
1490    // copies dissolve during subsequent transforms.
1491    Chain = DAG.getCopyToReg(Chain, dl, PPC::X3, TLSAddr);
1492    SDValue DtvOffsetHi = DAG.getNode(PPCISD::ADDIS_DTPREL_HA, dl, PtrVT,
1493                                      Chain, ParmReg, TGA);
1494    return DAG.getNode(PPCISD::ADDI_DTPREL_L, dl, PtrVT, DtvOffsetHi, TGA);
1495  }
1496
1497  llvm_unreachable("Unknown TLS model!");
1498}
1499
1500SDValue PPCTargetLowering::LowerGlobalAddress(SDValue Op,
1501                                              SelectionDAG &DAG) const {
1502  EVT PtrVT = Op.getValueType();
1503  GlobalAddressSDNode *GSDN = cast<GlobalAddressSDNode>(Op);
1504  SDLoc DL(GSDN);
1505  const GlobalValue *GV = GSDN->getGlobal();
1506
1507  // 64-bit SVR4 ABI code is always position-independent.
1508  // The actual address of the GlobalValue is stored in the TOC.
1509  if (PPCSubTarget.isSVR4ABI() && PPCSubTarget.isPPC64()) {
1510    SDValue GA = DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset());
1511    return DAG.getNode(PPCISD::TOC_ENTRY, DL, MVT::i64, GA,
1512                       DAG.getRegister(PPC::X2, MVT::i64));
1513  }
1514
1515  unsigned MOHiFlag, MOLoFlag;
1516  bool isPIC = GetLabelAccessInfo(DAG.getTarget(), MOHiFlag, MOLoFlag, GV);
1517
1518  SDValue GAHi =
1519    DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset(), MOHiFlag);
1520  SDValue GALo =
1521    DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset(), MOLoFlag);
1522
1523  SDValue Ptr = LowerLabelRef(GAHi, GALo, isPIC, DAG);
1524
1525  // If the global reference is actually to a non-lazy-pointer, we have to do an
1526  // extra load to get the address of the global.
1527  if (MOHiFlag & PPCII::MO_NLP_FLAG)
1528    Ptr = DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), Ptr, MachinePointerInfo(),
1529                      false, false, false, 0);
1530  return Ptr;
1531}
1532
1533SDValue PPCTargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) const {
1534  ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
1535  SDLoc dl(Op);
1536
1537  // If we're comparing for equality to zero, expose the fact that this is
1538  // implented as a ctlz/srl pair on ppc, so that the dag combiner can
1539  // fold the new nodes.
1540  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1541    if (C->isNullValue() && CC == ISD::SETEQ) {
1542      EVT VT = Op.getOperand(0).getValueType();
1543      SDValue Zext = Op.getOperand(0);
1544      if (VT.bitsLT(MVT::i32)) {
1545        VT = MVT::i32;
1546        Zext = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Op.getOperand(0));
1547      }
1548      unsigned Log2b = Log2_32(VT.getSizeInBits());
1549      SDValue Clz = DAG.getNode(ISD::CTLZ, dl, VT, Zext);
1550      SDValue Scc = DAG.getNode(ISD::SRL, dl, VT, Clz,
1551                                DAG.getConstant(Log2b, MVT::i32));
1552      return DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Scc);
1553    }
1554    // Leave comparisons against 0 and -1 alone for now, since they're usually
1555    // optimized.  FIXME: revisit this when we can custom lower all setcc
1556    // optimizations.
1557    if (C->isAllOnesValue() || C->isNullValue())
1558      return SDValue();
1559  }
1560
1561  // If we have an integer seteq/setne, turn it into a compare against zero
1562  // by xor'ing the rhs with the lhs, which is faster than setting a
1563  // condition register, reading it back out, and masking the correct bit.  The
1564  // normal approach here uses sub to do this instead of xor.  Using xor exposes
1565  // the result to other bit-twiddling opportunities.
1566  EVT LHSVT = Op.getOperand(0).getValueType();
1567  if (LHSVT.isInteger() && (CC == ISD::SETEQ || CC == ISD::SETNE)) {
1568    EVT VT = Op.getValueType();
1569    SDValue Sub = DAG.getNode(ISD::XOR, dl, LHSVT, Op.getOperand(0),
1570                                Op.getOperand(1));
1571    return DAG.getSetCC(dl, VT, Sub, DAG.getConstant(0, LHSVT), CC);
1572  }
1573  return SDValue();
1574}
1575
1576SDValue PPCTargetLowering::LowerVAARG(SDValue Op, SelectionDAG &DAG,
1577                                      const PPCSubtarget &Subtarget) const {
1578  SDNode *Node = Op.getNode();
1579  EVT VT = Node->getValueType(0);
1580  EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
1581  SDValue InChain = Node->getOperand(0);
1582  SDValue VAListPtr = Node->getOperand(1);
1583  const Value *SV = cast<SrcValueSDNode>(Node->getOperand(2))->getValue();
1584  SDLoc dl(Node);
1585
1586  assert(!Subtarget.isPPC64() && "LowerVAARG is PPC32 only");
1587
1588  // gpr_index
1589  SDValue GprIndex = DAG.getExtLoad(ISD::ZEXTLOAD, dl, MVT::i32, InChain,
1590                                    VAListPtr, MachinePointerInfo(SV), MVT::i8,
1591                                    false, false, 0);
1592  InChain = GprIndex.getValue(1);
1593
1594  if (VT == MVT::i64) {
1595    // Check if GprIndex is even
1596    SDValue GprAnd = DAG.getNode(ISD::AND, dl, MVT::i32, GprIndex,
1597                                 DAG.getConstant(1, MVT::i32));
1598    SDValue CC64 = DAG.getSetCC(dl, MVT::i32, GprAnd,
1599                                DAG.getConstant(0, MVT::i32), ISD::SETNE);
1600    SDValue GprIndexPlusOne = DAG.getNode(ISD::ADD, dl, MVT::i32, GprIndex,
1601                                          DAG.getConstant(1, MVT::i32));
1602    // Align GprIndex to be even if it isn't
1603    GprIndex = DAG.getNode(ISD::SELECT, dl, MVT::i32, CC64, GprIndexPlusOne,
1604                           GprIndex);
1605  }
1606
1607  // fpr index is 1 byte after gpr
1608  SDValue FprPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAListPtr,
1609                               DAG.getConstant(1, MVT::i32));
1610
1611  // fpr
1612  SDValue FprIndex = DAG.getExtLoad(ISD::ZEXTLOAD, dl, MVT::i32, InChain,
1613                                    FprPtr, MachinePointerInfo(SV), MVT::i8,
1614                                    false, false, 0);
1615  InChain = FprIndex.getValue(1);
1616
1617  SDValue RegSaveAreaPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAListPtr,
1618                                       DAG.getConstant(8, MVT::i32));
1619
1620  SDValue OverflowAreaPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAListPtr,
1621                                        DAG.getConstant(4, MVT::i32));
1622
1623  // areas
1624  SDValue OverflowArea = DAG.getLoad(MVT::i32, dl, InChain, OverflowAreaPtr,
1625                                     MachinePointerInfo(), false, false,
1626                                     false, 0);
1627  InChain = OverflowArea.getValue(1);
1628
1629  SDValue RegSaveArea = DAG.getLoad(MVT::i32, dl, InChain, RegSaveAreaPtr,
1630                                    MachinePointerInfo(), false, false,
1631                                    false, 0);
1632  InChain = RegSaveArea.getValue(1);
1633
1634  // select overflow_area if index > 8
1635  SDValue CC = DAG.getSetCC(dl, MVT::i32, VT.isInteger() ? GprIndex : FprIndex,
1636                            DAG.getConstant(8, MVT::i32), ISD::SETLT);
1637
1638  // adjustment constant gpr_index * 4/8
1639  SDValue RegConstant = DAG.getNode(ISD::MUL, dl, MVT::i32,
1640                                    VT.isInteger() ? GprIndex : FprIndex,
1641                                    DAG.getConstant(VT.isInteger() ? 4 : 8,
1642                                                    MVT::i32));
1643
1644  // OurReg = RegSaveArea + RegConstant
1645  SDValue OurReg = DAG.getNode(ISD::ADD, dl, PtrVT, RegSaveArea,
1646                               RegConstant);
1647
1648  // Floating types are 32 bytes into RegSaveArea
1649  if (VT.isFloatingPoint())
1650    OurReg = DAG.getNode(ISD::ADD, dl, PtrVT, OurReg,
1651                         DAG.getConstant(32, MVT::i32));
1652
1653  // increase {f,g}pr_index by 1 (or 2 if VT is i64)
1654  SDValue IndexPlus1 = DAG.getNode(ISD::ADD, dl, MVT::i32,
1655                                   VT.isInteger() ? GprIndex : FprIndex,
1656                                   DAG.getConstant(VT == MVT::i64 ? 2 : 1,
1657                                                   MVT::i32));
1658
1659  InChain = DAG.getTruncStore(InChain, dl, IndexPlus1,
1660                              VT.isInteger() ? VAListPtr : FprPtr,
1661                              MachinePointerInfo(SV),
1662                              MVT::i8, false, false, 0);
1663
1664  // determine if we should load from reg_save_area or overflow_area
1665  SDValue Result = DAG.getNode(ISD::SELECT, dl, PtrVT, CC, OurReg, OverflowArea);
1666
1667  // increase overflow_area by 4/8 if gpr/fpr > 8
1668  SDValue OverflowAreaPlusN = DAG.getNode(ISD::ADD, dl, PtrVT, OverflowArea,
1669                                          DAG.getConstant(VT.isInteger() ? 4 : 8,
1670                                          MVT::i32));
1671
1672  OverflowArea = DAG.getNode(ISD::SELECT, dl, MVT::i32, CC, OverflowArea,
1673                             OverflowAreaPlusN);
1674
1675  InChain = DAG.getTruncStore(InChain, dl, OverflowArea,
1676                              OverflowAreaPtr,
1677                              MachinePointerInfo(),
1678                              MVT::i32, false, false, 0);
1679
1680  return DAG.getLoad(VT, dl, InChain, Result, MachinePointerInfo(),
1681                     false, false, false, 0);
1682}
1683
1684SDValue PPCTargetLowering::LowerVACOPY(SDValue Op, SelectionDAG &DAG,
1685                                       const PPCSubtarget &Subtarget) const {
1686  assert(!Subtarget.isPPC64() && "LowerVACOPY is PPC32 only");
1687
1688  // We have to copy the entire va_list struct:
1689  // 2*sizeof(char) + 2 Byte alignment + 2*sizeof(char*) = 12 Byte
1690  return DAG.getMemcpy(Op.getOperand(0), Op,
1691                       Op.getOperand(1), Op.getOperand(2),
1692                       DAG.getConstant(12, MVT::i32), 8, false, true,
1693                       MachinePointerInfo(), MachinePointerInfo());
1694}
1695
1696SDValue PPCTargetLowering::LowerADJUST_TRAMPOLINE(SDValue Op,
1697                                                  SelectionDAG &DAG) const {
1698  return Op.getOperand(0);
1699}
1700
1701SDValue PPCTargetLowering::LowerINIT_TRAMPOLINE(SDValue Op,
1702                                                SelectionDAG &DAG) const {
1703  SDValue Chain = Op.getOperand(0);
1704  SDValue Trmp = Op.getOperand(1); // trampoline
1705  SDValue FPtr = Op.getOperand(2); // nested function
1706  SDValue Nest = Op.getOperand(3); // 'nest' parameter value
1707  SDLoc dl(Op);
1708
1709  EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
1710  bool isPPC64 = (PtrVT == MVT::i64);
1711  Type *IntPtrTy =
1712    DAG.getTargetLoweringInfo().getDataLayout()->getIntPtrType(
1713                                                             *DAG.getContext());
1714
1715  TargetLowering::ArgListTy Args;
1716  TargetLowering::ArgListEntry Entry;
1717
1718  Entry.Ty = IntPtrTy;
1719  Entry.Node = Trmp; Args.push_back(Entry);
1720
1721  // TrampSize == (isPPC64 ? 48 : 40);
1722  Entry.Node = DAG.getConstant(isPPC64 ? 48 : 40,
1723                               isPPC64 ? MVT::i64 : MVT::i32);
1724  Args.push_back(Entry);
1725
1726  Entry.Node = FPtr; Args.push_back(Entry);
1727  Entry.Node = Nest; Args.push_back(Entry);
1728
1729  // Lower to a call to __trampoline_setup(Trmp, TrampSize, FPtr, ctx_reg)
1730  TargetLowering::CallLoweringInfo CLI(Chain,
1731                                       Type::getVoidTy(*DAG.getContext()),
1732                                       false, false, false, false, 0,
1733                                       CallingConv::C,
1734                /*isTailCall=*/false,
1735                                       /*doesNotRet=*/false,
1736                                       /*isReturnValueUsed=*/true,
1737                DAG.getExternalSymbol("__trampoline_setup", PtrVT),
1738                Args, DAG, dl);
1739  std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI);
1740
1741  return CallResult.second;
1742}
1743
1744SDValue PPCTargetLowering::LowerVASTART(SDValue Op, SelectionDAG &DAG,
1745                                        const PPCSubtarget &Subtarget) const {
1746  MachineFunction &MF = DAG.getMachineFunction();
1747  PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
1748
1749  SDLoc dl(Op);
1750
1751  if (Subtarget.isDarwinABI() || Subtarget.isPPC64()) {
1752    // vastart just stores the address of the VarArgsFrameIndex slot into the
1753    // memory location argument.
1754    EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
1755    SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
1756    const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
1757    return DAG.getStore(Op.getOperand(0), dl, FR, Op.getOperand(1),
1758                        MachinePointerInfo(SV),
1759                        false, false, 0);
1760  }
1761
1762  // For the 32-bit SVR4 ABI we follow the layout of the va_list struct.
1763  // We suppose the given va_list is already allocated.
1764  //
1765  // typedef struct {
1766  //  char gpr;     /* index into the array of 8 GPRs
1767  //                 * stored in the register save area
1768  //                 * gpr=0 corresponds to r3,
1769  //                 * gpr=1 to r4, etc.
1770  //                 */
1771  //  char fpr;     /* index into the array of 8 FPRs
1772  //                 * stored in the register save area
1773  //                 * fpr=0 corresponds to f1,
1774  //                 * fpr=1 to f2, etc.
1775  //                 */
1776  //  char *overflow_arg_area;
1777  //                /* location on stack that holds
1778  //                 * the next overflow argument
1779  //                 */
1780  //  char *reg_save_area;
1781  //               /* where r3:r10 and f1:f8 (if saved)
1782  //                * are stored
1783  //                */
1784  // } va_list[1];
1785
1786
1787  SDValue ArgGPR = DAG.getConstant(FuncInfo->getVarArgsNumGPR(), MVT::i32);
1788  SDValue ArgFPR = DAG.getConstant(FuncInfo->getVarArgsNumFPR(), MVT::i32);
1789
1790
1791  EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
1792
1793  SDValue StackOffsetFI = DAG.getFrameIndex(FuncInfo->getVarArgsStackOffset(),
1794                                            PtrVT);
1795  SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(),
1796                                 PtrVT);
1797
1798  uint64_t FrameOffset = PtrVT.getSizeInBits()/8;
1799  SDValue ConstFrameOffset = DAG.getConstant(FrameOffset, PtrVT);
1800
1801  uint64_t StackOffset = PtrVT.getSizeInBits()/8 - 1;
1802  SDValue ConstStackOffset = DAG.getConstant(StackOffset, PtrVT);
1803
1804  uint64_t FPROffset = 1;
1805  SDValue ConstFPROffset = DAG.getConstant(FPROffset, PtrVT);
1806
1807  const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
1808
1809  // Store first byte : number of int regs
1810  SDValue firstStore = DAG.getTruncStore(Op.getOperand(0), dl, ArgGPR,
1811                                         Op.getOperand(1),
1812                                         MachinePointerInfo(SV),
1813                                         MVT::i8, false, false, 0);
1814  uint64_t nextOffset = FPROffset;
1815  SDValue nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, Op.getOperand(1),
1816                                  ConstFPROffset);
1817
1818  // Store second byte : number of float regs
1819  SDValue secondStore =
1820    DAG.getTruncStore(firstStore, dl, ArgFPR, nextPtr,
1821                      MachinePointerInfo(SV, nextOffset), MVT::i8,
1822                      false, false, 0);
1823  nextOffset += StackOffset;
1824  nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, nextPtr, ConstStackOffset);
1825
1826  // Store second word : arguments given on stack
1827  SDValue thirdStore =
1828    DAG.getStore(secondStore, dl, StackOffsetFI, nextPtr,
1829                 MachinePointerInfo(SV, nextOffset),
1830                 false, false, 0);
1831  nextOffset += FrameOffset;
1832  nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, nextPtr, ConstFrameOffset);
1833
1834  // Store third word : arguments given in registers
1835  return DAG.getStore(thirdStore, dl, FR, nextPtr,
1836                      MachinePointerInfo(SV, nextOffset),
1837                      false, false, 0);
1838
1839}
1840
1841#include "PPCGenCallingConv.inc"
1842
1843// Function whose sole purpose is to kill compiler warnings
1844// stemming from unused functions included from PPCGenCallingConv.inc.
1845CCAssignFn *PPCTargetLowering::useFastISelCCs(unsigned Flag) const {
1846  return Flag ? CC_PPC64_ELF_FIS : RetCC_PPC64_ELF_FIS;
1847}
1848
1849bool llvm::CC_PPC32_SVR4_Custom_Dummy(unsigned &ValNo, MVT &ValVT, MVT &LocVT,
1850                                      CCValAssign::LocInfo &LocInfo,
1851                                      ISD::ArgFlagsTy &ArgFlags,
1852                                      CCState &State) {
1853  return true;
1854}
1855
1856bool llvm::CC_PPC32_SVR4_Custom_AlignArgRegs(unsigned &ValNo, MVT &ValVT,
1857                                             MVT &LocVT,
1858                                             CCValAssign::LocInfo &LocInfo,
1859                                             ISD::ArgFlagsTy &ArgFlags,
1860                                             CCState &State) {
1861  static const uint16_t ArgRegs[] = {
1862    PPC::R3, PPC::R4, PPC::R5, PPC::R6,
1863    PPC::R7, PPC::R8, PPC::R9, PPC::R10,
1864  };
1865  const unsigned NumArgRegs = array_lengthof(ArgRegs);
1866
1867  unsigned RegNum = State.getFirstUnallocated(ArgRegs, NumArgRegs);
1868
1869  // Skip one register if the first unallocated register has an even register
1870  // number and there are still argument registers available which have not been
1871  // allocated yet. RegNum is actually an index into ArgRegs, which means we
1872  // need to skip a register if RegNum is odd.
1873  if (RegNum != NumArgRegs && RegNum % 2 == 1) {
1874    State.AllocateReg(ArgRegs[RegNum]);
1875  }
1876
1877  // Always return false here, as this function only makes sure that the first
1878  // unallocated register has an odd register number and does not actually
1879  // allocate a register for the current argument.
1880  return false;
1881}
1882
1883bool llvm::CC_PPC32_SVR4_Custom_AlignFPArgRegs(unsigned &ValNo, MVT &ValVT,
1884                                               MVT &LocVT,
1885                                               CCValAssign::LocInfo &LocInfo,
1886                                               ISD::ArgFlagsTy &ArgFlags,
1887                                               CCState &State) {
1888  static const uint16_t ArgRegs[] = {
1889    PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7,
1890    PPC::F8
1891  };
1892
1893  const unsigned NumArgRegs = array_lengthof(ArgRegs);
1894
1895  unsigned RegNum = State.getFirstUnallocated(ArgRegs, NumArgRegs);
1896
1897  // If there is only one Floating-point register left we need to put both f64
1898  // values of a split ppc_fp128 value on the stack.
1899  if (RegNum != NumArgRegs && ArgRegs[RegNum] == PPC::F8) {
1900    State.AllocateReg(ArgRegs[RegNum]);
1901  }
1902
1903  // Always return false here, as this function only makes sure that the two f64
1904  // values a ppc_fp128 value is split into are both passed in registers or both
1905  // passed on the stack and does not actually allocate a register for the
1906  // current argument.
1907  return false;
1908}
1909
1910/// GetFPR - Get the set of FP registers that should be allocated for arguments,
1911/// on Darwin.
1912static const uint16_t *GetFPR() {
1913  static const uint16_t FPR[] = {
1914    PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7,
1915    PPC::F8, PPC::F9, PPC::F10, PPC::F11, PPC::F12, PPC::F13
1916  };
1917
1918  return FPR;
1919}
1920
1921/// CalculateStackSlotSize - Calculates the size reserved for this argument on
1922/// the stack.
1923static unsigned CalculateStackSlotSize(EVT ArgVT, ISD::ArgFlagsTy Flags,
1924                                       unsigned PtrByteSize) {
1925  unsigned ArgSize = ArgVT.getSizeInBits()/8;
1926  if (Flags.isByVal())
1927    ArgSize = Flags.getByValSize();
1928  ArgSize = ((ArgSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
1929
1930  return ArgSize;
1931}
1932
1933SDValue
1934PPCTargetLowering::LowerFormalArguments(SDValue Chain,
1935                                        CallingConv::ID CallConv, bool isVarArg,
1936                                        const SmallVectorImpl<ISD::InputArg>
1937                                          &Ins,
1938                                        SDLoc dl, SelectionDAG &DAG,
1939                                        SmallVectorImpl<SDValue> &InVals)
1940                                          const {
1941  if (PPCSubTarget.isSVR4ABI()) {
1942    if (PPCSubTarget.isPPC64())
1943      return LowerFormalArguments_64SVR4(Chain, CallConv, isVarArg, Ins,
1944                                         dl, DAG, InVals);
1945    else
1946      return LowerFormalArguments_32SVR4(Chain, CallConv, isVarArg, Ins,
1947                                         dl, DAG, InVals);
1948  } else {
1949    return LowerFormalArguments_Darwin(Chain, CallConv, isVarArg, Ins,
1950                                       dl, DAG, InVals);
1951  }
1952}
1953
1954SDValue
1955PPCTargetLowering::LowerFormalArguments_32SVR4(
1956                                      SDValue Chain,
1957                                      CallingConv::ID CallConv, bool isVarArg,
1958                                      const SmallVectorImpl<ISD::InputArg>
1959                                        &Ins,
1960                                      SDLoc dl, SelectionDAG &DAG,
1961                                      SmallVectorImpl<SDValue> &InVals) const {
1962
1963  // 32-bit SVR4 ABI Stack Frame Layout:
1964  //              +-----------------------------------+
1965  //        +-->  |            Back chain             |
1966  //        |     +-----------------------------------+
1967  //        |     | Floating-point register save area |
1968  //        |     +-----------------------------------+
1969  //        |     |    General register save area     |
1970  //        |     +-----------------------------------+
1971  //        |     |          CR save word             |
1972  //        |     +-----------------------------------+
1973  //        |     |         VRSAVE save word          |
1974  //        |     +-----------------------------------+
1975  //        |     |         Alignment padding         |
1976  //        |     +-----------------------------------+
1977  //        |     |     Vector register save area     |
1978  //        |     +-----------------------------------+
1979  //        |     |       Local variable space        |
1980  //        |     +-----------------------------------+
1981  //        |     |        Parameter list area        |
1982  //        |     +-----------------------------------+
1983  //        |     |           LR save word            |
1984  //        |     +-----------------------------------+
1985  // SP-->  +---  |            Back chain             |
1986  //              +-----------------------------------+
1987  //
1988  // Specifications:
1989  //   System V Application Binary Interface PowerPC Processor Supplement
1990  //   AltiVec Technology Programming Interface Manual
1991
1992  MachineFunction &MF = DAG.getMachineFunction();
1993  MachineFrameInfo *MFI = MF.getFrameInfo();
1994  PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
1995
1996  EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
1997  // Potential tail calls could cause overwriting of argument stack slots.
1998  bool isImmutable = !(getTargetMachine().Options.GuaranteedTailCallOpt &&
1999                       (CallConv == CallingConv::Fast));
2000  unsigned PtrByteSize = 4;
2001
2002  // Assign locations to all of the incoming arguments.
2003  SmallVector<CCValAssign, 16> ArgLocs;
2004  CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(),
2005                 getTargetMachine(), ArgLocs, *DAG.getContext());
2006
2007  // Reserve space for the linkage area on the stack.
2008  CCInfo.AllocateStack(PPCFrameLowering::getLinkageSize(false, false), PtrByteSize);
2009
2010  CCInfo.AnalyzeFormalArguments(Ins, CC_PPC32_SVR4);
2011
2012  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
2013    CCValAssign &VA = ArgLocs[i];
2014
2015    // Arguments stored in registers.
2016    if (VA.isRegLoc()) {
2017      const TargetRegisterClass *RC;
2018      EVT ValVT = VA.getValVT();
2019
2020      switch (ValVT.getSimpleVT().SimpleTy) {
2021        default:
2022          llvm_unreachable("ValVT not supported by formal arguments Lowering");
2023        case MVT::i32:
2024          RC = &PPC::GPRCRegClass;
2025          break;
2026        case MVT::f32:
2027          RC = &PPC::F4RCRegClass;
2028          break;
2029        case MVT::f64:
2030          RC = &PPC::F8RCRegClass;
2031          break;
2032        case MVT::v16i8:
2033        case MVT::v8i16:
2034        case MVT::v4i32:
2035        case MVT::v4f32:
2036          RC = &PPC::VRRCRegClass;
2037          break;
2038      }
2039
2040      // Transform the arguments stored in physical registers into virtual ones.
2041      unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC);
2042      SDValue ArgValue = DAG.getCopyFromReg(Chain, dl, Reg, ValVT);
2043
2044      InVals.push_back(ArgValue);
2045    } else {
2046      // Argument stored in memory.
2047      assert(VA.isMemLoc());
2048
2049      unsigned ArgSize = VA.getLocVT().getSizeInBits() / 8;
2050      int FI = MFI->CreateFixedObject(ArgSize, VA.getLocMemOffset(),
2051                                      isImmutable);
2052
2053      // Create load nodes to retrieve arguments from the stack.
2054      SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
2055      InVals.push_back(DAG.getLoad(VA.getValVT(), dl, Chain, FIN,
2056                                   MachinePointerInfo(),
2057                                   false, false, false, 0));
2058    }
2059  }
2060
2061  // Assign locations to all of the incoming aggregate by value arguments.
2062  // Aggregates passed by value are stored in the local variable space of the
2063  // caller's stack frame, right above the parameter list area.
2064  SmallVector<CCValAssign, 16> ByValArgLocs;
2065  CCState CCByValInfo(CallConv, isVarArg, DAG.getMachineFunction(),
2066                      getTargetMachine(), ByValArgLocs, *DAG.getContext());
2067
2068  // Reserve stack space for the allocations in CCInfo.
2069  CCByValInfo.AllocateStack(CCInfo.getNextStackOffset(), PtrByteSize);
2070
2071  CCByValInfo.AnalyzeFormalArguments(Ins, CC_PPC32_SVR4_ByVal);
2072
2073  // Area that is at least reserved in the caller of this function.
2074  unsigned MinReservedArea = CCByValInfo.getNextStackOffset();
2075
2076  // Set the size that is at least reserved in caller of this function.  Tail
2077  // call optimized function's reserved stack space needs to be aligned so that
2078  // taking the difference between two stack areas will result in an aligned
2079  // stack.
2080  PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>();
2081
2082  MinReservedArea =
2083    std::max(MinReservedArea,
2084             PPCFrameLowering::getMinCallFrameSize(false, false));
2085
2086  unsigned TargetAlign = DAG.getMachineFunction().getTarget().getFrameLowering()->
2087    getStackAlignment();
2088  unsigned AlignMask = TargetAlign-1;
2089  MinReservedArea = (MinReservedArea + AlignMask) & ~AlignMask;
2090
2091  FI->setMinReservedArea(MinReservedArea);
2092
2093  SmallVector<SDValue, 8> MemOps;
2094
2095  // If the function takes variable number of arguments, make a frame index for
2096  // the start of the first vararg value... for expansion of llvm.va_start.
2097  if (isVarArg) {
2098    static const uint16_t GPArgRegs[] = {
2099      PPC::R3, PPC::R4, PPC::R5, PPC::R6,
2100      PPC::R7, PPC::R8, PPC::R9, PPC::R10,
2101    };
2102    const unsigned NumGPArgRegs = array_lengthof(GPArgRegs);
2103
2104    static const uint16_t FPArgRegs[] = {
2105      PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7,
2106      PPC::F8
2107    };
2108    const unsigned NumFPArgRegs = array_lengthof(FPArgRegs);
2109
2110    FuncInfo->setVarArgsNumGPR(CCInfo.getFirstUnallocated(GPArgRegs,
2111                                                          NumGPArgRegs));
2112    FuncInfo->setVarArgsNumFPR(CCInfo.getFirstUnallocated(FPArgRegs,
2113                                                          NumFPArgRegs));
2114
2115    // Make room for NumGPArgRegs and NumFPArgRegs.
2116    int Depth = NumGPArgRegs * PtrVT.getSizeInBits()/8 +
2117                NumFPArgRegs * EVT(MVT::f64).getSizeInBits()/8;
2118
2119    FuncInfo->setVarArgsStackOffset(
2120      MFI->CreateFixedObject(PtrVT.getSizeInBits()/8,
2121                             CCInfo.getNextStackOffset(), true));
2122
2123    FuncInfo->setVarArgsFrameIndex(MFI->CreateStackObject(Depth, 8, false));
2124    SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
2125
2126    // The fixed integer arguments of a variadic function are stored to the
2127    // VarArgsFrameIndex on the stack so that they may be loaded by deferencing
2128    // the result of va_next.
2129    for (unsigned GPRIndex = 0; GPRIndex != NumGPArgRegs; ++GPRIndex) {
2130      // Get an existing live-in vreg, or add a new one.
2131      unsigned VReg = MF.getRegInfo().getLiveInVirtReg(GPArgRegs[GPRIndex]);
2132      if (!VReg)
2133        VReg = MF.addLiveIn(GPArgRegs[GPRIndex], &PPC::GPRCRegClass);
2134
2135      SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
2136      SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN,
2137                                   MachinePointerInfo(), false, false, 0);
2138      MemOps.push_back(Store);
2139      // Increment the address by four for the next argument to store
2140      SDValue PtrOff = DAG.getConstant(PtrVT.getSizeInBits()/8, PtrVT);
2141      FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff);
2142    }
2143
2144    // FIXME 32-bit SVR4: We only need to save FP argument registers if CR bit 6
2145    // is set.
2146    // The double arguments are stored to the VarArgsFrameIndex
2147    // on the stack.
2148    for (unsigned FPRIndex = 0; FPRIndex != NumFPArgRegs; ++FPRIndex) {
2149      // Get an existing live-in vreg, or add a new one.
2150      unsigned VReg = MF.getRegInfo().getLiveInVirtReg(FPArgRegs[FPRIndex]);
2151      if (!VReg)
2152        VReg = MF.addLiveIn(FPArgRegs[FPRIndex], &PPC::F8RCRegClass);
2153
2154      SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::f64);
2155      SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN,
2156                                   MachinePointerInfo(), false, false, 0);
2157      MemOps.push_back(Store);
2158      // Increment the address by eight for the next argument to store
2159      SDValue PtrOff = DAG.getConstant(EVT(MVT::f64).getSizeInBits()/8,
2160                                         PtrVT);
2161      FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff);
2162    }
2163  }
2164
2165  if (!MemOps.empty())
2166    Chain = DAG.getNode(ISD::TokenFactor, dl,
2167                        MVT::Other, &MemOps[0], MemOps.size());
2168
2169  return Chain;
2170}
2171
2172// PPC64 passes i8, i16, and i32 values in i64 registers. Promote
2173// value to MVT::i64 and then truncate to the correct register size.
2174SDValue
2175PPCTargetLowering::extendArgForPPC64(ISD::ArgFlagsTy Flags, EVT ObjectVT,
2176                                     SelectionDAG &DAG, SDValue ArgVal,
2177                                     SDLoc dl) const {
2178  if (Flags.isSExt())
2179    ArgVal = DAG.getNode(ISD::AssertSext, dl, MVT::i64, ArgVal,
2180                         DAG.getValueType(ObjectVT));
2181  else if (Flags.isZExt())
2182    ArgVal = DAG.getNode(ISD::AssertZext, dl, MVT::i64, ArgVal,
2183                         DAG.getValueType(ObjectVT));
2184
2185  return DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, ArgVal);
2186}
2187
2188// Set the size that is at least reserved in caller of this function.  Tail
2189// call optimized functions' reserved stack space needs to be aligned so that
2190// taking the difference between two stack areas will result in an aligned
2191// stack.
2192void
2193PPCTargetLowering::setMinReservedArea(MachineFunction &MF, SelectionDAG &DAG,
2194                                      unsigned nAltivecParamsAtEnd,
2195                                      unsigned MinReservedArea,
2196                                      bool isPPC64) const {
2197  PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>();
2198  // Add the Altivec parameters at the end, if needed.
2199  if (nAltivecParamsAtEnd) {
2200    MinReservedArea = ((MinReservedArea+15)/16)*16;
2201    MinReservedArea += 16*nAltivecParamsAtEnd;
2202  }
2203  MinReservedArea =
2204    std::max(MinReservedArea,
2205             PPCFrameLowering::getMinCallFrameSize(isPPC64, true));
2206  unsigned TargetAlign
2207    = DAG.getMachineFunction().getTarget().getFrameLowering()->
2208        getStackAlignment();
2209  unsigned AlignMask = TargetAlign-1;
2210  MinReservedArea = (MinReservedArea + AlignMask) & ~AlignMask;
2211  FI->setMinReservedArea(MinReservedArea);
2212}
2213
2214SDValue
2215PPCTargetLowering::LowerFormalArguments_64SVR4(
2216                                      SDValue Chain,
2217                                      CallingConv::ID CallConv, bool isVarArg,
2218                                      const SmallVectorImpl<ISD::InputArg>
2219                                        &Ins,
2220                                      SDLoc dl, SelectionDAG &DAG,
2221                                      SmallVectorImpl<SDValue> &InVals) const {
2222  // TODO: add description of PPC stack frame format, or at least some docs.
2223  //
2224  MachineFunction &MF = DAG.getMachineFunction();
2225  MachineFrameInfo *MFI = MF.getFrameInfo();
2226  PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
2227
2228  EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
2229  // Potential tail calls could cause overwriting of argument stack slots.
2230  bool isImmutable = !(getTargetMachine().Options.GuaranteedTailCallOpt &&
2231                       (CallConv == CallingConv::Fast));
2232  unsigned PtrByteSize = 8;
2233
2234  unsigned ArgOffset = PPCFrameLowering::getLinkageSize(true, true);
2235  // Area that is at least reserved in caller of this function.
2236  unsigned MinReservedArea = ArgOffset;
2237
2238  static const uint16_t GPR[] = {
2239    PPC::X3, PPC::X4, PPC::X5, PPC::X6,
2240    PPC::X7, PPC::X8, PPC::X9, PPC::X10,
2241  };
2242
2243  static const uint16_t *FPR = GetFPR();
2244
2245  static const uint16_t VR[] = {
2246    PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
2247    PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
2248  };
2249
2250  const unsigned Num_GPR_Regs = array_lengthof(GPR);
2251  const unsigned Num_FPR_Regs = 13;
2252  const unsigned Num_VR_Regs  = array_lengthof(VR);
2253
2254  unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0;
2255
2256  // Add DAG nodes to load the arguments or copy them out of registers.  On
2257  // entry to a function on PPC, the arguments start after the linkage area,
2258  // although the first ones are often in registers.
2259
2260  SmallVector<SDValue, 8> MemOps;
2261  unsigned nAltivecParamsAtEnd = 0;
2262  Function::const_arg_iterator FuncArg = MF.getFunction()->arg_begin();
2263  unsigned CurArgIdx = 0;
2264  for (unsigned ArgNo = 0, e = Ins.size(); ArgNo != e; ++ArgNo) {
2265    SDValue ArgVal;
2266    bool needsLoad = false;
2267    EVT ObjectVT = Ins[ArgNo].VT;
2268    unsigned ObjSize = ObjectVT.getSizeInBits()/8;
2269    unsigned ArgSize = ObjSize;
2270    ISD::ArgFlagsTy Flags = Ins[ArgNo].Flags;
2271    std::advance(FuncArg, Ins[ArgNo].OrigArgIndex - CurArgIdx);
2272    CurArgIdx = Ins[ArgNo].OrigArgIndex;
2273
2274    unsigned CurArgOffset = ArgOffset;
2275
2276    // Varargs or 64 bit Altivec parameters are padded to a 16 byte boundary.
2277    if (ObjectVT==MVT::v4f32 || ObjectVT==MVT::v4i32 ||
2278        ObjectVT==MVT::v8i16 || ObjectVT==MVT::v16i8) {
2279      if (isVarArg) {
2280        MinReservedArea = ((MinReservedArea+15)/16)*16;
2281        MinReservedArea += CalculateStackSlotSize(ObjectVT,
2282                                                  Flags,
2283                                                  PtrByteSize);
2284      } else
2285        nAltivecParamsAtEnd++;
2286    } else
2287      // Calculate min reserved area.
2288      MinReservedArea += CalculateStackSlotSize(Ins[ArgNo].VT,
2289                                                Flags,
2290                                                PtrByteSize);
2291
2292    // FIXME the codegen can be much improved in some cases.
2293    // We do not have to keep everything in memory.
2294    if (Flags.isByVal()) {
2295      // ObjSize is the true size, ArgSize rounded up to multiple of registers.
2296      ObjSize = Flags.getByValSize();
2297      ArgSize = ((ObjSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
2298      // Empty aggregate parameters do not take up registers.  Examples:
2299      //   struct { } a;
2300      //   union  { } b;
2301      //   int c[0];
2302      // etc.  However, we have to provide a place-holder in InVals, so
2303      // pretend we have an 8-byte item at the current address for that
2304      // purpose.
2305      if (!ObjSize) {
2306        int FI = MFI->CreateFixedObject(PtrByteSize, ArgOffset, true);
2307        SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
2308        InVals.push_back(FIN);
2309        continue;
2310      }
2311
2312      unsigned BVAlign = Flags.getByValAlign();
2313      if (BVAlign > 8) {
2314        ArgOffset = ((ArgOffset+BVAlign-1)/BVAlign)*BVAlign;
2315        CurArgOffset = ArgOffset;
2316      }
2317
2318      // All aggregates smaller than 8 bytes must be passed right-justified.
2319      if (ObjSize < PtrByteSize)
2320        CurArgOffset = CurArgOffset + (PtrByteSize - ObjSize);
2321      // The value of the object is its address.
2322      int FI = MFI->CreateFixedObject(ObjSize, CurArgOffset, true);
2323      SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
2324      InVals.push_back(FIN);
2325
2326      if (ObjSize < 8) {
2327        if (GPR_idx != Num_GPR_Regs) {
2328          unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
2329          SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
2330          SDValue Store;
2331
2332          if (ObjSize==1 || ObjSize==2 || ObjSize==4) {
2333            EVT ObjType = (ObjSize == 1 ? MVT::i8 :
2334                           (ObjSize == 2 ? MVT::i16 : MVT::i32));
2335            Store = DAG.getTruncStore(Val.getValue(1), dl, Val, FIN,
2336                                      MachinePointerInfo(FuncArg, CurArgOffset),
2337                                      ObjType, false, false, 0);
2338          } else {
2339            // For sizes that don't fit a truncating store (3, 5, 6, 7),
2340            // store the whole register as-is to the parameter save area
2341            // slot.  The address of the parameter was already calculated
2342            // above (InVals.push_back(FIN)) to be the right-justified
2343            // offset within the slot.  For this store, we need a new
2344            // frame index that points at the beginning of the slot.
2345            int FI = MFI->CreateFixedObject(PtrByteSize, ArgOffset, true);
2346            SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
2347            Store = DAG.getStore(Val.getValue(1), dl, Val, FIN,
2348                                 MachinePointerInfo(FuncArg, ArgOffset),
2349                                 false, false, 0);
2350          }
2351
2352          MemOps.push_back(Store);
2353          ++GPR_idx;
2354        }
2355        // Whether we copied from a register or not, advance the offset
2356        // into the parameter save area by a full doubleword.
2357        ArgOffset += PtrByteSize;
2358        continue;
2359      }
2360
2361      for (unsigned j = 0; j < ArgSize; j += PtrByteSize) {
2362        // Store whatever pieces of the object are in registers
2363        // to memory.  ArgOffset will be the address of the beginning
2364        // of the object.
2365        if (GPR_idx != Num_GPR_Regs) {
2366          unsigned VReg;
2367          VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
2368          int FI = MFI->CreateFixedObject(PtrByteSize, ArgOffset, true);
2369          SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
2370          SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
2371          SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN,
2372                                       MachinePointerInfo(FuncArg, ArgOffset),
2373                                       false, false, 0);
2374          MemOps.push_back(Store);
2375          ++GPR_idx;
2376          ArgOffset += PtrByteSize;
2377        } else {
2378          ArgOffset += ArgSize - j;
2379          break;
2380        }
2381      }
2382      continue;
2383    }
2384
2385    switch (ObjectVT.getSimpleVT().SimpleTy) {
2386    default: llvm_unreachable("Unhandled argument type!");
2387    case MVT::i32:
2388    case MVT::i64:
2389      if (GPR_idx != Num_GPR_Regs) {
2390        unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
2391        ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64);
2392
2393        if (ObjectVT == MVT::i32)
2394          // PPC64 passes i8, i16, and i32 values in i64 registers. Promote
2395          // value to MVT::i64 and then truncate to the correct register size.
2396          ArgVal = extendArgForPPC64(Flags, ObjectVT, DAG, ArgVal, dl);
2397
2398        ++GPR_idx;
2399      } else {
2400        needsLoad = true;
2401        ArgSize = PtrByteSize;
2402      }
2403      ArgOffset += 8;
2404      break;
2405
2406    case MVT::f32:
2407    case MVT::f64:
2408      // Every 8 bytes of argument space consumes one of the GPRs available for
2409      // argument passing.
2410      if (GPR_idx != Num_GPR_Regs) {
2411        ++GPR_idx;
2412      }
2413      if (FPR_idx != Num_FPR_Regs) {
2414        unsigned VReg;
2415
2416        if (ObjectVT == MVT::f32)
2417          VReg = MF.addLiveIn(FPR[FPR_idx], &PPC::F4RCRegClass);
2418        else
2419          VReg = MF.addLiveIn(FPR[FPR_idx], &PPC::F8RCRegClass);
2420
2421        ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT);
2422        ++FPR_idx;
2423      } else {
2424        needsLoad = true;
2425        ArgSize = PtrByteSize;
2426      }
2427
2428      ArgOffset += 8;
2429      break;
2430    case MVT::v4f32:
2431    case MVT::v4i32:
2432    case MVT::v8i16:
2433    case MVT::v16i8:
2434      // Note that vector arguments in registers don't reserve stack space,
2435      // except in varargs functions.
2436      if (VR_idx != Num_VR_Regs) {
2437        unsigned VReg = MF.addLiveIn(VR[VR_idx], &PPC::VRRCRegClass);
2438        ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT);
2439        if (isVarArg) {
2440          while ((ArgOffset % 16) != 0) {
2441            ArgOffset += PtrByteSize;
2442            if (GPR_idx != Num_GPR_Regs)
2443              GPR_idx++;
2444          }
2445          ArgOffset += 16;
2446          GPR_idx = std::min(GPR_idx+4, Num_GPR_Regs); // FIXME correct for ppc64?
2447        }
2448        ++VR_idx;
2449      } else {
2450        // Vectors are aligned.
2451        ArgOffset = ((ArgOffset+15)/16)*16;
2452        CurArgOffset = ArgOffset;
2453        ArgOffset += 16;
2454        needsLoad = true;
2455      }
2456      break;
2457    }
2458
2459    // We need to load the argument to a virtual register if we determined
2460    // above that we ran out of physical registers of the appropriate type.
2461    if (needsLoad) {
2462      int FI = MFI->CreateFixedObject(ObjSize,
2463                                      CurArgOffset + (ArgSize - ObjSize),
2464                                      isImmutable);
2465      SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
2466      ArgVal = DAG.getLoad(ObjectVT, dl, Chain, FIN, MachinePointerInfo(),
2467                           false, false, false, 0);
2468    }
2469
2470    InVals.push_back(ArgVal);
2471  }
2472
2473  // Set the size that is at least reserved in caller of this function.  Tail
2474  // call optimized functions' reserved stack space needs to be aligned so that
2475  // taking the difference between two stack areas will result in an aligned
2476  // stack.
2477  setMinReservedArea(MF, DAG, nAltivecParamsAtEnd, MinReservedArea, true);
2478
2479  // If the function takes variable number of arguments, make a frame index for
2480  // the start of the first vararg value... for expansion of llvm.va_start.
2481  if (isVarArg) {
2482    int Depth = ArgOffset;
2483
2484    FuncInfo->setVarArgsFrameIndex(
2485      MFI->CreateFixedObject(PtrByteSize, Depth, true));
2486    SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
2487
2488    // If this function is vararg, store any remaining integer argument regs
2489    // to their spots on the stack so that they may be loaded by deferencing the
2490    // result of va_next.
2491    for (; GPR_idx != Num_GPR_Regs; ++GPR_idx) {
2492      unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
2493      SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
2494      SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN,
2495                                   MachinePointerInfo(), false, false, 0);
2496      MemOps.push_back(Store);
2497      // Increment the address by four for the next argument to store
2498      SDValue PtrOff = DAG.getConstant(PtrByteSize, PtrVT);
2499      FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff);
2500    }
2501  }
2502
2503  if (!MemOps.empty())
2504    Chain = DAG.getNode(ISD::TokenFactor, dl,
2505                        MVT::Other, &MemOps[0], MemOps.size());
2506
2507  return Chain;
2508}
2509
2510SDValue
2511PPCTargetLowering::LowerFormalArguments_Darwin(
2512                                      SDValue Chain,
2513                                      CallingConv::ID CallConv, bool isVarArg,
2514                                      const SmallVectorImpl<ISD::InputArg>
2515                                        &Ins,
2516                                      SDLoc dl, SelectionDAG &DAG,
2517                                      SmallVectorImpl<SDValue> &InVals) const {
2518  // TODO: add description of PPC stack frame format, or at least some docs.
2519  //
2520  MachineFunction &MF = DAG.getMachineFunction();
2521  MachineFrameInfo *MFI = MF.getFrameInfo();
2522  PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
2523
2524  EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
2525  bool isPPC64 = PtrVT == MVT::i64;
2526  // Potential tail calls could cause overwriting of argument stack slots.
2527  bool isImmutable = !(getTargetMachine().Options.GuaranteedTailCallOpt &&
2528                       (CallConv == CallingConv::Fast));
2529  unsigned PtrByteSize = isPPC64 ? 8 : 4;
2530
2531  unsigned ArgOffset = PPCFrameLowering::getLinkageSize(isPPC64, true);
2532  // Area that is at least reserved in caller of this function.
2533  unsigned MinReservedArea = ArgOffset;
2534
2535  static const uint16_t GPR_32[] = {           // 32-bit registers.
2536    PPC::R3, PPC::R4, PPC::R5, PPC::R6,
2537    PPC::R7, PPC::R8, PPC::R9, PPC::R10,
2538  };
2539  static const uint16_t GPR_64[] = {           // 64-bit registers.
2540    PPC::X3, PPC::X4, PPC::X5, PPC::X6,
2541    PPC::X7, PPC::X8, PPC::X9, PPC::X10,
2542  };
2543
2544  static const uint16_t *FPR = GetFPR();
2545
2546  static const uint16_t VR[] = {
2547    PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
2548    PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
2549  };
2550
2551  const unsigned Num_GPR_Regs = array_lengthof(GPR_32);
2552  const unsigned Num_FPR_Regs = 13;
2553  const unsigned Num_VR_Regs  = array_lengthof( VR);
2554
2555  unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0;
2556
2557  const uint16_t *GPR = isPPC64 ? GPR_64 : GPR_32;
2558
2559  // In 32-bit non-varargs functions, the stack space for vectors is after the
2560  // stack space for non-vectors.  We do not use this space unless we have
2561  // too many vectors to fit in registers, something that only occurs in
2562  // constructed examples:), but we have to walk the arglist to figure
2563  // that out...for the pathological case, compute VecArgOffset as the
2564  // start of the vector parameter area.  Computing VecArgOffset is the
2565  // entire point of the following loop.
2566  unsigned VecArgOffset = ArgOffset;
2567  if (!isVarArg && !isPPC64) {
2568    for (unsigned ArgNo = 0, e = Ins.size(); ArgNo != e;
2569         ++ArgNo) {
2570      EVT ObjectVT = Ins[ArgNo].VT;
2571      ISD::ArgFlagsTy Flags = Ins[ArgNo].Flags;
2572
2573      if (Flags.isByVal()) {
2574        // ObjSize is the true size, ArgSize rounded up to multiple of regs.
2575        unsigned ObjSize = Flags.getByValSize();
2576        unsigned ArgSize =
2577                ((ObjSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
2578        VecArgOffset += ArgSize;
2579        continue;
2580      }
2581
2582      switch(ObjectVT.getSimpleVT().SimpleTy) {
2583      default: llvm_unreachable("Unhandled argument type!");
2584      case MVT::i32:
2585      case MVT::f32:
2586        VecArgOffset += 4;
2587        break;
2588      case MVT::i64:  // PPC64
2589      case MVT::f64:
2590        // FIXME: We are guaranteed to be !isPPC64 at this point.
2591        // Does MVT::i64 apply?
2592        VecArgOffset += 8;
2593        break;
2594      case MVT::v4f32:
2595      case MVT::v4i32:
2596      case MVT::v8i16:
2597      case MVT::v16i8:
2598        // Nothing to do, we're only looking at Nonvector args here.
2599        break;
2600      }
2601    }
2602  }
2603  // We've found where the vector parameter area in memory is.  Skip the
2604  // first 12 parameters; these don't use that memory.
2605  VecArgOffset = ((VecArgOffset+15)/16)*16;
2606  VecArgOffset += 12*16;
2607
2608  // Add DAG nodes to load the arguments or copy them out of registers.  On
2609  // entry to a function on PPC, the arguments start after the linkage area,
2610  // although the first ones are often in registers.
2611
2612  SmallVector<SDValue, 8> MemOps;
2613  unsigned nAltivecParamsAtEnd = 0;
2614  Function::const_arg_iterator FuncArg = MF.getFunction()->arg_begin();
2615  unsigned CurArgIdx = 0;
2616  for (unsigned ArgNo = 0, e = Ins.size(); ArgNo != e; ++ArgNo) {
2617    SDValue ArgVal;
2618    bool needsLoad = false;
2619    EVT ObjectVT = Ins[ArgNo].VT;
2620    unsigned ObjSize = ObjectVT.getSizeInBits()/8;
2621    unsigned ArgSize = ObjSize;
2622    ISD::ArgFlagsTy Flags = Ins[ArgNo].Flags;
2623    std::advance(FuncArg, Ins[ArgNo].OrigArgIndex - CurArgIdx);
2624    CurArgIdx = Ins[ArgNo].OrigArgIndex;
2625
2626    unsigned CurArgOffset = ArgOffset;
2627
2628    // Varargs or 64 bit Altivec parameters are padded to a 16 byte boundary.
2629    if (ObjectVT==MVT::v4f32 || ObjectVT==MVT::v4i32 ||
2630        ObjectVT==MVT::v8i16 || ObjectVT==MVT::v16i8) {
2631      if (isVarArg || isPPC64) {
2632        MinReservedArea = ((MinReservedArea+15)/16)*16;
2633        MinReservedArea += CalculateStackSlotSize(ObjectVT,
2634                                                  Flags,
2635                                                  PtrByteSize);
2636      } else  nAltivecParamsAtEnd++;
2637    } else
2638      // Calculate min reserved area.
2639      MinReservedArea += CalculateStackSlotSize(Ins[ArgNo].VT,
2640                                                Flags,
2641                                                PtrByteSize);
2642
2643    // FIXME the codegen can be much improved in some cases.
2644    // We do not have to keep everything in memory.
2645    if (Flags.isByVal()) {
2646      // ObjSize is the true size, ArgSize rounded up to multiple of registers.
2647      ObjSize = Flags.getByValSize();
2648      ArgSize = ((ObjSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
2649      // Objects of size 1 and 2 are right justified, everything else is
2650      // left justified.  This means the memory address is adjusted forwards.
2651      if (ObjSize==1 || ObjSize==2) {
2652        CurArgOffset = CurArgOffset + (4 - ObjSize);
2653      }
2654      // The value of the object is its address.
2655      int FI = MFI->CreateFixedObject(ObjSize, CurArgOffset, true);
2656      SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
2657      InVals.push_back(FIN);
2658      if (ObjSize==1 || ObjSize==2) {
2659        if (GPR_idx != Num_GPR_Regs) {
2660          unsigned VReg;
2661          if (isPPC64)
2662            VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
2663          else
2664            VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass);
2665          SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
2666          EVT ObjType = ObjSize == 1 ? MVT::i8 : MVT::i16;
2667          SDValue Store = DAG.getTruncStore(Val.getValue(1), dl, Val, FIN,
2668                                            MachinePointerInfo(FuncArg,
2669                                              CurArgOffset),
2670                                            ObjType, false, false, 0);
2671          MemOps.push_back(Store);
2672          ++GPR_idx;
2673        }
2674
2675        ArgOffset += PtrByteSize;
2676
2677        continue;
2678      }
2679      for (unsigned j = 0; j < ArgSize; j += PtrByteSize) {
2680        // Store whatever pieces of the object are in registers
2681        // to memory.  ArgOffset will be the address of the beginning
2682        // of the object.
2683        if (GPR_idx != Num_GPR_Regs) {
2684          unsigned VReg;
2685          if (isPPC64)
2686            VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
2687          else
2688            VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass);
2689          int FI = MFI->CreateFixedObject(PtrByteSize, ArgOffset, true);
2690          SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
2691          SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
2692          SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN,
2693                                       MachinePointerInfo(FuncArg, ArgOffset),
2694                                       false, false, 0);
2695          MemOps.push_back(Store);
2696          ++GPR_idx;
2697          ArgOffset += PtrByteSize;
2698        } else {
2699          ArgOffset += ArgSize - (ArgOffset-CurArgOffset);
2700          break;
2701        }
2702      }
2703      continue;
2704    }
2705
2706    switch (ObjectVT.getSimpleVT().SimpleTy) {
2707    default: llvm_unreachable("Unhandled argument type!");
2708    case MVT::i32:
2709      if (!isPPC64) {
2710        if (GPR_idx != Num_GPR_Regs) {
2711          unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass);
2712          ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i32);
2713          ++GPR_idx;
2714        } else {
2715          needsLoad = true;
2716          ArgSize = PtrByteSize;
2717        }
2718        // All int arguments reserve stack space in the Darwin ABI.
2719        ArgOffset += PtrByteSize;
2720        break;
2721      }
2722      // FALLTHROUGH
2723    case MVT::i64:  // PPC64
2724      if (GPR_idx != Num_GPR_Regs) {
2725        unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
2726        ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64);
2727
2728        if (ObjectVT == MVT::i32)
2729          // PPC64 passes i8, i16, and i32 values in i64 registers. Promote
2730          // value to MVT::i64 and then truncate to the correct register size.
2731          ArgVal = extendArgForPPC64(Flags, ObjectVT, DAG, ArgVal, dl);
2732
2733        ++GPR_idx;
2734      } else {
2735        needsLoad = true;
2736        ArgSize = PtrByteSize;
2737      }
2738      // All int arguments reserve stack space in the Darwin ABI.
2739      ArgOffset += 8;
2740      break;
2741
2742    case MVT::f32:
2743    case MVT::f64:
2744      // Every 4 bytes of argument space consumes one of the GPRs available for
2745      // argument passing.
2746      if (GPR_idx != Num_GPR_Regs) {
2747        ++GPR_idx;
2748        if (ObjSize == 8 && GPR_idx != Num_GPR_Regs && !isPPC64)
2749          ++GPR_idx;
2750      }
2751      if (FPR_idx != Num_FPR_Regs) {
2752        unsigned VReg;
2753
2754        if (ObjectVT == MVT::f32)
2755          VReg = MF.addLiveIn(FPR[FPR_idx], &PPC::F4RCRegClass);
2756        else
2757          VReg = MF.addLiveIn(FPR[FPR_idx], &PPC::F8RCRegClass);
2758
2759        ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT);
2760        ++FPR_idx;
2761      } else {
2762        needsLoad = true;
2763      }
2764
2765      // All FP arguments reserve stack space in the Darwin ABI.
2766      ArgOffset += isPPC64 ? 8 : ObjSize;
2767      break;
2768    case MVT::v4f32:
2769    case MVT::v4i32:
2770    case MVT::v8i16:
2771    case MVT::v16i8:
2772      // Note that vector arguments in registers don't reserve stack space,
2773      // except in varargs functions.
2774      if (VR_idx != Num_VR_Regs) {
2775        unsigned VReg = MF.addLiveIn(VR[VR_idx], &PPC::VRRCRegClass);
2776        ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT);
2777        if (isVarArg) {
2778          while ((ArgOffset % 16) != 0) {
2779            ArgOffset += PtrByteSize;
2780            if (GPR_idx != Num_GPR_Regs)
2781              GPR_idx++;
2782          }
2783          ArgOffset += 16;
2784          GPR_idx = std::min(GPR_idx+4, Num_GPR_Regs); // FIXME correct for ppc64?
2785        }
2786        ++VR_idx;
2787      } else {
2788        if (!isVarArg && !isPPC64) {
2789          // Vectors go after all the nonvectors.
2790          CurArgOffset = VecArgOffset;
2791          VecArgOffset += 16;
2792        } else {
2793          // Vectors are aligned.
2794          ArgOffset = ((ArgOffset+15)/16)*16;
2795          CurArgOffset = ArgOffset;
2796          ArgOffset += 16;
2797        }
2798        needsLoad = true;
2799      }
2800      break;
2801    }
2802
2803    // We need to load the argument to a virtual register if we determined above
2804    // that we ran out of physical registers of the appropriate type.
2805    if (needsLoad) {
2806      int FI = MFI->CreateFixedObject(ObjSize,
2807                                      CurArgOffset + (ArgSize - ObjSize),
2808                                      isImmutable);
2809      SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
2810      ArgVal = DAG.getLoad(ObjectVT, dl, Chain, FIN, MachinePointerInfo(),
2811                           false, false, false, 0);
2812    }
2813
2814    InVals.push_back(ArgVal);
2815  }
2816
2817  // Set the size that is at least reserved in caller of this function.  Tail
2818  // call optimized functions' reserved stack space needs to be aligned so that
2819  // taking the difference between two stack areas will result in an aligned
2820  // stack.
2821  setMinReservedArea(MF, DAG, nAltivecParamsAtEnd, MinReservedArea, isPPC64);
2822
2823  // If the function takes variable number of arguments, make a frame index for
2824  // the start of the first vararg value... for expansion of llvm.va_start.
2825  if (isVarArg) {
2826    int Depth = ArgOffset;
2827
2828    FuncInfo->setVarArgsFrameIndex(
2829      MFI->CreateFixedObject(PtrVT.getSizeInBits()/8,
2830                             Depth, true));
2831    SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
2832
2833    // If this function is vararg, store any remaining integer argument regs
2834    // to their spots on the stack so that they may be loaded by deferencing the
2835    // result of va_next.
2836    for (; GPR_idx != Num_GPR_Regs; ++GPR_idx) {
2837      unsigned VReg;
2838
2839      if (isPPC64)
2840        VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
2841      else
2842        VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass);
2843
2844      SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
2845      SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN,
2846                                   MachinePointerInfo(), false, false, 0);
2847      MemOps.push_back(Store);
2848      // Increment the address by four for the next argument to store
2849      SDValue PtrOff = DAG.getConstant(PtrVT.getSizeInBits()/8, PtrVT);
2850      FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff);
2851    }
2852  }
2853
2854  if (!MemOps.empty())
2855    Chain = DAG.getNode(ISD::TokenFactor, dl,
2856                        MVT::Other, &MemOps[0], MemOps.size());
2857
2858  return Chain;
2859}
2860
2861/// CalculateParameterAndLinkageAreaSize - Get the size of the parameter plus
2862/// linkage area for the Darwin ABI, or the 64-bit SVR4 ABI.
2863static unsigned
2864CalculateParameterAndLinkageAreaSize(SelectionDAG &DAG,
2865                                     bool isPPC64,
2866                                     bool isVarArg,
2867                                     unsigned CC,
2868                                     const SmallVectorImpl<ISD::OutputArg>
2869                                       &Outs,
2870                                     const SmallVectorImpl<SDValue> &OutVals,
2871                                     unsigned &nAltivecParamsAtEnd) {
2872  // Count how many bytes are to be pushed on the stack, including the linkage
2873  // area, and parameter passing area.  We start with 24/48 bytes, which is
2874  // prereserved space for [SP][CR][LR][3 x unused].
2875  unsigned NumBytes = PPCFrameLowering::getLinkageSize(isPPC64, true);
2876  unsigned NumOps = Outs.size();
2877  unsigned PtrByteSize = isPPC64 ? 8 : 4;
2878
2879  // Add up all the space actually used.
2880  // In 32-bit non-varargs calls, Altivec parameters all go at the end; usually
2881  // they all go in registers, but we must reserve stack space for them for
2882  // possible use by the caller.  In varargs or 64-bit calls, parameters are
2883  // assigned stack space in order, with padding so Altivec parameters are
2884  // 16-byte aligned.
2885  nAltivecParamsAtEnd = 0;
2886  for (unsigned i = 0; i != NumOps; ++i) {
2887    ISD::ArgFlagsTy Flags = Outs[i].Flags;
2888    EVT ArgVT = Outs[i].VT;
2889    // Varargs Altivec parameters are padded to a 16 byte boundary.
2890    if (ArgVT==MVT::v4f32 || ArgVT==MVT::v4i32 ||
2891        ArgVT==MVT::v8i16 || ArgVT==MVT::v16i8) {
2892      if (!isVarArg && !isPPC64) {
2893        // Non-varargs Altivec parameters go after all the non-Altivec
2894        // parameters; handle those later so we know how much padding we need.
2895        nAltivecParamsAtEnd++;
2896        continue;
2897      }
2898      // Varargs and 64-bit Altivec parameters are padded to 16 byte boundary.
2899      NumBytes = ((NumBytes+15)/16)*16;
2900    }
2901    NumBytes += CalculateStackSlotSize(ArgVT, Flags, PtrByteSize);
2902  }
2903
2904   // Allow for Altivec parameters at the end, if needed.
2905  if (nAltivecParamsAtEnd) {
2906    NumBytes = ((NumBytes+15)/16)*16;
2907    NumBytes += 16*nAltivecParamsAtEnd;
2908  }
2909
2910  // The prolog code of the callee may store up to 8 GPR argument registers to
2911  // the stack, allowing va_start to index over them in memory if its varargs.
2912  // Because we cannot tell if this is needed on the caller side, we have to
2913  // conservatively assume that it is needed.  As such, make sure we have at
2914  // least enough stack space for the caller to store the 8 GPRs.
2915  NumBytes = std::max(NumBytes,
2916                      PPCFrameLowering::getMinCallFrameSize(isPPC64, true));
2917
2918  // Tail call needs the stack to be aligned.
2919  if (CC == CallingConv::Fast && DAG.getTarget().Options.GuaranteedTailCallOpt){
2920    unsigned TargetAlign = DAG.getMachineFunction().getTarget().
2921      getFrameLowering()->getStackAlignment();
2922    unsigned AlignMask = TargetAlign-1;
2923    NumBytes = (NumBytes + AlignMask) & ~AlignMask;
2924  }
2925
2926  return NumBytes;
2927}
2928
2929/// CalculateTailCallSPDiff - Get the amount the stack pointer has to be
2930/// adjusted to accommodate the arguments for the tailcall.
2931static int CalculateTailCallSPDiff(SelectionDAG& DAG, bool isTailCall,
2932                                   unsigned ParamSize) {
2933
2934  if (!isTailCall) return 0;
2935
2936  PPCFunctionInfo *FI = DAG.getMachineFunction().getInfo<PPCFunctionInfo>();
2937  unsigned CallerMinReservedArea = FI->getMinReservedArea();
2938  int SPDiff = (int)CallerMinReservedArea - (int)ParamSize;
2939  // Remember only if the new adjustement is bigger.
2940  if (SPDiff < FI->getTailCallSPDelta())
2941    FI->setTailCallSPDelta(SPDiff);
2942
2943  return SPDiff;
2944}
2945
2946/// IsEligibleForTailCallOptimization - Check whether the call is eligible
2947/// for tail call optimization. Targets which want to do tail call
2948/// optimization should implement this function.
2949bool
2950PPCTargetLowering::IsEligibleForTailCallOptimization(SDValue Callee,
2951                                                     CallingConv::ID CalleeCC,
2952                                                     bool isVarArg,
2953                                      const SmallVectorImpl<ISD::InputArg> &Ins,
2954                                                     SelectionDAG& DAG) const {
2955  if (!getTargetMachine().Options.GuaranteedTailCallOpt)
2956    return false;
2957
2958  // Variable argument functions are not supported.
2959  if (isVarArg)
2960    return false;
2961
2962  MachineFunction &MF = DAG.getMachineFunction();
2963  CallingConv::ID CallerCC = MF.getFunction()->getCallingConv();
2964  if (CalleeCC == CallingConv::Fast && CallerCC == CalleeCC) {
2965    // Functions containing by val parameters are not supported.
2966    for (unsigned i = 0; i != Ins.size(); i++) {
2967       ISD::ArgFlagsTy Flags = Ins[i].Flags;
2968       if (Flags.isByVal()) return false;
2969    }
2970
2971    // Non PIC/GOT  tail calls are supported.
2972    if (getTargetMachine().getRelocationModel() != Reloc::PIC_)
2973      return true;
2974
2975    // At the moment we can only do local tail calls (in same module, hidden
2976    // or protected) if we are generating PIC.
2977    if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee))
2978      return G->getGlobal()->hasHiddenVisibility()
2979          || G->getGlobal()->hasProtectedVisibility();
2980  }
2981
2982  return false;
2983}
2984
2985/// isCallCompatibleAddress - Return the immediate to use if the specified
2986/// 32-bit value is representable in the immediate field of a BxA instruction.
2987static SDNode *isBLACompatibleAddress(SDValue Op, SelectionDAG &DAG) {
2988  ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op);
2989  if (!C) return 0;
2990
2991  int Addr = C->getZExtValue();
2992  if ((Addr & 3) != 0 ||  // Low 2 bits are implicitly zero.
2993      SignExtend32<26>(Addr) != Addr)
2994    return 0;  // Top 6 bits have to be sext of immediate.
2995
2996  return DAG.getConstant((int)C->getZExtValue() >> 2,
2997                         DAG.getTargetLoweringInfo().getPointerTy()).getNode();
2998}
2999
3000namespace {
3001
3002struct TailCallArgumentInfo {
3003  SDValue Arg;
3004  SDValue FrameIdxOp;
3005  int       FrameIdx;
3006
3007  TailCallArgumentInfo() : FrameIdx(0) {}
3008};
3009
3010}
3011
3012/// StoreTailCallArgumentsToStackSlot - Stores arguments to their stack slot.
3013static void
3014StoreTailCallArgumentsToStackSlot(SelectionDAG &DAG,
3015                                           SDValue Chain,
3016                   const SmallVectorImpl<TailCallArgumentInfo> &TailCallArgs,
3017                   SmallVectorImpl<SDValue> &MemOpChains,
3018                   SDLoc dl) {
3019  for (unsigned i = 0, e = TailCallArgs.size(); i != e; ++i) {
3020    SDValue Arg = TailCallArgs[i].Arg;
3021    SDValue FIN = TailCallArgs[i].FrameIdxOp;
3022    int FI = TailCallArgs[i].FrameIdx;
3023    // Store relative to framepointer.
3024    MemOpChains.push_back(DAG.getStore(Chain, dl, Arg, FIN,
3025                                       MachinePointerInfo::getFixedStack(FI),
3026                                       false, false, 0));
3027  }
3028}
3029
3030/// EmitTailCallStoreFPAndRetAddr - Move the frame pointer and return address to
3031/// the appropriate stack slot for the tail call optimized function call.
3032static SDValue EmitTailCallStoreFPAndRetAddr(SelectionDAG &DAG,
3033                                               MachineFunction &MF,
3034                                               SDValue Chain,
3035                                               SDValue OldRetAddr,
3036                                               SDValue OldFP,
3037                                               int SPDiff,
3038                                               bool isPPC64,
3039                                               bool isDarwinABI,
3040                                               SDLoc dl) {
3041  if (SPDiff) {
3042    // Calculate the new stack slot for the return address.
3043    int SlotSize = isPPC64 ? 8 : 4;
3044    int NewRetAddrLoc = SPDiff + PPCFrameLowering::getReturnSaveOffset(isPPC64,
3045                                                                   isDarwinABI);
3046    int NewRetAddr = MF.getFrameInfo()->CreateFixedObject(SlotSize,
3047                                                          NewRetAddrLoc, true);
3048    EVT VT = isPPC64 ? MVT::i64 : MVT::i32;
3049    SDValue NewRetAddrFrIdx = DAG.getFrameIndex(NewRetAddr, VT);
3050    Chain = DAG.getStore(Chain, dl, OldRetAddr, NewRetAddrFrIdx,
3051                         MachinePointerInfo::getFixedStack(NewRetAddr),
3052                         false, false, 0);
3053
3054    // When using the 32/64-bit SVR4 ABI there is no need to move the FP stack
3055    // slot as the FP is never overwritten.
3056    if (isDarwinABI) {
3057      int NewFPLoc =
3058        SPDiff + PPCFrameLowering::getFramePointerSaveOffset(isPPC64, isDarwinABI);
3059      int NewFPIdx = MF.getFrameInfo()->CreateFixedObject(SlotSize, NewFPLoc,
3060                                                          true);
3061      SDValue NewFramePtrIdx = DAG.getFrameIndex(NewFPIdx, VT);
3062      Chain = DAG.getStore(Chain, dl, OldFP, NewFramePtrIdx,
3063                           MachinePointerInfo::getFixedStack(NewFPIdx),
3064                           false, false, 0);
3065    }
3066  }
3067  return Chain;
3068}
3069
3070/// CalculateTailCallArgDest - Remember Argument for later processing. Calculate
3071/// the position of the argument.
3072static void
3073CalculateTailCallArgDest(SelectionDAG &DAG, MachineFunction &MF, bool isPPC64,
3074                         SDValue Arg, int SPDiff, unsigned ArgOffset,
3075                     SmallVectorImpl<TailCallArgumentInfo>& TailCallArguments) {
3076  int Offset = ArgOffset + SPDiff;
3077  uint32_t OpSize = (Arg.getValueType().getSizeInBits()+7)/8;
3078  int FI = MF.getFrameInfo()->CreateFixedObject(OpSize, Offset, true);
3079  EVT VT = isPPC64 ? MVT::i64 : MVT::i32;
3080  SDValue FIN = DAG.getFrameIndex(FI, VT);
3081  TailCallArgumentInfo Info;
3082  Info.Arg = Arg;
3083  Info.FrameIdxOp = FIN;
3084  Info.FrameIdx = FI;
3085  TailCallArguments.push_back(Info);
3086}
3087
3088/// EmitTCFPAndRetAddrLoad - Emit load from frame pointer and return address
3089/// stack slot. Returns the chain as result and the loaded frame pointers in
3090/// LROpOut/FPOpout. Used when tail calling.
3091SDValue PPCTargetLowering::EmitTailCallLoadFPAndRetAddr(SelectionDAG & DAG,
3092                                                        int SPDiff,
3093                                                        SDValue Chain,
3094                                                        SDValue &LROpOut,
3095                                                        SDValue &FPOpOut,
3096                                                        bool isDarwinABI,
3097                                                        SDLoc dl) const {
3098  if (SPDiff) {
3099    // Load the LR and FP stack slot for later adjusting.
3100    EVT VT = PPCSubTarget.isPPC64() ? MVT::i64 : MVT::i32;
3101    LROpOut = getReturnAddrFrameIndex(DAG);
3102    LROpOut = DAG.getLoad(VT, dl, Chain, LROpOut, MachinePointerInfo(),
3103                          false, false, false, 0);
3104    Chain = SDValue(LROpOut.getNode(), 1);
3105
3106    // When using the 32/64-bit SVR4 ABI there is no need to load the FP stack
3107    // slot as the FP is never overwritten.
3108    if (isDarwinABI) {
3109      FPOpOut = getFramePointerFrameIndex(DAG);
3110      FPOpOut = DAG.getLoad(VT, dl, Chain, FPOpOut, MachinePointerInfo(),
3111                            false, false, false, 0);
3112      Chain = SDValue(FPOpOut.getNode(), 1);
3113    }
3114  }
3115  return Chain;
3116}
3117
3118/// CreateCopyOfByValArgument - Make a copy of an aggregate at address specified
3119/// by "Src" to address "Dst" of size "Size".  Alignment information is
3120/// specified by the specific parameter attribute. The copy will be passed as
3121/// a byval function parameter.
3122/// Sometimes what we are copying is the end of a larger object, the part that
3123/// does not fit in registers.
3124static SDValue
3125CreateCopyOfByValArgument(SDValue Src, SDValue Dst, SDValue Chain,
3126                          ISD::ArgFlagsTy Flags, SelectionDAG &DAG,
3127                          SDLoc dl) {
3128  SDValue SizeNode = DAG.getConstant(Flags.getByValSize(), MVT::i32);
3129  return DAG.getMemcpy(Chain, dl, Dst, Src, SizeNode, Flags.getByValAlign(),
3130                       false, false, MachinePointerInfo(0),
3131                       MachinePointerInfo(0));
3132}
3133
3134/// LowerMemOpCallTo - Store the argument to the stack or remember it in case of
3135/// tail calls.
3136static void
3137LowerMemOpCallTo(SelectionDAG &DAG, MachineFunction &MF, SDValue Chain,
3138                 SDValue Arg, SDValue PtrOff, int SPDiff,
3139                 unsigned ArgOffset, bool isPPC64, bool isTailCall,
3140                 bool isVector, SmallVectorImpl<SDValue> &MemOpChains,
3141                 SmallVectorImpl<TailCallArgumentInfo> &TailCallArguments,
3142                 SDLoc dl) {
3143  EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
3144  if (!isTailCall) {
3145    if (isVector) {
3146      SDValue StackPtr;
3147      if (isPPC64)
3148        StackPtr = DAG.getRegister(PPC::X1, MVT::i64);
3149      else
3150        StackPtr = DAG.getRegister(PPC::R1, MVT::i32);
3151      PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr,
3152                           DAG.getConstant(ArgOffset, PtrVT));
3153    }
3154    MemOpChains.push_back(DAG.getStore(Chain, dl, Arg, PtrOff,
3155                                       MachinePointerInfo(), false, false, 0));
3156  // Calculate and remember argument location.
3157  } else CalculateTailCallArgDest(DAG, MF, isPPC64, Arg, SPDiff, ArgOffset,
3158                                  TailCallArguments);
3159}
3160
3161static
3162void PrepareTailCall(SelectionDAG &DAG, SDValue &InFlag, SDValue &Chain,
3163                     SDLoc dl, bool isPPC64, int SPDiff, unsigned NumBytes,
3164                     SDValue LROp, SDValue FPOp, bool isDarwinABI,
3165                     SmallVectorImpl<TailCallArgumentInfo> &TailCallArguments) {
3166  MachineFunction &MF = DAG.getMachineFunction();
3167
3168  // Emit a sequence of copyto/copyfrom virtual registers for arguments that
3169  // might overwrite each other in case of tail call optimization.
3170  SmallVector<SDValue, 8> MemOpChains2;
3171  // Do not flag preceding copytoreg stuff together with the following stuff.
3172  InFlag = SDValue();
3173  StoreTailCallArgumentsToStackSlot(DAG, Chain, TailCallArguments,
3174                                    MemOpChains2, dl);
3175  if (!MemOpChains2.empty())
3176    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3177                        &MemOpChains2[0], MemOpChains2.size());
3178
3179  // Store the return address to the appropriate stack slot.
3180  Chain = EmitTailCallStoreFPAndRetAddr(DAG, MF, Chain, LROp, FPOp, SPDiff,
3181                                        isPPC64, isDarwinABI, dl);
3182
3183  // Emit callseq_end just before tailcall node.
3184  Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, true),
3185                             DAG.getIntPtrConstant(0, true), InFlag, dl);
3186  InFlag = Chain.getValue(1);
3187}
3188
3189static
3190unsigned PrepareCall(SelectionDAG &DAG, SDValue &Callee, SDValue &InFlag,
3191                     SDValue &Chain, SDLoc dl, int SPDiff, bool isTailCall,
3192                     SmallVectorImpl<std::pair<unsigned, SDValue> > &RegsToPass,
3193                     SmallVectorImpl<SDValue> &Ops, std::vector<EVT> &NodeTys,
3194                     const PPCSubtarget &PPCSubTarget) {
3195
3196  bool isPPC64 = PPCSubTarget.isPPC64();
3197  bool isSVR4ABI = PPCSubTarget.isSVR4ABI();
3198
3199  EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
3200  NodeTys.push_back(MVT::Other);   // Returns a chain
3201  NodeTys.push_back(MVT::Glue);    // Returns a flag for retval copy to use.
3202
3203  unsigned CallOpc = PPCISD::CALL;
3204
3205  bool needIndirectCall = true;
3206  if (SDNode *Dest = isBLACompatibleAddress(Callee, DAG)) {
3207    // If this is an absolute destination address, use the munged value.
3208    Callee = SDValue(Dest, 0);
3209    needIndirectCall = false;
3210  }
3211
3212  if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
3213    // XXX Work around for http://llvm.org/bugs/show_bug.cgi?id=5201
3214    // Use indirect calls for ALL functions calls in JIT mode, since the
3215    // far-call stubs may be outside relocation limits for a BL instruction.
3216    if (!DAG.getTarget().getSubtarget<PPCSubtarget>().isJITCodeModel()) {
3217      unsigned OpFlags = 0;
3218      if (DAG.getTarget().getRelocationModel() != Reloc::Static &&
3219          (PPCSubTarget.getTargetTriple().isMacOSX() &&
3220           PPCSubTarget.getTargetTriple().isMacOSXVersionLT(10, 5)) &&
3221          (G->getGlobal()->isDeclaration() ||
3222           G->getGlobal()->isWeakForLinker())) {
3223        // PC-relative references to external symbols should go through $stub,
3224        // unless we're building with the leopard linker or later, which
3225        // automatically synthesizes these stubs.
3226        OpFlags = PPCII::MO_DARWIN_STUB;
3227      }
3228
3229      // If the callee is a GlobalAddress/ExternalSymbol node (quite common,
3230      // every direct call is) turn it into a TargetGlobalAddress /
3231      // TargetExternalSymbol node so that legalize doesn't hack it.
3232      Callee = DAG.getTargetGlobalAddress(G->getGlobal(), dl,
3233                                          Callee.getValueType(),
3234                                          0, OpFlags);
3235      needIndirectCall = false;
3236    }
3237  }
3238
3239  if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
3240    unsigned char OpFlags = 0;
3241
3242    if (DAG.getTarget().getRelocationModel() != Reloc::Static &&
3243        (PPCSubTarget.getTargetTriple().isMacOSX() &&
3244         PPCSubTarget.getTargetTriple().isMacOSXVersionLT(10, 5))) {
3245      // PC-relative references to external symbols should go through $stub,
3246      // unless we're building with the leopard linker or later, which
3247      // automatically synthesizes these stubs.
3248      OpFlags = PPCII::MO_DARWIN_STUB;
3249    }
3250
3251    Callee = DAG.getTargetExternalSymbol(S->getSymbol(), Callee.getValueType(),
3252                                         OpFlags);
3253    needIndirectCall = false;
3254  }
3255
3256  if (needIndirectCall) {
3257    // Otherwise, this is an indirect call.  We have to use a MTCTR/BCTRL pair
3258    // to do the call, we can't use PPCISD::CALL.
3259    SDValue MTCTROps[] = {Chain, Callee, InFlag};
3260
3261    if (isSVR4ABI && isPPC64) {
3262      // Function pointers in the 64-bit SVR4 ABI do not point to the function
3263      // entry point, but to the function descriptor (the function entry point
3264      // address is part of the function descriptor though).
3265      // The function descriptor is a three doubleword structure with the
3266      // following fields: function entry point, TOC base address and
3267      // environment pointer.
3268      // Thus for a call through a function pointer, the following actions need
3269      // to be performed:
3270      //   1. Save the TOC of the caller in the TOC save area of its stack
3271      //      frame (this is done in LowerCall_Darwin() or LowerCall_64SVR4()).
3272      //   2. Load the address of the function entry point from the function
3273      //      descriptor.
3274      //   3. Load the TOC of the callee from the function descriptor into r2.
3275      //   4. Load the environment pointer from the function descriptor into
3276      //      r11.
3277      //   5. Branch to the function entry point address.
3278      //   6. On return of the callee, the TOC of the caller needs to be
3279      //      restored (this is done in FinishCall()).
3280      //
3281      // All those operations are flagged together to ensure that no other
3282      // operations can be scheduled in between. E.g. without flagging the
3283      // operations together, a TOC access in the caller could be scheduled
3284      // between the load of the callee TOC and the branch to the callee, which
3285      // results in the TOC access going through the TOC of the callee instead
3286      // of going through the TOC of the caller, which leads to incorrect code.
3287
3288      // Load the address of the function entry point from the function
3289      // descriptor.
3290      SDVTList VTs = DAG.getVTList(MVT::i64, MVT::Other, MVT::Glue);
3291      SDValue LoadFuncPtr = DAG.getNode(PPCISD::LOAD, dl, VTs, MTCTROps,
3292                                        InFlag.getNode() ? 3 : 2);
3293      Chain = LoadFuncPtr.getValue(1);
3294      InFlag = LoadFuncPtr.getValue(2);
3295
3296      // Load environment pointer into r11.
3297      // Offset of the environment pointer within the function descriptor.
3298      SDValue PtrOff = DAG.getIntPtrConstant(16);
3299
3300      SDValue AddPtr = DAG.getNode(ISD::ADD, dl, MVT::i64, Callee, PtrOff);
3301      SDValue LoadEnvPtr = DAG.getNode(PPCISD::LOAD, dl, VTs, Chain, AddPtr,
3302                                       InFlag);
3303      Chain = LoadEnvPtr.getValue(1);
3304      InFlag = LoadEnvPtr.getValue(2);
3305
3306      SDValue EnvVal = DAG.getCopyToReg(Chain, dl, PPC::X11, LoadEnvPtr,
3307                                        InFlag);
3308      Chain = EnvVal.getValue(0);
3309      InFlag = EnvVal.getValue(1);
3310
3311      // Load TOC of the callee into r2. We are using a target-specific load
3312      // with r2 hard coded, because the result of a target-independent load
3313      // would never go directly into r2, since r2 is a reserved register (which
3314      // prevents the register allocator from allocating it), resulting in an
3315      // additional register being allocated and an unnecessary move instruction
3316      // being generated.
3317      VTs = DAG.getVTList(MVT::Other, MVT::Glue);
3318      SDValue LoadTOCPtr = DAG.getNode(PPCISD::LOAD_TOC, dl, VTs, Chain,
3319                                       Callee, InFlag);
3320      Chain = LoadTOCPtr.getValue(0);
3321      InFlag = LoadTOCPtr.getValue(1);
3322
3323      MTCTROps[0] = Chain;
3324      MTCTROps[1] = LoadFuncPtr;
3325      MTCTROps[2] = InFlag;
3326    }
3327
3328    Chain = DAG.getNode(PPCISD::MTCTR, dl, NodeTys, MTCTROps,
3329                        2 + (InFlag.getNode() != 0));
3330    InFlag = Chain.getValue(1);
3331
3332    NodeTys.clear();
3333    NodeTys.push_back(MVT::Other);
3334    NodeTys.push_back(MVT::Glue);
3335    Ops.push_back(Chain);
3336    CallOpc = PPCISD::BCTRL;
3337    Callee.setNode(0);
3338    // Add use of X11 (holding environment pointer)
3339    if (isSVR4ABI && isPPC64)
3340      Ops.push_back(DAG.getRegister(PPC::X11, PtrVT));
3341    // Add CTR register as callee so a bctr can be emitted later.
3342    if (isTailCall)
3343      Ops.push_back(DAG.getRegister(isPPC64 ? PPC::CTR8 : PPC::CTR, PtrVT));
3344  }
3345
3346  // If this is a direct call, pass the chain and the callee.
3347  if (Callee.getNode()) {
3348    Ops.push_back(Chain);
3349    Ops.push_back(Callee);
3350  }
3351  // If this is a tail call add stack pointer delta.
3352  if (isTailCall)
3353    Ops.push_back(DAG.getConstant(SPDiff, MVT::i32));
3354
3355  // Add argument registers to the end of the list so that they are known live
3356  // into the call.
3357  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
3358    Ops.push_back(DAG.getRegister(RegsToPass[i].first,
3359                                  RegsToPass[i].second.getValueType()));
3360
3361  return CallOpc;
3362}
3363
3364static
3365bool isLocalCall(const SDValue &Callee)
3366{
3367  if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee))
3368    return !G->getGlobal()->isDeclaration() &&
3369           !G->getGlobal()->isWeakForLinker();
3370  return false;
3371}
3372
3373SDValue
3374PPCTargetLowering::LowerCallResult(SDValue Chain, SDValue InFlag,
3375                                   CallingConv::ID CallConv, bool isVarArg,
3376                                   const SmallVectorImpl<ISD::InputArg> &Ins,
3377                                   SDLoc dl, SelectionDAG &DAG,
3378                                   SmallVectorImpl<SDValue> &InVals) const {
3379
3380  SmallVector<CCValAssign, 16> RVLocs;
3381  CCState CCRetInfo(CallConv, isVarArg, DAG.getMachineFunction(),
3382                    getTargetMachine(), RVLocs, *DAG.getContext());
3383  CCRetInfo.AnalyzeCallResult(Ins, RetCC_PPC);
3384
3385  // Copy all of the result registers out of their specified physreg.
3386  for (unsigned i = 0, e = RVLocs.size(); i != e; ++i) {
3387    CCValAssign &VA = RVLocs[i];
3388    assert(VA.isRegLoc() && "Can only return in registers!");
3389
3390    SDValue Val = DAG.getCopyFromReg(Chain, dl,
3391                                     VA.getLocReg(), VA.getLocVT(), InFlag);
3392    Chain = Val.getValue(1);
3393    InFlag = Val.getValue(2);
3394
3395    switch (VA.getLocInfo()) {
3396    default: llvm_unreachable("Unknown loc info!");
3397    case CCValAssign::Full: break;
3398    case CCValAssign::AExt:
3399      Val = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), Val);
3400      break;
3401    case CCValAssign::ZExt:
3402      Val = DAG.getNode(ISD::AssertZext, dl, VA.getLocVT(), Val,
3403                        DAG.getValueType(VA.getValVT()));
3404      Val = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), Val);
3405      break;
3406    case CCValAssign::SExt:
3407      Val = DAG.getNode(ISD::AssertSext, dl, VA.getLocVT(), Val,
3408                        DAG.getValueType(VA.getValVT()));
3409      Val = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), Val);
3410      break;
3411    }
3412
3413    InVals.push_back(Val);
3414  }
3415
3416  return Chain;
3417}
3418
3419SDValue
3420PPCTargetLowering::FinishCall(CallingConv::ID CallConv, SDLoc dl,
3421                              bool isTailCall, bool isVarArg,
3422                              SelectionDAG &DAG,
3423                              SmallVector<std::pair<unsigned, SDValue>, 8>
3424                                &RegsToPass,
3425                              SDValue InFlag, SDValue Chain,
3426                              SDValue &Callee,
3427                              int SPDiff, unsigned NumBytes,
3428                              const SmallVectorImpl<ISD::InputArg> &Ins,
3429                              SmallVectorImpl<SDValue> &InVals) const {
3430  std::vector<EVT> NodeTys;
3431  SmallVector<SDValue, 8> Ops;
3432  unsigned CallOpc = PrepareCall(DAG, Callee, InFlag, Chain, dl, SPDiff,
3433                                 isTailCall, RegsToPass, Ops, NodeTys,
3434                                 PPCSubTarget);
3435
3436  // Add implicit use of CR bit 6 for 32-bit SVR4 vararg calls
3437  if (isVarArg && PPCSubTarget.isSVR4ABI() && !PPCSubTarget.isPPC64())
3438    Ops.push_back(DAG.getRegister(PPC::CR1EQ, MVT::i32));
3439
3440  // When performing tail call optimization the callee pops its arguments off
3441  // the stack. Account for this here so these bytes can be pushed back on in
3442  // PPCFrameLowering::eliminateCallFramePseudoInstr.
3443  int BytesCalleePops =
3444    (CallConv == CallingConv::Fast &&
3445     getTargetMachine().Options.GuaranteedTailCallOpt) ? NumBytes : 0;
3446
3447  // Add a register mask operand representing the call-preserved registers.
3448  const TargetRegisterInfo *TRI = getTargetMachine().getRegisterInfo();
3449  const uint32_t *Mask = TRI->getCallPreservedMask(CallConv);
3450  assert(Mask && "Missing call preserved mask for calling convention");
3451  Ops.push_back(DAG.getRegisterMask(Mask));
3452
3453  if (InFlag.getNode())
3454    Ops.push_back(InFlag);
3455
3456  // Emit tail call.
3457  if (isTailCall) {
3458    assert(((Callee.getOpcode() == ISD::Register &&
3459             cast<RegisterSDNode>(Callee)->getReg() == PPC::CTR) ||
3460            Callee.getOpcode() == ISD::TargetExternalSymbol ||
3461            Callee.getOpcode() == ISD::TargetGlobalAddress ||
3462            isa<ConstantSDNode>(Callee)) &&
3463    "Expecting an global address, external symbol, absolute value or register");
3464
3465    return DAG.getNode(PPCISD::TC_RETURN, dl, MVT::Other, &Ops[0], Ops.size());
3466  }
3467
3468  // Add a NOP immediately after the branch instruction when using the 64-bit
3469  // SVR4 ABI. At link time, if caller and callee are in a different module and
3470  // thus have a different TOC, the call will be replaced with a call to a stub
3471  // function which saves the current TOC, loads the TOC of the callee and
3472  // branches to the callee. The NOP will be replaced with a load instruction
3473  // which restores the TOC of the caller from the TOC save slot of the current
3474  // stack frame. If caller and callee belong to the same module (and have the
3475  // same TOC), the NOP will remain unchanged.
3476
3477  bool needsTOCRestore = false;
3478  if (!isTailCall && PPCSubTarget.isSVR4ABI()&& PPCSubTarget.isPPC64()) {
3479    if (CallOpc == PPCISD::BCTRL) {
3480      // This is a call through a function pointer.
3481      // Restore the caller TOC from the save area into R2.
3482      // See PrepareCall() for more information about calls through function
3483      // pointers in the 64-bit SVR4 ABI.
3484      // We are using a target-specific load with r2 hard coded, because the
3485      // result of a target-independent load would never go directly into r2,
3486      // since r2 is a reserved register (which prevents the register allocator
3487      // from allocating it), resulting in an additional register being
3488      // allocated and an unnecessary move instruction being generated.
3489      needsTOCRestore = true;
3490    } else if ((CallOpc == PPCISD::CALL) &&
3491               (!isLocalCall(Callee) ||
3492                DAG.getTarget().getRelocationModel() == Reloc::PIC_)) {
3493      // Otherwise insert NOP for non-local calls.
3494      CallOpc = PPCISD::CALL_NOP;
3495    }
3496  }
3497
3498  Chain = DAG.getNode(CallOpc, dl, NodeTys, &Ops[0], Ops.size());
3499  InFlag = Chain.getValue(1);
3500
3501  if (needsTOCRestore) {
3502    SDVTList VTs = DAG.getVTList(MVT::Other, MVT::Glue);
3503    Chain = DAG.getNode(PPCISD::TOC_RESTORE, dl, VTs, Chain, InFlag);
3504    InFlag = Chain.getValue(1);
3505  }
3506
3507  Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, true),
3508                             DAG.getIntPtrConstant(BytesCalleePops, true),
3509                             InFlag, dl);
3510  if (!Ins.empty())
3511    InFlag = Chain.getValue(1);
3512
3513  return LowerCallResult(Chain, InFlag, CallConv, isVarArg,
3514                         Ins, dl, DAG, InVals);
3515}
3516
3517SDValue
3518PPCTargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI,
3519                             SmallVectorImpl<SDValue> &InVals) const {
3520  SelectionDAG &DAG                     = CLI.DAG;
3521  SDLoc &dl                             = CLI.DL;
3522  SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs;
3523  SmallVectorImpl<SDValue> &OutVals     = CLI.OutVals;
3524  SmallVectorImpl<ISD::InputArg> &Ins   = CLI.Ins;
3525  SDValue Chain                         = CLI.Chain;
3526  SDValue Callee                        = CLI.Callee;
3527  bool &isTailCall                      = CLI.IsTailCall;
3528  CallingConv::ID CallConv              = CLI.CallConv;
3529  bool isVarArg                         = CLI.IsVarArg;
3530
3531  if (isTailCall)
3532    isTailCall = IsEligibleForTailCallOptimization(Callee, CallConv, isVarArg,
3533                                                   Ins, DAG);
3534
3535  if (PPCSubTarget.isSVR4ABI()) {
3536    if (PPCSubTarget.isPPC64())
3537      return LowerCall_64SVR4(Chain, Callee, CallConv, isVarArg,
3538                              isTailCall, Outs, OutVals, Ins,
3539                              dl, DAG, InVals);
3540    else
3541      return LowerCall_32SVR4(Chain, Callee, CallConv, isVarArg,
3542                              isTailCall, Outs, OutVals, Ins,
3543                              dl, DAG, InVals);
3544  }
3545
3546  return LowerCall_Darwin(Chain, Callee, CallConv, isVarArg,
3547                          isTailCall, Outs, OutVals, Ins,
3548                          dl, DAG, InVals);
3549}
3550
3551SDValue
3552PPCTargetLowering::LowerCall_32SVR4(SDValue Chain, SDValue Callee,
3553                                    CallingConv::ID CallConv, bool isVarArg,
3554                                    bool isTailCall,
3555                                    const SmallVectorImpl<ISD::OutputArg> &Outs,
3556                                    const SmallVectorImpl<SDValue> &OutVals,
3557                                    const SmallVectorImpl<ISD::InputArg> &Ins,
3558                                    SDLoc dl, SelectionDAG &DAG,
3559                                    SmallVectorImpl<SDValue> &InVals) const {
3560  // See PPCTargetLowering::LowerFormalArguments_32SVR4() for a description
3561  // of the 32-bit SVR4 ABI stack frame layout.
3562
3563  assert((CallConv == CallingConv::C ||
3564          CallConv == CallingConv::Fast) && "Unknown calling convention!");
3565
3566  unsigned PtrByteSize = 4;
3567
3568  MachineFunction &MF = DAG.getMachineFunction();
3569
3570  // Mark this function as potentially containing a function that contains a
3571  // tail call. As a consequence the frame pointer will be used for dynamicalloc
3572  // and restoring the callers stack pointer in this functions epilog. This is
3573  // done because by tail calling the called function might overwrite the value
3574  // in this function's (MF) stack pointer stack slot 0(SP).
3575  if (getTargetMachine().Options.GuaranteedTailCallOpt &&
3576      CallConv == CallingConv::Fast)
3577    MF.getInfo<PPCFunctionInfo>()->setHasFastCall();
3578
3579  // Count how many bytes are to be pushed on the stack, including the linkage
3580  // area, parameter list area and the part of the local variable space which
3581  // contains copies of aggregates which are passed by value.
3582
3583  // Assign locations to all of the outgoing arguments.
3584  SmallVector<CCValAssign, 16> ArgLocs;
3585  CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(),
3586                 getTargetMachine(), ArgLocs, *DAG.getContext());
3587
3588  // Reserve space for the linkage area on the stack.
3589  CCInfo.AllocateStack(PPCFrameLowering::getLinkageSize(false, false), PtrByteSize);
3590
3591  if (isVarArg) {
3592    // Handle fixed and variable vector arguments differently.
3593    // Fixed vector arguments go into registers as long as registers are
3594    // available. Variable vector arguments always go into memory.
3595    unsigned NumArgs = Outs.size();
3596
3597    for (unsigned i = 0; i != NumArgs; ++i) {
3598      MVT ArgVT = Outs[i].VT;
3599      ISD::ArgFlagsTy ArgFlags = Outs[i].Flags;
3600      bool Result;
3601
3602      if (Outs[i].IsFixed) {
3603        Result = CC_PPC32_SVR4(i, ArgVT, ArgVT, CCValAssign::Full, ArgFlags,
3604                               CCInfo);
3605      } else {
3606        Result = CC_PPC32_SVR4_VarArg(i, ArgVT, ArgVT, CCValAssign::Full,
3607                                      ArgFlags, CCInfo);
3608      }
3609
3610      if (Result) {
3611#ifndef NDEBUG
3612        errs() << "Call operand #" << i << " has unhandled type "
3613             << EVT(ArgVT).getEVTString() << "\n";
3614#endif
3615        llvm_unreachable(0);
3616      }
3617    }
3618  } else {
3619    // All arguments are treated the same.
3620    CCInfo.AnalyzeCallOperands(Outs, CC_PPC32_SVR4);
3621  }
3622
3623  // Assign locations to all of the outgoing aggregate by value arguments.
3624  SmallVector<CCValAssign, 16> ByValArgLocs;
3625  CCState CCByValInfo(CallConv, isVarArg, DAG.getMachineFunction(),
3626                      getTargetMachine(), ByValArgLocs, *DAG.getContext());
3627
3628  // Reserve stack space for the allocations in CCInfo.
3629  CCByValInfo.AllocateStack(CCInfo.getNextStackOffset(), PtrByteSize);
3630
3631  CCByValInfo.AnalyzeCallOperands(Outs, CC_PPC32_SVR4_ByVal);
3632
3633  // Size of the linkage area, parameter list area and the part of the local
3634  // space variable where copies of aggregates which are passed by value are
3635  // stored.
3636  unsigned NumBytes = CCByValInfo.getNextStackOffset();
3637
3638  // Calculate by how many bytes the stack has to be adjusted in case of tail
3639  // call optimization.
3640  int SPDiff = CalculateTailCallSPDiff(DAG, isTailCall, NumBytes);
3641
3642  // Adjust the stack pointer for the new arguments...
3643  // These operations are automatically eliminated by the prolog/epilog pass
3644  Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(NumBytes, true),
3645                               dl);
3646  SDValue CallSeqStart = Chain;
3647
3648  // Load the return address and frame pointer so it can be moved somewhere else
3649  // later.
3650  SDValue LROp, FPOp;
3651  Chain = EmitTailCallLoadFPAndRetAddr(DAG, SPDiff, Chain, LROp, FPOp, false,
3652                                       dl);
3653
3654  // Set up a copy of the stack pointer for use loading and storing any
3655  // arguments that may not fit in the registers available for argument
3656  // passing.
3657  SDValue StackPtr = DAG.getRegister(PPC::R1, MVT::i32);
3658
3659  SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
3660  SmallVector<TailCallArgumentInfo, 8> TailCallArguments;
3661  SmallVector<SDValue, 8> MemOpChains;
3662
3663  bool seenFloatArg = false;
3664  // Walk the register/memloc assignments, inserting copies/loads.
3665  for (unsigned i = 0, j = 0, e = ArgLocs.size();
3666       i != e;
3667       ++i) {
3668    CCValAssign &VA = ArgLocs[i];
3669    SDValue Arg = OutVals[i];
3670    ISD::ArgFlagsTy Flags = Outs[i].Flags;
3671
3672    if (Flags.isByVal()) {
3673      // Argument is an aggregate which is passed by value, thus we need to
3674      // create a copy of it in the local variable space of the current stack
3675      // frame (which is the stack frame of the caller) and pass the address of
3676      // this copy to the callee.
3677      assert((j < ByValArgLocs.size()) && "Index out of bounds!");
3678      CCValAssign &ByValVA = ByValArgLocs[j++];
3679      assert((VA.getValNo() == ByValVA.getValNo()) && "ValNo mismatch!");
3680
3681      // Memory reserved in the local variable space of the callers stack frame.
3682      unsigned LocMemOffset = ByValVA.getLocMemOffset();
3683
3684      SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset);
3685      PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr, PtrOff);
3686
3687      // Create a copy of the argument in the local area of the current
3688      // stack frame.
3689      SDValue MemcpyCall =
3690        CreateCopyOfByValArgument(Arg, PtrOff,
3691                                  CallSeqStart.getNode()->getOperand(0),
3692                                  Flags, DAG, dl);
3693
3694      // This must go outside the CALLSEQ_START..END.
3695      SDValue NewCallSeqStart = DAG.getCALLSEQ_START(MemcpyCall,
3696                           CallSeqStart.getNode()->getOperand(1),
3697                           SDLoc(MemcpyCall));
3698      DAG.ReplaceAllUsesWith(CallSeqStart.getNode(),
3699                             NewCallSeqStart.getNode());
3700      Chain = CallSeqStart = NewCallSeqStart;
3701
3702      // Pass the address of the aggregate copy on the stack either in a
3703      // physical register or in the parameter list area of the current stack
3704      // frame to the callee.
3705      Arg = PtrOff;
3706    }
3707
3708    if (VA.isRegLoc()) {
3709      seenFloatArg |= VA.getLocVT().isFloatingPoint();
3710      // Put argument in a physical register.
3711      RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
3712    } else {
3713      // Put argument in the parameter list area of the current stack frame.
3714      assert(VA.isMemLoc());
3715      unsigned LocMemOffset = VA.getLocMemOffset();
3716
3717      if (!isTailCall) {
3718        SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset);
3719        PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr, PtrOff);
3720
3721        MemOpChains.push_back(DAG.getStore(Chain, dl, Arg, PtrOff,
3722                                           MachinePointerInfo(),
3723                                           false, false, 0));
3724      } else {
3725        // Calculate and remember argument location.
3726        CalculateTailCallArgDest(DAG, MF, false, Arg, SPDiff, LocMemOffset,
3727                                 TailCallArguments);
3728      }
3729    }
3730  }
3731
3732  if (!MemOpChains.empty())
3733    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3734                        &MemOpChains[0], MemOpChains.size());
3735
3736  // Build a sequence of copy-to-reg nodes chained together with token chain
3737  // and flag operands which copy the outgoing args into the appropriate regs.
3738  SDValue InFlag;
3739  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
3740    Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
3741                             RegsToPass[i].second, InFlag);
3742    InFlag = Chain.getValue(1);
3743  }
3744
3745  // Set CR bit 6 to true if this is a vararg call with floating args passed in
3746  // registers.
3747  if (isVarArg) {
3748    SDVTList VTs = DAG.getVTList(MVT::Other, MVT::Glue);
3749    SDValue Ops[] = { Chain, InFlag };
3750
3751    Chain = DAG.getNode(seenFloatArg ? PPCISD::CR6SET : PPCISD::CR6UNSET,
3752                        dl, VTs, Ops, InFlag.getNode() ? 2 : 1);
3753
3754    InFlag = Chain.getValue(1);
3755  }
3756
3757  if (isTailCall)
3758    PrepareTailCall(DAG, InFlag, Chain, dl, false, SPDiff, NumBytes, LROp, FPOp,
3759                    false, TailCallArguments);
3760
3761  return FinishCall(CallConv, dl, isTailCall, isVarArg, DAG,
3762                    RegsToPass, InFlag, Chain, Callee, SPDiff, NumBytes,
3763                    Ins, InVals);
3764}
3765
3766// Copy an argument into memory, being careful to do this outside the
3767// call sequence for the call to which the argument belongs.
3768SDValue
3769PPCTargetLowering::createMemcpyOutsideCallSeq(SDValue Arg, SDValue PtrOff,
3770                                              SDValue CallSeqStart,
3771                                              ISD::ArgFlagsTy Flags,
3772                                              SelectionDAG &DAG,
3773                                              SDLoc dl) const {
3774  SDValue MemcpyCall = CreateCopyOfByValArgument(Arg, PtrOff,
3775                        CallSeqStart.getNode()->getOperand(0),
3776                        Flags, DAG, dl);
3777  // The MEMCPY must go outside the CALLSEQ_START..END.
3778  SDValue NewCallSeqStart = DAG.getCALLSEQ_START(MemcpyCall,
3779                             CallSeqStart.getNode()->getOperand(1),
3780                             SDLoc(MemcpyCall));
3781  DAG.ReplaceAllUsesWith(CallSeqStart.getNode(),
3782                         NewCallSeqStart.getNode());
3783  return NewCallSeqStart;
3784}
3785
3786SDValue
3787PPCTargetLowering::LowerCall_64SVR4(SDValue Chain, SDValue Callee,
3788                                    CallingConv::ID CallConv, bool isVarArg,
3789                                    bool isTailCall,
3790                                    const SmallVectorImpl<ISD::OutputArg> &Outs,
3791                                    const SmallVectorImpl<SDValue> &OutVals,
3792                                    const SmallVectorImpl<ISD::InputArg> &Ins,
3793                                    SDLoc dl, SelectionDAG &DAG,
3794                                    SmallVectorImpl<SDValue> &InVals) const {
3795
3796  unsigned NumOps = Outs.size();
3797
3798  EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
3799  unsigned PtrByteSize = 8;
3800
3801  MachineFunction &MF = DAG.getMachineFunction();
3802
3803  // Mark this function as potentially containing a function that contains a
3804  // tail call. As a consequence the frame pointer will be used for dynamicalloc
3805  // and restoring the callers stack pointer in this functions epilog. This is
3806  // done because by tail calling the called function might overwrite the value
3807  // in this function's (MF) stack pointer stack slot 0(SP).
3808  if (getTargetMachine().Options.GuaranteedTailCallOpt &&
3809      CallConv == CallingConv::Fast)
3810    MF.getInfo<PPCFunctionInfo>()->setHasFastCall();
3811
3812  unsigned nAltivecParamsAtEnd = 0;
3813
3814  // Count how many bytes are to be pushed on the stack, including the linkage
3815  // area, and parameter passing area.  We start with at least 48 bytes, which
3816  // is reserved space for [SP][CR][LR][3 x unused].
3817  // NOTE: For PPC64, nAltivecParamsAtEnd always remains zero as a result
3818  // of this call.
3819  unsigned NumBytes =
3820    CalculateParameterAndLinkageAreaSize(DAG, true, isVarArg, CallConv,
3821                                         Outs, OutVals, nAltivecParamsAtEnd);
3822
3823  // Calculate by how many bytes the stack has to be adjusted in case of tail
3824  // call optimization.
3825  int SPDiff = CalculateTailCallSPDiff(DAG, isTailCall, NumBytes);
3826
3827  // To protect arguments on the stack from being clobbered in a tail call,
3828  // force all the loads to happen before doing any other lowering.
3829  if (isTailCall)
3830    Chain = DAG.getStackArgumentTokenFactor(Chain);
3831
3832  // Adjust the stack pointer for the new arguments...
3833  // These operations are automatically eliminated by the prolog/epilog pass
3834  Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(NumBytes, true),
3835                               dl);
3836  SDValue CallSeqStart = Chain;
3837
3838  // Load the return address and frame pointer so it can be move somewhere else
3839  // later.
3840  SDValue LROp, FPOp;
3841  Chain = EmitTailCallLoadFPAndRetAddr(DAG, SPDiff, Chain, LROp, FPOp, true,
3842                                       dl);
3843
3844  // Set up a copy of the stack pointer for use loading and storing any
3845  // arguments that may not fit in the registers available for argument
3846  // passing.
3847  SDValue StackPtr = DAG.getRegister(PPC::X1, MVT::i64);
3848
3849  // Figure out which arguments are going to go in registers, and which in
3850  // memory.  Also, if this is a vararg function, floating point operations
3851  // must be stored to our stack, and loaded into integer regs as well, if
3852  // any integer regs are available for argument passing.
3853  unsigned ArgOffset = PPCFrameLowering::getLinkageSize(true, true);
3854  unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0;
3855
3856  static const uint16_t GPR[] = {
3857    PPC::X3, PPC::X4, PPC::X5, PPC::X6,
3858    PPC::X7, PPC::X8, PPC::X9, PPC::X10,
3859  };
3860  static const uint16_t *FPR = GetFPR();
3861
3862  static const uint16_t VR[] = {
3863    PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
3864    PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
3865  };
3866  const unsigned NumGPRs = array_lengthof(GPR);
3867  const unsigned NumFPRs = 13;
3868  const unsigned NumVRs  = array_lengthof(VR);
3869
3870  SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
3871  SmallVector<TailCallArgumentInfo, 8> TailCallArguments;
3872
3873  SmallVector<SDValue, 8> MemOpChains;
3874  for (unsigned i = 0; i != NumOps; ++i) {
3875    SDValue Arg = OutVals[i];
3876    ISD::ArgFlagsTy Flags = Outs[i].Flags;
3877
3878    // PtrOff will be used to store the current argument to the stack if a
3879    // register cannot be found for it.
3880    SDValue PtrOff;
3881
3882    PtrOff = DAG.getConstant(ArgOffset, StackPtr.getValueType());
3883
3884    PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff);
3885
3886    // Promote integers to 64-bit values.
3887    if (Arg.getValueType() == MVT::i32) {
3888      // FIXME: Should this use ANY_EXTEND if neither sext nor zext?
3889      unsigned ExtOp = Flags.isSExt() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
3890      Arg = DAG.getNode(ExtOp, dl, MVT::i64, Arg);
3891    }
3892
3893    // FIXME memcpy is used way more than necessary.  Correctness first.
3894    // Note: "by value" is code for passing a structure by value, not
3895    // basic types.
3896    if (Flags.isByVal()) {
3897      // Note: Size includes alignment padding, so
3898      //   struct x { short a; char b; }
3899      // will have Size = 4.  With #pragma pack(1), it will have Size = 3.
3900      // These are the proper values we need for right-justifying the
3901      // aggregate in a parameter register.
3902      unsigned Size = Flags.getByValSize();
3903
3904      // An empty aggregate parameter takes up no storage and no
3905      // registers.
3906      if (Size == 0)
3907        continue;
3908
3909      unsigned BVAlign = Flags.getByValAlign();
3910      if (BVAlign > 8) {
3911        if (BVAlign % PtrByteSize != 0)
3912          llvm_unreachable(
3913            "ByVal alignment is not a multiple of the pointer size");
3914
3915        ArgOffset = ((ArgOffset+BVAlign-1)/BVAlign)*BVAlign;
3916      }
3917
3918      // All aggregates smaller than 8 bytes must be passed right-justified.
3919      if (Size==1 || Size==2 || Size==4) {
3920        EVT VT = (Size==1) ? MVT::i8 : ((Size==2) ? MVT::i16 : MVT::i32);
3921        if (GPR_idx != NumGPRs) {
3922          SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, dl, PtrVT, Chain, Arg,
3923                                        MachinePointerInfo(), VT,
3924                                        false, false, 0);
3925          MemOpChains.push_back(Load.getValue(1));
3926          RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
3927
3928          ArgOffset += PtrByteSize;
3929          continue;
3930        }
3931      }
3932
3933      if (GPR_idx == NumGPRs && Size < 8) {
3934        SDValue Const = DAG.getConstant(PtrByteSize - Size,
3935                                        PtrOff.getValueType());
3936        SDValue AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, Const);
3937        Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, AddPtr,
3938                                                          CallSeqStart,
3939                                                          Flags, DAG, dl);
3940        ArgOffset += PtrByteSize;
3941        continue;
3942      }
3943      // Copy entire object into memory.  There are cases where gcc-generated
3944      // code assumes it is there, even if it could be put entirely into
3945      // registers.  (This is not what the doc says.)
3946
3947      // FIXME: The above statement is likely due to a misunderstanding of the
3948      // documents.  All arguments must be copied into the parameter area BY
3949      // THE CALLEE in the event that the callee takes the address of any
3950      // formal argument.  That has not yet been implemented.  However, it is
3951      // reasonable to use the stack area as a staging area for the register
3952      // load.
3953
3954      // Skip this for small aggregates, as we will use the same slot for a
3955      // right-justified copy, below.
3956      if (Size >= 8)
3957        Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, PtrOff,
3958                                                          CallSeqStart,
3959                                                          Flags, DAG, dl);
3960
3961      // When a register is available, pass a small aggregate right-justified.
3962      if (Size < 8 && GPR_idx != NumGPRs) {
3963        // The easiest way to get this right-justified in a register
3964        // is to copy the structure into the rightmost portion of a
3965        // local variable slot, then load the whole slot into the
3966        // register.
3967        // FIXME: The memcpy seems to produce pretty awful code for
3968        // small aggregates, particularly for packed ones.
3969        // FIXME: It would be preferable to use the slot in the
3970        // parameter save area instead of a new local variable.
3971        SDValue Const = DAG.getConstant(8 - Size, PtrOff.getValueType());
3972        SDValue AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, Const);
3973        Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, AddPtr,
3974                                                          CallSeqStart,
3975                                                          Flags, DAG, dl);
3976
3977        // Load the slot into the register.
3978        SDValue Load = DAG.getLoad(PtrVT, dl, Chain, PtrOff,
3979                                   MachinePointerInfo(),
3980                                   false, false, false, 0);
3981        MemOpChains.push_back(Load.getValue(1));
3982        RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
3983
3984        // Done with this argument.
3985        ArgOffset += PtrByteSize;
3986        continue;
3987      }
3988
3989      // For aggregates larger than PtrByteSize, copy the pieces of the
3990      // object that fit into registers from the parameter save area.
3991      for (unsigned j=0; j<Size; j+=PtrByteSize) {
3992        SDValue Const = DAG.getConstant(j, PtrOff.getValueType());
3993        SDValue AddArg = DAG.getNode(ISD::ADD, dl, PtrVT, Arg, Const);
3994        if (GPR_idx != NumGPRs) {
3995          SDValue Load = DAG.getLoad(PtrVT, dl, Chain, AddArg,
3996                                     MachinePointerInfo(),
3997                                     false, false, false, 0);
3998          MemOpChains.push_back(Load.getValue(1));
3999          RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
4000          ArgOffset += PtrByteSize;
4001        } else {
4002          ArgOffset += ((Size - j + PtrByteSize-1)/PtrByteSize)*PtrByteSize;
4003          break;
4004        }
4005      }
4006      continue;
4007    }
4008
4009    switch (Arg.getSimpleValueType().SimpleTy) {
4010    default: llvm_unreachable("Unexpected ValueType for argument!");
4011    case MVT::i32:
4012    case MVT::i64:
4013      if (GPR_idx != NumGPRs) {
4014        RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Arg));
4015      } else {
4016        LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
4017                         true, isTailCall, false, MemOpChains,
4018                         TailCallArguments, dl);
4019      }
4020      ArgOffset += PtrByteSize;
4021      break;
4022    case MVT::f32:
4023    case MVT::f64:
4024      if (FPR_idx != NumFPRs) {
4025        RegsToPass.push_back(std::make_pair(FPR[FPR_idx++], Arg));
4026
4027        if (isVarArg) {
4028          // A single float or an aggregate containing only a single float
4029          // must be passed right-justified in the stack doubleword, and
4030          // in the GPR, if one is available.
4031          SDValue StoreOff;
4032          if (Arg.getSimpleValueType().SimpleTy == MVT::f32) {
4033            SDValue ConstFour = DAG.getConstant(4, PtrOff.getValueType());
4034            StoreOff = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, ConstFour);
4035          } else
4036            StoreOff = PtrOff;
4037
4038          SDValue Store = DAG.getStore(Chain, dl, Arg, StoreOff,
4039                                       MachinePointerInfo(), false, false, 0);
4040          MemOpChains.push_back(Store);
4041
4042          // Float varargs are always shadowed in available integer registers
4043          if (GPR_idx != NumGPRs) {
4044            SDValue Load = DAG.getLoad(PtrVT, dl, Store, PtrOff,
4045                                       MachinePointerInfo(), false, false,
4046                                       false, 0);
4047            MemOpChains.push_back(Load.getValue(1));
4048            RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
4049          }
4050        } else if (GPR_idx != NumGPRs)
4051          // If we have any FPRs remaining, we may also have GPRs remaining.
4052          ++GPR_idx;
4053      } else {
4054        // Single-precision floating-point values are mapped to the
4055        // second (rightmost) word of the stack doubleword.
4056        if (Arg.getValueType() == MVT::f32) {
4057          SDValue ConstFour = DAG.getConstant(4, PtrOff.getValueType());
4058          PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, ConstFour);
4059        }
4060
4061        LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
4062                         true, isTailCall, false, MemOpChains,
4063                         TailCallArguments, dl);
4064      }
4065      ArgOffset += 8;
4066      break;
4067    case MVT::v4f32:
4068    case MVT::v4i32:
4069    case MVT::v8i16:
4070    case MVT::v16i8:
4071      if (isVarArg) {
4072        // These go aligned on the stack, or in the corresponding R registers
4073        // when within range.  The Darwin PPC ABI doc claims they also go in
4074        // V registers; in fact gcc does this only for arguments that are
4075        // prototyped, not for those that match the ...  We do it for all
4076        // arguments, seems to work.
4077        while (ArgOffset % 16 !=0) {
4078          ArgOffset += PtrByteSize;
4079          if (GPR_idx != NumGPRs)
4080            GPR_idx++;
4081        }
4082        // We could elide this store in the case where the object fits
4083        // entirely in R registers.  Maybe later.
4084        PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr,
4085                            DAG.getConstant(ArgOffset, PtrVT));
4086        SDValue Store = DAG.getStore(Chain, dl, Arg, PtrOff,
4087                                     MachinePointerInfo(), false, false, 0);
4088        MemOpChains.push_back(Store);
4089        if (VR_idx != NumVRs) {
4090          SDValue Load = DAG.getLoad(MVT::v4f32, dl, Store, PtrOff,
4091                                     MachinePointerInfo(),
4092                                     false, false, false, 0);
4093          MemOpChains.push_back(Load.getValue(1));
4094          RegsToPass.push_back(std::make_pair(VR[VR_idx++], Load));
4095        }
4096        ArgOffset += 16;
4097        for (unsigned i=0; i<16; i+=PtrByteSize) {
4098          if (GPR_idx == NumGPRs)
4099            break;
4100          SDValue Ix = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff,
4101                                  DAG.getConstant(i, PtrVT));
4102          SDValue Load = DAG.getLoad(PtrVT, dl, Store, Ix, MachinePointerInfo(),
4103                                     false, false, false, 0);
4104          MemOpChains.push_back(Load.getValue(1));
4105          RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
4106        }
4107        break;
4108      }
4109
4110      // Non-varargs Altivec params generally go in registers, but have
4111      // stack space allocated at the end.
4112      if (VR_idx != NumVRs) {
4113        // Doesn't have GPR space allocated.
4114        RegsToPass.push_back(std::make_pair(VR[VR_idx++], Arg));
4115      } else {
4116        LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
4117                         true, isTailCall, true, MemOpChains,
4118                         TailCallArguments, dl);
4119        ArgOffset += 16;
4120      }
4121      break;
4122    }
4123  }
4124
4125  if (!MemOpChains.empty())
4126    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
4127                        &MemOpChains[0], MemOpChains.size());
4128
4129  // Check if this is an indirect call (MTCTR/BCTRL).
4130  // See PrepareCall() for more information about calls through function
4131  // pointers in the 64-bit SVR4 ABI.
4132  if (!isTailCall &&
4133      !dyn_cast<GlobalAddressSDNode>(Callee) &&
4134      !dyn_cast<ExternalSymbolSDNode>(Callee) &&
4135      !isBLACompatibleAddress(Callee, DAG)) {
4136    // Load r2 into a virtual register and store it to the TOC save area.
4137    SDValue Val = DAG.getCopyFromReg(Chain, dl, PPC::X2, MVT::i64);
4138    // TOC save area offset.
4139    SDValue PtrOff = DAG.getIntPtrConstant(40);
4140    SDValue AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff);
4141    Chain = DAG.getStore(Val.getValue(1), dl, Val, AddPtr, MachinePointerInfo(),
4142                         false, false, 0);
4143    // R12 must contain the address of an indirect callee.  This does not
4144    // mean the MTCTR instruction must use R12; it's easier to model this
4145    // as an extra parameter, so do that.
4146    RegsToPass.push_back(std::make_pair((unsigned)PPC::X12, Callee));
4147  }
4148
4149  // Build a sequence of copy-to-reg nodes chained together with token chain
4150  // and flag operands which copy the outgoing args into the appropriate regs.
4151  SDValue InFlag;
4152  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
4153    Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
4154                             RegsToPass[i].second, InFlag);
4155    InFlag = Chain.getValue(1);
4156  }
4157
4158  if (isTailCall)
4159    PrepareTailCall(DAG, InFlag, Chain, dl, true, SPDiff, NumBytes, LROp,
4160                    FPOp, true, TailCallArguments);
4161
4162  return FinishCall(CallConv, dl, isTailCall, isVarArg, DAG,
4163                    RegsToPass, InFlag, Chain, Callee, SPDiff, NumBytes,
4164                    Ins, InVals);
4165}
4166
4167SDValue
4168PPCTargetLowering::LowerCall_Darwin(SDValue Chain, SDValue Callee,
4169                                    CallingConv::ID CallConv, bool isVarArg,
4170                                    bool isTailCall,
4171                                    const SmallVectorImpl<ISD::OutputArg> &Outs,
4172                                    const SmallVectorImpl<SDValue> &OutVals,
4173                                    const SmallVectorImpl<ISD::InputArg> &Ins,
4174                                    SDLoc dl, SelectionDAG &DAG,
4175                                    SmallVectorImpl<SDValue> &InVals) const {
4176
4177  unsigned NumOps = Outs.size();
4178
4179  EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
4180  bool isPPC64 = PtrVT == MVT::i64;
4181  unsigned PtrByteSize = isPPC64 ? 8 : 4;
4182
4183  MachineFunction &MF = DAG.getMachineFunction();
4184
4185  // Mark this function as potentially containing a function that contains a
4186  // tail call. As a consequence the frame pointer will be used for dynamicalloc
4187  // and restoring the callers stack pointer in this functions epilog. This is
4188  // done because by tail calling the called function might overwrite the value
4189  // in this function's (MF) stack pointer stack slot 0(SP).
4190  if (getTargetMachine().Options.GuaranteedTailCallOpt &&
4191      CallConv == CallingConv::Fast)
4192    MF.getInfo<PPCFunctionInfo>()->setHasFastCall();
4193
4194  unsigned nAltivecParamsAtEnd = 0;
4195
4196  // Count how many bytes are to be pushed on the stack, including the linkage
4197  // area, and parameter passing area.  We start with 24/48 bytes, which is
4198  // prereserved space for [SP][CR][LR][3 x unused].
4199  unsigned NumBytes =
4200    CalculateParameterAndLinkageAreaSize(DAG, isPPC64, isVarArg, CallConv,
4201                                         Outs, OutVals,
4202                                         nAltivecParamsAtEnd);
4203
4204  // Calculate by how many bytes the stack has to be adjusted in case of tail
4205  // call optimization.
4206  int SPDiff = CalculateTailCallSPDiff(DAG, isTailCall, NumBytes);
4207
4208  // To protect arguments on the stack from being clobbered in a tail call,
4209  // force all the loads to happen before doing any other lowering.
4210  if (isTailCall)
4211    Chain = DAG.getStackArgumentTokenFactor(Chain);
4212
4213  // Adjust the stack pointer for the new arguments...
4214  // These operations are automatically eliminated by the prolog/epilog pass
4215  Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(NumBytes, true),
4216                               dl);
4217  SDValue CallSeqStart = Chain;
4218
4219  // Load the return address and frame pointer so it can be move somewhere else
4220  // later.
4221  SDValue LROp, FPOp;
4222  Chain = EmitTailCallLoadFPAndRetAddr(DAG, SPDiff, Chain, LROp, FPOp, true,
4223                                       dl);
4224
4225  // Set up a copy of the stack pointer for use loading and storing any
4226  // arguments that may not fit in the registers available for argument
4227  // passing.
4228  SDValue StackPtr;
4229  if (isPPC64)
4230    StackPtr = DAG.getRegister(PPC::X1, MVT::i64);
4231  else
4232    StackPtr = DAG.getRegister(PPC::R1, MVT::i32);
4233
4234  // Figure out which arguments are going to go in registers, and which in
4235  // memory.  Also, if this is a vararg function, floating point operations
4236  // must be stored to our stack, and loaded into integer regs as well, if
4237  // any integer regs are available for argument passing.
4238  unsigned ArgOffset = PPCFrameLowering::getLinkageSize(isPPC64, true);
4239  unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0;
4240
4241  static const uint16_t GPR_32[] = {           // 32-bit registers.
4242    PPC::R3, PPC::R4, PPC::R5, PPC::R6,
4243    PPC::R7, PPC::R8, PPC::R9, PPC::R10,
4244  };
4245  static const uint16_t GPR_64[] = {           // 64-bit registers.
4246    PPC::X3, PPC::X4, PPC::X5, PPC::X6,
4247    PPC::X7, PPC::X8, PPC::X9, PPC::X10,
4248  };
4249  static const uint16_t *FPR = GetFPR();
4250
4251  static const uint16_t VR[] = {
4252    PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
4253    PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
4254  };
4255  const unsigned NumGPRs = array_lengthof(GPR_32);
4256  const unsigned NumFPRs = 13;
4257  const unsigned NumVRs  = array_lengthof(VR);
4258
4259  const uint16_t *GPR = isPPC64 ? GPR_64 : GPR_32;
4260
4261  SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
4262  SmallVector<TailCallArgumentInfo, 8> TailCallArguments;
4263
4264  SmallVector<SDValue, 8> MemOpChains;
4265  for (unsigned i = 0; i != NumOps; ++i) {
4266    SDValue Arg = OutVals[i];
4267    ISD::ArgFlagsTy Flags = Outs[i].Flags;
4268
4269    // PtrOff will be used to store the current argument to the stack if a
4270    // register cannot be found for it.
4271    SDValue PtrOff;
4272
4273    PtrOff = DAG.getConstant(ArgOffset, StackPtr.getValueType());
4274
4275    PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff);
4276
4277    // On PPC64, promote integers to 64-bit values.
4278    if (isPPC64 && Arg.getValueType() == MVT::i32) {
4279      // FIXME: Should this use ANY_EXTEND if neither sext nor zext?
4280      unsigned ExtOp = Flags.isSExt() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
4281      Arg = DAG.getNode(ExtOp, dl, MVT::i64, Arg);
4282    }
4283
4284    // FIXME memcpy is used way more than necessary.  Correctness first.
4285    // Note: "by value" is code for passing a structure by value, not
4286    // basic types.
4287    if (Flags.isByVal()) {
4288      unsigned Size = Flags.getByValSize();
4289      // Very small objects are passed right-justified.  Everything else is
4290      // passed left-justified.
4291      if (Size==1 || Size==2) {
4292        EVT VT = (Size==1) ? MVT::i8 : MVT::i16;
4293        if (GPR_idx != NumGPRs) {
4294          SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, dl, PtrVT, Chain, Arg,
4295                                        MachinePointerInfo(), VT,
4296                                        false, false, 0);
4297          MemOpChains.push_back(Load.getValue(1));
4298          RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
4299
4300          ArgOffset += PtrByteSize;
4301        } else {
4302          SDValue Const = DAG.getConstant(PtrByteSize - Size,
4303                                          PtrOff.getValueType());
4304          SDValue AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, Const);
4305          Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, AddPtr,
4306                                                            CallSeqStart,
4307                                                            Flags, DAG, dl);
4308          ArgOffset += PtrByteSize;
4309        }
4310        continue;
4311      }
4312      // Copy entire object into memory.  There are cases where gcc-generated
4313      // code assumes it is there, even if it could be put entirely into
4314      // registers.  (This is not what the doc says.)
4315      Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, PtrOff,
4316                                                        CallSeqStart,
4317                                                        Flags, DAG, dl);
4318
4319      // For small aggregates (Darwin only) and aggregates >= PtrByteSize,
4320      // copy the pieces of the object that fit into registers from the
4321      // parameter save area.
4322      for (unsigned j=0; j<Size; j+=PtrByteSize) {
4323        SDValue Const = DAG.getConstant(j, PtrOff.getValueType());
4324        SDValue AddArg = DAG.getNode(ISD::ADD, dl, PtrVT, Arg, Const);
4325        if (GPR_idx != NumGPRs) {
4326          SDValue Load = DAG.getLoad(PtrVT, dl, Chain, AddArg,
4327                                     MachinePointerInfo(),
4328                                     false, false, false, 0);
4329          MemOpChains.push_back(Load.getValue(1));
4330          RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
4331          ArgOffset += PtrByteSize;
4332        } else {
4333          ArgOffset += ((Size - j + PtrByteSize-1)/PtrByteSize)*PtrByteSize;
4334          break;
4335        }
4336      }
4337      continue;
4338    }
4339
4340    switch (Arg.getSimpleValueType().SimpleTy) {
4341    default: llvm_unreachable("Unexpected ValueType for argument!");
4342    case MVT::i32:
4343    case MVT::i64:
4344      if (GPR_idx != NumGPRs) {
4345        RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Arg));
4346      } else {
4347        LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
4348                         isPPC64, isTailCall, false, MemOpChains,
4349                         TailCallArguments, dl);
4350      }
4351      ArgOffset += PtrByteSize;
4352      break;
4353    case MVT::f32:
4354    case MVT::f64:
4355      if (FPR_idx != NumFPRs) {
4356        RegsToPass.push_back(std::make_pair(FPR[FPR_idx++], Arg));
4357
4358        if (isVarArg) {
4359          SDValue Store = DAG.getStore(Chain, dl, Arg, PtrOff,
4360                                       MachinePointerInfo(), false, false, 0);
4361          MemOpChains.push_back(Store);
4362
4363          // Float varargs are always shadowed in available integer registers
4364          if (GPR_idx != NumGPRs) {
4365            SDValue Load = DAG.getLoad(PtrVT, dl, Store, PtrOff,
4366                                       MachinePointerInfo(), false, false,
4367                                       false, 0);
4368            MemOpChains.push_back(Load.getValue(1));
4369            RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
4370          }
4371          if (GPR_idx != NumGPRs && Arg.getValueType() == MVT::f64 && !isPPC64){
4372            SDValue ConstFour = DAG.getConstant(4, PtrOff.getValueType());
4373            PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, ConstFour);
4374            SDValue Load = DAG.getLoad(PtrVT, dl, Store, PtrOff,
4375                                       MachinePointerInfo(),
4376                                       false, false, false, 0);
4377            MemOpChains.push_back(Load.getValue(1));
4378            RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
4379          }
4380        } else {
4381          // If we have any FPRs remaining, we may also have GPRs remaining.
4382          // Args passed in FPRs consume either 1 (f32) or 2 (f64) available
4383          // GPRs.
4384          if (GPR_idx != NumGPRs)
4385            ++GPR_idx;
4386          if (GPR_idx != NumGPRs && Arg.getValueType() == MVT::f64 &&
4387              !isPPC64)  // PPC64 has 64-bit GPR's obviously :)
4388            ++GPR_idx;
4389        }
4390      } else
4391        LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
4392                         isPPC64, isTailCall, false, MemOpChains,
4393                         TailCallArguments, dl);
4394      if (isPPC64)
4395        ArgOffset += 8;
4396      else
4397        ArgOffset += Arg.getValueType() == MVT::f32 ? 4 : 8;
4398      break;
4399    case MVT::v4f32:
4400    case MVT::v4i32:
4401    case MVT::v8i16:
4402    case MVT::v16i8:
4403      if (isVarArg) {
4404        // These go aligned on the stack, or in the corresponding R registers
4405        // when within range.  The Darwin PPC ABI doc claims they also go in
4406        // V registers; in fact gcc does this only for arguments that are
4407        // prototyped, not for those that match the ...  We do it for all
4408        // arguments, seems to work.
4409        while (ArgOffset % 16 !=0) {
4410          ArgOffset += PtrByteSize;
4411          if (GPR_idx != NumGPRs)
4412            GPR_idx++;
4413        }
4414        // We could elide this store in the case where the object fits
4415        // entirely in R registers.  Maybe later.
4416        PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr,
4417                            DAG.getConstant(ArgOffset, PtrVT));
4418        SDValue Store = DAG.getStore(Chain, dl, Arg, PtrOff,
4419                                     MachinePointerInfo(), false, false, 0);
4420        MemOpChains.push_back(Store);
4421        if (VR_idx != NumVRs) {
4422          SDValue Load = DAG.getLoad(MVT::v4f32, dl, Store, PtrOff,
4423                                     MachinePointerInfo(),
4424                                     false, false, false, 0);
4425          MemOpChains.push_back(Load.getValue(1));
4426          RegsToPass.push_back(std::make_pair(VR[VR_idx++], Load));
4427        }
4428        ArgOffset += 16;
4429        for (unsigned i=0; i<16; i+=PtrByteSize) {
4430          if (GPR_idx == NumGPRs)
4431            break;
4432          SDValue Ix = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff,
4433                                  DAG.getConstant(i, PtrVT));
4434          SDValue Load = DAG.getLoad(PtrVT, dl, Store, Ix, MachinePointerInfo(),
4435                                     false, false, false, 0);
4436          MemOpChains.push_back(Load.getValue(1));
4437          RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
4438        }
4439        break;
4440      }
4441
4442      // Non-varargs Altivec params generally go in registers, but have
4443      // stack space allocated at the end.
4444      if (VR_idx != NumVRs) {
4445        // Doesn't have GPR space allocated.
4446        RegsToPass.push_back(std::make_pair(VR[VR_idx++], Arg));
4447      } else if (nAltivecParamsAtEnd==0) {
4448        // We are emitting Altivec params in order.
4449        LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
4450                         isPPC64, isTailCall, true, MemOpChains,
4451                         TailCallArguments, dl);
4452        ArgOffset += 16;
4453      }
4454      break;
4455    }
4456  }
4457  // If all Altivec parameters fit in registers, as they usually do,
4458  // they get stack space following the non-Altivec parameters.  We
4459  // don't track this here because nobody below needs it.
4460  // If there are more Altivec parameters than fit in registers emit
4461  // the stores here.
4462  if (!isVarArg && nAltivecParamsAtEnd > NumVRs) {
4463    unsigned j = 0;
4464    // Offset is aligned; skip 1st 12 params which go in V registers.
4465    ArgOffset = ((ArgOffset+15)/16)*16;
4466    ArgOffset += 12*16;
4467    for (unsigned i = 0; i != NumOps; ++i) {
4468      SDValue Arg = OutVals[i];
4469      EVT ArgType = Outs[i].VT;
4470      if (ArgType==MVT::v4f32 || ArgType==MVT::v4i32 ||
4471          ArgType==MVT::v8i16 || ArgType==MVT::v16i8) {
4472        if (++j > NumVRs) {
4473          SDValue PtrOff;
4474          // We are emitting Altivec params in order.
4475          LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
4476                           isPPC64, isTailCall, true, MemOpChains,
4477                           TailCallArguments, dl);
4478          ArgOffset += 16;
4479        }
4480      }
4481    }
4482  }
4483
4484  if (!MemOpChains.empty())
4485    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
4486                        &MemOpChains[0], MemOpChains.size());
4487
4488  // On Darwin, R12 must contain the address of an indirect callee.  This does
4489  // not mean the MTCTR instruction must use R12; it's easier to model this as
4490  // an extra parameter, so do that.
4491  if (!isTailCall &&
4492      !dyn_cast<GlobalAddressSDNode>(Callee) &&
4493      !dyn_cast<ExternalSymbolSDNode>(Callee) &&
4494      !isBLACompatibleAddress(Callee, DAG))
4495    RegsToPass.push_back(std::make_pair((unsigned)(isPPC64 ? PPC::X12 :
4496                                                   PPC::R12), Callee));
4497
4498  // Build a sequence of copy-to-reg nodes chained together with token chain
4499  // and flag operands which copy the outgoing args into the appropriate regs.
4500  SDValue InFlag;
4501  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
4502    Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
4503                             RegsToPass[i].second, InFlag);
4504    InFlag = Chain.getValue(1);
4505  }
4506
4507  if (isTailCall)
4508    PrepareTailCall(DAG, InFlag, Chain, dl, isPPC64, SPDiff, NumBytes, LROp,
4509                    FPOp, true, TailCallArguments);
4510
4511  return FinishCall(CallConv, dl, isTailCall, isVarArg, DAG,
4512                    RegsToPass, InFlag, Chain, Callee, SPDiff, NumBytes,
4513                    Ins, InVals);
4514}
4515
4516bool
4517PPCTargetLowering::CanLowerReturn(CallingConv::ID CallConv,
4518                                  MachineFunction &MF, bool isVarArg,
4519                                  const SmallVectorImpl<ISD::OutputArg> &Outs,
4520                                  LLVMContext &Context) const {
4521  SmallVector<CCValAssign, 16> RVLocs;
4522  CCState CCInfo(CallConv, isVarArg, MF, getTargetMachine(),
4523                 RVLocs, Context);
4524  return CCInfo.CheckReturn(Outs, RetCC_PPC);
4525}
4526
4527SDValue
4528PPCTargetLowering::LowerReturn(SDValue Chain,
4529                               CallingConv::ID CallConv, bool isVarArg,
4530                               const SmallVectorImpl<ISD::OutputArg> &Outs,
4531                               const SmallVectorImpl<SDValue> &OutVals,
4532                               SDLoc dl, SelectionDAG &DAG) const {
4533
4534  SmallVector<CCValAssign, 16> RVLocs;
4535  CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(),
4536                 getTargetMachine(), RVLocs, *DAG.getContext());
4537  CCInfo.AnalyzeReturn(Outs, RetCC_PPC);
4538
4539  SDValue Flag;
4540  SmallVector<SDValue, 4> RetOps(1, Chain);
4541
4542  // Copy the result values into the output registers.
4543  for (unsigned i = 0; i != RVLocs.size(); ++i) {
4544    CCValAssign &VA = RVLocs[i];
4545    assert(VA.isRegLoc() && "Can only return in registers!");
4546
4547    SDValue Arg = OutVals[i];
4548
4549    switch (VA.getLocInfo()) {
4550    default: llvm_unreachable("Unknown loc info!");
4551    case CCValAssign::Full: break;
4552    case CCValAssign::AExt:
4553      Arg = DAG.getNode(ISD::ANY_EXTEND, dl, VA.getLocVT(), Arg);
4554      break;
4555    case CCValAssign::ZExt:
4556      Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), Arg);
4557      break;
4558    case CCValAssign::SExt:
4559      Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), Arg);
4560      break;
4561    }
4562
4563    Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), Arg, Flag);
4564    Flag = Chain.getValue(1);
4565    RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
4566  }
4567
4568  RetOps[0] = Chain;  // Update chain.
4569
4570  // Add the flag if we have it.
4571  if (Flag.getNode())
4572    RetOps.push_back(Flag);
4573
4574  return DAG.getNode(PPCISD::RET_FLAG, dl, MVT::Other,
4575                     &RetOps[0], RetOps.size());
4576}
4577
4578SDValue PPCTargetLowering::LowerSTACKRESTORE(SDValue Op, SelectionDAG &DAG,
4579                                   const PPCSubtarget &Subtarget) const {
4580  // When we pop the dynamic allocation we need to restore the SP link.
4581  SDLoc dl(Op);
4582
4583  // Get the corect type for pointers.
4584  EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
4585
4586  // Construct the stack pointer operand.
4587  bool isPPC64 = Subtarget.isPPC64();
4588  unsigned SP = isPPC64 ? PPC::X1 : PPC::R1;
4589  SDValue StackPtr = DAG.getRegister(SP, PtrVT);
4590
4591  // Get the operands for the STACKRESTORE.
4592  SDValue Chain = Op.getOperand(0);
4593  SDValue SaveSP = Op.getOperand(1);
4594
4595  // Load the old link SP.
4596  SDValue LoadLinkSP = DAG.getLoad(PtrVT, dl, Chain, StackPtr,
4597                                   MachinePointerInfo(),
4598                                   false, false, false, 0);
4599
4600  // Restore the stack pointer.
4601  Chain = DAG.getCopyToReg(LoadLinkSP.getValue(1), dl, SP, SaveSP);
4602
4603  // Store the old link SP.
4604  return DAG.getStore(Chain, dl, LoadLinkSP, StackPtr, MachinePointerInfo(),
4605                      false, false, 0);
4606}
4607
4608
4609
4610SDValue
4611PPCTargetLowering::getReturnAddrFrameIndex(SelectionDAG & DAG) const {
4612  MachineFunction &MF = DAG.getMachineFunction();
4613  bool isPPC64 = PPCSubTarget.isPPC64();
4614  bool isDarwinABI = PPCSubTarget.isDarwinABI();
4615  EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
4616
4617  // Get current frame pointer save index.  The users of this index will be
4618  // primarily DYNALLOC instructions.
4619  PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>();
4620  int RASI = FI->getReturnAddrSaveIndex();
4621
4622  // If the frame pointer save index hasn't been defined yet.
4623  if (!RASI) {
4624    // Find out what the fix offset of the frame pointer save area.
4625    int LROffset = PPCFrameLowering::getReturnSaveOffset(isPPC64, isDarwinABI);
4626    // Allocate the frame index for frame pointer save area.
4627    RASI = MF.getFrameInfo()->CreateFixedObject(isPPC64? 8 : 4, LROffset, true);
4628    // Save the result.
4629    FI->setReturnAddrSaveIndex(RASI);
4630  }
4631  return DAG.getFrameIndex(RASI, PtrVT);
4632}
4633
4634SDValue
4635PPCTargetLowering::getFramePointerFrameIndex(SelectionDAG & DAG) const {
4636  MachineFunction &MF = DAG.getMachineFunction();
4637  bool isPPC64 = PPCSubTarget.isPPC64();
4638  bool isDarwinABI = PPCSubTarget.isDarwinABI();
4639  EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
4640
4641  // Get current frame pointer save index.  The users of this index will be
4642  // primarily DYNALLOC instructions.
4643  PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>();
4644  int FPSI = FI->getFramePointerSaveIndex();
4645
4646  // If the frame pointer save index hasn't been defined yet.
4647  if (!FPSI) {
4648    // Find out what the fix offset of the frame pointer save area.
4649    int FPOffset = PPCFrameLowering::getFramePointerSaveOffset(isPPC64,
4650                                                           isDarwinABI);
4651
4652    // Allocate the frame index for frame pointer save area.
4653    FPSI = MF.getFrameInfo()->CreateFixedObject(isPPC64? 8 : 4, FPOffset, true);
4654    // Save the result.
4655    FI->setFramePointerSaveIndex(FPSI);
4656  }
4657  return DAG.getFrameIndex(FPSI, PtrVT);
4658}
4659
4660SDValue PPCTargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op,
4661                                         SelectionDAG &DAG,
4662                                         const PPCSubtarget &Subtarget) const {
4663  // Get the inputs.
4664  SDValue Chain = Op.getOperand(0);
4665  SDValue Size  = Op.getOperand(1);
4666  SDLoc dl(Op);
4667
4668  // Get the corect type for pointers.
4669  EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
4670  // Negate the size.
4671  SDValue NegSize = DAG.getNode(ISD::SUB, dl, PtrVT,
4672                                  DAG.getConstant(0, PtrVT), Size);
4673  // Construct a node for the frame pointer save index.
4674  SDValue FPSIdx = getFramePointerFrameIndex(DAG);
4675  // Build a DYNALLOC node.
4676  SDValue Ops[3] = { Chain, NegSize, FPSIdx };
4677  SDVTList VTs = DAG.getVTList(PtrVT, MVT::Other);
4678  return DAG.getNode(PPCISD::DYNALLOC, dl, VTs, Ops, 3);
4679}
4680
4681SDValue PPCTargetLowering::lowerEH_SJLJ_SETJMP(SDValue Op,
4682                                               SelectionDAG &DAG) const {
4683  SDLoc DL(Op);
4684  return DAG.getNode(PPCISD::EH_SJLJ_SETJMP, DL,
4685                     DAG.getVTList(MVT::i32, MVT::Other),
4686                     Op.getOperand(0), Op.getOperand(1));
4687}
4688
4689SDValue PPCTargetLowering::lowerEH_SJLJ_LONGJMP(SDValue Op,
4690                                                SelectionDAG &DAG) const {
4691  SDLoc DL(Op);
4692  return DAG.getNode(PPCISD::EH_SJLJ_LONGJMP, DL, MVT::Other,
4693                     Op.getOperand(0), Op.getOperand(1));
4694}
4695
4696/// LowerSELECT_CC - Lower floating point select_cc's into fsel instruction when
4697/// possible.
4698SDValue PPCTargetLowering::LowerSELECT_CC(SDValue Op, SelectionDAG &DAG) const {
4699  // Not FP? Not a fsel.
4700  if (!Op.getOperand(0).getValueType().isFloatingPoint() ||
4701      !Op.getOperand(2).getValueType().isFloatingPoint())
4702    return Op;
4703
4704  // We might be able to do better than this under some circumstances, but in
4705  // general, fsel-based lowering of select is a finite-math-only optimization.
4706  // For more information, see section F.3 of the 2.06 ISA specification.
4707  if (!DAG.getTarget().Options.NoInfsFPMath ||
4708      !DAG.getTarget().Options.NoNaNsFPMath)
4709    return Op;
4710
4711  ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get();
4712
4713  EVT ResVT = Op.getValueType();
4714  EVT CmpVT = Op.getOperand(0).getValueType();
4715  SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1);
4716  SDValue TV  = Op.getOperand(2), FV  = Op.getOperand(3);
4717  SDLoc dl(Op);
4718
4719  // If the RHS of the comparison is a 0.0, we don't need to do the
4720  // subtraction at all.
4721  SDValue Sel1;
4722  if (isFloatingPointZero(RHS))
4723    switch (CC) {
4724    default: break;       // SETUO etc aren't handled by fsel.
4725    case ISD::SETNE:
4726      std::swap(TV, FV);
4727    case ISD::SETEQ:
4728      if (LHS.getValueType() == MVT::f32)   // Comparison is always 64-bits
4729        LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS);
4730      Sel1 = DAG.getNode(PPCISD::FSEL, dl, ResVT, LHS, TV, FV);
4731      if (Sel1.getValueType() == MVT::f32)   // Comparison is always 64-bits
4732        Sel1 = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Sel1);
4733      return DAG.getNode(PPCISD::FSEL, dl, ResVT,
4734                         DAG.getNode(ISD::FNEG, dl, MVT::f64, LHS), Sel1, FV);
4735    case ISD::SETULT:
4736    case ISD::SETLT:
4737      std::swap(TV, FV);  // fsel is natively setge, swap operands for setlt
4738    case ISD::SETOGE:
4739    case ISD::SETGE:
4740      if (LHS.getValueType() == MVT::f32)   // Comparison is always 64-bits
4741        LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS);
4742      return DAG.getNode(PPCISD::FSEL, dl, ResVT, LHS, TV, FV);
4743    case ISD::SETUGT:
4744    case ISD::SETGT:
4745      std::swap(TV, FV);  // fsel is natively setge, swap operands for setlt
4746    case ISD::SETOLE:
4747    case ISD::SETLE:
4748      if (LHS.getValueType() == MVT::f32)   // Comparison is always 64-bits
4749        LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS);
4750      return DAG.getNode(PPCISD::FSEL, dl, ResVT,
4751                         DAG.getNode(ISD::FNEG, dl, MVT::f64, LHS), TV, FV);
4752    }
4753
4754  SDValue Cmp;
4755  switch (CC) {
4756  default: break;       // SETUO etc aren't handled by fsel.
4757  case ISD::SETNE:
4758    std::swap(TV, FV);
4759  case ISD::SETEQ:
4760    Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS);
4761    if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
4762      Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
4763    Sel1 = DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV);
4764    if (Sel1.getValueType() == MVT::f32)   // Comparison is always 64-bits
4765      Sel1 = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Sel1);
4766    return DAG.getNode(PPCISD::FSEL, dl, ResVT,
4767                       DAG.getNode(ISD::FNEG, dl, MVT::f64, Cmp), Sel1, FV);
4768  case ISD::SETULT:
4769  case ISD::SETLT:
4770    Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS);
4771    if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
4772      Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
4773    return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, FV, TV);
4774  case ISD::SETOGE:
4775  case ISD::SETGE:
4776    Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS);
4777    if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
4778      Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
4779    return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV);
4780  case ISD::SETUGT:
4781  case ISD::SETGT:
4782    Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, RHS, LHS);
4783    if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
4784      Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
4785    return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, FV, TV);
4786  case ISD::SETOLE:
4787  case ISD::SETLE:
4788    Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, RHS, LHS);
4789    if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
4790      Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
4791    return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV);
4792  }
4793  return Op;
4794}
4795
4796// FIXME: Split this code up when LegalizeDAGTypes lands.
4797SDValue PPCTargetLowering::LowerFP_TO_INT(SDValue Op, SelectionDAG &DAG,
4798                                           SDLoc dl) const {
4799  assert(Op.getOperand(0).getValueType().isFloatingPoint());
4800  SDValue Src = Op.getOperand(0);
4801  if (Src.getValueType() == MVT::f32)
4802    Src = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Src);
4803
4804  SDValue Tmp;
4805  switch (Op.getSimpleValueType().SimpleTy) {
4806  default: llvm_unreachable("Unhandled FP_TO_INT type in custom expander!");
4807  case MVT::i32:
4808    Tmp = DAG.getNode(Op.getOpcode()==ISD::FP_TO_SINT ? PPCISD::FCTIWZ :
4809                        (PPCSubTarget.hasFPCVT() ? PPCISD::FCTIWUZ :
4810                                                   PPCISD::FCTIDZ),
4811                      dl, MVT::f64, Src);
4812    break;
4813  case MVT::i64:
4814    assert((Op.getOpcode() == ISD::FP_TO_SINT || PPCSubTarget.hasFPCVT()) &&
4815           "i64 FP_TO_UINT is supported only with FPCVT");
4816    Tmp = DAG.getNode(Op.getOpcode()==ISD::FP_TO_SINT ? PPCISD::FCTIDZ :
4817                                                        PPCISD::FCTIDUZ,
4818                      dl, MVT::f64, Src);
4819    break;
4820  }
4821
4822  // Convert the FP value to an int value through memory.
4823  bool i32Stack = Op.getValueType() == MVT::i32 && PPCSubTarget.hasSTFIWX() &&
4824    (Op.getOpcode() == ISD::FP_TO_SINT || PPCSubTarget.hasFPCVT());
4825  SDValue FIPtr = DAG.CreateStackTemporary(i32Stack ? MVT::i32 : MVT::f64);
4826  int FI = cast<FrameIndexSDNode>(FIPtr)->getIndex();
4827  MachinePointerInfo MPI = MachinePointerInfo::getFixedStack(FI);
4828
4829  // Emit a store to the stack slot.
4830  SDValue Chain;
4831  if (i32Stack) {
4832    MachineFunction &MF = DAG.getMachineFunction();
4833    MachineMemOperand *MMO =
4834      MF.getMachineMemOperand(MPI, MachineMemOperand::MOStore, 4, 4);
4835    SDValue Ops[] = { DAG.getEntryNode(), Tmp, FIPtr };
4836    Chain = DAG.getMemIntrinsicNode(PPCISD::STFIWX, dl,
4837              DAG.getVTList(MVT::Other), Ops, array_lengthof(Ops),
4838              MVT::i32, MMO);
4839  } else
4840    Chain = DAG.getStore(DAG.getEntryNode(), dl, Tmp, FIPtr,
4841                         MPI, false, false, 0);
4842
4843  // Result is a load from the stack slot.  If loading 4 bytes, make sure to
4844  // add in a bias.
4845  if (Op.getValueType() == MVT::i32 && !i32Stack) {
4846    FIPtr = DAG.getNode(ISD::ADD, dl, FIPtr.getValueType(), FIPtr,
4847                        DAG.getConstant(4, FIPtr.getValueType()));
4848    MPI = MachinePointerInfo();
4849  }
4850
4851  return DAG.getLoad(Op.getValueType(), dl, Chain, FIPtr, MPI,
4852                     false, false, false, 0);
4853}
4854
4855SDValue PPCTargetLowering::LowerINT_TO_FP(SDValue Op,
4856                                           SelectionDAG &DAG) const {
4857  SDLoc dl(Op);
4858  // Don't handle ppc_fp128 here; let it be lowered to a libcall.
4859  if (Op.getValueType() != MVT::f32 && Op.getValueType() != MVT::f64)
4860    return SDValue();
4861
4862  assert((Op.getOpcode() == ISD::SINT_TO_FP || PPCSubTarget.hasFPCVT()) &&
4863         "UINT_TO_FP is supported only with FPCVT");
4864
4865  // If we have FCFIDS, then use it when converting to single-precision.
4866  // Otherwise, convert to double-precision and then round.
4867  unsigned FCFOp = (PPCSubTarget.hasFPCVT() && Op.getValueType() == MVT::f32) ?
4868                   (Op.getOpcode() == ISD::UINT_TO_FP ?
4869                    PPCISD::FCFIDUS : PPCISD::FCFIDS) :
4870                   (Op.getOpcode() == ISD::UINT_TO_FP ?
4871                    PPCISD::FCFIDU : PPCISD::FCFID);
4872  MVT      FCFTy = (PPCSubTarget.hasFPCVT() && Op.getValueType() == MVT::f32) ?
4873                   MVT::f32 : MVT::f64;
4874
4875  if (Op.getOperand(0).getValueType() == MVT::i64) {
4876    SDValue SINT = Op.getOperand(0);
4877    // When converting to single-precision, we actually need to convert
4878    // to double-precision first and then round to single-precision.
4879    // To avoid double-rounding effects during that operation, we have
4880    // to prepare the input operand.  Bits that might be truncated when
4881    // converting to double-precision are replaced by a bit that won't
4882    // be lost at this stage, but is below the single-precision rounding
4883    // position.
4884    //
4885    // However, if -enable-unsafe-fp-math is in effect, accept double
4886    // rounding to avoid the extra overhead.
4887    if (Op.getValueType() == MVT::f32 &&
4888        !PPCSubTarget.hasFPCVT() &&
4889        !DAG.getTarget().Options.UnsafeFPMath) {
4890
4891      // Twiddle input to make sure the low 11 bits are zero.  (If this
4892      // is the case, we are guaranteed the value will fit into the 53 bit
4893      // mantissa of an IEEE double-precision value without rounding.)
4894      // If any of those low 11 bits were not zero originally, make sure
4895      // bit 12 (value 2048) is set instead, so that the final rounding
4896      // to single-precision gets the correct result.
4897      SDValue Round = DAG.getNode(ISD::AND, dl, MVT::i64,
4898                                  SINT, DAG.getConstant(2047, MVT::i64));
4899      Round = DAG.getNode(ISD::ADD, dl, MVT::i64,
4900                          Round, DAG.getConstant(2047, MVT::i64));
4901      Round = DAG.getNode(ISD::OR, dl, MVT::i64, Round, SINT);
4902      Round = DAG.getNode(ISD::AND, dl, MVT::i64,
4903                          Round, DAG.getConstant(-2048, MVT::i64));
4904
4905      // However, we cannot use that value unconditionally: if the magnitude
4906      // of the input value is small, the bit-twiddling we did above might
4907      // end up visibly changing the output.  Fortunately, in that case, we
4908      // don't need to twiddle bits since the original input will convert
4909      // exactly to double-precision floating-point already.  Therefore,
4910      // construct a conditional to use the original value if the top 11
4911      // bits are all sign-bit copies, and use the rounded value computed
4912      // above otherwise.
4913      SDValue Cond = DAG.getNode(ISD::SRA, dl, MVT::i64,
4914                                 SINT, DAG.getConstant(53, MVT::i32));
4915      Cond = DAG.getNode(ISD::ADD, dl, MVT::i64,
4916                         Cond, DAG.getConstant(1, MVT::i64));
4917      Cond = DAG.getSetCC(dl, MVT::i32,
4918                          Cond, DAG.getConstant(1, MVT::i64), ISD::SETUGT);
4919
4920      SINT = DAG.getNode(ISD::SELECT, dl, MVT::i64, Cond, Round, SINT);
4921    }
4922
4923    SDValue Bits = DAG.getNode(ISD::BITCAST, dl, MVT::f64, SINT);
4924    SDValue FP = DAG.getNode(FCFOp, dl, FCFTy, Bits);
4925
4926    if (Op.getValueType() == MVT::f32 && !PPCSubTarget.hasFPCVT())
4927      FP = DAG.getNode(ISD::FP_ROUND, dl,
4928                       MVT::f32, FP, DAG.getIntPtrConstant(0));
4929    return FP;
4930  }
4931
4932  assert(Op.getOperand(0).getValueType() == MVT::i32 &&
4933         "Unhandled INT_TO_FP type in custom expander!");
4934  // Since we only generate this in 64-bit mode, we can take advantage of
4935  // 64-bit registers.  In particular, sign extend the input value into the
4936  // 64-bit register with extsw, store the WHOLE 64-bit value into the stack
4937  // then lfd it and fcfid it.
4938  MachineFunction &MF = DAG.getMachineFunction();
4939  MachineFrameInfo *FrameInfo = MF.getFrameInfo();
4940  EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
4941
4942  SDValue Ld;
4943  if (PPCSubTarget.hasLFIWAX() || PPCSubTarget.hasFPCVT()) {
4944    int FrameIdx = FrameInfo->CreateStackObject(4, 4, false);
4945    SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
4946
4947    SDValue Store = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0), FIdx,
4948                                 MachinePointerInfo::getFixedStack(FrameIdx),
4949                                 false, false, 0);
4950
4951    assert(cast<StoreSDNode>(Store)->getMemoryVT() == MVT::i32 &&
4952           "Expected an i32 store");
4953    MachineMemOperand *MMO =
4954      MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(FrameIdx),
4955                              MachineMemOperand::MOLoad, 4, 4);
4956    SDValue Ops[] = { Store, FIdx };
4957    Ld = DAG.getMemIntrinsicNode(Op.getOpcode() == ISD::UINT_TO_FP ?
4958                                   PPCISD::LFIWZX : PPCISD::LFIWAX,
4959                                 dl, DAG.getVTList(MVT::f64, MVT::Other),
4960                                 Ops, 2, MVT::i32, MMO);
4961  } else {
4962    assert(PPCSubTarget.isPPC64() &&
4963           "i32->FP without LFIWAX supported only on PPC64");
4964
4965    int FrameIdx = FrameInfo->CreateStackObject(8, 8, false);
4966    SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
4967
4968    SDValue Ext64 = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::i64,
4969                                Op.getOperand(0));
4970
4971    // STD the extended value into the stack slot.
4972    SDValue Store = DAG.getStore(DAG.getEntryNode(), dl, Ext64, FIdx,
4973                                 MachinePointerInfo::getFixedStack(FrameIdx),
4974                                 false, false, 0);
4975
4976    // Load the value as a double.
4977    Ld = DAG.getLoad(MVT::f64, dl, Store, FIdx,
4978                     MachinePointerInfo::getFixedStack(FrameIdx),
4979                     false, false, false, 0);
4980  }
4981
4982  // FCFID it and return it.
4983  SDValue FP = DAG.getNode(FCFOp, dl, FCFTy, Ld);
4984  if (Op.getValueType() == MVT::f32 && !PPCSubTarget.hasFPCVT())
4985    FP = DAG.getNode(ISD::FP_ROUND, dl, MVT::f32, FP, DAG.getIntPtrConstant(0));
4986  return FP;
4987}
4988
4989SDValue PPCTargetLowering::LowerFLT_ROUNDS_(SDValue Op,
4990                                            SelectionDAG &DAG) const {
4991  SDLoc dl(Op);
4992  /*
4993   The rounding mode is in bits 30:31 of FPSR, and has the following
4994   settings:
4995     00 Round to nearest
4996     01 Round to 0
4997     10 Round to +inf
4998     11 Round to -inf
4999
5000  FLT_ROUNDS, on the other hand, expects the following:
5001    -1 Undefined
5002     0 Round to 0
5003     1 Round to nearest
5004     2 Round to +inf
5005     3 Round to -inf
5006
5007  To perform the conversion, we do:
5008    ((FPSCR & 0x3) ^ ((~FPSCR & 0x3) >> 1))
5009  */
5010
5011  MachineFunction &MF = DAG.getMachineFunction();
5012  EVT VT = Op.getValueType();
5013  EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
5014  SDValue MFFSreg, InFlag;
5015
5016  // Save FP Control Word to register
5017  EVT NodeTys[] = {
5018    MVT::f64,    // return register
5019    MVT::Glue    // unused in this context
5020  };
5021  SDValue Chain = DAG.getNode(PPCISD::MFFS, dl, NodeTys, &InFlag, 0);
5022
5023  // Save FP register to stack slot
5024  int SSFI = MF.getFrameInfo()->CreateStackObject(8, 8, false);
5025  SDValue StackSlot = DAG.getFrameIndex(SSFI, PtrVT);
5026  SDValue Store = DAG.getStore(DAG.getEntryNode(), dl, Chain,
5027                               StackSlot, MachinePointerInfo(), false, false,0);
5028
5029  // Load FP Control Word from low 32 bits of stack slot.
5030  SDValue Four = DAG.getConstant(4, PtrVT);
5031  SDValue Addr = DAG.getNode(ISD::ADD, dl, PtrVT, StackSlot, Four);
5032  SDValue CWD = DAG.getLoad(MVT::i32, dl, Store, Addr, MachinePointerInfo(),
5033                            false, false, false, 0);
5034
5035  // Transform as necessary
5036  SDValue CWD1 =
5037    DAG.getNode(ISD::AND, dl, MVT::i32,
5038                CWD, DAG.getConstant(3, MVT::i32));
5039  SDValue CWD2 =
5040    DAG.getNode(ISD::SRL, dl, MVT::i32,
5041                DAG.getNode(ISD::AND, dl, MVT::i32,
5042                            DAG.getNode(ISD::XOR, dl, MVT::i32,
5043                                        CWD, DAG.getConstant(3, MVT::i32)),
5044                            DAG.getConstant(3, MVT::i32)),
5045                DAG.getConstant(1, MVT::i32));
5046
5047  SDValue RetVal =
5048    DAG.getNode(ISD::XOR, dl, MVT::i32, CWD1, CWD2);
5049
5050  return DAG.getNode((VT.getSizeInBits() < 16 ?
5051                      ISD::TRUNCATE : ISD::ZERO_EXTEND), dl, VT, RetVal);
5052}
5053
5054SDValue PPCTargetLowering::LowerSHL_PARTS(SDValue Op, SelectionDAG &DAG) const {
5055  EVT VT = Op.getValueType();
5056  unsigned BitWidth = VT.getSizeInBits();
5057  SDLoc dl(Op);
5058  assert(Op.getNumOperands() == 3 &&
5059         VT == Op.getOperand(1).getValueType() &&
5060         "Unexpected SHL!");
5061
5062  // Expand into a bunch of logical ops.  Note that these ops
5063  // depend on the PPC behavior for oversized shift amounts.
5064  SDValue Lo = Op.getOperand(0);
5065  SDValue Hi = Op.getOperand(1);
5066  SDValue Amt = Op.getOperand(2);
5067  EVT AmtVT = Amt.getValueType();
5068
5069  SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT,
5070                             DAG.getConstant(BitWidth, AmtVT), Amt);
5071  SDValue Tmp2 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Amt);
5072  SDValue Tmp3 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Tmp1);
5073  SDValue Tmp4 = DAG.getNode(ISD::OR , dl, VT, Tmp2, Tmp3);
5074  SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt,
5075                             DAG.getConstant(-BitWidth, AmtVT));
5076  SDValue Tmp6 = DAG.getNode(PPCISD::SHL, dl, VT, Lo, Tmp5);
5077  SDValue OutHi = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp6);
5078  SDValue OutLo = DAG.getNode(PPCISD::SHL, dl, VT, Lo, Amt);
5079  SDValue OutOps[] = { OutLo, OutHi };
5080  return DAG.getMergeValues(OutOps, 2, dl);
5081}
5082
5083SDValue PPCTargetLowering::LowerSRL_PARTS(SDValue Op, SelectionDAG &DAG) const {
5084  EVT VT = Op.getValueType();
5085  SDLoc dl(Op);
5086  unsigned BitWidth = VT.getSizeInBits();
5087  assert(Op.getNumOperands() == 3 &&
5088         VT == Op.getOperand(1).getValueType() &&
5089         "Unexpected SRL!");
5090
5091  // Expand into a bunch of logical ops.  Note that these ops
5092  // depend on the PPC behavior for oversized shift amounts.
5093  SDValue Lo = Op.getOperand(0);
5094  SDValue Hi = Op.getOperand(1);
5095  SDValue Amt = Op.getOperand(2);
5096  EVT AmtVT = Amt.getValueType();
5097
5098  SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT,
5099                             DAG.getConstant(BitWidth, AmtVT), Amt);
5100  SDValue Tmp2 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Amt);
5101  SDValue Tmp3 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Tmp1);
5102  SDValue Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3);
5103  SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt,
5104                             DAG.getConstant(-BitWidth, AmtVT));
5105  SDValue Tmp6 = DAG.getNode(PPCISD::SRL, dl, VT, Hi, Tmp5);
5106  SDValue OutLo = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp6);
5107  SDValue OutHi = DAG.getNode(PPCISD::SRL, dl, VT, Hi, Amt);
5108  SDValue OutOps[] = { OutLo, OutHi };
5109  return DAG.getMergeValues(OutOps, 2, dl);
5110}
5111
5112SDValue PPCTargetLowering::LowerSRA_PARTS(SDValue Op, SelectionDAG &DAG) const {
5113  SDLoc dl(Op);
5114  EVT VT = Op.getValueType();
5115  unsigned BitWidth = VT.getSizeInBits();
5116  assert(Op.getNumOperands() == 3 &&
5117         VT == Op.getOperand(1).getValueType() &&
5118         "Unexpected SRA!");
5119
5120  // Expand into a bunch of logical ops, followed by a select_cc.
5121  SDValue Lo = Op.getOperand(0);
5122  SDValue Hi = Op.getOperand(1);
5123  SDValue Amt = Op.getOperand(2);
5124  EVT AmtVT = Amt.getValueType();
5125
5126  SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT,
5127                             DAG.getConstant(BitWidth, AmtVT), Amt);
5128  SDValue Tmp2 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Amt);
5129  SDValue Tmp3 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Tmp1);
5130  SDValue Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3);
5131  SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt,
5132                             DAG.getConstant(-BitWidth, AmtVT));
5133  SDValue Tmp6 = DAG.getNode(PPCISD::SRA, dl, VT, Hi, Tmp5);
5134  SDValue OutHi = DAG.getNode(PPCISD::SRA, dl, VT, Hi, Amt);
5135  SDValue OutLo = DAG.getSelectCC(dl, Tmp5, DAG.getConstant(0, AmtVT),
5136                                  Tmp4, Tmp6, ISD::SETLE);
5137  SDValue OutOps[] = { OutLo, OutHi };
5138  return DAG.getMergeValues(OutOps, 2, dl);
5139}
5140
5141//===----------------------------------------------------------------------===//
5142// Vector related lowering.
5143//
5144
5145/// BuildSplatI - Build a canonical splati of Val with an element size of
5146/// SplatSize.  Cast the result to VT.
5147static SDValue BuildSplatI(int Val, unsigned SplatSize, EVT VT,
5148                             SelectionDAG &DAG, SDLoc dl) {
5149  assert(Val >= -16 && Val <= 15 && "vsplti is out of range!");
5150
5151  static const EVT VTys[] = { // canonical VT to use for each size.
5152    MVT::v16i8, MVT::v8i16, MVT::Other, MVT::v4i32
5153  };
5154
5155  EVT ReqVT = VT != MVT::Other ? VT : VTys[SplatSize-1];
5156
5157  // Force vspltis[hw] -1 to vspltisb -1 to canonicalize.
5158  if (Val == -1)
5159    SplatSize = 1;
5160
5161  EVT CanonicalVT = VTys[SplatSize-1];
5162
5163  // Build a canonical splat for this value.
5164  SDValue Elt = DAG.getConstant(Val, MVT::i32);
5165  SmallVector<SDValue, 8> Ops;
5166  Ops.assign(CanonicalVT.getVectorNumElements(), Elt);
5167  SDValue Res = DAG.getNode(ISD::BUILD_VECTOR, dl, CanonicalVT,
5168                              &Ops[0], Ops.size());
5169  return DAG.getNode(ISD::BITCAST, dl, ReqVT, Res);
5170}
5171
5172/// BuildIntrinsicOp - Return a unary operator intrinsic node with the
5173/// specified intrinsic ID.
5174static SDValue BuildIntrinsicOp(unsigned IID, SDValue Op,
5175                                SelectionDAG &DAG, SDLoc dl,
5176                                EVT DestVT = MVT::Other) {
5177  if (DestVT == MVT::Other) DestVT = Op.getValueType();
5178  return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT,
5179                     DAG.getConstant(IID, MVT::i32), Op);
5180}
5181
5182/// BuildIntrinsicOp - Return a binary operator intrinsic node with the
5183/// specified intrinsic ID.
5184static SDValue BuildIntrinsicOp(unsigned IID, SDValue LHS, SDValue RHS,
5185                                SelectionDAG &DAG, SDLoc dl,
5186                                EVT DestVT = MVT::Other) {
5187  if (DestVT == MVT::Other) DestVT = LHS.getValueType();
5188  return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT,
5189                     DAG.getConstant(IID, MVT::i32), LHS, RHS);
5190}
5191
5192/// BuildIntrinsicOp - Return a ternary operator intrinsic node with the
5193/// specified intrinsic ID.
5194static SDValue BuildIntrinsicOp(unsigned IID, SDValue Op0, SDValue Op1,
5195                                SDValue Op2, SelectionDAG &DAG,
5196                                SDLoc dl, EVT DestVT = MVT::Other) {
5197  if (DestVT == MVT::Other) DestVT = Op0.getValueType();
5198  return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT,
5199                     DAG.getConstant(IID, MVT::i32), Op0, Op1, Op2);
5200}
5201
5202
5203/// BuildVSLDOI - Return a VECTOR_SHUFFLE that is a vsldoi of the specified
5204/// amount.  The result has the specified value type.
5205static SDValue BuildVSLDOI(SDValue LHS, SDValue RHS, unsigned Amt,
5206                             EVT VT, SelectionDAG &DAG, SDLoc dl) {
5207  // Force LHS/RHS to be the right type.
5208  LHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, LHS);
5209  RHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, RHS);
5210
5211  int Ops[16];
5212  for (unsigned i = 0; i != 16; ++i)
5213    Ops[i] = i + Amt;
5214  SDValue T = DAG.getVectorShuffle(MVT::v16i8, dl, LHS, RHS, Ops);
5215  return DAG.getNode(ISD::BITCAST, dl, VT, T);
5216}
5217
5218// If this is a case we can't handle, return null and let the default
5219// expansion code take care of it.  If we CAN select this case, and if it
5220// selects to a single instruction, return Op.  Otherwise, if we can codegen
5221// this case more efficiently than a constant pool load, lower it to the
5222// sequence of ops that should be used.
5223SDValue PPCTargetLowering::LowerBUILD_VECTOR(SDValue Op,
5224                                             SelectionDAG &DAG) const {
5225  SDLoc dl(Op);
5226  BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(Op.getNode());
5227  assert(BVN != 0 && "Expected a BuildVectorSDNode in LowerBUILD_VECTOR");
5228
5229  // Check if this is a splat of a constant value.
5230  APInt APSplatBits, APSplatUndef;
5231  unsigned SplatBitSize;
5232  bool HasAnyUndefs;
5233  if (! BVN->isConstantSplat(APSplatBits, APSplatUndef, SplatBitSize,
5234                             HasAnyUndefs, 0, true) || SplatBitSize > 32)
5235    return SDValue();
5236
5237  unsigned SplatBits = APSplatBits.getZExtValue();
5238  unsigned SplatUndef = APSplatUndef.getZExtValue();
5239  unsigned SplatSize = SplatBitSize / 8;
5240
5241  // First, handle single instruction cases.
5242
5243  // All zeros?
5244  if (SplatBits == 0) {
5245    // Canonicalize all zero vectors to be v4i32.
5246    if (Op.getValueType() != MVT::v4i32 || HasAnyUndefs) {
5247      SDValue Z = DAG.getConstant(0, MVT::i32);
5248      Z = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, Z, Z, Z, Z);
5249      Op = DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Z);
5250    }
5251    return Op;
5252  }
5253
5254  // If the sign extended value is in the range [-16,15], use VSPLTI[bhw].
5255  int32_t SextVal= (int32_t(SplatBits << (32-SplatBitSize)) >>
5256                    (32-SplatBitSize));
5257  if (SextVal >= -16 && SextVal <= 15)
5258    return BuildSplatI(SextVal, SplatSize, Op.getValueType(), DAG, dl);
5259
5260
5261  // Two instruction sequences.
5262
5263  // If this value is in the range [-32,30] and is even, use:
5264  //     VSPLTI[bhw](val/2) + VSPLTI[bhw](val/2)
5265  // If this value is in the range [17,31] and is odd, use:
5266  //     VSPLTI[bhw](val-16) - VSPLTI[bhw](-16)
5267  // If this value is in the range [-31,-17] and is odd, use:
5268  //     VSPLTI[bhw](val+16) + VSPLTI[bhw](-16)
5269  // Note the last two are three-instruction sequences.
5270  if (SextVal >= -32 && SextVal <= 31) {
5271    // To avoid having these optimizations undone by constant folding,
5272    // we convert to a pseudo that will be expanded later into one of
5273    // the above forms.
5274    SDValue Elt = DAG.getConstant(SextVal, MVT::i32);
5275    EVT VT = Op.getValueType();
5276    int Size = VT == MVT::v16i8 ? 1 : (VT == MVT::v8i16 ? 2 : 4);
5277    SDValue EltSize = DAG.getConstant(Size, MVT::i32);
5278    return DAG.getNode(PPCISD::VADD_SPLAT, dl, VT, Elt, EltSize);
5279  }
5280
5281  // If this is 0x8000_0000 x 4, turn into vspltisw + vslw.  If it is
5282  // 0x7FFF_FFFF x 4, turn it into not(0x8000_0000).  This is important
5283  // for fneg/fabs.
5284  if (SplatSize == 4 && SplatBits == (0x7FFFFFFF&~SplatUndef)) {
5285    // Make -1 and vspltisw -1:
5286    SDValue OnesV = BuildSplatI(-1, 4, MVT::v4i32, DAG, dl);
5287
5288    // Make the VSLW intrinsic, computing 0x8000_0000.
5289    SDValue Res = BuildIntrinsicOp(Intrinsic::ppc_altivec_vslw, OnesV,
5290                                   OnesV, DAG, dl);
5291
5292    // xor by OnesV to invert it.
5293    Res = DAG.getNode(ISD::XOR, dl, MVT::v4i32, Res, OnesV);
5294    return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res);
5295  }
5296
5297  // Check to see if this is a wide variety of vsplti*, binop self cases.
5298  static const signed char SplatCsts[] = {
5299    -1, 1, -2, 2, -3, 3, -4, 4, -5, 5, -6, 6, -7, 7,
5300    -8, 8, -9, 9, -10, 10, -11, 11, -12, 12, -13, 13, 14, -14, 15, -15, -16
5301  };
5302
5303  for (unsigned idx = 0; idx < array_lengthof(SplatCsts); ++idx) {
5304    // Indirect through the SplatCsts array so that we favor 'vsplti -1' for
5305    // cases which are ambiguous (e.g. formation of 0x8000_0000).  'vsplti -1'
5306    int i = SplatCsts[idx];
5307
5308    // Figure out what shift amount will be used by altivec if shifted by i in
5309    // this splat size.
5310    unsigned TypeShiftAmt = i & (SplatBitSize-1);
5311
5312    // vsplti + shl self.
5313    if (SextVal == (int)((unsigned)i << TypeShiftAmt)) {
5314      SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl);
5315      static const unsigned IIDs[] = { // Intrinsic to use for each size.
5316        Intrinsic::ppc_altivec_vslb, Intrinsic::ppc_altivec_vslh, 0,
5317        Intrinsic::ppc_altivec_vslw
5318      };
5319      Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl);
5320      return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res);
5321    }
5322
5323    // vsplti + srl self.
5324    if (SextVal == (int)((unsigned)i >> TypeShiftAmt)) {
5325      SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl);
5326      static const unsigned IIDs[] = { // Intrinsic to use for each size.
5327        Intrinsic::ppc_altivec_vsrb, Intrinsic::ppc_altivec_vsrh, 0,
5328        Intrinsic::ppc_altivec_vsrw
5329      };
5330      Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl);
5331      return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res);
5332    }
5333
5334    // vsplti + sra self.
5335    if (SextVal == (int)((unsigned)i >> TypeShiftAmt)) {
5336      SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl);
5337      static const unsigned IIDs[] = { // Intrinsic to use for each size.
5338        Intrinsic::ppc_altivec_vsrab, Intrinsic::ppc_altivec_vsrah, 0,
5339        Intrinsic::ppc_altivec_vsraw
5340      };
5341      Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl);
5342      return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res);
5343    }
5344
5345    // vsplti + rol self.
5346    if (SextVal == (int)(((unsigned)i << TypeShiftAmt) |
5347                         ((unsigned)i >> (SplatBitSize-TypeShiftAmt)))) {
5348      SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl);
5349      static const unsigned IIDs[] = { // Intrinsic to use for each size.
5350        Intrinsic::ppc_altivec_vrlb, Intrinsic::ppc_altivec_vrlh, 0,
5351        Intrinsic::ppc_altivec_vrlw
5352      };
5353      Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl);
5354      return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res);
5355    }
5356
5357    // t = vsplti c, result = vsldoi t, t, 1
5358    if (SextVal == (int)(((unsigned)i << 8) | (i < 0 ? 0xFF : 0))) {
5359      SDValue T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG, dl);
5360      return BuildVSLDOI(T, T, 1, Op.getValueType(), DAG, dl);
5361    }
5362    // t = vsplti c, result = vsldoi t, t, 2
5363    if (SextVal == (int)(((unsigned)i << 16) | (i < 0 ? 0xFFFF : 0))) {
5364      SDValue T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG, dl);
5365      return BuildVSLDOI(T, T, 2, Op.getValueType(), DAG, dl);
5366    }
5367    // t = vsplti c, result = vsldoi t, t, 3
5368    if (SextVal == (int)(((unsigned)i << 24) | (i < 0 ? 0xFFFFFF : 0))) {
5369      SDValue T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG, dl);
5370      return BuildVSLDOI(T, T, 3, Op.getValueType(), DAG, dl);
5371    }
5372  }
5373
5374  return SDValue();
5375}
5376
5377/// GeneratePerfectShuffle - Given an entry in the perfect-shuffle table, emit
5378/// the specified operations to build the shuffle.
5379static SDValue GeneratePerfectShuffle(unsigned PFEntry, SDValue LHS,
5380                                      SDValue RHS, SelectionDAG &DAG,
5381                                      SDLoc dl) {
5382  unsigned OpNum = (PFEntry >> 26) & 0x0F;
5383  unsigned LHSID = (PFEntry >> 13) & ((1 << 13)-1);
5384  unsigned RHSID = (PFEntry >>  0) & ((1 << 13)-1);
5385
5386  enum {
5387    OP_COPY = 0,  // Copy, used for things like <u,u,u,3> to say it is <0,1,2,3>
5388    OP_VMRGHW,
5389    OP_VMRGLW,
5390    OP_VSPLTISW0,
5391    OP_VSPLTISW1,
5392    OP_VSPLTISW2,
5393    OP_VSPLTISW3,
5394    OP_VSLDOI4,
5395    OP_VSLDOI8,
5396    OP_VSLDOI12
5397  };
5398
5399  if (OpNum == OP_COPY) {
5400    if (LHSID == (1*9+2)*9+3) return LHS;
5401    assert(LHSID == ((4*9+5)*9+6)*9+7 && "Illegal OP_COPY!");
5402    return RHS;
5403  }
5404
5405  SDValue OpLHS, OpRHS;
5406  OpLHS = GeneratePerfectShuffle(PerfectShuffleTable[LHSID], LHS, RHS, DAG, dl);
5407  OpRHS = GeneratePerfectShuffle(PerfectShuffleTable[RHSID], LHS, RHS, DAG, dl);
5408
5409  int ShufIdxs[16];
5410  switch (OpNum) {
5411  default: llvm_unreachable("Unknown i32 permute!");
5412  case OP_VMRGHW:
5413    ShufIdxs[ 0] =  0; ShufIdxs[ 1] =  1; ShufIdxs[ 2] =  2; ShufIdxs[ 3] =  3;
5414    ShufIdxs[ 4] = 16; ShufIdxs[ 5] = 17; ShufIdxs[ 6] = 18; ShufIdxs[ 7] = 19;
5415    ShufIdxs[ 8] =  4; ShufIdxs[ 9] =  5; ShufIdxs[10] =  6; ShufIdxs[11] =  7;
5416    ShufIdxs[12] = 20; ShufIdxs[13] = 21; ShufIdxs[14] = 22; ShufIdxs[15] = 23;
5417    break;
5418  case OP_VMRGLW:
5419    ShufIdxs[ 0] =  8; ShufIdxs[ 1] =  9; ShufIdxs[ 2] = 10; ShufIdxs[ 3] = 11;
5420    ShufIdxs[ 4] = 24; ShufIdxs[ 5] = 25; ShufIdxs[ 6] = 26; ShufIdxs[ 7] = 27;
5421    ShufIdxs[ 8] = 12; ShufIdxs[ 9] = 13; ShufIdxs[10] = 14; ShufIdxs[11] = 15;
5422    ShufIdxs[12] = 28; ShufIdxs[13] = 29; ShufIdxs[14] = 30; ShufIdxs[15] = 31;
5423    break;
5424  case OP_VSPLTISW0:
5425    for (unsigned i = 0; i != 16; ++i)
5426      ShufIdxs[i] = (i&3)+0;
5427    break;
5428  case OP_VSPLTISW1:
5429    for (unsigned i = 0; i != 16; ++i)
5430      ShufIdxs[i] = (i&3)+4;
5431    break;
5432  case OP_VSPLTISW2:
5433    for (unsigned i = 0; i != 16; ++i)
5434      ShufIdxs[i] = (i&3)+8;
5435    break;
5436  case OP_VSPLTISW3:
5437    for (unsigned i = 0; i != 16; ++i)
5438      ShufIdxs[i] = (i&3)+12;
5439    break;
5440  case OP_VSLDOI4:
5441    return BuildVSLDOI(OpLHS, OpRHS, 4, OpLHS.getValueType(), DAG, dl);
5442  case OP_VSLDOI8:
5443    return BuildVSLDOI(OpLHS, OpRHS, 8, OpLHS.getValueType(), DAG, dl);
5444  case OP_VSLDOI12:
5445    return BuildVSLDOI(OpLHS, OpRHS, 12, OpLHS.getValueType(), DAG, dl);
5446  }
5447  EVT VT = OpLHS.getValueType();
5448  OpLHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OpLHS);
5449  OpRHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OpRHS);
5450  SDValue T = DAG.getVectorShuffle(MVT::v16i8, dl, OpLHS, OpRHS, ShufIdxs);
5451  return DAG.getNode(ISD::BITCAST, dl, VT, T);
5452}
5453
5454/// LowerVECTOR_SHUFFLE - Return the code we lower for VECTOR_SHUFFLE.  If this
5455/// is a shuffle we can handle in a single instruction, return it.  Otherwise,
5456/// return the code it can be lowered into.  Worst case, it can always be
5457/// lowered into a vperm.
5458SDValue PPCTargetLowering::LowerVECTOR_SHUFFLE(SDValue Op,
5459                                               SelectionDAG &DAG) const {
5460  SDLoc dl(Op);
5461  SDValue V1 = Op.getOperand(0);
5462  SDValue V2 = Op.getOperand(1);
5463  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
5464  EVT VT = Op.getValueType();
5465
5466  // Cases that are handled by instructions that take permute immediates
5467  // (such as vsplt*) should be left as VECTOR_SHUFFLE nodes so they can be
5468  // selected by the instruction selector.
5469  if (V2.getOpcode() == ISD::UNDEF) {
5470    if (PPC::isSplatShuffleMask(SVOp, 1) ||
5471        PPC::isSplatShuffleMask(SVOp, 2) ||
5472        PPC::isSplatShuffleMask(SVOp, 4) ||
5473        PPC::isVPKUWUMShuffleMask(SVOp, true) ||
5474        PPC::isVPKUHUMShuffleMask(SVOp, true) ||
5475        PPC::isVSLDOIShuffleMask(SVOp, true) != -1 ||
5476        PPC::isVMRGLShuffleMask(SVOp, 1, true) ||
5477        PPC::isVMRGLShuffleMask(SVOp, 2, true) ||
5478        PPC::isVMRGLShuffleMask(SVOp, 4, true) ||
5479        PPC::isVMRGHShuffleMask(SVOp, 1, true) ||
5480        PPC::isVMRGHShuffleMask(SVOp, 2, true) ||
5481        PPC::isVMRGHShuffleMask(SVOp, 4, true)) {
5482      return Op;
5483    }
5484  }
5485
5486  // Altivec has a variety of "shuffle immediates" that take two vector inputs
5487  // and produce a fixed permutation.  If any of these match, do not lower to
5488  // VPERM.
5489  if (PPC::isVPKUWUMShuffleMask(SVOp, false) ||
5490      PPC::isVPKUHUMShuffleMask(SVOp, false) ||
5491      PPC::isVSLDOIShuffleMask(SVOp, false) != -1 ||
5492      PPC::isVMRGLShuffleMask(SVOp, 1, false) ||
5493      PPC::isVMRGLShuffleMask(SVOp, 2, false) ||
5494      PPC::isVMRGLShuffleMask(SVOp, 4, false) ||
5495      PPC::isVMRGHShuffleMask(SVOp, 1, false) ||
5496      PPC::isVMRGHShuffleMask(SVOp, 2, false) ||
5497      PPC::isVMRGHShuffleMask(SVOp, 4, false))
5498    return Op;
5499
5500  // Check to see if this is a shuffle of 4-byte values.  If so, we can use our
5501  // perfect shuffle table to emit an optimal matching sequence.
5502  ArrayRef<int> PermMask = SVOp->getMask();
5503
5504  unsigned PFIndexes[4];
5505  bool isFourElementShuffle = true;
5506  for (unsigned i = 0; i != 4 && isFourElementShuffle; ++i) { // Element number
5507    unsigned EltNo = 8;   // Start out undef.
5508    for (unsigned j = 0; j != 4; ++j) {  // Intra-element byte.
5509      if (PermMask[i*4+j] < 0)
5510        continue;   // Undef, ignore it.
5511
5512      unsigned ByteSource = PermMask[i*4+j];
5513      if ((ByteSource & 3) != j) {
5514        isFourElementShuffle = false;
5515        break;
5516      }
5517
5518      if (EltNo == 8) {
5519        EltNo = ByteSource/4;
5520      } else if (EltNo != ByteSource/4) {
5521        isFourElementShuffle = false;
5522        break;
5523      }
5524    }
5525    PFIndexes[i] = EltNo;
5526  }
5527
5528  // If this shuffle can be expressed as a shuffle of 4-byte elements, use the
5529  // perfect shuffle vector to determine if it is cost effective to do this as
5530  // discrete instructions, or whether we should use a vperm.
5531  if (isFourElementShuffle) {
5532    // Compute the index in the perfect shuffle table.
5533    unsigned PFTableIndex =
5534      PFIndexes[0]*9*9*9+PFIndexes[1]*9*9+PFIndexes[2]*9+PFIndexes[3];
5535
5536    unsigned PFEntry = PerfectShuffleTable[PFTableIndex];
5537    unsigned Cost  = (PFEntry >> 30);
5538
5539    // Determining when to avoid vperm is tricky.  Many things affect the cost
5540    // of vperm, particularly how many times the perm mask needs to be computed.
5541    // For example, if the perm mask can be hoisted out of a loop or is already
5542    // used (perhaps because there are multiple permutes with the same shuffle
5543    // mask?) the vperm has a cost of 1.  OTOH, hoisting the permute mask out of
5544    // the loop requires an extra register.
5545    //
5546    // As a compromise, we only emit discrete instructions if the shuffle can be
5547    // generated in 3 or fewer operations.  When we have loop information
5548    // available, if this block is within a loop, we should avoid using vperm
5549    // for 3-operation perms and use a constant pool load instead.
5550    if (Cost < 3)
5551      return GeneratePerfectShuffle(PFEntry, V1, V2, DAG, dl);
5552  }
5553
5554  // Lower this to a VPERM(V1, V2, V3) expression, where V3 is a constant
5555  // vector that will get spilled to the constant pool.
5556  if (V2.getOpcode() == ISD::UNDEF) V2 = V1;
5557
5558  // The SHUFFLE_VECTOR mask is almost exactly what we want for vperm, except
5559  // that it is in input element units, not in bytes.  Convert now.
5560  EVT EltVT = V1.getValueType().getVectorElementType();
5561  unsigned BytesPerElement = EltVT.getSizeInBits()/8;
5562
5563  SmallVector<SDValue, 16> ResultMask;
5564  for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i) {
5565    unsigned SrcElt = PermMask[i] < 0 ? 0 : PermMask[i];
5566
5567    for (unsigned j = 0; j != BytesPerElement; ++j)
5568      ResultMask.push_back(DAG.getConstant(SrcElt*BytesPerElement+j,
5569                                           MVT::i32));
5570  }
5571
5572  SDValue VPermMask = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v16i8,
5573                                    &ResultMask[0], ResultMask.size());
5574  return DAG.getNode(PPCISD::VPERM, dl, V1.getValueType(), V1, V2, VPermMask);
5575}
5576
5577/// getAltivecCompareInfo - Given an intrinsic, return false if it is not an
5578/// altivec comparison.  If it is, return true and fill in Opc/isDot with
5579/// information about the intrinsic.
5580static bool getAltivecCompareInfo(SDValue Intrin, int &CompareOpc,
5581                                  bool &isDot) {
5582  unsigned IntrinsicID =
5583    cast<ConstantSDNode>(Intrin.getOperand(0))->getZExtValue();
5584  CompareOpc = -1;
5585  isDot = false;
5586  switch (IntrinsicID) {
5587  default: return false;
5588    // Comparison predicates.
5589  case Intrinsic::ppc_altivec_vcmpbfp_p:  CompareOpc = 966; isDot = 1; break;
5590  case Intrinsic::ppc_altivec_vcmpeqfp_p: CompareOpc = 198; isDot = 1; break;
5591  case Intrinsic::ppc_altivec_vcmpequb_p: CompareOpc =   6; isDot = 1; break;
5592  case Intrinsic::ppc_altivec_vcmpequh_p: CompareOpc =  70; isDot = 1; break;
5593  case Intrinsic::ppc_altivec_vcmpequw_p: CompareOpc = 134; isDot = 1; break;
5594  case Intrinsic::ppc_altivec_vcmpgefp_p: CompareOpc = 454; isDot = 1; break;
5595  case Intrinsic::ppc_altivec_vcmpgtfp_p: CompareOpc = 710; isDot = 1; break;
5596  case Intrinsic::ppc_altivec_vcmpgtsb_p: CompareOpc = 774; isDot = 1; break;
5597  case Intrinsic::ppc_altivec_vcmpgtsh_p: CompareOpc = 838; isDot = 1; break;
5598  case Intrinsic::ppc_altivec_vcmpgtsw_p: CompareOpc = 902; isDot = 1; break;
5599  case Intrinsic::ppc_altivec_vcmpgtub_p: CompareOpc = 518; isDot = 1; break;
5600  case Intrinsic::ppc_altivec_vcmpgtuh_p: CompareOpc = 582; isDot = 1; break;
5601  case Intrinsic::ppc_altivec_vcmpgtuw_p: CompareOpc = 646; isDot = 1; break;
5602
5603    // Normal Comparisons.
5604  case Intrinsic::ppc_altivec_vcmpbfp:    CompareOpc = 966; isDot = 0; break;
5605  case Intrinsic::ppc_altivec_vcmpeqfp:   CompareOpc = 198; isDot = 0; break;
5606  case Intrinsic::ppc_altivec_vcmpequb:   CompareOpc =   6; isDot = 0; break;
5607  case Intrinsic::ppc_altivec_vcmpequh:   CompareOpc =  70; isDot = 0; break;
5608  case Intrinsic::ppc_altivec_vcmpequw:   CompareOpc = 134; isDot = 0; break;
5609  case Intrinsic::ppc_altivec_vcmpgefp:   CompareOpc = 454; isDot = 0; break;
5610  case Intrinsic::ppc_altivec_vcmpgtfp:   CompareOpc = 710; isDot = 0; break;
5611  case Intrinsic::ppc_altivec_vcmpgtsb:   CompareOpc = 774; isDot = 0; break;
5612  case Intrinsic::ppc_altivec_vcmpgtsh:   CompareOpc = 838; isDot = 0; break;
5613  case Intrinsic::ppc_altivec_vcmpgtsw:   CompareOpc = 902; isDot = 0; break;
5614  case Intrinsic::ppc_altivec_vcmpgtub:   CompareOpc = 518; isDot = 0; break;
5615  case Intrinsic::ppc_altivec_vcmpgtuh:   CompareOpc = 582; isDot = 0; break;
5616  case Intrinsic::ppc_altivec_vcmpgtuw:   CompareOpc = 646; isDot = 0; break;
5617  }
5618  return true;
5619}
5620
5621/// LowerINTRINSIC_WO_CHAIN - If this is an intrinsic that we want to custom
5622/// lower, do it, otherwise return null.
5623SDValue PPCTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op,
5624                                                   SelectionDAG &DAG) const {
5625  // If this is a lowered altivec predicate compare, CompareOpc is set to the
5626  // opcode number of the comparison.
5627  SDLoc dl(Op);
5628  int CompareOpc;
5629  bool isDot;
5630  if (!getAltivecCompareInfo(Op, CompareOpc, isDot))
5631    return SDValue();    // Don't custom lower most intrinsics.
5632
5633  // If this is a non-dot comparison, make the VCMP node and we are done.
5634  if (!isDot) {
5635    SDValue Tmp = DAG.getNode(PPCISD::VCMP, dl, Op.getOperand(2).getValueType(),
5636                              Op.getOperand(1), Op.getOperand(2),
5637                              DAG.getConstant(CompareOpc, MVT::i32));
5638    return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Tmp);
5639  }
5640
5641  // Create the PPCISD altivec 'dot' comparison node.
5642  SDValue Ops[] = {
5643    Op.getOperand(2),  // LHS
5644    Op.getOperand(3),  // RHS
5645    DAG.getConstant(CompareOpc, MVT::i32)
5646  };
5647  EVT VTs[] = { Op.getOperand(2).getValueType(), MVT::Glue };
5648  SDValue CompNode = DAG.getNode(PPCISD::VCMPo, dl, VTs, Ops, 3);
5649
5650  // Now that we have the comparison, emit a copy from the CR to a GPR.
5651  // This is flagged to the above dot comparison.
5652  SDValue Flags = DAG.getNode(PPCISD::MFOCRF, dl, MVT::i32,
5653                                DAG.getRegister(PPC::CR6, MVT::i32),
5654                                CompNode.getValue(1));
5655
5656  // Unpack the result based on how the target uses it.
5657  unsigned BitNo;   // Bit # of CR6.
5658  bool InvertBit;   // Invert result?
5659  switch (cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue()) {
5660  default:  // Can't happen, don't crash on invalid number though.
5661  case 0:   // Return the value of the EQ bit of CR6.
5662    BitNo = 0; InvertBit = false;
5663    break;
5664  case 1:   // Return the inverted value of the EQ bit of CR6.
5665    BitNo = 0; InvertBit = true;
5666    break;
5667  case 2:   // Return the value of the LT bit of CR6.
5668    BitNo = 2; InvertBit = false;
5669    break;
5670  case 3:   // Return the inverted value of the LT bit of CR6.
5671    BitNo = 2; InvertBit = true;
5672    break;
5673  }
5674
5675  // Shift the bit into the low position.
5676  Flags = DAG.getNode(ISD::SRL, dl, MVT::i32, Flags,
5677                      DAG.getConstant(8-(3-BitNo), MVT::i32));
5678  // Isolate the bit.
5679  Flags = DAG.getNode(ISD::AND, dl, MVT::i32, Flags,
5680                      DAG.getConstant(1, MVT::i32));
5681
5682  // If we are supposed to, toggle the bit.
5683  if (InvertBit)
5684    Flags = DAG.getNode(ISD::XOR, dl, MVT::i32, Flags,
5685                        DAG.getConstant(1, MVT::i32));
5686  return Flags;
5687}
5688
5689SDValue PPCTargetLowering::LowerSCALAR_TO_VECTOR(SDValue Op,
5690                                                   SelectionDAG &DAG) const {
5691  SDLoc dl(Op);
5692  // Create a stack slot that is 16-byte aligned.
5693  MachineFrameInfo *FrameInfo = DAG.getMachineFunction().getFrameInfo();
5694  int FrameIdx = FrameInfo->CreateStackObject(16, 16, false);
5695  EVT PtrVT = getPointerTy();
5696  SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
5697
5698  // Store the input value into Value#0 of the stack slot.
5699  SDValue Store = DAG.getStore(DAG.getEntryNode(), dl,
5700                               Op.getOperand(0), FIdx, MachinePointerInfo(),
5701                               false, false, 0);
5702  // Load it out.
5703  return DAG.getLoad(Op.getValueType(), dl, Store, FIdx, MachinePointerInfo(),
5704                     false, false, false, 0);
5705}
5706
5707SDValue PPCTargetLowering::LowerMUL(SDValue Op, SelectionDAG &DAG) const {
5708  SDLoc dl(Op);
5709  if (Op.getValueType() == MVT::v4i32) {
5710    SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1);
5711
5712    SDValue Zero  = BuildSplatI(  0, 1, MVT::v4i32, DAG, dl);
5713    SDValue Neg16 = BuildSplatI(-16, 4, MVT::v4i32, DAG, dl);//+16 as shift amt.
5714
5715    SDValue RHSSwap =   // = vrlw RHS, 16
5716      BuildIntrinsicOp(Intrinsic::ppc_altivec_vrlw, RHS, Neg16, DAG, dl);
5717
5718    // Shrinkify inputs to v8i16.
5719    LHS = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, LHS);
5720    RHS = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, RHS);
5721    RHSSwap = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, RHSSwap);
5722
5723    // Low parts multiplied together, generating 32-bit results (we ignore the
5724    // top parts).
5725    SDValue LoProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmulouh,
5726                                        LHS, RHS, DAG, dl, MVT::v4i32);
5727
5728    SDValue HiProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmsumuhm,
5729                                      LHS, RHSSwap, Zero, DAG, dl, MVT::v4i32);
5730    // Shift the high parts up 16 bits.
5731    HiProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vslw, HiProd,
5732                              Neg16, DAG, dl);
5733    return DAG.getNode(ISD::ADD, dl, MVT::v4i32, LoProd, HiProd);
5734  } else if (Op.getValueType() == MVT::v8i16) {
5735    SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1);
5736
5737    SDValue Zero = BuildSplatI(0, 1, MVT::v8i16, DAG, dl);
5738
5739    return BuildIntrinsicOp(Intrinsic::ppc_altivec_vmladduhm,
5740                            LHS, RHS, Zero, DAG, dl);
5741  } else if (Op.getValueType() == MVT::v16i8) {
5742    SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1);
5743
5744    // Multiply the even 8-bit parts, producing 16-bit sums.
5745    SDValue EvenParts = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmuleub,
5746                                           LHS, RHS, DAG, dl, MVT::v8i16);
5747    EvenParts = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, EvenParts);
5748
5749    // Multiply the odd 8-bit parts, producing 16-bit sums.
5750    SDValue OddParts = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmuloub,
5751                                          LHS, RHS, DAG, dl, MVT::v8i16);
5752    OddParts = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OddParts);
5753
5754    // Merge the results together.
5755    int Ops[16];
5756    for (unsigned i = 0; i != 8; ++i) {
5757      Ops[i*2  ] = 2*i+1;
5758      Ops[i*2+1] = 2*i+1+16;
5759    }
5760    return DAG.getVectorShuffle(MVT::v16i8, dl, EvenParts, OddParts, Ops);
5761  } else {
5762    llvm_unreachable("Unknown mul to lower!");
5763  }
5764}
5765
5766/// LowerOperation - Provide custom lowering hooks for some operations.
5767///
5768SDValue PPCTargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
5769  switch (Op.getOpcode()) {
5770  default: llvm_unreachable("Wasn't expecting to be able to lower this!");
5771  case ISD::ConstantPool:       return LowerConstantPool(Op, DAG);
5772  case ISD::BlockAddress:       return LowerBlockAddress(Op, DAG);
5773  case ISD::GlobalAddress:      return LowerGlobalAddress(Op, DAG);
5774  case ISD::GlobalTLSAddress:   return LowerGlobalTLSAddress(Op, DAG);
5775  case ISD::JumpTable:          return LowerJumpTable(Op, DAG);
5776  case ISD::SETCC:              return LowerSETCC(Op, DAG);
5777  case ISD::INIT_TRAMPOLINE:    return LowerINIT_TRAMPOLINE(Op, DAG);
5778  case ISD::ADJUST_TRAMPOLINE:  return LowerADJUST_TRAMPOLINE(Op, DAG);
5779  case ISD::VASTART:
5780    return LowerVASTART(Op, DAG, PPCSubTarget);
5781
5782  case ISD::VAARG:
5783    return LowerVAARG(Op, DAG, PPCSubTarget);
5784
5785  case ISD::VACOPY:
5786    return LowerVACOPY(Op, DAG, PPCSubTarget);
5787
5788  case ISD::STACKRESTORE:       return LowerSTACKRESTORE(Op, DAG, PPCSubTarget);
5789  case ISD::DYNAMIC_STACKALLOC:
5790    return LowerDYNAMIC_STACKALLOC(Op, DAG, PPCSubTarget);
5791
5792  case ISD::EH_SJLJ_SETJMP:     return lowerEH_SJLJ_SETJMP(Op, DAG);
5793  case ISD::EH_SJLJ_LONGJMP:    return lowerEH_SJLJ_LONGJMP(Op, DAG);
5794
5795  case ISD::SELECT_CC:          return LowerSELECT_CC(Op, DAG);
5796  case ISD::FP_TO_UINT:
5797  case ISD::FP_TO_SINT:         return LowerFP_TO_INT(Op, DAG,
5798                                                       SDLoc(Op));
5799  case ISD::UINT_TO_FP:
5800  case ISD::SINT_TO_FP:         return LowerINT_TO_FP(Op, DAG);
5801  case ISD::FLT_ROUNDS_:        return LowerFLT_ROUNDS_(Op, DAG);
5802
5803  // Lower 64-bit shifts.
5804  case ISD::SHL_PARTS:          return LowerSHL_PARTS(Op, DAG);
5805  case ISD::SRL_PARTS:          return LowerSRL_PARTS(Op, DAG);
5806  case ISD::SRA_PARTS:          return LowerSRA_PARTS(Op, DAG);
5807
5808  // Vector-related lowering.
5809  case ISD::BUILD_VECTOR:       return LowerBUILD_VECTOR(Op, DAG);
5810  case ISD::VECTOR_SHUFFLE:     return LowerVECTOR_SHUFFLE(Op, DAG);
5811  case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG);
5812  case ISD::SCALAR_TO_VECTOR:   return LowerSCALAR_TO_VECTOR(Op, DAG);
5813  case ISD::MUL:                return LowerMUL(Op, DAG);
5814
5815  // For counter-based loop handling.
5816  case ISD::INTRINSIC_W_CHAIN:  return SDValue();
5817
5818  // Frame & Return address.
5819  case ISD::RETURNADDR:         return LowerRETURNADDR(Op, DAG);
5820  case ISD::FRAMEADDR:          return LowerFRAMEADDR(Op, DAG);
5821  }
5822}
5823
5824void PPCTargetLowering::ReplaceNodeResults(SDNode *N,
5825                                           SmallVectorImpl<SDValue>&Results,
5826                                           SelectionDAG &DAG) const {
5827  const TargetMachine &TM = getTargetMachine();
5828  SDLoc dl(N);
5829  switch (N->getOpcode()) {
5830  default:
5831    llvm_unreachable("Do not know how to custom type legalize this operation!");
5832  case ISD::INTRINSIC_W_CHAIN: {
5833    if (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue() !=
5834        Intrinsic::ppc_is_decremented_ctr_nonzero)
5835      break;
5836
5837    assert(N->getValueType(0) == MVT::i1 &&
5838           "Unexpected result type for CTR decrement intrinsic");
5839    EVT SVT = getSetCCResultType(*DAG.getContext(), N->getValueType(0));
5840    SDVTList VTs = DAG.getVTList(SVT, MVT::Other);
5841    SDValue NewInt = DAG.getNode(N->getOpcode(), dl, VTs, N->getOperand(0),
5842                                 N->getOperand(1));
5843
5844    Results.push_back(NewInt);
5845    Results.push_back(NewInt.getValue(1));
5846    break;
5847  }
5848  case ISD::VAARG: {
5849    if (!TM.getSubtarget<PPCSubtarget>().isSVR4ABI()
5850        || TM.getSubtarget<PPCSubtarget>().isPPC64())
5851      return;
5852
5853    EVT VT = N->getValueType(0);
5854
5855    if (VT == MVT::i64) {
5856      SDValue NewNode = LowerVAARG(SDValue(N, 1), DAG, PPCSubTarget);
5857
5858      Results.push_back(NewNode);
5859      Results.push_back(NewNode.getValue(1));
5860    }
5861    return;
5862  }
5863  case ISD::FP_ROUND_INREG: {
5864    assert(N->getValueType(0) == MVT::ppcf128);
5865    assert(N->getOperand(0).getValueType() == MVT::ppcf128);
5866    SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, dl,
5867                             MVT::f64, N->getOperand(0),
5868                             DAG.getIntPtrConstant(0));
5869    SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, dl,
5870                             MVT::f64, N->getOperand(0),
5871                             DAG.getIntPtrConstant(1));
5872
5873    // Add the two halves of the long double in round-to-zero mode.
5874    SDValue FPreg = DAG.getNode(PPCISD::FADDRTZ, dl, MVT::f64, Lo, Hi);
5875
5876    // We know the low half is about to be thrown away, so just use something
5877    // convenient.
5878    Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, MVT::ppcf128,
5879                                FPreg, FPreg));
5880    return;
5881  }
5882  case ISD::FP_TO_SINT:
5883    // LowerFP_TO_INT() can only handle f32 and f64.
5884    if (N->getOperand(0).getValueType() == MVT::ppcf128)
5885      return;
5886    Results.push_back(LowerFP_TO_INT(SDValue(N, 0), DAG, dl));
5887    return;
5888  }
5889}
5890
5891
5892//===----------------------------------------------------------------------===//
5893//  Other Lowering Code
5894//===----------------------------------------------------------------------===//
5895
5896MachineBasicBlock *
5897PPCTargetLowering::EmitAtomicBinary(MachineInstr *MI, MachineBasicBlock *BB,
5898                                    bool is64bit, unsigned BinOpcode) const {
5899  // This also handles ATOMIC_SWAP, indicated by BinOpcode==0.
5900  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
5901
5902  const BasicBlock *LLVM_BB = BB->getBasicBlock();
5903  MachineFunction *F = BB->getParent();
5904  MachineFunction::iterator It = BB;
5905  ++It;
5906
5907  unsigned dest = MI->getOperand(0).getReg();
5908  unsigned ptrA = MI->getOperand(1).getReg();
5909  unsigned ptrB = MI->getOperand(2).getReg();
5910  unsigned incr = MI->getOperand(3).getReg();
5911  DebugLoc dl = MI->getDebugLoc();
5912
5913  MachineBasicBlock *loopMBB = F->CreateMachineBasicBlock(LLVM_BB);
5914  MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB);
5915  F->insert(It, loopMBB);
5916  F->insert(It, exitMBB);
5917  exitMBB->splice(exitMBB->begin(), BB,
5918                  llvm::next(MachineBasicBlock::iterator(MI)),
5919                  BB->end());
5920  exitMBB->transferSuccessorsAndUpdatePHIs(BB);
5921
5922  MachineRegisterInfo &RegInfo = F->getRegInfo();
5923  unsigned TmpReg = (!BinOpcode) ? incr :
5924    RegInfo.createVirtualRegister(
5925       is64bit ? (const TargetRegisterClass *) &PPC::G8RCRegClass :
5926                 (const TargetRegisterClass *) &PPC::GPRCRegClass);
5927
5928  //  thisMBB:
5929  //   ...
5930  //   fallthrough --> loopMBB
5931  BB->addSuccessor(loopMBB);
5932
5933  //  loopMBB:
5934  //   l[wd]arx dest, ptr
5935  //   add r0, dest, incr
5936  //   st[wd]cx. r0, ptr
5937  //   bne- loopMBB
5938  //   fallthrough --> exitMBB
5939  BB = loopMBB;
5940  BuildMI(BB, dl, TII->get(is64bit ? PPC::LDARX : PPC::LWARX), dest)
5941    .addReg(ptrA).addReg(ptrB);
5942  if (BinOpcode)
5943    BuildMI(BB, dl, TII->get(BinOpcode), TmpReg).addReg(incr).addReg(dest);
5944  BuildMI(BB, dl, TII->get(is64bit ? PPC::STDCX : PPC::STWCX))
5945    .addReg(TmpReg).addReg(ptrA).addReg(ptrB);
5946  BuildMI(BB, dl, TII->get(PPC::BCC))
5947    .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loopMBB);
5948  BB->addSuccessor(loopMBB);
5949  BB->addSuccessor(exitMBB);
5950
5951  //  exitMBB:
5952  //   ...
5953  BB = exitMBB;
5954  return BB;
5955}
5956
5957MachineBasicBlock *
5958PPCTargetLowering::EmitPartwordAtomicBinary(MachineInstr *MI,
5959                                            MachineBasicBlock *BB,
5960                                            bool is8bit,    // operation
5961                                            unsigned BinOpcode) const {
5962  // This also handles ATOMIC_SWAP, indicated by BinOpcode==0.
5963  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
5964  // In 64 bit mode we have to use 64 bits for addresses, even though the
5965  // lwarx/stwcx are 32 bits.  With the 32-bit atomics we can use address
5966  // registers without caring whether they're 32 or 64, but here we're
5967  // doing actual arithmetic on the addresses.
5968  bool is64bit = PPCSubTarget.isPPC64();
5969  unsigned ZeroReg = is64bit ? PPC::ZERO8 : PPC::ZERO;
5970
5971  const BasicBlock *LLVM_BB = BB->getBasicBlock();
5972  MachineFunction *F = BB->getParent();
5973  MachineFunction::iterator It = BB;
5974  ++It;
5975
5976  unsigned dest = MI->getOperand(0).getReg();
5977  unsigned ptrA = MI->getOperand(1).getReg();
5978  unsigned ptrB = MI->getOperand(2).getReg();
5979  unsigned incr = MI->getOperand(3).getReg();
5980  DebugLoc dl = MI->getDebugLoc();
5981
5982  MachineBasicBlock *loopMBB = F->CreateMachineBasicBlock(LLVM_BB);
5983  MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB);
5984  F->insert(It, loopMBB);
5985  F->insert(It, exitMBB);
5986  exitMBB->splice(exitMBB->begin(), BB,
5987                  llvm::next(MachineBasicBlock::iterator(MI)),
5988                  BB->end());
5989  exitMBB->transferSuccessorsAndUpdatePHIs(BB);
5990
5991  MachineRegisterInfo &RegInfo = F->getRegInfo();
5992  const TargetRegisterClass *RC =
5993    is64bit ? (const TargetRegisterClass *) &PPC::G8RCRegClass :
5994              (const TargetRegisterClass *) &PPC::GPRCRegClass;
5995  unsigned PtrReg = RegInfo.createVirtualRegister(RC);
5996  unsigned Shift1Reg = RegInfo.createVirtualRegister(RC);
5997  unsigned ShiftReg = RegInfo.createVirtualRegister(RC);
5998  unsigned Incr2Reg = RegInfo.createVirtualRegister(RC);
5999  unsigned MaskReg = RegInfo.createVirtualRegister(RC);
6000  unsigned Mask2Reg = RegInfo.createVirtualRegister(RC);
6001  unsigned Mask3Reg = RegInfo.createVirtualRegister(RC);
6002  unsigned Tmp2Reg = RegInfo.createVirtualRegister(RC);
6003  unsigned Tmp3Reg = RegInfo.createVirtualRegister(RC);
6004  unsigned Tmp4Reg = RegInfo.createVirtualRegister(RC);
6005  unsigned TmpDestReg = RegInfo.createVirtualRegister(RC);
6006  unsigned Ptr1Reg;
6007  unsigned TmpReg = (!BinOpcode) ? Incr2Reg : RegInfo.createVirtualRegister(RC);
6008
6009  //  thisMBB:
6010  //   ...
6011  //   fallthrough --> loopMBB
6012  BB->addSuccessor(loopMBB);
6013
6014  // The 4-byte load must be aligned, while a char or short may be
6015  // anywhere in the word.  Hence all this nasty bookkeeping code.
6016  //   add ptr1, ptrA, ptrB [copy if ptrA==0]
6017  //   rlwinm shift1, ptr1, 3, 27, 28 [3, 27, 27]
6018  //   xori shift, shift1, 24 [16]
6019  //   rlwinm ptr, ptr1, 0, 0, 29
6020  //   slw incr2, incr, shift
6021  //   li mask2, 255 [li mask3, 0; ori mask2, mask3, 65535]
6022  //   slw mask, mask2, shift
6023  //  loopMBB:
6024  //   lwarx tmpDest, ptr
6025  //   add tmp, tmpDest, incr2
6026  //   andc tmp2, tmpDest, mask
6027  //   and tmp3, tmp, mask
6028  //   or tmp4, tmp3, tmp2
6029  //   stwcx. tmp4, ptr
6030  //   bne- loopMBB
6031  //   fallthrough --> exitMBB
6032  //   srw dest, tmpDest, shift
6033  if (ptrA != ZeroReg) {
6034    Ptr1Reg = RegInfo.createVirtualRegister(RC);
6035    BuildMI(BB, dl, TII->get(is64bit ? PPC::ADD8 : PPC::ADD4), Ptr1Reg)
6036      .addReg(ptrA).addReg(ptrB);
6037  } else {
6038    Ptr1Reg = ptrB;
6039  }
6040  BuildMI(BB, dl, TII->get(PPC::RLWINM), Shift1Reg).addReg(Ptr1Reg)
6041      .addImm(3).addImm(27).addImm(is8bit ? 28 : 27);
6042  BuildMI(BB, dl, TII->get(is64bit ? PPC::XORI8 : PPC::XORI), ShiftReg)
6043      .addReg(Shift1Reg).addImm(is8bit ? 24 : 16);
6044  if (is64bit)
6045    BuildMI(BB, dl, TII->get(PPC::RLDICR), PtrReg)
6046      .addReg(Ptr1Reg).addImm(0).addImm(61);
6047  else
6048    BuildMI(BB, dl, TII->get(PPC::RLWINM), PtrReg)
6049      .addReg(Ptr1Reg).addImm(0).addImm(0).addImm(29);
6050  BuildMI(BB, dl, TII->get(PPC::SLW), Incr2Reg)
6051      .addReg(incr).addReg(ShiftReg);
6052  if (is8bit)
6053    BuildMI(BB, dl, TII->get(PPC::LI), Mask2Reg).addImm(255);
6054  else {
6055    BuildMI(BB, dl, TII->get(PPC::LI), Mask3Reg).addImm(0);
6056    BuildMI(BB, dl, TII->get(PPC::ORI),Mask2Reg).addReg(Mask3Reg).addImm(65535);
6057  }
6058  BuildMI(BB, dl, TII->get(PPC::SLW), MaskReg)
6059      .addReg(Mask2Reg).addReg(ShiftReg);
6060
6061  BB = loopMBB;
6062  BuildMI(BB, dl, TII->get(PPC::LWARX), TmpDestReg)
6063    .addReg(ZeroReg).addReg(PtrReg);
6064  if (BinOpcode)
6065    BuildMI(BB, dl, TII->get(BinOpcode), TmpReg)
6066      .addReg(Incr2Reg).addReg(TmpDestReg);
6067  BuildMI(BB, dl, TII->get(is64bit ? PPC::ANDC8 : PPC::ANDC), Tmp2Reg)
6068    .addReg(TmpDestReg).addReg(MaskReg);
6069  BuildMI(BB, dl, TII->get(is64bit ? PPC::AND8 : PPC::AND), Tmp3Reg)
6070    .addReg(TmpReg).addReg(MaskReg);
6071  BuildMI(BB, dl, TII->get(is64bit ? PPC::OR8 : PPC::OR), Tmp4Reg)
6072    .addReg(Tmp3Reg).addReg(Tmp2Reg);
6073  BuildMI(BB, dl, TII->get(PPC::STWCX))
6074    .addReg(Tmp4Reg).addReg(ZeroReg).addReg(PtrReg);
6075  BuildMI(BB, dl, TII->get(PPC::BCC))
6076    .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loopMBB);
6077  BB->addSuccessor(loopMBB);
6078  BB->addSuccessor(exitMBB);
6079
6080  //  exitMBB:
6081  //   ...
6082  BB = exitMBB;
6083  BuildMI(*BB, BB->begin(), dl, TII->get(PPC::SRW), dest).addReg(TmpDestReg)
6084    .addReg(ShiftReg);
6085  return BB;
6086}
6087
6088llvm::MachineBasicBlock*
6089PPCTargetLowering::emitEHSjLjSetJmp(MachineInstr *MI,
6090                                    MachineBasicBlock *MBB) const {
6091  DebugLoc DL = MI->getDebugLoc();
6092  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
6093
6094  MachineFunction *MF = MBB->getParent();
6095  MachineRegisterInfo &MRI = MF->getRegInfo();
6096
6097  const BasicBlock *BB = MBB->getBasicBlock();
6098  MachineFunction::iterator I = MBB;
6099  ++I;
6100
6101  // Memory Reference
6102  MachineInstr::mmo_iterator MMOBegin = MI->memoperands_begin();
6103  MachineInstr::mmo_iterator MMOEnd = MI->memoperands_end();
6104
6105  unsigned DstReg = MI->getOperand(0).getReg();
6106  const TargetRegisterClass *RC = MRI.getRegClass(DstReg);
6107  assert(RC->hasType(MVT::i32) && "Invalid destination!");
6108  unsigned mainDstReg = MRI.createVirtualRegister(RC);
6109  unsigned restoreDstReg = MRI.createVirtualRegister(RC);
6110
6111  MVT PVT = getPointerTy();
6112  assert((PVT == MVT::i64 || PVT == MVT::i32) &&
6113         "Invalid Pointer Size!");
6114  // For v = setjmp(buf), we generate
6115  //
6116  // thisMBB:
6117  //  SjLjSetup mainMBB
6118  //  bl mainMBB
6119  //  v_restore = 1
6120  //  b sinkMBB
6121  //
6122  // mainMBB:
6123  //  buf[LabelOffset] = LR
6124  //  v_main = 0
6125  //
6126  // sinkMBB:
6127  //  v = phi(main, restore)
6128  //
6129
6130  MachineBasicBlock *thisMBB = MBB;
6131  MachineBasicBlock *mainMBB = MF->CreateMachineBasicBlock(BB);
6132  MachineBasicBlock *sinkMBB = MF->CreateMachineBasicBlock(BB);
6133  MF->insert(I, mainMBB);
6134  MF->insert(I, sinkMBB);
6135
6136  MachineInstrBuilder MIB;
6137
6138  // Transfer the remainder of BB and its successor edges to sinkMBB.
6139  sinkMBB->splice(sinkMBB->begin(), MBB,
6140                  llvm::next(MachineBasicBlock::iterator(MI)), MBB->end());
6141  sinkMBB->transferSuccessorsAndUpdatePHIs(MBB);
6142
6143  // Note that the structure of the jmp_buf used here is not compatible
6144  // with that used by libc, and is not designed to be. Specifically, it
6145  // stores only those 'reserved' registers that LLVM does not otherwise
6146  // understand how to spill. Also, by convention, by the time this
6147  // intrinsic is called, Clang has already stored the frame address in the
6148  // first slot of the buffer and stack address in the third. Following the
6149  // X86 target code, we'll store the jump address in the second slot. We also
6150  // need to save the TOC pointer (R2) to handle jumps between shared
6151  // libraries, and that will be stored in the fourth slot. The thread
6152  // identifier (R13) is not affected.
6153
6154  // thisMBB:
6155  const int64_t LabelOffset = 1 * PVT.getStoreSize();
6156  const int64_t TOCOffset   = 3 * PVT.getStoreSize();
6157  const int64_t BPOffset    = 4 * PVT.getStoreSize();
6158
6159  // Prepare IP either in reg.
6160  const TargetRegisterClass *PtrRC = getRegClassFor(PVT);
6161  unsigned LabelReg = MRI.createVirtualRegister(PtrRC);
6162  unsigned BufReg = MI->getOperand(1).getReg();
6163
6164  if (PPCSubTarget.isPPC64() && PPCSubTarget.isSVR4ABI()) {
6165    MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::STD))
6166            .addReg(PPC::X2)
6167            .addImm(TOCOffset)
6168            .addReg(BufReg);
6169    MIB.setMemRefs(MMOBegin, MMOEnd);
6170  }
6171
6172  // Naked functions never have a base pointer, and so we use r1. For all
6173  // other functions, this decision must be delayed until during PEI.
6174  unsigned BaseReg;
6175  if (MF->getFunction()->getAttributes().hasAttribute(
6176          AttributeSet::FunctionIndex, Attribute::Naked))
6177    BaseReg = PPCSubTarget.isPPC64() ? PPC::X1 : PPC::R1;
6178  else
6179    BaseReg = PPCSubTarget.isPPC64() ? PPC::BP8 : PPC::BP;
6180
6181  MIB = BuildMI(*thisMBB, MI, DL,
6182                TII->get(PPCSubTarget.isPPC64() ? PPC::STD : PPC::STW))
6183          .addReg(BaseReg)
6184          .addImm(BPOffset)
6185          .addReg(BufReg);
6186  MIB.setMemRefs(MMOBegin, MMOEnd);
6187
6188  // Setup
6189  MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::BCLalways)).addMBB(mainMBB);
6190  const PPCRegisterInfo *TRI =
6191    static_cast<const PPCRegisterInfo*>(getTargetMachine().getRegisterInfo());
6192  MIB.addRegMask(TRI->getNoPreservedMask());
6193
6194  BuildMI(*thisMBB, MI, DL, TII->get(PPC::LI), restoreDstReg).addImm(1);
6195
6196  MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::EH_SjLj_Setup))
6197          .addMBB(mainMBB);
6198  MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::B)).addMBB(sinkMBB);
6199
6200  thisMBB->addSuccessor(mainMBB, /* weight */ 0);
6201  thisMBB->addSuccessor(sinkMBB, /* weight */ 1);
6202
6203  // mainMBB:
6204  //  mainDstReg = 0
6205  MIB = BuildMI(mainMBB, DL,
6206    TII->get(PPCSubTarget.isPPC64() ? PPC::MFLR8 : PPC::MFLR), LabelReg);
6207
6208  // Store IP
6209  if (PPCSubTarget.isPPC64()) {
6210    MIB = BuildMI(mainMBB, DL, TII->get(PPC::STD))
6211            .addReg(LabelReg)
6212            .addImm(LabelOffset)
6213            .addReg(BufReg);
6214  } else {
6215    MIB = BuildMI(mainMBB, DL, TII->get(PPC::STW))
6216            .addReg(LabelReg)
6217            .addImm(LabelOffset)
6218            .addReg(BufReg);
6219  }
6220
6221  MIB.setMemRefs(MMOBegin, MMOEnd);
6222
6223  BuildMI(mainMBB, DL, TII->get(PPC::LI), mainDstReg).addImm(0);
6224  mainMBB->addSuccessor(sinkMBB);
6225
6226  // sinkMBB:
6227  BuildMI(*sinkMBB, sinkMBB->begin(), DL,
6228          TII->get(PPC::PHI), DstReg)
6229    .addReg(mainDstReg).addMBB(mainMBB)
6230    .addReg(restoreDstReg).addMBB(thisMBB);
6231
6232  MI->eraseFromParent();
6233  return sinkMBB;
6234}
6235
6236MachineBasicBlock *
6237PPCTargetLowering::emitEHSjLjLongJmp(MachineInstr *MI,
6238                                     MachineBasicBlock *MBB) const {
6239  DebugLoc DL = MI->getDebugLoc();
6240  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
6241
6242  MachineFunction *MF = MBB->getParent();
6243  MachineRegisterInfo &MRI = MF->getRegInfo();
6244
6245  // Memory Reference
6246  MachineInstr::mmo_iterator MMOBegin = MI->memoperands_begin();
6247  MachineInstr::mmo_iterator MMOEnd = MI->memoperands_end();
6248
6249  MVT PVT = getPointerTy();
6250  assert((PVT == MVT::i64 || PVT == MVT::i32) &&
6251         "Invalid Pointer Size!");
6252
6253  const TargetRegisterClass *RC =
6254    (PVT == MVT::i64) ? &PPC::G8RCRegClass : &PPC::GPRCRegClass;
6255  unsigned Tmp = MRI.createVirtualRegister(RC);
6256  // Since FP is only updated here but NOT referenced, it's treated as GPR.
6257  unsigned FP  = (PVT == MVT::i64) ? PPC::X31 : PPC::R31;
6258  unsigned SP  = (PVT == MVT::i64) ? PPC::X1 : PPC::R1;
6259  unsigned BP  = (PVT == MVT::i64) ? PPC::X30 : PPC::R30;
6260
6261  MachineInstrBuilder MIB;
6262
6263  const int64_t LabelOffset = 1 * PVT.getStoreSize();
6264  const int64_t SPOffset    = 2 * PVT.getStoreSize();
6265  const int64_t TOCOffset   = 3 * PVT.getStoreSize();
6266  const int64_t BPOffset    = 4 * PVT.getStoreSize();
6267
6268  unsigned BufReg = MI->getOperand(0).getReg();
6269
6270  // Reload FP (the jumped-to function may not have had a
6271  // frame pointer, and if so, then its r31 will be restored
6272  // as necessary).
6273  if (PVT == MVT::i64) {
6274    MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), FP)
6275            .addImm(0)
6276            .addReg(BufReg);
6277  } else {
6278    MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), FP)
6279            .addImm(0)
6280            .addReg(BufReg);
6281  }
6282  MIB.setMemRefs(MMOBegin, MMOEnd);
6283
6284  // Reload IP
6285  if (PVT == MVT::i64) {
6286    MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), Tmp)
6287            .addImm(LabelOffset)
6288            .addReg(BufReg);
6289  } else {
6290    MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), Tmp)
6291            .addImm(LabelOffset)
6292            .addReg(BufReg);
6293  }
6294  MIB.setMemRefs(MMOBegin, MMOEnd);
6295
6296  // Reload SP
6297  if (PVT == MVT::i64) {
6298    MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), SP)
6299            .addImm(SPOffset)
6300            .addReg(BufReg);
6301  } else {
6302    MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), SP)
6303            .addImm(SPOffset)
6304            .addReg(BufReg);
6305  }
6306  MIB.setMemRefs(MMOBegin, MMOEnd);
6307
6308  // Reload BP
6309  if (PVT == MVT::i64) {
6310    MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), BP)
6311            .addImm(BPOffset)
6312            .addReg(BufReg);
6313  } else {
6314    MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), BP)
6315            .addImm(BPOffset)
6316            .addReg(BufReg);
6317  }
6318  MIB.setMemRefs(MMOBegin, MMOEnd);
6319
6320  // Reload TOC
6321  if (PVT == MVT::i64 && PPCSubTarget.isSVR4ABI()) {
6322    MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), PPC::X2)
6323            .addImm(TOCOffset)
6324            .addReg(BufReg);
6325
6326    MIB.setMemRefs(MMOBegin, MMOEnd);
6327  }
6328
6329  // Jump
6330  BuildMI(*MBB, MI, DL,
6331          TII->get(PVT == MVT::i64 ? PPC::MTCTR8 : PPC::MTCTR)).addReg(Tmp);
6332  BuildMI(*MBB, MI, DL, TII->get(PVT == MVT::i64 ? PPC::BCTR8 : PPC::BCTR));
6333
6334  MI->eraseFromParent();
6335  return MBB;
6336}
6337
6338MachineBasicBlock *
6339PPCTargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
6340                                               MachineBasicBlock *BB) const {
6341  if (MI->getOpcode() == PPC::EH_SjLj_SetJmp32 ||
6342      MI->getOpcode() == PPC::EH_SjLj_SetJmp64) {
6343    return emitEHSjLjSetJmp(MI, BB);
6344  } else if (MI->getOpcode() == PPC::EH_SjLj_LongJmp32 ||
6345             MI->getOpcode() == PPC::EH_SjLj_LongJmp64) {
6346    return emitEHSjLjLongJmp(MI, BB);
6347  }
6348
6349  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
6350
6351  // To "insert" these instructions we actually have to insert their
6352  // control-flow patterns.
6353  const BasicBlock *LLVM_BB = BB->getBasicBlock();
6354  MachineFunction::iterator It = BB;
6355  ++It;
6356
6357  MachineFunction *F = BB->getParent();
6358
6359  if (PPCSubTarget.hasISEL() && (MI->getOpcode() == PPC::SELECT_CC_I4 ||
6360                                 MI->getOpcode() == PPC::SELECT_CC_I8)) {
6361    SmallVector<MachineOperand, 2> Cond;
6362    Cond.push_back(MI->getOperand(4));
6363    Cond.push_back(MI->getOperand(1));
6364
6365    DebugLoc dl = MI->getDebugLoc();
6366    const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
6367    TII->insertSelect(*BB, MI, dl, MI->getOperand(0).getReg(),
6368                      Cond, MI->getOperand(2).getReg(),
6369                      MI->getOperand(3).getReg());
6370  } else if (MI->getOpcode() == PPC::SELECT_CC_I4 ||
6371             MI->getOpcode() == PPC::SELECT_CC_I8 ||
6372             MI->getOpcode() == PPC::SELECT_CC_F4 ||
6373             MI->getOpcode() == PPC::SELECT_CC_F8 ||
6374             MI->getOpcode() == PPC::SELECT_CC_VRRC) {
6375
6376
6377    // The incoming instruction knows the destination vreg to set, the
6378    // condition code register to branch on, the true/false values to
6379    // select between, and a branch opcode to use.
6380
6381    //  thisMBB:
6382    //  ...
6383    //   TrueVal = ...
6384    //   cmpTY ccX, r1, r2
6385    //   bCC copy1MBB
6386    //   fallthrough --> copy0MBB
6387    MachineBasicBlock *thisMBB = BB;
6388    MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB);
6389    MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB);
6390    unsigned SelectPred = MI->getOperand(4).getImm();
6391    DebugLoc dl = MI->getDebugLoc();
6392    F->insert(It, copy0MBB);
6393    F->insert(It, sinkMBB);
6394
6395    // Transfer the remainder of BB and its successor edges to sinkMBB.
6396    sinkMBB->splice(sinkMBB->begin(), BB,
6397                    llvm::next(MachineBasicBlock::iterator(MI)),
6398                    BB->end());
6399    sinkMBB->transferSuccessorsAndUpdatePHIs(BB);
6400
6401    // Next, add the true and fallthrough blocks as its successors.
6402    BB->addSuccessor(copy0MBB);
6403    BB->addSuccessor(sinkMBB);
6404
6405    BuildMI(BB, dl, TII->get(PPC::BCC))
6406      .addImm(SelectPred).addReg(MI->getOperand(1).getReg()).addMBB(sinkMBB);
6407
6408    //  copy0MBB:
6409    //   %FalseValue = ...
6410    //   # fallthrough to sinkMBB
6411    BB = copy0MBB;
6412
6413    // Update machine-CFG edges
6414    BB->addSuccessor(sinkMBB);
6415
6416    //  sinkMBB:
6417    //   %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
6418    //  ...
6419    BB = sinkMBB;
6420    BuildMI(*BB, BB->begin(), dl,
6421            TII->get(PPC::PHI), MI->getOperand(0).getReg())
6422      .addReg(MI->getOperand(3).getReg()).addMBB(copy0MBB)
6423      .addReg(MI->getOperand(2).getReg()).addMBB(thisMBB);
6424  }
6425  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_ADD_I8)
6426    BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::ADD4);
6427  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_ADD_I16)
6428    BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::ADD4);
6429  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_ADD_I32)
6430    BB = EmitAtomicBinary(MI, BB, false, PPC::ADD4);
6431  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_ADD_I64)
6432    BB = EmitAtomicBinary(MI, BB, true, PPC::ADD8);
6433
6434  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_AND_I8)
6435    BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::AND);
6436  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_AND_I16)
6437    BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::AND);
6438  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_AND_I32)
6439    BB = EmitAtomicBinary(MI, BB, false, PPC::AND);
6440  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_AND_I64)
6441    BB = EmitAtomicBinary(MI, BB, true, PPC::AND8);
6442
6443  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_OR_I8)
6444    BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::OR);
6445  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_OR_I16)
6446    BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::OR);
6447  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_OR_I32)
6448    BB = EmitAtomicBinary(MI, BB, false, PPC::OR);
6449  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_OR_I64)
6450    BB = EmitAtomicBinary(MI, BB, true, PPC::OR8);
6451
6452  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_XOR_I8)
6453    BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::XOR);
6454  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_XOR_I16)
6455    BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::XOR);
6456  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_XOR_I32)
6457    BB = EmitAtomicBinary(MI, BB, false, PPC::XOR);
6458  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_XOR_I64)
6459    BB = EmitAtomicBinary(MI, BB, true, PPC::XOR8);
6460
6461  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_NAND_I8)
6462    BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::ANDC);
6463  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_NAND_I16)
6464    BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::ANDC);
6465  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_NAND_I32)
6466    BB = EmitAtomicBinary(MI, BB, false, PPC::ANDC);
6467  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_NAND_I64)
6468    BB = EmitAtomicBinary(MI, BB, true, PPC::ANDC8);
6469
6470  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_SUB_I8)
6471    BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::SUBF);
6472  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_SUB_I16)
6473    BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::SUBF);
6474  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_SUB_I32)
6475    BB = EmitAtomicBinary(MI, BB, false, PPC::SUBF);
6476  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_SUB_I64)
6477    BB = EmitAtomicBinary(MI, BB, true, PPC::SUBF8);
6478
6479  else if (MI->getOpcode() == PPC::ATOMIC_SWAP_I8)
6480    BB = EmitPartwordAtomicBinary(MI, BB, true, 0);
6481  else if (MI->getOpcode() == PPC::ATOMIC_SWAP_I16)
6482    BB = EmitPartwordAtomicBinary(MI, BB, false, 0);
6483  else if (MI->getOpcode() == PPC::ATOMIC_SWAP_I32)
6484    BB = EmitAtomicBinary(MI, BB, false, 0);
6485  else if (MI->getOpcode() == PPC::ATOMIC_SWAP_I64)
6486    BB = EmitAtomicBinary(MI, BB, true, 0);
6487
6488  else if (MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I32 ||
6489           MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I64) {
6490    bool is64bit = MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I64;
6491
6492    unsigned dest   = MI->getOperand(0).getReg();
6493    unsigned ptrA   = MI->getOperand(1).getReg();
6494    unsigned ptrB   = MI->getOperand(2).getReg();
6495    unsigned oldval = MI->getOperand(3).getReg();
6496    unsigned newval = MI->getOperand(4).getReg();
6497    DebugLoc dl     = MI->getDebugLoc();
6498
6499    MachineBasicBlock *loop1MBB = F->CreateMachineBasicBlock(LLVM_BB);
6500    MachineBasicBlock *loop2MBB = F->CreateMachineBasicBlock(LLVM_BB);
6501    MachineBasicBlock *midMBB = F->CreateMachineBasicBlock(LLVM_BB);
6502    MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB);
6503    F->insert(It, loop1MBB);
6504    F->insert(It, loop2MBB);
6505    F->insert(It, midMBB);
6506    F->insert(It, exitMBB);
6507    exitMBB->splice(exitMBB->begin(), BB,
6508                    llvm::next(MachineBasicBlock::iterator(MI)),
6509                    BB->end());
6510    exitMBB->transferSuccessorsAndUpdatePHIs(BB);
6511
6512    //  thisMBB:
6513    //   ...
6514    //   fallthrough --> loopMBB
6515    BB->addSuccessor(loop1MBB);
6516
6517    // loop1MBB:
6518    //   l[wd]arx dest, ptr
6519    //   cmp[wd] dest, oldval
6520    //   bne- midMBB
6521    // loop2MBB:
6522    //   st[wd]cx. newval, ptr
6523    //   bne- loopMBB
6524    //   b exitBB
6525    // midMBB:
6526    //   st[wd]cx. dest, ptr
6527    // exitBB:
6528    BB = loop1MBB;
6529    BuildMI(BB, dl, TII->get(is64bit ? PPC::LDARX : PPC::LWARX), dest)
6530      .addReg(ptrA).addReg(ptrB);
6531    BuildMI(BB, dl, TII->get(is64bit ? PPC::CMPD : PPC::CMPW), PPC::CR0)
6532      .addReg(oldval).addReg(dest);
6533    BuildMI(BB, dl, TII->get(PPC::BCC))
6534      .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(midMBB);
6535    BB->addSuccessor(loop2MBB);
6536    BB->addSuccessor(midMBB);
6537
6538    BB = loop2MBB;
6539    BuildMI(BB, dl, TII->get(is64bit ? PPC::STDCX : PPC::STWCX))
6540      .addReg(newval).addReg(ptrA).addReg(ptrB);
6541    BuildMI(BB, dl, TII->get(PPC::BCC))
6542      .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loop1MBB);
6543    BuildMI(BB, dl, TII->get(PPC::B)).addMBB(exitMBB);
6544    BB->addSuccessor(loop1MBB);
6545    BB->addSuccessor(exitMBB);
6546
6547    BB = midMBB;
6548    BuildMI(BB, dl, TII->get(is64bit ? PPC::STDCX : PPC::STWCX))
6549      .addReg(dest).addReg(ptrA).addReg(ptrB);
6550    BB->addSuccessor(exitMBB);
6551
6552    //  exitMBB:
6553    //   ...
6554    BB = exitMBB;
6555  } else if (MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I8 ||
6556             MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I16) {
6557    // We must use 64-bit registers for addresses when targeting 64-bit,
6558    // since we're actually doing arithmetic on them.  Other registers
6559    // can be 32-bit.
6560    bool is64bit = PPCSubTarget.isPPC64();
6561    bool is8bit = MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I8;
6562
6563    unsigned dest   = MI->getOperand(0).getReg();
6564    unsigned ptrA   = MI->getOperand(1).getReg();
6565    unsigned ptrB   = MI->getOperand(2).getReg();
6566    unsigned oldval = MI->getOperand(3).getReg();
6567    unsigned newval = MI->getOperand(4).getReg();
6568    DebugLoc dl     = MI->getDebugLoc();
6569
6570    MachineBasicBlock *loop1MBB = F->CreateMachineBasicBlock(LLVM_BB);
6571    MachineBasicBlock *loop2MBB = F->CreateMachineBasicBlock(LLVM_BB);
6572    MachineBasicBlock *midMBB = F->CreateMachineBasicBlock(LLVM_BB);
6573    MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB);
6574    F->insert(It, loop1MBB);
6575    F->insert(It, loop2MBB);
6576    F->insert(It, midMBB);
6577    F->insert(It, exitMBB);
6578    exitMBB->splice(exitMBB->begin(), BB,
6579                    llvm::next(MachineBasicBlock::iterator(MI)),
6580                    BB->end());
6581    exitMBB->transferSuccessorsAndUpdatePHIs(BB);
6582
6583    MachineRegisterInfo &RegInfo = F->getRegInfo();
6584    const TargetRegisterClass *RC =
6585      is64bit ? (const TargetRegisterClass *) &PPC::G8RCRegClass :
6586                (const TargetRegisterClass *) &PPC::GPRCRegClass;
6587    unsigned PtrReg = RegInfo.createVirtualRegister(RC);
6588    unsigned Shift1Reg = RegInfo.createVirtualRegister(RC);
6589    unsigned ShiftReg = RegInfo.createVirtualRegister(RC);
6590    unsigned NewVal2Reg = RegInfo.createVirtualRegister(RC);
6591    unsigned NewVal3Reg = RegInfo.createVirtualRegister(RC);
6592    unsigned OldVal2Reg = RegInfo.createVirtualRegister(RC);
6593    unsigned OldVal3Reg = RegInfo.createVirtualRegister(RC);
6594    unsigned MaskReg = RegInfo.createVirtualRegister(RC);
6595    unsigned Mask2Reg = RegInfo.createVirtualRegister(RC);
6596    unsigned Mask3Reg = RegInfo.createVirtualRegister(RC);
6597    unsigned Tmp2Reg = RegInfo.createVirtualRegister(RC);
6598    unsigned Tmp4Reg = RegInfo.createVirtualRegister(RC);
6599    unsigned TmpDestReg = RegInfo.createVirtualRegister(RC);
6600    unsigned Ptr1Reg;
6601    unsigned TmpReg = RegInfo.createVirtualRegister(RC);
6602    unsigned ZeroReg = is64bit ? PPC::ZERO8 : PPC::ZERO;
6603    //  thisMBB:
6604    //   ...
6605    //   fallthrough --> loopMBB
6606    BB->addSuccessor(loop1MBB);
6607
6608    // The 4-byte load must be aligned, while a char or short may be
6609    // anywhere in the word.  Hence all this nasty bookkeeping code.
6610    //   add ptr1, ptrA, ptrB [copy if ptrA==0]
6611    //   rlwinm shift1, ptr1, 3, 27, 28 [3, 27, 27]
6612    //   xori shift, shift1, 24 [16]
6613    //   rlwinm ptr, ptr1, 0, 0, 29
6614    //   slw newval2, newval, shift
6615    //   slw oldval2, oldval,shift
6616    //   li mask2, 255 [li mask3, 0; ori mask2, mask3, 65535]
6617    //   slw mask, mask2, shift
6618    //   and newval3, newval2, mask
6619    //   and oldval3, oldval2, mask
6620    // loop1MBB:
6621    //   lwarx tmpDest, ptr
6622    //   and tmp, tmpDest, mask
6623    //   cmpw tmp, oldval3
6624    //   bne- midMBB
6625    // loop2MBB:
6626    //   andc tmp2, tmpDest, mask
6627    //   or tmp4, tmp2, newval3
6628    //   stwcx. tmp4, ptr
6629    //   bne- loop1MBB
6630    //   b exitBB
6631    // midMBB:
6632    //   stwcx. tmpDest, ptr
6633    // exitBB:
6634    //   srw dest, tmpDest, shift
6635    if (ptrA != ZeroReg) {
6636      Ptr1Reg = RegInfo.createVirtualRegister(RC);
6637      BuildMI(BB, dl, TII->get(is64bit ? PPC::ADD8 : PPC::ADD4), Ptr1Reg)
6638        .addReg(ptrA).addReg(ptrB);
6639    } else {
6640      Ptr1Reg = ptrB;
6641    }
6642    BuildMI(BB, dl, TII->get(PPC::RLWINM), Shift1Reg).addReg(Ptr1Reg)
6643        .addImm(3).addImm(27).addImm(is8bit ? 28 : 27);
6644    BuildMI(BB, dl, TII->get(is64bit ? PPC::XORI8 : PPC::XORI), ShiftReg)
6645        .addReg(Shift1Reg).addImm(is8bit ? 24 : 16);
6646    if (is64bit)
6647      BuildMI(BB, dl, TII->get(PPC::RLDICR), PtrReg)
6648        .addReg(Ptr1Reg).addImm(0).addImm(61);
6649    else
6650      BuildMI(BB, dl, TII->get(PPC::RLWINM), PtrReg)
6651        .addReg(Ptr1Reg).addImm(0).addImm(0).addImm(29);
6652    BuildMI(BB, dl, TII->get(PPC::SLW), NewVal2Reg)
6653        .addReg(newval).addReg(ShiftReg);
6654    BuildMI(BB, dl, TII->get(PPC::SLW), OldVal2Reg)
6655        .addReg(oldval).addReg(ShiftReg);
6656    if (is8bit)
6657      BuildMI(BB, dl, TII->get(PPC::LI), Mask2Reg).addImm(255);
6658    else {
6659      BuildMI(BB, dl, TII->get(PPC::LI), Mask3Reg).addImm(0);
6660      BuildMI(BB, dl, TII->get(PPC::ORI), Mask2Reg)
6661        .addReg(Mask3Reg).addImm(65535);
6662    }
6663    BuildMI(BB, dl, TII->get(PPC::SLW), MaskReg)
6664        .addReg(Mask2Reg).addReg(ShiftReg);
6665    BuildMI(BB, dl, TII->get(PPC::AND), NewVal3Reg)
6666        .addReg(NewVal2Reg).addReg(MaskReg);
6667    BuildMI(BB, dl, TII->get(PPC::AND), OldVal3Reg)
6668        .addReg(OldVal2Reg).addReg(MaskReg);
6669
6670    BB = loop1MBB;
6671    BuildMI(BB, dl, TII->get(PPC::LWARX), TmpDestReg)
6672        .addReg(ZeroReg).addReg(PtrReg);
6673    BuildMI(BB, dl, TII->get(PPC::AND),TmpReg)
6674        .addReg(TmpDestReg).addReg(MaskReg);
6675    BuildMI(BB, dl, TII->get(PPC::CMPW), PPC::CR0)
6676        .addReg(TmpReg).addReg(OldVal3Reg);
6677    BuildMI(BB, dl, TII->get(PPC::BCC))
6678        .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(midMBB);
6679    BB->addSuccessor(loop2MBB);
6680    BB->addSuccessor(midMBB);
6681
6682    BB = loop2MBB;
6683    BuildMI(BB, dl, TII->get(PPC::ANDC),Tmp2Reg)
6684        .addReg(TmpDestReg).addReg(MaskReg);
6685    BuildMI(BB, dl, TII->get(PPC::OR),Tmp4Reg)
6686        .addReg(Tmp2Reg).addReg(NewVal3Reg);
6687    BuildMI(BB, dl, TII->get(PPC::STWCX)).addReg(Tmp4Reg)
6688        .addReg(ZeroReg).addReg(PtrReg);
6689    BuildMI(BB, dl, TII->get(PPC::BCC))
6690      .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loop1MBB);
6691    BuildMI(BB, dl, TII->get(PPC::B)).addMBB(exitMBB);
6692    BB->addSuccessor(loop1MBB);
6693    BB->addSuccessor(exitMBB);
6694
6695    BB = midMBB;
6696    BuildMI(BB, dl, TII->get(PPC::STWCX)).addReg(TmpDestReg)
6697      .addReg(ZeroReg).addReg(PtrReg);
6698    BB->addSuccessor(exitMBB);
6699
6700    //  exitMBB:
6701    //   ...
6702    BB = exitMBB;
6703    BuildMI(*BB, BB->begin(), dl, TII->get(PPC::SRW),dest).addReg(TmpReg)
6704      .addReg(ShiftReg);
6705  } else if (MI->getOpcode() == PPC::FADDrtz) {
6706    // This pseudo performs an FADD with rounding mode temporarily forced
6707    // to round-to-zero.  We emit this via custom inserter since the FPSCR
6708    // is not modeled at the SelectionDAG level.
6709    unsigned Dest = MI->getOperand(0).getReg();
6710    unsigned Src1 = MI->getOperand(1).getReg();
6711    unsigned Src2 = MI->getOperand(2).getReg();
6712    DebugLoc dl   = MI->getDebugLoc();
6713
6714    MachineRegisterInfo &RegInfo = F->getRegInfo();
6715    unsigned MFFSReg = RegInfo.createVirtualRegister(&PPC::F8RCRegClass);
6716
6717    // Save FPSCR value.
6718    BuildMI(*BB, MI, dl, TII->get(PPC::MFFS), MFFSReg);
6719
6720    // Set rounding mode to round-to-zero.
6721    BuildMI(*BB, MI, dl, TII->get(PPC::MTFSB1)).addImm(31);
6722    BuildMI(*BB, MI, dl, TII->get(PPC::MTFSB0)).addImm(30);
6723
6724    // Perform addition.
6725    BuildMI(*BB, MI, dl, TII->get(PPC::FADD), Dest).addReg(Src1).addReg(Src2);
6726
6727    // Restore FPSCR value.
6728    BuildMI(*BB, MI, dl, TII->get(PPC::MTFSF)).addImm(1).addReg(MFFSReg);
6729  } else {
6730    llvm_unreachable("Unexpected instr type to insert");
6731  }
6732
6733  MI->eraseFromParent();   // The pseudo instruction is gone now.
6734  return BB;
6735}
6736
6737//===----------------------------------------------------------------------===//
6738// Target Optimization Hooks
6739//===----------------------------------------------------------------------===//
6740
6741SDValue PPCTargetLowering::DAGCombineFastRecip(SDValue Op,
6742                                               DAGCombinerInfo &DCI) const {
6743  if (DCI.isAfterLegalizeVectorOps())
6744    return SDValue();
6745
6746  EVT VT = Op.getValueType();
6747
6748  if ((VT == MVT::f32 && PPCSubTarget.hasFRES()) ||
6749      (VT == MVT::f64 && PPCSubTarget.hasFRE())  ||
6750      (VT == MVT::v4f32 && PPCSubTarget.hasAltivec())) {
6751
6752    // Newton iteration for a function: F(X) is X_{i+1} = X_i - F(X_i)/F'(X_i)
6753    // For the reciprocal, we need to find the zero of the function:
6754    //   F(X) = A X - 1 [which has a zero at X = 1/A]
6755    //     =>
6756    //   X_{i+1} = X_i (2 - A X_i) = X_i + X_i (1 - A X_i) [this second form
6757    //     does not require additional intermediate precision]
6758
6759    // Convergence is quadratic, so we essentially double the number of digits
6760    // correct after every iteration. The minimum architected relative
6761    // accuracy is 2^-5. When hasRecipPrec(), this is 2^-14. IEEE float has
6762    // 23 digits and double has 52 digits.
6763    int Iterations = PPCSubTarget.hasRecipPrec() ? 1 : 3;
6764    if (VT.getScalarType() == MVT::f64)
6765      ++Iterations;
6766
6767    SelectionDAG &DAG = DCI.DAG;
6768    SDLoc dl(Op);
6769
6770    SDValue FPOne =
6771      DAG.getConstantFP(1.0, VT.getScalarType());
6772    if (VT.isVector()) {
6773      assert(VT.getVectorNumElements() == 4 &&
6774             "Unknown vector type");
6775      FPOne = DAG.getNode(ISD::BUILD_VECTOR, dl, VT,
6776                          FPOne, FPOne, FPOne, FPOne);
6777    }
6778
6779    SDValue Est = DAG.getNode(PPCISD::FRE, dl, VT, Op);
6780    DCI.AddToWorklist(Est.getNode());
6781
6782    // Newton iterations: Est = Est + Est (1 - Arg * Est)
6783    for (int i = 0; i < Iterations; ++i) {
6784      SDValue NewEst = DAG.getNode(ISD::FMUL, dl, VT, Op, Est);
6785      DCI.AddToWorklist(NewEst.getNode());
6786
6787      NewEst = DAG.getNode(ISD::FSUB, dl, VT, FPOne, NewEst);
6788      DCI.AddToWorklist(NewEst.getNode());
6789
6790      NewEst = DAG.getNode(ISD::FMUL, dl, VT, Est, NewEst);
6791      DCI.AddToWorklist(NewEst.getNode());
6792
6793      Est = DAG.getNode(ISD::FADD, dl, VT, Est, NewEst);
6794      DCI.AddToWorklist(Est.getNode());
6795    }
6796
6797    return Est;
6798  }
6799
6800  return SDValue();
6801}
6802
6803SDValue PPCTargetLowering::DAGCombineFastRecipFSQRT(SDValue Op,
6804                                             DAGCombinerInfo &DCI) const {
6805  if (DCI.isAfterLegalizeVectorOps())
6806    return SDValue();
6807
6808  EVT VT = Op.getValueType();
6809
6810  if ((VT == MVT::f32 && PPCSubTarget.hasFRSQRTES()) ||
6811      (VT == MVT::f64 && PPCSubTarget.hasFRSQRTE())  ||
6812      (VT == MVT::v4f32 && PPCSubTarget.hasAltivec())) {
6813
6814    // Newton iteration for a function: F(X) is X_{i+1} = X_i - F(X_i)/F'(X_i)
6815    // For the reciprocal sqrt, we need to find the zero of the function:
6816    //   F(X) = 1/X^2 - A [which has a zero at X = 1/sqrt(A)]
6817    //     =>
6818    //   X_{i+1} = X_i (1.5 - A X_i^2 / 2)
6819    // As a result, we precompute A/2 prior to the iteration loop.
6820
6821    // Convergence is quadratic, so we essentially double the number of digits
6822    // correct after every iteration. The minimum architected relative
6823    // accuracy is 2^-5. When hasRecipPrec(), this is 2^-14. IEEE float has
6824    // 23 digits and double has 52 digits.
6825    int Iterations = PPCSubTarget.hasRecipPrec() ? 1 : 3;
6826    if (VT.getScalarType() == MVT::f64)
6827      ++Iterations;
6828
6829    SelectionDAG &DAG = DCI.DAG;
6830    SDLoc dl(Op);
6831
6832    SDValue FPThreeHalves =
6833      DAG.getConstantFP(1.5, VT.getScalarType());
6834    if (VT.isVector()) {
6835      assert(VT.getVectorNumElements() == 4 &&
6836             "Unknown vector type");
6837      FPThreeHalves = DAG.getNode(ISD::BUILD_VECTOR, dl, VT,
6838                                  FPThreeHalves, FPThreeHalves,
6839                                  FPThreeHalves, FPThreeHalves);
6840    }
6841
6842    SDValue Est = DAG.getNode(PPCISD::FRSQRTE, dl, VT, Op);
6843    DCI.AddToWorklist(Est.getNode());
6844
6845    // We now need 0.5*Arg which we can write as (1.5*Arg - Arg) so that
6846    // this entire sequence requires only one FP constant.
6847    SDValue HalfArg = DAG.getNode(ISD::FMUL, dl, VT, FPThreeHalves, Op);
6848    DCI.AddToWorklist(HalfArg.getNode());
6849
6850    HalfArg = DAG.getNode(ISD::FSUB, dl, VT, HalfArg, Op);
6851    DCI.AddToWorklist(HalfArg.getNode());
6852
6853    // Newton iterations: Est = Est * (1.5 - HalfArg * Est * Est)
6854    for (int i = 0; i < Iterations; ++i) {
6855      SDValue NewEst = DAG.getNode(ISD::FMUL, dl, VT, Est, Est);
6856      DCI.AddToWorklist(NewEst.getNode());
6857
6858      NewEst = DAG.getNode(ISD::FMUL, dl, VT, HalfArg, NewEst);
6859      DCI.AddToWorklist(NewEst.getNode());
6860
6861      NewEst = DAG.getNode(ISD::FSUB, dl, VT, FPThreeHalves, NewEst);
6862      DCI.AddToWorklist(NewEst.getNode());
6863
6864      Est = DAG.getNode(ISD::FMUL, dl, VT, Est, NewEst);
6865      DCI.AddToWorklist(Est.getNode());
6866    }
6867
6868    return Est;
6869  }
6870
6871  return SDValue();
6872}
6873
6874// Like SelectionDAG::isConsecutiveLoad, but also works for stores, and does
6875// not enforce equality of the chain operands.
6876static bool isConsecutiveLS(LSBaseSDNode *LS, LSBaseSDNode *Base,
6877                            unsigned Bytes, int Dist,
6878                            SelectionDAG &DAG) {
6879  EVT VT = LS->getMemoryVT();
6880  if (VT.getSizeInBits() / 8 != Bytes)
6881    return false;
6882
6883  SDValue Loc = LS->getBasePtr();
6884  SDValue BaseLoc = Base->getBasePtr();
6885  if (Loc.getOpcode() == ISD::FrameIndex) {
6886    if (BaseLoc.getOpcode() != ISD::FrameIndex)
6887      return false;
6888    const MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
6889    int FI  = cast<FrameIndexSDNode>(Loc)->getIndex();
6890    int BFI = cast<FrameIndexSDNode>(BaseLoc)->getIndex();
6891    int FS  = MFI->getObjectSize(FI);
6892    int BFS = MFI->getObjectSize(BFI);
6893    if (FS != BFS || FS != (int)Bytes) return false;
6894    return MFI->getObjectOffset(FI) == (MFI->getObjectOffset(BFI) + Dist*Bytes);
6895  }
6896
6897  // Handle X+C
6898  if (DAG.isBaseWithConstantOffset(Loc) && Loc.getOperand(0) == BaseLoc &&
6899      cast<ConstantSDNode>(Loc.getOperand(1))->getSExtValue() == Dist*Bytes)
6900    return true;
6901
6902  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
6903  const GlobalValue *GV1 = NULL;
6904  const GlobalValue *GV2 = NULL;
6905  int64_t Offset1 = 0;
6906  int64_t Offset2 = 0;
6907  bool isGA1 = TLI.isGAPlusOffset(Loc.getNode(), GV1, Offset1);
6908  bool isGA2 = TLI.isGAPlusOffset(BaseLoc.getNode(), GV2, Offset2);
6909  if (isGA1 && isGA2 && GV1 == GV2)
6910    return Offset1 == (Offset2 + Dist*Bytes);
6911  return false;
6912}
6913
6914// Return true is there is a nearyby consecutive load to the one provided
6915// (regardless of alignment). We search up and down the chain, looking though
6916// token factors and other loads (but nothing else). As a result, a true
6917// results indicates that it is safe to create a new consecutive load adjacent
6918// to the load provided.
6919static bool findConsecutiveLoad(LoadSDNode *LD, SelectionDAG &DAG) {
6920  SDValue Chain = LD->getChain();
6921  EVT VT = LD->getMemoryVT();
6922
6923  SmallSet<SDNode *, 16> LoadRoots;
6924  SmallVector<SDNode *, 8> Queue(1, Chain.getNode());
6925  SmallSet<SDNode *, 16> Visited;
6926
6927  // First, search up the chain, branching to follow all token-factor operands.
6928  // If we find a consecutive load, then we're done, otherwise, record all
6929  // nodes just above the top-level loads and token factors.
6930  while (!Queue.empty()) {
6931    SDNode *ChainNext = Queue.pop_back_val();
6932    if (!Visited.insert(ChainNext))
6933      continue;
6934
6935    if (LoadSDNode *ChainLD = dyn_cast<LoadSDNode>(ChainNext)) {
6936      if (isConsecutiveLS(ChainLD, LD, VT.getStoreSize(), 1, DAG))
6937        return true;
6938
6939      if (!Visited.count(ChainLD->getChain().getNode()))
6940        Queue.push_back(ChainLD->getChain().getNode());
6941    } else if (ChainNext->getOpcode() == ISD::TokenFactor) {
6942      for (SDNode::op_iterator O = ChainNext->op_begin(),
6943           OE = ChainNext->op_end(); O != OE; ++O)
6944        if (!Visited.count(O->getNode()))
6945          Queue.push_back(O->getNode());
6946    } else
6947      LoadRoots.insert(ChainNext);
6948  }
6949
6950  // Second, search down the chain, starting from the top-level nodes recorded
6951  // in the first phase. These top-level nodes are the nodes just above all
6952  // loads and token factors. Starting with their uses, recursively look though
6953  // all loads (just the chain uses) and token factors to find a consecutive
6954  // load.
6955  Visited.clear();
6956  Queue.clear();
6957
6958  for (SmallSet<SDNode *, 16>::iterator I = LoadRoots.begin(),
6959       IE = LoadRoots.end(); I != IE; ++I) {
6960    Queue.push_back(*I);
6961
6962    while (!Queue.empty()) {
6963      SDNode *LoadRoot = Queue.pop_back_val();
6964      if (!Visited.insert(LoadRoot))
6965        continue;
6966
6967      if (LoadSDNode *ChainLD = dyn_cast<LoadSDNode>(LoadRoot))
6968        if (isConsecutiveLS(ChainLD, LD, VT.getStoreSize(), 1, DAG))
6969          return true;
6970
6971      for (SDNode::use_iterator UI = LoadRoot->use_begin(),
6972           UE = LoadRoot->use_end(); UI != UE; ++UI)
6973        if (((isa<LoadSDNode>(*UI) &&
6974            cast<LoadSDNode>(*UI)->getChain().getNode() == LoadRoot) ||
6975            UI->getOpcode() == ISD::TokenFactor) && !Visited.count(*UI))
6976          Queue.push_back(*UI);
6977    }
6978  }
6979
6980  return false;
6981}
6982
6983SDValue PPCTargetLowering::PerformDAGCombine(SDNode *N,
6984                                             DAGCombinerInfo &DCI) const {
6985  const TargetMachine &TM = getTargetMachine();
6986  SelectionDAG &DAG = DCI.DAG;
6987  SDLoc dl(N);
6988  switch (N->getOpcode()) {
6989  default: break;
6990  case PPCISD::SHL:
6991    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(0))) {
6992      if (C->isNullValue())   // 0 << V -> 0.
6993        return N->getOperand(0);
6994    }
6995    break;
6996  case PPCISD::SRL:
6997    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(0))) {
6998      if (C->isNullValue())   // 0 >>u V -> 0.
6999        return N->getOperand(0);
7000    }
7001    break;
7002  case PPCISD::SRA:
7003    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(0))) {
7004      if (C->isNullValue() ||   //  0 >>s V -> 0.
7005          C->isAllOnesValue())    // -1 >>s V -> -1.
7006        return N->getOperand(0);
7007    }
7008    break;
7009  case ISD::FDIV: {
7010    assert(TM.Options.UnsafeFPMath &&
7011           "Reciprocal estimates require UnsafeFPMath");
7012
7013    if (N->getOperand(1).getOpcode() == ISD::FSQRT) {
7014      SDValue RV =
7015        DAGCombineFastRecipFSQRT(N->getOperand(1).getOperand(0), DCI);
7016      if (RV.getNode() != 0) {
7017        DCI.AddToWorklist(RV.getNode());
7018        return DAG.getNode(ISD::FMUL, dl, N->getValueType(0),
7019                           N->getOperand(0), RV);
7020      }
7021    } else if (N->getOperand(1).getOpcode() == ISD::FP_EXTEND &&
7022               N->getOperand(1).getOperand(0).getOpcode() == ISD::FSQRT) {
7023      SDValue RV =
7024        DAGCombineFastRecipFSQRT(N->getOperand(1).getOperand(0).getOperand(0),
7025                                 DCI);
7026      if (RV.getNode() != 0) {
7027        DCI.AddToWorklist(RV.getNode());
7028        RV = DAG.getNode(ISD::FP_EXTEND, SDLoc(N->getOperand(1)),
7029                         N->getValueType(0), RV);
7030        DCI.AddToWorklist(RV.getNode());
7031        return DAG.getNode(ISD::FMUL, dl, N->getValueType(0),
7032                           N->getOperand(0), RV);
7033      }
7034    } else if (N->getOperand(1).getOpcode() == ISD::FP_ROUND &&
7035               N->getOperand(1).getOperand(0).getOpcode() == ISD::FSQRT) {
7036      SDValue RV =
7037        DAGCombineFastRecipFSQRT(N->getOperand(1).getOperand(0).getOperand(0),
7038                                 DCI);
7039      if (RV.getNode() != 0) {
7040        DCI.AddToWorklist(RV.getNode());
7041        RV = DAG.getNode(ISD::FP_ROUND, SDLoc(N->getOperand(1)),
7042                         N->getValueType(0), RV,
7043                         N->getOperand(1).getOperand(1));
7044        DCI.AddToWorklist(RV.getNode());
7045        return DAG.getNode(ISD::FMUL, dl, N->getValueType(0),
7046                           N->getOperand(0), RV);
7047      }
7048    }
7049
7050    SDValue RV = DAGCombineFastRecip(N->getOperand(1), DCI);
7051    if (RV.getNode() != 0) {
7052      DCI.AddToWorklist(RV.getNode());
7053      return DAG.getNode(ISD::FMUL, dl, N->getValueType(0),
7054                         N->getOperand(0), RV);
7055    }
7056
7057    }
7058    break;
7059  case ISD::FSQRT: {
7060    assert(TM.Options.UnsafeFPMath &&
7061           "Reciprocal estimates require UnsafeFPMath");
7062
7063    // Compute this as 1/(1/sqrt(X)), which is the reciprocal of the
7064    // reciprocal sqrt.
7065    SDValue RV = DAGCombineFastRecipFSQRT(N->getOperand(0), DCI);
7066    if (RV.getNode() != 0) {
7067      DCI.AddToWorklist(RV.getNode());
7068      RV = DAGCombineFastRecip(RV, DCI);
7069      if (RV.getNode() != 0) {
7070	// Unfortunately, RV is now NaN if the input was exactly 0. Select out
7071	// this case and force the answer to 0.
7072
7073        EVT VT = RV.getValueType();
7074
7075        SDValue Zero = DAG.getConstantFP(0.0, VT.getScalarType());
7076        if (VT.isVector()) {
7077          assert(VT.getVectorNumElements() == 4 && "Unknown vector type");
7078          Zero = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, Zero, Zero, Zero, Zero);
7079        }
7080
7081        SDValue ZeroCmp =
7082          DAG.getSetCC(dl, getSetCCResultType(*DAG.getContext(), VT),
7083                       N->getOperand(0), Zero, ISD::SETEQ);
7084        DCI.AddToWorklist(ZeroCmp.getNode());
7085        DCI.AddToWorklist(RV.getNode());
7086
7087        RV = DAG.getNode(VT.isVector() ? ISD::VSELECT : ISD::SELECT, dl, VT,
7088                         ZeroCmp, Zero, RV);
7089        return RV;
7090      }
7091    }
7092
7093    }
7094    break;
7095  case ISD::SINT_TO_FP:
7096    if (TM.getSubtarget<PPCSubtarget>().has64BitSupport()) {
7097      if (N->getOperand(0).getOpcode() == ISD::FP_TO_SINT) {
7098        // Turn (sint_to_fp (fp_to_sint X)) -> fctidz/fcfid without load/stores.
7099        // We allow the src/dst to be either f32/f64, but the intermediate
7100        // type must be i64.
7101        if (N->getOperand(0).getValueType() == MVT::i64 &&
7102            N->getOperand(0).getOperand(0).getValueType() != MVT::ppcf128) {
7103          SDValue Val = N->getOperand(0).getOperand(0);
7104          if (Val.getValueType() == MVT::f32) {
7105            Val = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Val);
7106            DCI.AddToWorklist(Val.getNode());
7107          }
7108
7109          Val = DAG.getNode(PPCISD::FCTIDZ, dl, MVT::f64, Val);
7110          DCI.AddToWorklist(Val.getNode());
7111          Val = DAG.getNode(PPCISD::FCFID, dl, MVT::f64, Val);
7112          DCI.AddToWorklist(Val.getNode());
7113          if (N->getValueType(0) == MVT::f32) {
7114            Val = DAG.getNode(ISD::FP_ROUND, dl, MVT::f32, Val,
7115                              DAG.getIntPtrConstant(0));
7116            DCI.AddToWorklist(Val.getNode());
7117          }
7118          return Val;
7119        } else if (N->getOperand(0).getValueType() == MVT::i32) {
7120          // If the intermediate type is i32, we can avoid the load/store here
7121          // too.
7122        }
7123      }
7124    }
7125    break;
7126  case ISD::STORE:
7127    // Turn STORE (FP_TO_SINT F) -> STFIWX(FCTIWZ(F)).
7128    if (TM.getSubtarget<PPCSubtarget>().hasSTFIWX() &&
7129        !cast<StoreSDNode>(N)->isTruncatingStore() &&
7130        N->getOperand(1).getOpcode() == ISD::FP_TO_SINT &&
7131        N->getOperand(1).getValueType() == MVT::i32 &&
7132        N->getOperand(1).getOperand(0).getValueType() != MVT::ppcf128) {
7133      SDValue Val = N->getOperand(1).getOperand(0);
7134      if (Val.getValueType() == MVT::f32) {
7135        Val = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Val);
7136        DCI.AddToWorklist(Val.getNode());
7137      }
7138      Val = DAG.getNode(PPCISD::FCTIWZ, dl, MVT::f64, Val);
7139      DCI.AddToWorklist(Val.getNode());
7140
7141      SDValue Ops[] = {
7142        N->getOperand(0), Val, N->getOperand(2),
7143        DAG.getValueType(N->getOperand(1).getValueType())
7144      };
7145
7146      Val = DAG.getMemIntrinsicNode(PPCISD::STFIWX, dl,
7147              DAG.getVTList(MVT::Other), Ops, array_lengthof(Ops),
7148              cast<StoreSDNode>(N)->getMemoryVT(),
7149              cast<StoreSDNode>(N)->getMemOperand());
7150      DCI.AddToWorklist(Val.getNode());
7151      return Val;
7152    }
7153
7154    // Turn STORE (BSWAP) -> sthbrx/stwbrx.
7155    if (cast<StoreSDNode>(N)->isUnindexed() &&
7156        N->getOperand(1).getOpcode() == ISD::BSWAP &&
7157        N->getOperand(1).getNode()->hasOneUse() &&
7158        (N->getOperand(1).getValueType() == MVT::i32 ||
7159         N->getOperand(1).getValueType() == MVT::i16 ||
7160         (TM.getSubtarget<PPCSubtarget>().hasLDBRX() &&
7161          TM.getSubtarget<PPCSubtarget>().isPPC64() &&
7162          N->getOperand(1).getValueType() == MVT::i64))) {
7163      SDValue BSwapOp = N->getOperand(1).getOperand(0);
7164      // Do an any-extend to 32-bits if this is a half-word input.
7165      if (BSwapOp.getValueType() == MVT::i16)
7166        BSwapOp = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, BSwapOp);
7167
7168      SDValue Ops[] = {
7169        N->getOperand(0), BSwapOp, N->getOperand(2),
7170        DAG.getValueType(N->getOperand(1).getValueType())
7171      };
7172      return
7173        DAG.getMemIntrinsicNode(PPCISD::STBRX, dl, DAG.getVTList(MVT::Other),
7174                                Ops, array_lengthof(Ops),
7175                                cast<StoreSDNode>(N)->getMemoryVT(),
7176                                cast<StoreSDNode>(N)->getMemOperand());
7177    }
7178    break;
7179  case ISD::LOAD: {
7180    LoadSDNode *LD = cast<LoadSDNode>(N);
7181    EVT VT = LD->getValueType(0);
7182    Type *Ty = LD->getMemoryVT().getTypeForEVT(*DAG.getContext());
7183    unsigned ABIAlignment = getDataLayout()->getABITypeAlignment(Ty);
7184    if (ISD::isNON_EXTLoad(N) && VT.isVector() &&
7185        TM.getSubtarget<PPCSubtarget>().hasAltivec() &&
7186        (VT == MVT::v16i8 || VT == MVT::v8i16 ||
7187         VT == MVT::v4i32 || VT == MVT::v4f32) &&
7188        LD->getAlignment() < ABIAlignment) {
7189      // This is a type-legal unaligned Altivec load.
7190      SDValue Chain = LD->getChain();
7191      SDValue Ptr = LD->getBasePtr();
7192
7193      // This implements the loading of unaligned vectors as described in
7194      // the venerable Apple Velocity Engine overview. Specifically:
7195      // https://developer.apple.com/hardwaredrivers/ve/alignment.html
7196      // https://developer.apple.com/hardwaredrivers/ve/code_optimization.html
7197      //
7198      // The general idea is to expand a sequence of one or more unaligned
7199      // loads into a alignment-based permutation-control instruction (lvsl),
7200      // a series of regular vector loads (which always truncate their
7201      // input address to an aligned address), and a series of permutations.
7202      // The results of these permutations are the requested loaded values.
7203      // The trick is that the last "extra" load is not taken from the address
7204      // you might suspect (sizeof(vector) bytes after the last requested
7205      // load), but rather sizeof(vector) - 1 bytes after the last
7206      // requested vector. The point of this is to avoid a page fault if the
7207      // base address happend to be aligned. This works because if the base
7208      // address is aligned, then adding less than a full vector length will
7209      // cause the last vector in the sequence to be (re)loaded. Otherwise,
7210      // the next vector will be fetched as you might suspect was necessary.
7211
7212      // We might be able to reuse the permutation generation from
7213      // a different base address offset from this one by an aligned amount.
7214      // The INTRINSIC_WO_CHAIN DAG combine will attempt to perform this
7215      // optimization later.
7216      SDValue PermCntl = BuildIntrinsicOp(Intrinsic::ppc_altivec_lvsl, Ptr,
7217                                          DAG, dl, MVT::v16i8);
7218
7219      // Refine the alignment of the original load (a "new" load created here
7220      // which was identical to the first except for the alignment would be
7221      // merged with the existing node regardless).
7222      MachineFunction &MF = DAG.getMachineFunction();
7223      MachineMemOperand *MMO =
7224        MF.getMachineMemOperand(LD->getPointerInfo(),
7225                                LD->getMemOperand()->getFlags(),
7226                                LD->getMemoryVT().getStoreSize(),
7227                                ABIAlignment);
7228      LD->refineAlignment(MMO);
7229      SDValue BaseLoad = SDValue(LD, 0);
7230
7231      // Note that the value of IncOffset (which is provided to the next
7232      // load's pointer info offset value, and thus used to calculate the
7233      // alignment), and the value of IncValue (which is actually used to
7234      // increment the pointer value) are different! This is because we
7235      // require the next load to appear to be aligned, even though it
7236      // is actually offset from the base pointer by a lesser amount.
7237      int IncOffset = VT.getSizeInBits() / 8;
7238      int IncValue = IncOffset;
7239
7240      // Walk (both up and down) the chain looking for another load at the real
7241      // (aligned) offset (the alignment of the other load does not matter in
7242      // this case). If found, then do not use the offset reduction trick, as
7243      // that will prevent the loads from being later combined (as they would
7244      // otherwise be duplicates).
7245      if (!findConsecutiveLoad(LD, DAG))
7246        --IncValue;
7247
7248      SDValue Increment = DAG.getConstant(IncValue, getPointerTy());
7249      Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, Increment);
7250
7251      SDValue ExtraLoad =
7252        DAG.getLoad(VT, dl, Chain, Ptr,
7253                    LD->getPointerInfo().getWithOffset(IncOffset),
7254                    LD->isVolatile(), LD->isNonTemporal(),
7255                    LD->isInvariant(), ABIAlignment);
7256
7257      SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
7258        BaseLoad.getValue(1), ExtraLoad.getValue(1));
7259
7260      if (BaseLoad.getValueType() != MVT::v4i32)
7261        BaseLoad = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, BaseLoad);
7262
7263      if (ExtraLoad.getValueType() != MVT::v4i32)
7264        ExtraLoad = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, ExtraLoad);
7265
7266      SDValue Perm = BuildIntrinsicOp(Intrinsic::ppc_altivec_vperm,
7267                                      BaseLoad, ExtraLoad, PermCntl, DAG, dl);
7268
7269      if (VT != MVT::v4i32)
7270        Perm = DAG.getNode(ISD::BITCAST, dl, VT, Perm);
7271
7272      // Now we need to be really careful about how we update the users of the
7273      // original load. We cannot just call DCI.CombineTo (or
7274      // DAG.ReplaceAllUsesWith for that matter), because the load still has
7275      // uses created here (the permutation for example) that need to stay.
7276      SDNode::use_iterator UI = N->use_begin(), UE = N->use_end();
7277      while (UI != UE) {
7278        SDUse &Use = UI.getUse();
7279        SDNode *User = *UI;
7280        // Note: BaseLoad is checked here because it might not be N, but a
7281        // bitcast of N.
7282        if (User == Perm.getNode() || User == BaseLoad.getNode() ||
7283            User == TF.getNode() || Use.getResNo() > 1) {
7284          ++UI;
7285          continue;
7286        }
7287
7288        SDValue To = Use.getResNo() ? TF : Perm;
7289        ++UI;
7290
7291        SmallVector<SDValue, 8> Ops;
7292        for (SDNode::op_iterator O = User->op_begin(),
7293             OE = User->op_end(); O != OE; ++O) {
7294          if (*O == Use)
7295            Ops.push_back(To);
7296          else
7297            Ops.push_back(*O);
7298        }
7299
7300        DAG.UpdateNodeOperands(User, Ops.data(), Ops.size());
7301      }
7302
7303      return SDValue(N, 0);
7304    }
7305    }
7306    break;
7307  case ISD::INTRINSIC_WO_CHAIN:
7308    if (cast<ConstantSDNode>(N->getOperand(0))->getZExtValue() ==
7309          Intrinsic::ppc_altivec_lvsl &&
7310        N->getOperand(1)->getOpcode() == ISD::ADD) {
7311      SDValue Add = N->getOperand(1);
7312
7313      if (DAG.MaskedValueIsZero(Add->getOperand(1),
7314            APInt::getAllOnesValue(4 /* 16 byte alignment */).zext(
7315              Add.getValueType().getScalarType().getSizeInBits()))) {
7316        SDNode *BasePtr = Add->getOperand(0).getNode();
7317        for (SDNode::use_iterator UI = BasePtr->use_begin(),
7318             UE = BasePtr->use_end(); UI != UE; ++UI) {
7319          if (UI->getOpcode() == ISD::INTRINSIC_WO_CHAIN &&
7320              cast<ConstantSDNode>(UI->getOperand(0))->getZExtValue() ==
7321                Intrinsic::ppc_altivec_lvsl) {
7322            // We've found another LVSL, and this address if an aligned
7323            // multiple of that one. The results will be the same, so use the
7324            // one we've just found instead.
7325
7326            return SDValue(*UI, 0);
7327          }
7328        }
7329      }
7330    }
7331
7332    break;
7333  case ISD::BSWAP:
7334    // Turn BSWAP (LOAD) -> lhbrx/lwbrx.
7335    if (ISD::isNON_EXTLoad(N->getOperand(0).getNode()) &&
7336        N->getOperand(0).hasOneUse() &&
7337        (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i16 ||
7338         (TM.getSubtarget<PPCSubtarget>().hasLDBRX() &&
7339          TM.getSubtarget<PPCSubtarget>().isPPC64() &&
7340          N->getValueType(0) == MVT::i64))) {
7341      SDValue Load = N->getOperand(0);
7342      LoadSDNode *LD = cast<LoadSDNode>(Load);
7343      // Create the byte-swapping load.
7344      SDValue Ops[] = {
7345        LD->getChain(),    // Chain
7346        LD->getBasePtr(),  // Ptr
7347        DAG.getValueType(N->getValueType(0)) // VT
7348      };
7349      SDValue BSLoad =
7350        DAG.getMemIntrinsicNode(PPCISD::LBRX, dl,
7351                                DAG.getVTList(N->getValueType(0) == MVT::i64 ?
7352                                              MVT::i64 : MVT::i32, MVT::Other),
7353                                Ops, 3, LD->getMemoryVT(), LD->getMemOperand());
7354
7355      // If this is an i16 load, insert the truncate.
7356      SDValue ResVal = BSLoad;
7357      if (N->getValueType(0) == MVT::i16)
7358        ResVal = DAG.getNode(ISD::TRUNCATE, dl, MVT::i16, BSLoad);
7359
7360      // First, combine the bswap away.  This makes the value produced by the
7361      // load dead.
7362      DCI.CombineTo(N, ResVal);
7363
7364      // Next, combine the load away, we give it a bogus result value but a real
7365      // chain result.  The result value is dead because the bswap is dead.
7366      DCI.CombineTo(Load.getNode(), ResVal, BSLoad.getValue(1));
7367
7368      // Return N so it doesn't get rechecked!
7369      return SDValue(N, 0);
7370    }
7371
7372    break;
7373  case PPCISD::VCMP: {
7374    // If a VCMPo node already exists with exactly the same operands as this
7375    // node, use its result instead of this node (VCMPo computes both a CR6 and
7376    // a normal output).
7377    //
7378    if (!N->getOperand(0).hasOneUse() &&
7379        !N->getOperand(1).hasOneUse() &&
7380        !N->getOperand(2).hasOneUse()) {
7381
7382      // Scan all of the users of the LHS, looking for VCMPo's that match.
7383      SDNode *VCMPoNode = 0;
7384
7385      SDNode *LHSN = N->getOperand(0).getNode();
7386      for (SDNode::use_iterator UI = LHSN->use_begin(), E = LHSN->use_end();
7387           UI != E; ++UI)
7388        if (UI->getOpcode() == PPCISD::VCMPo &&
7389            UI->getOperand(1) == N->getOperand(1) &&
7390            UI->getOperand(2) == N->getOperand(2) &&
7391            UI->getOperand(0) == N->getOperand(0)) {
7392          VCMPoNode = *UI;
7393          break;
7394        }
7395
7396      // If there is no VCMPo node, or if the flag value has a single use, don't
7397      // transform this.
7398      if (!VCMPoNode || VCMPoNode->hasNUsesOfValue(0, 1))
7399        break;
7400
7401      // Look at the (necessarily single) use of the flag value.  If it has a
7402      // chain, this transformation is more complex.  Note that multiple things
7403      // could use the value result, which we should ignore.
7404      SDNode *FlagUser = 0;
7405      for (SDNode::use_iterator UI = VCMPoNode->use_begin();
7406           FlagUser == 0; ++UI) {
7407        assert(UI != VCMPoNode->use_end() && "Didn't find user!");
7408        SDNode *User = *UI;
7409        for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i) {
7410          if (User->getOperand(i) == SDValue(VCMPoNode, 1)) {
7411            FlagUser = User;
7412            break;
7413          }
7414        }
7415      }
7416
7417      // If the user is a MFOCRF instruction, we know this is safe.
7418      // Otherwise we give up for right now.
7419      if (FlagUser->getOpcode() == PPCISD::MFOCRF)
7420        return SDValue(VCMPoNode, 0);
7421    }
7422    break;
7423  }
7424  case ISD::BR_CC: {
7425    // If this is a branch on an altivec predicate comparison, lower this so
7426    // that we don't have to do a MFOCRF: instead, branch directly on CR6.  This
7427    // lowering is done pre-legalize, because the legalizer lowers the predicate
7428    // compare down to code that is difficult to reassemble.
7429    ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(1))->get();
7430    SDValue LHS = N->getOperand(2), RHS = N->getOperand(3);
7431
7432    // Sometimes the promoted value of the intrinsic is ANDed by some non-zero
7433    // value. If so, pass-through the AND to get to the intrinsic.
7434    if (LHS.getOpcode() == ISD::AND &&
7435        LHS.getOperand(0).getOpcode() == ISD::INTRINSIC_W_CHAIN &&
7436        cast<ConstantSDNode>(LHS.getOperand(0).getOperand(1))->getZExtValue() ==
7437          Intrinsic::ppc_is_decremented_ctr_nonzero &&
7438        isa<ConstantSDNode>(LHS.getOperand(1)) &&
7439        !cast<ConstantSDNode>(LHS.getOperand(1))->getConstantIntValue()->
7440          isZero())
7441      LHS = LHS.getOperand(0);
7442
7443    if (LHS.getOpcode() == ISD::INTRINSIC_W_CHAIN &&
7444        cast<ConstantSDNode>(LHS.getOperand(1))->getZExtValue() ==
7445          Intrinsic::ppc_is_decremented_ctr_nonzero &&
7446        isa<ConstantSDNode>(RHS)) {
7447      assert((CC == ISD::SETEQ || CC == ISD::SETNE) &&
7448             "Counter decrement comparison is not EQ or NE");
7449
7450      unsigned Val = cast<ConstantSDNode>(RHS)->getZExtValue();
7451      bool isBDNZ = (CC == ISD::SETEQ && Val) ||
7452                    (CC == ISD::SETNE && !Val);
7453
7454      // We now need to make the intrinsic dead (it cannot be instruction
7455      // selected).
7456      DAG.ReplaceAllUsesOfValueWith(LHS.getValue(1), LHS.getOperand(0));
7457      assert(LHS.getNode()->hasOneUse() &&
7458             "Counter decrement has more than one use");
7459
7460      return DAG.getNode(isBDNZ ? PPCISD::BDNZ : PPCISD::BDZ, dl, MVT::Other,
7461                         N->getOperand(0), N->getOperand(4));
7462    }
7463
7464    int CompareOpc;
7465    bool isDot;
7466
7467    if (LHS.getOpcode() == ISD::INTRINSIC_WO_CHAIN &&
7468        isa<ConstantSDNode>(RHS) && (CC == ISD::SETEQ || CC == ISD::SETNE) &&
7469        getAltivecCompareInfo(LHS, CompareOpc, isDot)) {
7470      assert(isDot && "Can't compare against a vector result!");
7471
7472      // If this is a comparison against something other than 0/1, then we know
7473      // that the condition is never/always true.
7474      unsigned Val = cast<ConstantSDNode>(RHS)->getZExtValue();
7475      if (Val != 0 && Val != 1) {
7476        if (CC == ISD::SETEQ)      // Cond never true, remove branch.
7477          return N->getOperand(0);
7478        // Always !=, turn it into an unconditional branch.
7479        return DAG.getNode(ISD::BR, dl, MVT::Other,
7480                           N->getOperand(0), N->getOperand(4));
7481      }
7482
7483      bool BranchOnWhenPredTrue = (CC == ISD::SETEQ) ^ (Val == 0);
7484
7485      // Create the PPCISD altivec 'dot' comparison node.
7486      SDValue Ops[] = {
7487        LHS.getOperand(2),  // LHS of compare
7488        LHS.getOperand(3),  // RHS of compare
7489        DAG.getConstant(CompareOpc, MVT::i32)
7490      };
7491      EVT VTs[] = { LHS.getOperand(2).getValueType(), MVT::Glue };
7492      SDValue CompNode = DAG.getNode(PPCISD::VCMPo, dl, VTs, Ops, 3);
7493
7494      // Unpack the result based on how the target uses it.
7495      PPC::Predicate CompOpc;
7496      switch (cast<ConstantSDNode>(LHS.getOperand(1))->getZExtValue()) {
7497      default:  // Can't happen, don't crash on invalid number though.
7498      case 0:   // Branch on the value of the EQ bit of CR6.
7499        CompOpc = BranchOnWhenPredTrue ? PPC::PRED_EQ : PPC::PRED_NE;
7500        break;
7501      case 1:   // Branch on the inverted value of the EQ bit of CR6.
7502        CompOpc = BranchOnWhenPredTrue ? PPC::PRED_NE : PPC::PRED_EQ;
7503        break;
7504      case 2:   // Branch on the value of the LT bit of CR6.
7505        CompOpc = BranchOnWhenPredTrue ? PPC::PRED_LT : PPC::PRED_GE;
7506        break;
7507      case 3:   // Branch on the inverted value of the LT bit of CR6.
7508        CompOpc = BranchOnWhenPredTrue ? PPC::PRED_GE : PPC::PRED_LT;
7509        break;
7510      }
7511
7512      return DAG.getNode(PPCISD::COND_BRANCH, dl, MVT::Other, N->getOperand(0),
7513                         DAG.getConstant(CompOpc, MVT::i32),
7514                         DAG.getRegister(PPC::CR6, MVT::i32),
7515                         N->getOperand(4), CompNode.getValue(1));
7516    }
7517    break;
7518  }
7519  }
7520
7521  return SDValue();
7522}
7523
7524//===----------------------------------------------------------------------===//
7525// Inline Assembly Support
7526//===----------------------------------------------------------------------===//
7527
7528void PPCTargetLowering::computeMaskedBitsForTargetNode(const SDValue Op,
7529                                                       APInt &KnownZero,
7530                                                       APInt &KnownOne,
7531                                                       const SelectionDAG &DAG,
7532                                                       unsigned Depth) const {
7533  KnownZero = KnownOne = APInt(KnownZero.getBitWidth(), 0);
7534  switch (Op.getOpcode()) {
7535  default: break;
7536  case PPCISD::LBRX: {
7537    // lhbrx is known to have the top bits cleared out.
7538    if (cast<VTSDNode>(Op.getOperand(2))->getVT() == MVT::i16)
7539      KnownZero = 0xFFFF0000;
7540    break;
7541  }
7542  case ISD::INTRINSIC_WO_CHAIN: {
7543    switch (cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue()) {
7544    default: break;
7545    case Intrinsic::ppc_altivec_vcmpbfp_p:
7546    case Intrinsic::ppc_altivec_vcmpeqfp_p:
7547    case Intrinsic::ppc_altivec_vcmpequb_p:
7548    case Intrinsic::ppc_altivec_vcmpequh_p:
7549    case Intrinsic::ppc_altivec_vcmpequw_p:
7550    case Intrinsic::ppc_altivec_vcmpgefp_p:
7551    case Intrinsic::ppc_altivec_vcmpgtfp_p:
7552    case Intrinsic::ppc_altivec_vcmpgtsb_p:
7553    case Intrinsic::ppc_altivec_vcmpgtsh_p:
7554    case Intrinsic::ppc_altivec_vcmpgtsw_p:
7555    case Intrinsic::ppc_altivec_vcmpgtub_p:
7556    case Intrinsic::ppc_altivec_vcmpgtuh_p:
7557    case Intrinsic::ppc_altivec_vcmpgtuw_p:
7558      KnownZero = ~1U;  // All bits but the low one are known to be zero.
7559      break;
7560    }
7561  }
7562  }
7563}
7564
7565
7566/// getConstraintType - Given a constraint, return the type of
7567/// constraint it is for this target.
7568PPCTargetLowering::ConstraintType
7569PPCTargetLowering::getConstraintType(const std::string &Constraint) const {
7570  if (Constraint.size() == 1) {
7571    switch (Constraint[0]) {
7572    default: break;
7573    case 'b':
7574    case 'r':
7575    case 'f':
7576    case 'v':
7577    case 'y':
7578      return C_RegisterClass;
7579    case 'Z':
7580      // FIXME: While Z does indicate a memory constraint, it specifically
7581      // indicates an r+r address (used in conjunction with the 'y' modifier
7582      // in the replacement string). Currently, we're forcing the base
7583      // register to be r0 in the asm printer (which is interpreted as zero)
7584      // and forming the complete address in the second register. This is
7585      // suboptimal.
7586      return C_Memory;
7587    }
7588  }
7589  return TargetLowering::getConstraintType(Constraint);
7590}
7591
7592/// Examine constraint type and operand type and determine a weight value.
7593/// This object must already have been set up with the operand type
7594/// and the current alternative constraint selected.
7595TargetLowering::ConstraintWeight
7596PPCTargetLowering::getSingleConstraintMatchWeight(
7597    AsmOperandInfo &info, const char *constraint) const {
7598  ConstraintWeight weight = CW_Invalid;
7599  Value *CallOperandVal = info.CallOperandVal;
7600    // If we don't have a value, we can't do a match,
7601    // but allow it at the lowest weight.
7602  if (CallOperandVal == NULL)
7603    return CW_Default;
7604  Type *type = CallOperandVal->getType();
7605  // Look at the constraint type.
7606  switch (*constraint) {
7607  default:
7608    weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint);
7609    break;
7610  case 'b':
7611    if (type->isIntegerTy())
7612      weight = CW_Register;
7613    break;
7614  case 'f':
7615    if (type->isFloatTy())
7616      weight = CW_Register;
7617    break;
7618  case 'd':
7619    if (type->isDoubleTy())
7620      weight = CW_Register;
7621    break;
7622  case 'v':
7623    if (type->isVectorTy())
7624      weight = CW_Register;
7625    break;
7626  case 'y':
7627    weight = CW_Register;
7628    break;
7629  case 'Z':
7630    weight = CW_Memory;
7631    break;
7632  }
7633  return weight;
7634}
7635
7636std::pair<unsigned, const TargetRegisterClass*>
7637PPCTargetLowering::getRegForInlineAsmConstraint(const std::string &Constraint,
7638                                                MVT VT) const {
7639  if (Constraint.size() == 1) {
7640    // GCC RS6000 Constraint Letters
7641    switch (Constraint[0]) {
7642    case 'b':   // R1-R31
7643      if (VT == MVT::i64 && PPCSubTarget.isPPC64())
7644        return std::make_pair(0U, &PPC::G8RC_NOX0RegClass);
7645      return std::make_pair(0U, &PPC::GPRC_NOR0RegClass);
7646    case 'r':   // R0-R31
7647      if (VT == MVT::i64 && PPCSubTarget.isPPC64())
7648        return std::make_pair(0U, &PPC::G8RCRegClass);
7649      return std::make_pair(0U, &PPC::GPRCRegClass);
7650    case 'f':
7651      if (VT == MVT::f32 || VT == MVT::i32)
7652        return std::make_pair(0U, &PPC::F4RCRegClass);
7653      if (VT == MVT::f64 || VT == MVT::i64)
7654        return std::make_pair(0U, &PPC::F8RCRegClass);
7655      break;
7656    case 'v':
7657      return std::make_pair(0U, &PPC::VRRCRegClass);
7658    case 'y':   // crrc
7659      return std::make_pair(0U, &PPC::CRRCRegClass);
7660    }
7661  }
7662
7663  std::pair<unsigned, const TargetRegisterClass*> R =
7664    TargetLowering::getRegForInlineAsmConstraint(Constraint, VT);
7665
7666  // r[0-9]+ are used, on PPC64, to refer to the corresponding 64-bit registers
7667  // (which we call X[0-9]+). If a 64-bit value has been requested, and a
7668  // 32-bit GPR has been selected, then 'upgrade' it to the 64-bit parent
7669  // register.
7670  // FIXME: If TargetLowering::getRegForInlineAsmConstraint could somehow use
7671  // the AsmName field from *RegisterInfo.td, then this would not be necessary.
7672  if (R.first && VT == MVT::i64 && PPCSubTarget.isPPC64() &&
7673      PPC::GPRCRegClass.contains(R.first)) {
7674    const TargetRegisterInfo *TRI = getTargetMachine().getRegisterInfo();
7675    return std::make_pair(TRI->getMatchingSuperReg(R.first,
7676                            PPC::sub_32, &PPC::G8RCRegClass),
7677                          &PPC::G8RCRegClass);
7678  }
7679
7680  return R;
7681}
7682
7683
7684/// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
7685/// vector.  If it is invalid, don't add anything to Ops.
7686void PPCTargetLowering::LowerAsmOperandForConstraint(SDValue Op,
7687                                                     std::string &Constraint,
7688                                                     std::vector<SDValue>&Ops,
7689                                                     SelectionDAG &DAG) const {
7690  SDValue Result(0,0);
7691
7692  // Only support length 1 constraints.
7693  if (Constraint.length() > 1) return;
7694
7695  char Letter = Constraint[0];
7696  switch (Letter) {
7697  default: break;
7698  case 'I':
7699  case 'J':
7700  case 'K':
7701  case 'L':
7702  case 'M':
7703  case 'N':
7704  case 'O':
7705  case 'P': {
7706    ConstantSDNode *CST = dyn_cast<ConstantSDNode>(Op);
7707    if (!CST) return; // Must be an immediate to match.
7708    unsigned Value = CST->getZExtValue();
7709    switch (Letter) {
7710    default: llvm_unreachable("Unknown constraint letter!");
7711    case 'I':  // "I" is a signed 16-bit constant.
7712      if ((short)Value == (int)Value)
7713        Result = DAG.getTargetConstant(Value, Op.getValueType());
7714      break;
7715    case 'J':  // "J" is a constant with only the high-order 16 bits nonzero.
7716    case 'L':  // "L" is a signed 16-bit constant shifted left 16 bits.
7717      if ((short)Value == 0)
7718        Result = DAG.getTargetConstant(Value, Op.getValueType());
7719      break;
7720    case 'K':  // "K" is a constant with only the low-order 16 bits nonzero.
7721      if ((Value >> 16) == 0)
7722        Result = DAG.getTargetConstant(Value, Op.getValueType());
7723      break;
7724    case 'M':  // "M" is a constant that is greater than 31.
7725      if (Value > 31)
7726        Result = DAG.getTargetConstant(Value, Op.getValueType());
7727      break;
7728    case 'N':  // "N" is a positive constant that is an exact power of two.
7729      if ((int)Value > 0 && isPowerOf2_32(Value))
7730        Result = DAG.getTargetConstant(Value, Op.getValueType());
7731      break;
7732    case 'O':  // "O" is the constant zero.
7733      if (Value == 0)
7734        Result = DAG.getTargetConstant(Value, Op.getValueType());
7735      break;
7736    case 'P':  // "P" is a constant whose negation is a signed 16-bit constant.
7737      if ((short)-Value == (int)-Value)
7738        Result = DAG.getTargetConstant(Value, Op.getValueType());
7739      break;
7740    }
7741    break;
7742  }
7743  }
7744
7745  if (Result.getNode()) {
7746    Ops.push_back(Result);
7747    return;
7748  }
7749
7750  // Handle standard constraint letters.
7751  TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
7752}
7753
7754// isLegalAddressingMode - Return true if the addressing mode represented
7755// by AM is legal for this target, for a load/store of the specified type.
7756bool PPCTargetLowering::isLegalAddressingMode(const AddrMode &AM,
7757                                              Type *Ty) const {
7758  // FIXME: PPC does not allow r+i addressing modes for vectors!
7759
7760  // PPC allows a sign-extended 16-bit immediate field.
7761  if (AM.BaseOffs <= -(1LL << 16) || AM.BaseOffs >= (1LL << 16)-1)
7762    return false;
7763
7764  // No global is ever allowed as a base.
7765  if (AM.BaseGV)
7766    return false;
7767
7768  // PPC only support r+r,
7769  switch (AM.Scale) {
7770  case 0:  // "r+i" or just "i", depending on HasBaseReg.
7771    break;
7772  case 1:
7773    if (AM.HasBaseReg && AM.BaseOffs)  // "r+r+i" is not allowed.
7774      return false;
7775    // Otherwise we have r+r or r+i.
7776    break;
7777  case 2:
7778    if (AM.HasBaseReg || AM.BaseOffs)  // 2*r+r  or  2*r+i is not allowed.
7779      return false;
7780    // Allow 2*r as r+r.
7781    break;
7782  default:
7783    // No other scales are supported.
7784    return false;
7785  }
7786
7787  return true;
7788}
7789
7790SDValue PPCTargetLowering::LowerRETURNADDR(SDValue Op,
7791                                           SelectionDAG &DAG) const {
7792  MachineFunction &MF = DAG.getMachineFunction();
7793  MachineFrameInfo *MFI = MF.getFrameInfo();
7794  MFI->setReturnAddressIsTaken(true);
7795
7796  SDLoc dl(Op);
7797  unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
7798
7799  // Make sure the function does not optimize away the store of the RA to
7800  // the stack.
7801  PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
7802  FuncInfo->setLRStoreRequired();
7803  bool isPPC64 = PPCSubTarget.isPPC64();
7804  bool isDarwinABI = PPCSubTarget.isDarwinABI();
7805
7806  if (Depth > 0) {
7807    SDValue FrameAddr = LowerFRAMEADDR(Op, DAG);
7808    SDValue Offset =
7809
7810      DAG.getConstant(PPCFrameLowering::getReturnSaveOffset(isPPC64, isDarwinABI),
7811                      isPPC64? MVT::i64 : MVT::i32);
7812    return DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(),
7813                       DAG.getNode(ISD::ADD, dl, getPointerTy(),
7814                                   FrameAddr, Offset),
7815                       MachinePointerInfo(), false, false, false, 0);
7816  }
7817
7818  // Just load the return address off the stack.
7819  SDValue RetAddrFI = getReturnAddrFrameIndex(DAG);
7820  return DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(),
7821                     RetAddrFI, MachinePointerInfo(), false, false, false, 0);
7822}
7823
7824SDValue PPCTargetLowering::LowerFRAMEADDR(SDValue Op,
7825                                          SelectionDAG &DAG) const {
7826  SDLoc dl(Op);
7827  unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
7828
7829  EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
7830  bool isPPC64 = PtrVT == MVT::i64;
7831
7832  MachineFunction &MF = DAG.getMachineFunction();
7833  MachineFrameInfo *MFI = MF.getFrameInfo();
7834  MFI->setFrameAddressIsTaken(true);
7835
7836  // Naked functions never have a frame pointer, and so we use r1. For all
7837  // other functions, this decision must be delayed until during PEI.
7838  unsigned FrameReg;
7839  if (MF.getFunction()->getAttributes().hasAttribute(
7840        AttributeSet::FunctionIndex, Attribute::Naked))
7841    FrameReg = isPPC64 ? PPC::X1 : PPC::R1;
7842  else
7843    FrameReg = isPPC64 ? PPC::FP8 : PPC::FP;
7844
7845  SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl, FrameReg,
7846                                         PtrVT);
7847  while (Depth--)
7848    FrameAddr = DAG.getLoad(Op.getValueType(), dl, DAG.getEntryNode(),
7849                            FrameAddr, MachinePointerInfo(), false, false,
7850                            false, 0);
7851  return FrameAddr;
7852}
7853
7854bool
7855PPCTargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const {
7856  // The PowerPC target isn't yet aware of offsets.
7857  return false;
7858}
7859
7860/// getOptimalMemOpType - Returns the target specific optimal type for load
7861/// and store operations as a result of memset, memcpy, and memmove
7862/// lowering. If DstAlign is zero that means it's safe to destination
7863/// alignment can satisfy any constraint. Similarly if SrcAlign is zero it
7864/// means there isn't a need to check it against alignment requirement,
7865/// probably because the source does not need to be loaded. If 'IsMemset' is
7866/// true, that means it's expanding a memset. If 'ZeroMemset' is true, that
7867/// means it's a memset of zero. 'MemcpyStrSrc' indicates whether the memcpy
7868/// source is constant so it does not need to be loaded.
7869/// It returns EVT::Other if the type should be determined using generic
7870/// target-independent logic.
7871EVT PPCTargetLowering::getOptimalMemOpType(uint64_t Size,
7872                                           unsigned DstAlign, unsigned SrcAlign,
7873                                           bool IsMemset, bool ZeroMemset,
7874                                           bool MemcpyStrSrc,
7875                                           MachineFunction &MF) const {
7876  if (this->PPCSubTarget.isPPC64()) {
7877    return MVT::i64;
7878  } else {
7879    return MVT::i32;
7880  }
7881}
7882
7883bool PPCTargetLowering::allowsUnalignedMemoryAccesses(EVT VT,
7884                                                      bool *Fast) const {
7885  if (DisablePPCUnaligned)
7886    return false;
7887
7888  // PowerPC supports unaligned memory access for simple non-vector types.
7889  // Although accessing unaligned addresses is not as efficient as accessing
7890  // aligned addresses, it is generally more efficient than manual expansion,
7891  // and generally only traps for software emulation when crossing page
7892  // boundaries.
7893
7894  if (!VT.isSimple())
7895    return false;
7896
7897  if (VT.getSimpleVT().isVector())
7898    return false;
7899
7900  if (VT == MVT::ppcf128)
7901    return false;
7902
7903  if (Fast)
7904    *Fast = true;
7905
7906  return true;
7907}
7908
7909bool PPCTargetLowering::isFMAFasterThanFMulAndFAdd(EVT VT) const {
7910  VT = VT.getScalarType();
7911
7912  if (!VT.isSimple())
7913    return false;
7914
7915  switch (VT.getSimpleVT().SimpleTy) {
7916  case MVT::f32:
7917  case MVT::f64:
7918    return true;
7919  default:
7920    break;
7921  }
7922
7923  return false;
7924}
7925
7926Sched::Preference PPCTargetLowering::getSchedulingPreference(SDNode *N) const {
7927  if (DisableILPPref || PPCSubTarget.enableMachineScheduler())
7928    return TargetLowering::getSchedulingPreference(N);
7929
7930  return Sched::ILP;
7931}
7932
7933// Create a fast isel object.
7934FastISel *
7935PPCTargetLowering::createFastISel(FunctionLoweringInfo &FuncInfo,
7936                                  const TargetLibraryInfo *LibInfo) const {
7937  return PPC::createFastISel(FuncInfo, LibInfo);
7938}
7939