PPCFastISel.cpp revision 266715
1//===-- PPCFastISel.cpp - PowerPC FastISel implementation -----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the PowerPC-specific support for the FastISel class. Some
11// of the target-specific code is generated by tablegen in the file
12// PPCGenFastISel.inc, which is #included here.
13//
14//===----------------------------------------------------------------------===//
15
16#define DEBUG_TYPE "ppcfastisel"
17#include "PPC.h"
18#include "PPCISelLowering.h"
19#include "PPCSubtarget.h"
20#include "PPCTargetMachine.h"
21#include "MCTargetDesc/PPCPredicates.h"
22#include "llvm/ADT/Optional.h"
23#include "llvm/CodeGen/CallingConvLower.h"
24#include "llvm/CodeGen/FastISel.h"
25#include "llvm/CodeGen/FunctionLoweringInfo.h"
26#include "llvm/CodeGen/MachineConstantPool.h"
27#include "llvm/CodeGen/MachineFrameInfo.h"
28#include "llvm/CodeGen/MachineInstrBuilder.h"
29#include "llvm/CodeGen/MachineRegisterInfo.h"
30#include "llvm/IR/CallingConv.h"
31#include "llvm/IR/GlobalAlias.h"
32#include "llvm/IR/GlobalVariable.h"
33#include "llvm/IR/IntrinsicInst.h"
34#include "llvm/IR/Operator.h"
35#include "llvm/Support/Debug.h"
36#include "llvm/Support/GetElementPtrTypeIterator.h"
37#include "llvm/Target/TargetLowering.h"
38#include "llvm/Target/TargetMachine.h"
39
40//===----------------------------------------------------------------------===//
41//
42// TBD:
43//   FastLowerArguments: Handle simple cases.
44//   PPCMaterializeGV: Handle TLS.
45//   SelectCall: Handle function pointers.
46//   SelectCall: Handle multi-register return values.
47//   SelectCall: Optimize away nops for local calls.
48//   processCallArgs: Handle bit-converted arguments.
49//   finishCall: Handle multi-register return values.
50//   PPCComputeAddress: Handle parameter references as FrameIndex's.
51//   PPCEmitCmp: Handle immediate as operand 1.
52//   SelectCall: Handle small byval arguments.
53//   SelectIntrinsicCall: Implement.
54//   SelectSelect: Implement.
55//   Consider factoring isTypeLegal into the base class.
56//   Implement switches and jump tables.
57//
58//===----------------------------------------------------------------------===//
59using namespace llvm;
60
61namespace {
62
63typedef struct Address {
64  enum {
65    RegBase,
66    FrameIndexBase
67  } BaseType;
68
69  union {
70    unsigned Reg;
71    int FI;
72  } Base;
73
74  long Offset;
75
76  // Innocuous defaults for our address.
77  Address()
78   : BaseType(RegBase), Offset(0) {
79     Base.Reg = 0;
80   }
81} Address;
82
83class PPCFastISel : public FastISel {
84
85  const TargetMachine &TM;
86  const TargetInstrInfo &TII;
87  const TargetLowering &TLI;
88  const PPCSubtarget &PPCSubTarget;
89  LLVMContext *Context;
90
91  public:
92    explicit PPCFastISel(FunctionLoweringInfo &FuncInfo,
93                         const TargetLibraryInfo *LibInfo)
94    : FastISel(FuncInfo, LibInfo),
95      TM(FuncInfo.MF->getTarget()),
96      TII(*TM.getInstrInfo()),
97      TLI(*TM.getTargetLowering()),
98      PPCSubTarget(
99       *((static_cast<const PPCTargetMachine *>(&TM))->getSubtargetImpl())
100      ),
101      Context(&FuncInfo.Fn->getContext()) { }
102
103  // Backend specific FastISel code.
104  private:
105    virtual bool TargetSelectInstruction(const Instruction *I);
106    virtual unsigned TargetMaterializeConstant(const Constant *C);
107    virtual unsigned TargetMaterializeAlloca(const AllocaInst *AI);
108    virtual bool tryToFoldLoadIntoMI(MachineInstr *MI, unsigned OpNo,
109                                     const LoadInst *LI);
110    virtual bool FastLowerArguments();
111    virtual unsigned FastEmit_i(MVT Ty, MVT RetTy, unsigned Opc, uint64_t Imm);
112    virtual unsigned FastEmitInst_ri(unsigned MachineInstOpcode,
113                                     const TargetRegisterClass *RC,
114                                     unsigned Op0, bool Op0IsKill,
115                                     uint64_t Imm);
116    virtual unsigned FastEmitInst_r(unsigned MachineInstOpcode,
117                                    const TargetRegisterClass *RC,
118                                    unsigned Op0, bool Op0IsKill);
119    virtual unsigned FastEmitInst_rr(unsigned MachineInstOpcode,
120                                     const TargetRegisterClass *RC,
121                                     unsigned Op0, bool Op0IsKill,
122                                     unsigned Op1, bool Op1IsKill);
123
124  // Instruction selection routines.
125  private:
126    bool SelectLoad(const Instruction *I);
127    bool SelectStore(const Instruction *I);
128    bool SelectBranch(const Instruction *I);
129    bool SelectIndirectBr(const Instruction *I);
130    bool SelectCmp(const Instruction *I);
131    bool SelectFPExt(const Instruction *I);
132    bool SelectFPTrunc(const Instruction *I);
133    bool SelectIToFP(const Instruction *I, bool IsSigned);
134    bool SelectFPToI(const Instruction *I, bool IsSigned);
135    bool SelectBinaryIntOp(const Instruction *I, unsigned ISDOpcode);
136    bool SelectCall(const Instruction *I);
137    bool SelectRet(const Instruction *I);
138    bool SelectTrunc(const Instruction *I);
139    bool SelectIntExt(const Instruction *I);
140
141  // Utility routines.
142  private:
143    bool isTypeLegal(Type *Ty, MVT &VT);
144    bool isLoadTypeLegal(Type *Ty, MVT &VT);
145    bool PPCEmitCmp(const Value *Src1Value, const Value *Src2Value,
146                    bool isZExt, unsigned DestReg);
147    bool PPCEmitLoad(MVT VT, unsigned &ResultReg, Address &Addr,
148                     const TargetRegisterClass *RC, bool IsZExt = true,
149                     unsigned FP64LoadOpc = PPC::LFD);
150    bool PPCEmitStore(MVT VT, unsigned SrcReg, Address &Addr);
151    bool PPCComputeAddress(const Value *Obj, Address &Addr);
152    void PPCSimplifyAddress(Address &Addr, MVT VT, bool &UseOffset,
153                            unsigned &IndexReg);
154    bool PPCEmitIntExt(MVT SrcVT, unsigned SrcReg, MVT DestVT,
155                           unsigned DestReg, bool IsZExt);
156    unsigned PPCMaterializeFP(const ConstantFP *CFP, MVT VT);
157    unsigned PPCMaterializeGV(const GlobalValue *GV, MVT VT);
158    unsigned PPCMaterializeInt(const Constant *C, MVT VT);
159    unsigned PPCMaterialize32BitInt(int64_t Imm,
160                                    const TargetRegisterClass *RC);
161    unsigned PPCMaterialize64BitInt(int64_t Imm,
162                                    const TargetRegisterClass *RC);
163    unsigned PPCMoveToIntReg(const Instruction *I, MVT VT,
164                             unsigned SrcReg, bool IsSigned);
165    unsigned PPCMoveToFPReg(MVT VT, unsigned SrcReg, bool IsSigned);
166
167  // Call handling routines.
168  private:
169    bool processCallArgs(SmallVectorImpl<Value*> &Args,
170                         SmallVectorImpl<unsigned> &ArgRegs,
171                         SmallVectorImpl<MVT> &ArgVTs,
172                         SmallVectorImpl<ISD::ArgFlagsTy> &ArgFlags,
173                         SmallVectorImpl<unsigned> &RegArgs,
174                         CallingConv::ID CC,
175                         unsigned &NumBytes,
176                         bool IsVarArg);
177    void finishCall(MVT RetVT, SmallVectorImpl<unsigned> &UsedRegs,
178                    const Instruction *I, CallingConv::ID CC,
179                    unsigned &NumBytes, bool IsVarArg);
180    CCAssignFn *usePPC32CCs(unsigned Flag);
181
182  private:
183  #include "PPCGenFastISel.inc"
184
185};
186
187} // end anonymous namespace
188
189#include "PPCGenCallingConv.inc"
190
191// Function whose sole purpose is to kill compiler warnings
192// stemming from unused functions included from PPCGenCallingConv.inc.
193CCAssignFn *PPCFastISel::usePPC32CCs(unsigned Flag) {
194  if (Flag == 1)
195    return CC_PPC32_SVR4;
196  else if (Flag == 2)
197    return CC_PPC32_SVR4_ByVal;
198  else if (Flag == 3)
199    return CC_PPC32_SVR4_VarArg;
200  else
201    return RetCC_PPC;
202}
203
204static Optional<PPC::Predicate> getComparePred(CmpInst::Predicate Pred) {
205  switch (Pred) {
206    // These are not representable with any single compare.
207    case CmpInst::FCMP_FALSE:
208    case CmpInst::FCMP_UEQ:
209    case CmpInst::FCMP_UGT:
210    case CmpInst::FCMP_UGE:
211    case CmpInst::FCMP_ULT:
212    case CmpInst::FCMP_ULE:
213    case CmpInst::FCMP_UNE:
214    case CmpInst::FCMP_TRUE:
215    default:
216      return Optional<PPC::Predicate>();
217
218    case CmpInst::FCMP_OEQ:
219    case CmpInst::ICMP_EQ:
220      return PPC::PRED_EQ;
221
222    case CmpInst::FCMP_OGT:
223    case CmpInst::ICMP_UGT:
224    case CmpInst::ICMP_SGT:
225      return PPC::PRED_GT;
226
227    case CmpInst::FCMP_OGE:
228    case CmpInst::ICMP_UGE:
229    case CmpInst::ICMP_SGE:
230      return PPC::PRED_GE;
231
232    case CmpInst::FCMP_OLT:
233    case CmpInst::ICMP_ULT:
234    case CmpInst::ICMP_SLT:
235      return PPC::PRED_LT;
236
237    case CmpInst::FCMP_OLE:
238    case CmpInst::ICMP_ULE:
239    case CmpInst::ICMP_SLE:
240      return PPC::PRED_LE;
241
242    case CmpInst::FCMP_ONE:
243    case CmpInst::ICMP_NE:
244      return PPC::PRED_NE;
245
246    case CmpInst::FCMP_ORD:
247      return PPC::PRED_NU;
248
249    case CmpInst::FCMP_UNO:
250      return PPC::PRED_UN;
251  }
252}
253
254// Determine whether the type Ty is simple enough to be handled by
255// fast-isel, and return its equivalent machine type in VT.
256// FIXME: Copied directly from ARM -- factor into base class?
257bool PPCFastISel::isTypeLegal(Type *Ty, MVT &VT) {
258  EVT Evt = TLI.getValueType(Ty, true);
259
260  // Only handle simple types.
261  if (Evt == MVT::Other || !Evt.isSimple()) return false;
262  VT = Evt.getSimpleVT();
263
264  // Handle all legal types, i.e. a register that will directly hold this
265  // value.
266  return TLI.isTypeLegal(VT);
267}
268
269// Determine whether the type Ty is simple enough to be handled by
270// fast-isel as a load target, and return its equivalent machine type in VT.
271bool PPCFastISel::isLoadTypeLegal(Type *Ty, MVT &VT) {
272  if (isTypeLegal(Ty, VT)) return true;
273
274  // If this is a type than can be sign or zero-extended to a basic operation
275  // go ahead and accept it now.
276  if (VT == MVT::i8 || VT == MVT::i16 || VT == MVT::i32) {
277    return true;
278  }
279
280  return false;
281}
282
283// Given a value Obj, create an Address object Addr that represents its
284// address.  Return false if we can't handle it.
285bool PPCFastISel::PPCComputeAddress(const Value *Obj, Address &Addr) {
286  const User *U = NULL;
287  unsigned Opcode = Instruction::UserOp1;
288  if (const Instruction *I = dyn_cast<Instruction>(Obj)) {
289    // Don't walk into other basic blocks unless the object is an alloca from
290    // another block, otherwise it may not have a virtual register assigned.
291    if (FuncInfo.StaticAllocaMap.count(static_cast<const AllocaInst *>(Obj)) ||
292        FuncInfo.MBBMap[I->getParent()] == FuncInfo.MBB) {
293      Opcode = I->getOpcode();
294      U = I;
295    }
296  } else if (const ConstantExpr *C = dyn_cast<ConstantExpr>(Obj)) {
297    Opcode = C->getOpcode();
298    U = C;
299  }
300
301  switch (Opcode) {
302    default:
303      break;
304    case Instruction::BitCast:
305      // Look through bitcasts.
306      return PPCComputeAddress(U->getOperand(0), Addr);
307    case Instruction::IntToPtr:
308      // Look past no-op inttoptrs.
309      if (TLI.getValueType(U->getOperand(0)->getType()) == TLI.getPointerTy())
310        return PPCComputeAddress(U->getOperand(0), Addr);
311      break;
312    case Instruction::PtrToInt:
313      // Look past no-op ptrtoints.
314      if (TLI.getValueType(U->getType()) == TLI.getPointerTy())
315        return PPCComputeAddress(U->getOperand(0), Addr);
316      break;
317    case Instruction::GetElementPtr: {
318      Address SavedAddr = Addr;
319      long TmpOffset = Addr.Offset;
320
321      // Iterate through the GEP folding the constants into offsets where
322      // we can.
323      gep_type_iterator GTI = gep_type_begin(U);
324      for (User::const_op_iterator II = U->op_begin() + 1, IE = U->op_end();
325           II != IE; ++II, ++GTI) {
326        const Value *Op = *II;
327        if (StructType *STy = dyn_cast<StructType>(*GTI)) {
328          const StructLayout *SL = TD.getStructLayout(STy);
329          unsigned Idx = cast<ConstantInt>(Op)->getZExtValue();
330          TmpOffset += SL->getElementOffset(Idx);
331        } else {
332          uint64_t S = TD.getTypeAllocSize(GTI.getIndexedType());
333          for (;;) {
334            if (const ConstantInt *CI = dyn_cast<ConstantInt>(Op)) {
335              // Constant-offset addressing.
336              TmpOffset += CI->getSExtValue() * S;
337              break;
338            }
339            if (canFoldAddIntoGEP(U, Op)) {
340              // A compatible add with a constant operand. Fold the constant.
341              ConstantInt *CI =
342              cast<ConstantInt>(cast<AddOperator>(Op)->getOperand(1));
343              TmpOffset += CI->getSExtValue() * S;
344              // Iterate on the other operand.
345              Op = cast<AddOperator>(Op)->getOperand(0);
346              continue;
347            }
348            // Unsupported
349            goto unsupported_gep;
350          }
351        }
352      }
353
354      // Try to grab the base operand now.
355      Addr.Offset = TmpOffset;
356      if (PPCComputeAddress(U->getOperand(0), Addr)) return true;
357
358      // We failed, restore everything and try the other options.
359      Addr = SavedAddr;
360
361      unsupported_gep:
362      break;
363    }
364    case Instruction::Alloca: {
365      const AllocaInst *AI = cast<AllocaInst>(Obj);
366      DenseMap<const AllocaInst*, int>::iterator SI =
367        FuncInfo.StaticAllocaMap.find(AI);
368      if (SI != FuncInfo.StaticAllocaMap.end()) {
369        Addr.BaseType = Address::FrameIndexBase;
370        Addr.Base.FI = SI->second;
371        return true;
372      }
373      break;
374    }
375  }
376
377  // FIXME: References to parameters fall through to the behavior
378  // below.  They should be able to reference a frame index since
379  // they are stored to the stack, so we can get "ld rx, offset(r1)"
380  // instead of "addi ry, r1, offset / ld rx, 0(ry)".  Obj will
381  // just contain the parameter.  Try to handle this with a FI.
382
383  // Try to get this in a register if nothing else has worked.
384  if (Addr.Base.Reg == 0)
385    Addr.Base.Reg = getRegForValue(Obj);
386
387  // Prevent assignment of base register to X0, which is inappropriate
388  // for loads and stores alike.
389  if (Addr.Base.Reg != 0)
390    MRI.setRegClass(Addr.Base.Reg, &PPC::G8RC_and_G8RC_NOX0RegClass);
391
392  return Addr.Base.Reg != 0;
393}
394
395// Fix up some addresses that can't be used directly.  For example, if
396// an offset won't fit in an instruction field, we may need to move it
397// into an index register.
398void PPCFastISel::PPCSimplifyAddress(Address &Addr, MVT VT, bool &UseOffset,
399                                     unsigned &IndexReg) {
400
401  // Check whether the offset fits in the instruction field.
402  if (!isInt<16>(Addr.Offset))
403    UseOffset = false;
404
405  // If this is a stack pointer and the offset needs to be simplified then
406  // put the alloca address into a register, set the base type back to
407  // register and continue. This should almost never happen.
408  if (!UseOffset && Addr.BaseType == Address::FrameIndexBase) {
409    unsigned ResultReg = createResultReg(&PPC::G8RC_and_G8RC_NOX0RegClass);
410    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(PPC::ADDI8),
411            ResultReg).addFrameIndex(Addr.Base.FI).addImm(0);
412    Addr.Base.Reg = ResultReg;
413    Addr.BaseType = Address::RegBase;
414  }
415
416  if (!UseOffset) {
417    IntegerType *OffsetTy = ((VT == MVT::i32) ? Type::getInt32Ty(*Context)
418                             : Type::getInt64Ty(*Context));
419    const ConstantInt *Offset =
420      ConstantInt::getSigned(OffsetTy, (int64_t)(Addr.Offset));
421    IndexReg = PPCMaterializeInt(Offset, MVT::i64);
422    assert(IndexReg && "Unexpected error in PPCMaterializeInt!");
423  }
424}
425
426// Emit a load instruction if possible, returning true if we succeeded,
427// otherwise false.  See commentary below for how the register class of
428// the load is determined.
429bool PPCFastISel::PPCEmitLoad(MVT VT, unsigned &ResultReg, Address &Addr,
430                              const TargetRegisterClass *RC,
431                              bool IsZExt, unsigned FP64LoadOpc) {
432  unsigned Opc;
433  bool UseOffset = true;
434
435  // If ResultReg is given, it determines the register class of the load.
436  // Otherwise, RC is the register class to use.  If the result of the
437  // load isn't anticipated in this block, both may be zero, in which
438  // case we must make a conservative guess.  In particular, don't assign
439  // R0 or X0 to the result register, as the result may be used in a load,
440  // store, add-immediate, or isel that won't permit this.  (Though
441  // perhaps the spill and reload of live-exit values would handle this?)
442  const TargetRegisterClass *UseRC =
443    (ResultReg ? MRI.getRegClass(ResultReg) :
444     (RC ? RC :
445      (VT == MVT::f64 ? &PPC::F8RCRegClass :
446       (VT == MVT::f32 ? &PPC::F4RCRegClass :
447        (VT == MVT::i64 ? &PPC::G8RC_and_G8RC_NOX0RegClass :
448         &PPC::GPRC_and_GPRC_NOR0RegClass)))));
449
450  bool Is32BitInt = UseRC->hasSuperClassEq(&PPC::GPRCRegClass);
451
452  switch (VT.SimpleTy) {
453    default: // e.g., vector types not handled
454      return false;
455    case MVT::i8:
456      Opc = Is32BitInt ? PPC::LBZ : PPC::LBZ8;
457      break;
458    case MVT::i16:
459      Opc = (IsZExt ?
460             (Is32BitInt ? PPC::LHZ : PPC::LHZ8) :
461             (Is32BitInt ? PPC::LHA : PPC::LHA8));
462      break;
463    case MVT::i32:
464      Opc = (IsZExt ?
465             (Is32BitInt ? PPC::LWZ : PPC::LWZ8) :
466             (Is32BitInt ? PPC::LWA_32 : PPC::LWA));
467      if ((Opc == PPC::LWA || Opc == PPC::LWA_32) && ((Addr.Offset & 3) != 0))
468        UseOffset = false;
469      break;
470    case MVT::i64:
471      Opc = PPC::LD;
472      assert(UseRC->hasSuperClassEq(&PPC::G8RCRegClass) &&
473             "64-bit load with 32-bit target??");
474      UseOffset = ((Addr.Offset & 3) == 0);
475      break;
476    case MVT::f32:
477      Opc = PPC::LFS;
478      break;
479    case MVT::f64:
480      Opc = FP64LoadOpc;
481      break;
482  }
483
484  // If necessary, materialize the offset into a register and use
485  // the indexed form.  Also handle stack pointers with special needs.
486  unsigned IndexReg = 0;
487  PPCSimplifyAddress(Addr, VT, UseOffset, IndexReg);
488  if (ResultReg == 0)
489    ResultReg = createResultReg(UseRC);
490
491  // Note: If we still have a frame index here, we know the offset is
492  // in range, as otherwise PPCSimplifyAddress would have converted it
493  // into a RegBase.
494  if (Addr.BaseType == Address::FrameIndexBase) {
495
496    MachineMemOperand *MMO =
497      FuncInfo.MF->getMachineMemOperand(
498        MachinePointerInfo::getFixedStack(Addr.Base.FI, Addr.Offset),
499        MachineMemOperand::MOLoad, MFI.getObjectSize(Addr.Base.FI),
500        MFI.getObjectAlignment(Addr.Base.FI));
501
502    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(Opc), ResultReg)
503      .addImm(Addr.Offset).addFrameIndex(Addr.Base.FI).addMemOperand(MMO);
504
505  // Base reg with offset in range.
506  } else if (UseOffset) {
507
508    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(Opc), ResultReg)
509      .addImm(Addr.Offset).addReg(Addr.Base.Reg);
510
511  // Indexed form.
512  } else {
513    // Get the RR opcode corresponding to the RI one.  FIXME: It would be
514    // preferable to use the ImmToIdxMap from PPCRegisterInfo.cpp, but it
515    // is hard to get at.
516    switch (Opc) {
517      default:        llvm_unreachable("Unexpected opcode!");
518      case PPC::LBZ:    Opc = PPC::LBZX;    break;
519      case PPC::LBZ8:   Opc = PPC::LBZX8;   break;
520      case PPC::LHZ:    Opc = PPC::LHZX;    break;
521      case PPC::LHZ8:   Opc = PPC::LHZX8;   break;
522      case PPC::LHA:    Opc = PPC::LHAX;    break;
523      case PPC::LHA8:   Opc = PPC::LHAX8;   break;
524      case PPC::LWZ:    Opc = PPC::LWZX;    break;
525      case PPC::LWZ8:   Opc = PPC::LWZX8;   break;
526      case PPC::LWA:    Opc = PPC::LWAX;    break;
527      case PPC::LWA_32: Opc = PPC::LWAX_32; break;
528      case PPC::LD:     Opc = PPC::LDX;     break;
529      case PPC::LFS:    Opc = PPC::LFSX;    break;
530      case PPC::LFD:    Opc = PPC::LFDX;    break;
531    }
532    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(Opc), ResultReg)
533      .addReg(Addr.Base.Reg).addReg(IndexReg);
534  }
535
536  return true;
537}
538
539// Attempt to fast-select a load instruction.
540bool PPCFastISel::SelectLoad(const Instruction *I) {
541  // FIXME: No atomic loads are supported.
542  if (cast<LoadInst>(I)->isAtomic())
543    return false;
544
545  // Verify we have a legal type before going any further.
546  MVT VT;
547  if (!isLoadTypeLegal(I->getType(), VT))
548    return false;
549
550  // See if we can handle this address.
551  Address Addr;
552  if (!PPCComputeAddress(I->getOperand(0), Addr))
553    return false;
554
555  // Look at the currently assigned register for this instruction
556  // to determine the required register class.  This is necessary
557  // to constrain RA from using R0/X0 when this is not legal.
558  unsigned AssignedReg = FuncInfo.ValueMap[I];
559  const TargetRegisterClass *RC =
560    AssignedReg ? MRI.getRegClass(AssignedReg) : 0;
561
562  unsigned ResultReg = 0;
563  if (!PPCEmitLoad(VT, ResultReg, Addr, RC))
564    return false;
565  UpdateValueMap(I, ResultReg);
566  return true;
567}
568
569// Emit a store instruction to store SrcReg at Addr.
570bool PPCFastISel::PPCEmitStore(MVT VT, unsigned SrcReg, Address &Addr) {
571  assert(SrcReg && "Nothing to store!");
572  unsigned Opc;
573  bool UseOffset = true;
574
575  const TargetRegisterClass *RC = MRI.getRegClass(SrcReg);
576  bool Is32BitInt = RC->hasSuperClassEq(&PPC::GPRCRegClass);
577
578  switch (VT.SimpleTy) {
579    default: // e.g., vector types not handled
580      return false;
581    case MVT::i8:
582      Opc = Is32BitInt ? PPC::STB : PPC::STB8;
583      break;
584    case MVT::i16:
585      Opc = Is32BitInt ? PPC::STH : PPC::STH8;
586      break;
587    case MVT::i32:
588      assert(Is32BitInt && "Not GPRC for i32??");
589      Opc = PPC::STW;
590      break;
591    case MVT::i64:
592      Opc = PPC::STD;
593      UseOffset = ((Addr.Offset & 3) == 0);
594      break;
595    case MVT::f32:
596      Opc = PPC::STFS;
597      break;
598    case MVT::f64:
599      Opc = PPC::STFD;
600      break;
601  }
602
603  // If necessary, materialize the offset into a register and use
604  // the indexed form.  Also handle stack pointers with special needs.
605  unsigned IndexReg = 0;
606  PPCSimplifyAddress(Addr, VT, UseOffset, IndexReg);
607
608  // Note: If we still have a frame index here, we know the offset is
609  // in range, as otherwise PPCSimplifyAddress would have converted it
610  // into a RegBase.
611  if (Addr.BaseType == Address::FrameIndexBase) {
612    MachineMemOperand *MMO =
613      FuncInfo.MF->getMachineMemOperand(
614        MachinePointerInfo::getFixedStack(Addr.Base.FI, Addr.Offset),
615        MachineMemOperand::MOStore, MFI.getObjectSize(Addr.Base.FI),
616        MFI.getObjectAlignment(Addr.Base.FI));
617
618    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(Opc)).addReg(SrcReg)
619      .addImm(Addr.Offset).addFrameIndex(Addr.Base.FI).addMemOperand(MMO);
620
621  // Base reg with offset in range.
622  } else if (UseOffset)
623    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(Opc))
624      .addReg(SrcReg).addImm(Addr.Offset).addReg(Addr.Base.Reg);
625
626  // Indexed form.
627  else {
628    // Get the RR opcode corresponding to the RI one.  FIXME: It would be
629    // preferable to use the ImmToIdxMap from PPCRegisterInfo.cpp, but it
630    // is hard to get at.
631    switch (Opc) {
632      default:        llvm_unreachable("Unexpected opcode!");
633      case PPC::STB:  Opc = PPC::STBX;  break;
634      case PPC::STH : Opc = PPC::STHX;  break;
635      case PPC::STW : Opc = PPC::STWX;  break;
636      case PPC::STB8: Opc = PPC::STBX8; break;
637      case PPC::STH8: Opc = PPC::STHX8; break;
638      case PPC::STW8: Opc = PPC::STWX8; break;
639      case PPC::STD:  Opc = PPC::STDX;  break;
640      case PPC::STFS: Opc = PPC::STFSX; break;
641      case PPC::STFD: Opc = PPC::STFDX; break;
642    }
643    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(Opc))
644      .addReg(SrcReg).addReg(Addr.Base.Reg).addReg(IndexReg);
645  }
646
647  return true;
648}
649
650// Attempt to fast-select a store instruction.
651bool PPCFastISel::SelectStore(const Instruction *I) {
652  Value *Op0 = I->getOperand(0);
653  unsigned SrcReg = 0;
654
655  // FIXME: No atomics loads are supported.
656  if (cast<StoreInst>(I)->isAtomic())
657    return false;
658
659  // Verify we have a legal type before going any further.
660  MVT VT;
661  if (!isLoadTypeLegal(Op0->getType(), VT))
662    return false;
663
664  // Get the value to be stored into a register.
665  SrcReg = getRegForValue(Op0);
666  if (SrcReg == 0)
667    return false;
668
669  // See if we can handle this address.
670  Address Addr;
671  if (!PPCComputeAddress(I->getOperand(1), Addr))
672    return false;
673
674  if (!PPCEmitStore(VT, SrcReg, Addr))
675    return false;
676
677  return true;
678}
679
680// Attempt to fast-select a branch instruction.
681bool PPCFastISel::SelectBranch(const Instruction *I) {
682  const BranchInst *BI = cast<BranchInst>(I);
683  MachineBasicBlock *BrBB = FuncInfo.MBB;
684  MachineBasicBlock *TBB = FuncInfo.MBBMap[BI->getSuccessor(0)];
685  MachineBasicBlock *FBB = FuncInfo.MBBMap[BI->getSuccessor(1)];
686
687  // For now, just try the simplest case where it's fed by a compare.
688  if (const CmpInst *CI = dyn_cast<CmpInst>(BI->getCondition())) {
689    Optional<PPC::Predicate> OptPPCPred = getComparePred(CI->getPredicate());
690    if (!OptPPCPred)
691      return false;
692
693    PPC::Predicate PPCPred = OptPPCPred.getValue();
694
695    // Take advantage of fall-through opportunities.
696    if (FuncInfo.MBB->isLayoutSuccessor(TBB)) {
697      std::swap(TBB, FBB);
698      PPCPred = PPC::InvertPredicate(PPCPred);
699    }
700
701    unsigned CondReg = createResultReg(&PPC::CRRCRegClass);
702
703    if (!PPCEmitCmp(CI->getOperand(0), CI->getOperand(1), CI->isUnsigned(),
704                    CondReg))
705      return false;
706
707    BuildMI(*BrBB, FuncInfo.InsertPt, DL, TII.get(PPC::BCC))
708      .addImm(PPCPred).addReg(CondReg).addMBB(TBB);
709    FastEmitBranch(FBB, DL);
710    FuncInfo.MBB->addSuccessor(TBB);
711    return true;
712
713  } else if (const ConstantInt *CI =
714             dyn_cast<ConstantInt>(BI->getCondition())) {
715    uint64_t Imm = CI->getZExtValue();
716    MachineBasicBlock *Target = (Imm == 0) ? FBB : TBB;
717    FastEmitBranch(Target, DL);
718    return true;
719  }
720
721  // FIXME: ARM looks for a case where the block containing the compare
722  // has been split from the block containing the branch.  If this happens,
723  // there is a vreg available containing the result of the compare.  I'm
724  // not sure we can do much, as we've lost the predicate information with
725  // the compare instruction -- we have a 4-bit CR but don't know which bit
726  // to test here.
727  return false;
728}
729
730// Attempt to emit a compare of the two source values.  Signed and unsigned
731// comparisons are supported.  Return false if we can't handle it.
732bool PPCFastISel::PPCEmitCmp(const Value *SrcValue1, const Value *SrcValue2,
733                             bool IsZExt, unsigned DestReg) {
734  Type *Ty = SrcValue1->getType();
735  EVT SrcEVT = TLI.getValueType(Ty, true);
736  if (!SrcEVT.isSimple())
737    return false;
738  MVT SrcVT = SrcEVT.getSimpleVT();
739
740  // See if operand 2 is an immediate encodeable in the compare.
741  // FIXME: Operands are not in canonical order at -O0, so an immediate
742  // operand in position 1 is a lost opportunity for now.  We are
743  // similar to ARM in this regard.
744  long Imm = 0;
745  bool UseImm = false;
746
747  // Only 16-bit integer constants can be represented in compares for
748  // PowerPC.  Others will be materialized into a register.
749  if (const ConstantInt *ConstInt = dyn_cast<ConstantInt>(SrcValue2)) {
750    if (SrcVT == MVT::i64 || SrcVT == MVT::i32 || SrcVT == MVT::i16 ||
751        SrcVT == MVT::i8 || SrcVT == MVT::i1) {
752      const APInt &CIVal = ConstInt->getValue();
753      Imm = (IsZExt) ? (long)CIVal.getZExtValue() : (long)CIVal.getSExtValue();
754      if ((IsZExt && isUInt<16>(Imm)) || (!IsZExt && isInt<16>(Imm)))
755        UseImm = true;
756    }
757  }
758
759  unsigned CmpOpc;
760  bool NeedsExt = false;
761  switch (SrcVT.SimpleTy) {
762    default: return false;
763    case MVT::f32:
764      CmpOpc = PPC::FCMPUS;
765      break;
766    case MVT::f64:
767      CmpOpc = PPC::FCMPUD;
768      break;
769    case MVT::i1:
770    case MVT::i8:
771    case MVT::i16:
772      NeedsExt = true;
773      // Intentional fall-through.
774    case MVT::i32:
775      if (!UseImm)
776        CmpOpc = IsZExt ? PPC::CMPLW : PPC::CMPW;
777      else
778        CmpOpc = IsZExt ? PPC::CMPLWI : PPC::CMPWI;
779      break;
780    case MVT::i64:
781      if (!UseImm)
782        CmpOpc = IsZExt ? PPC::CMPLD : PPC::CMPD;
783      else
784        CmpOpc = IsZExt ? PPC::CMPLDI : PPC::CMPDI;
785      break;
786  }
787
788  unsigned SrcReg1 = getRegForValue(SrcValue1);
789  if (SrcReg1 == 0)
790    return false;
791
792  unsigned SrcReg2 = 0;
793  if (!UseImm) {
794    SrcReg2 = getRegForValue(SrcValue2);
795    if (SrcReg2 == 0)
796      return false;
797  }
798
799  if (NeedsExt) {
800    unsigned ExtReg = createResultReg(&PPC::GPRCRegClass);
801    if (!PPCEmitIntExt(SrcVT, SrcReg1, MVT::i32, ExtReg, IsZExt))
802      return false;
803    SrcReg1 = ExtReg;
804
805    if (!UseImm) {
806      unsigned ExtReg = createResultReg(&PPC::GPRCRegClass);
807      if (!PPCEmitIntExt(SrcVT, SrcReg2, MVT::i32, ExtReg, IsZExt))
808        return false;
809      SrcReg2 = ExtReg;
810    }
811  }
812
813  if (!UseImm)
814    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(CmpOpc), DestReg)
815      .addReg(SrcReg1).addReg(SrcReg2);
816  else
817    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(CmpOpc), DestReg)
818      .addReg(SrcReg1).addImm(Imm);
819
820  return true;
821}
822
823// Attempt to fast-select a floating-point extend instruction.
824bool PPCFastISel::SelectFPExt(const Instruction *I) {
825  Value *Src  = I->getOperand(0);
826  EVT SrcVT  = TLI.getValueType(Src->getType(), true);
827  EVT DestVT = TLI.getValueType(I->getType(), true);
828
829  if (SrcVT != MVT::f32 || DestVT != MVT::f64)
830    return false;
831
832  unsigned SrcReg = getRegForValue(Src);
833  if (!SrcReg)
834    return false;
835
836  // No code is generated for a FP extend.
837  UpdateValueMap(I, SrcReg);
838  return true;
839}
840
841// Attempt to fast-select a floating-point truncate instruction.
842bool PPCFastISel::SelectFPTrunc(const Instruction *I) {
843  Value *Src  = I->getOperand(0);
844  EVT SrcVT  = TLI.getValueType(Src->getType(), true);
845  EVT DestVT = TLI.getValueType(I->getType(), true);
846
847  if (SrcVT != MVT::f64 || DestVT != MVT::f32)
848    return false;
849
850  unsigned SrcReg = getRegForValue(Src);
851  if (!SrcReg)
852    return false;
853
854  // Round the result to single precision.
855  unsigned DestReg = createResultReg(&PPC::F4RCRegClass);
856  BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(PPC::FRSP), DestReg)
857    .addReg(SrcReg);
858
859  UpdateValueMap(I, DestReg);
860  return true;
861}
862
863// Move an i32 or i64 value in a GPR to an f64 value in an FPR.
864// FIXME: When direct register moves are implemented (see PowerISA 2.08),
865// those should be used instead of moving via a stack slot when the
866// subtarget permits.
867// FIXME: The code here is sloppy for the 4-byte case.  Can use a 4-byte
868// stack slot and 4-byte store/load sequence.  Or just sext the 4-byte
869// case to 8 bytes which produces tighter code but wastes stack space.
870unsigned PPCFastISel::PPCMoveToFPReg(MVT SrcVT, unsigned SrcReg,
871                                     bool IsSigned) {
872
873  // If necessary, extend 32-bit int to 64-bit.
874  if (SrcVT == MVT::i32) {
875    unsigned TmpReg = createResultReg(&PPC::G8RCRegClass);
876    if (!PPCEmitIntExt(MVT::i32, SrcReg, MVT::i64, TmpReg, !IsSigned))
877      return 0;
878    SrcReg = TmpReg;
879  }
880
881  // Get a stack slot 8 bytes wide, aligned on an 8-byte boundary.
882  Address Addr;
883  Addr.BaseType = Address::FrameIndexBase;
884  Addr.Base.FI = MFI.CreateStackObject(8, 8, false);
885
886  // Store the value from the GPR.
887  if (!PPCEmitStore(MVT::i64, SrcReg, Addr))
888    return 0;
889
890  // Load the integer value into an FPR.  The kind of load used depends
891  // on a number of conditions.
892  unsigned LoadOpc = PPC::LFD;
893
894  if (SrcVT == MVT::i32) {
895    if (!IsSigned) {
896      LoadOpc = PPC::LFIWZX;
897      Addr.Offset = 4;
898    } else if (PPCSubTarget.hasLFIWAX()) {
899      LoadOpc = PPC::LFIWAX;
900      Addr.Offset = 4;
901    }
902  }
903
904  const TargetRegisterClass *RC = &PPC::F8RCRegClass;
905  unsigned ResultReg = 0;
906  if (!PPCEmitLoad(MVT::f64, ResultReg, Addr, RC, !IsSigned, LoadOpc))
907    return 0;
908
909  return ResultReg;
910}
911
912// Attempt to fast-select an integer-to-floating-point conversion.
913bool PPCFastISel::SelectIToFP(const Instruction *I, bool IsSigned) {
914  MVT DstVT;
915  Type *DstTy = I->getType();
916  if (!isTypeLegal(DstTy, DstVT))
917    return false;
918
919  if (DstVT != MVT::f32 && DstVT != MVT::f64)
920    return false;
921
922  Value *Src = I->getOperand(0);
923  EVT SrcEVT = TLI.getValueType(Src->getType(), true);
924  if (!SrcEVT.isSimple())
925    return false;
926
927  MVT SrcVT = SrcEVT.getSimpleVT();
928
929  if (SrcVT != MVT::i8  && SrcVT != MVT::i16 &&
930      SrcVT != MVT::i32 && SrcVT != MVT::i64)
931    return false;
932
933  unsigned SrcReg = getRegForValue(Src);
934  if (SrcReg == 0)
935    return false;
936
937  // We can only lower an unsigned convert if we have the newer
938  // floating-point conversion operations.
939  if (!IsSigned && !PPCSubTarget.hasFPCVT())
940    return false;
941
942  // FIXME: For now we require the newer floating-point conversion operations
943  // (which are present only on P7 and A2 server models) when converting
944  // to single-precision float.  Otherwise we have to generate a lot of
945  // fiddly code to avoid double rounding.  If necessary, the fiddly code
946  // can be found in PPCTargetLowering::LowerINT_TO_FP().
947  if (DstVT == MVT::f32 && !PPCSubTarget.hasFPCVT())
948    return false;
949
950  // Extend the input if necessary.
951  if (SrcVT == MVT::i8 || SrcVT == MVT::i16) {
952    unsigned TmpReg = createResultReg(&PPC::G8RCRegClass);
953    if (!PPCEmitIntExt(SrcVT, SrcReg, MVT::i64, TmpReg, !IsSigned))
954      return false;
955    SrcVT = MVT::i64;
956    SrcReg = TmpReg;
957  }
958
959  // Move the integer value to an FPR.
960  unsigned FPReg = PPCMoveToFPReg(SrcVT, SrcReg, IsSigned);
961  if (FPReg == 0)
962    return false;
963
964  // Determine the opcode for the conversion.
965  const TargetRegisterClass *RC = &PPC::F8RCRegClass;
966  unsigned DestReg = createResultReg(RC);
967  unsigned Opc;
968
969  if (DstVT == MVT::f32)
970    Opc = IsSigned ? PPC::FCFIDS : PPC::FCFIDUS;
971  else
972    Opc = IsSigned ? PPC::FCFID : PPC::FCFIDU;
973
974  // Generate the convert.
975  BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(Opc), DestReg)
976    .addReg(FPReg);
977
978  UpdateValueMap(I, DestReg);
979  return true;
980}
981
982// Move the floating-point value in SrcReg into an integer destination
983// register, and return the register (or zero if we can't handle it).
984// FIXME: When direct register moves are implemented (see PowerISA 2.08),
985// those should be used instead of moving via a stack slot when the
986// subtarget permits.
987unsigned PPCFastISel::PPCMoveToIntReg(const Instruction *I, MVT VT,
988                                      unsigned SrcReg, bool IsSigned) {
989  // Get a stack slot 8 bytes wide, aligned on an 8-byte boundary.
990  // Note that if have STFIWX available, we could use a 4-byte stack
991  // slot for i32, but this being fast-isel we'll just go with the
992  // easiest code gen possible.
993  Address Addr;
994  Addr.BaseType = Address::FrameIndexBase;
995  Addr.Base.FI = MFI.CreateStackObject(8, 8, false);
996
997  // Store the value from the FPR.
998  if (!PPCEmitStore(MVT::f64, SrcReg, Addr))
999    return 0;
1000
1001  // Reload it into a GPR.  If we want an i32, modify the address
1002  // to have a 4-byte offset so we load from the right place.
1003  if (VT == MVT::i32)
1004    Addr.Offset = 4;
1005
1006  // Look at the currently assigned register for this instruction
1007  // to determine the required register class.
1008  unsigned AssignedReg = FuncInfo.ValueMap[I];
1009  const TargetRegisterClass *RC =
1010    AssignedReg ? MRI.getRegClass(AssignedReg) : 0;
1011
1012  unsigned ResultReg = 0;
1013  if (!PPCEmitLoad(VT, ResultReg, Addr, RC, !IsSigned))
1014    return 0;
1015
1016  return ResultReg;
1017}
1018
1019// Attempt to fast-select a floating-point-to-integer conversion.
1020bool PPCFastISel::SelectFPToI(const Instruction *I, bool IsSigned) {
1021  MVT DstVT, SrcVT;
1022  Type *DstTy = I->getType();
1023  if (!isTypeLegal(DstTy, DstVT))
1024    return false;
1025
1026  if (DstVT != MVT::i32 && DstVT != MVT::i64)
1027    return false;
1028
1029  Value *Src = I->getOperand(0);
1030  Type *SrcTy = Src->getType();
1031  if (!isTypeLegal(SrcTy, SrcVT))
1032    return false;
1033
1034  if (SrcVT != MVT::f32 && SrcVT != MVT::f64)
1035    return false;
1036
1037  unsigned SrcReg = getRegForValue(Src);
1038  if (SrcReg == 0)
1039    return false;
1040
1041  // Convert f32 to f64 if necessary.  This is just a meaningless copy
1042  // to get the register class right.  COPY_TO_REGCLASS is needed since
1043  // a COPY from F4RC to F8RC is converted to a F4RC-F4RC copy downstream.
1044  const TargetRegisterClass *InRC = MRI.getRegClass(SrcReg);
1045  if (InRC == &PPC::F4RCRegClass) {
1046    unsigned TmpReg = createResultReg(&PPC::F8RCRegClass);
1047    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
1048            TII.get(TargetOpcode::COPY_TO_REGCLASS), TmpReg)
1049      .addReg(SrcReg).addImm(PPC::F8RCRegClassID);
1050    SrcReg = TmpReg;
1051  }
1052
1053  // Determine the opcode for the conversion, which takes place
1054  // entirely within FPRs.
1055  unsigned DestReg = createResultReg(&PPC::F8RCRegClass);
1056  unsigned Opc;
1057
1058  if (DstVT == MVT::i32)
1059    if (IsSigned)
1060      Opc = PPC::FCTIWZ;
1061    else
1062      Opc = PPCSubTarget.hasFPCVT() ? PPC::FCTIWUZ : PPC::FCTIDZ;
1063  else
1064    Opc = IsSigned ? PPC::FCTIDZ : PPC::FCTIDUZ;
1065
1066  // Generate the convert.
1067  BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(Opc), DestReg)
1068    .addReg(SrcReg);
1069
1070  // Now move the integer value from a float register to an integer register.
1071  unsigned IntReg = PPCMoveToIntReg(I, DstVT, DestReg, IsSigned);
1072  if (IntReg == 0)
1073    return false;
1074
1075  UpdateValueMap(I, IntReg);
1076  return true;
1077}
1078
1079// Attempt to fast-select a binary integer operation that isn't already
1080// handled automatically.
1081bool PPCFastISel::SelectBinaryIntOp(const Instruction *I, unsigned ISDOpcode) {
1082  EVT DestVT  = TLI.getValueType(I->getType(), true);
1083
1084  // We can get here in the case when we have a binary operation on a non-legal
1085  // type and the target independent selector doesn't know how to handle it.
1086  if (DestVT != MVT::i16 && DestVT != MVT::i8)
1087    return false;
1088
1089  // Look at the currently assigned register for this instruction
1090  // to determine the required register class.  If there is no register,
1091  // make a conservative choice (don't assign R0).
1092  unsigned AssignedReg = FuncInfo.ValueMap[I];
1093  const TargetRegisterClass *RC =
1094    (AssignedReg ? MRI.getRegClass(AssignedReg) :
1095     &PPC::GPRC_and_GPRC_NOR0RegClass);
1096  bool IsGPRC = RC->hasSuperClassEq(&PPC::GPRCRegClass);
1097
1098  unsigned Opc;
1099  switch (ISDOpcode) {
1100    default: return false;
1101    case ISD::ADD:
1102      Opc = IsGPRC ? PPC::ADD4 : PPC::ADD8;
1103      break;
1104    case ISD::OR:
1105      Opc = IsGPRC ? PPC::OR : PPC::OR8;
1106      break;
1107    case ISD::SUB:
1108      Opc = IsGPRC ? PPC::SUBF : PPC::SUBF8;
1109      break;
1110  }
1111
1112  unsigned ResultReg = createResultReg(RC ? RC : &PPC::G8RCRegClass);
1113  unsigned SrcReg1 = getRegForValue(I->getOperand(0));
1114  if (SrcReg1 == 0) return false;
1115
1116  // Handle case of small immediate operand.
1117  if (const ConstantInt *ConstInt = dyn_cast<ConstantInt>(I->getOperand(1))) {
1118    const APInt &CIVal = ConstInt->getValue();
1119    int Imm = (int)CIVal.getSExtValue();
1120    bool UseImm = true;
1121    if (isInt<16>(Imm)) {
1122      switch (Opc) {
1123        default:
1124          llvm_unreachable("Missing case!");
1125        case PPC::ADD4:
1126          Opc = PPC::ADDI;
1127          MRI.setRegClass(SrcReg1, &PPC::GPRC_and_GPRC_NOR0RegClass);
1128          break;
1129        case PPC::ADD8:
1130          Opc = PPC::ADDI8;
1131          MRI.setRegClass(SrcReg1, &PPC::G8RC_and_G8RC_NOX0RegClass);
1132          break;
1133        case PPC::OR:
1134          Opc = PPC::ORI;
1135          break;
1136        case PPC::OR8:
1137          Opc = PPC::ORI8;
1138          break;
1139        case PPC::SUBF:
1140          if (Imm == -32768)
1141            UseImm = false;
1142          else {
1143            Opc = PPC::ADDI;
1144            MRI.setRegClass(SrcReg1, &PPC::GPRC_and_GPRC_NOR0RegClass);
1145            Imm = -Imm;
1146          }
1147          break;
1148        case PPC::SUBF8:
1149          if (Imm == -32768)
1150            UseImm = false;
1151          else {
1152            Opc = PPC::ADDI8;
1153            MRI.setRegClass(SrcReg1, &PPC::G8RC_and_G8RC_NOX0RegClass);
1154            Imm = -Imm;
1155          }
1156          break;
1157      }
1158
1159      if (UseImm) {
1160        BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(Opc), ResultReg)
1161          .addReg(SrcReg1).addImm(Imm);
1162        UpdateValueMap(I, ResultReg);
1163        return true;
1164      }
1165    }
1166  }
1167
1168  // Reg-reg case.
1169  unsigned SrcReg2 = getRegForValue(I->getOperand(1));
1170  if (SrcReg2 == 0) return false;
1171
1172  // Reverse operands for subtract-from.
1173  if (ISDOpcode == ISD::SUB)
1174    std::swap(SrcReg1, SrcReg2);
1175
1176  BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(Opc), ResultReg)
1177    .addReg(SrcReg1).addReg(SrcReg2);
1178  UpdateValueMap(I, ResultReg);
1179  return true;
1180}
1181
1182// Handle arguments to a call that we're attempting to fast-select.
1183// Return false if the arguments are too complex for us at the moment.
1184bool PPCFastISel::processCallArgs(SmallVectorImpl<Value*> &Args,
1185                                  SmallVectorImpl<unsigned> &ArgRegs,
1186                                  SmallVectorImpl<MVT> &ArgVTs,
1187                                  SmallVectorImpl<ISD::ArgFlagsTy> &ArgFlags,
1188                                  SmallVectorImpl<unsigned> &RegArgs,
1189                                  CallingConv::ID CC,
1190                                  unsigned &NumBytes,
1191                                  bool IsVarArg) {
1192  SmallVector<CCValAssign, 16> ArgLocs;
1193  CCState CCInfo(CC, IsVarArg, *FuncInfo.MF, TM, ArgLocs, *Context);
1194  CCInfo.AnalyzeCallOperands(ArgVTs, ArgFlags, CC_PPC64_ELF_FIS);
1195
1196  // Bail out if we can't handle any of the arguments.
1197  for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) {
1198    CCValAssign &VA = ArgLocs[I];
1199    MVT ArgVT = ArgVTs[VA.getValNo()];
1200
1201    // Skip vector arguments for now, as well as long double and
1202    // uint128_t, and anything that isn't passed in a register.
1203    if (ArgVT.isVector() || ArgVT.getSizeInBits() > 64 ||
1204        !VA.isRegLoc() || VA.needsCustom())
1205      return false;
1206
1207    // Skip bit-converted arguments for now.
1208    if (VA.getLocInfo() == CCValAssign::BCvt)
1209      return false;
1210  }
1211
1212  // Get a count of how many bytes are to be pushed onto the stack.
1213  NumBytes = CCInfo.getNextStackOffset();
1214
1215  // Issue CALLSEQ_START.
1216  BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
1217          TII.get(TII.getCallFrameSetupOpcode()))
1218    .addImm(NumBytes);
1219
1220  // Prepare to assign register arguments.  Every argument uses up a
1221  // GPR protocol register even if it's passed in a floating-point
1222  // register.
1223  unsigned NextGPR = PPC::X3;
1224  unsigned NextFPR = PPC::F1;
1225
1226  // Process arguments.
1227  for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) {
1228    CCValAssign &VA = ArgLocs[I];
1229    unsigned Arg = ArgRegs[VA.getValNo()];
1230    MVT ArgVT = ArgVTs[VA.getValNo()];
1231
1232    // Handle argument promotion and bitcasts.
1233    switch (VA.getLocInfo()) {
1234      default:
1235        llvm_unreachable("Unknown loc info!");
1236      case CCValAssign::Full:
1237        break;
1238      case CCValAssign::SExt: {
1239        MVT DestVT = VA.getLocVT();
1240        const TargetRegisterClass *RC =
1241          (DestVT == MVT::i64) ? &PPC::G8RCRegClass : &PPC::GPRCRegClass;
1242        unsigned TmpReg = createResultReg(RC);
1243        if (!PPCEmitIntExt(ArgVT, Arg, DestVT, TmpReg, /*IsZExt*/false))
1244          llvm_unreachable("Failed to emit a sext!");
1245        ArgVT = DestVT;
1246        Arg = TmpReg;
1247        break;
1248      }
1249      case CCValAssign::AExt:
1250      case CCValAssign::ZExt: {
1251        MVT DestVT = VA.getLocVT();
1252        const TargetRegisterClass *RC =
1253          (DestVT == MVT::i64) ? &PPC::G8RCRegClass : &PPC::GPRCRegClass;
1254        unsigned TmpReg = createResultReg(RC);
1255        if (!PPCEmitIntExt(ArgVT, Arg, DestVT, TmpReg, /*IsZExt*/true))
1256          llvm_unreachable("Failed to emit a zext!");
1257        ArgVT = DestVT;
1258        Arg = TmpReg;
1259        break;
1260      }
1261      case CCValAssign::BCvt: {
1262        // FIXME: Not yet handled.
1263        llvm_unreachable("Should have bailed before getting here!");
1264        break;
1265      }
1266    }
1267
1268    // Copy this argument to the appropriate register.
1269    unsigned ArgReg;
1270    if (ArgVT == MVT::f32 || ArgVT == MVT::f64) {
1271      ArgReg = NextFPR++;
1272      ++NextGPR;
1273    } else
1274      ArgReg = NextGPR++;
1275
1276    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TargetOpcode::COPY),
1277            ArgReg).addReg(Arg);
1278    RegArgs.push_back(ArgReg);
1279  }
1280
1281  return true;
1282}
1283
1284// For a call that we've determined we can fast-select, finish the
1285// call sequence and generate a copy to obtain the return value (if any).
1286void PPCFastISel::finishCall(MVT RetVT, SmallVectorImpl<unsigned> &UsedRegs,
1287                             const Instruction *I, CallingConv::ID CC,
1288                             unsigned &NumBytes, bool IsVarArg) {
1289  // Issue CallSEQ_END.
1290  BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
1291          TII.get(TII.getCallFrameDestroyOpcode()))
1292    .addImm(NumBytes).addImm(0);
1293
1294  // Next, generate a copy to obtain the return value.
1295  // FIXME: No multi-register return values yet, though I don't foresee
1296  // any real difficulties there.
1297  if (RetVT != MVT::isVoid) {
1298    SmallVector<CCValAssign, 16> RVLocs;
1299    CCState CCInfo(CC, IsVarArg, *FuncInfo.MF, TM, RVLocs, *Context);
1300    CCInfo.AnalyzeCallResult(RetVT, RetCC_PPC64_ELF_FIS);
1301    CCValAssign &VA = RVLocs[0];
1302    assert(RVLocs.size() == 1 && "No support for multi-reg return values!");
1303    assert(VA.isRegLoc() && "Can only return in registers!");
1304
1305    MVT DestVT = VA.getValVT();
1306    MVT CopyVT = DestVT;
1307
1308    // Ints smaller than a register still arrive in a full 64-bit
1309    // register, so make sure we recognize this.
1310    if (RetVT == MVT::i8 || RetVT == MVT::i16 || RetVT == MVT::i32)
1311      CopyVT = MVT::i64;
1312
1313    unsigned SourcePhysReg = VA.getLocReg();
1314    unsigned ResultReg = 0;
1315
1316    if (RetVT == CopyVT) {
1317      const TargetRegisterClass *CpyRC = TLI.getRegClassFor(CopyVT);
1318      ResultReg = createResultReg(CpyRC);
1319
1320      BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
1321              TII.get(TargetOpcode::COPY), ResultReg)
1322        .addReg(SourcePhysReg);
1323
1324    // If necessary, round the floating result to single precision.
1325    } else if (CopyVT == MVT::f64) {
1326      ResultReg = createResultReg(TLI.getRegClassFor(RetVT));
1327      BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(PPC::FRSP),
1328              ResultReg).addReg(SourcePhysReg);
1329
1330    // If only the low half of a general register is needed, generate
1331    // a GPRC copy instead of a G8RC copy.  (EXTRACT_SUBREG can't be
1332    // used along the fast-isel path (not lowered), and downstream logic
1333    // also doesn't like a direct subreg copy on a physical reg.)
1334    } else if (RetVT == MVT::i8 || RetVT == MVT::i16 || RetVT == MVT::i32) {
1335      ResultReg = createResultReg(&PPC::GPRCRegClass);
1336      // Convert physical register from G8RC to GPRC.
1337      SourcePhysReg -= PPC::X0 - PPC::R0;
1338      BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
1339              TII.get(TargetOpcode::COPY), ResultReg)
1340        .addReg(SourcePhysReg);
1341    }
1342
1343    assert(ResultReg && "ResultReg unset!");
1344    UsedRegs.push_back(SourcePhysReg);
1345    UpdateValueMap(I, ResultReg);
1346  }
1347}
1348
1349// Attempt to fast-select a call instruction.
1350bool PPCFastISel::SelectCall(const Instruction *I) {
1351  const CallInst *CI = cast<CallInst>(I);
1352  const Value *Callee = CI->getCalledValue();
1353
1354  // Can't handle inline asm.
1355  if (isa<InlineAsm>(Callee))
1356    return false;
1357
1358  // Allow SelectionDAG isel to handle tail calls.
1359  if (CI->isTailCall())
1360    return false;
1361
1362  // Obtain calling convention.
1363  ImmutableCallSite CS(CI);
1364  CallingConv::ID CC = CS.getCallingConv();
1365
1366  PointerType *PT = cast<PointerType>(CS.getCalledValue()->getType());
1367  FunctionType *FTy = cast<FunctionType>(PT->getElementType());
1368  bool IsVarArg = FTy->isVarArg();
1369
1370  // Not ready for varargs yet.
1371  if (IsVarArg)
1372    return false;
1373
1374  // Handle simple calls for now, with legal return types and
1375  // those that can be extended.
1376  Type *RetTy = I->getType();
1377  MVT RetVT;
1378  if (RetTy->isVoidTy())
1379    RetVT = MVT::isVoid;
1380  else if (!isTypeLegal(RetTy, RetVT) && RetVT != MVT::i16 &&
1381           RetVT != MVT::i8)
1382    return false;
1383
1384  // FIXME: No multi-register return values yet.
1385  if (RetVT != MVT::isVoid && RetVT != MVT::i8 && RetVT != MVT::i16 &&
1386      RetVT != MVT::i32 && RetVT != MVT::i64 && RetVT != MVT::f32 &&
1387      RetVT != MVT::f64) {
1388    SmallVector<CCValAssign, 16> RVLocs;
1389    CCState CCInfo(CC, IsVarArg, *FuncInfo.MF, TM, RVLocs, *Context);
1390    CCInfo.AnalyzeCallResult(RetVT, RetCC_PPC64_ELF_FIS);
1391    if (RVLocs.size() > 1)
1392      return false;
1393  }
1394
1395  // Bail early if more than 8 arguments, as we only currently
1396  // handle arguments passed in registers.
1397  unsigned NumArgs = CS.arg_size();
1398  if (NumArgs > 8)
1399    return false;
1400
1401  // Set up the argument vectors.
1402  SmallVector<Value*, 8> Args;
1403  SmallVector<unsigned, 8> ArgRegs;
1404  SmallVector<MVT, 8> ArgVTs;
1405  SmallVector<ISD::ArgFlagsTy, 8> ArgFlags;
1406
1407  Args.reserve(NumArgs);
1408  ArgRegs.reserve(NumArgs);
1409  ArgVTs.reserve(NumArgs);
1410  ArgFlags.reserve(NumArgs);
1411
1412  for (ImmutableCallSite::arg_iterator II = CS.arg_begin(), IE = CS.arg_end();
1413       II != IE; ++II) {
1414    // FIXME: ARM does something for intrinsic calls here, check into that.
1415
1416    unsigned AttrIdx = II - CS.arg_begin() + 1;
1417
1418    // Only handle easy calls for now.  It would be reasonably easy
1419    // to handle <= 8-byte structures passed ByVal in registers, but we
1420    // have to ensure they are right-justified in the register.
1421    if (CS.paramHasAttr(AttrIdx, Attribute::InReg) ||
1422        CS.paramHasAttr(AttrIdx, Attribute::StructRet) ||
1423        CS.paramHasAttr(AttrIdx, Attribute::Nest) ||
1424        CS.paramHasAttr(AttrIdx, Attribute::ByVal))
1425      return false;
1426
1427    ISD::ArgFlagsTy Flags;
1428    if (CS.paramHasAttr(AttrIdx, Attribute::SExt))
1429      Flags.setSExt();
1430    if (CS.paramHasAttr(AttrIdx, Attribute::ZExt))
1431      Flags.setZExt();
1432
1433    Type *ArgTy = (*II)->getType();
1434    MVT ArgVT;
1435    if (!isTypeLegal(ArgTy, ArgVT) && ArgVT != MVT::i16 && ArgVT != MVT::i8)
1436      return false;
1437
1438    if (ArgVT.isVector())
1439      return false;
1440
1441    unsigned Arg = getRegForValue(*II);
1442    if (Arg == 0)
1443      return false;
1444
1445    unsigned OriginalAlignment = TD.getABITypeAlignment(ArgTy);
1446    Flags.setOrigAlign(OriginalAlignment);
1447
1448    Args.push_back(*II);
1449    ArgRegs.push_back(Arg);
1450    ArgVTs.push_back(ArgVT);
1451    ArgFlags.push_back(Flags);
1452  }
1453
1454  // Process the arguments.
1455  SmallVector<unsigned, 8> RegArgs;
1456  unsigned NumBytes;
1457
1458  if (!processCallArgs(Args, ArgRegs, ArgVTs, ArgFlags,
1459                       RegArgs, CC, NumBytes, IsVarArg))
1460    return false;
1461
1462  // FIXME: No handling for function pointers yet.  This requires
1463  // implementing the function descriptor (OPD) setup.
1464  const GlobalValue *GV = dyn_cast<GlobalValue>(Callee);
1465  if (!GV)
1466    return false;
1467
1468  // Build direct call with NOP for TOC restore.
1469  // FIXME: We can and should optimize away the NOP for local calls.
1470  MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
1471                                    TII.get(PPC::BL8_NOP));
1472  // Add callee.
1473  MIB.addGlobalAddress(GV);
1474
1475  // Add implicit physical register uses to the call.
1476  for (unsigned II = 0, IE = RegArgs.size(); II != IE; ++II)
1477    MIB.addReg(RegArgs[II], RegState::Implicit);
1478
1479  // Add a register mask with the call-preserved registers.  Proper
1480  // defs for return values will be added by setPhysRegsDeadExcept().
1481  MIB.addRegMask(TRI.getCallPreservedMask(CC));
1482
1483  // Finish off the call including any return values.
1484  SmallVector<unsigned, 4> UsedRegs;
1485  finishCall(RetVT, UsedRegs, I, CC, NumBytes, IsVarArg);
1486
1487  // Set all unused physregs defs as dead.
1488  static_cast<MachineInstr *>(MIB)->setPhysRegsDeadExcept(UsedRegs, TRI);
1489
1490  return true;
1491}
1492
1493// Attempt to fast-select a return instruction.
1494bool PPCFastISel::SelectRet(const Instruction *I) {
1495
1496  if (!FuncInfo.CanLowerReturn)
1497    return false;
1498
1499  const ReturnInst *Ret = cast<ReturnInst>(I);
1500  const Function &F = *I->getParent()->getParent();
1501
1502  // Build a list of return value registers.
1503  SmallVector<unsigned, 4> RetRegs;
1504  CallingConv::ID CC = F.getCallingConv();
1505
1506  if (Ret->getNumOperands() > 0) {
1507    SmallVector<ISD::OutputArg, 4> Outs;
1508    GetReturnInfo(F.getReturnType(), F.getAttributes(), Outs, TLI);
1509
1510    // Analyze operands of the call, assigning locations to each operand.
1511    SmallVector<CCValAssign, 16> ValLocs;
1512    CCState CCInfo(CC, F.isVarArg(), *FuncInfo.MF, TM, ValLocs, *Context);
1513    CCInfo.AnalyzeReturn(Outs, RetCC_PPC64_ELF_FIS);
1514    const Value *RV = Ret->getOperand(0);
1515
1516    // FIXME: Only one output register for now.
1517    if (ValLocs.size() > 1)
1518      return false;
1519
1520    // Special case for returning a constant integer of any size.
1521    // Materialize the constant as an i64 and copy it to the return
1522    // register.  This avoids an unnecessary extend or truncate.
1523    if (isa<ConstantInt>(*RV)) {
1524      const Constant *C = cast<Constant>(RV);
1525      unsigned SrcReg = PPCMaterializeInt(C, MVT::i64);
1526      unsigned RetReg = ValLocs[0].getLocReg();
1527      BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TargetOpcode::COPY),
1528              RetReg).addReg(SrcReg);
1529      RetRegs.push_back(RetReg);
1530
1531    } else {
1532      unsigned Reg = getRegForValue(RV);
1533
1534      if (Reg == 0)
1535        return false;
1536
1537      // Copy the result values into the output registers.
1538      for (unsigned i = 0; i < ValLocs.size(); ++i) {
1539
1540        CCValAssign &VA = ValLocs[i];
1541        assert(VA.isRegLoc() && "Can only return in registers!");
1542        RetRegs.push_back(VA.getLocReg());
1543        unsigned SrcReg = Reg + VA.getValNo();
1544
1545        EVT RVEVT = TLI.getValueType(RV->getType());
1546        if (!RVEVT.isSimple())
1547          return false;
1548        MVT RVVT = RVEVT.getSimpleVT();
1549        MVT DestVT = VA.getLocVT();
1550
1551        if (RVVT != DestVT && RVVT != MVT::i8 &&
1552            RVVT != MVT::i16 && RVVT != MVT::i32)
1553          return false;
1554
1555        if (RVVT != DestVT) {
1556          switch (VA.getLocInfo()) {
1557            default:
1558              llvm_unreachable("Unknown loc info!");
1559            case CCValAssign::Full:
1560              llvm_unreachable("Full value assign but types don't match?");
1561            case CCValAssign::AExt:
1562            case CCValAssign::ZExt: {
1563              const TargetRegisterClass *RC =
1564                (DestVT == MVT::i64) ? &PPC::G8RCRegClass : &PPC::GPRCRegClass;
1565              unsigned TmpReg = createResultReg(RC);
1566              if (!PPCEmitIntExt(RVVT, SrcReg, DestVT, TmpReg, true))
1567                return false;
1568              SrcReg = TmpReg;
1569              break;
1570            }
1571            case CCValAssign::SExt: {
1572              const TargetRegisterClass *RC =
1573                (DestVT == MVT::i64) ? &PPC::G8RCRegClass : &PPC::GPRCRegClass;
1574              unsigned TmpReg = createResultReg(RC);
1575              if (!PPCEmitIntExt(RVVT, SrcReg, DestVT, TmpReg, false))
1576                return false;
1577              SrcReg = TmpReg;
1578              break;
1579            }
1580          }
1581        }
1582
1583        BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
1584                TII.get(TargetOpcode::COPY), RetRegs[i])
1585          .addReg(SrcReg);
1586      }
1587    }
1588  }
1589
1590  MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
1591                                    TII.get(PPC::BLR));
1592
1593  for (unsigned i = 0, e = RetRegs.size(); i != e; ++i)
1594    MIB.addReg(RetRegs[i], RegState::Implicit);
1595
1596  return true;
1597}
1598
1599// Attempt to emit an integer extend of SrcReg into DestReg.  Both
1600// signed and zero extensions are supported.  Return false if we
1601// can't handle it.
1602bool PPCFastISel::PPCEmitIntExt(MVT SrcVT, unsigned SrcReg, MVT DestVT,
1603                                unsigned DestReg, bool IsZExt) {
1604  if (DestVT != MVT::i32 && DestVT != MVT::i64)
1605    return false;
1606  if (SrcVT != MVT::i8 && SrcVT != MVT::i16 && SrcVT != MVT::i32)
1607    return false;
1608
1609  // Signed extensions use EXTSB, EXTSH, EXTSW.
1610  if (!IsZExt) {
1611    unsigned Opc;
1612    if (SrcVT == MVT::i8)
1613      Opc = (DestVT == MVT::i32) ? PPC::EXTSB : PPC::EXTSB8_32_64;
1614    else if (SrcVT == MVT::i16)
1615      Opc = (DestVT == MVT::i32) ? PPC::EXTSH : PPC::EXTSH8_32_64;
1616    else {
1617      assert(DestVT == MVT::i64 && "Signed extend from i32 to i32??");
1618      Opc = PPC::EXTSW_32_64;
1619    }
1620    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(Opc), DestReg)
1621      .addReg(SrcReg);
1622
1623  // Unsigned 32-bit extensions use RLWINM.
1624  } else if (DestVT == MVT::i32) {
1625    unsigned MB;
1626    if (SrcVT == MVT::i8)
1627      MB = 24;
1628    else {
1629      assert(SrcVT == MVT::i16 && "Unsigned extend from i32 to i32??");
1630      MB = 16;
1631    }
1632    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(PPC::RLWINM),
1633            DestReg)
1634      .addReg(SrcReg).addImm(/*SH=*/0).addImm(MB).addImm(/*ME=*/31);
1635
1636  // Unsigned 64-bit extensions use RLDICL (with a 32-bit source).
1637  } else {
1638    unsigned MB;
1639    if (SrcVT == MVT::i8)
1640      MB = 56;
1641    else if (SrcVT == MVT::i16)
1642      MB = 48;
1643    else
1644      MB = 32;
1645    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
1646            TII.get(PPC::RLDICL_32_64), DestReg)
1647      .addReg(SrcReg).addImm(/*SH=*/0).addImm(MB);
1648  }
1649
1650  return true;
1651}
1652
1653// Attempt to fast-select an indirect branch instruction.
1654bool PPCFastISel::SelectIndirectBr(const Instruction *I) {
1655  unsigned AddrReg = getRegForValue(I->getOperand(0));
1656  if (AddrReg == 0)
1657    return false;
1658
1659  BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(PPC::MTCTR8))
1660    .addReg(AddrReg);
1661  BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(PPC::BCTR8));
1662
1663  const IndirectBrInst *IB = cast<IndirectBrInst>(I);
1664  for (unsigned i = 0, e = IB->getNumSuccessors(); i != e; ++i)
1665    FuncInfo.MBB->addSuccessor(FuncInfo.MBBMap[IB->getSuccessor(i)]);
1666
1667  return true;
1668}
1669
1670// Attempt to fast-select an integer truncate instruction.
1671bool PPCFastISel::SelectTrunc(const Instruction *I) {
1672  Value *Src  = I->getOperand(0);
1673  EVT SrcVT  = TLI.getValueType(Src->getType(), true);
1674  EVT DestVT = TLI.getValueType(I->getType(), true);
1675
1676  if (SrcVT != MVT::i64 && SrcVT != MVT::i32 && SrcVT != MVT::i16)
1677    return false;
1678
1679  if (DestVT != MVT::i32 && DestVT != MVT::i16 && DestVT != MVT::i8)
1680    return false;
1681
1682  unsigned SrcReg = getRegForValue(Src);
1683  if (!SrcReg)
1684    return false;
1685
1686  // The only interesting case is when we need to switch register classes.
1687  if (SrcVT == MVT::i64) {
1688    unsigned ResultReg = createResultReg(&PPC::GPRCRegClass);
1689    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TargetOpcode::COPY),
1690            ResultReg).addReg(SrcReg, 0, PPC::sub_32);
1691    SrcReg = ResultReg;
1692  }
1693
1694  UpdateValueMap(I, SrcReg);
1695  return true;
1696}
1697
1698// Attempt to fast-select an integer extend instruction.
1699bool PPCFastISel::SelectIntExt(const Instruction *I) {
1700  Type *DestTy = I->getType();
1701  Value *Src = I->getOperand(0);
1702  Type *SrcTy = Src->getType();
1703
1704  bool IsZExt = isa<ZExtInst>(I);
1705  unsigned SrcReg = getRegForValue(Src);
1706  if (!SrcReg) return false;
1707
1708  EVT SrcEVT, DestEVT;
1709  SrcEVT = TLI.getValueType(SrcTy, true);
1710  DestEVT = TLI.getValueType(DestTy, true);
1711  if (!SrcEVT.isSimple())
1712    return false;
1713  if (!DestEVT.isSimple())
1714    return false;
1715
1716  MVT SrcVT = SrcEVT.getSimpleVT();
1717  MVT DestVT = DestEVT.getSimpleVT();
1718
1719  // If we know the register class needed for the result of this
1720  // instruction, use it.  Otherwise pick the register class of the
1721  // correct size that does not contain X0/R0, since we don't know
1722  // whether downstream uses permit that assignment.
1723  unsigned AssignedReg = FuncInfo.ValueMap[I];
1724  const TargetRegisterClass *RC =
1725    (AssignedReg ? MRI.getRegClass(AssignedReg) :
1726     (DestVT == MVT::i64 ? &PPC::G8RC_and_G8RC_NOX0RegClass :
1727      &PPC::GPRC_and_GPRC_NOR0RegClass));
1728  unsigned ResultReg = createResultReg(RC);
1729
1730  if (!PPCEmitIntExt(SrcVT, SrcReg, DestVT, ResultReg, IsZExt))
1731    return false;
1732
1733  UpdateValueMap(I, ResultReg);
1734  return true;
1735}
1736
1737// Attempt to fast-select an instruction that wasn't handled by
1738// the table-generated machinery.
1739bool PPCFastISel::TargetSelectInstruction(const Instruction *I) {
1740
1741  switch (I->getOpcode()) {
1742    case Instruction::Load:
1743      return SelectLoad(I);
1744    case Instruction::Store:
1745      return SelectStore(I);
1746    case Instruction::Br:
1747      return SelectBranch(I);
1748    case Instruction::IndirectBr:
1749      return SelectIndirectBr(I);
1750    case Instruction::FPExt:
1751      return SelectFPExt(I);
1752    case Instruction::FPTrunc:
1753      return SelectFPTrunc(I);
1754    case Instruction::SIToFP:
1755      return SelectIToFP(I, /*IsSigned*/ true);
1756    case Instruction::UIToFP:
1757      return SelectIToFP(I, /*IsSigned*/ false);
1758    case Instruction::FPToSI:
1759      return SelectFPToI(I, /*IsSigned*/ true);
1760    case Instruction::FPToUI:
1761      return SelectFPToI(I, /*IsSigned*/ false);
1762    case Instruction::Add:
1763      return SelectBinaryIntOp(I, ISD::ADD);
1764    case Instruction::Or:
1765      return SelectBinaryIntOp(I, ISD::OR);
1766    case Instruction::Sub:
1767      return SelectBinaryIntOp(I, ISD::SUB);
1768    case Instruction::Call:
1769      if (dyn_cast<IntrinsicInst>(I))
1770        return false;
1771      return SelectCall(I);
1772    case Instruction::Ret:
1773      return SelectRet(I);
1774    case Instruction::Trunc:
1775      return SelectTrunc(I);
1776    case Instruction::ZExt:
1777    case Instruction::SExt:
1778      return SelectIntExt(I);
1779    // Here add other flavors of Instruction::XXX that automated
1780    // cases don't catch.  For example, switches are terminators
1781    // that aren't yet handled.
1782    default:
1783      break;
1784  }
1785  return false;
1786}
1787
1788// Materialize a floating-point constant into a register, and return
1789// the register number (or zero if we failed to handle it).
1790unsigned PPCFastISel::PPCMaterializeFP(const ConstantFP *CFP, MVT VT) {
1791  // No plans to handle long double here.
1792  if (VT != MVT::f32 && VT != MVT::f64)
1793    return 0;
1794
1795  // All FP constants are loaded from the constant pool.
1796  unsigned Align = TD.getPrefTypeAlignment(CFP->getType());
1797  assert(Align > 0 && "Unexpectedly missing alignment information!");
1798  unsigned Idx = MCP.getConstantPoolIndex(cast<Constant>(CFP), Align);
1799  unsigned DestReg = createResultReg(TLI.getRegClassFor(VT));
1800  CodeModel::Model CModel = TM.getCodeModel();
1801
1802  MachineMemOperand *MMO =
1803    FuncInfo.MF->getMachineMemOperand(
1804      MachinePointerInfo::getConstantPool(), MachineMemOperand::MOLoad,
1805      (VT == MVT::f32) ? 4 : 8, Align);
1806
1807  unsigned Opc = (VT == MVT::f32) ? PPC::LFS : PPC::LFD;
1808  unsigned TmpReg = createResultReg(&PPC::G8RC_and_G8RC_NOX0RegClass);
1809
1810  // For small code model, generate a LF[SD](0, LDtocCPT(Idx, X2)).
1811  if (CModel == CodeModel::Small || CModel == CodeModel::JITDefault) {
1812    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(PPC::LDtocCPT),
1813            TmpReg)
1814      .addConstantPoolIndex(Idx).addReg(PPC::X2);
1815    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(Opc), DestReg)
1816      .addImm(0).addReg(TmpReg).addMemOperand(MMO);
1817  } else {
1818    // Otherwise we generate LF[SD](Idx[lo], ADDIStocHA(X2, Idx)).
1819    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(PPC::ADDIStocHA),
1820            TmpReg).addReg(PPC::X2).addConstantPoolIndex(Idx);
1821    // But for large code model, we must generate a LDtocL followed
1822    // by the LF[SD].
1823    if (CModel == CodeModel::Large) {
1824      unsigned TmpReg2 = createResultReg(&PPC::G8RC_and_G8RC_NOX0RegClass);
1825      BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(PPC::LDtocL),
1826              TmpReg2).addConstantPoolIndex(Idx).addReg(TmpReg);
1827      BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(Opc), DestReg)
1828        .addImm(0).addReg(TmpReg2);
1829    } else
1830      BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(Opc), DestReg)
1831        .addConstantPoolIndex(Idx, 0, PPCII::MO_TOC_LO)
1832        .addReg(TmpReg)
1833        .addMemOperand(MMO);
1834  }
1835
1836  return DestReg;
1837}
1838
1839// Materialize the address of a global value into a register, and return
1840// the register number (or zero if we failed to handle it).
1841unsigned PPCFastISel::PPCMaterializeGV(const GlobalValue *GV, MVT VT) {
1842  assert(VT == MVT::i64 && "Non-address!");
1843  const TargetRegisterClass *RC = &PPC::G8RC_and_G8RC_NOX0RegClass;
1844  unsigned DestReg = createResultReg(RC);
1845
1846  // Global values may be plain old object addresses, TLS object
1847  // addresses, constant pool entries, or jump tables.  How we generate
1848  // code for these may depend on small, medium, or large code model.
1849  CodeModel::Model CModel = TM.getCodeModel();
1850
1851  // FIXME: Jump tables are not yet required because fast-isel doesn't
1852  // handle switches; if that changes, we need them as well.  For now,
1853  // what follows assumes everything's a generic (or TLS) global address.
1854  const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV);
1855  if (!GVar) {
1856    // If GV is an alias, use the aliasee for determining thread-locality.
1857    if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(GV))
1858      GVar = dyn_cast_or_null<GlobalVariable>(GA->resolveAliasedGlobal(false));
1859  }
1860
1861  // FIXME: We don't yet handle the complexity of TLS.
1862  bool IsTLS = GVar && GVar->isThreadLocal();
1863  if (IsTLS)
1864    return 0;
1865
1866  // For small code model, generate a simple TOC load.
1867  if (CModel == CodeModel::Small || CModel == CodeModel::JITDefault)
1868    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(PPC::LDtoc), DestReg)
1869      .addGlobalAddress(GV).addReg(PPC::X2);
1870  else {
1871    // If the address is an externally defined symbol, a symbol with
1872    // common or externally available linkage, a function address, or a
1873    // jump table address (not yet needed), or if we are generating code
1874    // for large code model, we generate:
1875    //       LDtocL(GV, ADDIStocHA(%X2, GV))
1876    // Otherwise we generate:
1877    //       ADDItocL(ADDIStocHA(%X2, GV), GV)
1878    // Either way, start with the ADDIStocHA:
1879    unsigned HighPartReg = createResultReg(RC);
1880    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(PPC::ADDIStocHA),
1881            HighPartReg).addReg(PPC::X2).addGlobalAddress(GV);
1882
1883    // !GVar implies a function address.  An external variable is one
1884    // without an initializer.
1885    // If/when switches are implemented, jump tables should be handled
1886    // on the "if" path here.
1887    if (CModel == CodeModel::Large || !GVar || !GVar->hasInitializer() ||
1888        GVar->hasCommonLinkage() || GVar->hasAvailableExternallyLinkage())
1889      BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(PPC::LDtocL),
1890              DestReg).addGlobalAddress(GV).addReg(HighPartReg);
1891    else
1892      // Otherwise generate the ADDItocL.
1893      BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(PPC::ADDItocL),
1894              DestReg).addReg(HighPartReg).addGlobalAddress(GV);
1895  }
1896
1897  return DestReg;
1898}
1899
1900// Materialize a 32-bit integer constant into a register, and return
1901// the register number (or zero if we failed to handle it).
1902unsigned PPCFastISel::PPCMaterialize32BitInt(int64_t Imm,
1903                                             const TargetRegisterClass *RC) {
1904  unsigned Lo = Imm & 0xFFFF;
1905  unsigned Hi = (Imm >> 16) & 0xFFFF;
1906
1907  unsigned ResultReg = createResultReg(RC);
1908  bool IsGPRC = RC->hasSuperClassEq(&PPC::GPRCRegClass);
1909
1910  if (isInt<16>(Imm))
1911    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
1912            TII.get(IsGPRC ? PPC::LI : PPC::LI8), ResultReg)
1913      .addImm(Imm);
1914  else if (Lo) {
1915    // Both Lo and Hi have nonzero bits.
1916    unsigned TmpReg = createResultReg(RC);
1917    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
1918            TII.get(IsGPRC ? PPC::LIS : PPC::LIS8), TmpReg)
1919      .addImm(Hi);
1920    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
1921            TII.get(IsGPRC ? PPC::ORI : PPC::ORI8), ResultReg)
1922      .addReg(TmpReg).addImm(Lo);
1923  } else
1924    // Just Hi bits.
1925    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
1926            TII.get(IsGPRC ? PPC::LIS : PPC::LIS8), ResultReg)
1927      .addImm(Hi);
1928
1929  return ResultReg;
1930}
1931
1932// Materialize a 64-bit integer constant into a register, and return
1933// the register number (or zero if we failed to handle it).
1934unsigned PPCFastISel::PPCMaterialize64BitInt(int64_t Imm,
1935                                             const TargetRegisterClass *RC) {
1936  unsigned Remainder = 0;
1937  unsigned Shift = 0;
1938
1939  // If the value doesn't fit in 32 bits, see if we can shift it
1940  // so that it fits in 32 bits.
1941  if (!isInt<32>(Imm)) {
1942    Shift = countTrailingZeros<uint64_t>(Imm);
1943    int64_t ImmSh = static_cast<uint64_t>(Imm) >> Shift;
1944
1945    if (isInt<32>(ImmSh))
1946      Imm = ImmSh;
1947    else {
1948      Remainder = Imm;
1949      Shift = 32;
1950      Imm >>= 32;
1951    }
1952  }
1953
1954  // Handle the high-order 32 bits (if shifted) or the whole 32 bits
1955  // (if not shifted).
1956  unsigned TmpReg1 = PPCMaterialize32BitInt(Imm, RC);
1957  if (!Shift)
1958    return TmpReg1;
1959
1960  // If upper 32 bits were not zero, we've built them and need to shift
1961  // them into place.
1962  unsigned TmpReg2;
1963  if (Imm) {
1964    TmpReg2 = createResultReg(RC);
1965    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(PPC::RLDICR),
1966            TmpReg2).addReg(TmpReg1).addImm(Shift).addImm(63 - Shift);
1967  } else
1968    TmpReg2 = TmpReg1;
1969
1970  unsigned TmpReg3, Hi, Lo;
1971  if ((Hi = (Remainder >> 16) & 0xFFFF)) {
1972    TmpReg3 = createResultReg(RC);
1973    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(PPC::ORIS8),
1974            TmpReg3).addReg(TmpReg2).addImm(Hi);
1975  } else
1976    TmpReg3 = TmpReg2;
1977
1978  if ((Lo = Remainder & 0xFFFF)) {
1979    unsigned ResultReg = createResultReg(RC);
1980    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(PPC::ORI8),
1981            ResultReg).addReg(TmpReg3).addImm(Lo);
1982    return ResultReg;
1983  }
1984
1985  return TmpReg3;
1986}
1987
1988
1989// Materialize an integer constant into a register, and return
1990// the register number (or zero if we failed to handle it).
1991unsigned PPCFastISel::PPCMaterializeInt(const Constant *C, MVT VT) {
1992
1993  if (VT != MVT::i64 && VT != MVT::i32 && VT != MVT::i16 &&
1994      VT != MVT::i8 && VT != MVT::i1)
1995    return 0;
1996
1997  const TargetRegisterClass *RC = ((VT == MVT::i64) ? &PPC::G8RCRegClass :
1998                                   &PPC::GPRCRegClass);
1999
2000  // If the constant is in range, use a load-immediate.
2001  const ConstantInt *CI = cast<ConstantInt>(C);
2002  if (isInt<16>(CI->getSExtValue())) {
2003    unsigned Opc = (VT == MVT::i64) ? PPC::LI8 : PPC::LI;
2004    unsigned ImmReg = createResultReg(RC);
2005    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(Opc), ImmReg)
2006      .addImm(CI->getSExtValue());
2007    return ImmReg;
2008  }
2009
2010  // Construct the constant piecewise.
2011  int64_t Imm = CI->getZExtValue();
2012
2013  if (VT == MVT::i64)
2014    return PPCMaterialize64BitInt(Imm, RC);
2015  else if (VT == MVT::i32)
2016    return PPCMaterialize32BitInt(Imm, RC);
2017
2018  return 0;
2019}
2020
2021// Materialize a constant into a register, and return the register
2022// number (or zero if we failed to handle it).
2023unsigned PPCFastISel::TargetMaterializeConstant(const Constant *C) {
2024  EVT CEVT = TLI.getValueType(C->getType(), true);
2025
2026  // Only handle simple types.
2027  if (!CEVT.isSimple()) return 0;
2028  MVT VT = CEVT.getSimpleVT();
2029
2030  if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C))
2031    return PPCMaterializeFP(CFP, VT);
2032  else if (const GlobalValue *GV = dyn_cast<GlobalValue>(C))
2033    return PPCMaterializeGV(GV, VT);
2034  else if (isa<ConstantInt>(C))
2035    return PPCMaterializeInt(C, VT);
2036
2037  return 0;
2038}
2039
2040// Materialize the address created by an alloca into a register, and
2041// return the register number (or zero if we failed to handle it).
2042unsigned PPCFastISel::TargetMaterializeAlloca(const AllocaInst *AI) {
2043  // Don't handle dynamic allocas.
2044  if (!FuncInfo.StaticAllocaMap.count(AI)) return 0;
2045
2046  MVT VT;
2047  if (!isLoadTypeLegal(AI->getType(), VT)) return 0;
2048
2049  DenseMap<const AllocaInst*, int>::iterator SI =
2050    FuncInfo.StaticAllocaMap.find(AI);
2051
2052  if (SI != FuncInfo.StaticAllocaMap.end()) {
2053    unsigned ResultReg = createResultReg(&PPC::G8RC_and_G8RC_NOX0RegClass);
2054    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(PPC::ADDI8),
2055            ResultReg).addFrameIndex(SI->second).addImm(0);
2056    return ResultReg;
2057  }
2058
2059  return 0;
2060}
2061
2062// Fold loads into extends when possible.
2063// FIXME: We can have multiple redundant extend/trunc instructions
2064// following a load.  The folding only picks up one.  Extend this
2065// to check subsequent instructions for the same pattern and remove
2066// them.  Thus ResultReg should be the def reg for the last redundant
2067// instruction in a chain, and all intervening instructions can be
2068// removed from parent.  Change test/CodeGen/PowerPC/fast-isel-fold.ll
2069// to add ELF64-NOT: rldicl to the appropriate tests when this works.
2070bool PPCFastISel::tryToFoldLoadIntoMI(MachineInstr *MI, unsigned OpNo,
2071                                      const LoadInst *LI) {
2072  // Verify we have a legal type before going any further.
2073  MVT VT;
2074  if (!isLoadTypeLegal(LI->getType(), VT))
2075    return false;
2076
2077  // Combine load followed by zero- or sign-extend.
2078  bool IsZExt = false;
2079  switch(MI->getOpcode()) {
2080    default:
2081      return false;
2082
2083    case PPC::RLDICL:
2084    case PPC::RLDICL_32_64: {
2085      IsZExt = true;
2086      unsigned MB = MI->getOperand(3).getImm();
2087      if ((VT == MVT::i8 && MB <= 56) ||
2088          (VT == MVT::i16 && MB <= 48) ||
2089          (VT == MVT::i32 && MB <= 32))
2090        break;
2091      return false;
2092    }
2093
2094    case PPC::RLWINM:
2095    case PPC::RLWINM8: {
2096      IsZExt = true;
2097      unsigned MB = MI->getOperand(3).getImm();
2098      if ((VT == MVT::i8 && MB <= 24) ||
2099          (VT == MVT::i16 && MB <= 16))
2100        break;
2101      return false;
2102    }
2103
2104    case PPC::EXTSB:
2105    case PPC::EXTSB8:
2106    case PPC::EXTSB8_32_64:
2107      /* There is no sign-extending load-byte instruction. */
2108      return false;
2109
2110    case PPC::EXTSH:
2111    case PPC::EXTSH8:
2112    case PPC::EXTSH8_32_64: {
2113      if (VT != MVT::i16 && VT != MVT::i8)
2114        return false;
2115      break;
2116    }
2117
2118    case PPC::EXTSW:
2119    case PPC::EXTSW_32_64: {
2120      if (VT != MVT::i32 && VT != MVT::i16 && VT != MVT::i8)
2121        return false;
2122      break;
2123    }
2124  }
2125
2126  // See if we can handle this address.
2127  Address Addr;
2128  if (!PPCComputeAddress(LI->getOperand(0), Addr))
2129    return false;
2130
2131  unsigned ResultReg = MI->getOperand(0).getReg();
2132
2133  if (!PPCEmitLoad(VT, ResultReg, Addr, 0, IsZExt))
2134    return false;
2135
2136  MI->eraseFromParent();
2137  return true;
2138}
2139
2140// Attempt to lower call arguments in a faster way than done by
2141// the selection DAG code.
2142bool PPCFastISel::FastLowerArguments() {
2143  // Defer to normal argument lowering for now.  It's reasonably
2144  // efficient.  Consider doing something like ARM to handle the
2145  // case where all args fit in registers, no varargs, no float
2146  // or vector args.
2147  return false;
2148}
2149
2150// Handle materializing integer constants into a register.  This is not
2151// automatically generated for PowerPC, so must be explicitly created here.
2152unsigned PPCFastISel::FastEmit_i(MVT Ty, MVT VT, unsigned Opc, uint64_t Imm) {
2153
2154  if (Opc != ISD::Constant)
2155    return 0;
2156
2157  if (VT != MVT::i64 && VT != MVT::i32 && VT != MVT::i16 &&
2158      VT != MVT::i8 && VT != MVT::i1)
2159    return 0;
2160
2161  const TargetRegisterClass *RC = ((VT == MVT::i64) ? &PPC::G8RCRegClass :
2162                                   &PPC::GPRCRegClass);
2163  if (VT == MVT::i64)
2164    return PPCMaterialize64BitInt(Imm, RC);
2165  else
2166    return PPCMaterialize32BitInt(Imm, RC);
2167}
2168
2169// Override for ADDI and ADDI8 to set the correct register class
2170// on RHS operand 0.  The automatic infrastructure naively assumes
2171// GPRC for i32 and G8RC for i64; the concept of "no R0" is lost
2172// for these cases.  At the moment, none of the other automatically
2173// generated RI instructions require special treatment.  However, once
2174// SelectSelect is implemented, "isel" requires similar handling.
2175//
2176// Also be conservative about the output register class.  Avoid
2177// assigning R0 or X0 to the output register for GPRC and G8RC
2178// register classes, as any such result could be used in ADDI, etc.,
2179// where those regs have another meaning.
2180unsigned PPCFastISel::FastEmitInst_ri(unsigned MachineInstOpcode,
2181                                      const TargetRegisterClass *RC,
2182                                      unsigned Op0, bool Op0IsKill,
2183                                      uint64_t Imm) {
2184  if (MachineInstOpcode == PPC::ADDI)
2185    MRI.setRegClass(Op0, &PPC::GPRC_and_GPRC_NOR0RegClass);
2186  else if (MachineInstOpcode == PPC::ADDI8)
2187    MRI.setRegClass(Op0, &PPC::G8RC_and_G8RC_NOX0RegClass);
2188
2189  const TargetRegisterClass *UseRC =
2190    (RC == &PPC::GPRCRegClass ? &PPC::GPRC_and_GPRC_NOR0RegClass :
2191     (RC == &PPC::G8RCRegClass ? &PPC::G8RC_and_G8RC_NOX0RegClass : RC));
2192
2193  return FastISel::FastEmitInst_ri(MachineInstOpcode, UseRC,
2194                                   Op0, Op0IsKill, Imm);
2195}
2196
2197// Override for instructions with one register operand to avoid use of
2198// R0/X0.  The automatic infrastructure isn't aware of the context so
2199// we must be conservative.
2200unsigned PPCFastISel::FastEmitInst_r(unsigned MachineInstOpcode,
2201                                     const TargetRegisterClass* RC,
2202                                     unsigned Op0, bool Op0IsKill) {
2203  const TargetRegisterClass *UseRC =
2204    (RC == &PPC::GPRCRegClass ? &PPC::GPRC_and_GPRC_NOR0RegClass :
2205     (RC == &PPC::G8RCRegClass ? &PPC::G8RC_and_G8RC_NOX0RegClass : RC));
2206
2207  return FastISel::FastEmitInst_r(MachineInstOpcode, UseRC, Op0, Op0IsKill);
2208}
2209
2210// Override for instructions with two register operands to avoid use
2211// of R0/X0.  The automatic infrastructure isn't aware of the context
2212// so we must be conservative.
2213unsigned PPCFastISel::FastEmitInst_rr(unsigned MachineInstOpcode,
2214                                      const TargetRegisterClass* RC,
2215                                      unsigned Op0, bool Op0IsKill,
2216                                      unsigned Op1, bool Op1IsKill) {
2217  const TargetRegisterClass *UseRC =
2218    (RC == &PPC::GPRCRegClass ? &PPC::GPRC_and_GPRC_NOR0RegClass :
2219     (RC == &PPC::G8RCRegClass ? &PPC::G8RC_and_G8RC_NOX0RegClass : RC));
2220
2221  return FastISel::FastEmitInst_rr(MachineInstOpcode, UseRC, Op0, Op0IsKill,
2222                                   Op1, Op1IsKill);
2223}
2224
2225namespace llvm {
2226  // Create the fast instruction selector for PowerPC64 ELF.
2227  FastISel *PPC::createFastISel(FunctionLoweringInfo &FuncInfo,
2228                                const TargetLibraryInfo *LibInfo) {
2229    const TargetMachine &TM = FuncInfo.MF->getTarget();
2230
2231    // Only available on 64-bit ELF for now.
2232    const PPCSubtarget *Subtarget = &TM.getSubtarget<PPCSubtarget>();
2233    if (Subtarget->isPPC64() && Subtarget->isSVR4ABI())
2234      return new PPCFastISel(FuncInfo, LibInfo);
2235
2236    return 0;
2237  }
2238}
2239